#+TITLE: Nano-Hexapod - Test Bench :DRAWER: #+LANGUAGE: en #+EMAIL: dehaeze.thomas@gmail.com #+AUTHOR: Dehaeze Thomas #+HTML_LINK_HOME: ../index.html #+HTML_LINK_UP: ../index.html #+HTML_HEAD: #+HTML_HEAD: #+BIND: org-latex-image-default-option "scale=1" #+BIND: org-latex-image-default-width "" #+LaTeX_CLASS: scrreprt #+LaTeX_CLASS_OPTIONS: [a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc] #+LATEX_HEADER: \input{preamble.tex} #+LATEX_HEADER_EXTRA: \input{preamble_extra.tex} #+LATEX_HEADER_EXTRA: \bibliography{test-bench-nano-hexapod.bib} #+BIND: org-latex-bib-compiler "biber" #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :exports none #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :noweb yes #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:matlab+ :tangle no #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}") #+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 #+PROPERTY: header-args:latex+ :imoutoptions -quality 100 #+PROPERTY: header-args:latex+ :results file raw replace #+PROPERTY: header-args:latex+ :buffer no #+PROPERTY: header-args:latex+ :tangle no #+PROPERTY: header-args:latex+ :eval no-export #+PROPERTY: header-args:latex+ :exports results #+PROPERTY: header-args:latex+ :mkdirp yes #+PROPERTY: header-args:latex+ :output-dir figs #+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png") :END: #+begin_export html

This report is also available as a pdf.


#+end_export #+latex: \clearpage * Build :noexport: #+NAME: startblock #+BEGIN_SRC emacs-lisp :results none :tangle no (add-to-list 'org-latex-classes '("scrreprt" "\\documentclass{scrreprt}" ("\\chapter{%s}" . "\\chapter*{%s}") ("\\section{%s}" . "\\section*{%s}") ("\\subsection{%s}" . "\\subsection*{%s}") ("\\paragraph{%s}" . "\\paragraph*{%s}") )) ;; Remove automatic org heading labels (defun my-latex-filter-removeOrgAutoLabels (text backend info) "Org-mode automatically generates labels for headings despite explicit use of `#+LABEL`. This filter forcibly removes all automatically generated org-labels in headings." (when (org-export-derived-backend-p backend 'latex) (replace-regexp-in-string "\\\\label{sec:org[a-f0-9]+}\n" "" text))) (add-to-list 'org-export-filter-headline-functions 'my-latex-filter-removeOrgAutoLabels) ;; Remove all org comments in the output LaTeX file (defun delete-org-comments (backend) (loop for comment in (reverse (org-element-map (org-element-parse-buffer) 'comment 'identity)) do (setf (buffer-substring (org-element-property :begin comment) (org-element-property :end comment)) ""))) (add-hook 'org-export-before-processing-hook 'delete-org-comments) ;; Use no package by default (setq org-latex-packages-alist nil) (setq org-latex-default-packages-alist nil) ;; Do not include the subtitle inside the title (setq org-latex-subtitle-separate t) (setq org-latex-subtitle-format "\\subtitle{%s}") (setq org-export-before-parsing-hook '(org-ref-glossary-before-parsing org-ref-acronyms-before-parsing)) #+END_SRC * Notes :noexport: Prefix is =test_nhexa= Add these documents: - [X] [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-nano-hexapod-assembly/nass-nano-hexapod-assembly.org][nass-nano-hexapod-assembly]] - [X] [[file:~/Cloud/work-projects/ID31-NASS/matlab/test-bench-vibration-table/vibration-table.org][test-bench-vibration-table]] - [ ] *Use corrected APA parameters in the initialization script* Suspended table EPDM: ID00/test_bench/table_dyn *Goal of this test bench*: - Properly mount the nano-hexapod - Verify all is working - Tune the complete nano-hexapod model *Basic outline*: 1. [ ] Mounting procedure - [ ] Goal - [ ] Procedure - [ ] Results 2. [ ] Suspended table: - [ ] Goal: identify dynamics of the nano-hexapod not coupled with the outside world - [ ] Experimental modal analysis (first mode at 700 Hz => rigid body in Simscape)) - [ ] Simscape model of the table, comparison of the obtained modes 3. [ ] Simscape model of the Nano-Hexapod? (Maybe already presented in second chapter, maybe this [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/B6-nass-design/nass-design.org::+TITLE: Nano Hexapod - Obtained Design][document]]) Yes, but now the model is updated with the tuned models of the APA, Flexible joints, etc.. 4. [ ] Nano-Hexapod Dynamics - Identified dynamics - Comparison with the simscape model - Effect of the payload mass Maybe the rest is not so interesting here as it will be presented again in the next sections. - Robust Integral Force Feedback (LAC) - High Authority Controller HAC - Decoupling Strategy ** TODO [#C] Add nice pictures [[file:~/Cloud/pictures/work/nano-hexapod/vibration-table]] ** TODO [#B] Proper analysis of the identified dynamics - [ ] Top plate flexible modes (2 modes) - [ ] Modes of the encoder supports - [ ] ... ** TODO [#C] Remove un-used matlab scripts and src files ** TODO [#B] Make nice subfigures for identified modes SCHEDULED: <2024-10-26 Sat> Maybe try to do similar thing as for the micro station: [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A3-micro-station-modal-analysis/mode_shapes-gif-to-jpg/gen_mode_1.sh]] - [ ] Table: 6 rigid body modes + 3 flexible modes [[file:figs/modal-analysis-table]] - [ ] Nano hexapod: 6 rigid body modes + 2 flexible modes [[file:figs/modal-analysis-hexapod]] ** DONE [#A] Update the default APA parameters to have good match CLOSED: [2024-10-26 Sat 15:25] initializeNanoHexapodFinal #+begin_src matlab args.actuator_k (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*380000 args.actuator_ke (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*4952605 args.actuator_ka (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*2476302 args.actuator_c (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*20 args.actuator_ce (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*200 args.actuator_ca (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*100 #+end_src #+begin_src matlab %% Actuator gain [N/V] if all(args.actuator_Ga == 0) switch args.actuator_type case '2dof' nano_hexapod.actuator.Ga = ones(6,1)*(-2.5796); case 'flexible frame' nano_hexapod.actuator.Ga = ones(6,1); % TODO case 'flexible' nano_hexapod.actuator.Ga = ones(6,1)*23.2; end else nano_hexapod.actuator.Ga = args.actuator_Ga; % Actuator gain [N/V] end %% Sensor gain [V/m] if all(args.actuator_Gs == 0) switch args.actuator_type case '2dof' nano_hexapod.actuator.Gs = ones(6,1)*466664; case 'flexible frame' nano_hexapod.actuator.Gs = ones(6,1); % TODO case 'flexible' nano_hexapod.actuator.Gs = ones(6,1)*(-4898341); end else nano_hexapod.actuator.Gs = args.actuator_Gs; % Sensor gain [V/m] end #+end_src ** DONE [#A] Check why the model has more damping now CLOSED: [2024-10-26 Sat 15:26] - Probably because damping on the FJ bench was overestimated (the damping linked to the suspended mass was maybe underestimated) ** DONE [#A] Determine how to manage the Simscape model of the hexapod CLOSED: [2024-10-26 Sat 15:26] - git submodule? - Maybe just copy paste the directory as it will not change a lot now ** Analysis backup of HAC - Decoupling analysis <> *** Introduction :ignore: In this section is studied the HAC-IFF architecture for the Nano-Hexapod. More precisely: - The LAC control is a decentralized integral force feedback as studied in Section ref:sec:test_nhexa_enc_plates_iff - The HAC control is a decentralized controller working in the frame of the struts The corresponding control architecture is shown in Figure ref:fig:test_nhexa_control_architecture_hac_iff_struts with: - $\bm{r}_{\mathcal{X}_n}$: the $6 \times 1$ reference signal in the cartesian frame - $\bm{r}_{d\mathcal{L}}$: the $6 \times 1$ reference signal transformed in the frame of the struts thanks to the inverse kinematic - $\bm{\epsilon}_{d\mathcal{L}}$: the $6 \times 1$ length error of the 6 struts - $\bm{u}^\prime$: input of the damped plant - $\bm{u}$: generated DAC voltages - $\bm{\tau}_m$: measured force sensors - $d\bm{\mathcal{L}}_m$: measured displacement of the struts by the encoders #+begin_src latex :file control_architecture_hac_iff_struts.pdf \definecolor{instrumentation}{rgb}{0, 0.447, 0.741} \definecolor{mechanics}{rgb}{0.8500, 0.325, 0.098} \definecolor{control}{rgb}{0.4660, 0.6740, 0.1880} \begin{tikzpicture} % Blocs \node[block={3.0cm}{2.0cm}, fill=black!20!white] (P) {Plant}; \coordinate[] (inputF) at ($(P.south west)!0.5!(P.north west)$); \coordinate[] (outputF) at ($(P.south east)!0.2!(P.north east)$); \coordinate[] (outputL) at ($(P.south east)!0.8!(P.north east)$); \node[block, below=0.4 of P, fill=control!20!white] (Kiff) {$\bm{K}_\text{IFF}$}; \node[block, left=0.8 of inputF, fill=instrumentation!20!white] (pd200) {\tiny PD200}; \node[addb, left=0.8 of pd200, fill=control!20!white] (addF) {}; \node[block, left=0.8 of addF, fill=control!20!white] (K) {$\bm{K}_\mathcal{L}$}; \node[addb={+}{}{-}{}{}, left=0.8 of K, fill=control!20!white] (subr) {}; \node[block, align=center, left= of subr, fill=control!20!white] (J) {\tiny Inverse\\\tiny Kinematics}; % Connections and labels \draw[->] (outputF) -- ++(1.0, 0) node[above left]{$\bm{\tau}_m$}; \draw[->] ($(outputF) + (0.6, 0)$)node[branch]{} |- (Kiff.east); \draw[->] (Kiff.west) -| (addF.south); \draw[->] (addF.east) -- (pd200.west) node[above left]{$\bm{u}$}; \draw[->] (pd200.east) -- (inputF) node[above left]{$\bm{u}_a$}; \draw[->] (outputL) -- ++(1.0, 0) node[below left]{$d\bm{\mathcal{L}_m}$}; \draw[->] ($(outputL) + (0.6, 0)$)node[branch]{} -- ++(0, 1) -| (subr.north); \draw[->] (subr.east) -- (K.west) node[above left]{$\bm{\epsilon}_{d\mathcal{L}}$}; \draw[->] (K.east) -- (addF.west) node[above left]{$\bm{u}^\prime$}; \draw[->] (J.east) -- (subr.west) node[above left]{$\bm{r}_{d\mathcal{L}}$}; \draw[<-] (J.west)node[above left]{$\bm{r}_{\mathcal{X}_n}$} -- ++(-1, 0); \end{tikzpicture} #+end_src #+name: fig:test_nhexa_control_architecture_hac_iff_struts #+caption: HAC-LAC: IFF + Control in the frame of the legs #+RESULTS: [[file:figs/test_nhexa_control_architecture_hac_iff_struts.png]] This part is structured as follow: - Section ref:sec:test_nhexa_hac_iff_struts_ref_track: some reference tracking tests are performed - Section ref:sec:test_nhexa_hac_iff_struts_controller: the decentralized high authority controller is tuned using the Simscape model and is implemented and tested experimentally - Section ref:sec:test_nhexa_interaction_analysis: an interaction analysis is performed, from which the best decoupling strategy can be determined - Section ref:sec:test_nhexa_robust_hac_design: Robust High Authority Controller are designed *** Reference Tracking - Trajectories :PROPERTIES: :header-args:matlab+: :tangle matlab/scripts/reference_tracking_paths.m :END: <> **** Introduction :ignore: In this section, several trajectories representing the wanted pose (position and orientation) of the top platform with respect to the bottom platform are defined. These trajectories will be used to test the HAC-LAC architecture. In order to transform the wanted pose to the wanted displacement of the 6 struts, the inverse kinematic is required. As a first approximation, the Jacobian matrix $\bm{J}$ can be used instead of using the full inverse kinematic equations. Therefore, the control architecture with the input trajectory $\bm{r}_{\mathcal{X}_n}$ is shown in Figure ref:fig:test_nhexa_control_architecture_hac_iff_L. #+begin_src latex :file control_architecture_hac_iff_struts_L.pdf \definecolor{instrumentation}{rgb}{0, 0.447, 0.741} \definecolor{mechanics}{rgb}{0.8500, 0.325, 0.098} \definecolor{control}{rgb}{0.4660, 0.6740, 0.1880} \begin{tikzpicture} % Blocs \node[block={3.0cm}{2.0cm}, fill=black!20!white] (P) {Plant}; \coordinate[] (inputF) at ($(P.south west)!0.5!(P.north west)$); \coordinate[] (outputF) at ($(P.south east)!0.2!(P.north east)$); \coordinate[] (outputL) at ($(P.south east)!0.8!(P.north east)$); \node[block, below=0.4 of P, fill=control!20!white] (Kiff) {$\bm{K}_\text{IFF}$}; \node[block, left=0.8 of inputF, fill=instrumentation!20!white] (pd200) {\tiny PD200}; \node[addb, left=0.8 of pd200, fill=control!20!white] (addF) {}; \node[block, left=0.8 of addF, fill=control!20!white] (K) {$\bm{K}_\mathcal{L}$}; \node[addb={+}{}{-}{}{}, left=0.8 of K, fill=control!20!white] (subr) {}; \node[block, align=center, left= of subr, fill=control!20!white] (J) {$\bm{J}$}; % Connections and labels \draw[->] (outputF) -- ++(1.0, 0) node[above left]{$\bm{\tau}_m$}; \draw[->] ($(outputF) + (0.6, 0)$)node[branch]{} |- (Kiff.east); \draw[->] (Kiff.west) -| (addF.south); \draw[->] (addF.east) -- (pd200.west) node[above left]{$\bm{u}$}; \draw[->] (pd200.east) -- (inputF) node[above left]{$\bm{u}_a$}; \draw[->] (outputL) -- ++(1.0, 0) node[below left]{$d\bm{\mathcal{L}_m}$}; \draw[->] ($(outputL) + (0.6, 0)$)node[branch]{} -- ++(0, 1) -| (subr.north); \draw[->] (subr.east) -- (K.west) node[above left]{$\bm{\epsilon}_{d\mathcal{L}}$}; \draw[->] (K.east) -- (addF.west) node[above left]{$\bm{u}^\prime$}; \draw[->] (J.east) -- (subr.west) node[above left]{$\bm{r}_{d\mathcal{L}}$}; \draw[<-] (J.west)node[above left]{$\bm{r}_{\mathcal{X}_n}$} -- ++(-1, 0); \end{tikzpicture} #+end_src #+name: fig:test_nhexa_control_architecture_hac_iff_L #+caption: HAC-LAC: IFF + Control in the frame of the legs #+RESULTS: [[file:figs/test_nhexa_control_architecture_hac_iff_struts_L.png]] In the following sections, several reference trajectories are defined: - Section ref:sec:test_nhexa_yz_scans: simple scans in the Y-Z plane - Section ref:sec:test_nhexa_tilt_scans: scans in tilt are performed - Section ref:sec:test_nhexa_nass_scans: scans with X-Y-Z translations in order to draw the word "NASS" **** Matlab Init :noexport:ignore: #+begin_src matlab %% reference_tracking_paths.m % Computation of several reference paths #+end_src #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no :noweb yes <> #+end_src #+begin_src matlab :eval no :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src **** Y-Z Scans <> A function =generateYZScanTrajectory= has been developed in order to easily generate scans in the Y-Z plane. For instance, the following generated trajectory is represented in Figure ref:fig:test_nhexa_yz_scan_example_trajectory_yz_plane. #+begin_src matlab %% Generate the Y-Z trajectory scan Rx_yz = generateYZScanTrajectory(... 'y_tot', 4e-6, ... % Length of Y scans [m] 'z_tot', 4e-6, ... % Total Z distance [m] 'n', 5, ... % Number of Y scans 'Ts', 1e-3, ... % Sampling Time [s] 'ti', 1, ... % Time to go to initial position [s] 'tw', 0, ... % Waiting time between each points [s] 'ty', 0.6, ... % Time for a scan in Y [s] 'tz', 0.2); % Time for a scan in Z [s] #+end_src #+begin_src matlab :exports none %% Plot the trajectory in the Y-Z plane figure; plot(Rx_yz(:,3), Rx_yz(:,4)); xlabel('y [m]'); ylabel('z [m]'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/yz_scan_example_trajectory_yz_plane.pdf', 'width', 'normal', 'height', 'normal'); #+end_src #+name: fig:test_nhexa_yz_scan_example_trajectory_yz_plane #+caption: Generated scan in the Y-Z plane #+RESULTS: [[file:figs/test_nhexa_yz_scan_example_trajectory_yz_plane.png]] The Y and Z positions as a function of time are shown in Figure ref:fig:test_nhexa_yz_scan_example_trajectory. #+begin_src matlab :exports none %% Plot the Y-Z trajectory as a function of time figure; hold on; plot(Rx_yz(:,1), Rx_yz(:,3), ... 'DisplayName', 'Y motion') plot(Rx_yz(:,1), Rx_yz(:,4), ... 'DisplayName', 'Z motion') hold off; xlabel('Time [s]'); ylabel('Displacement [m]'); legend('location', 'northeast'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/yz_scan_example_trajectory.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_nhexa_yz_scan_example_trajectory #+caption: Y and Z trajectories as a function of time #+RESULTS: [[file:figs/test_nhexa_yz_scan_example_trajectory.png]] Using the Jacobian matrix, it is possible to compute the wanted struts lengths as a function of time: \begin{equation} \bm{r}_{d\mathcal{L}} = \bm{J} \bm{r}_{\mathcal{X}_n} \end{equation} #+begin_src matlab :exports none load('jacobian.mat', 'J'); #+end_src #+begin_src matlab %% Compute the reference in the frame of the legs dL_ref = [J*Rx_yz(:, 2:7)']'; #+end_src The reference signal for the strut length is shown in Figure ref:fig:test_nhexa_yz_scan_example_trajectory_struts. #+begin_src matlab :exports none %% Plot the reference in the frame of the legs figure; hold on; for i=1:6 plot(Rx_yz(:,1), dL_ref(:, i), ... 'DisplayName', sprintf('$r_{d\\mathcal{L}_%i}$', i)) end xlabel('Time [s]'); ylabel('Strut Motion [m]'); legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2); yticks(1e-6*[-5:5]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/yz_scan_example_trajectory_struts.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_nhexa_yz_scan_example_trajectory_struts #+caption: Trajectories for the 6 individual struts #+RESULTS: [[file:figs/test_nhexa_yz_scan_example_trajectory_struts.png]] **** Tilt Scans <> A function =generalSpiralAngleTrajectory= has been developed in order to easily generate $R_x,R_y$ tilt scans. For instance, the following generated trajectory is represented in Figure ref:fig:test_nhexa_tilt_scan_example_trajectory. #+begin_src matlab %% Generate the "tilt-spiral" trajectory scan R_tilt = generateSpiralAngleTrajectory(... 'R_tot', 20e-6, ... % Total Tilt [ad] 'n_turn', 5, ... % Number of scans 'Ts', 1e-3, ... % Sampling Time [s] 't_turn', 1, ... % Turn time [s] 't_end', 1); % End time to go back to zero [s] #+end_src #+begin_src matlab :exports none %% Plot the trajectory figure; plot(1e6*R_tilt(:,5), 1e6*R_tilt(:,6)); xlabel('$R_x$ [$\mu$rad]'); ylabel('$R_y$ [$\mu$rad]'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/tilt_scan_example_trajectory.pdf', 'width', 'normal', 'height', 'normal'); #+end_src #+name: fig:test_nhexa_tilt_scan_example_trajectory #+caption: Generated "spiral" scan #+RESULTS: [[file:figs/test_nhexa_tilt_scan_example_trajectory.png]] #+begin_src matlab :exports none %% Compute the reference in the frame of the legs load('jacobian.mat', 'J'); dL_ref = [J*R_tilt(:, 2:7)']'; #+end_src The reference signal for the strut length is shown in Figure ref:fig:test_nhexa_tilt_scan_example_trajectory_struts. #+begin_src matlab :exports none %% Plot the reference in the frame of the legs figure; hold on; for i=1:6 plot(R_tilt(:,1), dL_ref(:, i), ... 'DisplayName', sprintf('$r_{d\\mathcal{L}_%i}$', i)) end xlabel('Time [s]'); ylabel('Strut Motion [m]'); legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); yticks(1e-6*[-5:5]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/tilt_scan_example_trajectory_struts.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_nhexa_tilt_scan_example_trajectory_struts #+caption: Trajectories for the 6 individual struts - Tilt scan #+RESULTS: [[file:figs/test_nhexa_tilt_scan_example_trajectory_struts.png]] **** "NASS" reference path <> In this section, a reference path that "draws" the work "NASS" is developed. First, a series of points representing each letter are defined. Between each letter, a negative Z motion is performed. #+begin_src matlab %% List of points that draws "NASS" ref_path = [ ... 0, 0,0; % Initial Position 0,0,1; 0,4,1; 3,0,1; 3,4,1; % N 3,4,0; 4,0,0; % Transition 4,0,1; 4,3,1; 5,4,1; 6,4,1; 7,3,1; 7,2,1; 4,2,1; 4,3,1; 5,4,1; 6,4,1; 7,3,1; 7,0,1; % A 7,0,0; 8,0,0; % Transition 8,0,1; 11,0,1; 11,2,1; 8,2,1; 8,4,1; 11,4,1; % S 11,4,0; 12,0,0; % Transition 12,0,1; 15,0,1; 15,2,1; 12,2,1; 12,4,1; 15,4,1; % S 15,4,0; ]; %% Center the trajectory arround zero ref_path = ref_path - (max(ref_path) - min(ref_path))/2; %% Define the X-Y-Z cuboid dimensions containing the trajectory X_max = 10e-6; Y_max = 4e-6; Z_max = 2e-6; ref_path = ([X_max, Y_max, Z_max]./max(ref_path)).*ref_path; % [m] #+end_src Then, using the =generateXYZTrajectory= function, the $6 \times 1$ trajectory signal is computed. #+begin_src matlab %% Generating the trajectory Rx_nass = generateXYZTrajectory('points', ref_path); #+end_src The trajectory in the X-Y plane is shown in Figure ref:fig:test_nhexa_ref_track_test_nass (the transitions between the letters are removed). #+begin_src matlab :exports none %% "NASS" trajectory in the X-Y plane figure; plot(1e6*Rx_nass(Rx_nass(:,4)>0, 2), 1e6*Rx_nass(Rx_nass(:,4)>0, 3), 'k.') xlabel('X [$\mu m$]'); ylabel('Y [$\mu m$]'); axis equal; xlim(1e6*[min(Rx_nass(:,2)), max(Rx_nass(:,2))]); ylim(1e6*[min(Rx_nass(:,3)), max(Rx_nass(:,3))]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/ref_track_test_nass.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_nhexa_ref_track_test_nass #+caption: Reference path corresponding to the "NASS" acronym #+RESULTS: [[file:figs/test_nhexa_ref_track_test_nass.png]] It can also be better viewed in a 3D representation as in Figure ref:fig:test_nhexa_ref_track_test_nass_3d. #+begin_src matlab :exports none figure; plot3(1e6*Rx_nass(:,2), 1e6*Rx_nass(:,3), 1e6*Rx_nass(:,4), 'k-'); xlabel('x [$\mu m$]'); ylabel('y [$\mu m$]'); zlabel('z [$\mu m$]'); view(-13, 41) #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/ref_track_test_nass_3d.pdf', 'width', 'normal', 'height', 'normal'); #+end_src #+name: fig:test_nhexa_ref_track_test_nass_3d #+caption: Reference path that draws "NASS" - 3D view #+RESULTS: [[file:figs/test_nhexa_ref_track_test_nass_3d.png]] *** First Basic High Authority Controller :PROPERTIES: :header-args:matlab+: :tangle matlab/scripts/hac_lac_first_try.m :END: <> **** Introduction :ignore: In this section, a simple decentralized high authority controller $\bm{K}_{\mathcal{L}}$ is developed to work without any payload. The diagonal controller is tuned using classical Loop Shaping in Section ref:sec:test_nhexa_hac_iff_no_payload_tuning. The stability is verified in Section ref:sec:test_nhexa_hac_iff_no_payload_stability using the Simscape model. **** Matlab Init :noexport:ignore: #+begin_src matlab %% hac_lac_first_try.m % Development and analysis of a first basic High Authority Controller #+end_src #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no :noweb yes <> #+end_src #+begin_src matlab :eval no :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> <> #+end_src #+begin_src matlab %% Load the identified FRF and Simscape model frf_iff = load('frf_iff_vib_table_m.mat', 'f', 'Ts', 'G_dL'); sim_iff = load('sim_iff_vib_table_m.mat', 'G_dL'); #+end_src **** HAC Controller <> Let's first try to design a first decentralized controller with: - a bandwidth of 100Hz - sufficient phase margin - simple and understandable components After some very basic and manual loop shaping, A diagonal controller is developed. Each diagonal terms are identical and are composed of: - A lead around 100Hz - A first order low pass filter starting at 200Hz to add some robustness to high frequency modes - A notch at 700Hz to cancel the flexible modes of the top plate - A pure integrator #+begin_src matlab %% Lead to increase phase margin a = 2; % Amount of phase lead / width of the phase lead / high frequency gain wc = 2*pi*100; % Frequency with the maximum phase lead [rad/s] H_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a))); %% Low Pass filter to increase robustness H_lpf = 1/(1 + s/2/pi/200); %% Notch at the top-plate resonance gm = 0.02; xi = 0.3; wn = 2*pi*700; H_notch = (s^2 + 2*gm*xi*wn*s + wn^2)/(s^2 + 2*xi*wn*s + wn^2); %% Decentralized HAC Khac_iff_struts = -(1/(2.87e-5)) * ... % Gain H_lead * ... % Lead H_notch * ... % Notch (2*pi*100/s) * ... % Integrator eye(6); % 6x6 Diagonal #+end_src This controller is saved for further use. #+begin_src matlab :exports none :tangle no save('matlab/data_sim/Khac_iff_struts.mat', 'Khac_iff_struts') #+end_src #+begin_src matlab :eval no save('data_sim/Khac_iff_struts.mat', 'Khac_iff_struts') #+end_src The experimental loop gain is computed and shown in Figure ref:fig:test_nhexa_loop_gain_hac_iff_struts. #+begin_src matlab L_hac_iff_struts = pagemtimes(permute(frf_iff.G_dL{1}, [2 3 1]), squeeze(freqresp(Khac_iff_struts, frf_iff.f, 'Hz'))); #+end_src #+begin_src matlab :exports none %% Bode plot of the Loop Gain figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; % Diagonal Elements Model plot(frf_iff.f, abs(squeeze(L_hac_iff_struts(1,1,:))), 'color', colors(1,:), ... 'DisplayName', 'Diagonal'); for i = 2:6 plot(frf_iff.f, abs(squeeze(L_hac_iff_struts(i,i,:))), 'color', colors(1,:), ... 'HandleVisibility', 'off'); end plot(frf_iff.f, abs(squeeze(L_hac_iff_struts(1,2,:))), 'color', [colors(2,:), 0.2], ... 'DisplayName', 'Off-Diag'); for i = 1:5 for j = i+1:6 plot(frf_iff.f, abs(squeeze(L_hac_iff_struts(i,j,:))), 'color', [colors(2,:), 0.2], ... 'HandleVisibility', 'off'); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Loop Gain [-]'); set(gca, 'XTickLabel',[]); ylim([1e-3, 1e2]); legend('location', 'northeast'); ax2 = nexttile; hold on; for i =1:6 plot(frf_iff.f, 180/pi*angle(squeeze(L_hac_iff_struts(i,i,:))), 'color', colors(1,:)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([2, 2e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/loop_gain_hac_iff_struts.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_loop_gain_hac_iff_struts #+caption: Diagonal and off-diagonal elements of the Loop gain for "HAC-IFF-Struts" #+RESULTS: [[file:figs/test_nhexa_loop_gain_hac_iff_struts.png]] **** Verification of the Stability using the Simscape model <> The HAC-IFF control strategy is implemented using Simscape. #+begin_src matlab %% Initialize the Simscape model in closed loop n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ... 'flex_top_type', '4dof', ... 'motion_sensor_type', 'plates', ... 'actuator_type', 'flexible', ... 'controller_type', 'hac-iff-struts'); #+end_src #+begin_src matlab :exports none support.type = 1; % On top of vibration table payload.type = 3; % Payload / 1 "mass layer" load('Kiff_opt.mat', 'Kiff'); #+end_src #+begin_src matlab %% Identify the (damped) transfer function from u to dLm clear io; io_i = 1; io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Plate Displacement (encoder) #+end_src We identify the closed-loop system. #+begin_src matlab %% Identification Gd_iff_hac_opt = linearize(mdl, io, 0.0, options); #+end_src And verify that it is indeed stable. #+begin_src matlab :results value replace :exports both %% Verify the stability isstable(Gd_iff_hac_opt) #+end_src #+RESULTS: : 1 **** Experimental Validation Both the Integral Force Feedback controller (developed in Section ref:sec:test_nhexa_enc_plates_iff) and the high authority controller working in the frame of the struts (developed in Section ref:sec:test_nhexa_hac_iff_struts_controller) are implemented experimentally. Two reference tracking experiments are performed to evaluate the stability and performances of the implemented control. #+begin_src matlab %% Load the experimental data load('hac_iff_struts_yz_scans.mat', 't', 'de') #+end_src #+begin_src matlab :exports none %% Reset initial time t = t - t(1); #+end_src The position of the top-platform is estimated using the Jacobian matrix: #+begin_src matlab %% Pose of the top platform from the encoder values load('jacobian.mat', 'J'); Xe = [inv(J)*de']'; #+end_src #+begin_src matlab %% Generate the Y-Z trajectory scan Rx_yz = generateYZScanTrajectory(... 'y_tot', 4e-6, ... % Length of Y scans [m] 'z_tot', 8e-6, ... % Total Z distance [m] 'n', 5, ... % Number of Y scans 'Ts', 1e-3, ... % Sampling Time [s] 'ti', 1, ... % Time to go to initial position [s] 'tw', 0, ... % Waiting time between each points [s] 'ty', 0.6, ... % Time for a scan in Y [s] 'tz', 0.2); % Time for a scan in Z [s] #+end_src The reference path as well as the measured position are partially shown in the Y-Z plane in Figure ref:fig:test_nhexa_yz_scans_exp_results_first_K. #+begin_src matlab :exports none %% Position and reference signal in the Y-Z plane figure; tiledlayout(1, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile; hold on; plot(1e6*Xe(t>2,2), 1e6*Xe(t>2,3)); plot(1e6*Rx_yz(:,3), 1e6*Rx_yz(:,4), '--'); hold off; xlabel('Y [$\mu m$]'); ylabel('Z [$\mu m$]'); xlim([-2.05, 2.05]); ylim([-4.1, 4.1]); axis equal; ax2 = nexttile([1,2]); hold on; plot(1e6*Xe(:,2), 1e6*Xe(:,3), ... 'DisplayName', '$\mathcal{X}_n$'); plot(1e6*Rx_yz(:,3), 1e6*Rx_yz(:,4), '--', ... 'DisplayName', '$r_{\mathcal{X}_n}$'); hold off; legend('location', 'northwest'); xlabel('Y [$\mu m$]'); ylabel('Z [$\mu m$]'); axis equal; xlim([1.6, 2.1]); ylim([-4.1, -3.6]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/yz_scans_exp_results_first_K.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_yz_scans_exp_results_first_K #+caption: Measured position $\bm{\mathcal{X}}_n$ and reference signal $\bm{r}_{\mathcal{X}_n}$ in the Y-Z plane - Zoom on a change of direction #+RESULTS: [[file:figs/test_nhexa_yz_scans_exp_results_first_K.png]] #+begin_important It is clear from Figure ref:fig:test_nhexa_yz_scans_exp_results_first_K that the position of the nano-hexapod effectively tracks to reference signal. However, oscillations with amplitudes as large as 50nm can be observe. It turns out that the frequency of these oscillations is 100Hz which is corresponding to the crossover frequency of the High Authority Control loop. This clearly indicates poor stability margins. In the next section, the controller is re-designed to improve the stability margins. #+end_important **** Controller with increased stability margins The High Authority Controller is re-designed in order to improve the stability margins. #+begin_src matlab %% Lead a = 5; % Amount of phase lead / width of the phase lead / high frequency gain wc = 2*pi*110; % Frequency with the maximum phase lead [rad/s] H_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a))); %% Low Pass Filter H_lpf = 1/(1 + s/2/pi/300); %% Notch gm = 0.02; xi = 0.5; wn = 2*pi*700; H_notch = (s^2 + 2*gm*xi*wn*s + wn^2)/(s^2 + 2*xi*wn*s + wn^2); %% HAC Controller Khac_iff_struts = -2.2e4 * ... % Gain H_lead * ... % Lead H_lpf * ... % Lead H_notch * ... % Notch (2*pi*100/s) * ... % Integrator eye(6); % 6x6 Diagonal #+end_src #+begin_src matlab :exports none %% Load the FRF of the transfer function from u to dL with IFF frf_iff = load('frf_iff_vib_table_m.mat', 'f', 'Ts', 'G_dL'); #+end_src #+begin_src matlab :exports none %% Compute the Loop Gain L_frf = pagemtimes(permute(frf_iff.G_dL{1}, [2 3 1]), squeeze(freqresp(Khac_iff_struts, frf_iff.f, 'Hz'))); #+end_src The bode plot of the new loop gain is shown in Figure ref:fig:test_nhexa_hac_iff_plates_exp_loop_gain_redesigned_K. #+begin_src matlab :exports none %% Bode plot for the transfer function from u to dLm freqs = 2*logspace(1, 3, 1000); figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; % Diagonal Elements FRF plot(frf_iff.f, abs(squeeze(L_frf(1,1,:))), 'color', colors(1,:), ... 'DisplayName', 'Diagonal'); for i = 2:6 plot(frf_iff.f, abs(squeeze(L_frf(i,i,:))), 'color', colors(1,:), ... 'HandleVisibility', 'off'); end plot(frf_iff.f, abs(squeeze(L_frf(1,2,:))), 'color', [colors(2,:), 0.2], ... 'DisplayName', 'Off-Diag'); for i = 1:5 for j = i+1:6 plot(frf_iff.f, abs(squeeze(L_frf(i,j,:))), 'color', [colors(2,:), 0.2], ... 'HandleVisibility', 'off'); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Loop Gain [-]'); set(gca, 'XTickLabel',[]); ylim([1e-3, 1e2]); legend('location', 'northeast'); ax2 = nexttile; hold on; for i =1:6 plot(frf_iff.f, 180/pi*angle(squeeze(L_frf(i,i,:))), 'color', colors(1,:)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([1, 2e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/hac_iff_plates_exp_loop_gain_redesigned_K.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_hac_iff_plates_exp_loop_gain_redesigned_K #+caption: Loop Gain for the updated decentralized HAC controller #+RESULTS: [[file:figs/test_nhexa_hac_iff_plates_exp_loop_gain_redesigned_K.png]] This new controller is implemented experimentally and several tracking tests are performed. #+begin_src matlab %% Load Measurements load('hac_iff_more_lead_nass_scan.mat', 't', 'de') #+end_src #+begin_src matlab :exports none %% Reset Time t = t - t(1); #+end_src The pose of the top platform is estimated from the encoder position using the Jacobian matrix. #+begin_src matlab %% Compute the pose of the top platform load('jacobian.mat', 'J'); Xe = [inv(J)*de']'; #+end_src #+begin_src matlab :exports none %% Load the reference path load('reference_path.mat', 'Rx_nass') #+end_src The measured motion as well as the trajectory are shown in Figure ref:fig:test_nhexa_nass_scans_first_test_exp. #+begin_src matlab :exports none %% Plot the X-Y-Z "NASS" trajectory figure; hold on; plot3(Xe(1:100:end,1), Xe(1:100:end,2), Xe(1:100:end,3)) plot3(Rx_nass(1:100:end,2), Rx_nass(1:100:end,3), Rx_nass(1:100:end,4)) hold off; xlabel('x [$\mu m$]'); ylabel('y [$\mu m$]'); zlabel('z [$\mu m$]'); view(-13, 41) #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/nass_scans_first_test_exp.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_nass_scans_first_test_exp #+caption: Measured position $\bm{\mathcal{X}}_n$ and reference signal $\bm{r}_{\mathcal{X}_n}$ for the "NASS" trajectory #+RESULTS: [[file:figs/test_nhexa_nass_scans_first_test_exp.png]] The trajectory and measured motion are also shown in the X-Y plane in Figure ref:fig:test_nhexa_ref_track_nass_exp_hac_iff_struts. #+begin_src matlab :exports none %% Estimate when the hexpod is on top position and drawing the letters i_top = Xe(:,3) > 1.9e-6; i_rx = Rx_nass(:,4) > 0; #+end_src #+begin_src matlab :exports none %% Plot the reference as well as the measurement in the X-Y plane figure; tiledlayout(1, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([1,2]); hold on; scatter(1e6*Xe(i_top,1), 1e6*Xe(i_top,2),'.'); plot(1e6*Rx_nass(i_rx,2), 1e6*Rx_nass(i_rx,3), '--'); hold off; xlabel('X [$\mu m$]'); ylabel('Y [$\mu m$]'); axis equal; xlim([-10.5, 10.5]); ylim([-4.5, 4.5]); ax2 = nexttile; hold on; scatter(1e6*Xe(i_top,1), 1e6*Xe(i_top,2),'.'); plot(1e6*Rx_nass(i_rx,2), 1e6*Rx_nass(i_rx,3), '--'); hold off; xlabel('X [$\mu m$]'); ylabel('Y [$\mu m$]'); axis equal; xlim([4.5, 4.7]); ylim([-0.15, 0.05]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/ref_track_nass_exp_hac_iff_struts.pdf', 'width', 'full', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_ref_track_nass_exp_hac_iff_struts #+caption: Reference path and measured motion in the X-Y plane #+RESULTS: [[file:figs/test_nhexa_ref_track_nass_exp_hac_iff_struts.png]] The orientation errors during all the scans are shown in Figure ref:fig:test_nhexa_nass_ref_rx_ry. #+begin_src matlab :exports none %% Orientation Errors figure; hold on; plot(t(t>20&t<20.1), 1e6*Xe(t>20&t<20.1,4), '-', 'DisplayName', '$\epsilon_{\theta_x}$'); plot(t(t>20&t<20.1), 1e6*Xe(t>20&t<20.1,5), '-', 'DisplayName', '$\epsilon_{\theta_y}$'); plot(t(t>20&t<20.1), 1e6*Xe(t>20&t<20.1,6), '-', 'DisplayName', '$\epsilon_{\theta_z}$'); hold off; xlabel('Time [s]'); ylabel('Orientation Error [$\mu$ rad]'); legend('location', 'northeast'); #+end_src #+begin_src matlab :exports none %% Orientation Errors figure; hold on; plot(1e9*Xe(100000:100:end,4), 1e9*Xe(100000:100:end,5), '.'); th = 0:pi/50:2*pi; xunit = 90 * cos(th); yunit = 90 * sin(th); plot(xunit, yunit, '--'); hold off; xlabel('$R_x$ [nrad]'); ylabel('$R_y$ [nrad]'); xlim([-100, 100]); ylim([-100, 100]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/nass_ref_rx_ry.pdf', 'width', 500, 'height', 500); #+end_src #+name: fig:test_nhexa_nass_ref_rx_ry #+caption: Orientation errors during the scan #+RESULTS: [[file:figs/test_nhexa_nass_ref_rx_ry.png]] #+begin_important Using the updated High Authority Controller, the nano-hexapod can follow trajectories with high accuracy (the position errors are in the order of 50nm peak to peak, and the orientation errors 300nrad peak to peak). #+end_important *** Interaction Analysis and Decoupling :PROPERTIES: :header-args:matlab+: :tangle matlab/scripts/interaction_analysis_enc_plates.m :END: <> **** Introduction :ignore: In this section, the interaction in the identified plant is estimated using the Relative Gain Array (RGA) [[cite:skogestad07_multiv_feedb_contr][Chap. 3.4]]. Then, several decoupling strategies are compared for the nano-hexapod. The RGA Matrix is defined as follow: \begin{equation} \text{RGA}(G(f)) = G(f) \times (G(f)^{-1})^T \end{equation} Then, the RGA number is defined: \begin{equation} \text{RGA-num}(f) = \| \text{I - RGA(G(f))} \|_{\text{sum}} \end{equation} In this section, the plant with 2 added mass is studied. **** Matlab Init :noexport:ignore: #+begin_src matlab %% interaction_analysis_enc_plates.m % Interaction analysis of several decoupling strategies #+end_src #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no :noweb yes <> #+end_src #+begin_src matlab :eval no :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src #+begin_src matlab %% Load the identified FRF and Simscape model frf_iff = load('frf_iff_vib_table_m.mat', 'f', 'Ts', 'G_dL'); sim_iff = load('sim_iff_vib_table_m.mat', 'G_dL'); #+end_src **** Parameters #+begin_src matlab wc = 100; % Wanted crossover frequency [Hz] [~, i_wc] = min(abs(frf_iff.f - wc)); % Indice corresponding to wc #+end_src #+begin_src matlab %% Plant to be decoupled frf_coupled = frf_iff.G_dL{2}; G_coupled = sim_iff.G_dL{2}; #+end_src **** No Decoupling (Decentralized) <> #+begin_src latex :file decoupling_arch_decentralized.pdf \begin{tikzpicture} \node[block] (G) {$\bm{G}$}; % Connections and labels \draw[<-] (G.west) -- ++(-1.8, 0) node[above right]{$\bm{\tau}$}; \draw[->] (G.east) -- ++( 1.8, 0) node[above left]{$d\bm{\mathcal{L}}$}; \begin{scope}[on background layer] \node[fit={(G.south west) (G.north east)}, fill=black!10!white, draw, dashed, inner sep=16pt] (Gdec) {}; \node[below right] at (Gdec.north west) {$\bm{G}_{\text{dec}}$}; \end{scope} \end{tikzpicture} #+end_src #+name: fig:test_nhexa_decoupling_arch_decentralized #+caption: Block diagram representing the plant. #+RESULTS: [[file:figs/test_nhexa_decoupling_arch_decentralized.png]] #+begin_src matlab :exports none %% Decentralized Plant figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:5 for j = i+1:6 plot(frf_iff.f, abs(frf_coupled(:,i,j)), 'color', [0,0,0,0.2], ... 'HandleVisibility', 'off'); end end set(gca,'ColorOrderIndex',1) for i = 1:6 plot(frf_iff.f, abs(frf_coupled(:,i,i)), ... 'DisplayName', sprintf('$y_%i/u_%i$', i, i)); end plot(frf_iff.f, abs(frf_coupled(:,1,2)), 'color', [0,0,0,0.2], ... 'DisplayName', 'Coupling'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); ylim([1e-9, 1e-4]); legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 3); ax2 = nexttile; hold on; for i =1:6 plot(frf_iff.f, 180/pi*angle(frf_coupled(:,i,i))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/interaction_decentralized_plant.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_interaction_decentralized_plant #+caption: Bode Plot of the decentralized plant (diagonal and off-diagonal terms) #+RESULTS: [[file:figs/test_nhexa_interaction_decentralized_plant.png]] #+begin_src matlab :exports none %% Decentralized RGA RGA_dec = zeros(size(frf_coupled)); for i = 1:length(frf_iff.f) RGA_dec(i,:,:) = squeeze(frf_coupled(i,:,:)).*inv(squeeze(frf_coupled(i,:,:))).'; end RGA_dec_sum = zeros(length(frf_iff), 1); for i = 1:length(frf_iff.f) RGA_dec_sum(i) = sum(sum(abs(eye(6) - squeeze(RGA_dec(i,:,:))))); end #+end_src #+begin_src matlab :exports none %% RGA for Decentralized plant figure; plot(frf_iff.f, RGA_dec_sum, 'k-'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('RGA Number'); xlim([10, 1e3]); ylim([1e-2, 1e2]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/interaction_rga_decentralized.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_nhexa_interaction_rga_decentralized #+caption: RGA number for the decentralized plant #+RESULTS: [[file:figs/test_nhexa_interaction_rga_decentralized.png]] **** Static Decoupling <> #+begin_src latex :file decoupling_arch_static.pdf \begin{tikzpicture} \node[block] (G) {$\bm{G}$}; \node[block, left=0.8 of G] (Ginv) {$\bm{\hat{G}}(j0)^{-1}$}; % Connections and labels \draw[<-] (Ginv.west) -- ++(-1.8, 0) node[above right]{$\bm{u}$}; \draw[->] (Ginv.east) -- (G.west) node[above left]{$\bm{\tau}$}; \draw[->] (G.east) -- ++( 1.8, 0) node[above left]{$d\bm{\mathcal{L}}$}; \begin{scope}[on background layer] \node[fit={(Ginv.south west) (G.north east)}, fill=black!10!white, draw, dashed, inner sep=16pt] (Gx) {}; \node[below right] at (Gx.north west) {$\bm{G}_{\text{static}}$}; \end{scope} \end{tikzpicture} #+end_src #+name: fig:test_nhexa_decoupling_arch_static #+caption: Decoupling using the inverse of the DC gain of the plant #+RESULTS: [[file:figs/test_nhexa_decoupling_arch_static.png]] The DC gain is evaluated from the model as be have bad low frequency identification. #+begin_src matlab :exports none %% Compute the inverse of the DC gain G_model = G_coupled; G_model.outputdelay = 0; % necessary for further inversion dc_inv = inv(dcgain(G_model)); %% Compute the inversed plant G_dL_sta = zeros(size(frf_coupled)); for i = 1:length(frf_iff.f) G_dL_sta(i,:,:) = squeeze(frf_coupled(i,:,:))*dc_inv; end #+end_src #+begin_src matlab :exports results :results value table replace :tangle no data2orgtable(dc_inv, {}, {}, ' %.1f '); #+end_src #+RESULTS: | -62011.5 | 3910.6 | 4299.3 | 660.7 | -4016.5 | -4373.6 | | 3914.4 | -61991.2 | -4356.8 | -4019.2 | 640.2 | 4281.6 | | -4020.0 | -4370.5 | -62004.5 | 3914.6 | 4295.8 | 653.8 | | 660.9 | 4292.4 | 3903.3 | -62012.2 | -4366.5 | -4008.9 | | 4302.8 | 655.6 | -4025.8 | -4377.8 | -62006.0 | 3919.7 | | -4377.9 | -4013.2 | 668.6 | 4303.7 | 3906.8 | -62019.3 | #+begin_src matlab :exports none %% Bode plot of the static decoupled plant figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:5 for j = i+1:6 plot(frf_iff.f, abs(G_dL_sta(:,i,j)), 'color', [0,0,0,0.2], ... 'HandleVisibility', 'off'); end end set(gca,'ColorOrderIndex',1) for i = 1:6 plot(frf_iff.f, abs(G_dL_sta(:,i,i)), ... 'DisplayName', sprintf('$y_%i/u_%i$', i, i)); end plot(frf_iff.f, abs(G_dL_sta(:,1,2)), 'color', [0,0,0,0.2], ... 'DisplayName', 'Coupling'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); ylim([1e-3, 1e1]); legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2); ax2 = nexttile; hold on; for i =1:6 plot(frf_iff.f, 180/pi*angle(G_dL_sta(:,i,i))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/interaction_static_dec_plant.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_interaction_static_dec_plant #+caption: Bode Plot of the static decoupled plant #+RESULTS: [[file:figs/test_nhexa_interaction_static_dec_plant.png]] #+begin_src matlab :exports none %% Compute RGA Matrix RGA_sta = zeros(size(frf_coupled)); for i = 1:length(frf_iff.f) RGA_sta(i,:,:) = squeeze(G_dL_sta(i,:,:)).*inv(squeeze(G_dL_sta(i,:,:))).'; end %% Compute RGA-number RGA_sta_sum = zeros(length(frf_iff), 1); for i = 1:size(RGA_sta, 1) RGA_sta_sum(i) = sum(sum(abs(eye(6) - squeeze(RGA_sta(i,:,:))))); end #+end_src #+begin_src matlab :exports none %% Plot the RGA-number for statically decoupled plant figure; plot(frf_iff.f, RGA_sta_sum, 'k-'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('RGA Number'); xlim([10, 1e3]); ylim([1e-2, 1e2]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/interaction_rga_static_dec.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_nhexa_interaction_rga_static_dec #+caption: RGA number for the statically decoupled plant #+RESULTS: [[file:figs/test_nhexa_interaction_rga_static_dec.png]] **** Decoupling at the Crossover <> #+begin_src latex :file decoupling_arch_crossover.pdf \begin{tikzpicture} \node[block] (G) {$\bm{G}$}; \node[block, left=0.8 of G] (Ginv) {$\bm{\hat{G}}(j\omega_c)^{-1}$}; % Connections and labels \draw[<-] (Ginv.west) -- ++(-1.8, 0) node[above right]{$\bm{u}$}; \draw[->] (Ginv.east) -- (G.west) node[above left]{$\bm{\tau}$}; \draw[->] (G.east) -- ++( 1.8, 0) node[above left]{$d\bm{\mathcal{L}}$}; \begin{scope}[on background layer] \node[fit={(Ginv.south west) (G.north east)}, fill=black!10!white, draw, dashed, inner sep=16pt] (Gx) {}; \node[below right] at (Gx.north west) {$\bm{G}_{\omega_c}$}; \end{scope} \end{tikzpicture} #+end_src #+name: fig:test_nhexa_decoupling_arch_crossover #+caption: Decoupling using the inverse of a dynamical model $\bm{\hat{G}}$ of the plant dynamics $\bm{G}$ #+RESULTS: [[file:figs/test_nhexa_decoupling_arch_crossover.png]] #+begin_src matlab :exports none %% Take complex matrix corresponding to the plant at 100Hz V = squeeze(frf_coupled(i_wc,:,:)); %% Real approximation of inv(G(100Hz)) D = pinv(real(V'*V)); H1 = D*real(V'*diag(exp(1j*angle(diag(V*D*V.'))/2))); %% Compute the decoupled plant G_dL_wc = zeros(size(frf_coupled)); for i = 1:length(frf_iff.f) G_dL_wc(i,:,:) = squeeze(frf_coupled(i,:,:))*H1; end #+end_src #+begin_src matlab :exports results :results value table replace :tangle no data2orgtable(H1, {}, {}, ' %.1f '); #+end_src #+RESULTS: | 67229.8 | 3769.3 | -13704.6 | -23084.8 | -6318.2 | 23378.7 | | 3486.2 | 67708.9 | 23220.0 | -6314.5 | -22699.8 | -14060.6 | | -5731.7 | 22471.7 | 66701.4 | 3070.2 | -13205.6 | -21944.6 | | -23305.5 | -14542.6 | 2743.2 | 70097.6 | 24846.8 | -5295.0 | | -14882.9 | -22957.8 | -5344.4 | 25786.2 | 70484.6 | 2979.9 | | 24353.3 | -5195.2 | -22449.0 | -14459.2 | 2203.6 | 69484.2 | #+begin_src matlab :exports none %% Bode plot of the plant decoupled at the crossover figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:5 for j = i+1:6 plot(frf_iff.f, abs(G_dL_wc(:,i,j)), 'color', [0,0,0,0.2], ... 'HandleVisibility', 'off'); end end for i = 1:6 plot(frf_iff.f, abs(G_dL_wc(:,i,i)), ... 'DisplayName', sprintf('$y_%i/u_%i$', i, i)); end plot(frf_iff.f, abs(G_dL_wc(:,1,2)), 'color', [0,0,0,0.2], ... 'DisplayName', 'Coupling'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $d_L/V_a$ [m/V]'); set(gca, 'XTickLabel',[]); ylim([1e-3, 1e1]); legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); ax2 = nexttile; hold on; for i =1:6 plot(frf_iff.f, 180/pi*angle(G_dL_wc(:,i,i))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/interaction_wc_plant.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_interaction_wc_plant #+caption: Bode Plot of the plant decoupled at the crossover #+RESULTS: [[file:figs/test_nhexa_interaction_wc_plant.png]] #+begin_src matlab %% Compute RGA Matrix RGA_wc = zeros(size(frf_coupled)); for i = 1:length(frf_iff.f) RGA_wc(i,:,:) = squeeze(G_dL_wc(i,:,:)).*inv(squeeze(G_dL_wc(i,:,:))).'; end %% Compute RGA-number RGA_wc_sum = zeros(size(RGA_wc, 1), 1); for i = 1:size(RGA_wc, 1) RGA_wc_sum(i) = sum(sum(abs(eye(6) - squeeze(RGA_wc(i,:,:))))); end #+end_src #+begin_src matlab :exports none %% Plot the RGA-Number for the plant decoupled at crossover figure; plot(frf_iff.f, RGA_wc_sum, 'k-'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('RGA Number'); xlim([10, 1e3]); ylim([1e-2, 1e2]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/interaction_rga_wc.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_nhexa_interaction_rga_wc #+caption: RGA number for the plant decoupled at the crossover #+RESULTS: [[file:figs/test_nhexa_interaction_rga_wc.png]] **** SVD Decoupling <> #+begin_src latex :file decoupling_arch_svd.pdf \begin{tikzpicture} \node[block] (G) {$\bm{G}$}; \node[block, left=0.8 of G.west] (V) {$V^{-T}$}; \node[block, right=0.8 of G.east] (U) {$U^{-1}$}; % Connections and labels \draw[<-] (V.west) -- ++(-1.0, 0) node[above right]{$u$}; \draw[->] (V.east) -- (G.west) node[above left]{$\bm{\tau}$}; \draw[->] (G.east) -- (U.west) node[above left]{$d\bm{\mathcal{L}}$}; \draw[->] (U.east) -- ++( 1.0, 0) node[above left]{$y$}; \begin{scope}[on background layer] \node[fit={(V.south west) (G.north-|U.east)}, fill=black!10!white, draw, dashed, inner sep=14pt] (Gsvd) {}; \node[below right] at (Gsvd.north west) {$\bm{G}_{SVD}$}; \end{scope} \end{tikzpicture} #+end_src #+name: fig:test_nhexa_decoupling_arch_svd #+caption: Decoupling using the Singular Value Decomposition #+RESULTS: [[file:figs/test_nhexa_decoupling_arch_svd.png]] #+begin_src matlab :exports none %% Take complex matrix corresponding to the plant at 100Hz V = squeeze(frf_coupled(i_wc,:,:)); %% Real approximation of G(100Hz) D = pinv(real(V'*V)); H1 = pinv(D*real(V'*diag(exp(1j*angle(diag(V*D*V.'))/2)))); %% Singular Value Decomposition [U,S,V] = svd(H1); %% Compute the decoupled plant using SVD G_dL_svd = zeros(size(frf_coupled)); for i = 1:length(frf_iff.f) G_dL_svd(i,:,:) = inv(U)*squeeze(frf_coupled(i,:,:))*inv(V'); end #+end_src #+begin_src matlab :exports none %% Bode Plot of the SVD decoupled plant figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:5 for j = i+1:6 plot(frf_iff.f, abs(G_dL_svd(:,i,j)), 'color', [0,0,0,0.2], ... 'HandleVisibility', 'off'); end end set(gca,'ColorOrderIndex',1) for i = 1:6 plot(frf_iff.f, abs(G_dL_svd(:,i,i)), ... 'DisplayName', sprintf('$y_%i/u_%i$', i, i)); end plot(frf_iff.f, abs(G_dL_svd(:,1,2)), 'color', [0,0,0,0.2], ... 'DisplayName', 'Coupling'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); ylim([1e-9, 1e-4]); legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 3); ax2 = nexttile; hold on; for i =1:6 plot(frf_iff.f, 180/pi*angle(G_dL_svd(:,i,i))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/interaction_svd_plant.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_interaction_svd_plant #+caption: Bode Plot of the plant decoupled using the Singular Value Decomposition #+RESULTS: [[file:figs/test_nhexa_interaction_svd_plant.png]] #+begin_src matlab %% Compute the RGA matrix for the SVD decoupled plant RGA_svd = zeros(size(frf_coupled)); for i = 1:length(frf_iff.f) RGA_svd(i,:,:) = squeeze(G_dL_svd(i,:,:)).*inv(squeeze(G_dL_svd(i,:,:))).'; end %% Compute the RGA-number RGA_svd_sum = zeros(size(RGA_svd, 1), 1); for i = 1:length(frf_iff.f) RGA_svd_sum(i) = sum(sum(abs(eye(6) - squeeze(RGA_svd(i,:,:))))); end #+end_src #+begin_src matlab %% RGA Number for the SVD decoupled plant figure; plot(frf_iff.f, RGA_svd_sum, 'k-'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('RGA Number'); xlim([10, 1e3]); ylim([1e-2, 1e2]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/interaction_rga_svd.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_nhexa_interaction_rga_svd #+caption: RGA number for the plant decoupled using the SVD #+RESULTS: [[file:figs/test_nhexa_interaction_rga_svd.png]] **** Dynamic decoupling <> #+begin_src latex :file decoupling_arch_dynamic.pdf \begin{tikzpicture} \node[block] (G) {$\bm{G}$}; \node[block, left=0.8 of G] (Ginv) {$\bm{\hat{G}}^{-1}$}; % Connections and labels \draw[<-] (Ginv.west) -- ++(-1.8, 0) node[above right]{$\bm{u}$}; \draw[->] (Ginv.east) -- (G.west) node[above left]{$\bm{\tau}$}; \draw[->] (G.east) -- ++( 1.8, 0) node[above left]{$d\bm{\mathcal{L}}$}; \begin{scope}[on background layer] \node[fit={(Ginv.south west) (G.north east)}, fill=black!10!white, draw, dashed, inner sep=16pt] (Gx) {}; \node[below right] at (Gx.north west) {$\bm{G}_{\text{inv}}$}; \end{scope} \end{tikzpicture} #+end_src #+name: fig:test_nhexa_decoupling_arch_dynamic #+caption: Decoupling using the inverse of a dynamical model $\bm{\hat{G}}$ of the plant dynamics $\bm{G}$ #+RESULTS: [[file:figs/test_nhexa_decoupling_arch_dynamic.png]] #+begin_src matlab :exports none %% Compute the plant inverse from the model G_model = G_coupled; G_model.outputdelay = 0; % necessary for further inversion G_inv = inv(G_model); %% Compute the decoupled plant G_dL_inv = zeros(size(frf_coupled)); for i = 1:length(frf_iff.f) G_dL_inv(i,:,:) = squeeze(frf_coupled(i,:,:))*squeeze(evalfr(G_inv, 1j*2*pi*frf_iff.f(i))); end #+end_src #+begin_src matlab :exports none %% Bode plot of the decoupled plant by full inversion figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:5 for j = i+1:6 plot(frf_iff.f, abs(G_dL_inv(:,i,j)), 'color', [0,0,0,0.2], ... 'HandleVisibility', 'off'); end end set(gca,'ColorOrderIndex',1) for i = 1:6 plot(frf_iff.f, abs(G_dL_inv(:,i,i)), ... 'DisplayName', sprintf('$y_%i/u_%i$', i, i)); end plot(frf_iff.f, abs(G_dL_inv(:,1,2)), 'color', [0,0,0,0.2], ... 'DisplayName', 'Coupling'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); ylim([1e-4, 1e1]); legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); ax2 = nexttile; hold on; for i =1:6 plot(frf_iff.f, 180/pi*angle(G_dL_inv(:,i,i))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/interaction_dynamic_dec_plant.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_interaction_dynamic_dec_plant #+caption: Bode Plot of the dynamically decoupled plant #+RESULTS: [[file:figs/test_nhexa_interaction_dynamic_dec_plant.png]] #+begin_src matlab :exports none %% Compute the RGA matrix for the inverse based decoupled plant RGA_inv = zeros(size(frf_coupled)); for i = 1:length(frf_iff.f) RGA_inv(i,:,:) = squeeze(G_dL_inv(i,:,:)).*inv(squeeze(G_dL_inv(i,:,:))).'; end %% Compute the RGA-number RGA_inv_sum = zeros(size(RGA_inv, 1), 1); for i = 1:size(RGA_inv, 1) RGA_inv_sum(i) = sum(sum(abs(eye(6) - squeeze(RGA_inv(i,:,:))))); end #+end_src #+begin_src matlab :exports none %% RGA Number for the decoupled plant using full inversion figure; plot(frf_iff.f, RGA_inv_sum, 'k-'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('RGA Number'); xlim([10, 1e3]); ylim([1e-2, 1e2]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/interaction_rga_dynamic_dec.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_nhexa_interaction_rga_dynamic_dec #+caption: RGA number for the dynamically decoupled plant #+RESULTS: [[file:figs/test_nhexa_interaction_rga_dynamic_dec.png]] **** Jacobian Decoupling - Center of Stiffness <> #+begin_src latex :file decoupling_arch_jacobian_cok.pdf \begin{tikzpicture} \node[block] (G) {$\bm{G}$}; \node[block, left=0.8 of G] (Jt) {$J_{s,\{K\}}^{-T}$}; \node[block, right=0.8 of G] (Ja) {$J_{a,\{K\}}^{-1}$}; % Connections and labels \draw[<-] (Jt.west) -- ++(-1.8, 0) node[above right]{$\bm{\mathcal{F}}_{\{K\}}$}; \draw[->] (Jt.east) -- (G.west) node[above left]{$\bm{\tau}$}; \draw[->] (G.east) -- (Ja.west) node[above left]{$d\bm{\mathcal{L}}$}; \draw[->] (Ja.east) -- ++( 1.8, 0) node[above left]{$\bm{\mathcal{X}}_{\{K\}}$}; \begin{scope}[on background layer] \node[fit={(Jt.south west) (Ja.north east)}, fill=black!10!white, draw, dashed, inner sep=16pt] (Gx) {}; \node[below right] at (Gx.north west) {$\bm{G}_{\{K\}}$}; \end{scope} \end{tikzpicture} #+end_src #+name: fig:test_nhexa_decoupling_arch_jacobian_cok #+caption: Decoupling using Jacobian matrices evaluated at the Center of Stiffness #+RESULTS: [[file:figs/test_nhexa_decoupling_arch_jacobian_cok.png]] #+begin_src matlab :exports none %% Initialize the Nano-Hexapod n_hexapod = initializeNanoHexapodFinal('MO_B', -42e-3, ... 'motion_sensor_type', 'plates'); %% Get the Jacobians J_cok = n_hexapod.geometry.J; Js_cok = n_hexapod.geometry.Js; %% Decouple plant using Jacobian (CoM) G_dL_J_cok = zeros(size(frf_coupled)); for i = 1:length(frf_iff.f) G_dL_J_cok(i,:,:) = inv(Js_cok)*squeeze(frf_coupled(i,:,:))*inv(J_cok'); end #+end_src The obtained plant is shown in Figure ref:fig:test_nhexa_interaction_J_cok_plant_not_normalized. We can see that the stiffness in the $x$, $y$ and $z$ directions are equal, which is due to the cubic architecture of the Stewart platform. #+begin_src matlab :exports none %% Bode Plot of the SVD decoupled plant figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:5 for j = i+1:6 plot(frf_iff.f, abs(G_dL_J_cok(:,i,j)), 'color', [0,0,0,0.2], ... 'HandleVisibility', 'off'); end end set(gca,'ColorOrderIndex',1) plot(frf_iff.f, abs(G_dL_J_cok(:,1,1)), ... 'DisplayName', '$D_x/\tilde{\mathcal{F}}_x$'); plot(frf_iff.f, abs(G_dL_J_cok(:,2,2)), ... 'DisplayName', '$D_y/\tilde{\mathcal{F}}_y$'); plot(frf_iff.f, abs(G_dL_J_cok(:,3,3)), ... 'DisplayName', '$D_z/\tilde{\mathcal{F}}_z$'); plot(frf_iff.f, abs(G_dL_J_cok(:,4,4)), ... 'DisplayName', '$R_x/\tilde{\mathcal{M}}_x$'); plot(frf_iff.f, abs(G_dL_J_cok(:,5,5)), ... 'DisplayName', '$R_y/\tilde{\mathcal{M}}_y$'); plot(frf_iff.f, abs(G_dL_J_cok(:,6,6)), ... 'DisplayName', '$R_z/\tilde{\mathcal{M}}_z$'); plot(frf_iff.f, abs(G_dL_J_cok(:,1,2)), 'color', [0,0,0,0.2], ... 'DisplayName', 'Coupling'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); ylim([1e-8, 2e-2]); legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 3); ax2 = nexttile; hold on; for i =1:6 plot(frf_iff.f, 180/pi*angle(G_dL_J_cok(:,i,i))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/interaction_J_cok_plant_not_normalized.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_interaction_J_cok_plant_not_normalized #+caption: Bode Plot of the plant decoupled using the Jacobian evaluated at the "center of stiffness" #+RESULTS: [[file:figs/test_nhexa_interaction_J_cok_plant_not_normalized.png]] Because the plant in translation and rotation has very different gains, we choose to normalize the plant inputs such that the gain of the diagonal term is equal to $1$ at 100Hz. The results is shown in Figure ref:fig:test_nhexa_interaction_J_cok_plant. #+begin_src matlab :exports none %% Normalize the plant input [~, i_100] = min(abs(frf_iff.f - 100)); input_normalize = diag(1./diag(abs(squeeze(G_dL_J_cok(i_100,:,:))))); for i = 1:length(frf_iff.f) G_dL_J_cok(i,:,:) = squeeze(G_dL_J_cok(i,:,:))*input_normalize; end #+end_src #+begin_src matlab :exports none %% Bode Plot of the SVD decoupled plant figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:5 for j = i+1:6 plot(frf_iff.f, abs(G_dL_J_cok(:,i,j)), 'color', [0,0,0,0.2], ... 'HandleVisibility', 'off'); end end set(gca,'ColorOrderIndex',1) plot(frf_iff.f, abs(G_dL_J_cok(:,1,1)), ... 'DisplayName', '$D_x/\tilde{\mathcal{F}}_x$'); plot(frf_iff.f, abs(G_dL_J_cok(:,2,2)), ... 'DisplayName', '$D_y/\tilde{\mathcal{F}}_y$'); plot(frf_iff.f, abs(G_dL_J_cok(:,3,3)), ... 'DisplayName', '$D_z/\tilde{\mathcal{F}}_z$'); plot(frf_iff.f, abs(G_dL_J_cok(:,4,4)), ... 'DisplayName', '$R_x/\tilde{\mathcal{M}}_x$'); plot(frf_iff.f, abs(G_dL_J_cok(:,5,5)), ... 'DisplayName', '$R_y/\tilde{\mathcal{M}}_y$'); plot(frf_iff.f, abs(G_dL_J_cok(:,6,6)), ... 'DisplayName', '$R_z/\tilde{\mathcal{M}}_z$'); plot(frf_iff.f, abs(G_dL_J_cok(:,1,2)), 'color', [0,0,0,0.2], ... 'DisplayName', 'Coupling'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); ylim([1e-4, 1e1]); legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2); ax2 = nexttile; hold on; for i =1:6 plot(frf_iff.f, 180/pi*angle(G_dL_J_cok(:,i,i))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/interaction_J_cok_plant.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_interaction_J_cok_plant #+caption: Bode Plot of the plant decoupled using the Jacobian evaluated at the "center of stiffness" #+RESULTS: [[file:figs/test_nhexa_interaction_J_cok_plant.png]] #+begin_src matlab :exports none %% Compute RGA Matrix RGA_cok = zeros(size(frf_coupled)); for i = 1:length(frf_iff.f) RGA_cok(i,:,:) = squeeze(G_dL_J_cok(i,:,:)).*inv(squeeze(G_dL_J_cok(i,:,:))).'; end %% Compute RGA-number RGA_cok_sum = zeros(length(frf_iff.f), 1); for i = 1:length(frf_iff.f) RGA_cok_sum(i) = sum(sum(abs(eye(6) - squeeze(RGA_cok(i,:,:))))); end #+end_src #+begin_src matlab :exports none %% Plot the RGA-Number for the Jacobian (CoK) decoupled plant figure; plot(frf_iff.f, RGA_cok_sum, 'k-'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('RGA Number'); xlim([10, 1e3]); ylim([1e-2, 1e2]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/interaction_rga_J_cok.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_nhexa_interaction_rga_J_cok #+caption: RGA number for the plant decoupled using the Jacobian evaluted at the Center of Stiffness #+RESULTS: [[file:figs/test_nhexa_interaction_rga_J_cok.png]] **** Jacobian Decoupling - Center of Mass <> #+begin_src latex :file decoupling_arch_jacobian_com.pdf \begin{tikzpicture} \node[block] (G) {$\bm{G}$}; \node[block, left=0.8 of G] (Jt) {$J_{s,\{M\}}^{-T}$}; \node[block, right=0.8 of G] (Ja) {$J_{a,\{M\}}^{-1}$}; % Connections and labels \draw[<-] (Jt.west) -- ++(-1.8, 0) node[above right]{$\bm{\mathcal{F}}_{\{M\}}$}; \draw[->] (Jt.east) -- (G.west) node[above left]{$\bm{\tau}$}; \draw[->] (G.east) -- (Ja.west) node[above left]{$d\bm{\mathcal{L}}$}; \draw[->] (Ja.east) -- ++( 1.8, 0) node[above left]{$\bm{\mathcal{X}}_{\{M\}}$}; \begin{scope}[on background layer] \node[fit={(Jt.south west) (Ja.north east)}, fill=black!10!white, draw, dashed, inner sep=16pt] (Gx) {}; \node[below right] at (Gx.north west) {$\bm{G}_{\{M\}}$}; \end{scope} \end{tikzpicture} #+end_src #+name: fig:test_nhexa_decoupling_arch_jacobian_com #+caption: Decoupling using Jacobian matrices evaluated at the Center of Mass #+RESULTS: [[file:figs/test_nhexa_decoupling_arch_jacobian_com.png]] #+begin_src matlab :exports none %% Initialize the Nano-Hexapod n_hexapod = initializeNanoHexapodFinal('MO_B', 25e-3, ... 'motion_sensor_type', 'plates'); %% Get the Jacobians J_com = n_hexapod.geometry.J; Js_com = n_hexapod.geometry.Js; %% Decouple plant using Jacobian (CoM) G_dL_J_com = zeros(size(frf_coupled)); for i = 1:length(frf_iff.f) G_dL_J_com(i,:,:) = inv(Js_com)*squeeze(frf_coupled(i,:,:))*inv(J_com'); end %% Normalize the plant input [~, i_100] = min(abs(frf_iff.f - 100)); input_normalize = diag(1./diag(abs(squeeze(G_dL_J_com(i_100,:,:))))); for i = 1:length(frf_iff.f) G_dL_J_com(i,:,:) = squeeze(G_dL_J_com(i,:,:))*input_normalize; end #+end_src #+begin_src matlab :exports none %% Bode Plot of the SVD decoupled plant figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:5 for j = i+1:6 plot(frf_iff.f, abs(G_dL_J_com(:,i,j)), 'color', [0,0,0,0.2], ... 'HandleVisibility', 'off'); end end set(gca,'ColorOrderIndex',1) plot(frf_iff.f, abs(G_dL_J_com(:,1,1)), ... 'DisplayName', '$D_x/\tilde{\mathcal{F}}_x$'); plot(frf_iff.f, abs(G_dL_J_com(:,2,2)), ... 'DisplayName', '$D_y/\tilde{\mathcal{F}}_y$'); plot(frf_iff.f, abs(G_dL_J_com(:,3,3)), ... 'DisplayName', '$D_z/\tilde{\mathcal{F}}_z$'); plot(frf_iff.f, abs(G_dL_J_com(:,4,4)), ... 'DisplayName', '$R_x/\tilde{\mathcal{M}}_x$'); plot(frf_iff.f, abs(G_dL_J_com(:,5,5)), ... 'DisplayName', '$R_y/\tilde{\mathcal{M}}_y$'); plot(frf_iff.f, abs(G_dL_J_com(:,6,6)), ... 'DisplayName', '$R_z/\tilde{\mathcal{M}}_z$'); plot(frf_iff.f, abs(G_dL_J_com(:,1,2)), 'color', [0,0,0,0.2], ... 'DisplayName', 'Coupling'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); ylim([1e-3, 1e1]); legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2); ax2 = nexttile; hold on; for i =1:6 plot(frf_iff.f, 180/pi*angle(G_dL_J_com(:,i,i))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/interaction_J_com_plant.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_interaction_J_com_plant #+caption: Bode Plot of the plant decoupled using the Jacobian evaluated at the Center of Mass #+RESULTS: [[file:figs/test_nhexa_interaction_J_com_plant.png]] #+begin_src matlab :exports none %% Compute RGA Matrix RGA_com = zeros(size(frf_coupled)); for i = 1:length(frf_iff.f) RGA_com(i,:,:) = squeeze(G_dL_J_com(i,:,:)).*inv(squeeze(G_dL_J_com(i,:,:))).'; end %% Compute RGA-number RGA_com_sum = zeros(size(RGA_com, 1), 1); for i = 1:size(RGA_com, 1) RGA_com_sum(i) = sum(sum(abs(eye(6) - squeeze(RGA_com(i,:,:))))); end #+end_src #+begin_src matlab :exports none %% Plot the RGA-Number for the Jacobian (CoM) decoupled plant figure; plot(frf_iff.f, RGA_com_sum, 'k-'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('RGA Number'); xlim([10, 1e3]); ylim([1e-2, 1e2]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/interaction_rga_J_com.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_nhexa_interaction_rga_J_com #+caption: RGA number for the plant decoupled using the Jacobian evaluted at the Center of Mass #+RESULTS: [[file:figs/test_nhexa_interaction_rga_J_com.png]] **** Decoupling Comparison <> Let's now compare all of the decoupling methods (Figure ref:fig:test_nhexa_interaction_compare_rga_numbers). #+begin_important From Figure ref:fig:test_nhexa_interaction_compare_rga_numbers, the following remarks are made: - *Decentralized plant*: well decoupled below suspension modes - *Static inversion*: similar to the decentralized plant as the decentralized plant has already a good decoupling at low frequency - *Crossover inversion*: the decoupling is improved around the crossover frequency as compared to the decentralized plant. However, the decoupling is increased at lower frequency. - *SVD decoupling*: Very good decoupling up to 235Hz. Especially between 100Hz and 200Hz. - *Dynamic Inversion*: the plant is very well decoupled at frequencies where the model is accurate (below 235Hz where flexible modes are not modelled). - *Jacobian - Stiffness*: good decoupling at low frequency. The decoupling increases at the frequency of the suspension modes, but is acceptable up to the strut flexible modes (235Hz). - *Jacobian - Mass*: bad decoupling at low frequency. Better decoupling above the frequency of the suspension modes, and acceptable decoupling up to the strut flexible modes (235Hz). #+end_important #+begin_src matlab :exports none %% Comparison of the RGA-Numbers figure; hold on; plot(frf_iff.f, RGA_dec_sum, 'DisplayName', 'Decentralized'); plot(frf_iff.f, RGA_sta_sum, 'DisplayName', 'Static inv.'); plot(frf_iff.f, RGA_wc_sum, 'DisplayName', 'Crossover inv.'); plot(frf_iff.f, RGA_svd_sum, 'DisplayName', 'SVD'); plot(frf_iff.f, RGA_inv_sum, 'DisplayName', 'Dynamic inv.'); plot(frf_iff.f, RGA_cok_sum, 'DisplayName', 'Jacobian - CoK'); plot(frf_iff.f, RGA_com_sum, 'DisplayName', 'Jacobian - CoM'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('RGA Number'); xlim([10, 1e3]); ylim([1e-2, 1e2]); legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 2); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/interaction_compare_rga_numbers.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_interaction_compare_rga_numbers #+caption: Comparison of the obtained RGA-numbers for all the decoupling methods #+RESULTS: [[file:figs/test_nhexa_interaction_compare_rga_numbers.png]] **** Decoupling Robustness <> Let's now see how the decoupling is changing when changing the payload's mass. #+begin_src matlab frf_new = frf_iff.G_dL{3}; #+end_src #+begin_src matlab :exports none %% Decentralized RGA RGA_dec_b = zeros(size(frf_new)); for i = 1:length(frf_iff.f) RGA_dec_b(i,:,:) = squeeze(frf_new(i,:,:)).*inv(squeeze(frf_new(i,:,:))).'; end RGA_dec_sum_b = zeros(length(frf_iff), 1); for i = 1:length(frf_iff.f) RGA_dec_sum_b(i) = sum(sum(abs(eye(6) - squeeze(RGA_dec_b(i,:,:))))); end #+end_src #+begin_src matlab :exports none %% Static Decoupling G_dL_sta_b = zeros(size(frf_new)); for i = 1:length(frf_iff.f) G_dL_sta_b(i,:,:) = squeeze(frf_new(i,:,:))*dc_inv; end RGA_sta_b = zeros(size(frf_new)); for i = 1:length(frf_iff.f) RGA_sta_b(i,:,:) = squeeze(G_dL_sta_b(i,:,:)).*inv(squeeze(G_dL_sta_b(i,:,:))).'; end RGA_sta_sum_b = zeros(size(RGA_sta_b, 1), 1); for i = 1:size(RGA_sta_b, 1) RGA_sta_sum_b(i) = sum(sum(abs(eye(6) - squeeze(RGA_sta_b(i,:,:))))); end #+end_src #+begin_src matlab :exports none %% Crossover Decoupling V = squeeze(frf_coupled(i_wc,:,:)); D = pinv(real(V'*V)); H1 = D*real(V'*diag(exp(1j*angle(diag(V*D*V.'))/2))); G_dL_wc_b = zeros(size(frf_new)); for i = 1:length(frf_iff.f) G_dL_wc_b(i,:,:) = squeeze(frf_new(i,:,:))*H1; end RGA_wc_b = zeros(size(frf_new)); for i = 1:length(frf_iff.f) RGA_wc_b(i,:,:) = squeeze(G_dL_wc_b(i,:,:)).*inv(squeeze(G_dL_wc_b(i,:,:))).'; end RGA_wc_sum_b = zeros(size(RGA_wc_b, 1), 1); for i = 1:size(RGA_wc_b, 1) RGA_wc_sum_b(i) = sum(sum(abs(eye(6) - squeeze(RGA_wc_b(i,:,:))))); end #+end_src #+begin_src matlab :exports none %% SVD V = squeeze(frf_coupled(i_wc,:,:)); D = pinv(real(V'*V)); H1 = pinv(D*real(V'*diag(exp(1j*angle(diag(V*D*V.'))/2)))); [U,S,V] = svd(H1); G_dL_svd_b = zeros(size(frf_new)); for i = 1:length(frf_iff.f) G_dL_svd_b(i,:,:) = inv(U)*squeeze(frf_new(i,:,:))*inv(V'); end RGA_svd_b = zeros(size(frf_new)); for i = 1:length(frf_iff.f) RGA_svd_b(i,:,:) = squeeze(G_dL_svd_b(i,:,:)).*inv(squeeze(G_dL_svd_b(i,:,:))).'; end RGA_svd_sum_b = zeros(size(RGA_svd_b, 1), 1); for i = 1:size(RGA_svd, 1) RGA_svd_sum_b(i) = sum(sum(abs(eye(6) - squeeze(RGA_svd_b(i,:,:))))); end #+end_src #+begin_src matlab :exports none %% Dynamic Decoupling G_model = G_coupled; G_model.outputdelay = 0; % necessary for further inversion G_inv = inv(G_model); G_dL_inv_b = zeros(size(frf_new)); for i = 1:length(frf_iff.f) G_dL_inv_b(i,:,:) = squeeze(frf_new(i,:,:))*squeeze(evalfr(G_inv, 1j*2*pi*frf_iff.f(i))); end RGA_inv_b = zeros(size(frf_new)); for i = 1:length(frf_iff.f) RGA_inv_b(i,:,:) = squeeze(G_dL_inv_b(i,:,:)).*inv(squeeze(G_dL_inv_b(i,:,:))).'; end RGA_inv_sum_b = zeros(size(RGA_inv_b, 1), 1); for i = 1:size(RGA_inv_b, 1) RGA_inv_sum_b(i) = sum(sum(abs(eye(6) - squeeze(RGA_inv_b(i,:,:))))); end #+end_src #+begin_src matlab :exports none %% Jacobian (CoK) G_dL_J_cok_b = zeros(size(frf_new)); for i = 1:length(frf_iff.f) G_dL_J_cok_b(i,:,:) = inv(Js_cok)*squeeze(frf_new(i,:,:))*inv(J_cok'); end RGA_cok_b = zeros(size(frf_new)); for i = 1:length(frf_iff.f) RGA_cok_b(i,:,:) = squeeze(G_dL_J_cok_b(i,:,:)).*inv(squeeze(G_dL_J_cok_b(i,:,:))).'; end RGA_cok_sum_b = zeros(size(RGA_cok_b, 1), 1); for i = 1:size(RGA_cok_b, 1) RGA_cok_sum_b(i) = sum(sum(abs(eye(6) - squeeze(RGA_cok_b(i,:,:))))); end #+end_src #+begin_src matlab :exports none %% Jacobian (CoM) G_dL_J_com_b = zeros(size(frf_new)); for i = 1:length(frf_iff.f) G_dL_J_com_b(i,:,:) = inv(Js_com)*squeeze(frf_new(i,:,:))*inv(J_com'); end RGA_com_b = zeros(size(frf_new)); for i = 1:length(frf_iff.f) RGA_com_b(i,:,:) = squeeze(G_dL_J_com_b(i,:,:)).*inv(squeeze(G_dL_J_com_b(i,:,:))).'; end RGA_com_sum_b = zeros(size(RGA_com_b, 1), 1); for i = 1:size(RGA_com_b, 1) RGA_com_sum_b(i) = sum(sum(abs(eye(6) - squeeze(RGA_com_b(i,:,:))))); end #+end_src The obtained RGA-numbers are shown in Figure ref:fig:test_nhexa_interaction_compare_rga_numbers_rob. #+begin_important From Figure ref:fig:test_nhexa_interaction_compare_rga_numbers_rob: - The decoupling using the Jacobian evaluated at the "center of stiffness" seems to give the most robust results. #+end_important #+begin_src matlab :exports none %% Robustness of the Decoupling method figure; hold on; plot(frf_iff.f, RGA_dec_sum, '-', 'DisplayName', 'Decentralized'); plot(frf_iff.f, RGA_sta_sum, '-', 'DisplayName', 'Static inv.'); plot(frf_iff.f, RGA_wc_sum, '-', 'DisplayName', 'Crossover inv.'); plot(frf_iff.f, RGA_svd_sum, '-', 'DisplayName', 'SVD'); plot(frf_iff.f, RGA_inv_sum, '-', 'DisplayName', 'Dynamic inv.'); plot(frf_iff.f, RGA_cok_sum, '-', 'DisplayName', 'Jacobian - CoK'); plot(frf_iff.f, RGA_com_sum, '-', 'DisplayName', 'Jacobian - CoM'); set(gca,'ColorOrderIndex',1) plot(frf_iff.f, RGA_dec_sum_b, '--', 'HandleVisibility', 'off'); plot(frf_iff.f, RGA_sta_sum_b, '--', 'HandleVisibility', 'off'); plot(frf_iff.f, RGA_wc_sum_b, '--', 'HandleVisibility', 'off'); plot(frf_iff.f, RGA_svd_sum_b, '--', 'HandleVisibility', 'off'); plot(frf_iff.f, RGA_inv_sum_b, '--', 'HandleVisibility', 'off'); plot(frf_iff.f, RGA_cok_sum_b, '--', 'HandleVisibility', 'off'); plot(frf_iff.f, RGA_com_sum_b, '--', 'HandleVisibility', 'off'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('RGA Number'); xlim([10, 1e3]); ylim([1e-2, 1e2]); legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 2); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/interaction_compare_rga_numbers_rob.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_interaction_compare_rga_numbers_rob #+caption: Change of the RGA-number with a change of the payload. Indication of the robustness of the inversion method. #+RESULTS: [[file:figs/test_nhexa_interaction_compare_rga_numbers_rob.png]] **** Conclusion #+begin_important Several decoupling methods can be used: - SVD - Inverse - Jacobian (CoK) #+end_important #+name: tab:interaction_analysis_conclusion #+caption: Summary of the interaction analysis and different decoupling strategies #+attr_latex: :environment tabularx :width \linewidth :align lccc #+attr_latex: :center t :booktabs t | *Method* | *RGA* | *Diag Plant* | *Robustness* | |----------------+-------+--------------+--------------| | Decentralized | -- | Equal | ++ | | Static dec. | -- | Equal | ++ | | Crossover dec. | - | Equal | 0 | | SVD | ++ | Diff | + | | Dynamic dec. | ++ | Unity, equal | - | | Jacobian - CoK | + | Diff | ++ | | Jacobian - CoM | 0 | Diff | + | *** Robust High Authority Controller :PROPERTIES: :header-args:matlab+: :tangle matlab/scripts/hac_lac_enc_plates_suspended_table.m :END: <> **** Introduction :ignore: In this section we wish to develop a robust High Authority Controller (HAC) that is working for all payloads. cite:indri20_mechat_robot **** Matlab Init :noexport:ignore: #+begin_src matlab %% hac_lac_enc_plates_suspended_table.m % Development and analysis of a robust High Authority Controller #+end_src #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no :noweb yes <> #+end_src #+begin_src matlab :eval no :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src #+begin_src matlab %% Load the identified FRF and Simscape model frf_iff = load('frf_iff_vib_table_m.mat', 'f', 'Ts', 'G_dL'); sim_iff = load('sim_iff_vib_table_m.mat', 'G_dL'); #+end_src **** Using Jacobian evaluated at the center of stiffness ***** Decoupled Plant #+begin_src matlab G_nom = frf_iff.G_dL{2}; % Nominal Plant #+end_src #+begin_src matlab :exports none %% Initialize the Nano-Hexapod n_hexapod = initializeNanoHexapodFinal('MO_B', -42e-3, ... 'motion_sensor_type', 'plates'); %% Get the Jacobians J_cok = n_hexapod.geometry.J; Js_cok = n_hexapod.geometry.Js; %% Decouple plant using Jacobian (CoM) G_dL_J_cok = zeros(size(G_nom)); for i = 1:length(frf_iff.f) G_dL_J_cok(i,:,:) = inv(Js_cok)*squeeze(G_nom(i,:,:))*inv(J_cok'); end %% Normalize the plant input [~, i_100] = min(abs(frf_iff.f - 10)); input_normalize = diag(1./diag(abs(squeeze(G_dL_J_cok(i_100,:,:))))); for i = 1:length(frf_iff.f) G_dL_J_cok(i,:,:) = squeeze(G_dL_J_cok(i,:,:))*input_normalize; end #+end_src #+begin_src matlab :exports none %% Bode Plot of the decoupled plant figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:5 for j = i+1:6 plot(frf_iff.f, abs(G_dL_J_cok(:,i,j)), 'color', [0,0,0,0.2], ... 'HandleVisibility', 'off'); end end set(gca,'ColorOrderIndex',1) plot(frf_iff.f, abs(G_dL_J_cok(:,1,1)), ... 'DisplayName', '$D_x/\tilde{\mathcal{F}}_x$'); plot(frf_iff.f, abs(G_dL_J_cok(:,2,2)), ... 'DisplayName', '$D_y/\tilde{\mathcal{F}}_y$'); plot(frf_iff.f, abs(G_dL_J_cok(:,3,3)), ... 'DisplayName', '$D_z/\tilde{\mathcal{F}}_z$'); plot(frf_iff.f, abs(G_dL_J_cok(:,4,4)), ... 'DisplayName', '$R_x/\tilde{\mathcal{M}}_x$'); plot(frf_iff.f, abs(G_dL_J_cok(:,5,5)), ... 'DisplayName', '$R_y/\tilde{\mathcal{M}}_y$'); plot(frf_iff.f, abs(G_dL_J_cok(:,6,6)), ... 'DisplayName', '$R_z/\tilde{\mathcal{M}}_z$'); plot(frf_iff.f, abs(G_dL_J_cok(:,1,2)), 'color', [0,0,0,0.2], ... 'DisplayName', 'Coupling'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); ylim([1e-3, 1e1]); legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); ax2 = nexttile; hold on; for i =1:6 plot(frf_iff.f, 180/pi*angle(G_dL_J_cok(:,i,i))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/bode_plot_hac_iff_plant_jacobian_cok.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_bode_plot_hac_iff_plant_jacobian_cok #+caption: Bode plot of the decoupled plant using the Jacobian evaluated at the Center of Stiffness #+RESULTS: [[file:figs/test_nhexa_bode_plot_hac_iff_plant_jacobian_cok.png]] ***** SISO Controller Design As the diagonal elements of the plant are not equal, several SISO controllers are designed and then combined to form a diagonal controller. All the diagonal terms of the controller consists of: - A double integrator to have high gain at low frequency - A lead around the crossover frequency to increase stability margins - Two second order low pass filters above the crossover frequency to increase the robustness to high frequency modes #+begin_src matlab :exports none %% Controller Ry,Rz % Wanted crossover frequency wc_Rxy = 2*pi*80; % Lead a = 8.0; % Amount of phase lead / width of the phase lead / high frequency gain wc = wc_Rxy; % Frequency with the maximum phase lead [rad/s] Kd_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a)))/sqrt(a); % Integrator w0_int = wc_Rxy/2; % [rad/s] xi_int = 0.3; Kd_int = (1 + 2*xi_int/w0_int*s + s^2/w0_int^2)/(s^2/w0_int^2); % Low Pass Filter (High frequency robustness) w0_lpf = wc_Rxy*2; % Cut-off frequency [rad/s] xi_lpf = 0.6; % Damping Ratio Kd_lpf = 1/(1 + 2*xi_lpf/w0_lpf*s + s^2/w0_lpf^2); w0_lpf_b = wc_Rxy*4; % Cut-off frequency [rad/s] xi_lpf_b = 0.7; % Damping Ratio Kd_lpf_b = 1/(1 + 2*xi_lpf_b/w0_lpf_b*s + s^2/w0_lpf_b^2); % Unity Gain frequency [~, i_80] = min(abs(frf_iff.f - wc_Rxy/2/pi)); % Combination of all the elements Kd_Rxy = ... -1/abs(G_dL_J_cok(i_80,4,4)) * ... Kd_lead/abs(evalfr(Kd_lead, 1j*wc_Rxy)) * ... % Lead (gain of 1 at wc) Kd_int /abs(evalfr(Kd_int, 1j*wc_Rxy)) * ... Kd_lpf_b/abs(evalfr(Kd_lpf_b, 1j*wc_Rxy)) * ... Kd_lpf /abs(evalfr(Kd_lpf, 1j*wc_Rxy)); % Low Pass Filter #+end_src #+begin_src matlab :exports none %% Controller Dx,Dy,Rz % Wanted crossover frequency wc_Dxy = 2*pi*100; % Lead a = 8.0; % Amount of phase lead / width of the phase lead / high frequency gain wc = wc_Dxy; % Frequency with the maximum phase lead [rad/s] Kd_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a)))/sqrt(a); % Integrator w0_int = wc_Dxy/2; % [rad/s] xi_int = 0.3; Kd_int = (1 + 2*xi_int/w0_int*s + s^2/w0_int^2)/(s^2/w0_int^2); % Low Pass Filter (High frequency robustness) w0_lpf = wc_Dxy*2; % Cut-off frequency [rad/s] xi_lpf = 0.6; % Damping Ratio Kd_lpf = 1/(1 + 2*xi_lpf/w0_lpf*s + s^2/w0_lpf^2); w0_lpf_b = wc_Dxy*4; % Cut-off frequency [rad/s] xi_lpf_b = 0.7; % Damping Ratio Kd_lpf_b = 1/(1 + 2*xi_lpf_b/w0_lpf_b*s + s^2/w0_lpf_b^2); % Unity Gain frequency [~, i_100] = min(abs(frf_iff.f - wc_Dxy/2/pi)); % Combination of all the elements Kd_Dyx_Rz = ... -1/abs(G_dL_J_cok(i_100,1,1)) * ... Kd_int /abs(evalfr(Kd_int, 1j*wc_Dxy)) * ... % Integrator Kd_lead/abs(evalfr(Kd_lead, 1j*wc_Dxy)) * ... % Lead (gain of 1 at wc) Kd_lpf_b/abs(evalfr(Kd_lpf_b, 1j*wc_Dxy)) * ... % Lead (gain of 1 at wc) Kd_lpf /abs(evalfr(Kd_lpf, 1j*wc_Dxy)); % Low Pass Filter #+end_src #+begin_src matlab :exports none %% Controller Dz % Wanted crossover frequency wc_Dz = 2*pi*100; % Lead a = 8.0; % Amount of phase lead / width of the phase lead / high frequency gain wc = wc_Dz; % Frequency with the maximum phase lead [rad/s] Kd_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a)))/sqrt(a); % Integrator w0_int = wc_Dz/2; % [rad/s] xi_int = 0.3; Kd_int = (1 + 2*xi_int/w0_int*s + s^2/w0_int^2)/(s^2/w0_int^2); % Low Pass Filter (High frequency robustness) w0_lpf = wc_Dz*2; % Cut-off frequency [rad/s] xi_lpf = 0.6; % Damping Ratio Kd_lpf = 1/(1 + 2*xi_lpf/w0_lpf*s + s^2/w0_lpf^2); w0_lpf_b = wc_Dz*4; % Cut-off frequency [rad/s] xi_lpf_b = 0.7; % Damping Ratio Kd_lpf_b = 1/(1 + 2*xi_lpf_b/w0_lpf_b*s + s^2/w0_lpf_b^2); % Unity Gain frequency [~, i_100] = min(abs(frf_iff.f - wc_Dz/2/pi)); % Combination of all the elements Kd_Dz = ... -1/abs(G_dL_J_cok(i_100,3,3)) * ... Kd_int /abs(evalfr(Kd_int, 1j*wc_Dz)) * ... % Integrator Kd_lead/abs(evalfr(Kd_lead, 1j*wc_Dz)) * ... % Lead (gain of 1 at wc) Kd_lpf_b/abs(evalfr(Kd_lpf_b, 1j*wc_Dz)) * ... % Lead (gain of 1 at wc) Kd_lpf /abs(evalfr(Kd_lpf, 1j*wc_Dz)); % Low Pass Filter #+end_src #+begin_src matlab :exports none %% Diagonal Controller Kd_diag = blkdiag(Kd_Dyx_Rz, Kd_Dyx_Rz, Kd_Dz, Kd_Rxy, Kd_Rxy, Kd_Dyx_Rz); #+end_src ***** Obtained Loop Gain #+begin_src matlab :exports none %% Experimental Loop Gain Lmimo = permute(pagemtimes(permute(G_dL_J_cok, [2,3,1]), squeeze(freqresp(Kd_diag, frf_iff.f, 'Hz'))), [3,1,2]); #+end_src #+begin_src matlab :exports none %% Bode plot of the experimental Loop Gain figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:6 plot(frf_iff.f, abs(Lmimo(:,i,i)), '-'); end for i = 1:5 for j = i+1:6 plot(frf_iff.f, abs(squeeze(Lmimo(:,i,j))), 'color', [0,0,0,0.2]); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Loop Gain'); set(gca, 'XTickLabel',[]); ylim([1e-3, 1e+3]); ax2 = nexttile; hold on; for i = 1:6 plot(frf_iff.f, 180/pi*angle(Lmimo(:,i,i)), '-'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:45:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([1, 2e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/bode_plot_hac_iff_loop_gain_jacobian_cok.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_bode_plot_hac_iff_loop_gain_jacobian_cok #+caption: Bode plot of the Loop Gain when using the Jacobian evaluated at the Center of Stiffness to decouple the system #+RESULTS: [[file:figs/test_nhexa_bode_plot_hac_iff_loop_gain_jacobian_cok.png]] #+begin_src matlab %% Controller to be implemented Kd = inv(J_cok')*input_normalize*ss(Kd_diag)*inv(Js_cok); #+end_src ***** Verification of the Stability Now the stability of the feedback loop is verified using the generalized Nyquist criteria. #+begin_src matlab :exports none %% Compute the Eigenvalues of the loop gain Ldet = zeros(3, 6, length(frf_iff.f)); for i_mass = 1:3 % Loop gain Lmimo = pagemtimes(permute(frf_iff.G_dL{i_mass}, [2,3,1]),squeeze(freqresp(Kd, frf_iff.f, 'Hz'))); for i_f = 2:length(frf_iff.f) Ldet(i,:, i_f) = eig(squeeze(Lmimo(:,:,i_f))); end end #+end_src #+begin_src matlab :exports none %% Plot of the eigenvalues of L in the complex plane figure; hold on; for i_mass = 2:3 plot(real(squeeze(Ldet(i_mass, 1,:))), imag(squeeze(Ldet(i_mass, 1,:))), ... '.', 'color', colors(i_mass+1, :), ... 'DisplayName', sprintf('%i masses', i_mass)); plot(real(squeeze(Ldet(i_mass, 1,:))), -imag(squeeze(Ldet(i_mass, 1,:))), ... '.', 'color', colors(i_mass+1, :), ... 'HandleVisibility', 'off'); for i = 1:6 plot(real(squeeze(Ldet(i_mass, i,:))), imag(squeeze(Ldet(i_mass, i,:))), ... '.', 'color', colors(i_mass+1, :), ... 'HandleVisibility', 'off'); plot(real(squeeze(Ldet(i_mass, i,:))), -imag(squeeze(Ldet(i_mass, i,:))), ... '.', 'color', colors(i_mass+1, :), ... 'HandleVisibility', 'off'); end end plot(-1, 0, 'kx', 'HandleVisibility', 'off'); hold off; set(gca, 'XScale', 'lin'); set(gca, 'YScale', 'lin'); xlabel('Real'); ylabel('Imag'); legend('location', 'southeast'); xlim([-3, 1]); ylim([-2, 2]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/loci_hac_iff_loop_gain_jacobian_cok.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_loci_hac_iff_loop_gain_jacobian_cok #+caption: Loci of $L(j\omega)$ in the complex plane. #+RESULTS: [[file:figs/test_nhexa_loci_hac_iff_loop_gain_jacobian_cok.png]] ***** Save for further analysis #+begin_src matlab :exports none :tangle no save('matlab/data_sim/Khac_iff_struts_jacobian_cok.mat', 'Kd') #+end_src #+begin_src matlab :eval no save('data_sim/Khac_iff_struts_jacobian_cok.mat', 'Kd') #+end_src ***** Sensitivity transfer function from the model #+begin_src matlab :exports none %% Open Simulink Model mdl = 'nano_hexapod_simscape'; options = linearizeOptions; options.SampleTime = 0; open(mdl) Rx = zeros(1, 7); colors = colororder; #+end_src #+begin_src matlab :exports none %% Initialize the Simscape model in closed loop n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ... 'flex_top_type', '4dof', ... 'motion_sensor_type', 'plates', ... 'actuator_type', '2dof', ... 'controller_type', 'hac-iff-struts'); support.type = 1; % On top of vibration table payload.type = 2; % Payload #+end_src #+begin_src matlab :exports none %% Load controllers load('Kiff_opt.mat', 'Kiff'); Kiff = c2d(Kiff, Ts, 'Tustin'); load('Khac_iff_struts_jacobian_cok.mat', 'Kd') Khac_iff_struts = c2d(Kd, Ts, 'Tustin'); #+end_src #+begin_src matlab :exports none %% Identify the (damped) transfer function from u to dLm clear io; io_i = 1; io(io_i) = linio([mdl, '/Rx'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs io(io_i) = linio([mdl, '/dL'], 1, 'output'); io_i = io_i + 1; % Plate Displacement (encoder) #+end_src #+begin_src matlab :exports none %% Identification of the dynamics Gcl = linearize(mdl, io, 0.0, options); #+end_src #+begin_src matlab :exports none %% Computation of the sensitivity transfer function S = eye(6) - inv(n_hexapod.geometry.J)*Gcl; #+end_src The results are shown in Figure ref:fig:test_nhexa_sensitivity_hac_jacobian_cok_3m_comp_model. #+begin_src matlab :exports none %% Bode plot for the transfer function from u to dLm freqs = logspace(0, 3, 1000); figure; hold on; for i =1:6 set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(S(i,i), freqs, 'Hz'))), '--', ... 'DisplayName', sprintf('$S_{%s}$ - Model', labels{i})); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Sensitivity [-]'); ylim([1e-4, 1e1]); legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3); xlim([1, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/sensitivity_hac_jacobian_cok_3m_comp_model.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_nhexa_sensitivity_hac_jacobian_cok_3m_comp_model #+caption: Estimated sensitivity transfer functions for the HAC controller using the Jacobian estimated at the Center of Stiffness #+RESULTS: [[file:figs/test_nhexa_sensitivity_hac_jacobian_cok_3m_comp_model.png]] **** Using Singular Value Decomposition ***** Decoupled Plant #+begin_src matlab G_nom = frf_iff.G_dL{2}; % Nominal Plant #+end_src #+begin_src matlab :exports none %% Take complex matrix corresponding to the plant at 100Hz wc = 100; % Wanted crossover frequency [Hz] [~, i_wc] = min(abs(frf_iff.f - wc)); % Indice corresponding to wc V = squeeze(G_nom(i_wc,:,:)); %% Real approximation of G(100Hz) D = pinv(real(V'*V)); H1 = pinv(D*real(V'*diag(exp(1j*angle(diag(V*D*V.'))/2)))); %% Singular Value Decomposition [U,S,V] = svd(H1); %% Compute the decoupled plant using SVD G_dL_svd = zeros(size(G_nom)); for i = 1:length(frf_iff.f) G_dL_svd(i,:,:) = inv(U)*squeeze(G_nom(i,:,:))*inv(V'); end #+end_src #+begin_src matlab :exports none %% Bode plot of the decoupled plant using SVD figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:5 for j = i+1:6 plot(frf_iff.f, abs(G_dL_svd(:,i,j)), 'color', [0,0,0,0.2], ... 'HandleVisibility', 'off'); end end set(gca,'ColorOrderIndex',1); for i = 1:6 plot(frf_iff.f, abs(G_dL_svd(:,i,i)), ... 'DisplayName', sprintf('$y_%i/u_%i$', i, i)); end plot(frf_iff.f, abs(G_dL_svd(:,1,2)), 'color', [0,0,0,0.2], ... 'DisplayName', 'Coupling'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); ylim([1e-9, 1e-4]); legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); ax2 = nexttile; hold on; for i =1:6 plot(frf_iff.f, 180/pi*angle(G_dL_svd(:,i,i))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/bode_plot_hac_iff_plant_svd.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_bode_plot_hac_iff_plant_svd #+caption: Bode plot of the decoupled plant using the SVD #+RESULTS: [[file:figs/test_nhexa_bode_plot_hac_iff_plant_svd.png]] ***** Controller Design #+begin_src matlab :exports none %% Lead a = 6.0; % Amount of phase lead / width of the phase lead / high frequency gain wc = 2*pi*100; % Frequency with the maximum phase lead [rad/s] Kd_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a)))/sqrt(a); %% Integrator Kd_int = ((2*pi*50 + s)/(2*pi*0.1 + s))^2; %% Low Pass Filter (High frequency robustness) w0_lpf = 2*pi*200; % Cut-off frequency [rad/s] xi_lpf = 0.3; % Damping Ratio Kd_lpf = 1/(1 + 2*xi_lpf/w0_lpf*s + s^2/w0_lpf^2); %% Normalize Gain Kd_norm = diag(1./abs(diag(squeeze(G_dL_svd(i_wc,:,:))))); %% Diagonal Control Kd_diag = ... Kd_norm * ... % Normalize gain at 100Hz Kd_int /abs(evalfr(Kd_int, 1j*2*pi*100)) * ... % Integrator Kd_lead/abs(evalfr(Kd_lead, 1j*2*pi*100)) * ... % Lead (gain of 1 at wc) Kd_lpf /abs(evalfr(Kd_lpf, 1j*2*pi*100)); % Low Pass Filter #+end_src #+begin_src matlab :exports none %% MIMO Controller Kd = -inv(V') * ... % Output decoupling ss(Kd_diag) * ... inv(U); % Input decoupling #+end_src ***** Loop Gain #+begin_src matlab :exports none %% Experimental Loop Gain Lmimo = permute(pagemtimes(permute(G_nom, [2,3,1]),squeeze(freqresp(Kd, frf_iff.f, 'Hz'))), [3,1,2]); #+end_src #+begin_src matlab :exports none %% Loop gain when using SVD figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:6 plot(frf_iff.f, abs(Lmimo(:,i,i)), '-'); end for i = 1:5 for j = i+1:6 plot(frf_iff.f, abs(squeeze(Lmimo(:,i,j))), 'color', [0,0,0,0.2]); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Loop Gain'); set(gca, 'XTickLabel',[]); ylim([1e-3, 1e+3]); ax2 = nexttile; hold on; for i = 1:6 plot(frf_iff.f, 180/pi*angle(Lmimo(:,i,i)), '-'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:30:360); ylim([-180, 0]); linkaxes([ax1,ax2],'x'); xlim([1, 2e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/bode_plot_hac_iff_loop_gain_svd.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_bode_plot_hac_iff_loop_gain_svd #+caption: Bode plot of Loop Gain when using the SVD #+RESULTS: [[file:figs/test_nhexa_bode_plot_hac_iff_loop_gain_svd.png]] ***** Stability Verification #+begin_src matlab %% Compute the Eigenvalues of the loop gain Ldet = zeros(3, 6, length(frf_iff.f)); for i = 1:3 Lmimo = pagemtimes(permute(frf_iff.G_dL{i}, [2,3,1]),squeeze(freqresp(Kd, frf_iff.f, 'Hz'))); for i_f = 2:length(frf_iff.f) Ldet(i,:, i_f) = eig(squeeze(Lmimo(:,:,i_f))); end end #+end_src #+begin_src matlab :exports none %% Plot of the eigenvalues of L in the complex plane figure; hold on; for i_mass = 2:3 plot(real(squeeze(Ldet(i_mass, 1,:))), imag(squeeze(Ldet(i_mass, 1,:))), ... '.', 'color', colors(i_mass+1, :), ... 'DisplayName', sprintf('%i masses', i_mass)); plot(real(squeeze(Ldet(i_mass, 1,:))), -imag(squeeze(Ldet(i_mass, 1,:))), ... '.', 'color', colors(i_mass+1, :), ... 'HandleVisibility', 'off'); for i = 1:6 plot(real(squeeze(Ldet(i_mass, i,:))), imag(squeeze(Ldet(i_mass, i,:))), ... '.', 'color', colors(i_mass+1, :), ... 'HandleVisibility', 'off'); plot(real(squeeze(Ldet(i_mass, i,:))), -imag(squeeze(Ldet(i_mass, i,:))), ... '.', 'color', colors(i_mass+1, :), ... 'HandleVisibility', 'off'); end end plot(-1, 0, 'kx', 'HandleVisibility', 'off'); hold off; set(gca, 'XScale', 'lin'); set(gca, 'YScale', 'lin'); xlabel('Real'); ylabel('Imag'); legend('location', 'southeast'); xlim([-3, 1]); ylim([-2, 2]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/loci_hac_iff_loop_gain_svd.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_loci_hac_iff_loop_gain_svd #+caption: Locis of $L(j\omega)$ in the complex plane. #+RESULTS: [[file:figs/test_nhexa_loci_hac_iff_loop_gain_svd.png]] ***** Save for further analysis #+begin_src matlab :exports none :tangle no save('matlab/data_sim/Khac_iff_struts_svd.mat', 'Kd') #+end_src #+begin_src matlab :eval no save('data_sim/Khac_iff_struts_svd.mat', 'Kd') #+end_src ***** Measured Sensitivity Transfer Function The sensitivity transfer function is estimated by adding a reference signal $R_x$ consisting of a low pass filtered white noise, and measuring the position error $E_x$ at the same time. The transfer function from $R_x$ to $E_x$ is the sensitivity transfer function. In order to identify the sensitivity transfer function for all directions, six reference signals are used, one for each direction. #+begin_src matlab :exports none %% Tested directions labels = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}; #+end_src #+begin_src matlab :exports none %% Load Identification Data meas_hac_svd_3m = {}; for i = 1:6 meas_hac_svd_3m(i) = {load(sprintf('T_S_meas_%s_3m_hac_svd_iff.mat', labels{i}), 't', 'Va', 'Vs', 'de', 'Rx')}; end #+end_src #+begin_src matlab :exports none %% Setup useful variables % Sampling Time [s] Ts = (meas_hac_svd_3m{1}.t(end) - (meas_hac_svd_3m{1}.t(1)))/(length(meas_hac_svd_3m{1}.t)-1); % Sampling Frequency [Hz] Fs = 1/Ts; % Hannning Windows win = hanning(ceil(5*Fs)); % And we get the frequency vector [~, f] = tfestimate(meas_hac_svd_3m{1}.Va, meas_hac_svd_3m{1}.de, win, Noverlap, Nfft, 1/Ts); #+end_src #+begin_src matlab :exports none %% Load Jacobian matrix load('jacobian.mat', 'J'); %% Compute position error for i = 1:6 meas_hac_svd_3m{i}.Xm = [inv(J)*meas_hac_svd_3m{i}.de']'; meas_hac_svd_3m{i}.Ex = meas_hac_svd_3m{i}.Rx - meas_hac_svd_3m{i}.Xm; end #+end_src An example is shown in Figure ref:fig:test_nhexa_ref_track_hac_svd_3m where both the reference signal and the measured position are shown for translations in the $x$ direction. #+begin_src matlab :exports none figure; hold on; plot(meas_hac_svd_3m{1}.t, meas_hac_svd_3m{1}.Xm(:,1), 'DisplayName', 'Pos.') plot(meas_hac_svd_3m{1}.t, meas_hac_svd_3m{1}.Rx(:,1), 'DisplayName', 'Ref.') hold off; xlabel('Time [s]'); ylabel('Dx motion [m]'); xlim([20, 22]); legend('location', 'northeast'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/ref_track_hac_svd_3m.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_nhexa_ref_track_hac_svd_3m #+caption: Reference position and measured position #+RESULTS: [[file:figs/test_nhexa_ref_track_hac_svd_3m.png]] #+begin_src matlab :exports none %% Transfer function estimate of S S_hac_svd_3m = zeros(length(f), 6, 6); for i = 1:6 S_hac_svd_3m(:,:,i) = tfestimate(meas_hac_svd_3m{i}.Rx, meas_hac_svd_3m{i}.Ex, win, Noverlap, Nfft, 1/Ts); end #+end_src The sensitivity transfer functions estimated for all directions are shown in Figure ref:fig:test_nhexa_sensitivity_hac_svd_3m. #+begin_src matlab :exports none %% Bode plot for the transfer function from u to dLm figure; hold on; for i =1:6 plot(f, abs(S_hac_svd_3m(:,i,i)), ... 'DisplayName', sprintf('$S_{%s}$', labels{i})); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Sensitivity [-]'); ylim([1e-4, 1e1]); legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3); xlim([0.5, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/sensitivity_hac_svd_3m.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_nhexa_sensitivity_hac_svd_3m #+caption: Measured diagonal elements of the sensitivity transfer function matrix. #+RESULTS: [[file:figs/test_nhexa_sensitivity_hac_svd_3m.png]] #+begin_important From Figure ref:fig:test_nhexa_sensitivity_hac_svd_3m: - The sensitivity transfer functions are similar for all directions - The disturbance attenuation at 1Hz is almost a factor 1000 as wanted - The sensitivity transfer functions for $R_x$ and $R_y$ have high peak values which indicate poor stability margins. #+end_important ***** Sensitivity transfer function from the model The sensitivity transfer function is now estimated using the model and compared with the one measured. #+begin_src matlab :exports none %% Open Simulink Model mdl = 'nano_hexapod_simscape'; options = linearizeOptions; options.SampleTime = 0; open(mdl) Rx = zeros(1, 7); colors = colororder; #+end_src #+begin_src matlab :exports none %% Initialize the Simscape model in closed loop n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ... 'flex_top_type', '4dof', ... 'motion_sensor_type', 'plates', ... 'actuator_type', '2dof', ... 'controller_type', 'hac-iff-struts'); support.type = 1; % On top of vibration table payload.type = 2; % Payload #+end_src #+begin_src matlab :exports none %% Load controllers load('Kiff_opt.mat', 'Kiff'); Kiff = c2d(Kiff, Ts, 'Tustin'); load('Khac_iff_struts_svd.mat', 'Kd') Khac_iff_struts = c2d(Kd, Ts, 'Tustin'); #+end_src #+begin_src matlab :exports none %% Identify the (damped) transfer function from u to dLm clear io; io_i = 1; io(io_i) = linio([mdl, '/Rx'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs io(io_i) = linio([mdl, '/dL'], 1, 'output'); io_i = io_i + 1; % Plate Displacement (encoder) #+end_src #+begin_src matlab :exports none %% Identification of the dynamics Gcl = linearize(mdl, io, 0.0, options); #+end_src #+begin_src matlab :exports none %% Computation of the sensitivity transfer function S = eye(6) - inv(n_hexapod.geometry.J)*Gcl; #+end_src The results are shown in Figure ref:fig:test_nhexa_sensitivity_hac_svd_3m_comp_model. The model is quite effective in estimating the sensitivity transfer functions except around 60Hz were there is a peak for the measurement. #+begin_src matlab :exports none %% Bode plot for the transfer function from u to dLm freqs = logspace(0,3,1000); figure; hold on; for i =1:6 set(gca,'ColorOrderIndex',i); plot(f, abs(S_hac_svd_3m(:,i,i)), ... 'DisplayName', sprintf('$S_{%s}$', labels{i})); set(gca,'ColorOrderIndex',i); plot(freqs, abs(squeeze(freqresp(S(i,i), freqs, 'Hz'))), '--', ... 'DisplayName', sprintf('$S_{%s}$ - Model', labels{i})); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Sensitivity [-]'); ylim([1e-4, 1e1]); legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3); xlim([0.5, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/sensitivity_hac_svd_3m_comp_model.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_nhexa_sensitivity_hac_svd_3m_comp_model #+caption: Comparison of the measured sensitivity transfer functions with the model #+RESULTS: [[file:figs/test_nhexa_sensitivity_hac_svd_3m_comp_model.png]] **** Using (diagonal) Dynamical Inverse :noexport: ***** Decoupled Plant #+begin_src matlab G_nom = frf_iff.G_dL{2}; % Nominal Plant G_model = sim_iff.G_dL{2}; % Model of the Plant #+end_src #+begin_src matlab :exports none %% Simplified model of the diagonal term balred_opts = balredOptions('FreqIntervals', 2*pi*[0, 1000], 'StateElimMethod', 'Truncate'); G_red = balred(G_model(1,1), 8, balred_opts); G_red.outputdelay = 0; % necessary for further inversion #+end_src #+begin_src matlab %% Inverse G_inv = inv(G_red); [G_z, G_p, G_g] = zpkdata(G_inv); p_uns = real(G_p{1}) > 0; G_p{1}(p_uns) = -G_p{1}(p_uns); G_inv_stable = zpk(G_z, G_p, G_g); #+end_src #+begin_src matlab :exports none %% "Uncertainty" of inversed plant freqs = logspace(0,3,1000); figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i_mass = i_masses for i = 1 plot(freqs, abs(squeeze(freqresp(G_inv_stable*sim_iff.G_dL{i_mass+1}(i,i), freqs, 'Hz'))), '-', 'color', colors(i_mass+1, :), ... 'DisplayName', sprintf('$d\\mathcal{L}_i/u^\\prime_i$ - %i', i_mass)); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); ylim([1e-1, 1e1]); legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 4); ax2 = nexttile; hold on; for i_mass = i_masses for i = 1 plot(freqs, 180/pi*angle(squeeze(freqresp(G_inv_stable*sim_iff.G_dL{i_mass+1}(1,1), freqs, 'Hz'))), '-', 'color', colors(i_mass+1, :)); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:15:360); ylim([-45, 45]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src ***** Controller Design #+begin_src matlab :exports none % Wanted crossover frequency wc = 2*pi*80; [~, i_wc] = min(abs(frf_iff.f - wc/2/pi)); %% Lead a = 20.0; % Amount of phase lead / width of the phase lead / high frequency gain Kd_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a)))/sqrt(a); %% Integrator Kd_int = ((wc)/(2*pi*0.2 + s))^2; %% Low Pass Filter (High frequency robustness) w0_lpf = 2*wc; % Cut-off frequency [rad/s] xi_lpf = 0.3; % Damping Ratio Kd_lpf = 1/(1 + 2*xi_lpf/w0_lpf*s + s^2/w0_lpf^2); w0_lpf_b = wc*4; % Cut-off frequency [rad/s] xi_lpf_b = 0.7; % Damping Ratio Kd_lpf_b = 1/(1 + 2*xi_lpf_b/w0_lpf_b*s + s^2/w0_lpf_b^2); %% Normalize Gain Kd_norm = diag(1./abs(diag(squeeze(G_dL_svd(i_wc,:,:))))); %% Diagonal Control Kd_diag = ... G_inv_stable * ... % Normalize gain at 100Hz Kd_int /abs(evalfr(Kd_int, 1j*wc)) * ... % Integrator Kd_lead/abs(evalfr(Kd_lead, 1j*wc)) * ... % Lead (gain of 1 at wc) Kd_lpf /abs(evalfr(Kd_lpf, 1j*wc)); % Low Pass Filter #+end_src #+begin_src matlab :exports none Kd = ss(Kd_diag)*eye(6); #+end_src ***** Loop Gain #+begin_src matlab :exports none %% Experimental Loop Gain Lmimo = permute(pagemtimes(permute(G_nom, [2,3,1]),squeeze(freqresp(Kd, frf_iff.f, 'Hz'))), [3,1,2]); #+end_src #+begin_src matlab :exports none %% Loop gain when using SVD figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:6 plot(frf_iff.f, abs(Lmimo(:,i,i)), '-'); end for i = 1:5 for j = i+1:6 plot(frf_iff.f, abs(squeeze(Lmimo(:,i,j))), 'color', [0,0,0,0.2]); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Loop Gain'); set(gca, 'XTickLabel',[]); ylim([1e-3, 1e+3]); ax2 = nexttile; hold on; for i = 1:6 plot(frf_iff.f, 180/pi*angle(Lmimo(:,i,i)), '-'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:30:360); ylim([-180, 0]); linkaxes([ax1,ax2],'x'); xlim([1, 2e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/bode_plot_hac_iff_loop_gain_diag_inverse.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_bode_plot_hac_iff_loop_gain_diag_inverse #+caption: Bode plot of Loop Gain when using the Diagonal inversion #+RESULTS: [[file:figs/test_nhexa_bode_plot_hac_iff_loop_gain_diag_inverse.png]] ***** Stability Verification MIMO Nyquist with eigenvalues #+begin_src matlab %% Compute the Eigenvalues of the loop gain Ldet = zeros(3, 6, length(frf_iff.f)); for i = 1:3 Lmimo = pagemtimes(permute(frf_iff.G_dL{i}, [2,3,1]),squeeze(freqresp(Kd, frf_iff.f, 'Hz'))); for i_f = 2:length(frf_iff.f) Ldet(i,:, i_f) = eig(squeeze(Lmimo(:,:,i_f))); end end #+end_src #+begin_src matlab :exports none %% Plot of the eigenvalues of L in the complex plane figure; hold on; for i_mass = 2:3 plot(real(squeeze(Ldet(i_mass, 1,:))), imag(squeeze(Ldet(i_mass, 1,:))), ... '.', 'color', colors(i_mass+1, :), ... 'DisplayName', sprintf('%i masses', i_mass)); plot(real(squeeze(Ldet(i_mass, 1,:))), -imag(squeeze(Ldet(i_mass, 1,:))), ... '.', 'color', colors(i_mass+1, :), ... 'HandleVisibility', 'off'); for i = 1:6 plot(real(squeeze(Ldet(i_mass, i,:))), imag(squeeze(Ldet(i_mass, i,:))), ... '.', 'color', colors(i_mass+1, :), ... 'HandleVisibility', 'off'); plot(real(squeeze(Ldet(i_mass, i,:))), -imag(squeeze(Ldet(i_mass, i,:))), ... '.', 'color', colors(i_mass+1, :), ... 'HandleVisibility', 'off'); end end plot(-1, 0, 'kx', 'HandleVisibility', 'off'); hold off; set(gca, 'XScale', 'lin'); set(gca, 'YScale', 'lin'); xlabel('Real'); ylabel('Imag'); legend('location', 'southeast'); xlim([-3, 1]); ylim([-2, 2]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/loci_hac_iff_loop_gain_diag_inverse.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_loci_hac_iff_loop_gain_diag_inverse #+caption: Locis of $L(j\omega)$ in the complex plane. #+RESULTS: [[file:figs/test_nhexa_loci_hac_iff_loop_gain_diag_inverse.png]] #+begin_important Even though the loop gain seems to be fine, the closed-loop system is unstable. This might be due to the fact that there is large interaction in the plant. We could look at the RGA-number to verify that. #+end_important ***** Save for further use #+begin_src matlab :exports none :tangle no save('matlab/data_sim/Khac_iff_struts_diag_inverse.mat', 'Kd') #+end_src #+begin_src matlab :eval no save('data_sim/Khac_iff_struts_diag_inverse.mat', 'Kd') #+end_src **** Closed Loop Stability (Model) :noexport: Verify stability using Simscape model #+begin_src matlab %% Initialize the Simscape model in closed loop n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '2dof', ... 'flex_top_type', '3dof', ... 'motion_sensor_type', 'plates', ... 'actuator_type', '2dof', ... 'controller_type', 'hac-iff-struts'); #+end_src #+begin_src matlab %% IFF Controller Kiff = -g_opt*Kiff_g1*eye(6); Khac_iff_struts = Kd*eye(6); #+end_src #+begin_src matlab %% Identify the (damped) transfer function from u to dLm for different values of the IFF gain clear io; io_i = 1; io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Plate Displacement (encoder) #+end_src #+begin_src matlab GG_cl = {}; for i = i_masses payload.type = i; GG_cl(i+1) = {exp(-s*Ts)*linearize(mdl, io, 0.0, options)}; end #+end_src #+begin_src matlab for i = i_masses isstable(GG_cl{i+1}) end #+end_src MIMO Nyquist #+begin_src matlab Kdm = Kd*eye(6); Ldet = zeros(3, length(fb(i_lim))); for i = 1:3 Lmimo = pagemtimes(permute(G_damp_m{i}(i_lim,:,:), [2,3,1]),squeeze(freqresp(Kdm, fb(i_lim), 'Hz'))); Ldet(i,:) = arrayfun(@(t) det(eye(6) + squeeze(Lmimo(:,:,t))), 1:size(Lmimo,3)); end #+end_src #+begin_src matlab :exports none %% Bode plot for the transfer function from u to dLm figure; hold on; for i_mass = 3 for i = 1 plot(real(Ldet(i_mass,:)), imag(Ldet(i_mass,:)), ... '-', 'color', colors(i_mass+1, :)); end end hold off; set(gca, 'XScale', 'lin'); set(gca, 'YScale', 'lin'); xlabel('Real'); ylabel('Imag'); xlim([-10, 1]); ylim([-4, 4]); #+end_src MIMO Nyquist with eigenvalues #+begin_src matlab Kdm = Kd*eye(6); Ldet = zeros(3, 6, length(fb(i_lim))); for i = 1:3 Lmimo = pagemtimes(permute(G_damp_m{i}(i_lim,:,:), [2,3,1]),squeeze(freqresp(Kdm, fb(i_lim), 'Hz'))); for i_f = 1:length(fb(i_lim)) Ldet(i,:, i_f) = eig(squeeze(Lmimo(:,:,i_f))); end end #+end_src #+begin_src matlab :exports none %% Bode plot for the transfer function from u to dLm figure; hold on; for i_mass = 1 for i = 1:6 plot(real(squeeze(Ldet(i_mass, i,:))), imag(squeeze(Ldet(i_mass, i,:))), ... '-', 'color', colors(i_mass+1, :)); end end hold off; set(gca, 'XScale', 'lin'); set(gca, 'YScale', 'lin'); xlabel('Real'); ylabel('Imag'); xlim([-10, 1]); ylim([-4, 2]); #+end_src ** Other Backups *** Nano-Hexapod Compliance - Effect of IFF <> In this section, we wish to estimate the effectiveness of the IFF strategy regarding the compliance. The top plate is excited vertically using the instrumented hammer two times: 1. no control loop is used 2. decentralized IFF is used The data are loaded. #+begin_src matlab frf_ol = load('Measurement_Z_axis.mat'); % Open-Loop frf_iff = load('Measurement_Z_axis_damped.mat'); % IFF #+end_src The mean vertical motion of the top platform is computed by averaging all 5 vertical accelerometers. #+begin_src matlab %% Multiply by 10 (gain in m/s^2/V) and divide by 5 (number of accelerometers) d_frf_ol = 10/5*(frf_ol.FFT1_H1_4_1_RMS_Y_Mod + frf_ol.FFT1_H1_7_1_RMS_Y_Mod + frf_ol.FFT1_H1_10_1_RMS_Y_Mod + frf_ol.FFT1_H1_13_1_RMS_Y_Mod + frf_ol.FFT1_H1_16_1_RMS_Y_Mod)./(2*pi*frf_ol.FFT1_H1_16_1_RMS_X_Val).^2; d_frf_iff = 10/5*(frf_iff.FFT1_H1_4_1_RMS_Y_Mod + frf_iff.FFT1_H1_7_1_RMS_Y_Mod + frf_iff.FFT1_H1_10_1_RMS_Y_Mod + frf_iff.FFT1_H1_13_1_RMS_Y_Mod + frf_iff.FFT1_H1_16_1_RMS_Y_Mod)./(2*pi*frf_iff.FFT1_H1_16_1_RMS_X_Val).^2; #+end_src The vertical compliance (magnitude of the transfer function from a vertical force applied on the top plate to the vertical motion of the top plate) is shown in Figure ref:fig:test_nhexa_compliance_vertical_comp_iff. #+begin_src matlab :exports none %% Comparison of the vertical compliances (OL and IFF) figure; hold on; plot(frf_ol.FFT1_H1_16_1_RMS_X_Val, d_frf_ol, 'DisplayName', 'OL'); plot(frf_iff.FFT1_H1_16_1_RMS_X_Val, d_frf_iff, 'DisplayName', 'IFF'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Vertical Compliance [$m/N$]'); xlim([20, 2e3]); ylim([2e-9, 2e-5]); legend('location', 'northeast'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/compliance_vertical_comp_iff.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_nhexa_compliance_vertical_comp_iff #+caption: Measured vertical compliance with and without IFF #+RESULTS: [[file:figs/test_nhexa_compliance_vertical_comp_iff.png]] #+begin_important From Figure ref:fig:test_nhexa_compliance_vertical_comp_iff, it is clear that the IFF control strategy is very effective in damping the suspensions modes of the nano-hexapod. It also has the effect of (slightly) degrading the vertical compliance at low frequency. It also seems some damping can be added to the modes at around 205Hz which are flexible modes of the struts. #+end_important *** Comparison with the Simscape Model <> Let's initialize the Simscape model such that it corresponds to the experiment. #+begin_src matlab %% Nano-Hexapod is fixed on a rigid granite support.type = 0; %% No Payload on top of the Nano-Hexapod payload.type = 0; %% Initialize Nano-Hexapod in Open Loop n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ... 'flex_top_type', '4dof', ... 'motion_sensor_type', 'struts', ... 'actuator_type', '2dof'); #+end_src And let's compare the measured vertical compliance with the vertical compliance as estimated from the Simscape model. The transfer function from a vertical external force to the absolute motion of the top platform is identified (with and without IFF) using the Simscape model. #+begin_src matlab :exports none %% Identify the IFF Plant (transfer function from u to taum) clear io; io_i = 1; io(io_i) = linio([mdl, '/Fz_ext'], 1, 'openinput'); io_i = io_i + 1; % External - Vertical force io(io_i) = linio([mdl, '/Z_top_plat'], 1, 'openoutput'); io_i = io_i + 1; % Absolute vertical motion of top platform #+end_src #+begin_src matlab :exports none %% Perform the identifications G_compl_z_ol = linearize(mdl, io, 0.0, options); #+end_src #+begin_src matlab :exports none %% Initialize Nano-Hexapod with IFF Kiff = 400*(1/(s + 2*pi*40))*... % Low pass filter (provides integral action above 40Hz) (s/(s + 2*pi*30))*... % High pass filter to limit low frequency gain (1/(1 + s/2/pi/500))*... % Low pass filter to be more robust to high frequency resonances eye(6); % Diagonal 6x6 controller %% Initialize the Nano-Hexapod with IFF n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ... 'flex_top_type', '4dof', ... 'motion_sensor_type', 'struts', ... 'actuator_type', '2dof', ... 'controller_type', 'iff'); %% Perform the identification G_compl_z_iff = linearize(mdl, io, 0.0, options); #+end_src The comparison is done in Figure ref:fig:test_nhexa_compliance_vertical_comp_model_iff. Again, the model is quite accurate in predicting the (closed-loop) behavior of the system. #+begin_src matlab :exports none %% Comparison of the measured compliance and the one obtained from the model freqs = 2*logspace(1,3,1000); figure; hold on; plot(frf_ol.FFT1_H1_16_1_RMS_X_Val, d_frf_ol, '-', 'DisplayName', 'OL - Meas.'); plot(frf_iff.FFT1_H1_16_1_RMS_X_Val, d_frf_iff, '-', 'DisplayName', 'IFF - Meas.'); set(gca,'ColorOrderIndex',1) plot(freqs, abs(squeeze(freqresp(G_compl_z_ol, freqs, 'Hz'))), '--', 'DisplayName', 'OL - Model') plot(freqs, abs(squeeze(freqresp(G_compl_z_iff, freqs, 'Hz'))), '--', 'DisplayName', 'IFF - Model') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Vertical Compliance [$m/N$]'); xlim([20, 2e3]); ylim([2e-9, 2e-5]); legend('location', 'northeast', 'FontSize', 8); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/compliance_vertical_comp_model_iff.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_nhexa_compliance_vertical_comp_model_iff #+caption: Measured vertical compliance with and without IFF #+RESULTS: [[file:figs/test_nhexa_compliance_vertical_comp_model_iff.png]] *** Computation of the transmissibility from accelerometer data **** Introduction :ignore: The goal is to compute the $6 \times 6$ transfer function matrix corresponding to the transmissibility of the Nano-Hexapod. To do so, several accelerometers are located both on the vibration table and on the top of the nano-hexapod. The vibration table is then excited using a Shaker and all the accelerometers signals are recorded. Using transformation (jacobian) matrices, it is then possible to compute both the motion of the top and bottom platform of the nano-hexapod. Finally, it is possible to compute the $6 \times 6$ transmissibility matrix. Such procedure is explained in cite:marneffe04_stewar_platf_activ_vibrat_isolat. **** Jacobian matrices How to compute the Jacobian matrices is explained in Section ref:sec:meas_transformation. #+begin_src matlab %% Bottom Accelerometers Opb = [-0.1875, -0.1875, -0.245; -0.1875, -0.1875, -0.245; 0.1875, -0.1875, -0.245; 0.1875, -0.1875, -0.245; 0.1875, 0.1875, -0.245; 0.1875, 0.1875, -0.245]'; Osb = [0, 1, 0; 0, 0, 1; 1, 0, 0; 0, 0, 1; 1, 0, 0; 0, 0, 1;]'; Jb = zeros(length(Opb), 6); for i = 1:length(Opb) Ri = [0, Opb(3,i), -Opb(2,i); -Opb(3,i), 0, Opb(1,i); Opb(2,i), -Opb(1,i), 0]; Jb(i, 1:3) = Osb(:,i)'; Jb(i, 4:6) = Osb(:,i)'*Ri; end Jbinv = inv(Jb); #+end_src #+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) data2orgtable(Jbinv, {'$\dot{x}_x$', '$\dot{x}_y$', '$\dot{x}_z$', '$\dot{\omega}_x$', '$\dot{\omega}_y$', '$\dot{\omega}_z$'}, {'$a_1$', '$a_2$', '$a_3$', '$a_4$', '$a_5$', '$a_6$'}, ' %.1f '); #+end_src #+RESULTS: | | $a_1$ | $a_2$ | $a_3$ | $a_4$ | $a_5$ | $a_6$ | |------------------+-------+-------+-------+-------+-------+-------| | $\dot{x}_x$ | 0.0 | 0.7 | 0.5 | -0.7 | 0.5 | 0.0 | | $\dot{x}_y$ | 1.0 | 0.0 | 0.5 | 0.7 | -0.5 | -0.7 | | $\dot{x}_z$ | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.5 | | $\dot{\omega}_x$ | 0.0 | 0.0 | 0.0 | -2.7 | 0.0 | 2.7 | | $\dot{\omega}_y$ | 0.0 | 2.7 | 0.0 | -2.7 | 0.0 | 0.0 | | $\dot{\omega}_z$ | 0.0 | 0.0 | 2.7 | 0.0 | -2.7 | 0.0 | #+begin_src matlab %% Top Accelerometers Opt = [-0.1, 0, -0.150; -0.1, 0, -0.150; 0.05, 0.075, -0.150; 0.05, 0.075, -0.150; 0.05, -0.075, -0.150; 0.05, -0.075, -0.150]'; Ost = [0, 1, 0; 0, 0, 1; 1, 0, 0; 0, 0, 1; 1, 0, 0; 0, 0, 1;]'; Jt = zeros(length(Opt), 6); for i = 1:length(Opt) Ri = [0, Opt(3,i), -Opt(2,i); -Opt(3,i), 0, Opt(1,i); Opt(2,i), -Opt(1,i), 0]; Jt(i, 1:3) = Ost(:,i)'; Jt(i, 4:6) = Ost(:,i)'*Ri; end Jtinv = inv(Jt); #+end_src #+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) data2orgtable(Jtinv, {'$\dot{x}_x$', '$\dot{x}_y$', '$\dot{x}_z$', '$\dot{\omega}_x$', '$\dot{\omega}_y$', '$\dot{\omega}_z$'}, {'$b_1$', '$b_2$', '$b_3$', '$b_4$', '$b_5$', '$b_6$'}, ' %.1f '); #+end_src #+RESULTS: | | $b_1$ | $b_2$ | $b_3$ | $b_4$ | $b_5$ | $b_6$ | |------------------+-------+-------+-------+-------+-------+-------| | $\dot{x}_x$ | 0.0 | 1.0 | 0.5 | -0.5 | 0.5 | -0.5 | | $\dot{x}_y$ | 1.0 | 0.0 | -0.7 | -1.0 | 0.7 | 1.0 | | $\dot{x}_z$ | 0.0 | 0.3 | 0.0 | 0.3 | 0.0 | 0.3 | | $\dot{\omega}_x$ | 0.0 | 0.0 | 0.0 | 6.7 | 0.0 | -6.7 | | $\dot{\omega}_y$ | 0.0 | 6.7 | 0.0 | -3.3 | 0.0 | -3.3 | | $\dot{\omega}_z$ | 0.0 | 0.0 | -6.7 | 0.0 | 6.7 | 0.0 | **** Using =linearize= function #+begin_src matlab acc_3d.type = 2; % 1: inertial mass, 2: perfect %% Name of the Simulink File mdl = 'vibration_table'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F_shaker'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/acc'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/acc_top'], 1, 'openoutput'); io_i = io_i + 1; %% Run the linearization G = linearize(mdl, io); G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G.OutputName = {'a1', 'a2', 'a3', 'a4', 'a5', 'a6', ... 'b1', 'b2', 'b3', 'b4', 'b5', 'b6'}; #+end_src #+begin_src matlab Gb = Jbinv*G({'a1', 'a2', 'a3', 'a4', 'a5', 'a6'}, :); Gt = Jtinv*G({'b1', 'b2', 'b3', 'b4', 'b5', 'b6'}, :); #+end_src #+begin_src matlab T = inv(Gb)*Gt; T = minreal(T); T = prescale(T, {2*pi*0.1, 2*pi*1e3}); #+end_src #+begin_src matlab :exports none freqs = logspace(0, 3, 1000); figure; hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(T(i, i), freqs, 'Hz')))); end for i = 1:5 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(T(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Transmissibility'); ylim([1e-4, 1e2]); xlim([freqs(1), freqs(end)]); #+end_src *** Comparison with "true" transmissibility #+begin_src matlab %% Name of the Simulink File mdl = 'test_transmissibility'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/d'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/acc'], 1, 'openoutput'); io_i = io_i + 1; %% Run the linearization G = linearize(mdl, io); G.InputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}; G.OutputName = {'Ax', 'Ay', 'Az', 'Bx', 'By', 'Bz'}; #+end_src #+begin_src matlab Tp = G/s^2; #+end_src #+begin_src matlab :exports none freqs = logspace(0, 3, 1000); figure; hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(Tp(i, i), freqs, 'Hz')))); end for i = 1:5 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(Tp(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Transmissibility'); ylim([1e-4, 1e2]); xlim([freqs(1), freqs(end)]); #+end_src *** Rigidification of the added payloads - [ ] figure #+begin_src matlab %% Load Identification Data meas_added_mass = {}; for i_strut = 1:6 meas_added_mass(i_strut) = {load(sprintf('frf_data_exc_strut_%i_spindle_1m_solid.mat', i_strut), 't', 'Va', 'Vs', 'de')}; end #+end_src Finally the $6 \times 6$ transfer function matrices from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ and from $\bm{u}$ to $\bm{\tau}_m$ are identified: #+begin_src matlab %% DVF Plant (transfer function from u to dLm) G_dL = zeros(length(f), 6, 6); for i_strut = 1:6 G_dL(:,:,i_strut) = tfestimate(meas_added_mass{i_strut}.Va, meas_added_mass{i_strut}.de, win, Noverlap, Nfft, 1/Ts); end %% IFF Plant (transfer function from u to taum) G_tau = zeros(length(f), 6, 6); for i_strut = 1:6 G_tau(:,:,i_strut) = tfestimate(meas_added_mass{i_strut}.Va, meas_added_mass{i_strut}.Vs, win, Noverlap, Nfft, 1/Ts); end #+end_src #+begin_src matlab :exports none %% Bode plot for the transfer function from u to dLm - Several payloads figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; % Diagonal terms for i = 1:6 plot(frf_ol.f, abs(frf_ol.G_dL{1}(:,i, i)), 'color', colors(1,:)); plot(f, abs(G_dL(:,i, i)), 'color', colors(2,:)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude [m/V]'); ylim([1e-8, 1e-3]); xlim([20, 2e3]); #+end_src #+begin_src matlab :exports none %% Bode plot for the transfer function from u to dLm figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:6 plot(frf_ol.f, abs(frf_ol.G_dL(:,i, i)), 'color', colors(1,:)); plot(f, abs(G_dL(:,i, i)), 'color', colors(2,:)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude [m/V]'); ylim([1e-8, 1e-3]); xlim([10, 1e3]); #+end_src * Introduction :ignore: In the previous section, all the struts were mounted and individually characterized. Now the nano-hexapod is assembled using a mounting procedure described in Section ref:sec:test_nhexa_mounting. In order to identify the dynamics of the nano-hexapod, a special suspended table is developed which consists of a stiff "optical breadboard" suspended on top of four soft springs. The Nano-Hexapod is then fixed on top of the suspended table, such that its dynamics is not affected by complex dynamics except from the suspension modes of the table that can be well characterized and modelled (Section ref:sec:test_nhexa_table). The obtained nano-hexapod dynamics is analyzed in Section ref:sec:test_nhexa_dynamics, and compared with the Simscape model in Section ref:sec:test_nhexa_model. * Nano-Hexapod Assembly Procedure <> The assembly of the nano-hexapod is quite critical to both avoid additional stress in the flexible joints (that would result in a loss of stroke) and for the precise determination of the Jacobian matrix. The goal is to fix the six struts to the two nano-hexapod plates (shown in Figure ref:fig:test_nhexa_nano_hexapod_plates) while the two plates are parallel, aligned vertically, and such that all the flexible joints do not experience any stress. Do to so, a precisely machined mounting tool (Figure ref:fig:test_nhexa_center_part_hexapod_mounting) is used to position the two nano-hexapod plates during the assembly procedure. #+name: fig:test_nhexa_received_parts #+caption: Received Nano-Hexapod plates (\subref{fig:test_nhexa_nano_hexapod_plates}) and mounting tool used to position the two plates during assembly (\subref{fig:test_nhexa_center_part_hexapod_mounting}) #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:test_nhexa_nano_hexapod_plates}Received top and bottom plates} #+attr_latex: :options {0.59\textwidth} #+begin_subfigure #+attr_org: :width 800px #+attr_latex: :height 4cm [[file:figs/test_nhexa_nano_hexapod_plates.jpg]] #+end_subfigure #+attr_latex: :caption \subcaption{\label{fig:test_nhexa_center_part_hexapod_mounting}Mounting tool} #+attr_latex: :options {0.39\textwidth} #+begin_subfigure #+attr_org: :width 800px #+attr_latex: :height 4cm [[file:figs/test_nhexa_center_part_hexapod_mounting.jpg]] #+end_subfigure #+end_figure The mechanical tolerances of the received plates are checked using a FARO arm[fn:1] (Figure ref:fig:test_nhexa_plates_tolerances) and are found to comply with the requirements[fn:2]. The same is done for the mounting tool[fn:3] The two plates are then fixed to the mounting tool as shown in Figure ref:fig:test_nhexa_mounting_tool_hexapod_top_view. The main goal of this "mounting tool" is to position the flexible joint interfaces (the "V" shapes) of both plates such that a cylinder can rest on the 4 flat interfaces at the same time. #+name: fig:test_nhexa_dimensional_check #+caption: A Faro arm is used to dimensionally check the received parts (\subref{fig:test_nhexa_plates_tolerances}) and after mounting the two plates with the mounting part (\subref{fig:test_nhexa_mounting_tool_hexapod_top_view}) #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:test_nhexa_plates_tolerances}Dimensional check of the bottom plate} #+attr_latex: :options {0.49\textwidth} #+begin_subfigure #+attr_org: :width 800px #+attr_latex: :width 0.95\linewidth [[file:figs/test_nhexa_plates_tolerances.jpg]] #+end_subfigure #+attr_latex: :caption \subcaption{\label{fig:test_nhexa_mounting_tool_hexapod_top_view}Wanted coaxiality between interfaces} #+attr_latex: :options {0.49\textwidth} #+begin_subfigure #+attr_org: :width 800px #+attr_latex: :width 0.95\linewidth [[file:figs/test_nhexa_mounting_tool_hexapod_top_view.png]] #+end_subfigure #+end_figure The quality of the positioning can be estimated by measuring the "straightness" of the top and bottom "V" interfaces. This corresponds to the diameter of the smallest cylinder that contains all points of the measured axis. This is again done using the FARO arm, and the results for all the six struts are summarized in Table ref:tab:measured_straightness. The straightness is found to be better than $15\,\mu m$ for all the struts[fn:4], which is sufficiently good to not induce significant stress of the flexible joint during the assembly. #+name: tab:measured_straightness #+caption: Measured straightness between the two "V" for the six struts. These measurements are performed two times for each strut. #+attr_latex: :environment tabularx :width 0.35\linewidth :align Xcc #+attr_latex: :center t :booktabs t | *Strut* | *Meas 1* | *Meas 2* | |---------+--------------+--------------| | 1 | $7\,\mu m$ | $3\, \mu m$ | | 2 | $11\, \mu m$ | $11\, \mu m$ | | 3 | $15\, \mu m$ | $14\, \mu m$ | | 4 | $6\, \mu m$ | $6\, \mu m$ | | 5 | $7\, \mu m$ | $5\, \mu m$ | | 6 | $6\, \mu m$ | $7\, \mu m$ | The encoder rulers and heads are then fixed to the top and bottom plates respectively (Figure ref:fig:test_nhexa_mount_encoder). The encoder heads are then aligned to maximize the received contrast. # 1. Fix the bottom plate with the cylindrical tool # 2. Put the top plate on the granite # 3. Put the cylindrical tool and bottom plate on top of the top plate (Figure ref:fig:test_nhexa_mounting_tool_hexapod_bot_view). # This position the bottom plate with respect to the top plate in X, Y, Z, Rx, Ry # 4. Put the pin to position/fix the Rz. # Now the two plates should be position and clamped together # 5. Verify the coaxiality between the flexible joint interfaces # 6. Fix the 6 encoder heads and rulers # 7. Fix the 6 struts # 8. Remove the pin and the mounting spacer #+name: fig:test_nhexa_mount_encoder #+caption: Mounting of the encoders to the Nano-hexapod. The rulers are fixed to the top plate (\subref{fig:test_nhexa_mount_encoder_rulers}) while the encoders heads are fixed to the botom plate (\subref{fig:test_nhexa_mount_encoder_heads}) #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:test_nhexa_mount_encoder_rulers}Encoder rulers} #+attr_latex: :options {0.49\textwidth} #+begin_subfigure #+attr_org: :width 800px #+attr_latex: :width 0.95\linewidth [[file:figs/test_nhexa_mount_encoder_rulers.jpg]] #+end_subfigure #+attr_latex: :caption \subcaption{\label{fig:test_nhexa_mount_encoder_heads}Encoder heads} #+attr_latex: :options {0.49\textwidth} #+begin_subfigure #+attr_org: :width 800px #+attr_latex: :width 0.95\linewidth [[file:figs/test_nhexa_mount_encoder_heads.jpg]] #+end_subfigure #+end_figure The six struts are then fixed to the bottom and top plates one by one. First the top flexible joint is fixed such that its flat reference surface is in contact with the top plate. This is to precisely known the position of the flexible joint with respect to the top plate. Then the bottom flexible joint is fixed. After all six struts are mounted, the mounting tool (Figure ref:fig:test_nhexa_center_part_hexapod_mounting) can be disassembled, and the fully mounted nano-hexapod as shown in Figure ref:fig:test_nhexa_nano_hexapod_mounted is obtained. #+name: fig:test_nhexa_nano_hexapod_mounted #+caption: Mounted Nano-Hexapod #+attr_org: :width 800px #+attr_latex: :width \linewidth [[file:figs/test_nhexa_mounted_hexapod.jpg]] * Suspended Table :PROPERTIES: :header-args:matlab+: :tangle matlab/scripts/test_nhexa_table.m :END: <> ** Introduction When a dynamical system is fixed to a support (such as a granite or an optical table), its dynamics will couple to the support dynamics. This may results in additional modes appearing in the system dynamics, which are difficult to predict and model. Two prevent this issue, strategy adopted here is to mount the nano-hexapod on top a suspended table with low frequency suspension modes. In such a case, the modes of the suspended table are chosen to be at much lower frequency than those of the nano-hexapod such that they are well decoupled. An other key advantage is that the suspension modes of the suspended table can be easily modelled using Simscape. Therefore, the measured dynamics of the nano-hexapod on top of the suspended table can be compared to a simscape model representing the same experimental conditions. The model of the Nano-Hexapod can thus be precisely tuned to match the measured dynamics. The developed suspended table is presented in Section ref:ssec:test_nhexa_table_setup. The modal analysis of the table is done in ref:ssec:test_nhexa_table_identification. Finally, the Simscape model representing the suspended table is tuned to match the measured modes (Section ref:ssec:test_nhexa_table_model). ** Matlab Init :noexport:ignore: #+begin_src matlab %% test_nhexa_table.m #+end_src #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no :noweb yes <> #+end_src #+begin_src matlab :eval no :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src ** Experimental Setup <> The design of the suspended table is quite straightforward. First, an optical table with high frequency flexible mode was selected[fn:5]. Then, four springs[fn:6] were selected with low enough spring rate such that the suspension modes are below 10Hz. Finally, some interface elements were designed, and mechanical lateral mechanical stops were added (Figure ref:fig:test_nhexa_suspended_table_cad). #+name: fig:test_nhexa_suspended_table_cad #+caption: CAD View of the vibration table. Purple cylinders are representing the soft springs. #+attr_latex: :width 0.7\linewidth [[file:figs/test_nhexa_suspended_table_cad.jpg]] ** Modal analysis of the suspended table <> In order to perform a modal analysis of the suspended table, a total of 15 3-axis accelerometers[fn:7] were fixed to the breadboard. Using an instrumented hammer, the first 9 modes could be identified and are summarized in Table ref:tab:test_nhexa_suspended_table_modes. The first 6 modes are suspension modes (i.e. rigid body mode of the breadboard) and are located below 10Hz. The next modes are flexible modes of the breadboard as shown in Figure ref:fig:test_nhexa_table_flexible_modes, and located above 700Hz. #+attr_latex: :options [t]{0.45\linewidth} #+begin_minipage #+name: fig:test_nhexa_suspended_table #+caption: Mounted suspended table. Only 1 or the 15 accelerometer is mounted on top #+attr_latex: :width 0.99\linewidth :float nil [[file:figs/test_nhexa_suspended_table.jpg]] #+end_minipage \hfill #+attr_latex: :options [b]{0.45\linewidth} #+begin_minipage #+begin_scriptsize #+name: tab:test_nhexa_suspended_table_modes #+caption: Obtained modes of the suspended table #+attr_latex: :environment tabularx :width 0.9\linewidth :placement [b] :align clX #+attr_latex: :booktabs t :float nil :center t #+RESULTS: | *Modes* | *Frequency* | *Description* | |---------+-------------+------------------| | 1,2 | 1.3 Hz | X-Y translations | | 3 | 2.0 Hz | Z rotation | | 4 | 6.9 Hz | Z translation | | 5,6 | 9.5 Hz | X-Y rotations | |---------+-------------+------------------| | 7 | 701 Hz | "Membrane" Mode | | 8 | 989 Hz | Complex mode | | 9 | 1025 Hz | Complex mode | #+end_scriptsize #+end_minipage #+name: fig:test_nhexa_table_flexible_modes #+caption: Three identified flexible modes of the suspended table #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:test_nhexa_table_flexible_mode_1}Flexible mode at 701Hz} #+attr_latex: :options {\textwidth} #+begin_subfigure #+attr_latex: :width \linewidth [[file:figs/test_nhexa_table_flexible_mode_1.jpg]] #+end_subfigure #+attr_latex: :caption \subcaption{\label{fig:test_nhexa_table_flexible_mode_2}Flexible mode at 989Hz} #+attr_latex: :options {\textwidth} #+begin_subfigure #+attr_latex: :width \linewidth [[file:figs/test_nhexa_table_flexible_mode_2.jpg]] #+end_subfigure #+attr_latex: :caption \subcaption{\label{fig:test_nhexa_table_flexible_mode_3}Flexible mode at 1025Hz} #+attr_latex: :options {\textwidth} #+begin_subfigure #+attr_latex: :width \linewidth [[file:figs/test_nhexa_table_flexible_mode_3.jpg]] #+end_subfigure #+end_figure ** Simscape Model of the suspended table :PROPERTIES: :header-args:matlab+: :tangle matlab/simscape_model.m :END: <> The Simscape model of the suspended table simply consists of two solid bodies connected by 4 springs. The 4 springs are here modelled with "bushing joints" that have stiffness and damping properties in x, y and z directions. The 3D representation of the model is displayed in Figure ref:fig:test_nhexa_suspended_table_simscape where the 4 "bushing joints" are represented by the blue cylinders. #+name: fig:test_nhexa_suspended_table_simscape #+caption: 3D representation of the simscape model #+attr_latex: :width 0.8\linewidth [[file:figs/test_nhexa_suspended_table_simscape.png]] The model order is 12, and it represents the 6 suspension modes. The inertia properties of the parts are set from the geometry and material densities. The stiffness of the springs was initially set from the datasheet nominal value of $17.8\,N/mm$ and then reduced down to $14\,N/mm$ to better match the measured suspension modes. The stiffness of the springs in the horizontal plane is set at $0.5\,N/mm$. The obtained suspension modes of the simscape model are compared with the measured ones in Table ref:tab:test_nhexa_suspended_table_simscape_modes. #+begin_src matlab %% Configure Simscape Model table_type = 'Suspended'; % On top of vibration table device_type = 'None'; % No device on the vibration table payload_num = 0; % No Payload %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/F_v'], 1, 'openoutput'); io_i = io_i + 1; %% Run the linearization G = linearize(mdl, io); G.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; G.OutputName = {'Vdx', 'Vdy', 'Vdz', 'Vrx', 'Vry', 'Vrz'}; %% Compute the resonance frequencies ws = eig(G.A); ws = ws(imag(ws) > 0); #+end_src #+name: tab:test_nhexa_suspended_table_simscape_modes #+caption: Comparison of the identified suspension modes with the Simscape model and measured experimentally #+attr_latex: :environment tabularx :width 0.6\linewidth :align Xcccc #+attr_latex: :center t :booktabs t | Directions | $D_x$, $D_y$ | $R_z$ | $D_z$ | $R_x$, $R_y$ | |--------------+--------------+--------+--------+--------------| | Experimental | 1.3 Hz | 2.0 Hz | 6.9 Hz | 9.5 Hz | | Simscape | 1.3 Hz | 1.8 Hz | 6.8 Hz | 9.5 Hz | * Nano-Hexapod Dynamics <> ** Introduction :ignore: In Figure ref:fig:test_nhexa_nano_hexapod_signals is shown a block diagram of the experimental setup. When possible, the notations are consistent with this diagram and summarized in Table ref:tab:list_signals. #+begin_src latex :file nano_hexapod_signals.pdf \definecolor{instrumentation}{rgb}{0, 0.447, 0.741} \definecolor{mechanics}{rgb}{0.8500, 0.325, 0.098} \begin{tikzpicture} % Blocs \node[block={4.0cm}{3.0cm}, fill=mechanics!20!white] (nano_hexapod) {Mechanics}; \coordinate[] (inputF) at (nano_hexapod.west); \coordinate[] (outputL) at ($(nano_hexapod.south east)!0.8!(nano_hexapod.north east)$); \coordinate[] (outputF) at ($(nano_hexapod.south east)!0.2!(nano_hexapod.north east)$); \node[block, left= 0.8 of inputF, fill=instrumentation!20!white, align=center] (F_stack) {\tiny Actuator \\ \tiny stacks}; \node[block, left= 0.8 of F_stack, fill=instrumentation!20!white] (PD200) {PD200}; \node[DAC, left= 0.8 of PD200, fill=instrumentation!20!white] (F_DAC) {DAC}; \node[block, right=0.8 of outputF, fill=instrumentation!20!white, align=center] (Fm_stack){\tiny Sensor \\ \tiny stack}; \node[ADC, right=0.8 of Fm_stack,fill=instrumentation!20!white] (Fm_ADC) {ADC}; \node[block, right=0.8 of outputL, fill=instrumentation!20!white] (encoder) {\tiny Encoder}; % Connections and labels \draw[->] ($(F_DAC.west)+(-0.8,0)$) node[above right]{$\bm{u}$} node[below right]{$[V]$} -- node[sloped]{$/$} (F_DAC.west); \draw[->] (F_DAC.east) -- node[midway, above]{$\tilde{\bm{u}}$}node[midway, below]{$[V]$} (PD200.west); \draw[->] (PD200.east) -- node[midway, above]{$\bm{u}_a$}node[midway, below]{$[V]$} (F_stack.west); \draw[->] (F_stack.east) -- (inputF) node[above left]{$\bm{\tau}$}node[below left]{$[N]$}; \draw[->] (outputF) -- (Fm_stack.west) node[above left]{$\bm{\epsilon}$} node[below left]{$[m]$}; \draw[->] (Fm_stack.east) -- node[midway, above]{$\tilde{\bm{\tau}}_m$}node[midway, below]{$[V]$} (Fm_ADC.west); \draw[->] (Fm_ADC.east) -- node[sloped]{$/$} ++(0.8, 0)coordinate(end) node[above left]{$\bm{\tau}_m$}node[below left]{$[V]$}; \draw[->] (outputL) -- (encoder.west) node[above left]{$d\bm{\mathcal{L}}$} node[below left]{$[m]$}; \draw[->] (encoder.east) -- node[sloped]{$/$} (encoder-|end) node[above left]{$d\bm{\mathcal{L}}_m$}node[below left]{$[m]$}; % Nano-Hexapod \begin{scope}[on background layer] \node[fit={(F_stack.west|-nano_hexapod.south) (Fm_stack.east|-nano_hexapod.north)}, fill=black!20!white, draw, inner sep=2pt] (system) {}; \node[above] at (system.north) {Nano-Hexapod}; \end{scope} \end{tikzpicture} #+end_src #+name: fig:test_nhexa_nano_hexapod_signals #+caption: Block diagram of the system with named signals #+attr_latex: :scale 1 [[file:figs/test_nhexa_nano_hexapod_signals.png]] #+name: tab:list_signals #+caption: List of signals #+attr_latex: :environment tabularx :width \linewidth :align Xllll #+attr_latex: :center t :booktabs t | | *Unit* | *Matlab* | *Vector* | *Elements* | |------------------------------------+-----------+-----------+-----------------------+----------------------| | Control Input (wanted DAC voltage) | =[V]= | =u= | $\bm{u}$ | $u_i$ | | DAC Output Voltage | =[V]= | =u= | $\tilde{\bm{u}}$ | $\tilde{u}_i$ | | PD200 Output Voltage | =[V]= | =ua= | $\bm{u}_a$ | $u_{a,i}$ | | Actuator applied force | =[N]= | =tau= | $\bm{\tau}$ | $\tau_i$ | |------------------------------------+-----------+-----------+-----------------------+----------------------| | Strut motion | =[m]= | =dL= | $d\bm{\mathcal{L}}$ | $d\mathcal{L}_i$ | | Encoder measured displacement | =[m]= | =dLm= | $d\bm{\mathcal{L}}_m$ | $d\mathcal{L}_{m,i}$ | |------------------------------------+-----------+-----------+-----------------------+----------------------| | Force Sensor strain | =[m]= | =epsilon= | $\bm{\epsilon}$ | $\epsilon_i$ | | Force Sensor Generated Voltage | =[V]= | =taum= | $\tilde{\bm{\tau}}_m$ | $\tilde{\tau}_{m,i}$ | | Measured Generated Voltage | =[V]= | =taum= | $\bm{\tau}_m$ | $\tau_{m,i}$ | |------------------------------------+-----------+-----------+-----------------------+----------------------| | Motion of the top platform | =[m,rad]= | =dX= | $d\bm{\mathcal{X}}$ | $d\mathcal{X}_i$ | | Metrology measured displacement | =[m,rad]= | =dXm= | $d\bm{\mathcal{X}}_m$ | $d\mathcal{X}_{m,i}$ | #+name: fig:test_nhexa_enc_fixed_to_struts #+caption: Nano-Hexapod with encoders fixed to the struts #+attr_latex: :width \linewidth [[file:figs/test_nhexa_IMG_20210625_083801.jpg]] It is structured as follow: - Section ref:sec:test_nhexa_enc_plates_plant_id: The dynamics of the nano-hexapod is identified. - Section ref:sec:test_nhexa_enc_plates_comp_simscape: The identified dynamics is compared with the Simscape model. ** Modal Analysis :noexport: <> This could just be used to show that experimental measure of the flexible mode of the top plate has been done: - [ ] *This test was made using encoder fixed to the struts, is it relevant to put it here?* - [ ] Also compare with the FEM *** Introduction :ignore: Several 3-axis accelerometers are fixed on the top platform of the nano-hexapod as shown in Figure ref:fig:test_nhexa_compliance_vertical_comp_iff. #+name: fig:test_nhexa_accelerometers_nano_hexapod #+caption: Location of the accelerometers on top of the nano-hexapod #+attr_latex: :width \linewidth [[file:figs/test_nhexa_accelerometers_nano_hexapod.jpg]] The top platform is then excited using an instrumented hammer as shown in Figure ref:fig:test_nhexa_hammer_excitation_compliance_meas. #+name: fig:test_nhexa_hammer_excitation_compliance_meas #+caption: Example of an excitation using an instrumented hammer #+attr_latex: :width \linewidth [[file:figs/test_nhexa_hammer_excitation_compliance_meas.jpg]] From this experiment, the resonance frequencies and the associated mode shapes can be computed (Section ref:sec:test_nhexa_modal_analysis_mode_shapes). Then, in Section ref:sec:test_nhexa_compliance_effect_iff, the vertical compliance of the nano-hexapod is experimentally estimated. Finally, in Section ref:sec:test_nhexa_compliance_effect_iff_comp_model, the measured compliance is compare with the estimated one from the Simscape model. *** Obtained Mode Shapes <> We can observe the mode shapes of the first 6 modes that are the suspension modes (the plate is behaving as a solid body) in Figure ref:fig:test_nhexa_mode_shapes_annotated. #+name: fig:test_nhexa_mode_shapes_annotated #+caption: Measured mode shapes for the first six modes #+attr_latex: :width \linewidth [[file:figs/test_nhexa_mode_shapes_annotated.gif]] Then, there is a mode at 692Hz which corresponds to a flexible mode of the top plate (Figure ref:fig:test_nhexa_mode_shapes_flexible_annotated). #+name: fig:test_nhexa_mode_shapes_flexible_annotated #+caption: First flexible mode at 692Hz #+attr_latex: :width 0.3\linewidth [[file:figs/test_nhexa_ModeShapeFlex1_crop.gif]] The obtained modes are summarized in Table ref:tab:description_modes. #+name: tab:description_modes #+caption: Description of the identified modes #+attr_latex: :environment tabularx :width 0.7\linewidth :align ccX #+attr_latex: :center t :booktabs t | *Mode* | *Freq. [Hz]* | *Description* | |--------+--------------+----------------------------------------------| | 1 | 105 | Suspension Mode: Y-translation | | 2 | 107 | Suspension Mode: X-translation | | 3 | 131 | Suspension Mode: Z-translation | | 4 | 161 | Suspension Mode: Y-tilt | | 5 | 162 | Suspension Mode: X-tilt | | 6 | 180 | Suspension Mode: Z-rotation | | 7 | 692 | (flexible) Membrane mode of the top platform | *** FEM - [[file:/home/thomas/Cloud/work-projects/ID31-NASS/nass-fem/Assembly 20201020/Modal t=0.50mm]] - [[file:/home/thomas/Cloud/work-projects/ID31-NASS/nass-fem/GitLab_nass-fem/dynamic-modal/assy-hexapod-20201022/t_0.25mm]] - [[file:/home/thomas/Cloud/work-projects/ID31-NASS/nass-fem/GitLab_nass-fem/dynamic-modal/assy-hexapod-20201022/t_0.5mm]] - [[file:/home/thomas/Cloud/work-projects/ID31-NASS/nass-fem/GitLab_nass-fem/plateau-superelement]] ** Identification of the dynamics :PROPERTIES: :header-args:matlab+: :tangle matlab/scripts/id_frf_enc_plates.m :END: <> *** Introduction :ignore: In this section, the dynamics of the nano-hexapod with the encoders fixed to the plates is identified. First, the measurement data are loaded in Section ref:sec:test_nhexa_enc_plates_plant_id_setup, then the transfer function matrix from the actuators to the encoders are estimated in Section ref:sec:test_nhexa_enc_plates_plant_id_dvf. Finally, the transfer function matrix from the actuators to the force sensors is estimated in Section ref:sec:test_nhexa_enc_plates_plant_id_iff. *** Matlab Init :noexport:ignore: #+begin_src matlab %% id_frf_enc_plates.m % Identification of the nano-hexapod dynamics from u to dL and to taum % Encoders are fixed to the plates #+end_src #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no :noweb yes <> #+end_src #+begin_src matlab :eval no :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src *** Data Loading and Spectral Analysis Setup <> The actuators are excited one by one using a low pass filtered white noise. For each excitation, the 6 force sensors and 6 encoders are measured and saved. #+begin_src matlab %% Load Identification Data meas_data = {}; for i = 1:6 meas_data(i) = {load(sprintf('frf_data_exc_strut_%i_realigned_vib_table_0m.mat', i), 't', 'Va', 'Vs', 'de')}; end #+end_src #+begin_src matlab :exports none %% Setup useful variables Ts = 1e-4; % Sampling Time [s] Nfft = floor(1/Ts); % Number of points for the FFT computation win = hanning(Nfft); % Hanning window Noverlap = floor(Nfft/2); % Overlap between frequency analysis % And we get the frequency vector [~, f] = tfestimate(meas_data{1}.Va, meas_data{1}.de, win, Noverlap, Nfft, 1/Ts); #+end_src *** Transfer function from Actuator to Encoder <> The 6x6 transfer function matrix from the excitation voltage $\bm{u}$ and the displacement $d\bm{\mathcal{L}}_m$ as measured by the encoders is estimated. #+begin_src matlab %% Transfer function from u to dLm G_dL = zeros(length(f), 6, 6); for i = 1:6 G_dL(:,:,i) = tfestimate(meas_data{i}.Va, meas_data{i}.de, win, Noverlap, Nfft, 1/Ts); end #+end_src The diagonal and off-diagonal terms of this transfer function matrix are shown in Figure ref:fig:test_nhexa_enc_plates_dvf_frf. #+begin_src matlab :exports none %% Bode plot for the transfer function from u to dLm figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:5 for j = i+1:6 plot(f, abs(G_dL(:, i, j)), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); end end for i =1:6 set(gca,'ColorOrderIndex',i) plot(f, abs(G_dL(:,i, i)), ... 'DisplayName', sprintf('$d\\mathcal{L}_%i/u_%i$', i, i)); end plot(f, abs(G_dL(:, 1, 2)), 'color', [0, 0, 0, 0.2], ... 'DisplayName', '$d\mathcal{L}_i/u_j$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]); ylim([1e-9, 1e-3]); legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3); ax2 = nexttile; hold on; for i =1:6 set(gca,'ColorOrderIndex',i) plot(f, 180/pi*angle(G_dL(:,i, i))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); linkaxes([ax1,ax2],'x'); xlim([20, 2e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/enc_plates_dvf_frf.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_enc_plates_dvf_frf #+caption: Measured FRF for the transfer function from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ #+RESULTS: [[file:figs/enc_plates_dvf_frf.png]] #+begin_important From Figure ref:fig:test_nhexa_enc_plates_dvf_frf, we can draw few conclusions on the transfer functions from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ when the encoders are fixed to the plates: - the decoupling is rather good at low frequency (below the first suspension mode). The low frequency gain is constant for the off diagonal terms, whereas when the encoders where fixed to the struts, the low frequency gain of the off-diagonal terms were going to zero (Figure ref:fig:test_nhexa_enc_struts_dvf_frf). - the flexible modes of the struts at 226Hz and 337Hz are indeed shown in the transfer functions, but their amplitudes are rather low. - the diagonal terms have alternating poles and zeros up to at least 600Hz: the flexible modes of the struts are not affecting the alternating pole/zero pattern. This what not the case when the encoders were fixed to the struts (Figure ref:fig:test_nhexa_enc_struts_dvf_frf). #+end_important *** Transfer function from Actuator to Force Sensor <> Then the 6x6 transfer function matrix from the excitation voltage $\bm{u}$ and the voltage $\bm{\tau}_m$ generated by the Force senors is estimated. #+begin_src matlab %% IFF Plant G_tau = zeros(length(f), 6, 6); for i = 1:6 G_tau(:,:,i) = tfestimate(meas_data{i}.Va, meas_data{i}.Vs, win, Noverlap, Nfft, 1/Ts); end #+end_src The bode plot of the diagonal and off-diagonal terms are shown in Figure ref:fig:test_nhexa_enc_plates_iff_frf. #+begin_src matlab :exports none %% Bode plot of the IFF Plant (transfer function from u to taum) figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:5 for j = i+1:6 plot(f, abs(G_tau(:, i, j)), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); end end for i =1:6 set(gca,'ColorOrderIndex',i) plot(f, abs(G_tau(:,i , i)), ... 'DisplayName', sprintf('$\\tau_{m,%i}/u_%i$', i, i)); end plot(f, abs(G_tau(:, 1, 2)), 'color', [0, 0, 0, 0.2], ... 'DisplayName', '$\tau_{m,i}/u_j$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]); legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3); ylim([1e-3, 1e2]); ax2 = nexttile; hold on; for i =1:6 set(gca,'ColorOrderIndex',i) plot(f, 180/pi*angle(G_tau(:,i, i))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); linkaxes([ax1,ax2],'x'); xlim([20, 2e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/enc_plates_iff_frf.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_enc_plates_iff_frf #+caption: Measured FRF for the IFF plant #+RESULTS: [[file:figs/enc_plates_iff_frf.png]] #+begin_important It is shown in Figure ref:fig:test_nhexa_enc_plates_iff_comp_simscape_all that: - The IFF plant has alternating poles and zeros - The first flexible mode of the struts as 235Hz is appearing, and therefore is should be possible to add some damping to this mode using IFF - The decoupling is quite good at low frequency (below the first model) as well as high frequency (above the last suspension mode, except near the flexible modes of the top plate) #+end_important *** Save Identified Plants The identified dynamics is saved for further use. #+begin_src matlab :exports none :tangle no save('matlab/mat/data_frf/identified_plants_enc_plates.mat', 'f', 'Ts', 'G_tau', 'G_dL') #+end_src #+begin_src matlab :eval no save('data_frf/mat/identified_plants_enc_plates.mat', 'f', 'Ts', 'G_tau', 'G_dL') #+end_src ** Effect of Payload mass on the Dynamics :PROPERTIES: :header-args:matlab+: :tangle matlab/scripts/id_frf_enc_plates_effect_payload.m :END: <> *** Introduction :ignore: In this section, the encoders are fixed to the plates, and we identify the dynamics for several payloads. The added payload are half cylinders, and three layers can be added for a total of around 40kg (Figure ref:fig:test_nhexa_picture_added_3_masses). #+name: fig:test_nhexa_picture_added_3_masses #+caption: Picture of the nano-hexapod with added mass #+attr_latex: :width \linewidth [[file:figs/test_nhexa_picture_added_3_masses.jpg]] First the dynamics from $\bm{u}$ to $d\mathcal{L}_m$ and $\bm{\tau}_m$ is identified. Then, the Integral Force Feedback controller is developed and applied as shown in Figure ref:fig:test_nhexa_nano_hexapod_signals_iff. Finally, the dynamics from $\bm{u}^\prime$ to $d\mathcal{L}_m$ is identified and the added damping can be estimated. #+begin_src latex :file nano_hexapod_signals_iff.pdf \definecolor{instrumentation}{rgb}{0, 0.447, 0.741} \definecolor{mechanics}{rgb}{0.8500, 0.325, 0.098} \definecolor{control}{rgb}{0.4660, 0.6740, 0.1880} \begin{tikzpicture} % Blocs \node[block={4.0cm}{3.0cm}, fill=mechanics!20!white] (nano_hexapod) {Mechanics}; \coordinate[] (inputF) at (nano_hexapod.west); \coordinate[] (outputL) at ($(nano_hexapod.south east)!0.8!(nano_hexapod.north east)$); \coordinate[] (outputF) at ($(nano_hexapod.south east)!0.2!(nano_hexapod.north east)$); \node[block, left= 0.8 of inputF, fill=instrumentation!20!white, align=center] (F_stack) {\tiny Actuator \\ \tiny stacks}; \node[block, left= 0.8 of F_stack, fill=instrumentation!20!white] (PD200) {PD200}; \node[DAC, left= 0.8 of PD200, fill=instrumentation!20!white] (F_DAC) {DAC}; \node[block, right=0.8 of outputF, fill=instrumentation!20!white, align=center] (Fm_stack){\tiny Sensor \\ \tiny stack}; \node[ADC, right=0.8 of Fm_stack,fill=instrumentation!20!white] (Fm_ADC) {ADC}; \node[block, right=0.8 of outputL, fill=instrumentation!20!white] (encoder) {\tiny Encoder}; \node[addb, left= 0.8 of F_DAC, fill=control!20!white] (add_iff) {}; \node[block, below=0.8 of add_iff, fill=control!20!white] (Kiff) {\tiny $K_{\text{IFF}}(s)$}; % Connections and labels \draw[->] (add_iff.east) node[above right]{$\bm{u}$} node[below right]{$[V]$} -- node[sloped]{$/$} (F_DAC.west); \draw[->] (F_DAC.east) -- node[midway, above]{$\tilde{\bm{u}}$}node[midway, below]{$[V]$} (PD200.west); \draw[->] (PD200.east) -- node[midway, above]{$\bm{u}_a$}node[midway, below]{$[V]$} (F_stack.west); \draw[->] (F_stack.east) -- (inputF) node[above left]{$\bm{\tau}$}node[below left]{$[N]$}; \draw[->] (outputF) -- (Fm_stack.west) node[above left]{$\bm{\epsilon}$} node[below left]{$[m]$}; \draw[->] (Fm_stack.east) -- node[midway, above]{$\tilde{\bm{\tau}}_m$}node[midway, below]{$[V]$} (Fm_ADC.west); \draw[->] (Fm_ADC.east) -- node[sloped]{$/$} ++(0.8, 0)coordinate(end) node[above left]{$\bm{\tau}_m$}node[below left]{$[V]$}; \draw[->] (outputL) -- (encoder.west) node[above left]{$d\bm{\mathcal{L}}$} node[below left]{$[m]$}; \draw[->] (encoder.east) -- node[sloped]{$/$} (encoder-|end) node[above left]{$d\bm{\mathcal{L}}_m$}node[below left]{$[m]$}; \draw[->] ($(Fm_ADC.east)+(0.14,0)$) node[branch]{} -- node[sloped]{$/$} ++(0, -1.8) -| (Kiff.south); \draw[->] (Kiff.north) -- node[sloped]{$/$} (add_iff.south); \draw[->] ($(add_iff.west)+(-0.8,0)$) node[above right]{$\bm{u}^\prime$} node[below right]{$[V]$} -- node[sloped]{$/$} (add_iff.west); % Nano-Hexapod \begin{scope}[on background layer] \node[fit={(F_stack.west|-nano_hexapod.south) (Fm_stack.east|-nano_hexapod.north)}, fill=black!20!white, draw, inner sep=2pt] (system) {}; \node[above] at (system.north) {Nano-Hexapod}; \end{scope} \end{tikzpicture} #+end_src #+name: fig:test_nhexa_nano_hexapod_signals_iff #+caption: Block Diagram of the experimental setup and model #+RESULTS: [[file:figs/test_nhexa_nano_hexapod_signals_iff.png]] *** Matlab Init :noexport:ignore: #+begin_src matlab %% id_frf_enc_plates_effect_payload.m % Identification of the nano-hexapod dynamics from u to dL and to taum for several payloads % Encoders are fixed to the plates #+end_src #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no :noweb yes <> #+end_src #+begin_src matlab :eval no :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src *** Measured Frequency Response Functions The following data are loaded: - =Va=: the excitation voltage (corresponding to $u_i$) - =Vs=: the generated voltage by the 6 force sensors (corresponding to $\bm{\tau}_m$) - =de=: the measured motion by the 6 encoders (corresponding to $d\bm{\mathcal{L}}_m$) #+begin_src matlab %% Load Identification Data meas_added_mass = {}; for i_mass = i_masses for i_strut = 1:6 meas_added_mass(i_strut, i_mass+1) = {load(sprintf('frf_data_exc_strut_%i_realigned_vib_table_%im.mat', i_strut, i_mass), 't', 'Va', 'Vs', 'de')}; end end #+end_src The window =win= and the frequency vector =f= are defined. #+begin_src matlab :exports none %% Setup useful variables Ts = 1e-4; % Sampling Time [s] Nfft = floor(1/Ts); % Number of points for the FFT computation win = hanning(Nfft); % Hanning window Noverlap = floor(Nfft/2); % Overlap between frequency analysis % And we get the frequency vector [~, f] = tfestimate(meas_added_mass{1,1}.Va, meas_added_mass{1,1}.de, win, Noverlap, Nfft, 1/Ts); #+end_src Finally the $6 \times 6$ transfer function matrices from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ and from $\bm{u}$ to $\bm{\tau}_m$ are identified: #+begin_src matlab %% DVF Plant (transfer function from u to dLm) G_dL = {}; for i_mass = i_masses G_dL(i_mass+1) = {zeros(length(f), 6, 6)}; for i_strut = 1:6 G_dL{i_mass+1}(:,:,i_strut) = tfestimate(meas_added_mass{i_strut, i_mass+1}.Va, meas_added_mass{i_strut, i_mass+1}.de, win, Noverlap, Nfft, 1/Ts); end end %% IFF Plant (transfer function from u to taum) G_tau = {}; for i_mass = i_masses G_tau(i_mass+1) = {zeros(length(f), 6, 6)}; for i_strut = 1:6 G_tau{i_mass+1}(:,:,i_strut) = tfestimate(meas_added_mass{i_strut, i_mass+1}.Va, meas_added_mass{i_strut, i_mass+1}.Vs, win, Noverlap, Nfft, 1/Ts); end end #+end_src The identified dynamics are then saved for further use. #+begin_src matlab :exports none :tangle no save('matlab/mat/data_frf/frf_vib_table_m.mat', 'f', 'Ts', 'G_tau', 'G_dL') #+end_src #+begin_src matlab :eval no save('data_frf/mat/frf_vib_table_m.mat', 'f', 'Ts', 'G_tau', 'G_dL') #+end_src #+begin_src matlab :exports none frf_ol = load('frf_vib_table_m.mat', 'f', 'Ts', 'G_tau', 'G_dL'); #+end_src *** Transfer function from Actuators to Encoders The transfer functions from $\bm{u}$ to $d\bm{\mathcal{L}}_{m}$ are shown in Figure ref:fig:test_nhexa_comp_plant_payloads_dvf. #+begin_src matlab :exports none %% Bode plot for the transfer function from u to dLm - Several payloads figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i_mass = i_masses % Diagonal terms plot(frf_ol.f, abs(frf_ol.G_dL{i_mass+1}(:,1, 1)), 'color', colors(i_mass+1,:), ... 'DisplayName', sprintf('$d\\mathcal{L}_{m,i}/u_i$ - %i', i_mass)); for i = 2:6 plot(frf_ol.f, abs(frf_ol.G_dL{i_mass+1}(:,i, i)), 'color', colors(i_mass+1,:), ... 'HandleVisibility', 'off'); end % Off-Diagonal terms for i = 1:5 for j = i+1:6 plot(frf_ol.f, abs(frf_ol.G_dL{i_mass+1}(:,i,j)), 'color', [colors(i_mass+1,:), 0.2], ... 'HandleVisibility', 'off'); end end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]); ylim([1e-8, 1e-3]); legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); ax2 = nexttile; hold on; for i_mass = i_masses for i =1:6 plot(frf_ol.f, 180/pi*angle(frf_ol.G_dL{i_mass+1}(:,i, i)), 'color', colors(i_mass+1,:)); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-90, 180]) linkaxes([ax1,ax2],'x'); xlim([20, 2e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/comp_plant_payloads_dvf.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_comp_plant_payloads_dvf #+caption: Measured Frequency Response Functions from $u_i$ to $d\mathcal{L}_{m,i}$ for all 4 payload conditions. Diagonal terms are solid lines, and shaded lines are off-diagonal terms. #+RESULTS: [[file:figs/test_nhexa_comp_plant_payloads_dvf.png]] #+begin_important From Figure ref:fig:test_nhexa_comp_plant_payloads_dvf, we can observe few things: - The obtained dynamics is changing a lot between the case without mass and when there is at least one added mass. - Between 1, 2 and 3 added masses, the dynamics is not much different, and it would be easier to design a controller only for these cases. - The flexible modes of the top plate is first decreased a lot when the first mass is added (from 700Hz to 400Hz). This is due to the fact that the added mass is composed of two half cylinders which are not fixed together. Therefore is adds a lot of mass to the top plate without adding a lot of rigidity in one direction. When more than 1 mass layer is added, the half cylinders are added with some angles such that rigidity are added in all directions (see Figure ref:fig:test_nhexa_picture_added_3_masses). In that case, the frequency of these flexible modes are increased. In practice, the payload should be one solid body, and we should not see a massive decrease of the frequency of this flexible mode. - Flexible modes of the top plate are becoming less problematic as masses are added. - First flexible mode of the strut at 230Hz is not much decreased when mass is added. However, its apparent amplitude is much decreased. #+end_important *** Transfer function from Actuators to Force Sensors The transfer functions from $\bm{u}$ to $\bm{\tau}_{m}$ are shown in Figure ref:fig:test_nhexa_comp_plant_payloads_iff. #+begin_src matlab :exports none %% Bode plot for the transfer function from u to dLm figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i_mass = i_masses % Diagonal terms plot(frf_ol.f, abs(frf_ol.G_tau{i_mass+1}(:,1, 1)), 'color', colors(i_mass+1,:), ... 'DisplayName', sprintf('$\\tau_{m,i}/u_i$ - %i', i_mass)); for i = 2:6 plot(frf_ol.f, abs(frf_ol.G_tau{i_mass+1}(:,i, i)), 'color', colors(i_mass+1,:), ... 'HandleVisibility', 'off'); end % Off-Diagonal terms for i = 1:5 for j = i+1:6 plot(frf_ol.f, abs(frf_ol.G_tau{i_mass+1}(:,i,j)), 'color', [colors(i_mass+1,:), 0.2], ... 'HandleVisibility', 'off'); end end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]); ylim([1e-2, 1e2]); legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 3); ax2 = nexttile; hold on; for i_mass = i_masses for i =1:6 plot(frf_ol.f, 180/pi*angle(frf_ol.G_tau{i_mass+1}(:,i, i)), 'color', colors(i_mass+1,:)); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); linkaxes([ax1,ax2],'x'); xlim([20, 2e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/comp_plant_payloads_iff.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_comp_plant_payloads_iff #+caption: Measured Frequency Response Functions from $u_i$ to $\tau_{m,i}$ for all 4 payload conditions. Diagonal terms are solid lines, and shaded lines are off-diagonal terms. #+RESULTS: [[file:figs/test_nhexa_comp_plant_payloads_iff.png]] #+begin_important From Figure ref:fig:test_nhexa_comp_plant_payloads_iff, we can see that for all added payloads, the transfer function from $\bm{u}$ to $\bm{\tau}_{m}$ always has alternating poles and zeros. #+end_important *** Coupling of the transfer function from Actuator to Encoders The RGA-number, which is a measure of the interaction in the system, is computed for the transfer function matrix from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ for all the payloads. The obtained numbers are compared in Figure ref:fig:test_nhexa_rga_num_ol_masses. #+begin_src matlab :exports none %% Decentralized RGA - Undamped Plant RGA_num = zeros(length(frf_ol.f), length(i_masses)); for i_mass = i_masses for i = 1:length(frf_ol.f) RGA_num(i, i_mass+1) = sum(sum(abs(eye(6) - squeeze(frf_ol.G_dL{i_mass+1}(i,:,:)).*inv(squeeze(frf_ol.G_dL{i_mass+1}(i,:,:))).'))); end end #+end_src #+begin_src matlab :exports none %% RGA for Decentralized plant figure; hold on; for i_mass = i_masses plot(frf_ol.f, RGA_num(:,i_mass+1), '-', 'color', colors(i_mass+1,:), ... 'DisplayName', sprintf('RGA-num - %i mass', i_mass)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('RGA Number'); xlim([10, 1e3]); ylim([1e-2, 1e2]); legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 2); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/rga_num_ol_masses.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_nhexa_rga_num_ol_masses #+caption: RGA-number for the open-loop transfer function from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ #+RESULTS: [[file:figs/test_nhexa_rga_num_ol_masses.png]] #+begin_important From Figure ref:fig:test_nhexa_rga_num_ol_masses, it is clear that the coupling is quite large starting from the first suspension mode of the nano-hexapod. Therefore, is the payload's mass is increase, the coupling in the system start to become unacceptably large at lower frequencies. #+end_important ** Conclusion #+begin_important In this section, the dynamics of the nano-hexapod with the encoders fixed to the plates is studied. It has been found that: - The measured dynamics is in agreement with the dynamics of the simscape model, up to the flexible modes of the top plate. See figures ref:fig:test_nhexa_enc_plates_iff_comp_simscape and ref:fig:test_nhexa_enc_plates_iff_comp_offdiag_simscape for the transfer function to the force sensors and Figures ref:fig:test_nhexa_enc_plates_dvf_comp_simscape and ref:fig:test_nhexa_enc_plates_dvf_comp_offdiag_simscape for the transfer functions to the encoders - The Integral Force Feedback strategy is very effective in damping the suspension modes of the nano-hexapod (Figure ref:fig:test_nhexa_enc_plant_plates_effect_iff). - The transfer function from $\bm{u}^\prime$ to $d\bm{\mathcal{L}}_m$ show nice dynamical properties and is a much better candidate for the high-authority-control than when the encoders were fixed to the struts. At least up to the flexible modes of the top plate, the diagonal elements of the transfer function matrix have alternating poles and zeros, and the phase is moving smoothly. Only the flexible modes of the top plates seems to be problematic for control. #+end_important * Comparison with the Nano-Hexapod model? <> ** Comparison with the Simscape Model :PROPERTIES: :header-args:matlab+: :tangle matlab/scripts/frf_enc_plates_comp_simscape.m :END: <> *** Introduction :ignore: In this section, the measured dynamics done in Section ref:sec:test_nhexa_enc_plates_plant_id is compared with the dynamics estimated from the Simscape model. A configuration is added to be able to put the nano-hexapod on top of the vibration table as shown in Figure ref:fig:simscape_vibration_table. #+name: fig:simscape_vibration_table #+caption: 3D representation of the simscape model with the nano-hexapod #+attr_latex: :width 0.8\linewidth [[file:figs/vibration_table_nano_hexapod_simscape.png]] *** Matlab Init :noexport:ignore: #+begin_src matlab %% frf_enc_plates_comp_simscape.m % Compare the measured dynamics from u to dL and to taum with the Simscape model % Encoders are fixed to the plates #+end_src #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no :noweb yes <> #+end_src #+begin_src matlab :eval no :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src #+begin_src matlab %% Load identification data frf_ol = load('identified_plants_enc_plates.mat', 'f', 'Ts', 'G_tau', 'G_dL'); #+end_src *** Identification with the Simscape Model The nano-hexapod is initialized with the APA taken as 2dof models. #+begin_src matlab %% Initialize Simscape Model table_type = 'Suspended'; % On top of vibration table device_type = 'Hexapod'; % On top of vibration table payload_num = 0; % No Payload n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ... 'flex_top_type', '4dof', ... 'motion_sensor_type', 'plates', ... 'actuator_type', '2dof'); #+end_src Now, the dynamics from the DAC voltage $\bm{u}$ to the encoders $d\bm{\mathcal{L}}_m$ is estimated using the Simscape model. #+begin_src matlab %% Identify the DVtransfer function from u to dLm clear io; io_i = 1; io(io_i) = linio([mdl, '/u'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Encoders G_dL = exp(-s*frf_ol.Ts)*linearize(mdl, io, 0.0, options); #+end_src #+begin_src matlab :exports none %% Comparison of the plants (encoder output) when tuning the misalignment freqs = 2*logspace(1, 3, 1000); i_input = 1; figure; hold on; plot(frf_ol.f, abs(frf_ol.G_dL(:, 1, i_input))); plot(freqs, abs(squeeze(freqresp(G_dL(1, i_input), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('Amplitude [m/V]'); xlim([40, 4e2]); ylim([1e-8, 1e-2]); #+end_src Then the transfer function from $\bm{u}$ to $\bm{\tau}_m$ is identified using the Simscape model. #+begin_src matlab %% Identify the transfer function from u to taum clear io; io_i = 1; io(io_i) = linio([mdl, '/u'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors G_tau = exp(-s*frf_ol.Ts)*linearize(mdl, io, 0.0, options); #+end_src The identified dynamics is saved for further use. #+begin_src matlab :exports none :tangle no %% Save Identified Plants save('matlab/mat/data_frf/simscape_plants_enc_plates.mat', 'G_tau', 'G_dL'); #+end_src #+begin_src matlab :eval no save('mat/data_frf/simscape_plants_enc_plates.mat', 'G_tau', 'G_dL'); #+end_src #+begin_src matlab :exports none %% Load the Simscape model sim_ol = load('simscape_plants_enc_plates.mat', 'G_tau', 'G_dL'); #+end_src *** Dynamics from Actuator to Force Sensors The identified dynamics is compared with the measured FRF: - Figure ref:fig:test_nhexa_enc_plates_iff_comp_simscape_all: the individual transfer function from $u_1$ (the DAC voltage for the first actuator) to the force sensors of all 6 struts are compared - Figure ref:fig:test_nhexa_enc_plates_iff_comp_simscape: all the diagonal elements are compared - Figure ref:fig:test_nhexa_enc_plates_iff_comp_offdiag_simscape: all the off-diagonal elements are compared #+begin_src matlab :exports none %% Comparison of the plants (encoder output) when tuning the misalignment freqs = 2*logspace(1, 3, 1000); i_input = 1; figure; tiledlayout(2, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile(); hold on; plot(frf_ol.f, abs(frf_ol.G_tau(:, 1, i_input))); plot(freqs, abs(squeeze(freqresp(sim_ol.G_tau(1, i_input), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('Amplitude [V/V]'); title(sprintf('$d\\tau_{m1}/u_{%i}$', i_input)); ax2 = nexttile(); hold on; plot(frf_ol.f, abs(frf_ol.G_tau(:, 2, i_input))); plot(freqs, abs(squeeze(freqresp(sim_ol.G_tau(2, i_input), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); title(sprintf('$d\\tau_{m2}/u_{%i}$', i_input)); ax3 = nexttile(); hold on; plot(frf_ol.f, abs(frf_ol.G_tau(:, 3, i_input)), ... 'DisplayName', 'Meas.'); plot(freqs, abs(squeeze(freqresp(sim_ol.G_tau(3, i_input), freqs, 'Hz'))), ... 'DisplayName', 'Model'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); legend('location', 'southeast', 'FontSize', 8); title(sprintf('$d\\tau_{m3}/u_{%i}$', i_input)); ax4 = nexttile(); hold on; plot(frf_ol.f, abs(frf_ol.G_tau(:, 4, i_input))); plot(freqs, abs(squeeze(freqresp(sim_ol.G_tau(4, i_input), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude [V/V]'); title(sprintf('$d\\tau_{m4}/u_{%i}$', i_input)); ax5 = nexttile(); hold on; plot(frf_ol.f, abs(frf_ol.G_tau(:, 5, i_input))); plot(freqs, abs(squeeze(freqresp(sim_ol.G_tau(5, i_input), freqs, 'Hz')))); hold off; xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); title(sprintf('$d\\tau_{m5}/u_{%i}$', i_input)); ax6 = nexttile(); hold on; plot(frf_ol.f, abs(frf_ol.G_tau(:, 6, i_input))); plot(freqs, abs(squeeze(freqresp(sim_ol.G_tau(6, i_input), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); title(sprintf('$d\\tau_{m6}/u_{%i}$', i_input)); linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'xy'); xlim([20, 2e3]); ylim([1e-2, 1e2]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/enc_plates_iff_comp_simscape_all.pdf', 'width', 'full', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_enc_plates_iff_comp_simscape_all #+caption: IFF Plant for the first actuator input and all the force senosrs #+RESULTS: [[file:figs/test_nhexa_enc_plates_iff_comp_simscape_all.png]] #+begin_src matlab :exports none %% Bode plot of the identified IFF Plant (Simscape) and measured FRF data freqs = 2*logspace(1, 3, 1000); figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(frf_ol.f, abs(frf_ol.G_tau(:,1, 1)), 'color', [colors(1,:),0.2], ... 'DisplayName', '$\tau_{m,i}/u_i$ - FRF') for i = 2:6 plot(frf_ol.f, abs(frf_ol.G_tau(:,i, i)), 'color', [colors(1,:),0.2], ... 'HandleVisibility', 'off'); end plot(freqs, abs(squeeze(freqresp(sim_ol.G_tau(1,1), freqs, 'Hz'))), 'color', [colors(2,:), 0.2], ... 'DisplayName', '$\tau_{m,i}/u_i$ - Model') for i = 2:6 plot(freqs, abs(squeeze(freqresp(sim_ol.G_tau(i,i), freqs, 'Hz'))), 'color', [colors(2,:), 0.2], ... 'HandleVisibility', 'off'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]); legend('location', 'southeast'); ax2 = nexttile; hold on; for i = 1:6 plot(frf_ol.f, 180/pi*angle(frf_ol.G_tau(:,i, i)), 'color', [colors(1,:),0.2]); plot(freqs, 180/pi*angle(squeeze(freqresp(sim_ol.G_tau(i,i), freqs, 'Hz'))), 'color', [colors(2,:), 0.2]); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/enc_plates_iff_comp_simscape.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_enc_plates_iff_comp_simscape #+caption: Diagonal elements of the IFF Plant #+RESULTS: [[file:figs/test_nhexa_enc_plates_iff_comp_simscape.png]] #+begin_src matlab :exports none %% Bode plot of the identified IFF Plant (Simscape) and measured FRF data (off-diagonal elements) freqs = 2*logspace(1, 3, 1000); figure; hold on; % Off diagonal terms plot(frf_ol.f, abs(frf_ol.G_tau(:, 1, 2)), 'color', [colors(1,:),0.2], ... 'DisplayName', '$\tau_{m,i}/u_j$ - FRF') for i = 1:5 for j = i+1:6 plot(frf_ol.f, abs(frf_ol.G_tau(:, i, j)), 'color', [colors(1,:),0.2], ... 'HandleVisibility', 'off'); end end set(gca,'ColorOrderIndex',2); plot(freqs, abs(squeeze(freqresp(sim_ol.G_tau(1, 2), freqs, 'Hz'))), 'color', [colors(2,:),0.2], ... 'DisplayName', '$\tau_{m,i}/u_j$ - Model') for i = 1:5 for j = i+1:6 set(gca,'ColorOrderIndex',2); plot(freqs, abs(squeeze(freqresp(sim_ol.G_tau(i, j), freqs, 'Hz'))), 'color', [colors(2,:),0.2], ... 'HandleVisibility', 'off'); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude [V/V]'); xlim([freqs(1), freqs(end)]); ylim([1e-3, 1e2]); legend('location', 'northeast'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/enc_plates_iff_comp_offdiag_simscape.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_nhexa_enc_plates_iff_comp_offdiag_simscape #+caption: Off diagonal elements of the IFF Plant #+RESULTS: [[file:figs/test_nhexa_enc_plates_iff_comp_offdiag_simscape.png]] *** Dynamics from Actuator to Encoder The identified dynamics is compared with the measured FRF: - Figure ref:fig:test_nhexa_enc_plates_dvf_comp_simscape_all: the individual transfer function from $u_3$ (the DAC voltage for the actuator number 3) to the six encoders - Figure ref:fig:test_nhexa_enc_plates_dvf_comp_simscape: all the diagonal elements are compared - Figure ref:fig:test_nhexa_enc_plates_dvf_comp_offdiag_simscape: all the off-diagonal elements are compared #+begin_src matlab :exports none %% Comparison of the plants (encoder output) when tuning the misalignment freqs = 2*logspace(1, 3, 1000); i_input = 3; figure; tiledlayout(2, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile(); hold on; plot(frf_ol.f, abs(frf_ol.G_dL(:, 1, i_input))); plot(freqs, abs(squeeze(freqresp(sim_ol.G_dL(1, i_input), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('Amplitude [m/V]'); title(sprintf('$d\\mathcal{L}_{m1}/u_{%i}$', i_input)); ax2 = nexttile(); hold on; plot(frf_ol.f, abs(frf_ol.G_dL(:, 2, i_input))); plot(freqs, abs(squeeze(freqresp(sim_ol.G_dL(2, i_input), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); title(sprintf('$d\\mathcal{L}_{m2}/u_{%i}$', i_input)); ax3 = nexttile(); hold on; plot(frf_ol.f, abs(frf_ol.G_dL(:, 3, i_input)), ... 'DisplayName', 'Meas.'); plot(freqs, abs(squeeze(freqresp(sim_ol.G_dL(3, i_input), freqs, 'Hz'))), ... 'DisplayName', 'Model'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); legend('location', 'southeast', 'FontSize', 8); title(sprintf('$d\\mathcal{L}_{m3}/u_{%i}$', i_input)); ax4 = nexttile(); hold on; plot(frf_ol.f, abs(frf_ol.G_dL(:, 4, i_input))); plot(freqs, abs(squeeze(freqresp(sim_ol.G_dL(4, i_input), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude [m/V]'); title(sprintf('$d\\mathcal{L}_{m4}/u_{%i}$', i_input)); ax5 = nexttile(); hold on; plot(frf_ol.f, abs(frf_ol.G_dL(:, 5, i_input))); plot(freqs, abs(squeeze(freqresp(sim_ol.G_dL(5, i_input), freqs, 'Hz')))); hold off; xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); title(sprintf('$d\\mathcal{L}_{m5}/u_{%i}$', i_input)); ax6 = nexttile(); hold on; plot(frf_ol.f, abs(frf_ol.G_dL(:, 6, i_input))); plot(freqs, abs(squeeze(freqresp(sim_ol.G_dL(6, i_input), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); title(sprintf('$d\\mathcal{L}_{m6}/u_{%i}$', i_input)); linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'xy'); xlim([40, 4e2]); ylim([1e-8, 1e-2]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/enc_plates_dvf_comp_simscape_all.pdf', 'width', 'full', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_enc_plates_dvf_comp_simscape_all #+caption: DVF Plant for the first actuator input and all the encoders #+RESULTS: [[file:figs/test_nhexa_enc_plates_dvf_comp_simscape_all.png]] #+begin_src matlab :exports none %% Diagonal elements of the DVF plant freqs = 2*logspace(1, 3, 1000); figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(frf_ol.f, abs(frf_ol.G_dL(:,1, 1)), 'color', [colors(1,:),0.2], ... 'DisplayName', '$d\mathcal{L}_{m,i}/u_i$ - FRF') for i = 2:6 plot(frf_ol.f, abs(frf_ol.G_dL(:,i, i)), 'color', [colors(1,:),0.2], ... 'HandleVisibility', 'off'); end plot(freqs, abs(squeeze(freqresp(sim_ol.G_dL(1,1), freqs, 'Hz'))), 'color', [colors(2,:),0.2], ... 'DisplayName', '$d\mathcal{L}_{m,i}/u_i$ - Model') for i = 2:6 plot(freqs, abs(squeeze(freqresp(sim_ol.G_dL(i,i), freqs, 'Hz'))), 'color', [colors(2,:),0.2], ... 'HandleVisibility', 'off'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]); ylim([1e-8, 1e-3]); legend('location', 'northeast'); ax2 = nexttile; hold on; for i = 1:6 plot(frf_ol.f, 180/pi*angle(frf_ol.G_dL(:,i, i)), 'color', [colors(1,:),0.2]); plot(freqs, 180/pi*angle(squeeze(freqresp(sim_ol.G_dL(i,i), freqs, 'Hz'))), 'color', [colors(2,:),0.2]); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/enc_plates_dvf_comp_simscape.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_enc_plates_dvf_comp_simscape #+caption: Diagonal elements of the DVF Plant #+RESULTS: [[file:figs/test_nhexa_enc_plates_dvf_comp_simscape.png]] #+begin_src matlab :exports none %% Off-diagonal elements of the DVF plant freqs = 2*logspace(1, 3, 1000); figure; hold on; % Off diagonal terms plot(frf_ol.f, abs(frf_ol.G_dL(:, 1, 2)), 'color', [colors(1,:),0.2], ... 'DisplayName', '$d\mathcal{L}_{m,i}/u_j$ - FRF') for i = 1:5 for j = i+1:6 plot(frf_ol.f, abs(frf_ol.G_dL(:, i, j)), 'color', [colors(1,:),0.2], ... 'HandleVisibility', 'off'); end end plot(freqs, abs(squeeze(freqresp(sim_ol.G_dL(1, 2), freqs, 'Hz'))), 'color', [colors(2,:), 0.2], ... 'DisplayName', '$d\mathcal{L}_{m,i}/u_j$ - Model') for i = 1:5 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(sim_ol.G_dL(i, j), freqs, 'Hz'))), 'color', [colors(2,:), 0.2], ... 'HandleVisibility', 'off'); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude [m/V]'); xlim([freqs(1), freqs(end)]); ylim([1e-8, 1e-3]); legend('location', 'northeast'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/enc_plates_dvf_comp_offdiag_simscape.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_nhexa_enc_plates_dvf_comp_offdiag_simscape #+caption: Off diagonal elements of the DVF Plant #+RESULTS: [[file:figs/test_nhexa_enc_plates_dvf_comp_offdiag_simscape.png]] *** Conclusion #+begin_important The Simscape model is quite accurate for the transfer function matrices from $\bm{u}$ to $\bm{\tau}_m$ and from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ except at frequencies of the flexible modes of the top-plate. The Simscape model can therefore be used to develop the control strategies. #+end_important ** Comparison with the Simscape model :PROPERTIES: :header-args:matlab+: :tangle matlab/scripts/id_frf_enc_plates_effect_payload_comp_simscape.m :END: <> *** Introduction :ignore: Let's now compare the identified dynamics with the Simscape model. We wish to verify if the Simscape model is still accurate for all the tested payloads. *** Matlab Init :noexport:ignore: #+begin_src matlab %% id_frf_enc_plates_effect_payload_comp_simscape.m % Comparison of the nano-hexapod dynamics from u to dL and to taum for several payloads - % Measured FRF and extracted dynamics from the Simscape model % Encoders are fixed to the plates #+end_src #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no :noweb yes <> #+end_src #+begin_src matlab :eval no :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> <> #+end_src #+begin_src matlab %% Load the identified FRF frf_ol_m = load('frf_vib_table_m.mat', 'f', 'Ts', 'G_tau', 'G_dL'); #+end_src *** System Identification Let's initialize the simscape model with the nano-hexapod fixed on top of the vibration table. #+begin_src matlab %% Initialize Nano-Hexapod table_type = 'Suspended'; % On top of vibration table device_type = 'Hexapod'; % On top of vibration table payload_num = 0; % No Payload n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ... 'flex_top_type', '4dof', ... 'motion_sensor_type', 'plates', ... 'actuator_type', '2dof'); #+end_src First perform the identification for the transfer functions from $\bm{u}$ to $d\bm{\mathcal{L}}_m$: #+begin_src matlab %% Identify the DVF Plant (transfer function from u to dLm) clear io; io_i = 1; io(io_i) = linio([mdl, '/u'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Encoders %% Identification for all the added payloads G_dL = {}; for i = i_masses fprintf('i = %i\n', i) payload_num = i; % Change the payload on the nano-hexapod G_dL(i+1) = {exp(-s*frf_ol_m.Ts)*linearize(mdl, io, 0.0, options)}; end #+end_src #+begin_src matlab %% Identify the IFF Plant (transfer function from u to taum) clear io; io_i = 1; io(io_i) = linio([mdl, '/u'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors %% Identification for all the added payloads G_tau = {}; for i = 0:3 fprintf('i = %i\n', i) payload_num = i; % Change the payload on the nano-hexapod G_tau(i+1) = {exp(-s*frf_ol_m.Ts)*linearize(mdl, io, 0.0, options)}; end #+end_src The identified dynamics are then saved for further use. #+begin_src matlab :exports none :tangle no save('matlab/mat/data_frf/sim_vib_table_m.mat', 'G_tau', 'G_dL') #+end_src #+begin_src matlab :eval no save('./mat/data_frf/sim_vib_table_m.mat', 'G_tau', 'G_dL') #+end_src #+begin_src matlab :exports none sim_ol_m = load('sim_vib_table_m.mat', 'G_tau', 'G_dL'); #+end_src *** Transfer function from Actuators to Encoders The measured FRF and the identified dynamics from $u_i$ to $d\mathcal{L}_{m,i}$ are compared in Figure ref:fig:test_nhexa_comp_masses_model_exp_dvf. A zoom near the "suspension" modes is shown in Figure ref:fig:test_nhexa_comp_masses_model_exp_dvf_zoom. #+begin_src matlab :exports none %% Bode plot for the transfer function from u to dLm figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); freqs = 2*logspace(1,3,1000); ax1 = nexttile([2,1]); hold on; for i_mass = i_masses plot(frf_ol_m.f, abs(frf_ol_m.G_dL{i_mass+1}(:,1, 1)), 'color', [colors(i_mass+1,:), 0.2], ... 'DisplayName', sprintf('$d\\mathcal{L}_{m,i}/u_i$ - FRF %i', i_mass)); for i = 2:6 plot(frf_ol_m.f, abs(frf_ol_m.G_dL{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.2], ... 'HandleVisibility', 'off'); end set(gca, 'ColorOrderIndex', i_mass+1) plot(freqs, abs(squeeze(freqresp(sim_ol_m.G_dL{i_mass+1}(1,1), freqs, 'Hz'))), '--', ... 'DisplayName', sprintf('$d\\mathcal{L}_{m,i}/u_i$ - Sim %i', i_mass)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]); ylim([1e-8, 1e-3]); legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); ax2 = nexttile; hold on; for i_mass = i_masses for i =1:6 plot(frf_ol_m.f, 180/pi*angle(frf_ol_m.G_dL{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.2]); end set(gca, 'ColorOrderIndex', i_mass+1) plot(freqs, 180/pi*angle(squeeze(freqresp(sim_ol_m.G_dL{i_mass+1}(1,1), freqs, 'Hz'))), '--'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:45:360); ylim([-45, 180]); linkaxes([ax1,ax2],'x'); xlim([20, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/comp_masses_model_exp_dvf.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_comp_masses_model_exp_dvf #+caption: Comparison of the transfer functions from $u_i$ to $d\mathcal{L}_{m,i}$ - measured FRF and identification from the Simscape model #+RESULTS: [[file:figs/comp_masses_model_exp_dvf.png]] #+begin_src matlab :exports none :tangle no ax1.YLim = [1e-6, 5e-4]; xlim([40, 2e2]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/comp_masses_model_exp_dvf_zoom.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_comp_masses_model_exp_dvf_zoom #+caption: Comparison of the transfer functions from $u_i$ to $d\mathcal{L}_{m,i}$ - measured FRF and identification from the Simscape model (Zoom) #+RESULTS: [[file:figs/test_nhexa_comp_masses_model_exp_dvf_zoom.png]] #+begin_important The Simscape model is very accurately representing the measured dynamics up. Only the flexible modes of the struts and of the top plate are not represented here as these elements are modelled as rigid bodies. #+end_important *** Transfer function from Actuators to Force Sensors The measured FRF and the identified dynamics from $u_i$ to $\tau_{m,i}$ are compared in Figure ref:fig:test_nhexa_comp_masses_model_exp_iff. A zoom near the "suspension" modes is shown in Figure ref:fig:test_nhexa_comp_masses_model_exp_iff_zoom. #+begin_src matlab :exports none %% Bode plot for the transfer function from u to dLm figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); freqs = 2*logspace(1,3,1000); ax1 = nexttile([2,1]); hold on; for i_mass = 0:3 plot(frf_ol_m.f, abs(frf_ol_m.G_tau{i_mass+1}(:,1, 1)), 'color', [colors(i_mass+1,:), 0.2], ... 'DisplayName', sprintf('$d\\tau_{m,i}/u_i$ - FRF %i', i_mass)); for i = 2:6 plot(frf_ol_m.f, abs(frf_ol_m.G_tau{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.2], ... 'HandleVisibility', 'off'); end plot(freqs, abs(squeeze(freqresp(sim_ol_m.G_tau{i_mass+1}(1,1), freqs, 'Hz'))), '--', 'color', colors(i_mass+1,:), ... 'DisplayName', sprintf('$\\tau_{m,i}/u_i$ - Sim %i', i_mass)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]); ylim([1e-2, 1e2]); legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 2); ax2 = nexttile; hold on; for i_mass = 0:3 for i =1:6 plot(frf_ol_m.f, 180/pi*angle(frf_ol_m.G_tau{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.2]); end plot(freqs, 180/pi*angle(squeeze(freqresp(sim_ol_m.G_tau{i_mass+1}(i,i), freqs, 'Hz'))), '--', 'color', colors(i_mass+1,:)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); linkaxes([ax1,ax2],'x'); xlim([20, 2e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/comp_masses_model_exp_iff.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_comp_masses_model_exp_iff #+caption: Comparison of the transfer functions from $u_i$ to $\tau_{m,i}$ - measured FRF and identification from the Simscape model #+RESULTS: [[file:figs/test_nhexa_comp_masses_model_exp_iff.png]] #+begin_src matlab :exports none :tangle no xlim([40, 2e2]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/comp_masses_model_exp_iff_zoom.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_nhexa_comp_masses_model_exp_iff_zoom #+caption: Comparison of the transfer functions from $u_i$ to $\tau_{m,i}$ - measured FRF and identification from the Simscape model (Zoom) #+RESULTS: [[file:figs/test_nhexa_comp_masses_model_exp_iff_zoom.png]] * Bibliography :ignore: #+latex: \printbibliography[heading=bibintoc,title={Bibliography}] * Glossary :ignore: [[printglossaries:]] # #+latex: \printglossary[type=\acronymtype] # #+latex: \printglossary[type=\glossarytype] # #+latex: \printglossary * Helping Functions :noexport: ** Initialize Path #+NAME: m-init-path #+BEGIN_SRC matlab addpath('./matlab/'); % Path for scripts %% Path for functions, data and scripts addpath('./matlab/mat/data_frf/'); % Path for Computed FRF addpath('./matlab/mat/data_sim/'); % Path for Simulation addpath('./matlab/mat/data_meas/'); % Path for Measurements addpath('./matlab/src/'); % Path for functions addpath('./matlab/STEPS/'); % Path for STEPS addpath('./matlab/subsystems/'); % Path for Subsystems Simulink files #+END_SRC #+NAME: m-init-path-tangle #+BEGIN_SRC matlab %% Path for functions, data and scripts addpath('./mat/data_frf/'); % Path for Computed FRF addpath('./mat/data_sim/'); % Path for Simulation addpath('./mat/data_meas/'); % Path for Measurements addpath('./src/'); % Path for functions addpath('./STEPS/'); % Path for STEPS addpath('./subsystems/'); % Path for Subsystems Simulink files #+END_SRC ** Initialize Simscape Model #+NAME: m-init-simscape #+begin_src matlab %% Initialize Parameters for Simscape model table_type = 'Rigid'; % On top of vibration table device_type = 'None'; % On top of vibration table payload_num = 0; % No Payload %% Open Simulink Model mdl = 'test_bench_nano_hexapod'; options = linearizeOptions; options.SampleTime = 0; open(mdl) #+end_src ** Initialize other elements #+NAME: m-init-other #+BEGIN_SRC matlab %% Colors for the figures colors = colororder; %% Tested Masses i_masses = 0:3; %% Frequency Vector freqs = 2*logspace(1, 3, 1000); #+END_SRC * Footnotes [fn:7]PCB 356B18. Sensitivity is $1\,V/g$, measurement range is $\pm 5\,g$ and bandwidth is $0.5$ to $5\,\text{kHz}$. [fn:6]"SZ8005 20 x 044" from Steinel. The spring rate is specified at $17.8\,N/mm$ [fn:5]The 450 mm x 450 mm x 60 mm Nexus B4545A from Thorlabs. [fn:4]As the accuracy of the FARO arm is $\pm 13\,\mu m$, the true straightness is probably better than the values indicated. The limitation of the instrument is here reached. [fn:3]The height dimension is better than $40\,\mu m$. The diameter fit of 182g6 and 24g6 with the two plates is verified. [fn:2]Location of all the interface surfaces with the flexible joints are checked. The fits (182H7 and 24H8) with the interface element are checked. [fn:1]Faro Arm Platinum 4ft, specified accuracy of $\pm 13\mu m$