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Figure 1: Setup with the Spindle, nano-hexapod and metrology
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1 Test-Bench Description

Note

Here are the documentation of the equipment used for this test bench:

• Voltage Amplifier: PiezoDrive PD200

• Amplified Piezoelectric Actuator: Cedrat APA300ML

• DAC/ADC: Speedgoat IO131

• Encoder: Renishaw Vionic and used Ruler

• LION Precision CPL290

• Spindle: Lab Motion RT250S with Drivebox 3.6 controller

1.1 Alignment

Procedure:

1. Align bottom sphere with the spindle rotation axis (˜ 10um)

2. Align top sphere with the spindle rotation axis (˜ 10um)

1.2 Short Range metrology system

There are 5 interferometers pointing at 2 spheres as shown in Figure 1.2.

Value
Sphere Diameter 25.4mm
Distance between the spheres 76.2mm

Assumptions:

• Interferometers are perfectly positioned / oriented

• Sphere is perfect
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Figure 1.1: Metrology system with LION sphere (1 inch diameter) and 5 interferometers fixed to their
individual tip-tilts
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Figure 1.2: Schematic of the measurement system
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Compute the Jacobian matrix:

• From pure X-Y-Z-Rx-Ry small motions, compute the effect on the 5 measured distances

• Compute the matrix

• Inverse the matrix

• Verify that it is working with simple example (for example using Solidworkds)

We have the following set of equations:

d1 = −Dy + l2Rx (1.1)

d2 = −Dy − l1Rx (1.2)

d3 = −Dx − l2Ry (1.3)

d4 = −Dx + l1Ry (1.4)

d5 = −Dz (1.5)

That can be written as a linear transformation:
d1
d2
d3
d4
d5

 =


0 −1 0 l2 0
0 −1 0 −l1 0
−1 0 0 0 −l2
−1 0 0 0 l1
0 0 −1 0 0

 ·


Dx

Dy

Dz

Rx

Ry

 (1.6)

By inverting the matrix, we obtain the Jacobian relation:
Dx

Dy

Dz

Rx

Ry

 =


0 −1 0 l2 0
0 −1 0 −l1 0
−1 0 0 0 −l2
−1 0 0 0 l1
0 0 −1 0 0


−1

·


d1
d2
d3
d4
d5

 (1.7)

Table 1.1: Jacobian matrix for the metrology system

d1 d2 d3 d4 d5

Dx 0.0 0.0 -0.79 -0.21 0.0
Dy -0.79 -0.21 -0.0 -0.0 0.0
Dz 0.0 0.0 0.0 0.0 -1.0
Rx 13.12 -13.12 0.0 -0.0 0.0
Ry 0.0 0.0 -13.12 13.12 0.0

1.3 Spindle errors

The spindle is rotated at 60rpm during 10 turns. The signal of all 5 interferometers are recorded.
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1.3.1 Errors in Dx and Dy

Because of the eccentricity of the reference surfaces (the spheres), we expect the motion in the X-Y
plane to be a circle as a first approximation. We can first see that in Figure 1.3 that shows the measured
Dx and Dy motion as a function of the Rz angle.
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Figure 1.3: Dx and Dy motion during the rotation

A circle is fit, and the obtained radius of the circle (i.e. the excentricity) is estimated to be:

Results
Error linked to excentricity = 19 um

The motion in the X-Y plane as well as the circle fit and the residual motion (circle fit subtracted from
the measured motion) are shown in Figure 1.4.

Let’s now analyse the frequency content in the signal.

1.3.2 Errors in vertical motion Dz

The top interferometer is measuring the vertical motion of the sphere.

However, if the top sphere is not perfectly aligned with the spindle axis, there will also measure some
vertical motion due to this excentricity.

Let’s fit a sinus with a period of one turn.

Results
Errors linked to excentricity = 410 [nm]

If we look at the remaining motion after removing the effect of the eccentricity (Figure 1.8, right), we
can see a signal with 20 periods every turn. Let’s fit this.
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Figure 1.4: Dx and Dy motion during the spindle rotation
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Figure 1.5: Amplitude Spectral Density of the measured Dx and Dy motion
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Figure 1.6: Cumulative Amplitude Spectrum of the measured Dx and Dy motion
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Figure 1.7: Dz motion during the rotation
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Figure 1.8: Effect of the excentricity and remaining Dz motion
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Results
Errors linked to spindle motor = 58 [nm]
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Figure 1.9: Effect of the magnetic pole pairs and remaining Dz motion

Let’s look at the signal in the frequency domain.

On top of the peak at 1Hz (excentricity) and at 20Hz (number of pole pairs), we can observe a frequency
of 126Hz (i.e. 126 periods per turn, approx 2.85 deg).

ould this be related to the air bearing system?

1.3.3 Angle errors in Rx and Ry

Results
amplitude = 281 urad

Let’s now analyse the frequency content in the signal.
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Figure 1.10: Amplitude Spectral Density of the measured Dz motion
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Figure 1.11: Cumulative Amplitude Spectrum of the measured Dz motion
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Figure 1.12: Rx and Ry motion during the spindle rotation
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Figure 1.13: Amplitude Spectral Density of the measured Rx and Ry motion
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Figure 1.14: Cumulative Amplitude Spectrum of the measured Rx and Ry motion
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2 Simscape Model

A 3D view of the Simscape model is shown in Figure 2.1. The Spindle is represented by a Bushing
joint. Axial, radial and tilt stiffnesses are taken from the Spindle datasheet (see Table).

Table 2.1: Spindle stiffnesses

Stiffness Value Unit

Axial 402 N/µm
Radial 226 N/µm
Tilt 2380 Nm/mrad

The metrology system consists of 5 distance measurements (represented by the red lines in Figure
2.1).

2.1 Simscape model parameters

The nano-hexapod is initialized.

The Jacobian matrix that computes the [x, y, z, Rx, Ry] motion of the sample from the 5 interferometers
is defined below.

2.2 Control Architecture

Let’s note:

• dLm = [dL1 , dL2 , dL3 , dL4 , dL5 , dL6 ] the measurement of the 6 encoders fixed to the nano-
hexapod

• τm = [τm1
, τm2

, τm3
, τm4

, τm5
, τm6

] the voltages measured by the 6 force sensors

• u = [u1, u2, u3, u4, u5, u6] the voltages send to the voltage amplifiers for the 6 piezoelectric
actuators

• Rz the spindle measured angle (encoder)

• dm = [d1, d2, d3, d4, d5] the distances measured by the 5 interferometers (see Figure 2.2)
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Figure 2.1: Screenshot of the 3D view of the Simscape model
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Figure 2.2: Schematic of the measurement system
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2.3 Computation of the strut errors from the external metrology

The following frames are defined:

• {W}: the frame that represents the wanted pose of the sample

• {M}: the frame that represents the measured pose of the sample (estimated from the 5 interfer-
ometers and the spindle encoder)

• {G}: the frame fixed to the granite and positioned at the sample’s center

• {H}: the frame fixed to the the spindle rotor, and positioned at the sample’s center

We can express several homogeneous transformation matrices.

Frame fixed to the spindle rotor (centered on the sample’s position), expressed in the frame of the
granite:

GTH =


cos(Rz) −sin(Rz) 0 0
sin(Rz) cos(Rz) 0 0

0 0 1 0
0 0 0 1

 (2.1)

with Rz the spindle encoder.

Wanted position expressed in the frame of the granite:

GTW =


rDx

Rx(rRx)Ry(rRy )Rz(rRz ) rDy

rDz

0 0 0 1

 (2.2)

with R(rRx , rRy , rRz ) representing the wanted orientation of the sample with respect to the granite.
Typically, rRx = 0, rRy = 0 and rRz corresponds to the spindle encoder Rz.

Measured position of the sample with respect to the granite:

GTM =


yDx

Rx(yRx
)Ry(yRy

)Rz(Rz) yDy

yDz

0 0 0 1

 (2.3)

with Rz the spindle encoder, and [yDx
, yDy

, yDz
, yRx

, yRy
] are obtained from the 5 interferometers:

yDx

yDy

yDz

yRx

yRy

 =


0 −1 0 l2 0
0 −1 0 −l1 0
−1 0 0 0 −l2
−1 0 0 0 l1
0 0 −1 0 0


−1

·


d1
d2
d3
d4
d5

 (2.4)

In order to have the position error in the frame of the nano-hexapod, we have to compute
MTW :

MTW = MTG · GTW (2.5)

= GTM
−1 · GTW (2.6)
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The inverse of the transformation matrix can be obtained by

BTA = AT−1
B =

 ART
B −ART

B
APOB

0 0 0 1

 (2.7)

The position errors ϵX = [ϵDx , ϵDy , ϵDz , ϵRx , ϵRy , ϵRz ] expressed in a frame fixed to the nano-hexapod
can be extracted from WTM :

• ϵDx
= MTW (1, 4)

• ϵDy = MTW (2, 4)

• ϵDz
= MTW (3, 4)

• ϵRy
= atan2(MTW (1, 3),

√
MTW (1, 1)2 + MTW (1, 2)2)

• ϵRx
= atan2(−

MTW (2,3)
cos(ϵRy )

,
MTW (3,3)
cos(ϵRy )

)

• ϵRz
= atan2(−

MTW (1,2)
cos(ϵRy )

,
MTW (1,1)
cos(ϵRy )

)

Finally, the strut errors ϵL = [ϵL1 , ϵL2 , ϵL3 , ϵL4 , ϵL5 , ϵL6 ] can be computed from:

ϵL = J · ϵX (2.8)

2.4 IFF Plant

2.5 DVF Plant

2.6 HAC Plant

The transfer functions from the 6 actuator inputs to the 6 estimated strut errors are extracted from
the Simscape model.

The obtained transfer functions are shown in Figure 2.3.

We can see that the system is well decoupled at low frequency (i.e. below the first resonance of the
Nano-Hexapod).
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Figure 2.3: HAC plant obtained on the Simscape model
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3 Control Experiment

3.1 IFF Plant
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Figure 3.1: Obtained transfer function from generated voltages to measured voltages on the piezoelec-
tric force sensor

3.2 IFF Controller

3.3 Open Loop Plant

Here the Rz motion of the Hexapod is estimated from the encoders.
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Figure 3.2: Comparison with the model
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Figure 3.3: Root Locus for IFF
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Figure 3.4: Obtained transfer function from generated voltages to estimated strut motion
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Figure 3.5: Comparison of the open-loop plant measured experimentally and extracted from Simscape
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3.4 Damped Plant
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Figure 3.6: Obtained transfer function from generated voltages to estimated strut motion

3.5 HAC Controller

3.6 Compare dynamics seen by interferometers and by encoders

3.7 Compare dynamics obtained with different Rz estimations
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Figure 3.7: Comparison of the undamped and damped plant with IFF
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Figure 3.8: Loop gain for the HAC
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Figure 3.10: Comparison of the identified dynamic by the internal metrology (encoders) and by the
external metrology (interferometers)
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Figure 3.11: Comparison of the obtained plant using the Encoders or using the output Voltages to
estimate Rz
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4 Closed-Loop Results

4.1 Open and Closed loop results
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Figure 4.1: Comparison of the Open-Loop and Closed-Loop spindle errors
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Figure 4.2: Comparison of the Open-Loop and Closed-Loop spindle errors - Rotation
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