From 2e3115bf49554bea4176ec08a9724efde0a066ed Mon Sep 17 00:00:00 2001 From: Thomas Dehaeze Date: Tue, 8 Jul 2025 18:54:04 +0200 Subject: [PATCH] Remove some parentheses --- phd-thesis.org | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/phd-thesis.org b/phd-thesis.org index cd96937..d893609 100644 --- a/phd-thesis.org +++ b/phd-thesis.org @@ -9193,8 +9193,8 @@ For these cases, the complementary filters analytical formula in Equation\nbsp{} \begin{subequations}\label{eq:detail_control_cf_2nd_order} \begin{align} - H_L(s) &= \frac{(1+\alpha) (\frac{s}{\omega_0})+1}{\left((\frac{s}{\omega_0})+1\right) \left((\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1\right)}\\ - H_H(s) &= \frac{(\frac{s}{\omega_0})^2 \left((\frac{s}{\omega_0})+1+\alpha\right)}{\left((\frac{s}{\omega_0})+1\right) \left((\frac{s}{\omega_0})^2 + \alpha (\frac{s}{\omega_0}) + 1\right)} + H_L(s) &= \frac{(1+\alpha) (\frac{s}{\omega_0})+1}{\left(\frac{s}{\omega_0}+1\right) \left((\frac{s}{\omega_0})^2 + \alpha \frac{s}{\omega_0} + 1\right)}\\ + H_H(s) &= \frac{(\frac{s}{\omega_0})^2 \left(\frac{s}{\omega_0}+1+\alpha\right)}{\left(\frac{s}{\omega_0}+1\right) \left((\frac{s}{\omega_0})^2 + \alpha \frac{s}{\omega_0} + 1\right)} \end{align} \end{subequations}