diff --git a/figs/test_nhexa_IMG_20210625_083801.jpg b/figs/test_nhexa_IMG_20210625_083801.jpg deleted file mode 100644 index cce5c24..0000000 Binary files a/figs/test_nhexa_IMG_20210625_083801.jpg and /dev/null differ diff --git a/figs/test_nhexa_ModeShapeFlex1_crop.gif b/figs/test_nhexa_ModeShapeFlex1_crop.gif deleted file mode 100644 index 0aac05d..0000000 Binary files a/figs/test_nhexa_ModeShapeFlex1_crop.gif and /dev/null differ diff --git a/figs/test_nhexa_ModeShapeFlex1_crop.png b/figs/test_nhexa_ModeShapeFlex1_crop.png deleted file mode 100644 index 59eedb8..0000000 Binary files a/figs/test_nhexa_ModeShapeFlex1_crop.png and /dev/null differ diff --git a/figs/test_nhexa_accelerometers_nano_hexapod.jpg b/figs/test_nhexa_accelerometers_nano_hexapod.jpg deleted file mode 100644 index 94960c8..0000000 Binary files a/figs/test_nhexa_accelerometers_nano_hexapod.jpg and /dev/null differ diff --git a/figs/test_nhexa_accelerometers_nano_hexapod.pdf b/figs/test_nhexa_accelerometers_nano_hexapod.pdf deleted file mode 100644 index faec011..0000000 Binary files a/figs/test_nhexa_accelerometers_nano_hexapod.pdf and /dev/null differ diff --git a/figs/test_nhexa_accelerometers_nano_hexapod.png b/figs/test_nhexa_accelerometers_nano_hexapod.png deleted file mode 100644 index a7f3bff..0000000 Binary files a/figs/test_nhexa_accelerometers_nano_hexapod.png and /dev/null differ diff --git a/figs/test_nhexa_accelerometers_nano_hexapod.svg b/figs/test_nhexa_accelerometers_nano_hexapod.svg deleted file mode 100644 index a026a2e..0000000 --- a/figs/test_nhexa_accelerometers_nano_hexapod.svg +++ /dev/null @@ -1,65707 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - x - y - z - - - - 2 - - - - 3 - - - - 4 - - - - 5 - - - - - - - - diff --git a/figs/test_nhexa_comp_simscape_Vs_all.pdf b/figs/test_nhexa_comp_simscape_Vs_all.pdf new file mode 100644 index 0000000..7a46e2d --- /dev/null +++ b/figs/test_nhexa_comp_simscape_Vs_all.pdf @@ -0,0 +1,3586 @@ +%PDF-1.4 +%ª«¬­ +1 0 obj +<< +/Producer (Apache FOP Version 2.4.0-SNAPSHOT: PDFDocumentGraphics2D) +/CreationDate (D:20241028122328+01'00') +>> +endobj +2 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +3 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +4 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +5 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +6 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +7 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +8 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +9 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +10 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +11 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +12 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +13 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +14 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +15 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +16 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +17 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +18 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +19 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +20 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +21 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +22 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +23 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +24 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +25 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +26 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +27 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +28 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +29 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +30 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +31 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +32 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +33 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +34 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +35 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +36 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +37 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +38 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +39 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +40 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +41 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +42 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +43 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +44 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +45 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +46 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +47 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +48 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +49 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +50 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +51 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +52 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +53 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +54 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +55 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +56 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +57 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +58 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +59 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +60 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +61 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +62 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +63 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +64 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +65 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +66 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +67 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +68 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +69 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +70 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +71 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +72 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +73 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +74 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +75 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +76 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +77 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +78 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +79 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +80 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +81 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +82 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +83 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +84 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +85 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +86 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +87 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +88 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +89 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +90 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +91 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +92 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +93 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +94 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +95 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +96 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +97 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +98 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +99 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +100 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +101 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +102 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +103 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +104 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +105 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +106 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +107 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +108 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +109 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +110 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +111 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +112 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +113 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +114 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +115 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +116 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +117 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +118 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +119 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +120 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +121 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +122 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +123 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +124 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +125 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +126 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +127 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +128 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +129 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +130 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +131 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +132 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +133 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +134 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +135 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +136 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +137 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +138 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +139 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +140 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +141 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +142 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +143 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +144 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +145 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +146 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +147 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +148 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +149 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +150 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +151 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +152 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +153 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +154 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +155 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +156 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +157 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +158 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +159 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +160 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +161 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +162 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +163 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +164 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +165 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +166 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +167 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +168 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +169 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +170 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +171 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +172 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +173 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +174 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +175 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +176 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +177 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +178 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +179 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +180 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +181 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +182 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +183 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +184 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +185 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +186 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +187 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +188 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +189 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +190 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +191 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +192 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +193 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +194 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +195 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +196 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +197 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +198 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +199 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +200 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +201 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +202 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +203 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +204 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +205 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +206 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +207 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +208 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +209 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +210 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +211 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +212 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +213 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +214 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +215 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +216 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +217 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +218 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +219 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +220 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +221 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +222 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +223 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +224 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +225 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +226 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +227 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +228 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +229 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +230 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +231 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +232 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +233 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +234 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +235 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +236 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +237 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +238 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +239 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +240 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +241 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +242 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +243 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +244 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +245 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +246 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +247 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +248 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +249 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +250 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +251 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +252 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +253 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +254 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +255 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +256 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +257 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +258 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +259 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +260 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +261 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +262 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +263 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +264 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +265 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +266 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +267 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +268 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +269 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +270 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +271 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +272 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +273 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +274 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +275 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +276 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +277 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +278 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +279 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +280 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +281 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +282 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +283 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +284 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +285 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +286 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +287 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +288 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +289 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +290 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +291 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +292 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +293 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +294 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +295 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +296 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +297 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +298 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +299 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +300 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +301 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +302 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +303 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +304 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +305 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +306 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +307 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +308 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +309 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +310 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +311 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +312 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +313 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +314 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +315 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +316 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +317 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +318 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +319 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +320 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +321 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +322 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +323 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +324 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +325 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +326 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +327 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +328 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +329 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +330 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +331 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +332 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +333 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +334 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +335 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +336 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +337 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +338 0 obj +<< /Length 339 0 R /Filter /FlateDecode >> +stream +xœ¼½Ë®mMŽ×ÿŸb¿@îŠûX¶$@€¶²'¨e£$™ A ¿¾ÇG2Öílåɹ²–«„Òþ×8sF̸0HÆ ù?þÈ_Iÿû'þ¿²ç×ÿý×?Òw.Ý~½ÿ¥ŸÿÇÕþ¬_ZßsÔÙVž_*õ;=SÉ•¿þëéëßÿ‘Óøªm|ýõV‹ýõû«Uýhü·?þùÿóï|ó?ýûÿ¤—ÿOº—ŠZHjé?ç¯ú_ôäÿ£ÿú”¯ÿþGþ®ö?_ÿ¯ºòÿȽë%s­Q{ôçé'ëź҇r½«~Ï™æ˜%Ÿ><þt½õrJjß¹ö¹æ>óòôÓõ>´ë}Èû{×’sg.ž~ºÞ‡~½µ|¯ºF¯ý6?]ïøއ¦ÉïiÏqïÃãO×û0¯÷¡×ï’ê˜gwþõù§ë}X×û0òwo¹×Ön}xüézöå>Ô¼;åqöæÓO×ûÓõN´aÒ ç}6ÆÓOot⺤ÔÄ›8˜eÞFâñ§7:q]TÖUi¯ºO'z£×eeÝýUF<ýôF'® Ë–Æ«xúéN\—–-W)ñôÓ¸..[i¯bâé§7:qäeÛ§÷ä—$Nð›2sÓ\®5¸.6XƾIÄ·Vý¾Øàÿ5¯åºÔ³&õ¦¼ÇÞZÕ1ºO?]íÅu±g½Hû{õ•F™íôâñ§«½¸.÷¼é»nIš¬E}zñðÓÕ^\|ô¢l½©«ájôâ駫½xCòÑ‹5ÕdW«:y¢?]íÅ¢Ïz‘¿uì¬ÒǺõâ᧫½xCöÑ‹9¿»vC+õÖ‹ÇŸ®ö⺲轆*¨t‰”Ó‹‡Ÿ®ö⺺è½HßšÌÓ¾ýÇÕ–¯+‰Ör›ß­éUý¾"ºjÁ½'/K•Í–ž$ÕÓOW{ñž¼,:~G{’TO?]íÅ{ò²äù]SM¥•ÛŠ|üéj/Þ”—Y?¦žêj·uùøÓÕ^¼)/¥–ú,©ºÚ‹7åeÊß«¥-sá¶.ºÚ‹÷äeÞó{'IõôÓÕ^¼'/óÌßãY³yúéj/Þ“—¹¯ïú¬Ù<ýtµïÉÎÜÖ÷zÖlž~ºêyzOvæ–¿û³fóôÓÕ^¼';eO«É'yñôÓÕ^¼';sMßíY³yúéj/Þ“¹Œo ý®mÞÆâñ§«½xOvæR¾‹Ô˜ZoRë駫½xOvæ¬×ÞFÁÿãjËïÉËÝ¿·´˜Uë¿\íÃ{Òr•ï!¦÷|”«Ç_®öá=Y)m6?+5¿\íÃ{’rôï%ý%qœ ¿\õŽ¿''»,_i/­”sp=þrµïIÉÞ¾ç³:óøËÕ>¼'#»loi.UfÖéÃÃ/Wûðž„lã»'ÑôøËÕ>ùxÝ)t`W[ìo´˜wû¾ Bûûj«ãVÛÑ .ú¾Òså·ÄûuèG±ïxÇwù;ü¯¢]¹¥Ñ–´öìýtkÏ>ÐO·v›¬ØÕ¥«­Ö¯vÆÑÚ²?>ÛÖm3…üúd[¯«±}W™W:°¯ÉÆ¿·µßp >ÞþoxŸnÿw‚·ÿþÀÇÛÿ wàãíÿ†7ðñöÃøxû¿á |¾ýçÓè³­ýŽ™ðñöCJøxû¿á#|¼ýßP>ÞþoXŸnÿw„·ÿîÁÇÛÿ íàãí¿h£Ö-ž´Ñö=jJ©­k¶ö;z”7úôˇ[¡^¾’1?Ûú+éò•†ùáÖ_薯̷þB´|¥^~¸õŠå+éòí¿+_é–ný…VùJ´ütëÖçgÛz%o¾Ò9?Üú kó•ÇùáÖ_蚯ηþÂÓ|en~¸õ‚æ+eó³­¿23_¹šný…’ùJÒüpë/\ÌWvæ‡[ò6}XsøGX oi}Ÿ÷áîï24b%·O:¥ï.ý‡ö®ûö¯ë²Í}|¾Êºû‹?4–×#Oí}l,ïû뱹ϯËù=Š›¥r]þB?~lö]ò•ö_‰Çí¿Ë@¾Ôþ åø©ý7¹ÇÚÿ…lüÐþÛ¬ã+í¿ÒŒÛ—o|©ý‚ñSûo2¯´ÿJ-~lÿ]Žñ¥ö_HÅOí¿É.¾ÔþNüÔòe^ñ•6_‰Ä-¿Ë(¾Òþ+…ø±ýw¹ÄWÚ%?¶ÿ.‹øJû¯´áÇößå_jÿ…0üÔþ›Ìá+í¿R…Û—3|©ý’ðSûo²…/é¢/ôà‡ößæ ¿¥ ?5üA]ø*òcÃïr’¯´ÿJB~lÿ]6ò•ö_éÇí¿ËC¾Ôþ ñø©ý7ÈWÚ¥?¶ÿ.÷øRû/dã§ößd_iÿ•füØþ»|ãKí¿ŒŸÚ“i|¥ý;µø±åëã m¾’Š~—]|¡õW:ñCëïòŠ/´þJ$~hý]Fñ…Ö_)Ä­¿Ë%¾Ðú+yø¡õwYÄWZ¡ ?¶þ&øJë/„áÇÖßd_ñx½P…Z—3|ÝßöØèÇý£é~#þAÛ‹è¹Ùûˆ~NnÿÃ>¢ÂÒ_Úÿ¬è‡€ô§ö?í#ú!ý¹ýûˆ~Biÿ³>¢ÂÏŸÛÿ°è‡Àó—ö?ë#z +9iùS>¢‚ÍŸ[þ°è‡0óçö?ì#ú!Àü¹ýûˆ~-nÿÃ>¢‚Ê_Úÿ¬è‡pòçö?ì#ú!ü¥ýÏúˆ~!jÿÓ>¢§;¾ç†?xÇ÷â#znøÃ>¢ÕŸÛÿ°è‡õçö?ì#ú!8ý¥ýÏúˆ~KnÿÃ>¢Ò_Úÿ¬è‡Pôçö?ì#ú!ý¥ýÏúˆžÂÏŸ[þ˜è×Àó§†?ì#ú5äü©õûˆ~ 6jýÃ>¢_ÃÌŸZÿ°è×ó§Ö?ì#ú5´ü¹õÏúˆ~ *ný³>¢_ÃÉŸZÿ°è§÷Øè9ÏþéßµÔ¾$gǘ_þgµÍ;Oû˜™¥ŽÒ%¾rÊí[£Tö\Öƒóç?n9¬ÿÔ¥v©hùk|;[éëÏýúÏÿ*¥”ÿõ×ùúóøãßþÙ>îÍêúîyuiB¿4Pà‹ô®õQéßj¯MCýÖs¥ü/>ÉÇð_ ÅœôŠÁ[~m±þÚâß5k}è ÿ_Žédµ´<ÞŸ´¿ù~YŒ Zhù;æìïÁ¿ÙÞßÀü;—}ÿ‹òÀ¿ùþ àßlïê +Ü|þ½Á?%ë®>žMƒ{øAæÛÐ WcË^«¯ñkÔ‡–æÛº£›Ó¼u¢ý:ªÿ®em²×m³¦ÍQeÎÖ¬aü¡Íñ™6Ûd~g?µ9?ÓfÝ&¸µÚ~hs}¨Mƒ3µœjs¦MºFÙ?¯ÛÿíCßiÛU›ô‡&ÿÍGšÌ…›&î™~hòÿH“²‚[kR.~jòÿøH“­~÷]ÆþQüÛ4)ý_MÎúãÀþ»4¹p¥ïÖÿüÊœŠµ¹šÌœ^˜õËsδ¹gÚ^ fƒ·]Òl¿*¦jEJÜZ?}ä/zÜüÇÔr-½Í5ÿ®õ…úGÿPƒ¥H#â2FgÊwV{ýok=ÿh{MgeMkÿÐÜOŸ÷Ž'V*íÇmQÿ×:Ößûú’¿·dvÿqy´ùÑ“3×N½ÿnôþ^+P{­ÉêJß³iü_OFáÉ»ÕîŒ)#çÊÖ´ ­I€§Üµ­²6˜,i?ÛÔ‘Y–aÚ·sf³TqQí4ºÔR¿›2³@ÁD›eŽ­.k¤JŽ¼·ù”²ÄÊké)Ž /\ú¹¶o}ÙZÉz7¿ÓšMŸmÍI(3k‚†¿²å9e´ã$ˈk©RSÿÈ°¹Ç\µ9¦¹à¢4M>IÒ¿Úݺ"£µÕ±Z]Ó0Íl_­[_#ãÁÔá’õ¬aú§%ÏV'Ï©ct¦[ª%íC}^[[2¬£nI²ÖýQ·Ö‘V[RÛ£[–«<æ÷ÖÇ–Q¦a’Y£±à„ͤÖqÍ”m˜$kÛ+ÙçM©2x{ïç†J&f²[á`°ºÖ’c2’²¾¨Äuco²…–ÑXJRORÓƒL]Ö·µUša延ګæþÖ*Ú•=$(²×Vu/bц[K넧 +Ö•¶Pµ Lj_Ú56Ì’C3Ëè‘êo˜Uïµ÷FB´!}Øs¶Ê”¦e$y0¹¡iÕ1ú·µ¬l¶kÊ:Õ(&c²ì^ú¤›š¬Ä*µÎàvB¥G¦ŸlJ-õ¹ì4Hú"­¤Á%°„Ñ”™¶¤ž4Þ‹ï«”-+0‡èi ­ÙÚlÄŠ¹©veŸ×ª¿óšËŸö±šä–Ù“v–ªËÚP†é ÔcIC®Ãu2Lv¬JéßUËTRG#†ÍѵóÔÃX[}Cä´ò-Q7$.ý9m¼ÞXúYµ_[îi4è²H—ÝþkÕ×ZlÑò­ˆ ͧ0É‘¢•Y«Ý“ñ±ú™÷u†UëÜÝéOYô£,Ùktn÷5!Ú¢Ç6zMR{m(5 ¹ïÕ9›$¾WWëöç$±·z¤RAKÑ’U§£“³w zM³µ¾|Hp§¯ËB©ÄLÏ)ic[ÄFOÂ@§@3¬j©M T°¦5ÌŒkLõJž£ Édû¼Æu¥ÖR¹HÀè/­—níYR?½YËAŸ‡N0t®4î!ùêЩ$!g˜Žî²fYjÕw[jM«Ú°®ÓI«¶2MÛ5o͸-0¢ÿ¹ºY,¾VÉB6“«MÉ^Ö¬Ö³!jÚ0I‡Ú‰½ôýi¸ìÐÞЊ@bxˆm•LÑñaBà1烾±¡VèËl†¼¤hHžj*­½¡U°Q’²Ì…#DÒ"Û¡ ¦ó}j©½Õ‘¡’wÕÛ“LȦ×ÙôåT}UkŸê ß6õ…c3edÛŸãLÒI"cçKS'mB g×ZGÆûÃ1­qMjÞvƒ4‰4‰ †FÔg +É2¤¿púk%ét³!4"‰"eVÂÜ;°õ¬þ)þÓ/´,$Ò­ã'[ÖÑ&!’¹zR¢š]€HËÒ@i-mqÍFtK+ö= L²E盽S\P \’Z‡ªdSsê€t©¾Î¹[ÓæÒ7iðµÒ4€ÓoºŒJ¦!ì(hšÖï xW´á›ÔÁM0‹Ö„Ìcͨ·&™˜’@®½kb™Ï€nZk–HœAÃW$:‘‰í¹ý~¿IšU³SÎg…û°¥¦ØÐðm$2zª6¿F?ùsš ä¥ÓÐîÌ¥°s:¦IŸÒôÎÂ@ë€ÕŸ“@aUV¹6¿ö³$–+²Í‘Ò„iƒ o0|“¼ÐGTܹ=‰oýdê»ôy2C†ºm—¡°kfÇ—ÖñŠÌM§ö7 Bv‰¦qJÿÐ`«Hÿo¬‰“‰ñ®‰ Å€—hü¹•Õ'iÜÉÔs ‰$ókï¡Ãi×—íËR¥j—}ô^£"ùà3°ØOÒ^M^H'‘Š 'W@:Ø|®´5µe´µ’OŽ4φÒ(ɦ ÈlmÐè?“Šn™ºMªkiG/§™)²a´*udH 6›B#o*¥šcYês´·6|`âˆ$í‚ò C9`˜Dž”™ÔY ¯c©™—úp¤!Ñ×Ù.ìÇ––”g*û˜f@†‰[’|KëÐö£N`Lc÷êå{ËÆЪ™­$ê²ìc-Jdè͹#CYÌöe²·÷RÚÄÞÌÒΰ 8K Cô -çlëkcå;$©°Í0Ùœ šÄâb žQÛ4&Ù—¹„¢+hiϘ¤ß(šw‘¶5ÿ~O!ybß-%¼»f# ¡¡<ÌÅ/»UW´ì j`¶t.kÅp‘F“¨¯µÝ_0 1ÆÁ4úˆ™ŒùdxµHs+0 ºæ ¹ñ)‰¸s¶Ýõ;i O„6'QÓÎÇ*Z&ò¥ª¯•´kÆVTW¤h/ o†aù~ªetà­==ÓÁ;YÿÇVCAòñ°b6¹LJß“(MB lÊdÈÜØfÔi‘µ.ÿ’=Zqí‹aБ¼Ë®u)möut‡a¿ÔaM3&Š¬nm¬ŽË+íP“I¬sª}q¶v¤´…¤3NOm¤úƒlIRjq`ØjÍì–ÑÉeÚò—ÖµŽBAÅÇC«I§2ÁœXBØù`7?¢mÉ®óöœ–²L3Ž|ÆCªqÎÑG™2š_5ÙTµWK@:a»N0†Q+O”K¨Š3#I‚ Ûe ˆ((z50 ½Î§åax:Êdîgÿlé"v!Spçkø‡±J`ÍMxè_š^ Mõ,0É…ÆÄ95Mà ˾N6©Ôi*,JIÙ¡o¸‹mÆê*Xmêš¹!$ƒdõh"'òK¸kWÎXAx3öQ¥(kÞ$†V@:Pµ? d¨±mT“z:gôA¦dºÖ#1š²X`:¦%¡&òWûHQ2 Hc ³'ùN•ù(%ÙĽÞÅ‘®Æ0¥Gg¡LªQ“92Ùúðï﯊¬º¿ ’á —ío{'0„Aá(0Ë=ߨx@ÒÒ µ¦ØÞS]jÿMÿPbYjÏþÒ¡ ­TÚ»¯“ló±Ð%tP—;«@4ƒj*W»üÕ`kWM~D¥–l›¬.Iɘ4âËÔ¶Ô–ŽŒÞK7оZ=°}̨™ZFÞžs¦‚˜V3%Wisè_ÛÒc7JˆÆ·=d‹3ÿ¡Ö°lïXc©ï6m5k¥¤¶{@¨fžfÙòçÇŽy3Ñ‚%KOú%þK`pùËè'›%¿¥)åÀVéË ¢‘+ã`ú ‰~½Ó6ˆæPƒm&<˜ô·FÁ¹8ÎsšSum¹þÈJÎÅg¨d© zH'šm, ¦éáj43liïhY—ÀBªpTX{J™2¬ fƒ2ñ4Ë7–0í?ð¨=Ú¬Z¡Ò }ÌŠyt +#ª$Eg•Å7TTµÐ–a +Å£!ÀÔ3m'ƺaÈjÿ„視%?ãÔͬ?w‚éÜÔx +•rm˜¤ö±ýÁÐ]SÎ.8Ôá¡ÕVÓÇÊ fÌNPßhÞ§[ßì`;Î:.°nʘĖ”7{N›¦by”€d`hZ¤I#‹F)†U›´/£%ëѵ°/“p›ì+a›õ(£½À¦ä©4N]û<ØòwJÝÑn, 4L}€¾Ô7‘0iž¬‰íÚ'é1,ÓôécE‹w`ÇÃœÝ ;zxsšh<'f‰tLML[#°˜tuspb.Tò˜Tw™ç[¢„jÊ®¶Ø6E¶06fÉÉàÓzXÅ”dm”–š+¦v†Þ2m7lö†[ZU›Q²k/? +‡('e ã@C1ìÅwÑý îúj"©TUìæ\G¶6¥wú+³ ˸4‚#ºõÝ“º±9@LHháÜZ=Ì  ')aŽhßµ†¹ÓMÀÙáLF¶´â䨴7üì“ ï>=):Om´ôMñȦ:h/K j-DOкú(ëY˜Ô=Ùû® V3¦Íñå¦OÃœñýþÜ)°—3 +z5g}%Ðó?¥iØ2(¥ë`XÿæPbŸKCÖ±æ{Ù®oôŸ8ÖÀ`CH9ÏId.©%d€Öçp¹‰—W¦$³çehÅŽ˜FIÙ CžêZY+C §®¬ê[¤²]Q/9•ÃŽ62&q·Ø¿.U¤päkoÜoSÀ4É=¥:ÓJÄìï&qÌ­Ú\mbR´€Rç€Báó‹+°†1ºY`¤fHÅÚÓnÑF³wâÖQú9‘ir»&ã K¿õO_fˆÛ6Ó¿A_=>KCŽ ã8·íöQª `f½ÍN ûÞ#óš´¥Y50üay„Ô¬R£52+0Éé$èÂðK.ïÀ–”‹<ü•á®·W²vp³D‡0™´[çc 뺛†þŽ«óœ–†NÖ>MJg9ÏóÜ2ùmÉ?´‰¸´k>}¶æ|£ÖP‰CCm\x)n¹äWãÚ_=0-, ¶a Í2Wr‡¦åï]A"ïåJ6 RÚ«v@3;»f…¼¥Ã5Îцî/]ª÷Ø°ï±Ø®8$M’k½,HYv{£‡b´kqHýõö*íÍd*’0ÄdòÀ|^å&¯ †ú7¸®4L'„dE L&ïv…Ûf?¸JÖšã SÊDm·âW–2ýÜ‚IVheŘáMÕáXðÐ +ÓHavùÑP2§ß€uæ2ûÌ‚ÔbuŽ—~jV?½XæzþÎGs#^ß°¹…²x¢6íB)0 ¹ŽwÈ0v¦_’=X„dív¦'L"÷â€Á€BV;¶oþ°®q“õã:åŠÑ|HH Šª?&U Ù< ÚHÌëävY–§!7M’«î˜¾†Óq:vDžcš‰5[î’á:~‹_,€á´qý…e‡; o†¤—9q Ó1]Ügºº}<§ÞϳK¸7©~{…N‚ËÐìYÇþ>nqͱ2ÂÀÛvgÜŒ™Ú1"‹¤NìX„Ž>hpD©ã2xv`’µç³ajÚo “75=þNó›–ØBønpQ„î¤]«Ö—MY6Ôú­>ºn®ñ-arÝÈÚx~¬óO'ž›øY£æBvˆ;VÈP®ªYº“´AísB¡Åqèv[î˜d@õÕ×ÑIpbL×(“¶áh·Wšçq"Ây¿úq”D)÷”\Ǭì¯âò„k*NÚ”äw@ #'ûS¾øÝÒì¸s[‹)C:ÎÔÝ߶4ðÜ­9Ö´êœ!n|é“Žéø‡lÓCú6ï¶Ì»GäF0Lâb¹©"ˆÄ¥ApJf¨Ât¸ ':&!V—Fê´¾Rã0»û6×Ò.‚º‰®á䦫¯~A}áFÆj“½=ýÚlÆ…­aD¬I+öñêëÚDÙŸÓ\rݼC³1Gw'êj LËTÿKŒAׄŒXqÝX­4÷ŒpïÍA`œU2ïü•o³—R«\¼ Zš}a­ÓP):Ã$àS˜é …™k¬G—çg aÒ(¶…\ŽžXaRð3láKÄ© &^£æFv—È›bNs8+ç>Ú|•\ˆP\Ej›-Éõú*è¸ç±qÓÂi-©­50Y•i&£Rt’–’÷r}£µÚ ˆèªní$y¤âv%]Æo»ÁBCò%V5Ì2 r`²)4{h­¶ðŽ­˜™)¥;¶&sçV»Ì2 mÎ!ßwœZß+0)Þ²9ãëdÖ9R ¬a^A¿+’”:(r`72Œ +oY~Rö5Q¥Šc¸ìôƒ½s ÜkK®î˜šÓc~ºwA“…óÌY\£¦ÅnÉn*KÑ\öÀ×ð3ùâ”R £mÌîÏ>A+~¯«¡Õ• ?׈…«ƒ(\ˆÂ edhy`H4.3í®@ÀôþŸ—ï< [ÓZð+$ .½AËÖ×­Z’šç +ÌȦi…‰Ý–²M‘¬\|’£i/Êæé= ê²9¶‰ö‰úrëç +Ï·¤ÎŒ¯cp;¾\ÿ:m]<À%0.(¥û8¦]²§ßXèWL:-žÞÏ­êm[r§›Ãˆã^F:ÄyîF2 ÚLØŒƒÿÔÉÞklgôp¿ [\ð”: g÷û«:ðƒžË&$³Žhqæžæ8pµxf@ õ6ýÖж˜®òÙ¥|vtÛs¬œØ|Ã.×t¹’ÕFðï4­æ%5LÊ|sñ7$e¸Y¨Ã¯û$뤈ºcˆ[þCý2gLb²|çAÛ–Îé8j“ÓÝ´Cü2¬žë1Ç–Ø°U ¯E›k¹’2¸Ò=þG0.–KASK=áÛâHÒ‘7°¡s´ƒ-eўĴ¤š´<ï §¯öáyNKs¤x?¥½Ê®.áwÒÜÆpj7¥ëï¡È…aRìºsâÀðè¸ôwÊÒ垨ç:"±–t?ý„˜Ñü¦ÈÇS+¼¥óœ4Z»„÷qÁ›7@CBÜ=£1ÖpÍRlKé´Ë9Lþœlê:íÀÔšVì–óœoŒâÃ)§xšco'³îü•:1|N|p§´¦æN¼¯xKÀ“gs{Ÿ[ ‡du.¼yÁ¼ð£MØíhXxy›Ü$»¶Æ&p«v`’R®¬+Xsm§S]«:†:yŒìi·»\þǤls…XÃD4G•Ý…J{Û®ësW€d$ (Î Y µÛùÔ[²¸]ÿ›¸"¡4WX$¢¥bº‚4MÃÔ9âýÜ´WçSTV’CH¸ìÇá4ýEƒâ]äò¹ÇÅ—Ÿð‹«@°–ÒšP!VŠÇÆÀÑ:Ã_^ü˜é˜5…7ayâšgvÓуwÿp e¸#0\µ—®Ža:Nw#NN¤`Âf‘’ñu\·êÈqm³ÛmÏÞé`ð[aÉ9&ËÈÙ‡’Û\55;T ê¦óôÀ¸ï4&”õD+»ßc“Ëg˜Ö…ÖÓyÊH1á­#“ÝR†1¦€&Îëá'¡0Ì&YDþW>p2 CßOì¬éX‡dë]v¹_ E]¯O}ˆ Ž0ð‡u?g`7Vov¡Å±áü ŸU©’ùnµB„ÒXi¿V$ŸƒIŽ"XUs3öã€[•Bòulº=ÜП˜ :ÜHR{«L¶Xq¯Ÿµ8É ¨Ø®1ßR#¤á¸B<«)Qj_/ùî%œð"0´Lm‚7ÆIïjŒÑµ¶Ó Ãù×CÓ²˜þ\6‡¯ßOBJFÜ‘Iósîb-(3 …ŽK &5^êdn²²¼$æ@CªÞ)µÝª/9&S™+§¾óí·S§×kÕ´èúx£Ü_«LK`»uŽÓšyôSkâ‰Éú‡Éû‰Pá •›ÛxN§]^›É 6I~• @TëȦ1CËhùÒ«—˜Ö¥ ’z`q±é)­*—oÂX+cÇ`ÚÅž†Àš»sK’0¡F/»ý€sî£Éj[É» }ozö>Çtp×tkosÝ[b±è”Às9¼27ä%TsaX/V¸;tç +žFMÅ÷”ÀNA J¯¦s›¾„÷…•ãÄ^°Ñ8°‹Ï:ÞØÐBá™ï$ šãª¾ìóØFõÊ=Gs£Œð…,…:Û%;½9LÃ.a®OI¾–dcŽ›üÅE{µåéØâ˜qñ!Œ+N'/ñÎê¼½ÀnÃŽ3Ï1}ƒ:Ÿ§}¨«§½[5&èl}»ûÈ‘µ#“Ö;³Ón„Ù+&S?Ã·Ì Ô¼›–Í;sµÉ1-8©>3Úsµ#&¥³‡ëqÂJÜoI2vf!³}÷ SÑÖ½/0ËSHñ…"5ï,ÈÜs+…|77$Áô©š¿ÕXfh¹¬˜}ƒî»]ÄOœ¥…8^˜kF†vÂË6·Táƒ68FÛ¿A—y} …Ç·6¥Ä/‘\þÊŽ@ +Îo0és’;0¸ÿð²~˜¹?R ÈXõ3 ¼Y\çšvjû¼±C8v’†‡¥ìW°«[ÄŠŽ:ï¥ôÀû‡s 7Ù0ͬ/Ì·^áo˜ö^Õêñ/·€¦é׬æ×Òìäx0¨‰îËêÜ Þ•Í½ùPÀt~”˜;„¬«Ÿ ˜YËȈ \á\FûcÚ˜¡œ/¶·fyF7¥ÞI…IÛ.T½9Ù›p’|Ù¶±àB ÍZo~ª ’)58æŽ0”åñY`ðf\XMóh7πТ›{s¸åožÖd^”ä.îªdÿå|^É–lÞœŽ\ì—óFîñ¡µ9W;ÍÓIN20ªaåfKõŽç:æW L¶åÅ_©†í0 ˆ¥5·?7 êp`„¹Ôµfñ訇oL@”1ùÁοcš­SÈ,Ìžt l'S(²cúAl» ûD¯)Þ=æœRÇ$9Ô³äŸNþb+е<(»±Úu¨ëª.Þ—éàG‡]„d62¾SmÎlœàÃ`q­zú¹ð¶¸?ÛøÛDlÖÀd~J®ÅsÃoDm\6îK·F ƒÁÐc<;WŽÃma2èÕ»q•í+pŒ`[sÚs8—;QŒ3Ôk°Åõd0„ pËî]݇L»nØÍ•CPQ¢"‡6Éb¹¦ÙS›8÷Hm©˜`5Zû?x U=ïÔ99Sxz6KDÄ`J“ ç9íUã;ÚÓ¶>–Íâ4Â0ãÞ0íúä$`0éëÍtèÕî s4§eG,±c}Ù¨cRvu”ø8(@„ xW z/ßçüœ˜0­5iU30Žìâþcbiô§+ð·ƒÊo4(¸·œÈc#šÍÒÎsƳéÓ?¯£0„ûŸ ‹ ªiß-·ƒ¶…Œ« ÿ:x§)H‚›¯ÿÊAQÅÜd”›E›²EO&¼”`Òn–‰Z§c ÏuÄuªc”HZÇlá»ÃjCì‰E }5ª“¢=>yаa“ÿÈÝB®¸¾Õ+K`¾˜ °•N:öÈ$ë$qJ!ôµ’~™Ë]nPeI¦Õ€¸?eZ‚d«Ñ+ù¼’8cEƒÁõ«Åm Cþ"ݼN2 1Ò "»è@Ã#ÚVÏÙ¢rLKnr!´ˆ²÷€9 Âm†ÅAq)ëžóÁæm±ñ„ÁòŠ[$0(|“¦^ í¡ó†·ÑÁÐéË2û ×ê,þ˜N-‹hÁÊcé€a•@âLg´Ž+î!¸Ì…’‹cù!Î`Ø5z +RW€~/0nZ…¬@ö«6±0èK³{zǪ1.’SÑV»§)»Ú[ž,ŸµfŒEkV—²‹%}Þ¨ã¶ú¾É0ùú^³Sƒ¢Õ"ÛÜ[I`p668ËÞ},7kd0 æWgƒŽÔø,8èí9âg7|®óé pÑ 3‚›‘©£ÿ\Z´M›³@.Š,N.̤‹ø†rO1@Ü2ç÷ð˜x°ÍÛ;ò›pU]<ü ½ Æ‚0"ö ›Û +kAÜ2Štù@3î•<Åã» IKÒ ,[ršäÛŸ±NÿXáÛ—1ªº±gãÛpž9¦I–ˆ=Ï!TŒlÌ<½t¶}úÂ¥mЖ4¶’ßÃÔ`4ãÖtjµ•ÕN{óßš 6ïØ"nD@”ÎBÄÕL[¶9áÆ·[;|CåÎÖO/läÒb_jeÍ‘gˆv»w`ðç=~݈0_ç +ìî‚07 ·wJ›5Þ+Û‹€ëD÷tóiÀ](øJ æ‰l«mk:aÈït[·Q­[Bʼnv +lCOO&X4`R(5b>˜ýÛ=Ó(¹&AÓ1y\6n¶›tj]J>Ôt%GzþE`¹»­Áp)›MFܾÔÆr„K®ºÓ ¯¸¶ ~™€H¬ñƒ›*<ÑáDv‡ïæ"Þr]œÇîù4ˆNñ‹ò€$>DDˆÆU„ß}4Kþ9=%ß&ýÔS†ÙõJ0¹àëKHŸe;!º‡²á€£jÏ•¨HWŸë:ï¬M’ƒÃžP9âþz/QNE6^µ Œ‚ÏdÆ´¢ü-‹U îbÕÎr;­æù¼—(·ÆnyD²Qëo×È`Z#ɳ Ô µ^ÿ½s`úìÝòòœ:¼ó±#ñbÙ m3ö~9i)Ó&­ØŽ&pF­ÓÞ„º ½m:õ½Xh¤ÕÖSð×؇`˜‰~L–L)g¤Ý=rÀˆá$^Ù+ qÞž åô‘ü)ZaΆ›,ëte™»:O{‘öËS!M¶/…g綢+V¿O3n1|òyàû%óþö­ +&y¹¬y#CÝ1x§Hi’œ)Ë5®ÒÀš»Ç1WBÍo Àæð@Zn¬Ñ 6nq,F‡õÌÀÈ·»d-aCÞÚÓÚkÁ‡É¸¿ˆR<ß¡±¯Ì>AçüÙûªj#„1>«ÁèJþáÎËC7ÁtÒ[v';ˆA­qn‘(§m«8†ûxÄÌîGzTÁ¹'ÙrÃz¹(Iîà—J MÞÃàïÖ¢oßÓ毰 ~ ©ÕýÆ9•ždÁ]Ebï&9€F÷çÈs}½T§-r1ÊÉXæòØ‚ õi¦{À¤J}ØN6Ë0Ñâ(ÌÉ.×hN|Óç4¿W4hŸ c±š½PÛ‘îÎèy3=<ÕÉÊç÷(«žåŒtAæ0&DÇP£³i.uøÝE…‡ƒs% ¬I‰hÿ6Bn¡¬¶!>ææìµçs¸X$"zÁRœõFHGŽF˜&GKºûs«I0º)ý´SŸ)ø»˜H`åÀ¤J"‚‚eG¶ºVÏ;›ó5u”ø€#F~.Èjðå"0&02%Í]‚¶u²‡™@xv9i x¹Ï§Æ-›&ÈŸ#à;¹ßLG»–frõG2G$eË$yÈf»V±Â=˜LgXm#È{ðˆwõG ,¡7ÁðâÞ|¸ÏŒ°ÔZS bË™‡‚>î·ŒN˜ë‡Õ,ËÚ6Ʋc›ù<#KTÍA\ý‡`!—ž+QA¹ÒI´¥9—IB¹Çv& òJ U…òy%ºjX¸ŽIŒå·ïi “‘GL]`² Ùû>”°ºV^çÃï—Ÿ„SoÄÌÂÁ‘Ï+ÉKxÃ6lÙv^)Ënù¬’:WGvܵ2TË¢†ƒ?Ä­ž“Ôß%Ÿç +dB¯YÏlY~â‘Vä)yú°H¢v.Xƒ"Ò=f}i¸¿è$¼´®ÔâCäypî¯ÔHž¥øÍ\\ú§“(*…<"Ns&¨c$cvNÄìû§1óyÎc'š·‡eôóu¤.±øn—'@²#æ}~Ô,dëÐCä YÓÉáFÂm×i´Xq#°[¦O'.F,Ç0»#ôÔŸ›¡"€qÓŸáq“Ð*wzFßìÏÝFÁ1r.ÖàKçØ0¤Òïã&pÖI~ä˜Îúf¥8ŒØ—T÷ÓüÞÒKp!¹M+û`æ¿Y1¯;_ÊÛ㢠ƹ‰·¬?@÷§tSkÅã €Š“Æü‹D>(~µ«Ûƒ+Í}›cö“‚#VçíðWâ7/N£ëºÕã±¼n^¨Û±"7÷qøÜ<岎²è`½Ÿ®ÜÒî8ó²ø©é˜Æ¯5‡ ðË&ŽÝ³»‚ͤ½í: 9ì+9˜×Á¹uµŠCžŸ>Þ9-ÏÅ:˜&Å’¨ÕÜɱ`èðž'ÉfÈݽÉàœ­Ç¦ä¸‹ôÏ`è–*Á÷‰ç« +LÊXÓ‘±6[=ØŽ;TëK»ÅÉ ˆp;‰”mëö}÷̶Æõ\¶á›ëÆôÔ? ?/É—a·d`¤Õãì.ú'”òÀ2 «]"¨#5cz;ÌRçú^'G…;¦Cç.‡J1­Ÿó\µ(ó,WLáXÕ8ÿí8H®ïyÈÔF^ƒe›Ã—KŠœ,@÷œ¾6³¡·9FO›¡ÝmYzªØ`Ø¥ÓSD‚M·\cÖµåD¯ðÀÅ–MFä +ÌÈŽ}Æ7æº+¥›/+8^Hi$_{»|PkõÏ;ÆÂy.cõõOšìÎ4ÖœbÁ!Zãz†œæÒK%'âµÊœõ¼³YDv0Ì»“§óÁHê0ÚŽ¾pïÚ{éš½ N’sŒ”yD|oøM,ɱr¾Màœhõ* ÙÝDW9&S­•Û×q©éîséˆ-ul·Hèbw©«v£‘È|v² 9Ê°["geZ+¶ñ·H“œ£öørãÍ’¤,ß$¨(û`FcM1³Û¤|úⶈ3á©{02gîqÈç°ÅöyN[ëÁ“HÞ±p €…üÞLª½ÒÏs·œyF–ÖŽ‚r0îœR:ìÆàù†{k.¹….íŒ ¡ÝžK”Kí¡‘‘†LëHúm<¶-Û>˜9gãškÎó!€ácˆ=;­6|±paÅY–qùÀ’ÃQ=ÊpÌܺù¼Òc(Cý<§w´ħ(=AuéôÙÕÒQ»`ã·~¾A:*®ö~´÷TãTXðK´:Û sši†¶X¶¹ÔOðœƈ)Ç&ÛÇTÅ…qèL°ÁÁn¢‘Åɶò–›Ýå^æÀ02Ù}ÞM\æqMKž8»3 AVSÔŒ ¼FüF½§ã#à&xÖX uDì$ØÞbð²FJÃp™nŠ÷ÁÖ͇ò»üÒ1-0üN¡áZœ¿Û±…kß wâðIa-l<…Z0{æ^ЀœUtÎŒrÒ6€l¨y‹°!ø¼±J×ñd«&äpûóØ“`àØz,@aî€ËGÁÍ3Çi¹¿ãJ令ž\‹`á +¼ $ÂçN_PµwY! ¦ùXs¥,\iŽáœ]éDØxz;GtTѯèIDºÌ‹AĹ­¡¬>å¤øÃá2c,7¢!ŽÈʼnÄ>KeŸ(Ž•°#œ'J0,4—¶Üîï}Þ7È¡•`];§Œ7© =b2 Óî’éäJP2žß›ð–¦ßÀ ÞŸwB=ï:€ ¥xÐ>ÏÁ5€²ï’ŸÇ¡ƒ”eö†a q î<ÀPõ­ ´ï7t“Œe®¿WK°{¼hNû »ý vOÁ2Iú§­î÷¿Õ\5˜âèP}§[JÔ™Nöݼ 3¯t +ptá03–šŒÝSˆ&A¼ý"4ÝP?G -õ¤u¬[4Jyú‘U•©\GÈ|G:fÉ(K47’%lwLï+A6,×Øše—[WtˆÏz>9 W J6&Y`2¡q¦Å+¥$z.wÙšÊIâõ 9ã—‰ ­|?Î.T€æRè ÿ†$'ÙôÖoË=µâƉ¼òÒ”ÿ2Ÿó¬`Á<÷‚WN'6÷¬aÖ®Ì\ˆ +Cüì-Ôé)¼[¸ÃJ lpZAÇÓÙîí`f2ÁîÛŽéð`+×y˜›û1$u™^Ì + Žå©6 ÓA^îÏm‹ˆ‰) QÀv†$ÌG¯úÖ¼—8 ³“®ÀÉw¢+¤‡Y9>›¬/¤èˆ)°$ýÅËù‘ƒ ÃnS #ŒcÞ«h€HŽíØÊ·¤¸è–H®Æ ++=¦ûk'‹Ì4Œ(q_˜sØe÷÷•{í=«ÕÄ=) [qŠƒq§H··Ah`Ù•L î)ýý ­Ï#ô‘×(r˜‰nóÚµNþ= ¼×Àº¥1Iþ¬“Й¼ºcdƒ^´þéM2Œèx¯Hâ…†ÃÉ&†)å7WlANX1 “j"Ó× ·–˜âÞ†óÆÀHGL¡ÃH‰0=dŒBl–ÎÇ05HÕ±//BI’¡Ým¬b”,X§–µ yÕ Ã(-â‘O`‹Œ˜m{YÈ“¬’;×pf¹4'ÆvÜ0’BÁÊsŒô[®Îƒ‘qPM4Ã`-dOOA0çÈ%/Cé5j¢Ž&©ÜV1›Ê0镧„(‘û‡ÌW춽$¥”ŸÀ¥„7w­„ÕÈÏÌåŸ0n©€¤*Z=/z9È\áqߤѨÚVÌV)ùq.v o„æ˜A'aÌÁ-yZTû$›Tµ90–¬Vn?DÈlÍasH¦$/ãº,ÙK·+%°‡&*":£)ñ‚w²çfJ1&– +9ã,2Lê™7ƒíN!ÃìR7Çü,óA7/Ê=.™œIV¿C«ˆ Ãdâ¬þ DŒ4gÃPWŽSYË?Ìÿ‘´,rú',.r,nZµÞçôO`ê0Ú“1»ìꆢš2*´‡\¯µˆä̶Ɇe²‰®¨‚š :õÇ0éƒÅ3€í¨àap÷ô€™ á¨êv +zjA)½¼j;¯pL‚Õ3,Jlú‰‰Ð0B4ñÛÖwxÌÀ& œK9µ—í½\§ìXµ²[f~m‹ +ènM©ÑD ›]k`Ò* á/Õêæ¶cV˜Ìyà`:[×öC`8qšFœKŸQRª5m¶•Þ«¡>lKæ·ƒ`ìÎÀÈ [Á0ÈýÛÓ‚Q#Ý´0â=+lÿŒd/Ë?a pÍvµ˜(«±êÞÀÇØ°ŽÜ˜Ÿ‰`~¿³ØÚ`ÄŽPõ FÜv%7 «R¢¼cö¨Bw¢[…ÊÑ=÷/VK7“°–0\¤û 4KÇÂx¼²å-FܱyR€q©Ñª×OözP^vŒTmà÷‹–p²iQåËwQr3ò€¹2鵉hKFðJ»5˜qYa\ób7Õ……uêË‚ì–ÁŒìRèc†á<‰D"V½×‚B¼\fâ2|ØW†§u{"Z0H‹ÜDQë6iw…ŽM‰át–\‹´¼bn²+aç`UOàÈ„[l8Æ¢V7­“rXÃ0‹õ:šÄ/‘U‚ +äVu—”§%Š[¦OîË–a;J²~yµcI§E²c+gÊ­¤«2@õ¤ø"õ³ô¨÷tæ¥k$Îݧ~ò¦ Å¶)€ Ú"iI±˜¯àµŽû¦ë¹çÀ¶ìÀî ŠÀöÉòheƒutIcðÕ`~k:£ôuö„±`–¯f6¹š#é›Õ8'·+ŒV0 +5”Óc§±Õë.“¬<§ƒ‘3¸âÀ/v…hLìØÆý×lºQÞ·¢V¬ŲIàºL¦1š‹ø9/’Ì9/-J€Bö;0ƒ÷hgíÁ:" ÕæÀ*@çT¢P5%ç Û$@r"_´f•T-gW·­Ù Ì*Í®¦)éÍå‘Õ1ÇÕßm,ô¤jO` Ÿï¶YÀGJÞYC2œ-¨nh¤¤xEf¯›V-š ì^¤ H(…=¶AÜ0ÕUªµ—&£ÍÀ2ß[Š.#ô›ˆ¿PAÝÑEœM€euÚ%ìê6ߊbߣøÌ{ÁÕŽ¤%üÅsÚ›5žâ?Á8†ßß… ­F5¥º¢7K‘zNÅß¹L®Ç;1κ%Øõܔ㈠+—Ù_êÀi§f±›¡q:`«ÛŸ=*ÍüÑ,‰8嬥 / ä궬/¯Ïm=ªÇ™ŽëGm5Œ­C10-Ê>Øh`dFNžÃÐÔDZ-]ÆE²%BÈ –“µÄMK1lx™©I¶Í,»¥±Êä„Ýšê@-®fe Z@Ô ÛDu‚MJøÍ‘i'²—©¤g ÓÉúô«hN¾2‹Ö*VvAAÕsE¦#Í‹/8k˜K/iNvçeˉ:·ŠJË0R õíBŒ“¸Â4Ä ¤MóØÔÀ ²±ä #i[ê³Sód.ÛéæC°Ój:Õ¦Áœ©%Ê2Ú GðÞ²iàÜç–Æq±RßsÙÑ[M™t) Çic娦>í^6;qâ:Þj²ã °0NÇ6Œÿ‘ šXQÜÓ¸<ÓkV,“Ù¨–Ùr@ЭNa±äßò;†ÅŠgù«Xï|¬kɲÏãÛ’§OWÍMâ/æÞ¯Xs„¿;=Ò>K·›FDš8¬vå®O ¶;év`ä°1›x®o§†ûú«íÎø¤õâô(^t·¢‘v ýgfÂ¥/¤Š-Ö#%—Éf¾=Â$%b›D,6rÓèÀ`p*÷f«³ãR‡â_ᄊ %j-ZÉ«½+þ…/"Që´´tB»MˆF†ê/ŠX’Æ*…DBˆ&’oêk)–Gªêáü40 Wø¢ÜЃØ0ìnRÑY½¡:rõœˆŸ¼DFCC7ÉûÔî_ žãGÃÃRÀ¯â9*Á ÆY#ÊY’v!Ò]¹l÷Œ„”{Õ&óC9„RN&Ý// +l¶ÝÁvFT1ÃÛÒØB½°æû^%‹¶âÅÛ +‰8¦-àù)þ}Ò†:´v˜û”5§x¤eµÃ*ÔAÌÅŽyVẗ@ú‘Š¬úéѹ-0Òè3æ¶[ðÀ‡ÏÃ"Ûd ^ K®;,½c$×5¶‘¶/Ÿ”‚®‘i µÙ„ÚsÔ×±Sf’ +‹»;2Ìy0pš ¦[1UÇHÄÞ÷v­Z±(Ã(yƒbÉ6³ øP†\QâtŠÜ&“­`Uò +õ¤µHä&cˆ¼ŽÚì@ÛµÉmmGªdé¬Qm•ÓÈKg÷.¾ÄýÿQïQ@jÙ¢«¨ˆ%ìí€0N¬´® {&ݧ~DÊK=µzj¶6&ÎA/Oë[+o'ë š4i‘§³‘^Ô·j” wŒÊkcšš‹9D)ߘ!ckaÚu½r£W‚øcdé­·CóD¼!»3g²{´9_‰™²¼&?ÉéÌÁ¦0¬SWý¹í^· ÚÁùf…è¨mqÞPÉæP1LàBÕå8õ² ê/34ì’ä¶j½îU?vìœT©õÓbS0„ȯ‚®%u–‹¶ÙÝ Ôs'Ä2‡v v7n ÷¾@ôÔœÅJ¢¢¶äî^)Î>¤5ý £ w¹ÁåÈ^€¦XܺÅÿ¸×¿œ¢0ÙÚá}抴6wÌ~"åìÂáBV׌Û)ÒS¶è&FšG)ØÍèÉð †!'«áLKÞV뇪Š… +¿dÛM :.ñàQÈÀ°þíךIlo(P•&-¹q!e•áaø±×Ãl²ò0æY˜Èu_)ÒDª‰æÙÝ—W$rÍÈ:l«DŸ(ÛáQfÅ(ÿT4g kÝK΂ùD£Ñ…_¸“Š'|-‘+‘ÂJ_¸¯Êº…ýËŠî{|eÄ+CD +¬[åmf¿šqˆ#KG¤4jm‘YÆœeW³$fù ×#I_†‡3ƒyömRRlüü#û<Æàyum÷)³zÆÄrŽ‚¼îÅ­3Ž€7—•à5ÞØíÅ|mÉÎôâz¤I¬·‚ƨ‹”¢³´±d¬Íó¤@M0.¹yÙkzrÌbœ3¤0’{^2ÝÁB1¢D¢e¢›È\ZH +äzPŠÌDŠ™5“ žç&ÕÏd¹eÙHîÏQÃíÔ\åÚER1ù¡cÒg‰Êù⚇°ó¬ø U"›±Ý‚YÎ…ÛÕ*¯Sç¸ñ÷í³xš2’VϺ9,~Þ¢d¾ì®sL»ÛƒL@¸@Ûáú匌VQHÍ£âÉžq Qlp_…ÛIȺÛùÎ(ßúTϸÎm(•’Ç~‚ÙíWµ´@$¾E&»“‚Ê;:úœ_~Å۞ˆœApÂ5|¬Íõee¿ìšû^Õltã3-Ï5T,)m Œ„$‘°ôY³W/;¦#‚´íLÃ4úWªá„'H3?-³þҽĒDMÌ|ˆ”ŒekUɬúŒ%âP +yœIìã À&‰êò,*·KÀD•šHˆR¦‘zaQŒ`Š˜'Z#ÌbXÁŽCäÛp<-fQµ\L‹kKÝ’Ù³T×IDmŠIöEhHq 3ãhã‹(ž¶NëÉ+ÃJ·h#x;–ç/O§»;Öƒùdw¯-è‰f´ØÚ½qYHuFr±¶Ýë7åÀ¸pê5š/ž$0‰:Âh=% +îšñN¸3Ó _–µ…ƒÙ³ÖuOûEs;µ5À–YMQ¸R¬v™1!ý¦•d&7YÕ¤À‡´ êT½÷“kö{°šÕ –ÊF‰a„“duz.5­'û¾'©*2²Å5x-g4¶é'дÒQ¢©±21P\]¡EŒŠæWƒì˜å¶"Œ2{ñfj7ÖÀô:«¨dUº‰‡ÎY*V¯Cë™’–T÷æº5yUU°–=[¹¡]Å7X¶¡nMd¼Å3lØ&[ÔÁÿ#m2Ì*KF$³€ç‹4ö^±ls‹©›æ äFÕ‡…bš:K›È}øŠˆ|‡üƉY0Ž×"îH¦0EŠ¥šÉÛS‰çóSˆâ…J?Ì9Ë&ÜÚv0iÍ…C['M±z.IpÁ©_›YývxaÅ)ÍÍ¿öDä^©±÷e†š•>éqc¾‰ªìàš ˆt–óapJqØî¥ö$$…£Ûæ_áؤ¼‰’¨¸Á2,äªç©Íu-.×5¬ô^«ÀUQv”%çú—û<ð+V뀊­|ì]j`…'d™:@` ™Ò¶}Xs.Y!a!4¶fƒOR[¬(X'dÏl^áUÃB+Íêã‘œÔ)òÖ¼N€'!„O0\NfÉ[—eQÓÙåUÏ“®E±ú)~¸]U\F²Nž¡§YN—¹ƒÁd¬‰›:ÂéFM§’Bm.ËÃ."a¾l¤[–p¸P”y¬×H/ay03æS?Ø¢(%%ÒŒÝ×¹øpE… ö fãPïGb;ŠnSw(Wú´[æÚ2hÜ«9OÈkØ{îy‚®jÉ|¾`-äɱIÞéÕ.ú–W7•Â! žñl³Ð§Ì!­Çb™B·ÝD ˆ(R}}YúóE0š?Ei²a?¾µs¤·<”\Ž0ô°A×å<6IÒ`±û¤ôä¯>¾°Ù%þ`èÏmxW\8óða­æ7©5xîL-Èpl˜VÉha²¹åòÕŒqá‹B~`Áv¯‹qœ„¤³D®‘mvy%&¶mñÑü‚Lj¸„ø+›4×¢µ*=RáUË“€#¦±‰óÃí0/'Á$SÁ%1½*œ^èÊ”<"u/¹ÈŠ_VK‘©¨¹Ó)+¼ dY’ næÀ“ Krl»:]l±ï×Ù`èò9 +"ÀCÆš‰2SF'$;`#°Óà,øæÊVQ×ë1älÉFeúøA‡SŸ++ÿ^t.fõ¤v&+eÜNçfŸì9iÌ´ +ÍUX±‚€„ -ËLŒÃuÇbg’…2™ÙEj:í˜jV%˜EO¡ÿZÒ€r+OÊ[¢ã¹$Î>buÊá 6lï[ub¸ƒ\n-Sü­jä\û8Ë;£1)vHŒp‡ãléj4@ Þ4Û×*!ýS,ƒú(Ù4¼ý¬K¯"C‚ ©f.¡œäO^›Ê^79• £>O”Õ€—滋åK +9t\Ò3æ=GØmƒIfù¹“¦;Í€4Q’DÉVʉÃõÃØ2mÔHWýsT› Œ»´6ݬ‘Œš$ÈKÝ[âh2rÜÒûT¸plA‚¤À:)²S¼’PvÜÌ¢QýÃR5ô¨í[-';w>аÙÍ—] £ž!´ÉƉT´• ãH«äUÓHÝc˜Æ®¤íe¸k¨6S]-µs16¶cpq›ÙÆMÆ£f¦–U5¬BUý<‡û3[6žj¾‰“œ¤Cð›ã½K~ç î†%JáxÛ¦Ïiا×´àˆ¯F0¶ß»ahñÓ½j`YoIlì BEÆÁv?Áß#ŽzQ~tYØqËž·¸%‹‚k7)ͪ;Ùõð½ä6<´JÊ>æ¡ecŠWO!C²‰t†Aq©¡MUÊhZ¬9+â°¢:$,4'àMÏ%Ž!ÕãË¡³[‡êZ¾ûpK`¬v«Z¦9î056-AœyÀðJxz[írµ:O ®rŽÊ\ØõQ7Ø0é9b*Ávöœž×œTþÁ©8½¼„q6ŒQø³Z¶z,qûŸ\!^ˆ³Zàß Œ^Ï°Z ^+´"š8 NeKiÒˆ¬9îÀÈdJÝ`Ã(k×µ`d_÷ô¥@$’[Îß²ìñvö6cw-«ýà¼6+»†ë¤ÎXFÒýH­Ul`~a8xa—j¡ƹ¹/‰÷ÏQr—]sK’ÕŒ6RhN¨0$GñDðøÔf÷2‚>;¡­6 ÝÊÍ÷3š›Un˜»”ì«>w-ݳ-áÿŽ„4`÷|Í*LÛ&0ŠƒwËYÅ]{ÁñáåÙ›<è@Ã0M2þ­ƒ‘ªÆU.âS>IÀˆï¬V¬RZõ‚І µj;`ƒ^zÌQÃôΰšrõeÌ¢ðù»Þ¢lk³ÜaQÔË}é@ṫ”øka‰e.kfŒ‹eÙ&g {¦IK‚aŒv +ÎÙ4PfT;Ñ}`·lPD3ÝËÛ;DIk²¥F®Žs8³x–Ñ£B·d©õ•ÔÜ}ÉÕ°HÀÔV’/yº~œ³«ôƒm­OÃÑÌL }Œù’êéYW^Ñr‚§ÁF¤Z0 °D HÆVƒ¾,…ðš"†A"ÔYºl/`ƒj)ž/Ç릟ݴÄ1wžÛÅ-!ÃôŽpqVzF™R¼›‘(,ÖI©=¦_*@Y®NÊ#!ab*©Þª"T*\¹wxeKÛ䎯»BÁÍ(a@ÆMÏ=¶VÃlÙ†UD‰—ÃêÚ¹9µ)ØF–*^ñ¡ÕQÀj ƒm긠ø‡Ó´IàÌ뮕‚Ai'b1ür”qnNϬV`€rÍßIâÛ4ûyߌ§yn–†E挛O ŠHõ~rO•c4ÆÓudFUYL#‡µO~þr+?ˆ(!;—Kòìk p‡ü¬t`ø™=™8¼Ç4‡':‚ª)©7 «'¶ ¬}{ªK@’î1Ž5LÃ6Y[QÑÄ1òßH,tà §ì ©[ñ¢M@ÃÆ=G5 +h¡ºžß\ëuêÚ[þã××?[ +òaR%9°¨YÛÅdžaËîâÌAݹ‘\ù”8'ÉÃ=•¡åêôT ŽQSº\”»X3êT«ŸG°™Md}GXIV)n;Ñ¿¼Åã•F ¶´«Ž=XIVK-âp梜cä6k«E KÏåÂê”y9« Ñ=b@ÛVfõ¯{¬>ÈmO§º]¶Â §†44Üu@ÍGzO=öPƒÔü§¤7L‹Èó6Yå¬C>ãò8ïá¥0$,¡#[ DŽ!W<½^%÷=ûTó ײ{'Èc±=µ¯C”Ærš Ø6«2E¡ÒùøÉE Ĥ'€5>õ­-àƒ+…í…77¯FLšH;äV0ô—â’±ÃaD¤¹Ë’4¸Ê¼–É<(*â‡6‰,EK´åØæn'fJ;·4¹Æ½D!ß\¤²  cúP˘°i6hZz +Ê9£$Ù] Ì2”(Q—,>Ö RY´5oíõbtT.?{¹Ç×9)ùð +Q»/÷Àˆ÷³Ü³†UªA¸¡@0•x½"²•Æ]îï$ïq;ÕûÉìW¢€ÙeU”’©É ¯Ží³Ä ãèˆ[ í\‡I™^§¤lòÕ€¨’ +eÔ n]Ão±¬ðÔŒë,œr2kºôƲwŒ°ÒìP­6 Yœª +„—fcÄn{Ö£J"‹MDsÌAã¾<¹|f9³kvf΂l1s+æ ÃðÀ· +ƒ¢][M›biùòr˧«;…Ï“«¾ÂiUý•d´°”“`ä^ð{½›ø Žïo Ý} ^Ò†ìä®,Xç®;¶nÑÇ:ðq +¡ú$L ¼p7>©,,Ë@Ìùd–ç“åäic £2jó·\…]=Wuûöin>-KVI^Ÿœjå´GH +Æ4¬³µÁHÃ×-wªcÄ|Fyó…SϲEû˜¡2v'Å€M +Å÷Ø +›À gVrYPÐ:E©&­•|ü@$³Ø”bw‰¹6#ÂA÷Ô:•\Õ[d£ 3L«÷ôÞ<hY=°±‡¥¹ðÒ;F¼ñ¢ºÏ i²¼F†³X^‡`Å­’Å–¨TW¢8.wìêòèQA‡œ´Nó²r÷){¡BÃê8‡¯‘^Íí=Á% ™,¤éϵHØÿsÝÓ0˜ëÀ1< áeeä}„¼dŠô +Nʹ£ZV¿ß +;F¶nÔãè¨Q&š¼kXQ¨Ý¢Ò0çŽ6Û©GTK|#³ouÝ»¥V^bÐê¥S뼨¼Ó"S¯cTJ)G 2;ÌJZ”„©„ý(YÍ'Q(fG1s`}>Ôo±ÚŠá´ÞÆé=é×- +HßS7\‹]Ë8æbm‘ÛÄ«|»ÂìØá¼8¶ˆSÉÞ2T1nÌs +íÅ4ôä ÓdÕ(oþÊCrµÙ½ÝË4Q3Ór7ÿÅK]8¦¡4ÖSCº»‹>êYžÔtjV/8Ï+fÁJ©Åµ¹,úvn»×"EÒ Ó3RÑb6óY-PÏɾžüóYdZT%?ê­ô :ƒŽšz +7ÃQ‹ÒHÃÃênu”u0RÛ±sÁð/zì l¼“d&#¨10íâÌRr@ŽC•² +Ũ=;¦`Ïö_¼Ò0ÊjLÁ<¥vk„V­˜‚ǪCÜ··}JZZñZS”µä‹îƵ*@Éë½9¤GKý#hÖ<}50V¥ÕGö¢Cµær«b›ÇÖ0L¬(ÌeUl)S°È2Y‚…a2æS*K¤Ælžº¬R=uÊnÿ<èãÍ55+KIž³@\vú $³X#xÝHQ„$û7ÀKÛx«‚a‘Ëùäü&…‰ÅÈÏí QÊ){·zA0(Ie,ŠÌ{ñôÓÅ^¬ë²ÏzÁœÓJóéÅãOW{q]øy/²• "­þ­?]íÅuùg½ 0’‚²¤øˆ^<þtµ×ÕEï…•É¡@оõâ᧫½¸®1z/ðûÞÚ·ÿ¸Úòu5ÑZ†lL O¿¯ÈÇŸ®öâ=yI +3òõ=Hª§Ÿ®öâ=yiµÛ“¤zúéj/Þ“—–n8U’bßVäãOW{ñ¦¼$Ü2¹ëÖ‹‡Ÿ.öb¿)/ ۯϒêñ§«½xS^&8ÐibÙN/~ºÚ‹÷ä%¡é$™}TO?]íÅ{ò’¼LãY³yúéj/Þ“—V0ïY³yúéj/Þ“@ð¬Ù<ýtµïÉNK¤ñ¬Ù<ýtµïÉN YìOòâ駫½xOvfs@?É‹§Ÿ®öâ=Ù™‹'¨'óôâñ§‹½Èé=ái© Ö›Øzúér7Þ“žDRßÇÁÿãrÓï‰Ìmáê¬?Râñ—ËxOb’.ŠDò'½¿\îÄ{“ÄnÏšÍã/—;ñž¼F™á†ÿ¸¹Ü‰÷Ä%95‰Ç!Û;ñøËåN¼'-ú$¦¹Ü‰÷„%QR3ÈÞ:xøår'Þ“•ÄrŽ'õøËÕNä#)¯û‡Ž?ìr“ù&­Î×M‰ãïËÍ–7šmGA¸èKÏM”ߺï—¤iľ㠇Þåïð¿È —Röîÿâ­ýêýt‹ÏNÑO·v›°ØÜä2¥ÈçÆÒZ‹??ÛÞmS…(ûd[¯«’j^sâ­ýŽhðñöÃ1øxû¿¡|¼ýß0 >ÝþïHoÿ7|‚·ÿ7©oý7,‚·ÿÙôáCYøtû¿c+|¼ýß>Þþo8 +oÿ7ô„·ÿfÂÇÛÿ›¤„Ï·þ·ùŸnÿU#ýlkÏ)A¡=ïûÓz”5úüˇ[¡e¾5?Üú ó•¡ùáÖ_ˆ˜¯ÔÌ϶þÊÀ|åd~¸õêå+óí?“._X˜nû…lùJ¿üpë¿ØŸnï…ÕùÊóülë¯tÎW‚ç‡[áq¾2;?Üú ó•ÒùáÖ_˜›¯\ηþBÙ|%q~¸õg²æ {óÓm?“4_i›ŸmýÙÛôÙ¶þ!zè[Zßç}¹ä¾Ú{øAçôÝ·ÿÐÞu'ÿu]ö¡¹ÏÏ1íÛI}h,ïIžÚûØX>쯇æ>¿.ó}'p]þÂI~lö]rò•ö_ÙÈí¿KK¾Ôþ ù©ý7 ÉÚÿ…üÐþÛTä+í¿rÛ—„|©ýÖñSûoÒ¯´ÿÊ7~lÿ]âñ¥ö_˜ÆOí¿I9¾ÔþcüÔòe²ñ•6_ÙÅ-¿K3¾Òþ+¯ø±ýw ÆWÚe?¶ÿ.µøJû¯\âÇöß%_jÿ…EüÔþ›tâ+í¿ò‡Û—H|©ýæðSûoRˆ/é¢/œá‡öß&¿¥ ?5üA]ø~òcÃ´ÿÊL~lÿ]Šò•ö_9Éí¿KN¾Ôþ ù©ý7iÉWÚå!?¶ÿ.!ùRû/ ä§öߤ"_iÿ•{üØþ»$äKí¿ŽŸÚ“}|¥ý;Ûø±åë´ã m¾ÒŒ~—o|¡õW~ñCëï/´þJ,~hý]†ñ…Ö_Å­¿K-¾Ðú+•ø¡õw9ÅWZá?¶þ&™øJë/äáÇÖßd_ñx½°†Z—>|ÝßöØèÇýmý~#þAÛ‹è¹Ùûˆ~ˆXnÿÃ>¢bÕ_Úÿ¬è‡(õ§ö?í#ú!>ý¹ýûˆ~ˆLiÿ³>¢bÒŸÛÿ°è‡hô—ö?ë#zŠCiùS>¢"П[þ°è‡Øóçö?ì#ú!êü¹ýûˆ~ˆ7nÿÃ>¢"Í_Úÿ¬è‡óçö?ì#ú!ºü¥ýÏúˆ~ˆ+jÿÓ>¢ç;¾§†?xÇ÷â#znøÃ>¢¢×ŸÛÿ°è‡¸õçö?ì#ú!bý¥ýÏúˆ~ˆUnÿÃ>¢¢Ô_Úÿ¬è‡øôçö?ì#ú!0ý¥ýÏúˆž"ÒŸ[þ˜è×Pô§†?ì#ú5ý©õûˆ~ >jýÃ>¢_£ÎŸZÿ°è×pó§Ö?ì#ú5Îü¹õÏúˆ~ 0ný³>¢_#ËŸZÿ°èGôØè9ÏþéßQºæzäÏÿ¬¶yçi?ï’ïe£¤ -ÑBIHuàßüY òïþ”¿þDEÒ"cté¿uÈFðç¿~ýçEåìýõ_¾þüþø·Žç¿@‹Tåîm®ùwµ¨o¤Ví?Ô¢NƒF¥âòõ'*P$RÛŸËkƒí_ AªxWŠ þÚ^ýáÿÑ!•y…uÕЧöÞ|¡¢èØýÇ5Ò>0€^‡\ÇɘŸ?èïÛq””ñOÝp­‚ÿëiž\íî¥HŤ³Eñ}[Í»²ìf„âXpÕÏÞ—Þì‰ë7`ö¬$µ¯dœÏQÖø/H¤„ή³Œ¯ª§y?Ø¢J¦U%°@úÝ‹z?£Þ3Õ¹×K_®‰œKÐ)á®óLã>^ Sè[Xu +«F>Šþ¶lùÝ„ÉܽÁ%S£êV3HgtNµÛ++EÞzÙÍj+t +9Q™ +¹•@‹2G^V—à9\»Rõ’ÝV‚©S·ÎÑF[6Þ¡‰rõ}êÕ\{O±Ye[aª7X77•©¢¢±–Þ÷Œ’€@¸¦âa-‚(˜kËÑ{BUš¨“]Ô­‚¾áe^»:6›æH¶îW¡”àŒŸùC›ç[¦yÓ:.H”R¤§Xu#½bV]•n(”˜ü¹JÅu}OÑç- +Cª#Ój¬ŒDI!½µÞ‰Ö›ô9±MÕA‡y¹Û}Xž‚Æ4$#NÔ*6ìÿãí]vlÉ™,½y=E¾@G;/Î h @j@SÕLд¥Aõ¨ßÐú–}ïˆ<@VDwT +Æ:¾I§“F»,3[t±õ—F÷=­ÁèÁ¥ÃÝúD†kzn¸ WccãlÜÕ+_éÃÜõæÑ×sÐÃè.Ó݉렩™.œ¶{Ëf“Œ¥¯þ†èÑEÏ ©ë ·4–_¶ÒOž¦«…Ÿ¤q™~óZÜþJo§©à…ٲÇ7àRtF´wµš· ½•À$°gÆA•Ž’ãžô 2Ö?è¨çsRi&,‘L¿ÄvöàÆ•CwÈs‘a"ùBŸš¿j§WìM‡ÄÀ†n }êÆÎíšg[{òʲ«¨¸zÍ.^`ÑÕG„ïÚéÌxIíX”­m´hÔÍs¡¦×±Ão´‹¤ºü0 ÊÚg¶4m¡ùÖœ5›ú)ßÑ@L'Qûqã`Ÿ4²ëú7Þ!®è W›Q2ϳш’æ‚’ÓšúGÓÖ—¤©Æ:} užŠ¶ŠøqÅp´È”¸8A¼ý΢cø§ô¿JožK;nƒ­ì¾,ŒÞ–ëY2ÍšEw+×JìSG·FëºÁ-ˆÉÎg®t‡òOZ•¬„ö»û™J ¡‡Ð¢ybú®ú̺*ý»² '˜V—fM“R+ù!ù³ôÇÀ01¢áž>/§K?ÛVŒ¦‡¾°*§ž~Ž±Ãø–Úù4ݶ'›NË:$ñ‹d'J }t6u á¦áŠu‡[zjyi'•íÀ½…®’zAI³ÀèÌDW ¤A¿Õ)9á%¦*ÎêÙ€r7ßæwJ>Üà|ò*:O(”³ÍøMmæ殣å/}>ýC-JãÁ®—Œ¢ï0ÚÿJçés'ƽ¿Üƒ’VÊô­Ü5°M{íì17iJuI5Ž£z³Ó¥ZHé(ºõÙ´$MhºyÓØM¬E›!¯ãÍF”â¢-&L맓ƒi¬Òðµu®í]i]b/–úöÒ;®hΫ…ž÷ˆŸlô3Ó÷¬áªEÊÅ=?ÜìZ íîs¤[¶ºu˜^ÞJÕ_…³¢7+ãŽÑ0Ü${Ñ+ +ûœ2EÑdlÝÅgü/ÉÃMßÒ]b*ôHÓ}qÓNB?©ÃØã¹Iãí~¡º,º`ë +ÊKRmÌ‹VÚþ¥–mnûÀŒ c ‰;ˆ;žîÌîK‹«+~OfVïÑ'Ü3¥;ÑÚÙÿ¶èîºî¦ë>ÍR‚?ÜðÉ-@ ½½4ŸwÙ £›Žá¢Él¥1½tÃå¾z`7âêʾӗ»¯Ia¦³¢ŽýˆQ1éø™ßFØ8w‹Ž ~-ÉÔyº¡ª»Œ•Û§òºò9ú³ï)uYoWY]ÖxîM)*Ñ;ì +á;hP½¥»¶@.ÐåÞkR‡°J5¯2r–ú†¡ñéIY~¹[³·¸‹Çp³å¶i;§5©á‡ž‰­£ÔšjòOMú>o4(a´^vóă-®{ýs}:)ýÃÝ c*ܱÛ|ÿ’–UK¶™ ˆKmàÒ.¡S¢N@ÑpróïhlÝëA–$¹{ë¡[/Ýt=ÿéÆÒ<µZ˜¢$ÉJ@W_Hk)tT•¾å™–º“c£³M‡×›[“°%s +mÒ¹£î𨛆Š(¹Xº k£%¦»[b’«O‚\ l=}i[5Z Jí#›]‰…M¨IK#â‹êŽ á+ΗÏÔ›j1ÝpÃ'1Þ@’h[k‹ Á5o7³nM(Fz£äJMH·ˆéX“Îõ7í¤«»å²’4ž´æŒŸ¤ãrK\¹†QWZ6J*ÉE®oï‘I¯W)Èô\.,J§mj(lÂt2ôxýC›Ù»‡àš>+’›úÞhâX.Wó‰9ïenM:Ú¡j™,?n®‹É-êîΧߣ]º6´íadi+M7uBï°rÇÂ’•âÑò«£;{Ø &ë4+ÒûTf¶`Тh“f‚=}¹'¸ÇÚxtõy!±u•h­ +v‡åØâ¤îh¥ÐÎÛþÜqÙn{`]붘h—(&Q=™Á´ h•®m"L—ŠÎzˆÑÍnîy¡ºK²–:úh‚I¶ëD"du»jKJbŒ„ž":˜©Z†±;ì±É ‡,fîÍšÕŽ6÷-ú<’îù\3º Pé)ŠÓþÅñ¢ßÆ—º´ÚÁ¤eLËmb,¤Ur£ [z&ÞŽt1a³oþ3|sZch6e§*G›{}.L2]!Øž÷Ê>ê`´ön ‹ìÂ|–@?¯N·eK­ÙÕ†g'vGÃzYk4Tî8‚ÆÁ´±iú áËy¦­¶çGxB±±‚iVgÕ]îõsöW\!7'I“{-»d¾l5mŒðˆ›ÜKàëè`ýIÇ›ûÞ‰hù–X¶Å:Ÿ¿c`ë8 a…I)¿dõÄ/Ê‘ɬ½>lKG_Ú¬51ZÙöûÂù ÃWv‰‹“÷׊‰h3È,çäL:ÜK!ÛœiAóvA‚Y½íÄ|Õ/«î`úgÚE,å¢}-Ýê­ÞN¼J´…_ü&®ŽÓQ8°Fh¼i”Es=±YÒ©… ®‹íHõI—ûZC½Â ¨5>8Xs£ù…k…@ƒlt¹ÓuÓÛ¦»‡·y~sG·Ü¿©M¢_]Æš%«eJuÓg¤e¾»ö”æ¶Ø˜e]º¼5À´JÙê]Ê]‘v*û=0ÎŶµÜVÍd$åOúlIh· mà)-ûyL:ˆDp&†ÞNË_ÕFÇ ëk|DÛà„$µ%›Ü¹ã¸”ènç1ßWø²‹Æ•{¾$¦M* [É!~Íü@4w»_^¼ÓÇÞ[)±Oz n×\J `Iô@:0¸©f1—ÉÔ_XL|•ûˆZ ­œ»½ë·=¹f}Rëná Å¼Üx;0]6K&ܶpлIVÔø溋¦VnÊpîöå=|0ýGÑZ‡_¢ ¢i6úÞÜ#üURe¯\êýjkÎ^)x=îÜ››­#a†©¡Ý(ä<§ÃÛ¸ñ,r®¥ëúÊñ$_%ü÷ÆÛ‹ù¢C+ýпY°X2¸±q³Ñw@’žºg$&«Û:7ß~‰MWz° ˆð‘¾B¸ý&¥®´pµë“Á¥Ëk&ÖN0§SÞÑá“Q"-ñÆ3Æ•âw[¶ƒ­c¿àáÒî¬5¢ºûd3ÜXA=µó(1©>ø—1m¿yG/ñiKâÒÑÃäÀßEƒépcÉ8)þšxâ +¾Ê+ÎWAñÃuŠH¶ l]Ö]Áôïô‘îDõéÕ“(Ö^æžÁ§¥:K|>í€4}îWRÏ H%TÇ_·VðZ‰fÝOWaY:&VL)‰Éf¼c*HÇïŽá8ëµFH¡c5iè+¤cÁFµ¹Ó驃‰þ’žŸŠDWûÎI-MIL§¹ß4é[Ñ™:–SW,íØŽîî¦à¼ÄJŒ>ß8|G¸ž2 'ˆ&‰$)ÂE˜î ½®©:%îW`¡¥Ø†òÂæI¬ÉZ±`¨ömõ×;à‚ÑÑ€¬¯þOµ<8 ´1ðaZŽ‚‡ƒªõ²Ï +¯´Ä² «ÄŽ NÑMçmÄj~¢Åë醜=/°«aÆ%&ÑméÁ³T§àÙÄñ¥n“‹¢‹C¾`kȉÄnBSDWÀ*‹™§–æå•sZ»ðØÔѺr¢¥ôÁ‡Àc†g¶Ø× Fp£`H£F`O”&qq}Z)8ËØÖ]8Ó§Õysp@Ÿ@ºU‹ñŠC;fÓ÷ÒWš«vÆ2´C9ÐSFM.±£8‚I&ÉBêÓØrãù|R$¤^Ž)``p»ÄR›X‡OÈñ I–P¼€ôm¸ Œc–ó”äÊÕ„¹÷sU$5$³ ­·¾ˆ?vƒþÓýãùÅm{(NlÅ«¿t¯Û¸ÞV¹Îc²5j¬äp/‰-öR…é,-àøIü§:AÜÀÖѱ«&VO@L÷E—^t'v;dæèS1Õä\¥Â´Q¶îKÔ5Ìé¾ëÁ6~ênÕ +¡¾°“IŠÜÏéÔðå`Rø$ì á/d-ÃY¦—“NŽ Z? §’Úá ‘þTG»¤·¶¾ý‘Ñr0}]e%& &ì<”ß sºåvf"‘nïhµãÚá“š˜^î–æ×ý›º@¤ ǵ^‰#èuiøaì¸_Á°d¥Õ’;I‡}•˜v1‘eŒ½}_%¡!ÅÄ 4ã†4¿÷ùI ›®Öb+Þ´¶ã9ÝÖÃÑÃx.-±zˆnü&DßÝ-,+Ý´+±úÄp‡½vW“¬&ŽXÅí¡­‰.1MZ¯ØB¸hý“˜ Ýj÷%˜ŽÌEXÐAáwLíÿNL×Hò5àÞHâÂ$H¬j ˜/¯´÷„ЪS`IG9šWÃ×A0È/Y©pÊŽc˜UÂÌ´™’˜U +/Jæcy +Ñ$θ<Ûsˆ!]ED¢ÀWiÛ éK†±nhò1qáðÀ„p$ Vìù«—öUáxYpJ¿Øy¼85I kÄ:îzž“­)#µÅs8Ÿîžë,¡ªLKÖÓ‰ +ç˜v‘¾e a, pÖ³ÎX›vò݉IÜV{Áê½÷>AY°g)‘6?wé6ÛÒ)J,‚– + ‹SwOü$ñð}åi–rxqÄmG1Øù$@Ž4_c%¤wM½WøZbƒÊ¡+EŸ>~=l—À¬žÅOn¡…Ô@cÃŽ|qxwu9\ë©H!–˜ÖAg­'®ô‘˜tÊÞÁ_rcJëÿˆ  „²#Lk>ƒ#¬‚õ°b#u4ï$‚¡.I©\‰5âšj’›LC™x‰É¸câq~ôµ¤œŸÇÆháÚ …ÃÉo'EäŪ£6îã¬çBÔuØ°«{Š QsÒöï‰õ«¦šêà÷­‹3l=ruÖ1°pÃJl™¥ØŒtÙtwIK¸w;syêô‚é·µG¼îΈ8ø(0¹Ä^¡5°9Âa˜¶#nØæ߼”½“qÕržXiûpÀ–nˆkùÂG{â댷w7Ïãq¥SÒXó´%¬¦Ÿ“Öª:™°ìˆThtîWÐÀdÏ •x]*¯ó›ãÐÿÀàn$¯Lß6X‹#ÖZÀ=¯û>¿)›>ˆÓœŽ™Öß]J\b Ó%ô<¨1øs­‘&²G*.a¬m)¹_t†kú¼Áð¼fT ÿ€÷ ×ö´&é2º+Ä–P®&T¯,ÄÝSGz¸yõC|Ô *A]×Oì¡•ƒ”žˆŽš"ý}˜?†÷FhzS„é{H|Õ;Æ“ ARœ°fµÜýòY'BT0/Wb’¨w~ø!¨¡\Ùƒ\S?”TN¦ Þ‡;vË$Æém–ØD}Ÿ+vn ]?!hf° +b–ÑêOMAùŒ½’b&°'Šf¥9l•–XXw¶±|tÈ€‰Ý‡½–ß¼bË&†ÏŠàbj¸zµt @,ÞDžZ¼9ô GÁÂ2‰ˆ¬´T2«Áª‰!~HÒL·ûJ =4D°¢%1JãyNšŒ¬ŒØ<\W°&Ÿ>oÇñ¤Xë×¥—:^gçHÚ_56&æiÏ;½Ãuò9¿ƒuÑk˜½ÔðɉIìç7ïðÉõ8ÙüNbhŸ·9ƒ`'TÕ s \,ÆÔt êbƒ1Ïédç®ÅÇÓ_‘©ðõƒáÖÍ×é ô‘˜DÉZ!o±¨¤ ¥ªƒo +fkñ?Gx(éð8¦˜«"=µ'øR’íZ‰€zwN…!‚ -6QèÔ@xé×ùÅ·Z#`2[Zêcý犫×t‰éóàwKl²ÙöŠo~I¬dÆØ:üfžÃ•äŠß¬j¤ ŒÀˆBˆ=‚!ÀÌÓ0¦#²S…¸a.¨/DíÄ°vE4ëŠ;oÊC`Ÿ `Žc„6sch‡…̜襒®ý<·u¬•rI¦ð•Áé¸3l„q\1½Â +¼ð·w0¤˜Vöx¥`©j·åŠÖó…tuáF¼zˆŽ7ÿ؉F_ ÉÞ$‡àÀ´gƒ‘çÛ©¼Œa;™>!û‚\o×Ñr4”™ u'¤·ÖrÚ‚¿?BxçΔæÖYܘôÜòôÆ&ò•NÙÝ2ó`–|-e-A›µ×ï¡?A_¸ÒÖòÛ.ûßc¼‹­˜á†äQSæèŽÒ ÒCqC7Õ0;]*åã¥L×H\½7,©es0g¼^ü¢n›=Æùʼn ÖG¨+ˆy]d5±¤k‡2-BÇ:ß` ¢Ãóe•_b¤¤ùÆ"jœM/R%Z8vñg6?‹¢»ÐLB¸XðC;6û*0)©aú Úà šXú¡8i&îq~r×ø²awéd ǹ# `Ç“cTm¦"#¬bVÔ&àŒ4Ÿ;1ì³¾®P¦1ûyXßú¬aàƒ\ßrêΈ |éý·Ïm ¬Öpê$¶3â˜n÷–{Òeôõ"ÔnSK/'\¹/9ÖˆëõìŽZwš0ŸµˆÓ½”FêAŽ ý†#µ"#Ì6†)¦ %“G•ö‡gš Þ\”åÒs8 v¥hܸ_š4·žS™(N-±òäpà¹ë,–ØXÇÇw_Ž?ì´?lagò5Ä… ß,IXíÒ"ãÞƆ†M5òœÃÝ.&vc…F~ÖMܽ…öŽ9ßPêZBŽIÚÞŠ½4›v“Ö³’αl]†°ûIËÄÑ,,VbNtÔ÷F`Ï݇¯X›}–,n‡>¯KŽ‚¶6"ÀØ¥R"^Òݯ½ñsu'‡õÃ[›ø‘ÃUc¬m²>ëÁH¾ ¹]_Ïh!Á3ïaÇÔQ½Ï}Æë8Á +ZŽ4­KaÈNb’¨&2 +#ö×#GïS§1h5¤µŒy;W¸ 7£²,ëÐë†1È_úžåMÞàçœF¯Ä`Óf¶có$Ë× ùºR‹©1íÓù!\ªÓšï‹WºnFŧ­]sÂîëz<Ú¤µš§è½Bþ–¤~0ýÁœ bE÷vש˜û`ûIÅ…ºJšÇÈïŠ3a"‚Öª«ñn;ü—Âà”ø^Æçw¤†02w9ó‚ªã·é£‰5Y#ÍaÜFö²öP†\'zpLÌY™"fœÉIfý9ïÇ–[¶%ljß\¦ÌŒ0li-cg6('õ¡z!ïu½3ÓSÒ§çjo¾¿æ½dGpNH.–nA¨ØX'µp„¾E*ŒÄ2“ÞÖ¿êÁÑ¢=„À‰ÜQŠH¸,…C1C1r¥áO CûÁê2oúÌdò=8Z ûPöͼÏcö’w¦E! p°Mà5"f<"ÃMGŸûY 2“ü×Iè +–\'óÚñorkfO¬Éz"©Ë„B’ž$þgb=Ä[ õ¿I«:ÏÝÄ&-ŠàÑ2ÖO:QTƒ€Ü¨d\iõS¾ üï XÈÉÐ Õ›H¹L?É”’؆>EúTÊÁµ·òãHKµ˜ú‚÷Q:ogý‘‡kH‚Æk—X;®ÞJÚ+̧ ðeÌS»M÷„É/Mÿüä2ï¬r—‰¹¸Šz±›¡R½q…ÍÃty*SFøùIijì-²³°- FÏ3Ëð RÀ|ÆH;}éÎ +KMòY‰é‹K¡A_‚39GäöhÛê•zbO̯Y@¹dæhg‰xÑzÎÔÀÆ8U0àÎHá$ÊžXêèAòÝÅyf%±—“¤#!t„Ú:óÜëNßyÇ$v vpܱÿ¹dÆ4˜©‰•MîïgÙßõJ.0ü¡ÜÁ)*Né/‰I ¦¼¤å~Ëm†ayêœh‚¦=¤J>å%ŠãgÚžA ™¤=èß™ +›6^gžˆiôÿƒG¯ÿ¥­TÏ<%УTŽ“s¸RÿYøJ„©Š¨F68˜®ðnœüNÒ£f¾yê°,ˆaR¼.8ü!•H0Œ|p•õ–@Xn¥â´„;>ÒŸ§™X+ó‘ÑÙtϤ§´™­vwTÁ›NZìúÒ™ +½oUbëFË"e5[-eü¢ŒNXxÎ#(ã…^åà '8d¯Öö[H>'¨£ÒÃöåULÔíXÃbž6‚¢‰Î |2&;(ƒN­×±i×3—{ÖL¤¥8H„æKbO[’Ê´O¡ÕÄžƒ‚4F`ÎËv6EÂ%Özž3ÕŽ‡³Ê$¸ÉT1&Ý`Z‹ÉBD-D‹s uhîpÛ +‹:M* £DjÐjçF#ù.Tìbè–©¡$9 ¤l"­œäÙ–gmˆ²k™äÎl'Ò÷³˜ +y( ›'=¥ìÅuWAÈéþ¨g–/áÁ½p*¶×eåé‰jrz5û6nËòj$µ{¦ËP4gî &sCaÖŒŒ|Áªß êÎeS0’:k“Òe-nDx +¼Þ‰ugH¶Sö‰Ý1]0ø»ïËÄž\çÄðnÏ+èø7;:ŠïJYÝÏLVKõ)Öú;až·ÛÔqÔb¿D*üRcЛ3Ý#’WÂÀ[Ý$ö—í¢˜† ‘©e×!‚‘×^HÆ)O=Dt}¤ $/—ŽÐ$­=ÁÆ»Îh”; ª.|# ñ^ç'ÇS?Ç%¶:é2;±i¨†’'==*{†¦¸MÞv –ñD™É¦êáh¶Ü§,òJÓiÁ#ŒˆE5a¹á£=×oÄ0)ù‚Â’¾gw";ÓŠ/¹æw¤ƒµ½Õi„ìĈ†W¶’‚¿¹Vwbºdbƒ£žë«Rqf&6žÒA‘~,yÚΞÑ*Hw™ŸIQ–±Òž$]{d¥0ÉA'»%¶îàf„ýºa‡ŠGù˜ð“cä@¬‰9tµ &‚¹PC+.‰i5‚£‘&‰–QË°¬#óÍ1Ï´Þûù L–ÜÕú8ãuÍäöoB¼#QèÊE Ãsȯ&6ž²Bát#œÐ5˜.*vT7’’ÆÕb‘jpIÁ´t°ó¼iµ_°7Ø®gH‰~ð°$7¥í²0ÁgXd E-™Ivp1Jø‡)äØ"e"B=ì¾ßu“Žâô¬¹r’ÞR GboÉkxw DÎó›·3ék„¤f”Œ;o •~š6äPÖ[ÚåFÿné÷ ¾ÊÿÞ¹J²™ˆª½y‰„IùŠˆ˜£q™m¬BPÈšxDø4xÉ˦ГÔ×øè„~jPäc)Ãh&ÚèÄóPXÀžlb’ó°!ÂåA9‹TÿøÔy J|`¶‚ÕåÛ—P÷ÓËêzñ2­ÔY\‰Qó+ÃcËi‰í¾ÎëQi˜z„ƒÙ™éš¡§–oG uc|âc=ãí§`Â#•˜I¬%’騡»90¸ %‹Çxð Îóˆ`þ ingsSS€Ð±éú—M2½ÓÁôâÁ«†€›Hó9ãQ_ÀÙ¨Ã$u¼à=¡›j„ñ¤¸Ì(@·íåâÔÚ¡Ìl8l™OY}d”\g°ùÔAtÂNÁçqž[§Œ€“dØqõy$ße6 Rdžo2¥ïnÏd$ÉDÕ®ÄÞXÔ²jAùOLzN‹„ +&¶ðéV›Œ½Ôßq°Î+2 »“kû*&úŸm$ý'±;½RÆ$ºF=2¦²$!sÈÒQvºP«´ëšÜ7«c¹ßI‘’ì:D·»‹ù$„§…´`•b×ùÅ}G!¬ CŸDD0›QæÇLB¼+e’îÌe®™rŸ²›ò¸Î–ïÉb{²É€å‰Ç$üʈMP0Å¿‡Ä ¬?Å/Á&-žÜÄ%6á„-k/Yƒr’hqÝ&¢…Dòß1›ž©°@,Ñ•ÛKÔÍmí”*O¹S™@x0Ï×ûI›ßó•)J'©'‰™!çÝ@à¥JMÿŠ°®+´Q7‰ÔÐîÉš˜?ª“naF¤rkWæŽr.IHQWŽIS`û|ýÄNa «™ÊŸ˜Lb“GÝ¥¦S±³Õ³\Ûj®û‰¹’Ä«Xær¨1…3á +ݱönáW+íð±¿ÑUŠ’ÿak~¸ñÖ?6–¢"ÿ¼¿v³úoÆtÈýal©} +8ÝÍå±B±iNÉ—m°૱»I¯¾®ƒÁ v¼¬‘¡Ù¦7eûpíO ¢ÕBÖy«3³FÏ +m6WØLàv=°Š>$7ÕkDÒy©®êÐã ãôÏò<æ2j” +C•ÃÝîûd÷í¶6õ[N“r6Y£ LVÜ©ð fS£A”ãrÒ#9ün®öE|y£Âke¼Í¡êT …“Õlÿݱ滺KY%BËLNýêmhžq=¥š‰Òî:ÒƒƒÚ9>`dÿ_ÁkÔWDBÛAaìJk" Í)xì ̴͉óÅ—s=Eãà宿£ÞKuö4˜dw$Œö¡Á¸À\h>°pÛÒˆËÜëHäëTAÏŠÈîyF3ÅØ`Žçf¨¼¹1˺2lÆÛPJÀÒ@¿êázy…ßÁdÊ–þøÛt©}¸¨óªM6¨N¹°Ù›éþ‰A õJ€Ý5yH`$´e40hNÙàŠ@ps§øÉ+’ÝwbOWo:º­f‰1Rbèë?ÁÆÛáêÖ]ìÞ3†¶œa烿Ÿ"#`ë\ `úûQûÛ.îæh?ØWnìƒ=¤úfâ|$'&­ú"Èo êo6ö¢Ÿà!|4Ë]}ïpL3rÌÀ}é1ÁV°HÁîÑ3°Õ“évSŒTf…ü é*§ÛÇLLvt oL7™Ó]aËêvˆ8 Z‚i1G‰÷ÓÒÖNµÀ:fè¢VÒç¥æ¢ w8®h_¸28þ×i—˜·6¬!æÒî +%ˆâ;™›`Ñ…ÖZíÉç½o»kܽpˆpêD®X «±¹)Êf€‘=å(&˜Ô„hF%|Bs3­;>:ù€W¨ÇîÀˆÛhüM®p{Ò8Zð 2•ôv\vGÒ ì¤‡k'm¬$(1xdNžiЮìì !MV¦ŒF»œÀF†M{H `-ÛD×Së§@×v•ã§/¥k¡ P_Rç,Äðmú5Ö€ŽŽ¿rsFœ,˧ŻQ“H ú +Ø…ðœ¹&ûåVlÐÔ¨Ë~°§FPs=N¬½mRQa¢qÆìßÌÞ™Túíîe á+£§ ]Z>ÕõÒÚ`hÖ +NèMÞ·Y—ìËŠÄTêLl8Éù#gÔo +ßO Ƭ‘²JOúA!\¹vZ‰.dø_0Ìò7 á¾T¨†KšS QçŠ>1 5-XŽœ"Áye¯°èžq݉i–+#/>ËÏÝ®Ãç¸;¯àÔÍQs™»%“kÝuŠG•d°E³–î]Y],0j©ÝŽtfå{º‰"Ö“©†ÓßåÅÀ¨­’~/°Ç)3a_îvÒípG* ‹RŸ;ºt’<Û²ª $Æ‹‰“ Qu^LhnÎuYÙï¦zË +EÌPf —Ä(S½¸ØÝótU&±'… µ>»OÐcU"²ÙȃÉÔ®ìéJÉÕÈ2­÷4 uí'›iÅTWT÷ŽÃeZÃå&!(U9®r{gÂ]l,R3ÊÁ2 Î;Б…Öq$K™ÑZ0Ø(èºBtMÞj >œƒùhË Œ:‚;z¶ÝÓÅ$Ùc4ö³c/$;¹ˆGõÊ·8±9áL^#Å®¬qùoî=+ÃÌ áÍ-·\Va&ÔctcNÕ -X8›ÆŽþQû&!Ogͦ9½g]îÀ‚ˆ`*þž?º!ש¾R 5Ü3&Ù_ä~ ø--Jȃéêq¾Q2þ”1 +(µûÛ5Ôö¨¹@hTlcS¥ƒ,¼I(tTÛyŽ@‚k¥‚á +®!ÈÐr¼èZ†H[QwŒXº^¸Ú%_(ݟ؈LåiŒ«'½7©OÁ 7¼Þ¾9t"[(vÑà Ë7Àß¹¨tñ%>·›\ák‘f£-r]# G~ ž9îZ@a¦°MÌ[ƒ¢æ`ý³¥e£4Gn“Ctöl{¼?¢• +=®W¸‘~­¨s/-;]i_œ -»1]ê­§Ù´lEMçòIIuý«™]I¡×0FØãø7·=~ª&Wí Ú}²’vëÖƧÌT`›öo˜C`‚²žÂMEÏ420WÏãƒ#’ÏOéf×Y\‰=Ä°Œ Öˆ[t&n,xk$&]lÚ±JèEö“„kH¿Õ^F°Ã2µµdZÜDMtÉ` ÄÖÀ4³iÊí™aÓÌì®íîeèc@Ù­vÐeg¾®Û:kZíÎ÷£y¸4-JÚ4+h˜-¦ï'µH§Ü)¢†HÈjQö§Eh§¹Õa`´›p÷:EK*Ϭ‚ìîÓuEÉ•æhX´÷2Fóß;Jvƒ½kßP¨-iñÃÙ1@ërSa‚Áuå4—{XWØë“U¸\/*@:¼çú•¡.BŽŠ¸ÛØ[¿ú`ÓØŒ¸_[Olrªn—è&ªoƒ{­Ä^ådÝüé…0⣺ £¶D}ƒ, {;ßge RÆ¢³R(jxEïhœn¬jÙvà¸EWË +f±H(aW<Íî@OÍ€¦Û¤Ûj”{(\Û}gkT€DÑ«âªã¦Èš]¡·ÛäàÎ]ÔõsÖ’>™_7Âãv#Ш›ýÊÂ``Øs–ËB^Oï1°yE-"¢úóéNÄf' îß½]Z9±f>54U©ËŸƒL ³–¾‚õ¬3…ÕN—*ûriŠ•Ó$d L¶Äé¿ã&æ#K7¿òÙš0±v4ˆNå+8ÆÆ[q¢à:Z™^–½nÃeÇ÷Úù~Ã~–Û…m·uø 1Ïù*!†‹þ-œ ¦)/'0×à™—¬ª¶ŸTÂ:2IN¡Û:1‡ˆ!f@$´y0˜7OGõ’  “Ø*Ý‘Oò¸ƒ`C—öê +¸$D,¸Ï«Ã­ "{“I<˜ˆ‰íd¬e.™?Á½—›Êp €¹,ûK–n»OwÂ@3ô½;±ðF—&Qˆ™lùiv@6Å$´ô–X vÛÖ©º²FM¦épÎãhågèdL”ëTÇ L¿?]õÙ¬ŠõE]°õô„‰ûj®°EéOO[òÕ µ»Îw`w-ÙŒÌÄQÝH"±Hž¸‚®4¢Ä¡û«9¶9¢p>WuÁiM«¹Ì\ƒŒ/Y¥Únw¡‡Ã‚ÔäÛ‚‘9]#‰vpyžs‚²áLزê‘‘ìšWé°u:€éÒ9iÃ!©ËåõŒ´¸è:GøÈ•–s¹§(¾h?JLgŸÎ(îEÚÜäÐœ€¨šl¥Rs +L–•r¦ËrjQ¢Ù:‰‹\€Ž×»aê•ÂÂ$!†Êâp/Éæ54$°§9IuÖ±ßÀfÓ˜ø)&+ê#D×X^~¢EÃM¸œ^Œ8<—=ò=Àdgmw'uÈÚ¹ÑqJŠ©Jqç¹im;Mª€pÃG+7»e¿hfóCÈŸ;DÕpãæSŸ–κÍ{c&Ö¢1ã +ö$Æ˸ËÃeÚ`].죛–6éná}'3ôÚQh.0}â;RH`›Âó)ùvÕu‹Ü]×€“JFŠGwqëàŸÈPø?Pë% +DºÄîI+ lD!½äî.Ñ{µÐAe”$O½“ó;ŠÉ6Ý©ž.áz,èÀpØD*ŵv´æLL_$ËGÙrÉÔì(MJê‡b+*)a‰t\šË½ž¢@{<ôãn{M§+†s~`w¶(”YOg¡á¶WÍT9xìnMœ¯g–¶Ø#OlÚcD‚<…û²N´Ë!Þ•ØSmØþ`ëÎÄ6E…OQDJ[×h÷ˆ‡¶F0¡ñ”8Í°%&meR (rV’‚ÛOíW•,= Ê\a÷7“˜]%[Ñê•Ut?¦\|¤m¸øxIl­,© 5Z¤Ãó„˜o ¨ÔÛ»û!¤»eTñ5žØš—û6fÌuJXKÃɈŽ$Ö Ô‚è«Iy”š”!'òèëõ0#ÀV‰Ü r\£öë¨N j™¼ÅÝEI‘ÐmEæ¼-{ÀdTÐ9«D3}Æ,-7(@ˆwd5r/z6^§ø‹Nwt6pï±AOð’X¶âvòd#ýÅÙwÖš”"‰i{…SÍ™p”¯ÍI’ãà|Ž(3Öì~ñÝ>óŽö«xUoø^3ö(,–…Á&‰N’#öSŽ£qPÏâlbI˜‚¥¬„¨OÑܳ˵çIØ ‰S ëjfpQ(ÎEîp‰MÊ\´hŸ3\IÁÅÇ£+j -›TX4·†h_—iÕqFuÞ'!Z¤’Bl0z‹»ÅWuP2zT'6©%S²l}ºöÌñ(èÖ²>r§€DpikK¿ïìGòún—?Ih>Y„Dõ÷¾bYš[ƒekIb›šs‹l°6j”Â{ˆ é„g-;"ß/ÿp5’™= šËÐa&ˈžG» göp/í(pO¨ŽT¬ì(ÜLœ ‰í|k½^VdÄ¡j6¶pA* +­gGq7#jA2»êå8@@Ñ" 5ÀÍŽ"RlŒ’Á§à^sAØSKl$·&êN]ÅuˆÛLÙDGzNâ4ÑÖ¹½ws$¢SàâÅ¥ÝÌ$›;nÚ¾]™¾F¥¼hÙÀf¤Vf¤=æ‚Öðß²ºuG.ËMÂŒt½êÒ–-²G†C«Óê²Ë ìu\(£¹)iÒBk8 €€îðß,¨ç4¶³Š‹ P^¤F­A´™¬à×^=jÑÝY*ÙÅ¥öZÏrÑ#¡d\<ç¡Äçq„hgMzK ¸»ûé.HçÆvqÔFbëÉš¡‹¤ú>ò³ºplftq}WÂŽ!àÌ"ÀïìŽÏ|¢üùy6yôy¸T½ØY¨s{ºg&}EïŽF?#Ÿ?ŠÛ‹ªYß!ØáVz86 ;¢j“l¶×)¤r‡Ì! £¸càyO`µÒå‚Îs=ˆj ¸€®h8¨Û×O·\„jʃ=ü ª(Qy‚M•Øâ0 ŒÓq<5VkjxÍh[t ‡T͈–1‰–`?È5°¨9ÃÎéýÅ¢¶ÊždE°‡äîà‘€|'öðƒ(×BÒ>ÐØýâ÷iÓæ¶;±‡#T{pkÖ–ØÃ*Øc ø7©…z8BÅu#}'íÄŽPqÜŽ:ü C¨Œ·Ô©À†P¡sÁŽBáÆLŠg»ÐS¿­Ë΄†µJ¤”•Ä†PA{Ì¿¥jCˆâfPJw²H†‹GõA ˜•ØÃ*n-RJÔÔá=¡Bww\)%¬’»=¡Â±£û<ö„ +êÙˆ’»¿B…º”%R}{B…»‘:VÁˆ{B…ŽúgW¤Ç}¿B…Ë„‘Q°‡!TŠ}Æw6ªNf7C¨Ø¼”•³Ãü£6ÜaS/7]J †ù(8ì$4ï ¯=%§ð†k‚+ïÚ‚Ðä×¹ CC¸ç‹„JCò†TõCrúbÛ©û`žra!]E+íEZÅn?úÙ¥Ñt¯5È)¨ån"Ì BNJ‡3B–Zÿ‡TÜa2݉=Ì B'(Àé·£.ÿ¡Gq‰92 öPƒ´芔Œ‰=Ô ¾™vµNj¬š[²^öQÎèê5hzÀ³#ã±èa±E({üüd}1ƒ +4‹îz¨#±‡Tª›n¸(Nb5Œè¨P3h²p˜AÔH‹za¾qÜ3l-<ï=¡‡T¬ØgÄ ¬¿ˆA‰Ñ¦s&öƒâ'¹–ÂáBfø!¹\›T2}gïW +¦fPqöá½áN°É *®ðD¨Ÿ§^PqÏÝ +I ^Žü䔊;ÁgÉÁÀ^Åá0bµ£®è%öƒ¤ÏÃÑ ÿ(é؇Th¼MÍ¿q Ã bƒ-üo)0Ü'+™A¿Ùv[Ìxl½˜A…4‰Ê4ÛÁf ¡—³³vB1ˆo|ê/x1g9‡¶Å™£ÅÙá—¸O +Èa•ËÁvÚ”í„ZPÁ9DÞs¾4…¥-ˆoC è¨P¤Û`ÙßYP¤eàdƒg°‡T0ZIº¨f—JxÑ‚ +T2‚‘6 +öЂ¸ÆHàŸy¬¸'-¨¸†«V'îhê$Vë~¢›ïXcÊyV+ۅ˹&vXAhtdØ­ôÝàÕ<¬ J<ÒÍwDe°‡„†Û®^qâ¸é-¨¸NÒa/2Ž-ˆB€¡¿Åé ‚ï¡Å˹™ßHì¡QÅqDè˜æýЂ +çaìV£>ùpuÜ¥æ¹Û'EWž§VP¹mðÓÃ>°ñ¢¹¦©ȵ+{hA‡I‹N:‰=´ >9=Ø Ææ‹T`ƒSG1wÑ|±‚¸£Éx»rcR–õ°‚¸£(ªel½XAÅ>„ªÕŒ¨eR+Șº¬W~„õb!ïÑô¯è™7(MzXAÜÒèkçì)ˆKnâùM`Y©Ñ§ø‘bDÁOœ<” îù`±õ"÷7Ap`sFè +è!Mßì”(ñBRG3ù@Ô%²ÝIA:e×^•—6ATœÁÈDyÈqíÆ¥¿z¸@È-Z7Ô*e¨`•ÕíæÚÆÚ{©Oûht°ÃJAãd =l b—BÇÒ"ö‹ÂWÑ9’ƒ~à +ÖÁp¯dñ‹•«t%ÿ>l 4D‚›8‰{Ø@ÖôAÑ»}¸Ö)*M û×ï8ØÃ*xµ*jw„RÈÿ:l Ã¥2|ú–v}±ŠÛjˆø!KKÙ–{®Áawï²Úãµ[í-«8€=l b­C÷û`¨¸s€ÉŒ®¹–P²Š%<©©ü¤îÏaa4kŠw”y:d ›áøþwDjí2¦=‘ýU-Á2®.íšÑ}¿È@Å¿ÓÖ&¾Âx‘ð†¼u{È@x_ȶ>ÐCŸƒõž-HÕU’ „ûHänéþ§HÊC*—±IZ¯Ä^d ókxÀÖ¨ ×ÊíAÑ{‘Š- -PÜTõxÈ@0†uz×ùæû-­Š5ÝñÒ‘OIŒ‡ %ËÌïºßÈ@¸Ä­TG¹ ¸O‡rö¦èáá‹…œq^=\ œ™¡WÔL¤ªÂÃê”ØÅöm ½¨@ŽŒ 6öâ‘´sxˆJcTxÈ@¸vdÉÐe/±ˆ°%Òg”:!ýþ¨Èç«/êX]í „¹Ž&•}YœÖ~È@$¼µêº\lEÏ-Š—áÅ]9•þF£Lw´ñÐg/{ïÄ^d Îëá^ö"Q›È}fJŒw¿‘ÌæíNNìEr„ìüØ‹ Dm춢âÌ5ÞÉ@—ñFÞ*Ш¡-[Ù½qpɦ˲Þ4xç­Wò&Ø‹ äz€¯2d×|ãÙGIo¦(I9‹‡ ¿mØ{Õ‹FPûðqf& ÀÃj®yp=Uq®ýb5'¯l{˜@¦ÍF¡•ØÂL<ß&µs˜@Éç.™æö0àÀÓs )¼`‡ DŠBwt3JÏ•òb9ó/~¶÷)åÅ"i(Š‹Ô„"‰bÄ¢b&õE"MñÅ”zx@NÉí¯n™æTgcO)À¿›z<)ymb(DÿÏ©Ç`‰…ùöW’-ØCb!%V L2F,Á~H,¤¨Rüs„J?º$rF©?ªÐCbqç©*,¬^/‹“*ér•þêõâ°8ÿÍ1+ôÖëÅaq²¢Ä˃•‡¥9’E1ƒ¨wGŠÈá°ð}oòØ®xq”áÃa!1oMs¹«/‹úN¼-°‡ÄBŠÝ ™[ƒÄâz(`Úæ8ðÏsY0Òèæ¢È`œ$rq$s’wŠ]–üLì!±€]Ù±6±‡Äâ4º1GÒY'ùD‡Äâ<ºfbã-ûîÚ£>.¤CbqÝíΔÞÛ¸ã‰Åit=/­À ³¨§ ‡ÃÒ\ù;2Œ‡ÅvÄV\²½‡ìñ;v8,dʽÕÐ÷â°81Ï9{QŒ,Ö‚Ã澓Yö²Î,Þ¿ù´¬[/‹ú4Å,’öXŒÃ7™.žCZÌ•}Dë~qXò1‡+{8,1\u–]b‡%¦…ɱ~Ia1âNÚQ°]/ +‹Åe†¢*š¿rRXŒÍ,ê +V^/tvCKìá°øû´'bºÚArXü]£>NŒW_Í{8,ÎÆl“_#±ä°Ä‹º%FÚ‹ÃF =󱧋œÄ0B÷åÕÐǬ’Är6{&ÒM;H‹‰ÐiXäjIbqê2zb‰ÅçN²É_°ûa±‘ƒš-R]ë I,q’Gøm{H,N¤¥Ôqˆ)‰ÅÒ¡…Û*±‡ÄVO À ¥ +{” t2xrXœ Ü1o‰=çãKÏVä®vçO·÷‰°^ ÆõÌ;g:‡Öp{8,–µde ^W;H‹«Kzÿ{8,)¿O +ØÃaq"·tZ +`ƒQíàpX|'èV„¦Ë$‡…»„.^Wvòp¹sX@H1¹RrÀ-9,Î`?%±ÀÊ‹ÃâÌ÷·’Ó.v dYÔâVÎ~mZ³¹^)ødûïbºÊD’X|S/‰z‘.v ª·¯,íbÉa£-EV›.vîlªGÙ_ØÃañ}®÷.QÆbºØArX\w¦ÉY>´¿Ý©Ö4Ü=Ž¨,r8,(^ÚX?!P¡i‹Ë_à×_±ÿ\í Y,®ÒAIú,eêjIc¡‰,©šù`ý"£ì?Pc#ö¯W»ûßô5KHL(W½ŸbÝ”K84'6'Elº\BÒ`À|gd-^—KHLÜ|OÿU—KH òå-™ìaÁøtVü“QÜå‚ãj ô߸òÛï ÆÛ^ÂëôšïûÅ‚aûv*H' +ìU$§M×нá=]-áɱ°)z*‰½Šä¸ Ü…K &–©ù¡sCŸÙÈÀõ’Ã>¬å>µ!§ë%œ*9H!±·*9p½)A¢œz O•î)éKW´Òq¹„§JÎ[sòÀÞªäÐóbÇõ ÖÞ«äÐå±"ἊäàuÔkß9“ö^$§¾LC°þ^$'’ÍK»À^UrÈ5OqÐ[•ø`Oy­éj O™Â÷Èótµ„§L¹æ®"¾{+“ÓÉQvÛØx/“ãÎ:‡…>].! 2€E¡{«“s“Á¢y‡@£\«Nôî'nIì­NŽ$Cš+‰ér.òøcAQ$®¿þË¿8_“Ó_Jüž~Æÿ3ªr öÿøÿþå¿þ»û?ÿ—ÿ‹ +}ÿïÿÒãê_)€ôë/T%ƒ(¯Ìÿ!Š$‰öåÞI§súô'Ïãßÿ†žEÿþ,°‰f´f>³xÿÓOfqµç–ŒY¼ÿé'³ߟ… ×èùž³xÿÓOf1¿?‹åÞo#2ÂcïúÉ,Ö÷gA6$† ü˜ÅûŸ~2‹ýíYÐ¥Îჳ1>ÿíó¨×æag{Ò¦Î<Þÿö“y”Ì"Èg¡ñùo?™GýÁ<œVûIl|þÛOæñ}Šû#|låYOûÉ<¾/Ei‡ûUt|þÛOæñ}9Z !F;§ëuѽÿí'óø¾$-&Ð|Ÿÿö“y|_–È:55†gïûÉ<¾/M LÛ¯òãÓß~2#O¥ZþÑèyŸ¶ÏKùyôœïØ®oŽX®²^âòG«ÝÊwÇ<ŠÝ{Sì¾9æ$¢G%OL&‹œÅ*úÓ·çñ‰¸¢fÊŠnfýÌãýOßžÇO$âŠZ w‘{æñö§oÏã'ѵá)E®¡ GÆ<>ýéÛóø‰Ddb>uŸsïúö<~"=|Y-.goúö<~"Wä­ß:æ\æ<Þÿôíyü@ÃŒy˜å9goúî<ú4̘Çõ¡[ÿÌÀÿñí± Uzìh(¹eo?{óýOßžÇe()‡åú$»>ýéÛóø¡ 5¥¥’]ŸþôíyüP†ºã2‰›½>{óýOßžÇOe(Õ C¬þìÐ÷?}{?•¡Ð!ÚgÙõþ§oÏã§2ÔI.ûÅŸy¼ýéÛóø¡ …;þäCÅ<>ýéÛóø¡ %_l|Ö}>ýé»ó¸(C‹+¥~’ŸþôíyüPžüôŸuŸOúö<~(O¡ÞŸuŸOúö<~(O Dû“üøô§oÏã‡ò´Äþ¬û|úÓ·çñCyêŒ"Ê’!˜óxÿÓ·çñCy +G›ÒH­=rìÓŸ¾=ÊS'&>+ÿñí±(C©qF)b‘1÷¿|{?” «º˜?‘–œÅû_¾;‹ñCù9Mêx[ïùö,~(=)9|QþcwÅû_¾=‹ÊN;¥ßtêMÇ,ÞÿòíYüPrüû¬ð¼ÿåÛ³ø¡Ü$ÿ»S5yŸ3òþ—oÏâ‡R“¬þñIX½ÿåÛ³82ó¾¥ãLûö˜ó'c’vðGÿïo»~2n?:Ã7½h×ç1ê?z$ß±¿2Š_ä'þÀo¿Iü/2Ñö6qýFûêWýõñ¾øT{¼ç‹å ¯÷¦U×7ÉAßXËØþ_¿<ÚsªŽ<ûÍѾîJÚ¬gÛé_íŸ ¿>þ?p~}ü`1üúøÿÀ_øõñÿ¹ðëãÿgá·Çÿg¶ÂïÏàŸx +ÿ3ør3ýöxÿĈøýüâ×gð,ˆßŸÁ?ñ~ÿÄ|øýüçá÷gðOl‡ßŸÁ?ñ~_5ÕßﳦJ‚×u]ÑJáwõ+úù/¿<úZèW¢è/þ…ú• úË£¡~%†þòè_èŸ_ ¡¿<úÚçW"èïŽþ7¶çß ¿=þ–ç߈Ÿ¿>þ'ëô·GûÂ%ý½ô·ÇÿÂ!ý­ô—ÇÿÊýô·ÇÿÂýô·ÇÿÂý}ô·ÇÿÂýmô·Çÿ ý]ô·Çÿ ýMô·ÇÿìúÝÑþ‡ø¨?Ôßûë4¸ë"‹øýÙ¯€ÀÛxß |_Ë}î?à‹ÑØæø™i5?ÅW>økëù~ÎÞüýÝ9^'úwç߈ÐïÃþ”ýñ¿ ßÇÿ)ú[ã!>ÿ‡ èoŒÿ7ÂóÛø?f>gü¯Dç÷ñÊxþÖø_ΟÆÿ!Óù;ã%6¿ÿS†ó·ÆÿBhþ4þ™Íßÿ!2ùÛŒæïŒù•Àü>òO™Ìßÿ+qù}üŸ2˜¿3þWÂòûø?e.gü¯Då÷ñÊXþÖø_ÊŸÆÿ!Sù;ã%&¿ÿS†ò·ÆÿBHþ4þ™ÉßÒH¿‘ßÆÿ1#ùGñ§Q#þåù}àŸrŸ¿3þWªóûø?å<gü¯ç÷ñÊuþÖø_¨ÍŸÆÿ!Çù;ã¥4¿ÿSnó·ÆÿBeþ4þ9Íßÿ+…ù}üŸr™¿5þêò§ñÈaþÎø/ÊòûÈßç.c̯Tå·ÊYþÆè_)Êo£ÿ”«üÑ¿R“ßFÿ)Gù£¥$¿þSnò7FÿJE~ý§œäïŒþ…‚ü>ú¹Èßý õø}ôr¿ã÷úB9~ý§Üãï{ÝÞýðºíWÌü7½n_ÜD_þe?ÑŸ2å¿Ìà—=EÊ‘ÿ:ƒßõý);þó ~Û[ô§¼ø/3øeÑŸ2â¿Îàw=FÊ…ÿ2ƒ_öý) þë ~×kô9ÿýëØ¿å7úSæû—±Ùsô§œ÷/3øeßÑŸ²Ý¿Ìà—½GÊsÿ2ƒ_öý)Ãýë ~׃ô§Üö/3øeÒŸ²Ú¿Îàw½HÊgÿ<ƒßö#}~ú7c_\I_†þe_ÒŸòæ¿Ìà—½Iʘÿ2ƒ_ö'ý)Wþë ~×£ô§,ù/3øeŸÒŸòã¿Îàw½JÊŒÿ2ƒ_ö+ý)'þë ~׳ô9þËØ¿æ[úCüç¡Ù»ô‡ øÏãÿ²é¹ïŸÇÿeÓ²Þ?ÿË>¦?ä»ÿ—½LÈtÿ2þïú™þãþeüßõ4ý!»ýóø¿ìkúÄHzöÜuÿùÿ€k^7Ïýõ¯ÿU£ó«gíên@®_¹+¼üKÚ‚¦ð¿ý«†äßý§ò×rS4™±KÿuÑÂ…8ÿúßþú¿ÿ—ëºÊÿú×ÿó׿þŸÿò¿ÿkŽ8ÿ'ŒØÜ¡€F>ÿž –Ò ödÄêÎRSÿúOÃ]JôïÏ€õë€ý€´#kôšüÛxåO/ø?º¤2Æ°Åî?-h{O§ÁM/ì? ÐaéO°6=þþÁÊçú÷9ºèN:SÌ®]ð=)Öì´$¡'^ýÚ•bÑØÍKF4Úš4í[ne²hN{Õµ®ýÊÎ>Ž`4HëÓMo~Ü^ã{ï±;Íç³çÏç×ØîBç·Ñ=fôRØÝM £6…ôr­o7&Úú—4ŽÌþVt·Ó\«ÛíNc€±¢I’V†ö/ÙÕ}»Û…ÔÚÛ»M¯´Bº%ú:­KWt +ô牚Ÿ³µ«û°MºëZp¶Ép›±iinml߃¦ÌÑ—³ÕNC ýÃÏ­Ws´F‹3 &[¾ÛôTŽ`…&åξX{¼÷Á(îY_îhHºéæXélË~¡a±^»_n@¶‡;vÓŽ Œ&2µ¸ã4í¯kÝnx†CƒVlÕàö˜Ù1.Ú +êì¬+úw}N"¿túõ«{ši¯ K¶{ai!éŠAׯ´ÌÖy­ûöÇ»Üö¦·­1ÜÊCßB¤>ÂÜu_ÞÕ›Ó°®èL_7ͯt_\nŒ²é9wi:ÂhÙ÷Ì4éúØéÚ¦ëòºõ«5¦B³:ÒßÓÝi V»U©Mí¦sV$´ZtÅqó#°E»5wƺݲ–ì¾úoŸs°*]´Ÿþ›fÓ׊½‚ÿzN­A4.Û«ÓÆw¹óÍ)µM§féÕÔ¡­tà¹:Ýk5©]c*¼‘¾óô¬tÕ»´Vñ¯{+Ù[­Ežny¶>ÜýŒn•wý—8n:kÚý¨ð1ki“ÙÆßûúp³¨î~žn&§iYûØZ‰ÙhblV_§Ý_]ÍVé§ä°:éA©ót»ÅÉÞÞ¯²áh¢9YÎ히Æèqr—¹*}G™§>~‰3K +6×zn°žÚÑ;Ä€¾ô «8Më Wæ Ñ³×‘ßî`«KÀÒ­†NmÞÚ=÷¬Jô\š§ŽNŸqžé_«}±Üu\Úý¥Jõâ¹r¹­lïÏÛ 8u¤¼0uª$ôXS;R»5úJÎ[“"KÚ¸Û 6zß^îí(}E‡ŒXžA .m½¢E½ë‡ÛˆÞù ³v.mw*}^G©#!Õ¼¹;íé/pÐ…¥ÑÙØŽnÝ”:¬î%sî¼ÝWÛ\+Ró5—¬!ºœi:ôœY½fXcîÊ£M!^Ÿº—–›h ¤AÞMéªz_Úa¾çÕUš—Ñy¬Xä•{q6hÀ6éC”¯Yê‡C-áM¿Ú³ ®Q§Û_VwkÓÍH‹TƒôÒÒY®W´#.!'ògI^ѯM/¨ËáɆx»=Pu××*óìÖÎ*«pIªVSßC;vhÂ5ÇôZ•Î ´U–²( ±ó=iP«©7D½@õ¡¯]sÌåþÍšÏÈm:u¨ùÄ…®Ù[Ùãn:¹G›}Ø‹†³¥Æ“ô•¸qÓ¼Êg“}«•Y¤_Sõy¤Û. ƒû?ˤõºdÅ lü²=V­ÒŠ©ëg½}ZN‡]c‹·»âͽ±h[¥uê~ú¡`îÅnì±9*a Kú–MGAGç¢Õ·I´öÖœ$ÇÓ¹h{ØŠ0NYÕyÎÍŠ;Ébû KÛ]z~å®â–Ïe:?ô™ïeçq¥ß¥e™f3°‹{_lmÉá•Akl=­Ž®WÿF÷QŸþÚ9­=ý=ês}ÍÑÇ'ݹ‡ùmÚ·.®y\éÚ¨'i íà5Ы#Lß&›ÝW7ûs3sc4Dìôª¿Ýš^‚EÜ{€Ã2GˆÉYmÉ­·ÑÿYªµô¦ùtÀFëø9—ÞJ°öÕ`?<@]É­Ô)hÒr¦Ý ënÊYjÑr©³¸µŸðÂØÛºåt$¡t,ïñþ´¬Üuˆ‹J'ñ‹'¹è­X÷Ý°©S$’ÝIÏg¦šöŠ4Æà6:FXƒ#¤åà~]âBï,‰cYGâÚœƒuÀYè±zÇÏêâ“5c4oÃ憅…6g!I¦,)žš«$¤ÔÓz_ñ\§ÉëÝÝ_1‚ Ì|¾g—{ŽO/Þâó¬Ü°¼˜[6ô›å’ºÎ“åeI'úÆêÉ'+­6sñˆP Òç†E™¯ôÝÔ²odO¯=G»Wâ8$àb¦}cñLó*|Ò¿h´½è™7ói¯[i|ÈΚ4„ÆUÑø’-–mÚ åŒx»åu#[8ƒýºó +µARua$«sãèŸyKR£K§EÿA®"Ý©ó€ Vèx&KŠþ˜jóH9@¸ œ¨µ4¥mtwqbÑͬÛ0úøÔ湬ÿ ¼i߬7+yÒPÒVÛúIIV=vw< é IÐDº.ž¼ ;ÚÊó*nô·PÞ˜½Ý™ÌˆJ[î ûkù›ä"H–©X¸tÜ¥tÆÆ“Žë»8@©y[’?06ÝXò-?™@† m°?ÙÂÇUr?ÓÒïFßB¤¡8äÎ; ,¸Ûï¹é3¹u ó–”¦Œî9Ú¿K£¥ñÁt£H™Òýf¾¤Ë=6ŽE4Ã.;£#^¬úí­7C”Û± rÔ,¼“RÚârBn¡Ö<Ï÷íË×ÌðŠ“]Ôæ5`(Œ%ņ˵×ÛnwÊ-,²#ñhÄçF†uYLèCÔËJ¼HªŒiésë.r3kƒ\ZL´'.’­=‰éyÀñ’x=ñRNt_ùªÐ]ëí^YÇ~>ærCýëfPÛ]–Íõ<‰r´Še%G~¸éc€îi‹ÉcÊd‰^ÖõÞmÞž«¬Ö¤šKãÖ>Ø!c%‰ÆmPëƒ3gx}êÞƒòR¾½ŠEµÄAª¡#¶·o/îíkﻳ%:‰ùRÆt¼ó +$êk+Hî:NEÿVm»XY ]í²¥´ß'ZàXi8ë‹jjÑÞ<@œ2g‡\´¨Ò8RP Qf?õ‹Zƒ¶Ò¶NWZYŽY­§RZ‰¶öÁæf§|é÷:X4ëä6й“9«gó# Ü|sýÉ¡°Né=DÈr~x(ºe@ôŽvô0î1Ýå:#ó€Ü=tZ(Ka(imȪËvÁhEnÔ¾êQà='£—¨ôEÉq-Æý½t…¾”ön[Ï5+Ps“ž+áX¢é.×þ9 >Beéô}¥"5rçƒZËš3@/|uß5[¨bý’ÚKóR½s; ­´CpËL/èçÑYàÆó˜·÷¢Õµ–½žm‡{AShh”ˆ-MMRö—ôÒÖŒe5! jòѸ–£%=M–,¶4&Îxw‡à m·†%yÀ¾02¡usd{×5{wC½0**­^lLJ ‡Bɧ¢âS9 Í»dsH0J§N9ë‡û9›mÓÓžK@:áÞ\*Ø8UKŠnu@ÙŸÜüA#ê-Õ.ƒRM­/Ér©¾a.ÎE:»Û¤ÑÃÕÙ[r@}6†lÜä:Z5­µyœþ³•&¶Ãv`bx´Ü¤Ë™Îáø­Hsho;æÓ¤ɬɷÄKpÀ‚j,‹l]û€ú™èlŒÍuaö4T'P(jÚv•æåSŸynµnÎ ¨Ì¥’o¢+f¬4–3]0yÀf”xÓþñäéž ž»Büz i_÷Ù“HêôDðË¡cP2ÇÛ¶^Tnä{ +˜‰‹_ÚÅ<ú¯ôœ»žO½ñ½ìå;O’–s°h[{EVÍ-k Ú%_V³ùˆþ9ë©Š Ü’é‹ëÍÒòÝ©2­ëm}ðË¢{Ž´®ABò-ÜÎøxJ¼²–*õc„Šå¤4l]¾º´¸y@m™¿ßD+K[ç‚@»!9q©ÕZܼô¢ï²ó츴=WjÖõ¤Š!&$ãõÎx§&ÒÝ!^ÛèÞÙ³þðiëâ&ЙÖWK1±·K!ç~B¾HŶ²sÀŽ¿‘ÍVßK %(íJˇ«LÒG‹¨žÀ­U—®AÔ…ªãÏ•E®!ƒ;d,šrê u:d@><.8K‹¶K¤šêöx^“3ݶoY+¨ó:¯iç½6ñ®>šÒlܯù€hãy¨×Ü¡ù ƒûª†?QÙSQµÆ›ñÄáÂÇslh¼Èw U]2X‡V_uƒMM¢ÝΦÕ½d(Ì<ì: +!YŽrÝ3uF<.²¥ߣ–Qšò<˜­´ +V1µí=Ø hxÉ'éYéš]ëÊäf(?#¬0íq©©ã{ÓSÚZ)˜ðxë + ÏuÅÍ:q×jçX'3U‰Ýq"UKü)ZÊ^; á…OaÙ²2(BB¶ÅÏn\Žû üáÂéý€aGôë’|éÖ7¦Ûç–1S-+(åùÕ…õæËTŠ˜D¯Nej2ÅKhÆüjó¡¼V^3›Ë#6=5²iJº¯éJó¶ó½¦×׶Γ…}¯ÃÁxsŒu¼l»2¢Œ¼ ÄûÕVÇ®¬3™ σh“º¹š1ÝëXRë€2¼·MŠÚ¼©¥ ÞK×jGÁÜM—÷ù"esÿ„£y†&Ú(sÚÁ0_´Ú V‘øR_Pb¯7-ëSïÀÄ·s[º¸¬ŽvÀ–x\îˆÞšÖ,äÒÅ‘á3g:+ˆ0»*CÇ`¦Û{j¿›•Öw_­8«VÝý«”›â€¨¥‹Ñ,ZQ)ñáëÛá1_|j®ÙÁ/+ô>÷¬E™áÍ¡ÚQ¤ïï¼Û7=ŽÙše%Ë|ºž'{‡âIí‡ÐY´YÌŽªa[ζŸ_%¤iÍL[MÓJ¹½q³H9µ3oÍû%,°_é£3¨³1Ÿo‚+0cº€è3šú>àrüµFq ÈGìQc'ŠäýL¿¿9èlœŒá°Šþå¥[䉄úóMÖ›¥M^àK9Ä“³vµë>ÁŽ‹j5·üÔìÓŽ¼ n”c^¢¼÷Ê»d©ñ<9žÕÓ#‰ÓF?˜ÞPïÁnÇ‘£S$ƒÏê'>à +ÅÝ%ðf«"¬”¬$žÖ Ž5=OŠ#YÚ½ºJBrÎ%É[PÖ,n€`ñߤµ”ãD³9¬£hJ@½uª‰,õPÎ;¾./˜@ÝÉ÷®÷ó¤T–_ߎ,?‰z@¬OËZÀGÔ¤»´uƒR&‘€>Jm­»îèYë#ÀY§A ó< CT›ÝxtM^ãs§MaPêJ¾ŠDÝí£4 "gD¢ j ðow$/\1{Lohï­1,®»Œr@m„ÖPÒ+ê«L¿Qâ ”.]ãÃñ¶[UÓ–IÖH´4ì?(w›u×û€];uùÁ ƒÇ©Ô}ÀÑÒËHL¶ñXê5€2d¥„­ÒµeúË0ÈW¹ ¤ãI¼=Öôet@í%¤+ÉD0QÖ½(S$t«A¤åº7Î\!^1ZÚÕ¨!ÂO_í±½×}oM„ò„+q,Êú'|y@]7š+û«á2¸tôÖ}À ‚Õ°X/ ¯ZDz êT‘a»v}~v­î–ÔžncäöšHx«Û¦,IA÷«‘åÒ´?6¤©ô˜ʆ ­bF½‰WÀàÈ ˆÉ +m:'u•gLi!ú˜ì½ )NC_¹@ëÃ70„J¸øyË}NçÒ„dDÍòëi>OjtÌÑáð©\-,°GÊPoÒ0W? ¬1\аZ äõžO‡‘‚ áÉ¢g—z@ÇðpÜŽðíö{ß6~=!m„çeó­­1T® ò\ÇÏapK ¡“9pãsŽÙ‰«0œ¶ÍóÑv*IL1ÖcÃÏ÷µÿ¡gæYT¼3åùUmŒ½<¢µ)mãyPÊ•Îm®,æPZ¬ø,#Dt¶Ñ”wøg[ˆõáÙ¯$¦%x;ª}ê/}Œôc—ò½xrLø ÷wx½"EpKM“$É%@ã<’d¢Óâä:K€/6Nc°Pâ;˜ŒC¢õ±-µŠí^Ïi -†jÚÁ¤Ä¦¾9탑b2g| P'Vè~@©4;LžÒ—vh΀ZæH~ÔRàµ>u4ç`ÚH‡O6A"Å3Š;™ê<¦®ù HqI5ÐÉË÷èüãðïBíÑõ)#VsÕ>Þöu:þWúÒ‘úÁr=ª?WcâyPÛ:/Qo\=y$a[çW†w.Û Üâ½akÝ‘¤ØîçRÂÉ+˜ÜF˜¼Ç8¦"jýê­§*Û¾Ñ{Ù¾N˜d9¶êó«w”®Ž××iÐe;6µÏˆ ‡n’!ÚîbæK`Ï5=ļ^Š+yèy/`£1$hMöyÒ>æÛêšAC9ØË,Ôÿc×úã ýµ¸Áîyž<âбúCÕ}ñ?Øå¾H=X8azì–W×{?`oW‹6¦nþ³­d6λ…£úX 2·þºón)Òø$Íž!—´ù;^R¿²_!GÍ/íA›rŽ½àBjã€ÚL­Þq”q/î#>p jø°EØf ÷çÁ‡FmÙ¢›%¹+`£]ᵄޅ q¦´†P¶A× +ÊæÚÏJó@~Æ“×Q Þæ,Ä“0ÿ¦#ñ¬Þs-¶«`•uð<Ùùÿ=Yµ%Võ¨ëSÚQ9ONH õ€Ú —-°xËövÒïPßk¥×¹ŸpͼIž(¨OוaØÄö ä…ú6µõóµòa—=!°F+:WL‡˜’¶Ê˜Øl¬·¸f!J”‡ }esJ’vF$qíÅO‹ ­³ìƒé5z(Ú€Œx¼Zï-ü«º6¯d™>é-ߣ‘êÓXKù…ÛAG$9’€Ä°Ââ'ƒ°“Xß#={`8ªwj6PZCEH S¸ç3$|èp?1Y©}óJN ôe)b3^S»uœÈ‘¬ +镸.$ÀBŽ'û1œÅ€’.2*ö[˸tÈXÈÅëùÙðž×£:#òÛ° /]Û;î½A­îgÌ)Í4bNÜpÊz}ž\khVLny›„í&WüìÔr\éÚk6W„?<¡ªãÞð|?í{5Ð%­#´Ï%„í|ݽP§«¦R©‰¸©çÐ2¿ð"Å•)a9çó äÇ0Ä@\+׺ŸéŽÃYˆ'ïòI{Þé$i|iÊçÄK”wxë¹°S‡q< ¹f™D¶\Zâ Þ¸½Vx/ÉÆt°‘Þ8ëÀ½K ^ó`ÚƒpíÂB؇ — Äºo(ƒ:jÚ/GqµHŠ'Ü—¾|†Âw‚þ€o©E€º–× s®~VÕð0×’Îqf‹·¹ö~Àû¾Ž]FpÎÌ­2¨¯EªMú‘æ^™ihp]ó¥ë¿ñÔÁ"µ«$V¸/Ï›àiÍ\ÿªÔ‰ë‘\fÙqâº2…³PB9Të[ab$«š¤bLzäKpm(G¾4ãW['ñåùU-\ä߆œQ£óÊé¡Oø„ﱃ0Ó¥ÍÛ¿ˆÌ¦÷†BËÕêk86mŽñÜîPyšöÕÆþl âÔ•Û'Ë÷_ö®0)ZòÓmULÃŽ¡L§²ArÀëžµ/Õl÷gH•©¦`§šÓžO˜S5Å€ÚGZ½q@½&‰Í¥K´L9˜´YŽWÆÂsq°nþÿ¼½ÍŽ,É’¤·ï§¨è·?77€ À!§à–½#¸á¢{Å÷(Ÿ¨šGDž¼UÙ'û0}*$#ÌÌÔÔTEEÙ”a•²Á‘aòøUèÀ;‰Fzü¨gF½ê OðªÔ€æ±¾Â|ëþ¦ÜÁ+s…r»qGÿ;¾H‰ÚjƒÝ1À4˵]Ÿ‘s¡Ç56wÙ"füT}i_Kˆ w‡77F!Ž·G·y÷å/÷[O/O/wÞ×£-Ž Õ Ï&Ã[›À§( C½••+@ÏÒÇâëSl«³gxú0N§’scÚwƒóäÔ@3[ n²X¤'Ï(txLKb içãÐÖæ¬O‚v¸œ³2yVëmíg@~+t€²òÏÊ=¦ y7§0RÆiñ ,; &ðÈ`FbrÃKœYÎéä[n—2òí:Â=t‰Îž[0÷ÍM7¦K6“lc27iÞ´ìºÁ3Š£|uRýxõûW5;Ì 1ÈD§Zeƒw_6¹GÄÌΤ!›·ïЧ=–v½ºüSSXpØOü´N}DÝ`!¡mÊ%³-Ê çŽ*|Áš{%¢TÿL±Q€EÅð=äƒ=w¶Gl‚,ÃuQ‰«Mö¤¡4G»u÷T'%¬ßÕ} ÆôÀ…~ŸÒžOEØðöµ úÈ­C sü/@Í(ôK0Khjä¨9¡lG¶›Œ®ùSŒi7>ôÿî!s‘ù–3s;²ÇhŸx6ŽŒç¸¯gwïeR^Þ}=×®Hdª2ÙàÊéÇ]`ɃkŸš3rŒàpâøœmöI%z>÷‰ælÛ÷é€[.½ÁÅò FÁ| P{ÞM‰»&’ÃÙeÿÇq_ÏYr™ŒáÝáš™wèÐÚ³Ø^…¬¶ááZÔ£µ½H.Nõ-*ã© ‚Nr]7¨÷“É5è&ѵ±G)>•˜2Š}‡GÆüðÛ‚«®Û2mKyVP΃O£HamL«Q<꺴w•{ó"ÃîàÂiçt]¡¾Á+¹úÁêØÞ?»¢Ðý +Æ‘.Hv#ßÖb¹ÏÃAàn!Míüûá£ÙG/fè Ê?Ó\'&ŠÛ̺¢Ö.+ŒzXJír¿ÁÓÛØ9G×{LÑ6óL/\ö6Ot~¤6BG›Øu|;ïÝ‚t¹Œž}C¼Ïû$ ëI¶99k‡VÉÓa–0Ô¼ŽTÄ•!ÀA-éNwàúË6nB¸Hˆú01©qoléEQ:|Ú‘¦Õ­ÊÀi~sVôž;ÓrôGžy.¶ Ö­j1ï_½vjÕ„QÙÊk¯“Adh¥gMà®÷qÓC4Q †›ÞªYRfV]Fd¾G)ébmR7X3ÒhÖɉå =¨”$•d¹ÏyÜ VI&ï(l/ÍvlƒaŠÒ˜zeó"`Œq”÷뢉z–Ó§h0Š…–éßÔ9ßÑA+W¼ Ì'uY3­þp P¸ž u¬;ÀC¹a‘aq‘ð,îµy.ƒâ2?‚3ŠÈ{æ‡láCwJ¨Î½' ;yŽ øV0NrÃÊìøx°ÄÉ#ÔºÁÓç"žŽ3+ÏŸ•d\£$ÁIñ:îïE²÷.ÔÅÚ¨™*€A'Çš`‚Õ$hÖý|8Ädnóô‹}„ôÑÆÑ:tòÝT;H%gž0 O3<‹QLqÜÈ#"ÂóŸÝão°¯½Ñb7a«î@Ô A”üP› BM×yÿìC„%«q3*L·Ú$<âYèwÌ~ƒËuó-¨Ú·d$jÏÙYQrGÚž ,msBPàÉÊî²ÖïÐ2Ê'>äqcÍ$l¦wÈŒ}›âZÆ4™ÇÖ_J,Ê’ût .®6¾µÁ;ά“sèÿ Þ +-Ôß` ï,%RF-©Wn/+[77FcKF—îÏ¥è·Ã¥=;Ž”XsþÕ뻉®sÝ—¼¹ËõûÍØ…CYÕÜ¡„iƒpU뼟n°ï´O!2)^÷7GˆßæI±GòÜ‹ŒýSíæF¿t¦ô ¿+ü5w‚3…êñ½]%¸¶‚ÂórlóCÀÍ©êîÕ~õ'ž ŸütK2Wç@4é¬cï…­äz²•8¶€%DASÛOˆp>›-åZë68†kRcFknE±d‚:Ô¶¨œ#¡Wë]»øë!µ$'roQÇ!S‡þuÜ÷©í5èªÏÍ‘ó×Vçè‘ßΕKŠŸ{ß¿À7îI÷¡ly§DÙ‰©hîe?„ ÷T|ó‰QË{»¿)7" +ÎL¯ÏlÎõÜ3€ŠÇ¡g¨cÕµÁó®Câà¨ÍC›Vßàô¨†Ô9šl +ãÀeÝä sËe³Š¶„Ÿž}'§©º¯Ç"äßî(ÛÒ¢BƒâPP¹¢vcr"JR¹éàøÞ6ØBe.ø¨]3øÌ£•Û7Ë ÀF³)Oõv“¬ÊFQ`ó8%0YŠ‡Õ(7Jçr\Oá^þCçE™‹ûgï‚pŽCótV³lpíǃþæiÀ —’ Š³:¥ÔíÊ-ÄòG žfãÁÊhl»'öˆÄbœm§eÏ€ '²;³ÊqZèŽxf:Œsx‹÷=…"d e«‡~n‚ä$-0•…ZÛX,¤«®âÚX“r5-ï‹Ç NP‰Ú›{LÞ¯¹ Ps>ô=!®³”qÒ¡4@JæÏ]V6ÝZ`á¢mPö·/Wõ’ã’WÓf(öÍüd=œäß‘TÙ˜&/e9yÚ¨ɲgÀ›ACö”ŒÕ™2S€ã&¹Rky fƒý®ËõQ¬›àŒ#Ú0Õ­ ^ug/‰lÃïoêxÍ|Ó˜TIúÜ›ùí?G)™dç,hE­D&"ÒF—hOÓ>Vnpå~he·£™S½Á¹²-Mä<è(qn°]gd.GòÛ–*LÍ@Rçö®kÜ"fÔ™­KsfÞ×£ý0|‚JE˜fûãsZGXÙnõ*å¾xv:$6KâµÉÿî_]}‡;)¤(æ«6å)S€ˆ·@ÛO @¹ÔY͆ßö𬷭 6i«2%Ø4`k)"j届N1´HJÉEZ3Y€:ª ;‰^ qP-Ö¹± þ[Ü>‚6ßÙî/fÍ^s#X<}ƒ:BûùÂNHag7N×µ÷¥QÕ±´g­]ȹ#‰(›7ÇŠ¥퀀¤sÖ-:'RÜBšV2ÁgÓ‰¨YÖ±5 4RtÒ“¥‚ÜåcvLу öâhwÄŽŸ;°­ Øà~—X§7¦Ùìl%*“øÅÇf–Ï‚ž…£ä Ù”õ_ÃêuhW^IÛàµigˆ^ÞAî×ÖC-“f ÚlòÁZseY"B· ÏëÚ¹¨ÓDå­ÜIµ²«Ä¯ ÖÜ4-ÝIºÍ" Þj~r}> ý‘ðÚ Œõ4ý¶áA¡­{nu+vbmä@ëm¶+•>'Eáe㾟C|£9“˜õ` êœkùW”Rµ’NÓ^rÅ«´3bå}9W¦pÿÓä`‹E5æüìO‚°q¹!¥s/kPü[`Ãd¼¶„жî uSg<[Ó®îå…,kæ›Sü®Ï¹¿7wJ™w²ÚÂçé´Õbšò25Ÿç]yDÌ~«/" [ŸÒïHŒ´L}X2¶[+²oð.îeþ@Á¿³u¤ ¼å±jŸ%EJd°Þ )ú¤Âÿ$K¼Ã}'ñײ\©Ò ¹R.PömNÊ$¦9!*Û‚®žà€øŃnðœu¿câ§Ý·Ø ÏH©— N ‡ÔXš¹»ʉYnÚSÅŠrW° ¼ú>2 +[—½®n¬|.™™ÓD¸aÓžyÏh°Œ,Þi¨?&u`ƒ±÷×˦ ²îÚTcgƒxvG€%ȤkƒýÈöpZQ)«cae]Éã=rƒcç1Á/õU¤§†c°Æ›BWÚ˜VYjÝÔ¼¼Á;eÙ\ã¦UÝ׳\¡TŠ÷‹(q»îg°Vˆñz§8Po§‹ðŒ4)[g¥»PÁB4÷žPl{¸µévo8hz…ò¯t-«k[©ͼ¢Ô(âkÞ߃ÿ™‡ñÓÙ:DMçb7x¹Þ%o³G»s#D.ü!¹jWú€ÔpÜ¡v·,ˆ‰Œ >ò(Lg}ƒ® *Á[y W¿‚¦~–]ì‹OµP‚œO¨Ú9¸ŸÐC”Õ˜Ué,*”ô ‘>Rç"Á™+qìëÍÕ ëWÙô\™qÜ¥;P,fªK™¹w™¼‡¤²;)mÓÞʪé#ÎèŸ`ßÛvShœqã”… ª÷u +*_Êá]ÊU ž3¿bLmÏû‚fR\ƒÁ9i1o0t Zeø…ÌÖŒQN§íÜS÷ž¥‚Oʦ¦ñK:ñ¬¶kU):Ÿi½Üpf¯¶»f2ãØ`­gž·Í78C[?Á;ìA´BSúV“3¸Ókç h¿p Û˜Ìå$àìøˆÜˆóNŠ'¾Å™ín?QÞ`V8SØ'N!óÓ±ú ž¦I=ÈEQ qDåǪ¬ÙÛ µƒ¨GˆÏÊÆä÷Ídc€y‡MдÌ+Ø^œäº#õ/;ÜÁE ű0DÎ]7É9æ8BR6ÁG¡&N|äQoð!O}Rc\Ë ¡Ê(Ù|*㎨3bµ•Á8×{߉Ü{É&Ö Cw”û‹QpêÐ ÉdM»²-c)›_OšP®[­÷#˜W^< RÚ×N²º<Ó[j0¡.j#×ý«ËÙªÌ=<Âì ó#u]¢ªù€sìI9žºZžq¸Û`FvJ¬é•ZÎ &‡´y×Lyš„ZÐDÏè•;ô ;iiÁ´(ŽV¾rX6åð*fq4Dˆw)\bÃ¥h¸rY^š•›³N…HÌn_ÏñóM„‘aKâÍÊì©…kL³CkÍŠäÐàû}5W¦M¹RMydºïÛ×ӎ؇£š¬2EùÅ“øT–¥;jò 2MwJ ^!»;q¯±‹\Éü-­dØMo®îéªÌæã0r‚‰‘(I›…VÛ2dãpf–XÇ…+›!9öŽ“Ž1îó)E©Æ%›¨ç´6 Š +™u´çqÝ×zÆΖYBîèýäÈ|@g /3€Î¼zG,JtQ†ûg c—­‘¤ÍZ·9ïg 8ëŽÉo@©9“'7ñï“ÚéÜ£\š|–J"‘Þ˜ÏBÔœÜ~zñˆZ¿ÕJ0-óZ>bV®¦;Q‚Á._ ݉ >\Ò‹nïý«»|‡½)~c#Ë´+ÇMÔv%怚tÕä¾9## {M´hÀ¼N%LÒî–¶ ï–¨Nl°æéÔ®*1Èë6M¯#i*Ó*ÙOµ¨™"Ø{!$|cݵÙáÿRnvÎëþQ·‘¹Ò9¶tÒ¦ÎõtHš–¹nô³ª;O%ˆÙ¯û›:†á<7ƒç´î¼¯g¦îeøùˆ ÞËÀçCÜã²%ÁÍÌ>ª’w®Î2’ã‘ð™`×›^E2xW._ìú:¤mÝ œålé`pQÞ•fBåØ“Y§Ù¼ÑwízŒBT6@ºÄ 7(‹µBíçrÑû-Ÿ¨=¿…Ùº\-ßî"c40”dç Øï²À[áIž@;ïožZ"Nt‚m2bb®¹‰óAEL¯63’€Äÿ]`A~Ÿ£-»éˆÁŒƒ«lÄÆ .?J?ì(ñÃýN§™ºø± ³éÑÓòÕÄáÑM‡ÞlíH’æ"zF”ú_Ý¡ËÂÿAoþ¥EyÖ”ô%€üÜð†žáÑ#´,3Â3Md,Ÿš#ìŒtÉ'.°»Þ²u«J;N`Œ x +>ƒÐ>U$áÑì,îkG‹Ú—`ëÊ:‚ò8|& ‘Ø­tCH™ö_²j#19jÖß3fv]ôrƒ¼ͨ ¸ši+†#u†‘“sG–¸%6Z¥¾¦¥ÈJbš.~ƒ”{…l9MÍdø4Ü8£©™Nº%„OÁ5]ˆBcxȯ,30gì`Ú^÷I|ÁgÖϸŠ¦Qµóè6ÆKµn Ï,Ï +¨Åq€wºÁ=uJÜÞŠ½ŽnL»õ“–˜I%æ <[:B^‰i6X•Ð +§ãÈïY;;œûæÒµ›~â›øÝîçqnF?˜Ì‡¯i AcJÀþˆfoÅŠ9¸Ý” ^t)ï5±hÁµ¦@±Ã׎^PMµCºSkíQ9Bg6leÖ+‚q@Qð +ùs²Ú.ݬ#¹M#û] -#ÚÎÁhn;·²Bbæ†ponÈB‰cc³¤X +XƒÅ„NׂLLÎâäÎrAÃ;­ÆŸù ]gÖ²ÃI4¹c¥e¿“åÎ Á]jQP s­ Zz®-ÉÆ‘±PcžÐ¾’öè¨F„~6Lª?¢§žÞc”l=¢@»¨²~ +%ÉôGR×ø®ÕR'aA%Ëô½1´¬“ Fs z“pÑ#±ˆCbºÒiÝ¡æŽAýÊ&Zt÷ÓŽHñ~sŠpekÁÄÎ#¥éÁ´mñ"°ÕR Lï i¼ºé~ Nt«®sÙÑ lìt˜Ð +­K [}ßi!­»Û´ 6gÿ‹±†×%¿`:à ^Î-=¡3ß)ÑH¨_. +ø#ÚÞû>б©vÐf ݪcp»¢ÑM OwüêÆPÚêQºN7© M’St· j újH·¸«¤ÁðǬ¤Bfê‚!´f%Ò‚‚ªEcœ¯²Òl$áטæ¶ûS$v'HhßDh«Qƒ¹.TžB/HϵšFp`"ð¿²/#•Wgrˆ*<ªm—ó÷¡yï~7§ƒƒÌƒ±ŽpNÄ_Á´ô}nwòŒWð«hõ²M=²n8[´ÔX®Ü¹2s¦Îvv–$†jG¤ÕÎia´¸oëÏ;–Í#-X»+1­2#yàÆ.kbsÿ)z#ô‹ÜtRþ3•un:¹"€ËÁÉT@ÉkLlZ…UPˆþë$z4«<¶f9<-ëk…$.˜ŒFÔZF~OÇÒÚ2`LÕ ´ÌÜ¿ÿˆ&—®­Ç¶š'QètÖÄÈQêÌ]⯉qÊ0ŒØT¾ELwëÀ‘ø[Ä‚C¿¬ÑÍy9Õ86.ulL§¾î3˜Æ]©&šLv1äÜm<²§;²L1w`wê<[–Ä‘J$ÍñÔÅSÓÂL}cm+—DOý•¸~zÔ¥ƒœ›Ôj ÆÁr‘dôa0&ŸuW§-çŽÃÍ8ÝTû|–w.ð³( ¿ j0=õéc3V›ëÏÄhèÜ: Mt5F ÷Õ•ö‘åb¶Õ x,K ÅYÓÁÅëÁ?_ËÆ3Ö‘VNƒj¹›#c¶ô/M®ÙÑ¿ôQø»0¡2OÑÒlhFDùîr6à,ùÒ§‰2çudßÓóQ¾LßÓÐýãÀƒÆ>ìèZÎĈö˜-ºœÁŸgÈy=Ú—.·kØšA‹ózP§›ùV×£|r9q¢)7 L;S¿g±JÌ2,Šó"ôdŒ–‘m]î¸è+3ÓóÖ ˆ ðâÖ­lïíÞº\ÜEHèd7RŒÙBŒšì®îê–P±sSמ‰}ç~™êÁÙ›wñ:áå.íZÎÙ+NîžO¦Ÿó*í- ¤¹%$ÃïàìMszä}ÉÒ÷Øi8ìÝ¥à4‘:É‘¯ú¹wËìÓÄtÀdÿ3b¢ëª÷ßIM$ Ê9‹ºPŸó×s'0é†yÎÏÇÑŠ²––r(`-(_-±öHÛ ¹»¬rà½Ùº]uÖBQÉ™˜a¼BÁéˆlXÈI³hLp†–sbÈAcuêu=ê`òCóü"í½~ +µ•¨ßðßi›‹ÎƒËí Ø¯s`Ü#¶b€‰[¼9ŸW6Ä¢ïnK¾xÕåeëd»³“buJ…±}]æÀO6ÂC@»r8äv‘ˆZ‘?v·œÀÎc Ì1©Ýö)1r^Ú¶ÛüÖŒmÿ›ÛüÊI"ɹ/w£0ü4 ñ±$8eWWÿµ ž;…O™—+ÅçýÅèqì2j«6JhD:WWº°x5QÎ=ä“ê¤3^:oÌäÁ¸ËvmI–ŠVäsózd<.Vt;v§ Øw:9²B8ï÷7×& +»f§÷”p@ÝvåžA¨J-%¬Çp±TT„kÕ»}€Úø‚#FV”åÝî7F§ WüE›‰‚…û›,%YÞ:£ïw'/üÔü:m »ë–ÎË ò›ó!ŽCÅYÐkƒ´±=ÏèÑ¡;éGËN0"Û +‘ÃjA mj»*ÝÄ·Êuëå*%ýL~\æ¢ þÎHJnÍk‹Ê²Lz–ÈÒj¼¸êkD­x#¶¿;±/ïX¦“ºV\÷‘ú‹nQe•Ñhí"ýW³ Êê3«1šÄ–ž ‘] Ìál3%'­ž78é9c’²Š]z›—[Žº¶/}·سtÄyêlzwE—+;†¯Õ•›7±ÄMÑï¶T(·áy{Hª&$’)"À©5-åþfRT£›R Ó¢ËN ¬Dº­m(älŽ, +ì3îvé §x8i]­á¨ÓTK›VhÙ¾.§Î¨5”SÐñn°Ý„D7ÑïϤÍá~vÕuöÑÐ逈•ÍöP/!.-ÚVÚMߊ«N‹Ó®½îÙº'Aí{QuOg*xmIH[QV-­4œ,Hv^Bæ›V\”ËPŒy!M¹öÛ:} €KM´ä`œ™oLkåÅçĆ­Û}úviµhÂï=©97@\§Y(Ôð“ô™ëJéDseÛªâ6 Ñcªe¸¡3%×r¥gq›ŸÝÅl!Ó̓®f³¸qz>uz%¤nZ!­7H…œwóÌA1cÛ˜¦•›%ºv–ÕYw‡Ýjzìá†ëÕÖD>Ä•Mu¤¾‹Ú°n´’IUjÀk;-Ç°‚þÚíЖ¶@1K„Ž'Äз͂Yßu‹¨@у"=œ‡ êŒÞ#ÁIõPî@ÕyÑ÷š²í6ËyQ Ý,P@ q´„/=ÂUɺ–µ5nuaÈT„-­µ—“ˆ[Ô¯TŠ¢ŠéÌÄŽÓñ ‰Ë…Ðe>eK+gùTá´È ,¹P-¼ÝvtZ0×s1…;óê… +yÙ½QAÞ•{è% d^æzœšb¥…ac—öÐ2ÞÊËÎè5ÝĪõè÷3ÑæD3"›‡¢9$”궬”#·=·>ϬM7kõÉÀX<8ˆßœ`J6OBؾ+‹áîºÁ¹‰ì®^°Ï³¡*¿³d庫›¥ž6Á%(^ÖÙ¦§:% BÑ9Òbcû ”˜XH˜ö˜nþÍÉáêl;½kÍ¥%B4Ÿ¨¸!=¹îE6ˆú­x²äÞp¶ãÃpÓðm^½’íq’wÚUZîÌ +½²=&ùª-ÁDŸVç„ܬ³\ôÕ<\KµµÉÁÎ]‡ªóz›µew?rgû©ž"J û1³4è`«*Ùø‡n†h†ïïð´v¿uBSh¤ÀØ:ÍûŒkÁ¹®5÷_6Ç•ÚUî+2 â¶ÅVšÆÍ ¢öfƒn'ýè}4\3¥xôPg z¯E¯×MAs¥Î…‰ÛØÌ=°Ð%¢·Eiå¦ÍÑž¸’¼Æãl(T\–kˆ7°ÛàÚänè®|٦ƚ§õ¨Ãe•ŽõÏÞv%`ûz´!×=êyìÙáZiâ*ͪ'B¡{÷!¥¼©îîÞÝB΀÷¢² s'g ^ÑĦL•¿!t¡ WãgiX»RrpGñZŒyÒ .m: ÁžŒIK R0—j©º”gÖˆX1¥í7ØwMH<¡c–9ïo^[´Ò–•”´dùÈI/ :Z•Zúzca$ºBÎörígJ¢ztj7²üP»Ò‡[À²XÉdÎ]d¨†G«q$Û p¦xöÑá„A/ •Ãc·-Öx¥ÑvÛ`϶g¸3SÅÐRõ…µåFçÚÁr2»ï`j]Ò ‘šÎÔ +;¬¸B¡èºÜì²m_ɇ„H˜Â¦º5 Õ¸$wó\zÔ¡}·»a#EeÚ Û$‡ÚÛ´´×¨íéÄàžu¥DÝÊZ™j‹w)ZàV΂#:O&¸Ã$—EÞåÀ`HáEã{¿D8±é½BÁ)¡cãyƒ‚V9öë§5óuü1‘/Ruƒ¡HFÓoÆÀ—ÜÝs‘›°‘d’£.á"²¼žù‘ZE4S·“^R;ìÉS·p‘9`û}È‘¤™Iý'ôÃôЉµ _¯^6xZ×›½…D»®ô—#<ôF¬$³#Æ û…Ö•±+7É žÑmÆJ%!x»6´¶žt¨£<:Åœ±i"åæÓ½pžrãåyìú2Ëäú:³ãªîÙŒÇêD²õBÖn{Y,wgì Ž-BfÑ0yƒø>®uEË.ë˜òz¨Šæ¤î/ ]°d¹Æañ¨”ëÄ\•hWÜ7¨£X¬Laì±ïÑñTO²êù +.Ï3ýÇ΄¬ +¡Ã²±k‹Ûa"ð€ê>¢4gÈ.Ñd +,­æ¶Á»W’ÛêMTM®!Üp‘È^Vú“Ó›“)ù—¸}=ÎìtŒ4{_Ëê­×Ž‡ß¬[á”?¢}âi7"ÀóÑ¾Ý ÚÚ]ÈGs|(’ñZaÇî;ÌLÛdÇh¡ÓLƒ D­–fQžº±¾eßýP'™•u‘¨Ë‹l?Zx?Òj4Ub­˜z¶ rì¢ îÅ*rÑ2 ±Pmá a¡t¸æé#¢B¹ÚðîÁs¤ìn¿HÔN¢ òÐ/t6¼68£‡I÷†EaÝJñæu‘»¯¿9Wˆ1n°Í¬{³Œ:ú©+Ä3gzO¾Zd +ö‘ÀòìÈe5ý‹¦K¹i£1¼Ù6?Ÿ®Ã쑵ˆ€çn÷ì–y麫y´+Â#eßLÀ,œîn Oq3m­7xž–ÕùØŠVK¾˜@ñ½ ©*YÔìvìíiõNfÞn(}ùJÝÈ‚ñQ×M·WJ׳ý Z­Œa špdc:°³Æ‘¿8ý`°—­,ÿÃméÅÚ²I2²±èÐ"ËÝËšeœ78èÓlïµ9e5S¬ +,DYñ@àžHCí!ád…ª„gm Z9ñOD&Kø_5ª5ú×ÖÜdÃÓtÕãI¿†¸å÷õTKÈÔÓµ_4^@Iu«²J%EY×Ø%)蟢§“ŽëL,¯Ž“ñíi )E(¡¹ê3ç”Ã6~©ðJCÊ£o½Ñã²âêAWD‡µ5f#½0Bf>‰¸ 0a¹ˆ—op9üÜC¯¸”ý³–¢‰ÂÃêý0Ôl78Ì  ¸³Ù2Yrxƒ.P"¼³<Æ ¡u÷C°–ºÙkÿl{ª…'ÒR]=Ø7øèÈ ûB.)Wæùþˆ"v§)yp¸¬†jD¬îåwÁ¾wò6êì*úü+½qd»v”LÌSÆÙà8v¯Azu”`Ànðº{4ò¾Ñ¾-@Äg¶,v<àˆ2 f¯©æ|S…Þ—ÕŸ€×î0cuÂEbæ3 tj·ãéQÿ?öt‡l£ç:ÜÞ…b‹vˌۜ! ݤï¤íEJ0‹è91—§¸7öšmΰº-Ù5S>Ðâ®z£„óã>!]4F6…Ä©CÊýGꂃ=šPv€VçÌE}­§nŒ(ˆC`Kɺc¹n)[3 ËMü3%âCÉpDmè"žOïI>/"ä˜ýaoFVdÃrŸ!¦0W YŽ}²›Wª[>zÙ:×;Ýñ+@K)¤ºìp‹ÞÛ.ëâ|¶’—XPj¨˜Ëëä¬\Ðòݾ;RÚ„Ù· +%à]?Liðyici8F´£×zºv>a¡à¿›ô!\¤÷ò¹«¢uB³%]‚~PÙu¿šç³€ L([¾åånd¤zCÇž¦Wcìü…EKyùl[¦põ”8DþdWùäIfè±›QŸÒÇë´]ÍΡ7vÐ{Qä¯Ð;—aè·ìZèeß«ß ÖzœV v ­ÓƾX»‘lÒ)0°¨HÎõ¼`é‡[PI 6ô 2-j?-Í[’‚ÓÌÛ-¸+Úv]›cª>‡³òÍ]Äö2@u¶P¤È’§³ˆVn!rD¹Ž'µÈÃüi=²ä–Þ~W® Àà¯ôlˆ!ß J쯞 +qn²¡¥îÒü9Ë+ÔÚ\Û E®çû]] ƒú¹ß ~VÝXN·Í¥:? +ø4‡-ßšLñ²µÁªýB]ÂàIýPêýÐÙˆQZk³­§Öïtæ;w?—)Ž[êp¿ji§èÏ-‡78ƒ»º’òUîzÔaœ±²5+½UèU”5Ò¤C(p:²A?‘’Ü`JF 0å\{zYÉ~hѲóä²g*á/ FQk¾é¹©–ëî§b•§ óg!ñoF7…^»fÈ`‹žVÙ“òÈ­7ÁìœdÀÃL“ýÂàñ§ –zÇj}´ +Œë»¯u7VHHo„~ A}‚ÚY>{@å/)Úkâbêt‚-4W“ñHê¾7¨óU¨D"&7²3Ê™ÿHÍU +[SQoƒÍôºå³äã<×:Â4ZwY¼ÍF㆙‚,¨Û;ßÍó©I³<õðͺ%8r$Ô=´l« +ˆ~KË”ç¦M—kOn΄þ'ߎfB&Þšm5Ë B)³9TXák¿’(ßp •Á»ŠÝ Ù”~¸¸ÂÜÛp!êÇrA¼)»è‚”ݬ¦Ô§"s|,½ñ»/ST¡X¢É$áÚŸ›Ñ5€œïÖà :çŠwë_Ü5pn:êtw0‚ Z%6²ýhpwóž#ú4ƒ$ÝÓV½ß§Ð Wwè‰)½WPç˜Ù6j­ àV¾²fs O +8¤v>5)Y(qFÙ—J×wYg7†@«SÔÚÚ1H—lÅçåù —“Ê®jº‚GdQ¸÷c7GÇ–g»)“ÙWq‹™ ^Å}¼‚!OSù’Ì2R 27±MŸ/Ž¾Í v¹ ¦ãÑTóî/Îul­ZNëO2 :Ègû¨–æØÿ,aÊ)¯[z'¤ãúSb*Ìl¹]nÓ⚀xvîŽîÓ Ç“pôhÁ‘Å +zU×£z¨´úÁ:ȉtH¶®-nq=xq[TÜÚ¹”×AÜ õ<28Ñwƒº”ìlës[døþ¼½#+9d}ÇÝÂÿQ]¹MˆŒÿI•Ý­4ãVPHàWÇß¹ÉÔYyðf/'ØBMëtAJ†‰ž}[œéŠJ–ë"Õw·ä~è/­£>“Ïæ~Ýšß®ŽÑy*åþâ¬ïbl"̼¥6)½\©G±N°ÛrVû<)ýy¸]-ÄÀsƒ¤¬]¨ä({E“=SwÅ¥CĈk¿{U?t8É^ŽèTºA4º‰b%9ý4¹ºAÇGUNºÅG{´@Ý£—Ò=ܲž[Q¡RêËÔNÁ”tš7Á[O×¢šKÇîoÌÙ(3®Õª™IP G575^GN§ï®)ÍÙ™Ë*@êÌ–i®*»M Ž±âÜH!Ôö-#[R¢m’ǹ —ë–×t‘›ælɪ…)³š¿‹ãúñhS'ðI`g{a¾›„ +È™SŽ§ýÚÅÝØ5,•Â\AyŠêïeõÞœðt®*±¸wµbö£&\XkESŠ~×cG·ËLº~½„é +¬Y:'ê¿+IÄ#xÔ †Š#º»´T1‹o?Ÿö‘£ÐžN6u+bºKd–¾¸ +ÿÔÿ®»ƒ¤Î{=jÀ½/÷# ì¢cH{VWýb÷s S@çK2ùÍW¨çêDú:Ák†2qˆh6ßÒitEdÓ 4ë©Eb¶b iƒ¹®'¨“ÐéÒ ‹W÷ùpö¹J´q°˜Â£'ûúzªÁAøû›·^5ò –ƒ8öÔ£L€ú­ºð¤î¶÷ˆ‡ì9ø$æÍó¶äbsç3KØ%ÓxË^“šw-í£y^½© +gcFz íž±T +¸íûeÙ x;~ä¦reZÈ` 1ÿ»o\ßMO’Ž[n¸ 4ú„2õ`úX>Ri»…DGüë»8>ÏmJ ¿4d?˜kc«Ÿº1—ûN7Ë…T{c·xsgÄêwoJ–çn VÉ_ 3VWô¹û{95-^R“–˜¦[…GeL¶[§çr1ÅÊB-úîÝN“®ð ¯ק÷÷ºîÆW-ª-{÷%Í)ÐFgcÙËÃ`H°»«%’/úÇ£Mº">Y¡~ÐܶÌ1¾ žâ詳€¶´A©pK:3œ»UjŠQ]mP–ã¸;suÕ,ñëuŸ»¥yÀG\dVZ²ι–#Æ Œ0[èáÜM‹hzçú @$ã½uèK% –î!ZÊ£cOE‡Dz‹þð¾ö ê±[ÈÜà¹õÝÌ^Ý ‰¤£î΃ 2]ô™²Ìôë»)'‹ˆC +ulFêÛÂF†>Ñ劀݀80ï)SBϱóÈn:“R3`·öxb¡@èö9ê·Ç£ßÊSq„ñÑŠEG¶8ºÿ)™ŽOÐ……äƒawë^î&eU³mÝì eןIJåÕ0Øv!A«‰ûä®Ýñk7 ÙjÇÍÚ^ön°oÝÅf¦E¤b£ÿ7å@tuɱþ$»O?íÛÉ£&¯…Æ–æ¨ZO(²aØÝÄÜز®ÍtÑ[CÌàÝÝ Å/TÀoƒðÈi +ƒ¡æ´{(ȃⶠȈn=`ÏÅ`4;· :Ò#[m²:î‚éhøpE\2DÍe1æz8ˆ€Nˆ%ÀôàvûMÄGRíÄJiš·Ú©wc7;X®$·ÄÚs ù‘E (n ‘Í78ë´XYó#ÚLÍÕo÷ý(üÏ:þøï^lÙѾãø#0;ÓÓ?›/úÿý§ÿ¡ßÿ/ÿB{œ+™Íýuº=fs¥ƒþaš^Wµ0g(2iÔÿú¯˜?ügþEÉ–×û×ÿãÿþ_4!ëÿúÇÿóÇ¿þŸÿôßþÕ÷ñ½ß¥Iÿ“ÉúüûÇÿþ;~Ÿb  毿_Úïøýæ’¶û_~¿ÿŽßwá¨Îfå×߯¿ÿýc¨í[Øø“Jß¿gšq\¡Ÿóî©ýoY»†5m,’û§ÚŸýî?žjåü¿OPDiùõUÿõwü~·b±Óï/•?û}ºïö«~1•ù©ö¶4æëls F>?]>™m/à{ ”~¹†C×`óˆ…|\JÙvöɸ>™Ümˆ±³ß°ãÚ¹`Íüû?éÎò¯ž‰æ3ÿ6üïýöùïÿmWþçÿ÷OD¸ê¾QÝÇã^ë§{åVqº 6R3×ôòQ\Èß¿E.cï_†õYԯ˾Œç¾uåíË€ HFS–—ñòÑ·.£¾Ä_jç~)/}ë2Úû—Á­Ém&r™—ñüÑ·.£¿ÔíNÁyÏ}ë2Æû—(þÑ";“—ñüÑ·.ã|ÿ28æôâlö¾Œç¾uóíË°˜£v#ä¤ó2^>úÖe\ï_F?ªêyÏ}ë2Þ·¢ Ýœ(U¼ŸÆóGß¹Œë}+Ú.­™(ÍËxþè[—ñ¾m®î}±/}ë2Þ·¢|׫Ýxùè[—ñ¾íè¾Ú—¾uï[ÑŽ6î«Ýxùè[—±­h_¿:VåKÇj¿‰‡“óæç›Câ°m3ùÍ0ßòéE÷ý¾o ê\'yÈå.UñŒ_>zû2Þ·„¾ ¨ê#÷e<ôîe¬÷-¡/ƒÆ›á›—ñüÑÛ—ñ¾%ôe ¿;Rƒ&/ãù£·/ã–ЗAe`PëïËxúèíËø†%ä2 »Pj9¯}Ͻ}ß°„¾Œãcl¡å}O½}ïû“¾Œnrfqò2/ãù£·/ã}2.‰ûüoý¾é¡!zõW“õüÑÛ—ñMËy¸ åÅd=ôöe|ÏrŽ5É>›¬—Þ¼Œz|Ïrj“õòÑÛ—ñ=Ë9Ч=^LÖËGo_Æ÷,瘦_=›¬—Þ¾ŒïYÎDj1Y/½}ß³œÃRå/&ë壷/ã{–sônÑ„'»ñòÑÛ—ñ=Ë9Q‚Ö 5//ãù£·/ã{VtTkX˜ÎœWñôÉÛñ=: m¿::/½}ß´¡5<¯Vãù£w/£|Ó†Â8}ut^>zû2¾gC; +¸¯ŽÎËGo_Æ÷lh§òìÕÑyùèíËøž ípéÇ}þ·‡þžÝìôƒ§kÍ!O)/àù£·/ã{v³C•‘Wcº|^ÆóGo_Æ÷ìf§8./<ø¼ŒçÞ¾ŒïÙÍô·Ú—ñüÑÛ—ñ=ËÙ‰ª¿::/½}ß³œ1ÅWGçå£w/£~ÏröêöÕ/&ëù£·/ã›–“º–WGç壷/c[Î÷ÃH;lööíCäZöŽå¿=lÿÆ°„ɾü”Ô­{|$]d¸“ï„þÞ¾“øu£+T¯~`´×êOö;ýéѯk/oŠgæz3þñÆ“ŒÑâ_?;ÚcQmkö“£}ž“.^+¤h~ÿhÁZøññÿ‚®ðÓãÿOáÇÇÿ ‚ÂÿÌ„ÿ/( ?>þ_p~|ü¿ !üüø¯{ÒÏŽöW\‡ÿ/H?>þ_°~|ü¿ 5üøøÁgøéñÿŠÈðããÿƒáÇÇÿ êÂÿÉ'ýaßâ“O:Ñn>RJèg=©öõ£ÿ3ËóâçÏŽÿ ½óÆçÿ™×ù Õó‡ÇÿLèü…ãùÃãfrþBîüáñ?S8auþðøŸ¹›¿Ð9zü×3éÏŽö EôÖèÿ™ú ]ô‡ÇÿL +ý…'úÃãfƒþBýáñ?Ó@a†þìø¿ð?¡„þðøŸ‰Ÿ¿pAxüÏŒÏ_H ?<þ§˜Ô/£e½âùAÃ_ëhg¥ Ñâ¡™{DsÆOÅLÿŒj†~…ÙúÄ»œ©üI¹Ôßaì{ûu€—zµ¸%_Ïè–.Ä猪¥7`­s^_ßП?ÂiùËŸ|„oŒð{áßðOaûûö?ü ßâ÷<Ä7FüÇO±|5××µÇùÖhPBƒGz ·ƒFõ—;DÄíÂ@ý:Y[×j÷ˆó/'âß:×…äû#\¿ejÏ—þâ‹{ø³òÍ7FÖ§8ϯîaý–ÚBæ·Xçùó=üo¿e„J{Ù‰nùO=¥…”ôDQø—‡ô[náDMo̯^ŸTÿýßGÓ‰V´í‹~Ë‚D'_ñÄ_^Áÿñ;–úE¤ï×;ø-@Š¤¾ÿ«Gôß~Ç—›Ÿº…ì/ß©ÊÿF†í‡RËÿ±Ò•oÜ 2¬ìT¥ÿdJþÁixï}rÃ7"xOãýü+£kéΖÿÐÓ|fˆ¼Œ÷cOóéÌð<ÞÂÜtSçµf?97)ÚzöÛÕ[ïŒÿ¹Zëyüï–m½3þç2­çñ¿[¯õÎøŸë³žÇÿn¡Ö[ã*Ìzÿ›ZïŒÿ¹"ëyüï–f½5þ§R¬—ñ¿Y“õÎøŸk°žÇÿn1Ö[ãßÅW/#¿]…õΘŸ«®žGþnùÕ;ã.·zÿ»uWïøŸë¬žÆÿvÁÕ[ã*°zÿ›•VïŒÿ¹²êyüï–X½3þç’ªçñ¿[[õÖøŸj©^ÆÿfQÕ[ã*¢zÿ›ÕTßò‡ŸþIø—z­ç¿[¸õÎøŸ µžÇÿnÅÖ;ãªÐzþ›¥ZïŒþ¹4ëyøïÖh½3þ皬çñ¿[œõÖøŸŠ±^ÆÿfUÖ;§ÁÏUXOã»ë­ñ?•_½ŒÿÍ:¬·Æ¿ë®^F~»ë1?\=üÝÊ«wÆÿ\iõ<þwK®Þÿs‰Õóøß­µzgüϵUÏã·Èê­ñ?U½ŒÿÍêªwÆÿ\Mõ<þw˪ÞÿSÕËø߬§z+ö©~êyüïR}#÷2ìM7ð#pŸbF/ÃþtÌè …Ÿ×ñ8fô…´Ïëø?3úBÓçuüŽ}!æóiüŸ}¡âó:þÇŒ¾ïù4þÏÆŒ¾Ðíyÿ‡cF/‚=ŸFþ©˜ÑJ=¯#ÿpÌè ‰ž×ñ8fô…6ÏËø?3úB”çÓø?3úBçuüŽ}!Ãó:þÇŒ¾Ðßù4þÏÆŒ¾Þù4þÏÆŒ^²~/ÿdÖïSÌèuàŽ}!îó:þÇŒ~UõyþgcF_Èù¼ÿÃ1£/t|^Çÿá˜Ñ>ŸÆÿÙ˜ÑÊ=/ãÿtÌè ÉžOãÿlÌèE«çÓÈ?3úB¤çuäŽ}¡Îó:þÇŒ¾åyÿ‡cF_èñ¼ŽÿÃ1£/„x>ÿ³1£/x^Çÿá˜ÑÒ;ŸÆÿ٘њ;¯ãÿpÌè¹6áeØ}¢øsVxÉŸ–ø£Òú Ýeê÷¥šf‹þmNøh¥ ºÍ_ø…~þCJøÖñQh0©¡#蜵þƒ[úsú#úŒB­ÿbÄ7¸ü/#–SLjþêdÂ0¾ýÖþ|zƒB¬¯ã­ýÍgøçþÙ3übÄ¿÷ +MÂòþé?ñ ÿtÀwçá§jˆ>|½Ð•õ²§*Ðüp¿Çº¢‘ç/×@ßêcžçòõ ·à»¯â‹>d¿eÔëò ¬ù_?4è)“p¶¢'ùÅ _´ñú-ƒöé"žq~5è(¿eжlÃ5å¾ô‹š”ß3h¡v/å«A¿("ù=Ó—V¸n•þÅ _eüž;õ²ÕbýbÌ/ +5~ǘ4l¯ÎC}1浿cÌæF–r6¾ó‹j‹ß1¦[w×s}i¾(Àøcžƒ1gûòÙþËÏŒy(ªÑèó?ï>ËQ=èúê…¾Ÿ°á\U~·®®ùHT†ÿîªÆ‘kw]_Ýç/ÞÝüCjÚÊÍŸ×ü[Cê.õGÿÁ!ký Kµ<þ>ér^ÆŸ;Cÿñ»öÏv\ë×Ë¿üÄ‹Ä÷:jÿr‰üI3Ô¿?@-Kf||9QúOÖqŽF³z=?NýøîÜLþ¬ó¤&O‹ZÆÈ’ù¢Yq•ëÒ¾Â×ôØÊÂr¸Ã2 Ëz]WWúG+ãœt­ºªèp?Ëú^[âw×XôʧAõ¸èÏ]:×DéÒõ‘=¿Ýñùì<æ³-jÄÎK7?Ó-¯Ïù±fïõ¬Ób¡<(=Dcóø¸Î^ë¬+î_Û}GS¬=zuÏÒ>´u#ч~Ò¾Öël\fyôc»Ü›üÄêƒ:Æ3 ØeçIÏ»€aÛ—î¯âEò¸h{?Öqv~«¬³O]Ê1ýûsEgrùØM·­IØqê=p¯Â–VO™n/ìü¨K74›Ñ$øÀKž :šk“ºä4éZLMWæ+éZgº#&ÓÒB›³“8tœ©çyõ˜„š[z×UẰ µcwÝ®šÊšúb+Œ×²[wÕŸ¶ÞFóÃdÎkâêVã{O:KÌù#ÃkÆ4A¯F?yÏùu•q G4?Æ¥SÏÙëA·=ª‡;Ù·1®fL¥™l[Ü]-´•¯z²µ ^äR©Z™ºþÓ“ñÔ#*ºñy”Àt¤¬kÔ1¹Êö¡ç­ êêÕJ|€ž˜ž÷åÛ;0]úûØ“úÓy-V¯)]£‘÷je[×GÑÖtiZ’q9®ÑiW¦‹×“]pø%p*zT§©;²”.rí~ÐUOB¿®u£Gvé? +WüÈ8ñÏ¥µ€u¹´_­2´RãRôRF?sG÷¡W¢5ÑÜWÿ¡·¤?<.Ó|Mk°&›Ñ.V;Xù˜U¿QºïAÇ}ì”IÑн7ßÀ³"î‘L@¸G`ù5ucRà ¦É¯Á‘&Éǥǥ—ÙŒ1=ª ùRZÑX]JüæälKtïi*ê w]¥1Þ®Òse"•vÖ«ÇãЦ¿åaZ]šú«4?°~|p§KOÕ¥ª»¯Ó®vÝø’ñ[š·jû3ØUÀôb›~YBXÑàš™+®óY)딽;»Ì?͇À¬P +]Ï“g6›Ö¨ç¦[Økâ6^y - ®øž¹‹ù'L3‡ƒh|/µOÍ!¾7u2AWõ:é²MŽ©>2J‹IV,Öe_XfÁ÷t&ÑÊî=ž§Ü˾»>kVèu‡­V>tņkrrö—pð`<&-”I4I˜<ŠclìIÁKoヶߋ<˜æ‹, æÏE^3s¬˜œP—4ÃåHD]ÞŒ¦`|OÓ@º]‰éý›lS‡V‰.ºÑÛV¿¤—PÙvýÒ‡&’l‡ÖÞe¬è¦Ë•?(㮙ݑë׃‘“­‡Þm¦kü©Ö++hоŸšA5±%cxù“úЋ•®ëÒãÓüÇäuVñÝüÛ«¬˜~‘Eã{Ð3ÒµÌÓ‹A˜ÞÚSÏV÷­ ¾cî~„õ&çc6x/þM½}­/¿t½Ë³Ø‰kyK–2& æ@“qÓc«¾¿ÊT­ñ“²O:æT¦Ð:íSÄ.YBÈ<· ÷ïŒËÔ¶ E¤cC÷*Ë{¬XCšÆz#z•ÓSEfäÞM¼:N™ímäG2¥ú[±rôÜpÌ„MBm2ÿz«^á²,§Œ‘_š§|;m‹¬p¶üƾ>7¦½Z¾ ¿¹pÅ—Ö°wy9(²Èz¥=äMÿSœ1½39/r4h…üÉ“ש…Þ‹=.ÍÒÇM6\î¡5öûò®+AÏ£wù›ìçšQZì~;“.ôZŸ¼TYˆRÛE˜ãáË‚èÑÈ÷í±“à‹y³Ð“ÒëÐ%Ë*®0²çfÒ¿YðåU•Ø …Éjyùã”Û!£ª}, ϶~á…Ê`³ÕeÇö±´˜ô\Ì)*cÊDÆüÒjÒœCûøƒ‰(/ࡦí +3%E˜Œˆ>ÐÐöïÀô u*$ÉC/°®øžösL‚Þ¾)Ú7äÖÄ-ãD ùDý„v[^Ç•ãÉ_YÌCMØ®{]Zz¸1ž^¬Fóªïø¹òΛ¶°S+¾Ó +Cζ‚ 3Tû{u[“K£~øK¨h&'­9õ80¼i8â7YÊG»0UzþZ“ų2±U‰oè5haê!Ùvx²\,:Ý´LªÙ†Ì$sèäHTó)kjh»º´,„éµ£é À}7 C»·¶˜éù,“#7°‰és"»¼Dl™¦ç:˜Ý\v8––\c]õŠß”é`#lº´!DF¥åÑìb)ëÿ“©b‹>4‰ò{š:)ÏÁíiW’eœëðƒ›²’…̱ÎMš)úEÏç¦ù¦˜vv––µ\n^ÂLLVyÄíu`>…—ŸÀYîódbÊÉéZxÅçM0ý—6pÄQ´ t{ã×™˜fljƒ)LohhϹòqz‚y±i‚qԱ؛rã¬4VS+MOÁ'Y­ ½[iξòt½31=)ýŒ‰Ùe:ê)mL³YÇCyr¨5=ŠŒû +L[ùÒªÄâ܈$¤)7ä·³–±„šµvyúÀ4ˆiheëÀs&¦W §Žy[ðÓt.›ùöæ‚Cf L~¦NWb=ⱈ ¥±“}è¼A§Ó„Ü"´Û~ȇÓÈëc·×ØÓHSG«açO7§ O“èûû´Ó ÒÊÆXjv_ybò펫;Ò†¡,Øvd‡Æ[N=: k͵ ÅNoKÿÔ+é‰iihbÉÅÁ@$¥%¦tB€öK×å¬9ãÎ î”0±&É>7"‰É0ÇIDˇ‰„«˜&®n`áýë‘~œ33XGŠ=Av\oV÷zÄÄ-¨O]úI¶_YM½ª3 k™… ?hÙjN[ÞüÍ¡û¶¡MM"¹êö4ÅÂÒhÛç¨-c“…÷¥ƒMcwdN÷Ã/²%¦m”*_vyfëÆÖ>u zÃ耮¹—2ñí–x_ëDµÎÚÓ‘«Ê”u,òè‘·þ¤äk󨃷Ÿ{`?üÙ¶õX98¬Äf †'`&I»“%•½$·õþ1sr¹c1˜´ h¡Œ8¥Ì=™ðÛsB»tïriÁª.^2LqB­>ì€i›)Ž“êˆÁõ¯‰éÅjN#F9ó௧!BßÑöf«ªC±æm§ùOt‡ýPvWëR/(â—`×fÛá”"Ÿ+~S«ANJ‡Ä€5æ 5z"z/œ}ô eu“º‡˜GltCT ÙòžA0Á/AGý¾ž™Žýƒh_ÑÃlyãZÁ2%çÁHëK'A-ý¼m!z–;vû{—Õ&ª‡)ôäØÏläØzÝXÇê—ˆpì×öQzIì*Z$@ô™Cæ»C :Q ƒ§QŽN×j‰É†ëIð=½„ÆÝÖ²¿7§&‘!}áùÔ¬e cV&ƒ¯u"Ádã¦l™®S³Qîú…ÕMLÇ#ùýœb‰/jϨµÇó”ó¦W ÝÏÌ~ï~ë“À'Sbùâ`Ké#1ÌÜÒ1ÒïH¯D¿3Kb;Ø­ÛgB 6;CA£}:©œI¬¬Äò­375?ä{ܯO§-Km‰ðæµðµ ]a>*ž¯Ö—·õÆ×ùƒùT´¼.ùºÌØ4¯4þÂüˆ&žÂá³—làáßlœËõxÙM–=ÔoÏÄ8)èãpóú%£u:^–]bÏìŽóã…I8Ê— 짂{m§ÿi·$ÏC'Ž4ØÎÅ”?ÓUå©…¸tœÞ@´îz×ûA€ˆPpUb>,ÒÄYÓSáÄž‰ÉŠEœ„WÐåIgࢵF:à,v!Îá+Öl‰Ur12aVAéû{cGŇ|ñ£‰Ýù ¦ƒ^«¼Ó˜ò +ˆã˜¶9Þµ{xy «¦Í˾‡\+Y·<7§Œô£Ä÷äÏ}„÷ß6&ƒ© fŒC­ÞFÉD¾6N èÇT‚ÔÙ66º¦®ÒÞ¡ß +_€4TYÇòQ\Gö¬ñîX¯a/„á:¬Z“½,N«ÿOî‹ÜÙ#ßÞùÈìp¼o ˜î´ãºdJw>îÙ7±àÅft,ìßE”àJLw-sË[Îéÿä­OÂ¥ÕOa:2UŸ[Jb¸·“°ÌàX¤);å|»HUL6LÛbM+\‰ èÅØ䜬SÓý=ݹܼ<9Ô]~f1œœC=Xý!æ]«W¿»ýazz¾W˜#ýìò 40Ùmã$T´˜5ÙŸû{W‹ÔNVE›‡ƒ³Ã÷r¼ëG@FÍ™GmŸ›NŽr/ŽàMƒÉÒéGΘ<5™×¶±ËæÛQxšÁgÔ^JU½Z†;‰Oh« µiŠÞåR@­¤JÜ&±Sóíj¾qö„yOÛ^œm#`Lç í¤±Çê˜ÆqQ‡Ïn»ŸÇÅ’XÓßâÑ~AüZ¶.â`N"ô\lÀï=V˜¦ƒŒ­ž­#Výñ:î§6¤ªÐ;„öˆ‚ÌÅIx»$†÷w’8[z`¤à"¨o§ÿ,Î"“,ˆË”¨ú¢¶VaƒÀ¥ÞsßØÈÛv2 ý‰ãåÝþŒ…W“åÍDEq yn7®3 +û ¦íˆ8tOL/^¯ÏC»¯NúïXÍÂ(%_N†ö±Âô®‰]œPálœø‚“óBë¤{aVCÐLÆ°lËßÙʦ µ1í¢Z÷ÇÆt"Ô&ÚÀ +I -ö8v>7Š“k›¹X=²¼†ÓaÊF²(–Nš¤”Âf ¦-HÿÌËôÚ.•°6€,!í‰é%ÈÞ3ßñÀdçëý5ʹ=q²äw̶ +·G.±ŒN5&C//+lj‡²;ý±¦±'v’swÍÎ’¬Ïyÿ&a^ò2Æ4ße‹s-,§¯ùȘÖÒá阼þ˜èm”èfÁ˜L­Î¤N+§\9iS…ÉãUó›º!M$¬Kb0ó;]fõ»Ú-í¬ù5hÇ5;âQ ÓV<·ÒÖ˜6ÏFÏ6¢:@çtªû4Ä>jw/°›'×Øóp`ŒÅ­ ó×0\³–ȶ?9$É·Í'Øà¤ê”á%ìÌsrÚG%ˆS«6?¥mé‘fÕG„R¬È ¦¥—éz Î§Ä·4Uîó÷À¶èµû…á{èYÎthÑfÖc'Ág¬[k5\Xf-12^%Op£9ä×#€¯ë¹ÈÑ,0ÂçWi#säà4–&hbÚ[ðÁä^8_ã11„n[ÆÇ¡è¹Ç³í²oÈOÊ·ižgBÊ+G{J¤ÓµäY þAÙÍayÍ°dkOg¿Úpr…(Ob¸5Š¼º^ž7ñ¬t/À4sÎ}£’ sõ#Rsèð{íñØ«t¬ã7 8Öž™8­\mðZd»ë¤‚OÙ¼k&Ft"0²TÄ]ÃR†_6Iq¾!Ð!z0m,“eï}ÆRìÒaÑn¶Üv‘D[ñÌdòfTÉØ¡ó¢3mD”âÈÖß·©z“WÛP×ç$騶ß#w\Ò•l>8÷QŸôáEæûò樧Œ±Š™"Y.«÷?œÆ‰Hm+R¶§Vo¦ Áp¸ðùL³(ÄÎ2î*Lþ¹ÞVë&#ÙÑ8ÚÎg½ZZd0YGcpXºl/}mºC+19ÝÚeÙßIFC—„ôL¥/A—˜:ä\#ëÁÉÁ }yù–˜þP~k‹¼\ÑCˆŒT#9Ê9ÿâتÃÁáJL’ײ:óàÈ> ~DZÞ'6.“`2É›‰Ðüe–'Ç]FôG¥f ã$6²“ħŸ‘}]c…T .ËAØ‹HO)-LæUjLÿ÷Ú›¸°Îœ&¦—з§èoò‘àbrƒ‡K¦‰£Yì†y×=¯K˨Ó2¯êƒÀ£6ã2ï£B@-Ls`WDœKbCƒE|Oçüä!0š2”ŠïiI˺ôÄä7žø:N3šÄ¥ç-à 9˜vRÐ2óz{31ʪO`kH‰¨Š°›ŠÅëÓëà0W;µ·é^Æ.R1gÛ¿yqÖ rJ!>v‡ÍO"¡™wò÷nûmŒ†k£M s ÄÎÚQìjƒ­3 e`rUå*%&®`Jg€áwø[2½³ìZ"D +aG¾fÃ06>Eü1AH~;>ùH즠A,Ò—ðt[b£FHÑÙl™ÅíÒ +9MÑ!› ¬)¶±‹CØɬ½Èî<TÈÿìDo\[×N¾œ¶… —2¦Ã|š}2Ò +rLÎ^ß~¢0=Ú˳9221û "lîtóÉv[7•HÏK[ û.C^aÛŸÛŽ!Ù3Ë}œDðC[eEJ;MJ †Öij†äÐÑqÅùó$øÒÃç7CÿŠT)\Y'ä“È£ý;-£CC»yÞÜÄ^×kc…DMf A `ÿKŒwºÌÇ¡O¼N ·!ÉC,ØuúJbÜ q­`~À4?ý½ËAÜÔ׿î;_P¡ª£³ÆÚeöNbU&¦¶T|¯‡×˜æ=lf¬rÔZiVœO&hS}ƒ.=Ž"°PœðÇyf~kç=¯º1hy‡Ov¬‹c„×(l~«D£ãqjžî´-XÕ6ölž4îqÐÅ€´ªµ{|­Ÿ˜Ê<ž—L¿Þ}¥‰Í1W8j,lmGŽÈ¦±åYùRp–t™#ô&Ëè$à Fÿ9íI#±ôÀ¸˟›%ÏÉìIò—)h\XáXqØqŽËtçïÊþAfƒìâ5I¶!ù–`ºÈ¦Uº‚ÑC¸08m3ƒ6GO,ßݬæšzz`ÄNu‹X™0¹äAm1udØŒm —Ñ{6aáÇ ›æ‡â¥éV’ F¬Ü6ì7a¹Aå™›¼åiÃEGÜ¢a£ìȯ‡$¾™U51´ëÝ»X`ò¾ªë=žìCÉ4›ýÏ®ætö°íý|6³leÍã´&·AŽýátÅ jÄej¾„aï2kº¤²eÄav¯rj +sg°üzbf{Ì€ÈÙîU7á9×Ó/Ò›Ö#†a­ Z ]€ g’-G^™–ÖŒcvWxÿ#¸¶ëa§ö×2tš A³™Øƒ[l>NßÔ:°3XÝXB6&?Pï¤$—T– ñ`²¤T¦tÏKxY. y âÛÇV¬Dðå†Çü„­Ëµ1½ß$ÚÓñ’<9³Óêuôá·}ÂÌÑíç<7WT¦´åמìïÐ4[2v ç;MsªM–“¡M*Ìút ¶ŽëˆïQ¨ýacZaNŽ%Óh$DNž³g:ÊÚ÷ÊØÃÉ”¡÷ÝMlAÝÞÿ) OÂôáãik…Y¥åA:°»ñŸ2B'E9`úõsg⡘ Zy¦‡4•:51b&zF¥—OùgbÐɵ|«±s<"úÂt¯Êíqhïí;tkM»~ó®…ƒs±)Æ1T¿rdô50”JB2Æø1ËÐxŠøLç:Šù°,¿è€üdy0]Ó">Ó8ûN+C’ ¾u÷Q&“í#1ùZºgˆDö§l œnµw +8J:Ül§ ÿJ÷ C9Gš=6BˆwÚ™N‡ø^¯Ä˜,§Kj¯xÄ †ÓXûzßßÃ`:'¦½û¶ä=f¨ †SØÆ…-±Ež·2[.½åZÄ©ÑP«Æž²s¹™€ LË0+\'áÝ\ u¿ZÝ¿ù¿Š‹àK¸ø Ýü& ý€> ܺcšŒ¿¿FôÕ$ 0ùLƒý=-åƒM:°»'<Þ¦õøm>Àê^nG“'¯ùàc ô|v`‚tÏË-°¤i÷Ä5pt‹ß<#s˜˜^H³Yà€>ñ AºÿŽ¡­û·×n¶®ž PtÄžffdXcc̸‚íT2GE†Xœñk»`Ç߃ã{¯Ru82±ï€Û$ÓJ'…9’åÝ4ÂÀdß4&ûºwÌ8í$äk Qz´oŽ:ŽÑû_ŽÉÖĈÂê(U\¦b†ûÆu¾&¿Åu#ðîé¶_ré‹ãòÉ«aÂ{#Í°ã˜PB;Ì'¬tÀÅq¢ïk‘½[šJÅqùöDãÎ\89c®fck7)åò)δð¬të7_@X¥DâH…[½ä¬‚Òù.60xM¾K ‡ÔJ~ŽA ‹z WÌ@ÏqíœnûÈ=ô"vÓƒú„¹Í&œV™S¶{c:amr ¥5nŒ Òr°ùjcv‹b§®çšº‹ÐZòˆ)iòʾç¤Õö«¥µØÀôˆoöÈEå¹UØ^ñU2ö~q,”?AyX;÷÷VÔ’[²a+‚5po‡÷9×yV+=petÍ aÔõ©\gÛ'>L'¾'ä”ð X°©ò»†Ëu.5““‹,°ËU½zÔ|ÐZ-gÝ´'—ÍåkÇ ògb+„‡›1m/mï=f˵ne¹$îŒÊ‹šX•ëpÖN#Ì»„(ŽºäÉÓÇrÈÒ®!²#øò‹aFž‡MK`'•Xg Lûù‰Mü§åŠ8’ÞÎÏll.)þ^oÁÜ4G¿j¦QÎÈx,2ÚGüRÈE( Œ÷±ÏÂÂà05ÍÌøM9G®S—¬Êƒ.ñµ'¾4˜ÍS¼½ùö±’º0 +óR®`N&37IÄ¥ñÏÃÙöšØ#¿÷T®$çåÈN Qꘇ¤€ qøhBõd{"K"|ºIÊÔÛÊKé+ã+*"&Eé|Oµ£×O΃þôhò#oª+Ômm¥pë\Ÿ˜{™ +ªø=ˆw™A€L°«áø¦¤Ø`Â5)Ï–Ù‚9Õ½c¤}‹ànœ)ضU+~“TOß aoÍ$tŽe,ïrc05ßr^ê­êô¼Sé0ùwšF;M7OìÚÞ!X¥È±Ü¿IF‚ì§1=åc'»àJhÖØî°ìzA8'ö²U…€þžf ¥Äô-=ÀqF•êE—‰Ý$/~³ ×<¯Äà÷hBW›yÝk³þÄñªe?Ã5Û¯AÆI‡Šó c¤)¯}9ÅE öº2¤¯[-:Zå6·ðâÌiŒõ!w¾'†£C˜ÎX0Iý=ÝõOñ½'ª8KW†;k½çœ®YlÀÁsvn‘}Ì1تY«’¥´rÑÃ3`Swd"wùÙ:Ë•})ë£CÁ67?1Îä2UQ{ü8W'FPnÙ]Zéb÷ +b½+o´áêÄß÷Á7AÓøÈ +Ü#Ãd ÉD_¶~y(rÁŽ»4ظ”ĵ/rn†×é»™Îò&Fl¼Nҩˉ++hCá(Ú]Òô¾s§x%uB‹ÆRX°%V!žœjqÎ µf.Ã,$¯¬ê=©ÉÎ68TÀmžö!µûœzûZîÐ X”úÕ„&§UÑvtuî,é­ñTøÊ®¢ï„,ÎÓÞ_OoŒZ÷™äåÉC‹t=Ú4à8߸?@‰€ÕÀ$<¨ªJ,‹Ã©~™ÐDJOªI»±UE%±*c˧-¥k³;HòÉà`Æ &âþƒã?»Ã]®vÓ +ÆéuƉ«Vo`ó©ä÷réâq¦ÃÔtîŽÓé(OO*†¬áåk!g97Ó}™ó¬ýoD’àdk˜_3KöàÌóµ^õHèDD‚w×(O+ ¹ŠÈŤœÑ¾D˜„Asbyí:3pB­W¨$´ŒVh~×Èe° e­s¦ë㆞j Úèäv#fJMÐŽµoYø89*K(ܹ€õUgD HdMN³€V95"W=åx›PõzÑÊ4ot_ ™{>§#}z7.âLŒMjSÄ»^ÞÌ‹üØìÎé8io6(þ”åh³0'qÌ >äN²žª¼MÐ;>r‘¬˜ Î Ïæàµ!}ze (›èãLŽÅ¦¾—D®Sဢým8Bì,G_7FÕF!ƒDqäey”ðà +XˆÑ…“‡ë`xÐÚ!Ê#§³„…_&FTšZŠ‹§3¦ÂUhu˜P_·cFu» ÉïDüØ?II7lGaœ= +µ51Ýx•IΠzoZ3k_&œùÉ¡u°’=ß_»z +œæ¬ì³Ђ+RH: b+GpmÀÊ£š@Ž"Y¨#ƒè`$û" Ðͦެ° +©¯ñV;Ì`e'ÖL­à Í O"Ê£ÁuýdYÁ°×Ę²¼fs+ê] ¤óe‹e×ÌEe7ï‰Aëny ?ÄE¯m_Ê’_5Í€NsÞJ"ú=y´JèþPsž°%¦é ¦¹QíÊøq`r~ +$îàÛ÷8•'Æ À¶JÚ‰Æɱ“úçmîájIà{HPæ³·•ÀN Fó œ(?*x—`ä?H;T÷ +ó#±uD²Á¼X=j]j<ê’~ռߙŽ™˜ÙehL¸*9@`µ&[ÙäøHŠ÷ÄZòr͆†ß²jÛãaTcp-ÅAdõ8ö÷H꘠W a§”º=Ï#*¥à͸€yΖ؄x;YëTï\&}—iGp÷Z$*÷ýiÍšªhŠRmš›ûýqØ ‚‡§.™Ò +‰Éå‰J3ª«³4x$¦Ý¢d¾³\ÔJ‰Ýq´£˜­$&'ß WH}íÚ5&ÿp$c:œ‰1!t,t°Š°––¶_Cb×. EçÁ¿Ò|EÄ°ØôºÀ>~r|D úˆ¸>NA†9ÁäÅ8îd» .C‹Ý'½…å{;P¦Š*T’K›j1/™³^Ó>@ÚjdjTÙ ÝßBÇ¡œAþ¬»Î$ ÆÜ¥šNsì Ö<Ø­Þaº6õÐ=—9Î]Ò…\n¹ÈÏ-¬)¤ê¦LÝ‘öT¾]Ë*Ú^ŽŒrI +‰ó%.ÝÊqbœtZ:]ë¡W£yp­ÄpŽ‰9 ¸VƒÊ‚|9§[» •wW£j, k“ØÚ ítŸl{œî­ÖÔƒôŒ{¨–ÈBëýcºÏÇaÖ£nLw½\þ–ežñLˆZ9Ûí9-Ê$wnSï9gßFb5*n/¯*çu¿q\ U¥ífÇóÁ¨$m’ª]íT”ê&¦µŠ¬8Ýë5"‹vÞÖ{/{á´^‹æ»+5cc§$À.Ç­I6jðL(™Û¼›kµStæí!ßBQ X‡½?6üÅê +ÕÜéCp'±JN pëPöʵOq`ãÝq¤¤ “­îáz„Ó"gÎ\ÒÀxÐŽ9âÇÌ¡ìÜÕ*X”cmln•øõÁÃÓ싨®ùýLÉ‚Á\Ô½w{p:}‘#kY„ãÇši°²(¦è¬óá‘ÊÓÜÌ,µN[F¤[ê­"ðùfYÑ°ñ½P¡BÍàÜ—¢ITI°1ïL Ц¶š™ðP£{¨ô »éèÉw £¬¥ò±ÀÉ[ Zî ÂÐ,ƒ§^[¨%M—µ„›#¬ì b¤I]wW«;r蔦þ :0‰2'-‰”‹ZÉXVò;¯;ÀþIž†v¾LvðŒ£Ø@ôϹ§6ä™—=úDö<9¤Êsnyø#í~:aáÿ]àÆqRvzæq¹í*S°Eü¬8­§ÙØu‰'Æ AØ©qtoŽƒ^31½"A0Õƒ.Ý#kªYÉH¦`œJÀ4+ÌÖª +ëAÏŒ¨Å +µ‘ØØ©5'€œDPfš‹«$ø¤I”SŒbìšê„dFŠÕÄ.Û¯—ãxl{0”cfÍtŒ0†LK®·Ô®·öYÓfÞ\\9—%ËŸ“zWùwbåp5jKŒúSÊÊû:®k]+§‰°`PGd²YžûZ`QœYýݶáT”O»Œ‘»€÷q•¹¯…4F=‚Œò„Z¹ïoræ?wR ªöuê}G’ÌÉ„Ú7Lö5ò¢¾Î'¬!Àãhé îÀo@¼d7Mï·ÎX}¤J¦W^R"» ß›#"ZýФëGnƒ-=›Vîñn=."ê:BDa_`ŠX³h±±ñ–¥[ÍØ ÕÆäÇîi¹ÅzÓ:ÁûMÒpÈ4FãY;‚`?BDÔŠfÿ‹î?f–›¤ýTLeLÿ^×ýg)*õb?#J>?)* "Ë«#AR§Á´l–:M×uS`ø +öµÑ·¬ÇÓ‚Ÿ(ÖξÔ$‘=ɈÐpüÊÏ ý³þXf“‚w3ä-ÛYSÏÐØ΂Ù{_%+ŒÊǘr¶²fŒ¸äŠÔÁÅQ½oo¨Ì‡¤šÓ–|‰óœu>©¼h‘þxbo€Á¿v~™€\ê CVõ(){, §ÅµfA‘WÔ†¿2› Öà¥A‰g½“ð¹Bò¬£"é õÌ«zbÈ„˜QçP¾~ï<÷×` B#HUÌГH U'³¸ «T»ò¢Y×ô»‚žjh…*Š­çõt>D$öÊÝÇùñrû +Ì7yÖK9缫sÁ¸½óTÅ<ïÂêné¨Ë—Ãîz[ ˆê/‰'óèȵô=¾F¹êY÷/Âe89lsl$Ž.¾+â–TµG%‰ý½‡Œž“Q² ×Ø—¢%8ÏÃ;A£›f¶;¬gW¶„´‰DvÕ2›»~41ÝuCmý!­£¿éY$ Í +'1#zIñi0]ž¢RÕzP» .GÕ2·uÖP€(3Ø3O 0Mô5LèwʹÞçG°[@¼îeDFlÌû7“;lC]#z‹ŽžÁ9ëiVc`š£æµ…t't“(ƒƒdš÷ÎI㦌ƒi/Ú™¥;¯r{4`òëzÚ˜–ÈLJ%_Ñs3âÝ!›qWrÁG»´^Vx-²7‘Õg¹«8º+3·t"„AísÛ,V$›’M¼¢W™0‚þ´°Â3–]5ã:±ÐH-é5¯›Ã †œ\kIż"\ŸPðÑ<.™¬c½¿&CÒÝÛ€Clî•œc2³P:“òªcô¹fbzß–ï‰Êæ ŒóƒLS‰šW2´€¢‘p¨é|°4˜ý“w9)˜ vÈœ˜-_“’ž˜Lƒ8¿²¿@”㜜:8µÍ(G[‰(CŽÌè d•:ÐY¯PXq•Àèó^ ±«áµí§± ¹í<ì½¼óêR +“ø^=FÔ ö$—i5Çͱ§¥µ¿Ž‚%'7™u°ÚÞ=$8½˜rÞ’ùÕÌ]d*Bãs%ÌäòkK[¶,í +LÖ}«ø:[HalŒíܺs§Ë,"ö‘˜Ž¶#\cjŠÿ{<4f½1ó<«–;<‘ÄÐ-Òtû;²ô4±'©P +ZŽŠ3!2ª4BÐ`ÐG$ªœKì6ý”Çží>$¢A ÓÜ:ñêÁε!mUÅR˜\ÙKâ³,—imçèøk®–uÆw ñ’—žå)leqCŠñxbTŸ›'”6®?‰¤º¢ýÚ)0jºëôœ=p¬j_Ë x±¾(®×ø×^§ä A @Y9ªµÄ.6Á‹z€Žë¡–ÄLà"# +æ#ψ“`>«›Àâk±\®"ˆzåÎ_Sy¯snÛ€Ñ`ÂÞ_dG\ÞÙƒ™gº$Ï,òŒáª!][è¾òˆLò¢‹z÷ï´g–ÒR9-ü©ïù]û7’ô(qr-Ú~›™]¡N`–¶ŸÛyžE槄DŽã€áñÝþ ­® îRItlŒrÆ«VŽ –ƒ…h9~°á%›æÎûÑ›2;©0cìÖÆí^|gR“ÀÊÜ]žªæÁ*+z9b_Ø/׉vò ÝBîïØROEÇ ¬úLj3¡¸àW3­©ŠÐNåmîM˜Rÿ8Víû£ñpñÅ ]›] K??R~%jûZnù Hyʪ ©øÐî& íü"ͪT§c ”ï8ŠJÁki¾Îƒ6Sš`.Ûª™Éˆ8gMLvs/ÛõÒ¿¹Äì [åÐV)2¤Å¢Ô͹ÝÅsA¡(#ÕÚý\† T’áÚ-X «7Óïé”XÖׇa 剾óI¹»R£çþÍ3:~.&}–}™2 ľ#ô]eÓ`²Í= +‹›³ô×· &¥©Kc‹3`òvâlaJ¯ÈhèrÏ”ŸÖA;v:$2(ŸØûÔ…Šâ1\S—Ùä^0(W‘´Ò(é(q4ënyâÄå•ÎWb9hô—.d$"aV *·Èp¸ÚŸ‚¥2÷÷"4\#ùZ\4–ëúˆ2rQ_¿…`”ÙØx™A–{íõ”ÄÇ*=é¸ìƒ²µvÎa׃ƒÀdù‡ýY ŠŒuªmójÑC‚[cÌ‘‚Þ¦÷h‹m‰0-hM˜Y”ë¡àgŒ0Áu/1ܨ4gËI(ôé"S¯}¢„Sw#™rXBÒÓó +MŸÄæe€:(bÙãõ-ÕƒÏãRúº23I(hQ +žØDŽp‡Š·vcò¸¡Æ;©8ËŒ +có€Ò0í¶i>ζæÔª0<´IÏÜàp˾©ÜpÆBe¿Vä2i…žŸ\sÅ÷(„L%O°¤ †ì8™'û~Õ<-Ãg«cבٞóx!a „6ÈÌò\N¢äŽÎmŒÂ÷°žþÍ—kÑ¿õK.´ç¤õp!IY>$Ð-lx»ž¨«uüâ¿y†Ïº“ò>WuÖŽ$ó»Ü9eÿäa•=×®Ý缡'{DlÁ¶;ç’>%ANÓä'Öš…+§›3ToŒÝ²Üú.¹ L–ÇF8.s†ÃXÅyÆ(xž×‘ V Ýâïå¹'CwwôZ|m<…€Ñfi´çq2‹ïÝÂ`CSÕŠwásŸnŒ™ÚÏHtéx»õë»\Èb9Kd SÆ[búÁìHKܼƶþOô,è+õŠ»…ì|fû[Og‘Fmë‚ÈÇ)¿‚X'Ù!„ÚÂÑA^¦Yh hHu¤æ[QSàíYD!ìúë¾@¸¨¡üçHf&CÒû¬QLÄ»t䘖0±dÁ NjÊuc•bÖ(+!•rÍøÅj©öc&BzÇ [ÇMçH0M½PQ;Æ-W0y2áýr˜ÖõŸ3÷D°–ŸÆbG[ dMd‡Ùa{ôö(ÉŽL?;fŽßð© ¢{w]ùÙåÝÀdgûE>Óñݳì:0ÂÇŹç?¢”Éز.?c¨˜Ù +[©}È=HŒYäµ®ÄS“Ì8ÌŠ wÂpirÜ1ÙÏšÉàFÇr°2ÄebºSH…~”§”8Äê¿ÎˆP?‰f€È¢,csÓ£LÀ„H0í¾æÏ«‚̵76ð‹B«ŒšÂÕg4|»80Za”å·@h)C”`¦Ñ)"‚å:„¤Ó4ç·§ŸkˆW$&ž½-n¡Ø1èñTºKÈtÔŠ[·Äû‰a2¡*¦e¦30ˆ€t”1Æ› +rM9í™# Ü QÚ¦@£À¤ FΓÙ"ÊàŠ±(nq‘ôZs…d4ºzjúF4ùàOÁ\r’¨`'ÁÖâjG)±ùPà£QXÚ%0Ø«Ö¸”¶9šZÈž)¤¶ÐÍGi6û²³Ìúµ!mÉ!­5­íw0Zbú7M±"Ïñäâfú ‹ÂLgîÙCÞΚ&î÷("›4ŠšJkç®â,®­‡tR yD€­¸×ÈÐ6pÆDåF½“AÑsÄåY»ûÒ + vŽÈüÉÁãÕÎĈ‘x£Œš˜û 6K¸ ÆÎ-V „}nLÓd‹ã€5¦+¾Ö3ž~½em\ºcÇóøÿy{›]Y’e9oÞO±_€ÍÌøÍ¢D ‰tg‚¦¤ ì;ÒûòÏÌ#³jí}OŸµn/’qzٮʬÌøñp77ÛlØy”»j$íòs&V·xØ»ÓÒðòn‹‡'õîŒÍ¡Z)¿c/µv‹xž ÈV«¹V:q2§Œ жY‹ß¼UÕ0ý9Žáú•H…Ö:iûg­è§?ÏD#:1Ãmu—mÝŸíe˜Þû.…,ÿÄØ÷"cû>Dn÷A8¯ä +éŠ{²è»˜$I¶kÝba⤢^®qk Ÿ´Ãw”ÓÝ9æåÔó¥ÕÊÝ-ÔŸ,;M^ÐÁÝÅæ>m„§>Ä£gén˜ˆ—XßÚ/îŒKI•m —2—êxŠ'ÅO:åæ–Ñ东un¨ÓøX‡ëê³ÝA•5‰Ý©æ~n!¾“öpØ|.ª=£JáÄU+ì\Žß¤&c0tæÙw/Ôl©½‚Í +*DYÙÓ”ÍOÆbó «ëDärÃÃ+'âDV' ‹–o'´Î NoQAØ0³âL¬Í¥ +”»¥cqlŒlv­ÝÝ5ý±~Ør0Fñ’\ŒþF’(!Ë¡³Ø©JAK9Eñ.( ²iu—ÓNZŒ•>› —Э&¾Äz¶:…³*皬9u¾œS•¢?©×ó–¦"ç{ß½\–ꪉM¼ä¨ï{OÃN±÷Ú\’]Öoh‰1ôO]Œ~°—͑ЄŒWô +û/5éi'¬àˆ ƸJŽËN‚" á÷ËÖyßÁ&Š“®«E~· +ãìx©·£8a›ü$×G¤Û˜ÙvëžÛ+ +îù˼£Côà½^Y¨>¤ù|&–2k.p“ÁÉäÙ)rúµÓ}lYîl‰-úÝ‹ÞTô‘%çS­—1ÓÆtײùëžÊ*ÄNû…Å)…+¡•¶‚"étpÒPµè3ó7"fœüA 0Íòy”,À⌠{-wÆÍ2²&NוeøÇ-¨¯9£?#âÑÚ¯ý±µ£\÷èá§ãå›Âu»2˜®|\©st÷•U‰´ý±ˆ*`¹íïLµð¶åŒA•¼×%͎ݯetöìÑ»ÈC\Ñ´¿ÍX8 l€½dPNjöw©pIî0“$@( )uÑ´M¨ŒAÿ½.‘±¯G•Ø¡ç¥C²]ÌbÇÎfH Ž]”:@–ÚfÓá?Œ3M[x9õž°êż9œìÃoäTöNC¿Éi§¨FíÛ4Ÿ™§$(é47M*Î^‹x nYÂ膽GQDC[‡¬?y÷sɆÂy9°JÍ:_ÅBj< >vãÁ©ÎW±ƒG¨×Ô“žŒk†œ‘PÆþnr-ïv•ŠiFîÔ´ š/²è_h™™·H‚ô¶¶ $<ÅS"­ë•µ9««51TŒ ’?lßz@Vv‹ÍjBEb•`NUBÚ>ѳ"'¡XmJ·:D!g•†–txÄ3FûÜŠæQ×Äê"I±REoáLl@ûì’y $Ë’Ï[E6CÛ6“››|jb± Ÿv&éäfç\=½¾Rd¿fb AuÌÐ>ÚÑDËßG9̲ïÂ’zSCËزZt277ø&†I‰9,MÍ]¨Âhv9³ÃR-©--a‰Ù”/ng¶UÈ\¤%¶ÜÁi©—ñFà”‹á©úZ%ç"1«v%ÆþP•ÆÇgÝu\°U1ÉënVezæÒQD _Y,”2ŸVB°¾-hé°ïwJhgve±s´<Äÿ´ko•švMšÎÝWf¢ìa=—e%ížØ•bÍfتIÁ_25š>âK"fKpë(µ‰¦Žñ¹i; ÇU+vþrt/Ò™*u,R'ö‰;1O«ÒÎîåÛH&ÎcIÀÝËr2XEˆMw6KÒ#] +aK¢þ,½Kâæd= £‡ºÙ²„Ô¼v–¨"0UKO ;M\‰á UÊåf锟ôÛCëœVÂâï|9P‚Åùà¤"²©·]6”»K–&{I'ððK/ +•™5;?›ÄÏÄjz«v|ç}›T w ýAïž9°[¡ŒÜÃaj±¬­Ï”Ë’½²-bb0;PtÁÂnÈFáp¥âì~iûåÜVÍFu2büy^ÉJÓâ~&6²<Ÿª°s“2Àçá¯|Ñ0(b÷$oÆš[›m¢+&ŽÜ—›Áã÷xa„SXÁ“çfiW•¢Ýñêç +¢á×Æâð@±ÉÞÖÓv5±•““†HÚOý”§7½\žP—žES¤ ÿ ÷Ó!mB, + #šçnÈ(!w ­ó8 ¾¸Ñ¯˜ 籬ðÜ« ÜèQ±¨ç&u}ܘE–FKѺºÕ8ËZõ h¥ü®IƒC:@~b> å×Ù©=cñÉB£ãj¶¿ŽuÞlcq*ŽU%X¹}ì4}¡Á0›MÞ]iÏï´·±Ü=E#%.¿Á ²YR…²µóJ]ÇÂh+&m>}&ÿòT¡ŸG“¥KK,"³ªŸ‹ÚÈËW6šóäÐc¡ãJÒÒ1ƒ¶zÕzðÚ¤myʧe fÄ#N!ÙCw&Ô›Ò_ö½¦ö–\C°kº>êåøÿZ:ÑCäIË8a¤áÒ¬)Z»2=çWÑß›¶:3\)n[©`#4;Ið,×?b™`q2¬2˜¡~>I‡»– ++±[ùZi%;F +tFZí¥Ò8Ô$8³FÖÒ Øt‹m/mŒózìœ=i¼;ß&üÝÿÍT bYo«H°†Ú¹ôæ‘®˜iPlŒD\œI«ÉµÇÚñËSRi7ßêHv:g„¾Í×¥|ñ¶>i¶dµó=†Á¦ÌmT¾‡‹ÑVCž»I䢲8<÷ç(è$)zزܭ0q«DrNzXkR|5vwDvS’9ã2¾C¬9•ûnñ&ݳÔZèíýç±v ˜¢Ë4!q4|Çgç@JoGéŸ,ðÏnÖD—ƒtÛG“~¨1z^—»‘c<µÄÍ3Ù¨ó¢¤pWÁB»RÞ[ѳÈ1&*‘($(\ì¬ÜO©ÝNõ ò·š¨1D@è7t—ÿpÈ,Œöqâ•a€>ì‹”üÑ!ê +ö$拃.~nÆR3âùajüuX˜*ˆ Jd½ÄIl¤(Ÿ`«»x›~@n.h¶AÞoO=Ûça•~è³µ§ÎP襜)$ +Ò[ªˆt3rkÓÉa+ŒˆD†EHÉŒèL,¶Íˆ<ĶƄ}nEp°…è7VòCZ7²`0SlÛ%^üß,>Y®í2£ºà_¼ò§?¯Ý S™âV,~E249äÈ,ó°ãPbXqÉ$ðzœHÀ.„·¦^Ëš,Sü\ù™‡ g ù¶±ûÁb»—UˆxqÍCúYÆnÝMÑŠ]a*t¹i+™É›”3±xxV«Õ^‰]àÚáC{Ë´Ëm`ƒ7ÕÁ””ÑbaƒxhOðË2áØÜjÇ,Û>¤ÙEȽH +¼§R%d)ç UÙ”„É%&õ•Ì&c&õòØàëÍ6+ìJ´Šu^V‡ß%˜Ma‰E 6ìÖ‹…’¢B‘ò͵¦À0’J×G9#½œì¹Ç¥ü£Èž/Ê)`±ÛÛ\.Mñ9ŽdQ‹Wá%º]»%¨^¶B·Ó]‰(r@¨jn±o•uüÀðÌÄ|¥ÛU¹Ù>`ã[ESZs !ÅAÎbÿ2Þ’ŽÉilàÝ–iÚu©4í 4¤¿aÇç!Ö–{ ¡ÏÂiðKvÖû+³äg3±8{8ņ2k“‚ÅLVß=¾`£‹xd[³deœ‰eŒlƒµØŽTɆì³aö’z+E^: 0ëEضy—` Ýâƒw >¯E…ÉÉ2ç`G’#£Q½P&Å#n<¶O`7¬dÓ Ø”~³;¡=¿èéyY¤ +¥¼ìb¼¤×Ø"ªS³I‘Žþ}ŸjG;ô¢ÑVšôD{¬Èz`ȬÁ²Kt§=#Øæ2AÓÒQÕ¦k¤SßÍp‹±-eXa©&TƒÑ1ådLŸK±¨°ªDn<'l²i7°ùQ‰±I\@*/$¯Á­P˜StM!qÔØDþ¢ã®ÔŠ?…¦S&Ü0YˆõK‚¨Â,ðãW€‘B_¶þP_…-‹ai)g©#m£iZ""ú‚ü@òNÆ“;å1ã÷¹÷IÙ œêEðKù~Xî {%¨‡`mi„B[a,’E\MÈä….XKƒ5›IGtw­ûssX¹_Ó|¬»¥È4@í^ÂP¶J‰°–BÌ^õ¯%®kb1ÅÁÒþz©” 7úL“Lúò´SÌÝJŸ$8ÎÍmÌæF®[ºôŠW§Z+ûKøpI`!…3iF,·Ü Øî °Ž ’¼1³PúB|òJ," º÷š4µ,nëÝ qmÌpõöÈO Ãæä&j­g|¦JŠ«RáØEF8ÅXípÐ-¨5béÄa.lWs]3gB ûY,»Zºn‡t°Ë~™ 2ù¦mÂfY"Ç“a¼48_Ó”þ@Ö®#±­ÔMGYi}÷’ÑâK©ª¸ÙÒõNLÝëš–ËöM`3þ§d=܉‡Œ_ÐL>`tÇKh*ÔÒ½àýt‘cDÏx¸ -}åqýb‘öMƒ•gMò^ž&K=O–îl²œ$7ÆÙZÚØ 2~VñÃ6‡2Z`°"kñÓÕJ}ìÊÈ’£¹’*zbŽjBcYÙ*ž4<‘Ì÷Á¤Z¤·p©ïy䢊òÌØ“t˜Òn¦9s~§v­rM*Pl¾‡I™[\ÝØ%{súº\•é +Ë—%ýte®ÓÞn °eÓG¯·SV#K¡Ú8îi›Sãa©9YRsŸKlí#S//Z?ÿ¨hŸ^P“úÔÌë®+|£×Ef©hiEX“ +Sµš*«t?oe…û“¢,Ö€d0ÖÄ“% +ø‹Þ@µ˜¸‹,9ýz3Uÿ9aw-U«ÞÙg0±y)X³ÄÕrW#À.<ØœY¥×‘þHÁL)-ÓOB•˜¥‚Ý€àñ¸à•«@ƒÝäÒ9[ @\iœÜ»Ž›ÉÖwñ<ÞÙŸR19îÏÑÕX‘6ç—l=ì¤1AŸ (“x@ÛP„éj¿¾«€Ur‰ÄŠz ÇŸcLWÖC¼ZCã×Yy…Á]ƒ÷yhû=¥s»®C¢=2{–Öƒ~ArH´:fübݤ Å°,âZr9?»¶?Æj€6Q`œ`zÙæ'òŸ·,óǽëùd3O“w€d†L•rdÂÓÎ +†ÆÓv/¼ÆVÅ;0%¶pÒËüâd¶Í6äÇç{«ãµÂ±‡‡IèÆOˆMívGh›D,›~z<Ÿ]’#GS;!]ãv]ApÒ1ÒÐK°ndn¾UBC©+Üñ¢?H”ØE Ws«ŸoŠþ§TÛ/„Ç´À½äÁ*©Y»ß’?WbC¾Mñõv¯lŠª´üÄÊ'¯ñÎD“Ž]§i>ªæk>»]%s^¿/-íÐÈkÄØ‚AuhK@8©HjWûñ“chF{µ©¸‰ ›ñ4ÙòÖ‹7<éalyÔìh…L—7T¢â,€w`œéM<7˘g`²¶²Š±µ™Jlky2xhÁSòly8˜™—õÅ BZêƒÐš#×øŽ¦ÒA5Ã+‡4¯,žÛ¥¥yÈÆ1!,tâÄ; æöUCKêÈ8žöêþÂ,¬.¼x¸Å«&hÔ ºTQmlb z›Â/6|çŠÛ}+âHg,}ÐôÙI|ßF HÕÔ@`»ˆ¹²ð F÷»ž¬‚úû­"Ç2žŸ£zMoõUKB×™WѲ•üêæIÒalsH~´”ñ­¨èlM‡Ø¬án­¬#Å€”tƒ–o±© ¿£]D¡Ê–§”!g + Þ‚LÕb¤-±†XÒä5Pùx42ÀâN2þ±2®Ûc Õ”QM›/ùO:ýÓËõ“®•*^šHá–U'Ò…?Õâu\ŒËØzå•Ç‡t7:‰¹˜ÎYS£Ñªt'Sónûþ’?ØýÙ‰ÐÛé@òéòÑiÏÙ–ëÆšÙ:E#Û– ä„dÆÍ[ ü.Þ÷d"ØWoµÎrüÁpkѱqêK¢¢Þ %¿Ðí?Šàõù°Ò+rM™îx $,Ÿ‰Q:’|fç ¿æëç°w’yV·/ÝfÍUòo„94Hs¯O“ž–ñ¯§ÔŠ»ÚÚÆ0ö‹@;~|ÈHiÁñ&"Jex;gL þû>—¬éÔ3/ñmm•^‹iß+z‡wÉÂ`$Æ6 ´.ƒ£ç=Ž‰Q¤ÎãÓNŽî…€¨¡žÖÝì2ѹcb°Õ³‘»C §ßÛGܪbŒ“xK- ñósnãe¤)±ñâŸP¥®7EÞ@缧Ь0iµ+GèÇ^ºµŠŸºjsÅðµ•Óp—?ƒæ“'P œÅ[€–lO­31F;r?†¬Âèûs4¬ÆsÁÃBñÝŽÁUÆ£°+9/jxܾ9ÉÉ«”Äû‹¼Þô('F¢á¸—²JªF=–§0GK^¯ªd¶«ö> RJÌvmŽår…Ä­×Ôõᤒ÷”æÜ2A@}w aÞ’·`±”ÈÝÔ +ö1r’‡ÇHw—j¿’Í]·éqEžÉÝáÒÄŽ÷3SM«*‰sÀWC/fèyn›K$*ª‚Ñc{ÍlpCÝ’:–„öëv ©×‹ôLÍ®I䇹ÔýR/˜A¶ÐžêjzqÑú;qgŒîË@œC¦)Y^«dcµ•—Ø5³º-Ã[uDGáhãèK ºBeŒ]gÙ§‰‰@Ä£\]”ŸH õ+é£ô×ûî £O³ŠéZ¤ßŠ¢š†&i¡^ì,2´ÞJÔ`\ûÕ¦Èþ—ÃÆæ‘n%CBeÇöªM‚`©D_¤®º)`±Ó©÷"SÚé°i …,=xå럔vUšíÍDÉé½"°[áIì;åøVBØîbb¬¼5´Š$JŸô橼õuË–×f/b:…1¾=Ø)Úî»Ê0h ØŠÙjI oGÙå”Xã¡n¨Ñ¡Ç–,žo“hŸ2á]šJ51Ο—*Æ,¯¸Iû·¡¿GõbNè1®áÅ;#€Ò‚yòç`«ø$äòÚ£kR9·â|Q”´¦ŽX·Ð(XG‰iäÄês¹Þ‘ŒåÍ«¬?U„„j±J éú˜uË´%± KžèVòܹ0¾‰wUá¬Oj•è;5U^ô­ÛÎ(ÆdÕ¹•´{R[bØNñlª($[¹°¢´Æ$T½˜ânÝR–@Ùmçr1?­' :Ìtj]ªU²Ü‚zÆÀ¡¡º<]Ï;ÿ +Ö²]ßUí¹»®’ni’¼’àˆ‡:ùX%ãÿ6aëÅ`>0Ï*¨Â|Úòцh¾ÅûÉåü—x%©ÎœOƒ¸ýå¡Áp4œyS%LF³‰¡dƒ]0r +Ýå”Jª"nB‹J-Itâï }Kyô´þ*ŽFé;Þ±éqfì—;h*B—;χ¨F¦h&„綥U4%na±*²‘•†òvAJ¯žðFbk«‡¡ÁHU‹“¹tÎG”yÒ>Ýä•jú™0H阳Y?ëÕÇ!Š8>[˜°«ì±ÒfldÀZ^±^¥ReE´§Ð.Ö-lô47UÔCzJr]©›FOê §.…ÖjUÈgÇ‘:í ¶ØݲªVw_ŒKõ±ÿDˆ¢»è²­âþØÒ¨¬æU±ÕlgÐAªe¤—d”Öm¹‰ +KMÛ;qµ–y4‰Ýv‰`±Ú— ãE–_â\mSÄÄÆ)›/™éë°bÀ³²!›hjåqͨQÄLTc–ô— +Ì4ïhCÓBZ½É˜‹¡jz%˜ész ¼ÊÍU­QÀ©.)•dIov-cëPßœ?iåµÄÐñ²£“8.*Tcï+^y#%ÞÚC Å;OÖ_ðXRØ•¢X¿9nâG„‰Hb3¥–nÖ-7&vBÖ }] ¼’j»Šéœê‘J—R¨²:Mô¾yqø¬ÊƒÕÐr¨§H'Þ-{­y'@Ã’Œþ ˆ"^Ërp\SÄ=±ER?Öö¼¹S`×y›,ó[¯ø\F[CFêý4…7I Ť)ró€ù‹âè¼Æ"b2Q ÛÏMŽäÔÀô¨Jµ{@‹‚2—, ÄMöcòŠ[,O·—x-Š€Rá·¼vÒƒåü5a¦Û¶hQÄc‘U,||Z±¢E -:¦ìÌÓˆ*¢tëÄAª»“ h–ìPƒàáEzªlŽ‘ßÁí¸fìöæ9wâÓŒÑ&œI÷þ™š-ªÂ ¥'ï§9¶1D¨"J»ô4ÛãAq¹ Ä~ĈQ 'jÝÝplêDE‹‚£L9Ümf»;ÓrÂvˆ²Øº’ÿ¤Y6~20\-Eµê”ïaq½)M¨šÝ`tì+ÛH¬˜Ò’aW«nLÉxßäz4ÞÔÐr`Sç¹LcÏ¥’•hnkcè€)e¬æšë"0†ô5UÄhÊÙœwCh­êé¥ fOŒÍÊ’éâzÈáÖ>ÌpÒE5ª6^¹nI°ŽP½3ñhY)WÕ••Ö¤Rä&fö ¥™kÑ–œ™ã±Ž“¶l^H=Np`ð­ãºC«»]CûQMÙðø5k£D±†ôAÔIvk4‹‹i\ݸF­Y,—Ÿv»o˜(ðâ–¿í;šéóèÉ™þHù‰!­ + +“%,q–%Óq¼Þ¹Ä(¤ så=d “Xœ›¤±+lm龟v„?’*¡žDnôÌ7 õ±"Ì2„mÿC,xrîŽ|òM¤É²²"ÌÄžËô{ÆÔ¦5ÏšËçåÄ&¦Ö}¹¡ô|÷9',a50¨¼ÉŸ’úʲ„QÝ;ahn˜ó©¤Ð;Û“ÓKàL’icõVë–h…(fÛ’|gŒe¨#ºi¿ÂÝ-4…ee{v³i÷ …øX/¶¢ c焽tÄÊœûH÷Ë!zűi;2à¶#…xbk¬i ëy›â©aÒc1À–j‡ǹ[oOx^Ójÿ¦”¶64ª Šmíó´üËŸº»€n×Åßc›B“ô=l%Q`uçÔé‘?Õ<6²a‘ôM†P}{Ps"¾í5äîÁ<éqa’Û?¼©ôÍ>Í’¡ÍRJüg ‹ÁÚß¹?^«hKg+”e "¢ím{1£b™>ÍýÕ0MÈk¤šú’ÚrÝ¡4V”:˲`Ckwÿ·-‰0[èÁÙâšTêˆ@bËäü´CðQ¼ÀJŽg‹íÅ<±¯®imM–¾ä±={oy€a'Þ¢.™Î.ÙîÉ~ÛN%1Êc:oHÚ£Ý +_rÊ…-S[ÜÒ² cÏm{ž†‰*&Ÿ¡“÷´ªÉ£³+Ú3 $”bÑëí +{>^&¤""¶­éFHæ1n1—á•1r|øöZ;æ8%?/Œ8^b5öU§^v:±Cd6ËØ\Rü<7ï"^¥­ÚËq÷QÈu[ºHŠ§Þ±\LÓÎò>/ºÒèQ´e+5 ­¹{Šä8J¿ Ž£Ò'¢SrÝn¤ñÙ¢Ži½Æ +ç­ŸV_:/ » CÖ¢Ñùeõ%<¡fÉu¿ÃêKðýβ=294ʨm©Xr¤m÷Ó>˜Õu–²Z©Ôn¬b°s¥ëÔCç‘7åNßJ‹«ÇqBº­„µ§ÿG†ϳËú^SÔîô¬Z°Z¢Œ¶»í5ƒ…Öa½Ñdo#ÒÎ4­‡M6fК·1bK–©ßĸÚî‡,…ñß—æÔ„R·=`I{6ëÙ=2²,"iZ>¯•½ŸÛP4w Öñf×Wˆ4K·: 6÷p‡Ï'{A;[ZOÖzG5yA“8éh²€«\A3­-©Å²Üqû3ýìNås¬ëøÈ)Ê|îÈÓµt$ï Qrt–¬­h¹u‡Œáô€Ì’4%·Þ7†wäy¥‡–RÛùFÒžþ´®èy·>É.­.[LIÇT&5}[©Ñ²ÊÙRSõÞíå_–Ù#‰»¶|6„õ´ü‘Á%¹‚µbKÎ×{.é6^ÿô¥ÛXŸ¾ ªÑñ#¸8gÞÆÛŸ¾rõøümৡs)v'ä6^ÿô¥Û8?EÈÊÁä]¼üåK7Q>UxÛQwñú§/ÝFýümÀ“_5Þþô¥ÛhŸ¾‰ñÙûªñö§/ÝÆç×ÐÙD–y]5Þþô¥Ûøü:)Ÿ¼¯oúÒm|~ $wßW·?}é6>¿†Nº¯ÞW·?}é6>¿†N²/o«Æë_¾ríó+èô9OôrßÅËŸ¾t{cðoM^ïA&³wÐó8Ÿ¼dùä%UXßë“þ÷—.[?yÙÔýëKP÷ÉK~~-äRÒð\ÃþÄ~Îoúôm|~-ÔmR—VZD‚y¯úôm|~-ÔmPþJêù¾×?}ú6>¿ê6hžßfKy¯úôm|~-ômÐ+êØyßÆËŸ>}Ÿ_ uh\¶‰Ý·ñú§ÏÞFÿüjèÛ ˆÆ§úÜÆËŸ>}Ÿ'uÐjb{V:9oãõOŸ¾ÏG”¾ ¤eïÐ|úÒŸ"ui˜‘í}ÉzýÓ§oã‹+'¹Àã}ÉzýÓ§oãk+'”i …?KÖÛŸ>}_[9Å=?Þ–¬·?}ú6¾¶rBǯÇÛ’õö§OßÆ×VNºPÈ}Y²ÞþôéÛøÚÊIó…{5ës/úìmŒ¯­œ´•  ù²d½ýéÓ·ñµ•“Ëñê¼ýéÓ·ñµ•³Ë†M¸÷„}ýÓ§oãk«h—%·¥¦ó.^þòé›øÚJjtÞþôéÛø⊔÷{ óö§OßÆ×PêoïÎÛŸ>}_[Ci÷<Þ·?}ú6¾¶†6Iú¿­oúôm|m mHFôûôŸ½ôüÚº‰¼ÃŠ¨fÑþ”7ðú§OßÆ×Ö͆lãáFÑ}¯úôm|mÝl´ñãÏ4oãõOŸ¾¯­›­^ZUþØË÷ÛŸ>}_[9›úAÞ–¬·?}ú6¾¶rÊ«ù=ÐyûÓ§oãk+g¬KÖ÷@çíOŸ¾/®œ'Tä÷%ëõOŸ¾½r~>´SgŸ¾äúÂ%;¬ë½céö²×ñ…Ë’&ûZjðx¿HùËüãStý–‹ø—|%õ÷é_âÿoJPûÜ.òO^í×$êw_ñ=úÝW{^Ùžâ],(úß÷4}½ý¿¿÷ŠÏäÚ«Úw^íãØœ¯Â¸ûÕþŠ½ðí×ÿ Ú·_ÿ/ø +ß~ý¿ *|÷õÿŠ¡ðí×ÿ j·_ÿr¾ýêAFøöëÿfgúæ+þïữÿW„‡o¿þ_0¾ýúAqøöëÿ·áÛ¯ÿ¤†o¿þ?d3|ÿÕÿ1ữÿ1.ýÞ«}ŒKc]¯HLÎo‰‚!}þÂýæëd{þBýæë¤yþÂüüæëäwþBùüÞëÿBìü…ëùÍ×ÿÈèü…äùÍ×ÿÀåüÈîüæ«äpþBëüæëÿæTúÍWüHý…Aú½×ÿ…'ú uô›¯ÿ‘ ú gô›¯ÿ‘ú Yô›¯ÿ‘ú Kô›¯ÿ‘ ú =ô›¯ÿú‘úÝWÿÀþü…ú½×ÿ˜“úåjÿñmGûQèÖ›?þå¿ÆÕùÖ}gCÕ.\ämPmúï4y8ÅMü§‰‹ò/ÿÃÿgùAãY)ÈÿÒõú/ÿúãÿúÒúüß?þåûã?ÿ‹~àW/Ñ÷¯ûõ +åõ +þQº¡ß".:pa8Á—é÷?é/žâ*¸§ëSüÄ%þ¦§øÏ_ñ<ÅúÏ?Å¢ÎÃo}ŠŸ¹Äßó?qÅû)ž¿‹HwÕûµÙ¯Ø")›Æ?þÄ…·V¯-¾ ©¢u­z_rþõXüg.½ëB”ñ7—¸þžK ¹³â_üæWÿóßs ´âh|þݯXÏ%Ðå›´ +ÿæWüOÏ%p´ŽQŤù®µ0pÁÛñ×çô÷ü„¦e1ýëþÓßrœÒiõ®¿¹Âßó¤5x¢žòëkø_þ–+ Šwà¡ñ›ßð÷\º$j>¿{Jÿùo¹?Oˆß\áx¿Â·ݾ©êüïëjùÂ/©O¡ò«õÝáåzŸç=|!©÷r½ÿ¯¬>Eôozš¯ä‘·ë}ÛÓ|=F¼\ï¿ÃØ<ŸË7ŽÍ_ú¹^.ûåÆ®Ï\ÿc#×ëõ¿ÚÑõ™ëìàz½þW[¹>sý­[¯×ÿjק®ÿ¡gëíú_lÞúÌõ?6k½^ÿ«][Ÿºþ‡.­·ë±]ë3×ÿØžõzý¯öi}êúw_ÖÛ•?Ý õ™k~lÈz½òW;³>sýX¯×ÿjKÖgâ-X/×ÿr/Ö§®ÿ¡÷êíú_lÂúÌõ?6]½^ÿ«ÝWŸ¹þÇn«×ëµíêS×ÿÐfõvý/ö[}êúú«Þ®ÿÅF«/ÅïþÎxø—V®× µ§ë3×ÿØÃõzý¯6s}æúš·^/ÿÅ.®Ï\ýc×Öëå¿Ú¾õ™ël×z½þWû¶>uý}Zo×ÿbÃÖgNƒ´^®ÿåN­O]ÿCgÖÛõ¿Ø¢õ©ëß-YoWþtoÖg®ù±ëõÊ_mÊúÌõ?6a½^ÿ«ÝXŸ¹þÇî«×ëµ ë3×ÿØvõzý¯ö_}êúú­Þ®ÿÅÆ«Ï\ÿc£Õëõ¿Úqõ©ëè°z»þ[­>•ûÐZõzý¯öX}!÷vÙoÏÀõ‡.ø¸9£·Ë~wÎè7â?ï×ÿæœÑoTÞ¯ÿÍ9£ßÈý¼_ÿ›sF¿ÑùùpýïÍýFàçýúßœ3ú²Ï‡ëoÎè7’>ï×ÿæœÑ›–χ+WÎè7">ïWþæœÑoÔ{Þ¯ÿÍ9£ßÈö¼]ÿ»sF¿ÑëùpýïÍýF¨çýúßœ3úBÏûõ¿9gôiž×ÿÞœÑo4y>\ÿ{sFïU¿× gÕïCÎèýÂßœ3úîÏûõ¿9gô«àÏûå¿7gô¥Ÿ÷ËsÎè7?ï×ÿæœÑo´}>\ÿ{sF¿õy»þwçŒ~£æóáúß›3z“ñùpåïÊýF¿çýÊßœ3úpÏûõ¿9gôÅž÷ësÎè7R=ï×ÿæœÑo4z>\ÿ{sF¿çy¿þ7çŒ~£Êóáúß›3úÏûõ¿9gôÊ3z»ì>Q@n¾þŠÜ|¾2g¬ŽŽë(k^ýWÎnœP#n¸®ø¯' ÃþMrÿü[®Y;–‘óšÿÔ5ãwâ°õï¼fÁ­“mâLjµ#.Ùÿ!Qýï¸d“¯zü³_®XŽßüÈÿƒñ "Ú¿y¬õ/é¦ÿÌ⮈tûoGKû–ÇK-n:Üýúâί0\IIJyü9qÃþ?Þ&äŒjO›0DgœxF}÷áù×?:6ÚuŽ6š•â6·sY—‰r±±'ŠB8’Sþ=}à©>zõ){¨éqžS؉ßE4‹kV|v/s]¿÷3îgØLŒ#G“IœN]=N"­Úamãöpï¸ÑÆ›:ðcŸr‚kqI¥8-â†s~uÕÞïMÐøÓÖé‡ú¬ó_:•±!¼âŽÕ¬Ø…WÞqbŸ)+ÅÙc»(r­í×É\»Ò 2­åÁêŸq§Gy.Rå<ýº+VŒ8]•ë²!ç]˜L¡û5 YÛFoИt ]aø±ËàÒþ¦_,ú…Ó+ð¶äµÚ/R„åUVmÝF²ñ¶¶ee¼Ô8^O;sc[׈_¯»|íŸÆ&÷8c°—?†¹Üö$ŸüÃÃп`aR1NžØ +ŸLc=Ì…µÔ:ËÕìb[ÁŒ‰âŵä|ãš|b‹®˜$ƯŠå®òZÆW5^rV°êœµc;Ø]lî,,žÐE߀,ÂqÁœév;0ß‹W _\¹‡×#Æ‹ÆúÀ¯âí‹mãÀ$ÏHùf½õt㛎{ešëùÓx‚y¸ÇÀ/Ñ‹—§ª¸!~«<ã϶Ž&¼)\, kÍSõ=žù´O×À²í´üèüïF"L¿.fÚ:OÛ*’™}ÉÅœŽ…-*>(1ãûk©ò²LÞ!¯à¢„*¶­+4Þe± Ù¹õøýþuøŽõsÚY¼ÅÌٟþ¬o棕?cIËÛ㔥ÝäÛ×ûêrÎ$³yÊ0çV… 1ó. ÍœÕfŒ±öá{ËŠ£÷{ßyÊ\,žel¾2ܼ–±XãZ¦»Ul„»¬ž…5†pÎ9cÌ!_C •ö¹ñ,O9Ò ëx?â-¿ àÔÙZ9eÒ7ʈ¥¹ÄleÌFYc¥ûÚkÿ;ßÑq¡ôªÈ·Ä›²7··qµn(B±ø±ƒ—Ì/}q¿ãÆŠôÎSyáÛP ÇÍ ÍŠÏÅûxLdâ%¸™þà¯2Æù•u:œñŽµ×R_Œ¿z±>3¢â¡v6õ +ÿö˜È ±ºÄáíj2 ä…”í…ΰ¯±t¦Áù[O>S)]¹È&v¥kz`1‘›¬}'3ßJæ«Ûó:¯K9Î}yVŠ½±Â\¾ÍÅZQeEÜe¤óÊ~`ñZçÅvÐå;ý‹q_%Ä,ƒ×<´ #ºmì*?X<dzi1òù5+F òÆ8ñÅð˜‰Í+~Hl/?:m.±…h±^@×J?cú{еXR·¿nWÙïv‹íÃjÒÇÁf>&m,²—/ƒEyI—f°K™=ÃO¾Äö®Ð A¬à±»v²]¼aalPò ¦³;û´¥‹§ŸîšÅÅã±]n,¾s^hí@× LöõbCÜÞ•4Î_—üNYËÊ°-t§/~Þµ´Åc¨˜QÆ¿;ö¦Êòˆ7·Œï{üžø¬mº•³}j‹"¿‰Ñæ<ÒÕ}¨oŠt[¬.±‹ü‰ÙüTòÅ8†îA_æä\º{$|+±šÄ-{ŒÄDe:Ä89‹_¯XJ ½óT¥·ÀâßËP<¡dWš†'vÅãc†+£®cn- —ãØ+z ßøqÏ‹5WóªÇ¹ípc†r+ºÁâI_g¡O†ðÏÙt?–X·ÙI‰ZãÝGh J¿1ö÷xïq+1r"ƪŻ ßÒ8ð ý‚”búå¯[¼ N\E&wÖ¶úTì¤ñzlà á«Á|œ=#¢Œ©xÅòÂ#–ØkÍ –‰m•yŠŸ&ÊöÚeã>±;>fŒÚØ b¹åÒÛc`cï.K^"ˆ<ö›X©Áò+kb±RÏ”CØéðÂßùq½ÛˆÞX¼’. û.çÐ’óg¨©8å“oŒK—XåÁÆ®˜ó…±w²b{šGèì%©ð˜#ÞŠÅ:6õ];¢#cy­ÉèÄkŒ`ŠÑWÄSØa'ÿ’™X¬±ŒŒÛ…aö¾°·-?b?ˆåG¡SM,>×4›C¯;îPëd„Ĩ>ð#DˆP}cW,èÏ\è"±'Å#÷^Ñ_,£üÞ¸M¬Åµ0õ„bÌeËæëÙ&¦–ßÉüÑ‹çÿÓ?u+¡¹ô.µo{0DZbk“1w'îvtO,éX·xq…sN¬<ÛY̳"KYa1«c±m²&æƒXüžNÏŽ.Ua —îxÞ,ßE”sîÚKß(†b¸£åÙ1ÙÖÕ»§O/@÷é‚»Œ»:#~ì‰Ñ¹…[pürÂèxáͯ âöÆÆ9.?”˜V5C‰zÛ<—&$¸™SœÅ â£XRšßï!=`ÁæÞÙöçÿk õÉ‚oê…cÒ®]åJ,sÅæø3—qÅâ_'Ñ®íl€­XìWb{In0âgÇv|&„QuazÆ|‹E|:¿8ÍF£¥Y0ÎDSÛ±ûº*\Ì‘Øõë‰aÿ³Ý Ž‰±%ÖÜ~8VÅèŽ_F¡‚¹5éð×½\\>b¥“õ&Že¸ˆ•X¬_]­øU èX¯=ÍÙÜc Óüá-Ä–Åk +=Ž1}§àØ1>ÎÜ›øI±èFXY´ª‘ÕóõŠ½)b+N#Âbc91tN _숺0Ψiý  ycçè2l¾*e8A±mÅr4}¬t†ð‘)°îsdÕÀí<çÓÓ2°¥˜ÑcóÄlùiƒÔDl93Ÿz q„‰3²cŽÀb,ܬµ¿ÆçgfoP”Š ÷W–Æ+hΡÀj¼k²ÜÆY'ŽYè"ôÄn%ªÎI+vý}ˆY>¡ME[X`ǵ§#±¥p+Ö bp⛺öÇ&ÑjË®†rú+,V[’0'qw#êhý¾•FÔ1›bòóœß‹i_üóˆ4ØÈ®¼—Xó†Ã¶VÒ‹ÑÓ$°X+‡´lINÈx${ä!GÐ7_y°ÁÀ%Ðpy?€ˆÌ<¨âÈ×@‡|„™ëð2Xìqœ[úÄR=¦Íq-ç–Ø®â±ÄÓœÈ$hµê‰Å;‹å—%œE4F~qâ +,ÂŽ85Ç +tç&ÀâÆš¡‰N%1J#P-¡xÊ' ÒNdýJóŽص³‡œ™âb1 ½ÆqôŠÙ_?/‰ ÷P‹õ”7V~–9k»™D6Ç¥[!K2c½ËÜɽxäÓ'vD¹c*‘»HLái\Êýg6ƒÅ)+R–¸S ³]ë¼±Nîã Ö'ì`/rø –4&$n ñz|s“ÁGŒ|’1“îŸgîs.Çb±²'u­%· +“®è }ÅÿX5B¬ ±í+ëÌ<žétT+e(—“À,,¥sæW2™jìœB'k–"‚’_DRK‹Cì¥;E*ž+ôʱ·â}h©#Ï +#ý«¡Øg*{žFs¼¶¸Å•b0Öâ”Åb7Ô>³#Îm±êW‚3Ú\1Áî¡Ì€Ò :|i›R%à'DLŸ=J€ÅlM92*1àbˆ©‚?•“º¸ÿ k><{jb#¶œ¢Tñ@ãg”Ä®}˜!ƒ{þX.WPÙˆ5•Ø"¥¿ ±YJ’Y¡XfÅÒŽS9z,¦à¸ƒ­X#caéZ3[k'ysaLЈ1¤ˆít"2ãûPe£KÏ©ílX¬ÂmP¨êìÓ‘¡°ÆžÁŒ¾3Yµzñ ¬ìL ÖèØ\ÙK‹£µ·wòh%VT¥f]»Ê¶"Î(y+Lôâƒü`QŽUJY[c5æ7ç´]ÜÓpR ¬+&³X|æÔQÊXÌeŸ>YkcdÄlðÂBú:»¯CiÂX9æÏÄ(À ’X`1•o7±¸ýéúÐDÒ…cbˆÅ­é;ùA1æª×v2Þ[ŒÍ¦ßL,“›phãÆfÏÈhÄ*Wô’àRÙ-‚ÒBæˆ iDO'ùEaD61HbEh›¸·<qé8³ÿ “Wc'¡øu1Ècj€Íç` ‹7N’µ18.Em`$Oc…‹E˜W§|šd€Fؼ½˜¤ñâbÄߟã}Å‘WXŒð2ÎY»"¤RÌàÄñ¡S XËc>mLa3þÕrâŒBÇ9•Â& $­äQFQ6ÞlU—°x[ûdS-MLRت`žŽÊ©ÓÁÀæŒM=2±B‘g\ÊŠÇçãÎîÝg°áj– +ÀbtÄPhSØuä™ÖXì§Îdab:íså$}o6V‚.,ö>—7ÅûwõAY˜(Þ¡‰eåPbš¼~ÛK‰±uö×ìÄœ!ôÒKÌŒx.e*‘¼÷Äj,q:Dƒ‘ó©sC1|J>KŠ,;]v`±c4('U—¸ í¿‚sÜXœðbÙ¤"CNé§scÜŠjQÅPpÐX¼.±FÇ©OIx°ˆ,cq§F ++«±LÄȹH:4P"Ú9T¦4ÖŠ·Va)ßëf`ñÛ®N¹ Ì3Æ;0™Ÿ‘ùU°§–3‰`vÑ(Æ/‰ò–X,è>åQíŠ)¯¸'„<Ÿ¥CÃ-§9Š_Ö#Pl‚8ˆ’8IlÁ8©o3¢j<ôÕ|'œÊÒ ,ž¿wc÷]õ³XÒZn&Ô°¨Â’âs1´X%?”íã4·I2^X˜†QÓwVb%çâÁʦ €EMöx®­8ýr°S³z£),]Ì- +D…ç5תÀÈy¢RË#xZW¾ŸE +79pÓLÅ‹;t>‡ÏEì¤Ð*±XVâY³4F(3/GVÍá™îÏ]/KÎBoo”óÁâiÅ*àx³LEìTc|ß>˜PuÜL ê…Ë8Ñl,.U•ÅŽ‹½„Ó¾(q¢d=a‚"j JecrÄjžŸ;ÿT C튵*¾b’®O,~PŒ[†¥òÿ³Ð6TÔy­ò¬5Æc¾jÿ'¾ˆC5{”ÞCœ™Ž¼5¿ˆuîÀÛXìÿN ò1$b2¬•XÛ,ͯx—1fbw1J%¬ Šóÿ`DjBüP†4&4‹¬0H4Úº«ªÿ±„šQc¬Ü%Ý^aD܇ÀÀâKªF+å­ˆ¯vÝ,¾*~bõ½œ,Jy¡ó[9LÊw¤73 ût•ã ÷Ž*a<¡39$`Ή1U‡ÇuíÓ#%ØÍ¡`I©M–±á˜z ËPøL,nÙB°'¯1k„7D—ŠçèwFnK,¾ðQñèûcƒuÊ”°x'¹ŸT²ÑeŸÒ98Õ.ŒB±Ó/Æú³¶TÕ&.1+¨þ®8„¸ÖÔ63HW›1ljßXìCiP_.ÁkÔÄâè3劯|ZVk7¯pW»ôå'«ÑžÐ&µ cñïT3ñäL*C¯»„?õõÕ8W%ñÏ}1ýŸºX÷]ð1èÏ›{ròÜÀjqÐ8b1¬qÈ»<b1¾öŒdež’™S™i;ŠQæD‹æuõ+ïä|òôðb¸œ%OõÙµ'­'qéûI²Ä8>7Í ,íy°‚[«ŽâcÓ œ^3V‰á5ñU=¬î7 ãÆÅ­C1hçN\´—ÒXì|ðÈkbm(÷Z½~‰ð86·Wó>9^lÌ%±ëô¾)l¾ì-’ןˆÉz•æÏÅ#—Ó×â!1²&V[.LÂâH²÷¦&ÒÕ4¿„‹hN•cãæÿqcñ¤Zëº&~ÖälÎ\¦Xæã½»©4ÎÆm'‰Äî˜y Ò—¼ÜKlÅœYâñÛ‚²Òƒ¦ bXœo1ë¿ÝÐ@î|„1ÒÚÞ/G¬h¢€Á+ŽêÀâÝžW.*Misí´¿Æ/>òQ¡lêc#AyUí¯Œ~’Û!¢¦bb”ýâP…Q½8®ûr+¢çõ¹˜yíÈ!Av.ÿS?!ÖáíØÒN®Ÿ^¡Ò­²±øŒ¹‰|gÜrëGNöñ°²øqK–ÐÀ&;)EQá†Ø31® ¹À×óÖá×>Éy$í“ó(‹ý`w Mlœ™ã ¨yÇË'{rL†ý±µ1a8ñ»Ö¹1’U”‘Ä]”ˆ¦¯Ä®UH?LÔ¹9=•EÔ±ùˆxzÁmä.ö4Bœ~GÒ|ÅMFäZ±³g5 ²ÒðÇØVÏ2ؼٮ`¬yhð{Ùß7¯ø:N$…×3±T@Õ[õ»!LZ^N!%šã—÷¹8X µÝ/çšÔÓ«b ù¼b¡ÍÝ. êÇÊ¡0—Z1ÎÄ`þ«î!¬yQIìvfòm¶~íÕê‚ -þ\ìŠY^ŸÔýãT^×çŽB®'V^×°ø¢ÆŽ˜˜·±ÓßÙKÜÈònÙõºv̯.^Î>4v(R—Ûô¨7[ÀØùºô^37eè>‚‰u»2 ¶þÌß6æÒ—±ónâЛM>´±ÕUº“:z™ä´ ÆV8‹¯7Š’àWbãhfÂês1ò÷‘¦óVDðpAq^sbqiï,N­ÄþmnÄëër1QØ&J#“íi® 'þ]&ºéÝXŵX°ø’lë"™»Ð©˜*b^~áÆúÝ¿æLXOlÒ)[V†¯»df,–Ó3c8†U2Ž­xäAÅR»Óêþ.ÐßÕ¼c7óVák, p¡‹xì“ ,¿r.B3Ž¡‰ÅûmyDð›Si„‘×¾îëÍÍ×õbè@ÚL,a +|£¾þ†òg–tžÇëIìm–î52Ü(«ïÎ$ šydc¼ÅÖ³‹Í|?êÁœ®óÑŒGˆSµ5ÿÏx¢5΄>'¼ì½ƒ”à1iMqŠ®øU&¦ûÐø±ìÅ™U búå¬wK¬Ü]Kœ!bO +2XLlǬ`1±Íí6!@ÜÎécBlì%˘t*Ŷ,’£Žgq klR覠sûJf9a“ˆŒjIqã4J¿ŽV+NŽçæ)–ñ¸úøÜëÃý±˜?;‚Æ1n–Í ö¥"VFFbýîØjN.Ϭ•ƺ′J˜r–Ø•á¬ƱÓTÍQc«öÞ†C*ÙOz¨©)~Tê{ÇÑy015„8‘k2ŽâY€‚š}f7¥éGÄ<ÅQ\`mÓYt¸d¸ý ÌE’#µ¡âÇ1&±ø5WC0‰„Á +캻ÕZy‚cëI豎g +1cîyÓ€õÞõâ‹ó¦iDNlÄÙ«cÄ{õRr&~mëûcñ ò“ÒÙ}†è›;âOõÖvÊs Àuì©GFÚûjb¬êô§â¹Þ\ ¡>³K ÂâîšïGÝ]Ù¥'Ö_cÈn]")ß¹Ö†jÍT0-…Æ´ÁŸ™ ]‹Ô¬:Èê\yXtb0žüu_nª\Ò2Áº'JB^º”ï`år Õ¹Æ&EÌU01ˆUÛÈ\ï1î[-’öJò­ñkȹ%VïEò´eœ›¬58çÚ8‘Ýe!ÈOWXLžûøDïεS|5~™–k_.Nnð,ÜoG!e¹ã Z·mòÚX%j@Ü>EëþA ×R=½&äFcåmi”[âä$¦j¤3àîlQ—€±v* 5„©I(IYõ»5³B|)wÄXÝÕÖª òà™¼XávËà̃6- +™îB·›b›G¸KŽ‹ºIüXTWbñºZ¿À˜#»t8%×ý +Û)6‹ê2ÛFW§a¥Iôœ®\O2yHҦ̪eŒÊ)Úb`gRK~¾Û~ÂL¼Ʈض¥¬ËÝw`diÛb•RýíêÙÇëæËjCMo|cP•]«§ã¸r¶Õ$ÙÕ§×(þwÉŸ}(Wç„1 +|R`q;÷Ö;á˜]{ Ä³‹]j“B¦cGÙeÑyâB“±u÷âªs«š‰ FaF8#y½˜®ÇM~ƒH¢m™^Ï+Ì86TvcÐP¡ºí¦Z°Xÿ•KûlÏn)°öÇT™\bvwaÒmPn™:¼Øzו،àî€HÍ÷µ~9éÝ3°¦3ÑÜßI¤'²¥jÅ뼬³¾dý 5ÆâÍt„Ò·vÆÊX»îaE\)‘Xß’0èOk{&jàMÉ'(‹oú<³õ@^$4c×îl†Yùr¤‚Í»cEÑÃwŒÓ^ÜÙ9“8Ëw6ëŬŽ‰(²f¬‡—ŸÄbëv^rˆÅ®Mw õ}é%k[kÕ‹—4¢ž‰Å/^&•Òƒ° ÆæfµCkîqÚ5~”(âþã9uuQĤtuÎX¬…â2ÿètèÆ¿—œ‹SŽ{æà{ý1–-Ÿny¥ÂõVÇŽ®è—R®ë©“ÖÑXtD€Ä!Ôq N›]胶»‘…§)fvê,Ìî°±XySƒPELâ|Ôê»uç"»SŒé»`Ø“$xv•»Ñ °8ŽgÞn[lq›bM{]„¬ ^=´厷^)ÈC¬Üœ6Æê±£;Q2ïg°X 3ÿ ë]=À¹´ZôQQ³á@µøûzckL0ªßbb,Á€»n¯û™Q‰íVŽxôì½äééŒíOKtï®ÎyÇôtPÅóRQê¹Û Ìã‚ܾOŸÐÙc6èå&æÞ Ú˜SqÈšnën G T +$wB€†|%û Æ6c5c}ØéˆæNs_”R_£+/¬~_/ŽäêWsƒS<ð#sÙͲy2¥/">wSò/Tt|ÆëÐ7cü®Ìêòk‡2÷à væt×Än^K½T;w +™.X=Dx5Äñ&FÇPpu”|BƘÉÎÖ#Ç2ÊÍ, q·[ÓB uÄ>c‡-Ä؈{ tǾ†7° 2à–Ò9ɂǹrÆp:‡h’uabÂîŸ1_&nCÜwu-±X¨¬ô!RæºE3bËù3–Ø +{KìåÍ3Äì"&ý¤ñ‚Îæ’–Œ³…#ÁÝÆk즵Šoûˆ‚—â_ÙI®KÍ«Æp¬Óõ6´Ô¨«Ü½rõf‡^ô%´š•ËԊͽîO‰õAØõ’u¦=;Œ” ®O3ÜEš1…ô¸YkˆŽ¾1Z‹sÜõѯ¢sB1–E½–²ö‰UÄCæZ™ÃQr9ßq™iäî[1ÏJ¿# Ä­â׌âŠH-OS%­x¥»Ò¡jI—bþ͹ۖTÕyi¹.éÝ(‰¦R\|7ä\×kÙcB;ÛÚ?ï® HÆè%õOëþµïòz˶_ën×R¹1ÆÚ°ÚPü«.¨dcöL¦à7u …Á½ic«óM‹Ä 8¹(Çì„ÇERsy^‹e’ÌŸÄbMpð õ£—,ÿf¬Áµhöõb2…LÂqŒÚ,¤\0v7× úË:z}îsÝ pN²ÿlQÃ/nÜñìvÿ¢q3|«¤‘âÛ{¶º „õ0êÛŸùÓÏÄj—$Ø%]<Ú&+/‚Ñy‰/ ‹¢x‘4‹†’‚Ø vÀ?U\\¸Úbüë’7»œ€B_ ªË¢3ÂÖ.YA48ß~¸¾Z:(üÇ}dÿ² “οÃX,µÙ,c"á4öÔëRÛ¼2V^§v*©ÃQk÷…PÃæ- ˜ç»}Çê6 an¦ûB­¨m9ÃSÏtïëµaÚïÊgšXé]7HY5f +¨€ ËŽaëeïA*ܱÛieÅa}˜Ä®ìoü*RÆïÄØ’¢a–ËÈ× +ãÅCS4åí;“›*O……³ ›Ûš°¶i߉íþa¹©úb¬fØ',žù]OD7 ª‚Ú`›f,ŽÜ#2}Tiò ˺_®ŽQùiÎ%6 ˆ®,¶4{Éœ "œ1W—ʬƒ€òG[· bKÊæûç¹¥›%шxî5›ZÉî°½‘dCQ)ÖceÀ»àIO« ›Š¼ÎÄ +lCÍ:*©\“XünKF•­¤` ~³:P)D¤Ÿ’y@=Ö"~ø¤ñ$CAV<ä™Á¬åu_Œ¦-õO"¶¤–ꬡr+!’;r[ç¾ÚҦ~uï[š,¹ã]XLéuæÊyh뛀¡殌ÂÈMÑ ßJ-OÄ`Kõ…®F£J2®ôý¹²c`±o¹¥ÂXüº! M´˜¬|r®A±Nêd/ŒX¬ìÏõÌH ‹Y+ˆãÌ%m©T$ã5¤ÒCmk°#Ååî±B+ÚÕiÖ|ÀÛ»fÖ%\ª1Ï´[yœ¦Ölð^:XÝGNõidY:éº]‚´gֆŠrBMç qÆ3Ø8) ßzäÏã(¸K +í-wßC`íVÀ$a²ž]1—¦õrJ7·B±Êc*·e˜4„PÓ½V‹Û>%¯‚Ó«*X\¢ji£ _Ç~.—;eý¹‰dâžÏÒ±ˆÁ:ü¹ÑÏ«LE÷ãp„¬×•¬8deŠt¨N)'ý%F§yÄ£ˆqŽ¶¿ñîøGp)†ƒ5ÄŒ)×&²‘l—-‰‰k¼tžúw'L Ųï<§¾2fú™M‹.ûÌÐKé\ǽ×ÀR·/_©Ì©؉1oØÞÁb ¶‹EAáÐùE¹@p טáé¼ì’,ÔK­I[õ”ÛŒ-}…©ŽÆæ^‡ËÆîSúNñÐGíe']K9àuÒ ÅåT#+ï5ŽÅ*å$¦×ª~r0ñC·ö€²0ÙQ"ͲìgK,UTŠ¦óÝKc,ŽjŽÍ¤göÈ=Å‚CCÆÒ`‰WàËØÚŠ¯ŒÚ=DÒ,?é;Õø66tmþ‰²×±û걶†õ("¨#ùØXÙ"v’¾Û±zSñYÃ{²05³–¬n/`±ðW5ùe¿&ÛPMì}†2¸—zð‹ÛOÊéÏãeí12Ån/uâÞå)‘"0m‚…åÊ3kbWséE*v1?-ÿ_áååv>œj@ûuIŸ(þñVy@b©ì KUÉŠ*%1…ßlJò~É$‚E˜@Ë‚žôÈÞ®Äbyn‰§\¸#|c1Ù†3첯a‚˜ÅZomžÄv÷‘d#BÙeæEâtd¹AB$Âr†a+‘®åJºubW­µ‹Å©ovŠ$›„frï¹?·V>¦!Ú ‡J=—ë ;.IÉ`æ`j‚™ÌÖc®%ñ ùc ,kcÆVê X½%Ž¡ÇŒ»NØeQ!ßËÓê ÆŽ¬³¾°¸kZšÛB^º•QVÀbiD¶`CÌHYÇĶa£Ó£î’>*‰Ep%ò¿__l}©vÝÌæ)}‘\»Õ´4Žøå£ùç$À$ô6”Ôª[LÐ-î¼^„zÅjRSCa¬žVJ,f‰3s²P๣~-D„hìw*NÐ¥cU““‰Þäfƒµ-c÷æŽð9S”OY2pQ3Üe­ðfÉ lf¿4^Z +«øfïò0¿Ñš~×þ!k·HžlÜò3Â|j(24 ¥%é¿je3G‰6ÍÍ‘6vwQH é²2УŠO ]ßM…AoåÂ]8Kl§ï9FZ8Oû0X“èÅô©u$Mï’çÃ!ª°’"/ÍX`/9õÈ»„’ºáŽWÕ‰Ã˲mTk]’½}U°ÍYV•·¸Z•ÐŠøjM1 9ýßjÁÂ.§­u+EuñÃ/&Ž~AS¦¸±{%†x£píg‡{ÈžC’…í4ÿRØ%ö‚—‹×–XÝjçÌ÷ZZ(€5Ku-姊Á¥'Ö3±˜oVmûs=õµÇ¾Û’Þ oÍåC%滣lZÌëD,é+O—”™Zòò)e•Øz¯û7ïöɔإ³+±Ø5ŠtKˆO.÷Xø¹p°‹ç b*Ÿ;ï +>Ø#Eõ¥Ýr% ñt /å»vOÌÀºžY/ûzõ6 ¶n¥ añŸˆ.IM¸ö}IJÏ1°y?v)Œ8Í}ú܈ߜλ•Yg”øF–Â¥T¼°ãÛ›I3WxG÷­qv¥Æ½ò1úé`èV`{Ùk…]):£»’çôSÆOÇ-§2%Aªí'15 ‹¡ &y‘s.æZrká8¬ûp#,“ +d: +ñ›Ë»Ì!ÚË:“× ÖJ +mK9fpö[Ú{‡eC¶ž„±¾õý•ª²š›¸óÊ;í×·Ä/Ø£IÄš¦»rÜBa‹Ý'Ëâ@$2Ì0£]öሸR²X‰‘É?ÜXìÞJ‚ÅŠºóaÖ&±jÇÜâArx«‰»‚©à‰<Ábd’Z`ðƒ¾×87ÐjþÒðIM!¹AýbøT ‹ñ}ÚÍÖöt*Î6/¢è`=©ÂÎX7â„Ù‹kè€ÊC*¾—6jy3 œAš¬`åê›Å"눞ž+ÒÜ“ڙнìµ\~Ø^Šãùb¹Ø·¢©h\Ù˜/,.4«ã<¹RóÐÉP1` {¤ „Ñôt‰ÙýqC´½ò((KÞXÏTY—`âˆkWb—˜é§ÂtónÑúŒèKÔ>aðÛóÖ’¾)÷,\ÎMY#TSáÖÇá|<˜„\¼«I›²*׋Øe°yý@Ór>MÆ`×Ö@‹·°©|]¤ö”²"¤ä wšÑÐ5{EÒ/7«˜$Û­ &¤7MÚêw#7K—G#Ôs¹&” ¼"è惬Z9¼ dâjnX‚qC_½%@éMÏ*­…Ýñ¬4Uß}ünj”Nk [Aõ9bfkíº«6Æšäg&žbCe½péâ*gŸ¹”fË”†Ý[‘Ý +j¯Ì„$VcÆ\³ Šÿ½5íå`vŠÐ}¬‰3slN 4YV +LºeŒÄê–ú”doíuZÑŒJùHýZå¬m[4~8õiaTüÎ~[¦QÓÙá˜ê¦Kl¸ed +#˜~=¢Ë¹"{ +SKŽi¨¤5›‹8š¤«Å™XYÒ¯*çØ» Plí>~ ⬠Ûbôkc3¡W®oÅ T¶*½ü𦮼Üõ&Àú£´.ÛóeÅ\aÉrâT/é(:)tì­¦+™“Yö¥Öíp6’+W&$À}ù­'–íQ]Ø#£ _W. @¨àcÿ¹2jÖ%ɯ¶›»ÞåU°e“Hõ*e.˜hvö»Ûge0Ú¶uIõXË“£#öÚ,f’ ž¾â@q÷çb fíÂÈDdG#¬à{fH­BPŽ[ÒÜ[&N*ï±j*QjL2P{,ŧø`Š•Aå,ûðCÚ Ž¢»|ÖcEpùN(‹yˆ´#ûÝàm_>ç )‡JÿÚ-÷`´Ë‹%AýlËLìn³YÎ6rB´˜AkF×’Æ_Ëœ–c!–x3)ã%ÍòyÛ–+»_a$ IVl]e-apr²E^äl-/KþIÒX¼ôµfžîãVo›CèÑSFC”‘r” XUÉ0ˆªavmƒÍ}r¢ìHCÐBŒ|·Èó‰m XuÑ!¬¯â:Á1ÌV3›qkz)ÝÓ¤ Nz„ìÅÚ—Œd·Ì?XÛú´Cì4N¢þÙTö»Ý+…uŸ ÑêT³SB_î+†ZZéô·‚†b ,-“:Åõ»³¼{HYVËæs5Ó¹Àª¹UÞŽGm%±˜Õø¯9¡¿^yåÉk2±{ÝÞ{`ìSÉ +ñ˜}ÄŠG.#>ååUt‘?ËÚ夃—­ÝÇ`Õ2clÈØÖ·L’fOÈc»訖ôŠÄÔV%e>¨ñýÙ ©²ÅÓRô¯ÊäSueÓ Ç8‚ádðAZ$)’7Ÿ$–ÖcÝG<˱´Äb +8›¤œÆ#¹õVÐñÏ"°gbdWedá¢ÄyflÝlÓTˆ÷ˆ¸èžjv¨›oÌ9°aá¬Ó>š%]£@"BtŠÓßÌÄÙ[eÆ(uXm·“(õ ]€Ã öå c.¦ªYo:6%?m¤ ñ()ü:ÆŒ!5¦ÌLüp4¤­\¢õ*'«ÜÂõóv•SŠ6‹Š²ûŒå Õ¤ÀîìiÇä7ú‡ÓÝ,wõ¢ð ÙÂUS{zbùbœ-òpÙMØuËqrÇœgbR +WBÚ¬ãÖo’…h9ÓöðßËnMì¢aSäLÙ’ÉO’EÊ–˜Z²›ÕnÌßXInãT»ýõX+#?­.*#µtîO!2"£O–ËÑ{ºVÉá؃OKL\,÷;iÀ×K©'­ZÅ¥¥ÄìÌ@@6Z=lv]¯¤º¶âÉ©¼Ês+(0¹n¡ŽújÇ-mG,Ê+t@Œ½xè°ãXs ïEu:·äºí+Žmell¡¤+Á\lJZ¿mÄi§™)˜:ä9gr ­d’‚ê@“Äý!QG)výPãÚí¨úS^ÛñʳîNèÒÎÍ»u´e а­^²‘XMtqt™ú§<ºKiãF9D¦+!©Å±|“@½î6-xëL2E«s;y°P–í"8Dð8¶Z5XoÛØ…o<½ã6¿nê"±½rÑi@jój9KHµÉK#ëy±@‚\‡*ÆÅÛ€³pÑ|ÔÇXç-¦bbX÷Bb¬o×ttM3¶%tñ5¸szDPo{6õßV5EpZuÂ9Í¿Ï?sA(jÓ”®®‹ËÚþ6AFvRñøÎŒï†j)Õꜹ3‰µÝL¨…ºNçö-¿¬`׫ˆôèÄ´ß9Šå—&¢’3ç-ãݽ9äuµáœ›ô 6·&rRíVð–˜÷«*ï!)²ô—€¨Ý3d¶õÚŒEðhv¤Rƒ>dû^8Ž?ARŠ/ÂaÊNã²¢³çÑÌPŒ|±Šl³¾ÏOÙ¥ÃSŸòž’&¶~…±[Ê™´u¼Å¦3±x•Î™*»>㙺–Ô³,3×Öü)S÷»9§=4]’»a‘ßeíhl8©$iÛ46z–wpïc1¸Üâ­V©+ÏX{šËï•Ÿ“ÁyÊMC@ÞÆÊ€«¿hÛ÷&)ËûavîZ²_K]ê>ý¥{yzq'uw7[ ‰{k¬H<{ÁVÓUä­‘„äì…Ñ<ý8¥Fh.YÔĬ`ÃÇXâÖV bäG,ØåY?ŸVFÎneË”â¯xÊË$½î‘àmé¡XdšÙsÏÁ–²È M<œÌ ö“¦o7núXö!>ln2ëjˆméð{¤›±/¥Ôí.ûFˆÛºg«Ë»xë-±~»AÓp¿z:D¥Ÿkwü7z-Ìe6¦1l†&Âí ԷN0ÖÓ©ƒ·?vmúö¾î#yi ›Ô”nÅÎÚ%ùʯGú¨‰ö|kêƒa–¦b:Ù¼*žž08¡ž…Í9f54$aKW¦‹9µ`WÙú äñªÔþmKWuaæPå¥+¨¤i»5Œ±¬¾ÍìŒqØu[?[=íC§‡‚¥Š€™²v´çCb-î©ÑpÒ~vW¤†´E»u&5R¬9¨_>¤[èƒv':ºNlÏ“&k· ‹¡°,ƒÃ)þ‘˜"mE íÆÂf¦€³®—¼³åŠ®þšÄâ´çV3}î ïØÉT4±H§T«ë¹ëy&§¸4h—)b¯{KP7Ûi¯ý:1Î<®´1=¾±‚–ˆ±17÷Ƚ]Þ¥·½/ B;…y:£?Oä+Œ^‘ÓJöÌ»XJŒ«šØ#Ò!¶4Hï ¤*7ýé>í"#l> +Ô &ú6u3†Y‰•‘ ûB4£fN«&Ët›ŠÄðŽ÷škmÒƒ8eæ˜ØÝíÈlNÇ°–˜'b¼ãYþÈûú•ÀN%éRÒEùâ³9ËÉ*Ðì]ÛÛv4M\«§­ÏÕX—.“è¶Þ ŒÄõ>T4ºR§´nVbq¢òa±QXÒ>è‰AÁ=¥Ú"…œX¤‡O€4ÖÍ<Äèí1ÜÓ§=¼CióªÑ‚<áŽsØüu°k6ã½UÁÌ9Ré×GþÙÈïDˆÁ-‡±òŸ"§¨ +I’‚Lìb¶¢!m3„zᔕEc7C¨ëà=²7v3„:^pþ¦ Ébï:÷°›!¤}mÓ/Ý¡^Wß`Š1›"Ô‹m²tæNµn6ØxlÕ¬·)B`DZ½:(Ý !~NBÅ "dÀ6Aˆ 6Î~wºCr^IâÅí®Ãæ&(&Aˆçl+$oPÒ×J‚PçÌìVÛšØMê:àZíEØõ„XtÚÓ#=ìøk‚+8Ù›dE¨Mg„X xY„ÂÖCb§0F:Q Üü (ÃÐ~›;;Ú\½>÷ˆV‹_v„¶©½èWNì&5jK…•líÏÝ¡†¾lÌ»} ‘”“ ¹¦ˆ3vªå-CÜIr”0q’ÞØMÒD¿LÕV†P£$~ûx»›¡¦öÙ›¹+"ï&5»µ»é¬¾J0‰½…Õ4˜¡.¿ï~팺¯’ „r~pR…µ‡ ÄŽž.m-±jQ¨îéP ¶³m‹É^ŸV¿~ý¡Ñï™o\í„ÉbBôųÄnv³9–×L‰¡$;¨ËÜšîyÂ.Ùì n“6@²U‰mv¢•R¶Û.ÐÍêbR§'Ø|ØAò™ØMbK‹<¬Ã1$C•Ü j6¶¯òpƒº8•‡*¿†nj›ÖZϤƒñ³©A¬˜QåL¯275ˆí‡tL²:Ànj[Å:ãàdša65¨“äŽ/H!~±–65ý2ÇÔ´°65¨·7c°M ê…oš$P¨A¨RU]G^®?Ô ß(%å³úà êT²(ÒX\ž×Í B-Í~`ec73¹JFÓL°›Ô»øgG’BáœmfP×)¤>›5ˆS½)úþØM "âýânZ…Ù8˜;ÚPŠ,iA&éf/»±›Ô¥rm daëéâ ÏÁyºæâFJn3ƒÄ*7¾ósj*Lfi•—‚!<›D:æ"]‘ÚŽ4ä%5ˆ,ŽÅí­FAóܦ)û³9=`çC RÖèH]$c75ÈÙ¦;Í«®ý5ÊRÍyæ¾dveRƒ”Ü]b‰ÝÔ ’b·¯±Í µ­KkC­„£›Ô%í7Ú-Âê#Ê"¹;u §JœdOcׂPËnBÖ@=Úà "WXöqÈØÍ "ň|Jö‚ÝÜ R“ØÒÎóÆnn)MxÛRíæÉmV½-n<¶j¡¹A¤Pã7^=%Ùï$7H$"x‡d¼TG2vsƒÈôÆ+<¶ß;›$zŽs¶Ææ 7ˆa¥¦}H˜ÜÜ r$ÕŠ†r¯9†é}dG½ÉAô„ÅoÜ¢glîè?äj¾«ØØob­:ñ’·ô85€›Äó‰Çšñ¹obÐña¨¬b’?WÝô$ nb<ŽXg*“ŽÞÄ .>tt¿»™AÔ-¶>"Ðù ҿãàUzˆA£'myµó…DyE¼·bËh~ƒN™sÉ2±‡Ä‘þÅ\æ,/Ä Ê@äÙYE ²Ö9Õ£#{=Ô ±õå‰J 77šÀŽÞÁÚà â 2rÛÐà Blº®™{¸AˆTKã,ŸsáIûï±×;û 9ˆò{yV#N79Wó]¶/ä *éëf"¨­#ÉAÔÊgjáyÈA¸…·ûüFÉCÂ|7c ±Õ]óŒe^U†Ä¦«¯UuÔrÜKô³<ä òÒeì!Q†^JÊ÷ÄrP‘Äî&¨·f“ƒ('÷>îÁ¾^ØA”ŒÕq~î=ì Î×H‰µxê7ˆƒë­¸YŽfP…7q—ŽÀfüå¨Ù«[Û 5HBƒ×ÌL-ØC ÂÆÛÜý¹‡D)ö¸³s“ªðM "K-±‡g`̲ bð§ßÞºâ´ÇTAø%´’û C„¥ê}¹O×¢Ã%±‡„»t»Ž¤€=Ô ˜ÇãøØäM ²ß³Šq‰ÝÜ l›·x¡‡Tµ ßÎ ¸›D±ò<ŸÇÒ_ÈAò:Î󕱇DArÝîÉ1_¸AP¡ÇÜ +ke¼rƒH;ÝùÌi[äð Ø }'ó•Ä›Tñz%ö *OÅXvœÚGYÁôã"ÛópƒÈmÖÐ 5ˆüïãb_®WjP{Î-`ë•Ô¥¤¹…±}x¨A²_ºýúdqsƒÞ82ú¾pƒÔ­ˆQWnJÅóÖÜdFÝä l¼âg§ÍöùB ¢&/¸¥?£,465±Á˜NÛÆâËM ¢îÖ3!ÿSöö5‹¹xÛÛ£–jÕµ7˜¥nnùäëÿïí[v%Y’ãö÷+úxï %Š€-$ÍNЖ„;+-ôû23w̪>dOÕÜ`suUfeFxøÓÌÕ­÷Õ¤™Š›¨¥”¨½7H³ªEùÏÛWs1„§æžünŠÒѤ" |3‰—všƒˆáï";t̪6Ý +õFsÐÐlj;4™´öÑDlÕÉBÿù4‰ +k/XÁ¨ÇìÍA*´ÀTys†$—£™Æ84cŗ9H¬ˆXl¤-V¯æ bW÷-¡ÓĪHj%4 yHDkŠ)Ù}Ëߥ|ZƒˆÁUŸ^±·•âÃÇNk¦™nWëWg† nÇ!åƒñ.L—7?GSk‚`Þå0!àbÚ”³PãG +Õ^6N¤¾‡SnïÉe¡ÇÕ¤rÉ8SÙçÎ MÝ4·xê1+ÖK¨+âŽ-Uv£3ˆó¥>›#µÜè báãÊÏ» ®sœ‹H±œ°„œ¹ÑDŒämGðwßxÓYÁZRG)Ôzk è]R„œêˆÖ Eꊶ!b§5HE‘}-ZRîæìR¥"Ç%t‰Ùÿ€B$ѬoèìðŸN:^|‡ ¬°5m¦µ†«Ðæ«7ˆœš(ðKŠ5zƒÄ‹å4°ŽÞ bÖšæZwåê "¶àkvkl:ç¬7ˆ5 –hà`¹zƒˆ©Òæºa2Þ Õ>`wZƒT߸¦²MÑ[ƒTà¡aÚšK²a-äŠ ;½AVáðäíï&9½AVáh—È\¾ºƒ¬ÂqIÕÌ|u©ÂáÜå¿›`4©À#½nz}Ѥ +Ǫ=tH!ÍAšáÏâ‹3Ý­z5©ÊÑnÚõjR•ã¦Ý! φ‘F–äâ<§£9ÈXH¹í"KíjR•£ÏK¸‰-ˆÌˆ4€ÕwI †ÜÎÓ¬“‡å +6¡Ô}$ÕNsªUö=>wšƒTæÅ»H$¼9He«‡ÜZ4²†•ªi§9HUŽªÁ¹*;ÍAªrôTt’#‹æ «r.:IŽEs±»ŸM‰hR™#X*7¯hR™CÚþ¹ušƒTå°èNs±í¼ÔÂÈ!1Œ7—Õ +œVÇ]‡+†ÆÖ¡zxûê R‘ã"á“*Uô±XA9€9.©è šâª:L`R‚ŠÞ ‘‘Ì+=) ï b±‚rˆ^P”4SôMñ2©ca;vèƒÈ”t±ðIéÐq*!Úö2ŠK }¦BIèå"0åFÄ.…®aPâ¹èƒ•m¯ß±‹>(Y5JAËhãä)ÃItH•E"áô±*‚lWê4ì$¶X̨ÑcØE ”LÑ,é!A°Š"Õ(‰C ¤"H).K*‰C $ZÏ ‰ÄáJ?å\.þ I+Ç$¿´W.þ , õ# 4ïüA<Àüð7ìÆDB—’0ìÆÄa¼V}ÖPJ#P‘¾¨³J2äâ«è"VÒH\üAì{v‰óßMŒãðIo2‡_" ÜS…ä +D#ôA,Üù«ÓE”5óÖc7‹F"èƒX¹QƒÆ‘¿¸èƒr¿´Ÿ~7¡‡Ã”EMarñ†]üAœ'½†t¤£pøƒ8PÚq^ù‘Dð±Ô­ñÔÕ}±—PVÏY—ìûï¦ pøƒ²êú={–_3!Á¤êIÚ¡eH*þÃ$eÒºBLL*û±Ñ/˜Ö³'ŠûÃDúR½zŽELÁ$†1¯˜ýnÜñ‡?ˆÝŠþ[ ҜәoS´æÿò[úñO¿Éªayâ/YÄc|)ú¿6bNÜþßÿþíŸÿâoÿûú¼¡ù¿¿±+¼üp†¶ü£^$måÇÿùMÇ̽ÿ?ÜÐým'é‰Ylewõð'»‘¿üGê6Êë·Q9ègšåq÷?½uõõÛ袹´<›ßÆýOoÝF{ý6ØOlBå9nãþ§·n£¿~ µq&K—ÝÆýOoÝÆxý6¶xI¥‚·qÿÓ[·1_¾ Jø0jÓì¦6ðÃßÞº‘õÆðœ6òï|näþ··nd¿q#¢›|0{çFvzãFv6{ëF^·¦l6ú²b}>OäáooÝÈëö”ŠÑÏ&äñooÝÈë•sF_+¢š¸‘ûßÞº‘×mjν?›‘Ç¿½u#¯[U,‡.›AâÜÈýooÝÈëv•3l?Ù‘‡¿½u#aYáí}Ë{¿ QÑwèr|^¼äzñ’9åuÎ7ø~õ¢áìýùîì½tÑšÞ°¼–X{Xo·=è‡?½|ï˜ÆeäêL`ŠÞïãþ§—ïã˸L½«n—íñû¸ÿéåûxÇ0.ãâJÝ{Èý>îzù>Þ±‹Ë +æ©#b£´^ÜÇíO/ßÇ;fq'Ù4tà÷qÿÓË÷ñŽU\ÆÕÔ7é\ëu·?½|o¸›ºŽîgÿöû¸ÿéåûxÃÛ´û`æÜþãåk¿á`êÚ…óX¶ëþ§Wï#¿kC™QL¶ëþ§—ïãM*FÈö`»þôò}¼iCÙPæ_â>Ò}$æÅûxÓ†jÆ =Ø®‡?½|oÚP‘7×Ûõð§—ïãMª±‘ö`»þôò}¼iC9s¨+â>nzù>Þ´¡dƾÏß^¾7mh'AUoý>îzù>Þ´§]]ðU]8~·¿¼zåMkÊ¡»þèù<üéåûxךr8åÑóyøÓË÷ñ®5Mâ×y°÷?½|oZS‘,zù>Þ´¦ª«žÏß^¾7­©Qú¹ýÇË×~Ó‚6æ|ÙsšTûÜÿôò}¼iA›:©L<[ÜÇýO/ßÇ›´‰I´’1¸Ä}Üÿôò}¼iAç'ÈÅFö¿ûŸ^½ú¦ ml«ô|þôò}¼iCÇ‹=Ÿ‡?½|oÚÐV¤þ`»îzù>Þµ¡™¬¶ëþ§—ï#l試Ȯ½|ÍþÎ5¥UÇ—þÿË×ï\—¹´÷ò‡éñ*å—IÊ[Íö#W±ŸòV†ðåßbÿœï{û¸Ô~µç\ëǯ÷”fýôõ®wû¼ØÄkkÿ•§éKÄþwí®cÚ>y½çµÉ¦pWoÿÀÕ~Õüðñëÿ¢ëáã×ÿE»Ãǯÿ‹>‡_ÿ ¿þ/:>}ý_·4|þ~ÕËð7¸ƒ§óéÓ×ûUÓÄçïàWÝ¿ƒ_¶I|þ~Õñù;øUcÄçïàWŸ¿ƒ_µB|þ~Õñù;xöW?{½gu~‹‚å³–]öéO¾þséO}¥¾þs÷èO ¥¾þsÛèO¤¾þs¿èO-¤¾þs£èO½£Ÿ½þÏ ¢?7~úž;Cîýø<ŬŸ¾Þs êÏm©Ÿ¾ƒçÞÓŸûQ?|?5þ܈úé;xî6ý¹õÓwðÜfúsëé§ï๿ôçžÓOßÁscéÏͦŸ¾ƒçŽÒŸ»L?}Ï9¬Ÿ®÷÷ÿ™œY…äóÇŸþ×ç÷Æ=ê|†¯ç…ÿÊâõÙäBn8²rû“þí§XI^>ú_¹Äó_¸â¿ñë O‘Á~Š/\âzŠùÿõ§˜¿[‹›÷÷¯¿¶•HºP +Å*µ‡Wùé'R zursˆzOD³qÉùëµø—\B¬,y¤üÍ%Ös‰AšÒõý|‰ôÿ˜KŸFe|÷+ös ŠM28~ó+þÃs r=bUqÓ|êAQ6…„2ß<§?æGû€ÜÊß\àþ ˆ@´ŒT¿¹ÂóØ¡GvøùÍkøOȺ4æÒþî)ý1W`×%¾¬~÷”þñ¹Çâë$ÏÏWHWøX‘îCUê¿v\æß²$@Ý‘Oø¯‰Ûõ^o–x#Ýw»Þß⥑Ù, +ïzžM'WüØ}'îWü¬Ðq.\¡?M‹Ý.ûöØØ+מ»_ÿÝq±W®ÿ<v¿þ»cb¯\ÿy*ì~ýwÇÃ^ºþÓ4ØÃõß {åúÏS`÷ë¿;öÒõŸ¦¿®ÿæØ+מúº_ÿÝñ¯—®¦½®üòØ×+×|žòº_ùÝq¯W®ÿ<Ýu¿þ»c^¯xÏS]·ë¿=ÞõÒõŸ¦¹®ÿæX×+מâº_ÿÝq®W®ÿ<½u¿þ»c\/]ÿijëáúoŽo½tý§i­‡ë¿9¶õ–W|¿ð'½âŸæÂî~w@ì•ë?σݯÿî`Ø+ך»_þÍ°W®þ<ÿu¿ü»ƒ`¯\ÿyîë~ýwÀ^ºþÓ¼×Ãõßüz%&|žóº]ÿí¯—®ÿ4ßõpý7½^ºþ™ëz¸òË^¯\óyžë~åw»^¹þó×ýúït½rýçù­ûõßäzåúÏs[÷ë¿;ÀõÒõŸæµ®ÿæàÖ+מӺ_ÿÝ­—®ÿ4Ÿõpý7µ^ʃ=Íeݯÿî€Öy¸‡Ëþ òpûj(üdî)môxáOç¾£zºƒgŽ¾#zºƒ玾£zºƒg¾#z¾ƒÏæ¾£zºƒg¾#z¾ƒÏæ¾£zºƒg‘Iƒž¯ý©<ÒwtAO×þp&é;¢ §;øp.é;Š Ç;øt6é;r ç;øl>é;Z §;øpFé;B §;øpNé;* ç;ølVé; ç;øl^é¹:x¿ôG«ƒO©¥§K8·ôÙÐÓ|8»ô ÍÐÓ |6¿ôÁÐÓ |8ÃôµÐÓ|8Çô©Ðó|6ËôÐã|:Ïô‘Ðó|6ÓôH!ô|íOåš¾#zºö‡³MßÑ=ÝÁ‡óMß=ÝÁ‡3NßQ=ÝÁ‡sNß‘=ßÁg³NßÑ=ÝÁ‡óNß=ßÁg3OßQ=ÝÁ‡sOKŽ„íÒëWíÒßÓË ‹I•"åØŸº€)VG¹ð_‰òÚDúWÇærÍ*õXª¬ÿ%×Äï¤ÎÑ_yÍR¾¨4…§øw°#¸dÿ7[ßÿˆK¶¯k±öÏW,ßýÈ¿þÁRð,¸©ß<ÖúËÖ¿ä +p÷¦ÀÛw—hyŒ¦^›zã?¿¸üNÏ,S +0Ÿék6¬†ÿþ°%ƒµª]ÑÂ+#QÃîAJˆ“ÑJ¨Š½z1!¨mÚؤ›\¹™öµD¼ú6É+bõ‹’±‰óÔY£‚ú ü±ñµç0£ò'žN—>ÛÆå× Üì4ABà®—¶±¼G(3Rn±ÌŠ;–ý.ý«æ‚Å¿Lôrm“ÿ6¿ÖÓ”h)虲©4«ûgZmSøFÒ“ô†²)ñJñÕi2»Û;m—>¦Lm¯½aê^¨j^7 Y—8/î»à-è‰UüË<§ä±¨!Œˆg¬Õt9jt׌A…Ê)Í+“Å#V±v\µŽ2Ï a +´.‡U†gJ‰Ò¢†ÙvÉ7<ô¯A½^*R®…ÉÒ£î²Ë‡S¿»LÿKŸë™B¤&—Eñ’*ÙtŸ÷Yq)¥ã'P*Vâ÷U¹–M˜=áåmo–Úï ±u¢*.ž£¬ß즤µÔty}¹ú½àç.½ä}áq-éhâÝ™UpñÈŠD분̩DGeo<††[õãtSsoÕäXùøvÁ}¬.lp/`—RÉ™’ã³íi:›7Qk‘Oº•/Þá¹Þm‚}4雌4°™höv!kÞà^Ï™ºhºµ9Óâd¾³bµÀÿ©’BÞÔÑìXè°DƒÇ Þ²)ln)^&“„k[a™dö¦:%6i]Tælk<ë?(ßX:Õµ'wå¼’dqaÃä#»·7µ¶ñt÷]b¢l`Ù »ªfçašó‰ú4¶öÀ6ÏiNós¸/<¦Öm!1ïŠm®þû‘öëÂin/aã¡Lia·R­°›®˜»©²ŠU±º°%¼% ,'Ê¥æL1Ä ãxx¡UË™0Ô\WIWj&ãPÜix#!èÔ Æo¬¦• wkf­Äi54MQ¸¯s!˜+¶[rèeÛè”{œÚª~·ãØÓXÛ²”øa­¿&5%;Â!üã¾x#-  L?$¤Án‘?HÝ[ÜPáýp§Á® Û’ú„YÁâéaï®æ7»¹ç$Àþe–• R +j'Mÿ ÕŒñ€)®Óù°úm¡r¸›E`îr‡©°IYöÎóFûÇ[;°µ¥”Š@׳ÃØúfĹƒ1uô·M‰Zù—¶. +P[‘¶-3UØn×¢83ΉÁ*ëf‚v«|ø¤”‘±{¿V—ßPÄÔ$ÁÚ:÷4Nܶm…à‚U¤^!,hêɯìŸ,|”ftIpnöÉ¿'Ë+á-&* Hm®$blùpwK`øTÛÀµÒf³wU¹Ý’tDñ#;߇ܑa}ÓGz<;7’Ƚ G› OF†%&ó Kðe’­‰M€8!ðèr3@ ¬ËæPw„Ûõ¯…15ñÜ¥M½s¼  |¹>¸g:Ui±½VÍ~·‹«bÁ@riaIÀÏ’š¸ƒ3/SF仿²‹§„¢»Æÿæj†3ëöã`¨µk€v„º¼Âà•ñýÈMGÜ€§‡Ãuõ࢙§X£Vš@ZÙÀaqq a5@øZKJïÜ–°¿Ž€ƒØýå<=üGã²F€°&Ê·#ip~C•vì < ÊAcK—š®láùÿß¿–…DÅ™E«±ˆo!@ǾpuáK6uŠ ìŒà…‘iÑ G@k¶‘!¤PþW„ŸE×#»N,Ìô¦n6®Hg +#U¯”G˜-œyx;ØáþI9“09Èl5¯&@¸Òxl» +ÄúÅI³ýk±€’oc‚0”x:¹ˆãhg*½7©#Û»6N#"wâ¼ÛÊ_ O1@œñSØ’€/onºÇ^3ƒP\s±f&Ë`_‹óC'Zåc_´úðÁŠŸ[¶<Ϊm߉nw‹¨ž #®ƒFÏQÔN|Sƒ“­9MŒY}hgÄÊEK‚S1÷¿uû† ¯{ù[Ae¶£Ð°Q*,Å5yÒ0—§2³%ÛãâôÂÎâûC€§`;¥kíMýcÞBÄ#À‰ˆ]g×;%¼ßó0’¹ieºÃICˆ9¦›¶N wwñ¦Â9¶!y×y‚“O9žÁ ©Ë¢•Q… Qy‹ÍÙé]qÏ©£—­Œˆ Ä–”µà¶ÆëÄ âý DZ{xz7 µŸ±,øM²˜ u€Ên b‡)YLT +LSB7ƒÓ'X¦0«eî°{ðýäítí# "Ì “Í +vB8£m÷Êî&üÊ5h‚ø°UØÇ +χ§¡*0 l"ßÖ´tÓchr®¦ÕÃÝÄËų”˜|§+ÀMž08‰›AF§Úõ†¯Ü㊤[ÂRÈŒ,2‚þl… n<³@ÆÆÜìØ¢ðœð\Ýïœô|aS™odÌ…„¥µƒïÎ㟖 +þo¾®0fùMÉb@OܵñN¹”›BKü$[+Â`Ñ}fh « KŒì_Û˜,Ü‹§´bdø?#ù‰ ·ÂOÂäÏ{Åsödéš»sëg†02ýšè_+…‚3—ˆK€ÁÂÓ;)JHÁ€‹`.@æ ´ì˜ÂÚŹì‡¢m¾F[“K猪;ké)-†1|²ØËŠÜ„«kŒñ,øÓî50ë†w®t4søYØÞ~zñá§éÍ2E–qr!<: îÜ¢æCž¹çÝâsÉ,p㙃pµ{ ÅÈay:’[¯É^ Þ ³o[¦Î^×îv!ÞÚ{ ~$^¾¿ÎÍ Ó9KN}»p%Eºìbࢇ+?„YÚ8äñ®áköXÎ[Å3‘aæŒäÛ¯çÓ¦l5BaxØfÖyDãÖ,‘ê «µ”¾‚ AÀ‹ëGô¶”™,4‰ >ˆ‡ýœY4Lòq+Ð _ð­#wpZ>?ËNЫÁ«°gÇÎ0O®HãºÜ´mp³m¤´ÂJ0^…M‡q²$E 'ÓÁ5<ìez#c9+ÿ!+gAçùÔÅâ·›wq Ä~¯8xMxj¸FÞnœmîÂãcÆ ö…ÉÉÒ1Õ%'Jù˜F¸ì{Wÿ$ãªcc­‚0«ˆŸÈŒ3B\²ˆS¼LÄÈy§ÍDͨWZR·tÝ +Ãq†\ù„ +³ÚÚBƒÉβ½Ü"O‹¯V ‹+dËbPUj¯ÝúëNT)pÐä[Q…®BQË‘8Øp Éa§=„<)†<¬º©ÞJõ7v·›eÚh—ïv98è“ ~b𼪨c8dêà12™iÆê©ù|±2«:f€qcÑÇÊZ—Ye%b›¥wî V9.Š}¨”á¶`gìÌ 6Almå­Ä¿”[Ä<$³~ø]~?ì’j|XÅlþ=Έ'î9ÙH°jâÎ),æhˆ˜¦Šl ½ZYü4Ô +G?fÚÙÌÏ5ÆÖÇŠØ¡ž\,CÇ +Å´m,dŠ°ƒyzxtrKˆáÁÖUêùVí4ÅæÆ!e5x}æ^9R:±ղ4ƒ¼Ò!œiZw:HhzêlÁžÐo°w]îÆ3ç]a@ðþÔÌbad±]‰:î–»«ÎáÊnV8§Ú x2÷ìa^3Ž£éf`3ã‡fS¸è£ˆåà©ŽZ✡²N›HË@Ùé}ÿ‘õæ¼`!©¨:=ÄÞ3°´D„çÌS•È«º ŽµÛùäR ¶Ø'WG´~Ñ^*“#øíª5VÖv@p˜pZ±´b7‡!ö:VE;¯„ìóX#a|öº{†“K¢Ïà¶Ì…ðuí[!4,–çRIk0Ф±qÍáfxyU­6½—óìX EHñ>ãT˜_Þƒ@ì5X<]/à‹ýM:¸X`«/«™™ ÈF¼ƒ&/5g 利¶Ãz"«vÙ•-vdqo0¹˜õ·Íœ£Ÿ;øÛ÷â,,¨²Ê†S¹öÀï™IŒà2Ï=@ø,Mo•E¶œxW‚@,MëÝ`I21ãÅ<˜IìAË ´ +h*ž%AÄ¢°æfÌ Z³ðnYŸgkK;_«J‹g,‘âõá%ZGp{H!p²çlúÏ„¥ë<õ­XS-ßž,óÜMàÀ™0AüBeqnXaöñ8`öP¥gТ×i ž †Aoq°‚-¤ØÔÁ’µ¯¬~œ-ÝS„o‹G Ï8ÃqPŒóÉQ=ÕˆodãfË­!XøâàÖNm6«Õg0ȯ]œúláed/Ãï,™ÎõŒÈ’`“½§îË"ÀºTñ‡yeÐÇÒ Ç%ìùµÙêaþ®™Sñª%Û°±Çnµˆs ÷ºl>LgF‹kâÝ[5Ì–- \< 3t˜¡T7‹ƒø—ÎrÇÐͬþɉekþ¶ŽàÒ¼þë ~w©‘ [jŠˆb$¥êh•i^æ¼Ô±dÜ£Ç +c‚*@8!´šVj‡™³6”G0N83/ +Îâ}âl]Ù¸™¨–>t°E²OþX>àp3ª·Ç£õ€ƆhÜžXOͺ°€1/ɤŠ ¸ï†f³ŠS±gmÝ~óà6»É¦Áû†¿¢ä«ƒðhY“.¶u÷8YS‚ª‚iq\ .–®ØW©©óÂönߪÓÖq^g†]ܺ•Ü—îÞk¶à§@|.W€XæXŠÕö5V) ˜Â¢Ö¥+²Â"èÀ6Ùy{¶27 gÝ¿¯Hµ"å¨)ÉœrV³ë±˜Ó]‚ª›À0 ä–òN!S‰¾¯Ì~­¢äu€ÛÒ^E ŒJî~MzœÇ”à_â;ÇŒ'[Üñ*²AøT­€ÿFt8y&Zg þÏò)«Sˆ6ÿãÙød0¸±æqÒx)ƒ‘ªð–î$ˆÓÚS±Yÿ…#‰Œü2o&ˆ¨ÓšÆ âŸÕìÉñ¬˨Ê:!0ñJ#!·å`aáøŒÁWÁŸ‹5áM˜!È8ܳ»4²8i;C«¯î¹¬Šüx·L,B(ÙËcˆ}H÷ó‹—Iž“‘-xs9ŸOÂlY. ãÇvã›RT¼Øú¢(0@š±‘ý“7o“X³Ô^ÖÏ„—e &okÒÍ"î·rœƒ$%VFŒß +¤‡SDVÉÒ NóˆõDx³¸™1AåeÔÀ…Õoi1(±Sàs m0E+>àI`„O Á#:33¦¶qy« ëyˆlˆŽË¥J} °Žê÷Ã`ùªŽÃZìr¾Ù¥†’ äó­:;µê˜°Æ Kᧃ23ï—t†iYìTáI}qصì?¬(—ÙŒ®Àë-~är*tÿ OÈZìÓÓö™Äás¾vw©]Š‡·zÀê>_»á˜è8$XwaûŸÿJæ +áR;™ ¢‰±=K’¥Ù‰ªs‹-1ðÙá¨×­Y£5ÖÐÎ'»ZY –¾xpⸯMMŒìßÍÑ…)íd7Ä|7žWG²º}bÏò“Xò-¬6'viIÙ +Qµ1˜2?GI9[Án﹈?™qR D˃;AÓ;‡u)LRÄÁT`MöŒÖ\€™¹o‹Fë–ƒW#­ú~J®[ô,ó’›=ž×»‰cõ%{±‰¯é‹æ ¢«Â9¸³Ú`„­ê-¾ÂÊ͹+¬ãàqOwÙóO„ öóå‹»ßâ/b«ZÆ °+4"(g7^UQ'ä4v^®“ƒ§•¸0âMðÞâ±²s£Z„ ¬°ç` 2•­2Áu5Î +¬#Ž—Âð &<ª |Vý`0h5ù–-LâWÈS/몱8¸H+o¿’]l·#½0®ÀjTùx«ýÊQ°!¹à{°ÒF€E‹ŽGaë}|kg©8~ð´ ;Ø£rNp ®ì$A,®û¦€#Ù 9÷³¢¿‘ Û½ÆÙãÖR^éd­¢Üƒy©ÕǾ–~ïð¤ AøxV"ˆËiÝ@eªüEc[ìå/šS"'L°ôXZ•ñ´Þí +Ðr~;;ß—:7•jÕ•ƒÙ¢¥‹ VpÕ>%ÈøTýÒŽbrŒ‡^Õ]µúƒ¥¼†–S–v”z-¦¾62E6™ —%ÝîaMKž~-s4§ôõd×dšÂ'?âeͤÛ._ß1DJÃμŠØ»ù·Ü-PÊN ÁºüŒÊxY'x[=rXã k»ÚQÉJ¹ªhî.ľq½2·»g˯מ…áÄÏkn¸+žAlÂK¼6ö +”ó­øÒ+áÁ=Œ-oŽFe=ʪŽÁ_)¶\߸9–ŽÝF+˜sâœ/má¡oÈÑ!Í>8UPÎ]°3‚)ôÀvTògoü¹˜9žÂȵ œyªÉ!@î€d÷“zØ VEë\X?ÆÔ‡ƒð‚= jé=rÉ}ø!L€Ém¬@\q¶HÜEÊâuôãªUS1—»­Ž`ÉmªCƒ`aÂÒÛT ²Še9vÁn²§'@l%ÏîµÊNÏÔÙbƒ+‡X4üÀ"i'Ÿ59…ªƒ­QW+1^ÏÂø™ç5š2ëvÈ™—£«çÞXA¥=`ÞÍRÆC”·¼ ÀZ½4Í¡Ý,ÛæmþŒ'?Ûx«ŽÈ¾¨•:ÑçÏûUb&6a«Ut"ÆíÅ×,ƒ3ðˆ8tÆZð¼ +K™¦Êƒ.ã~òW…K%N'Ukio–mÝSÂîq0D–sÇXiìöë[ñ›lÌn°?Ǫéœî „1P*@XÁ@ ¥ÞÝ‘§‘;i$6OjÂÏ™Ê&]uø 6Ù8X9“.ê\·WÂ"UD³ì½_ !òÁð,£.fªäž²ƒ§èApßz; ¤ٮi1üŽãP„Ccͦ•ŒÓ‹MÐpéÀ +œW AŽ!Zf´+ÙqEÐj.À™­ÂQ„=.~ÒÒ°FS1zÆ­ÇFÐ@œM…uG!ÀˆŸ1n^¬õTòqìOgÁ¨Ò:Æ©î`\ègâŠ-Ý,FtK’ì ýD³•9¼{¬ü½LßràÌæ’:ë8š_v¦½tIvMz³¯cƒåoÆcÀà†å½¦¥ÔûCC}´ê“~ô>ƒx½ÔÒ4û ðöNè‹äÑåÅ°Ÿ–ù,Kú&1ÙKîK¼“«n¥A©¡ä£cÖÛšmE¨ +JÔœT•Y +¬[•sÚì¬ÕˆÎ¹$¾¬9Ýæ`VNã£..q>u)r¿ê­Ü’0l[›}ÿZf |Lg¨M¤¯S ¯äõUb¬ À*äÀÊÒ„¾•E"ã;kZïòÕºH°Ë²2 ³i­¼x¢’âô·ºÆæ9ÓSŽ’À=tœ·Çwh×÷Ùx‚|Z§c6Ë;ó@&MM·^Ü´LMñãɯÔ9ˆø×|ÇÉ +ÖÐA”¬8b³D˜°û˜¡=¬1 ™2“5¡l3(,Þ«—œm)IE,]Òšù×ù%Gbw²P·¯¤!°Óy;Ùo]{<5z’jd™ü jBgê”`Vj»qpDöj\$fmpŒ=¶4V K¦û °¨pÊ“tA£…nˆ—0©¤ ¬5Zƒ¥CËÝ;¿ÛÈ ¸l2#¯µB‡”­]dÉ¿vܦ±¹mñztwÊ‹RntªN åeöJÛ0Ù‘ +“w"“¦†t,!³Nõ^³jlsñ.:Doé;ßJ?Òb^¶B§y.²&Š|Ø—ºs(1Ÿ+®˜Kà™à]Ÿçƒçèá9ÔÙáùêÆ:D·:E÷¬[€ù<öÁvÍk0 ²xÚ|8þS˧­/Ë»÷*1é*±·»@MŒ6›AÿhXñë|rdÛ&ôÖ–,L?œÅ‡^è–xÆyOgk@§B`×QÜy¯¾Òj£ÖuÞ% 'Qbã½UŽà„ñ^·©ü6.†m…ð}qƒ—C °[ç¹E 0ó<6e.{¹ŒzÉá³ãGj,ih2ƒá; ²Ò.ïØÈŸ¼OOÁmSï–ˆ°rG˜Æ7Œn”2`ºi8ˆýäѧ8½5&@ÄÌýåñ耞’ÇÊ3Ó+Ý= ¯~¥´`G"NjLâ,›h`¶;k:%Oh^Ò oÐX¸¬.²éÉCTê;Y2ÕÁÝ=©¦ ïÓØÓ5"Ž…amxæÓ8•E[Žce«,zš"XÝ?R¶Šq¡ŸKÞèT¨Ø§œÜiw-Û`=6£] Ž\DG6HâM“Åh¤§ÄàÙ5|ã£5O ÄmEÎÚ–WÛœ>%´Ô|3þl(ö5—E› ñþ]McÒÓRÉ6ÅzëàÞôž5×!xH*ÔÆ +{Œ€ã|rÄP[ZƒY+…ƒÓ††¬—Yo½zÚ àöM¯ÁWüó5ò¡Ts8§ç4ÂrÞ–mìÜc·ž8‚ÅÂДû}´…`5O¸ÚÀ>Ψ\íΘag&ØÙ&o–ûx\á=ãry=ÍØFðzzÌŒ\¤ ^g Ö[Ã{’•à 6ηn¼Œ +êtpŠrz‰“qCLÙ;v\TKXð"ö>`Ô¡ú—¼5úPåo­Dë=A£ZÛÜf~ùPìN³d Q‘—qð•°/λuK;¸¢í¨Eoë€;y6–}¾•IÈh,ìjú³Ê(Û áJŸa‚Œ¼ž'Ö>c÷#Ŭ‘"Òˆù8±ªAö` ÅóVdv°yO' z‡ímÍÃêšx(×lÁ“çF÷~£a ‡>Úø,Éâ-XÌÝk Gwv±Šˆ¨üô&uVvƒÐkÅŠ§*˜Ö8?[¿q–áíåño;Ëœš‡e•=ÿzW_Ö8?yè Ø¢ôÓÕîom×sCðzš’]%ÙÓB ËßZSº2ð„}Ì-k¸Ä“y™i6„¿\Ý“à¤ÃXœéÉ××:‡Š¾Ôª\…bÿ§Ýj6ݲs°W Ì4vìôÚ`x*`é~bpFå¡Q¯Koš[#k•àÀß%R]L`ÉÑãï$+–Z„GÚ|Ô„-}X@9öó¸½úÈ;nÆ`\ä=œîP»yv7‡³ÆÁ:!v–j3sÂ)³@Øä(ñ»|B6#KÓî1N0wk Ò»÷Ò”|}öY‹u+«‘è¢s‰d"KÍ ðÌep(?Dé=ÇðÔ-‰Ê_½/*ÀqÆ‘V6‰äó­³±ËCœ8Œ&ÛÒ ¸¢gŠGƒÀä³€ñ¬|ØX$OåÌ*eŽ[Ÿ-Æ‚7—×fŸÜéš“éFáX©*Ï›¶¶Ô~ V]5zæ[µŽ3ÜÑl&&¢¹®>€'æP@Á¶Íã\çÕŠøgýúOΗ ÂÑÏ·^“á˸‡˜§Ã®ÿp•„ñwe«Q\õ‹Èbo[6û§Æ~O±8V’Õå┼­>àà)­ª›ñiž*%¸­à¤“æÆ E¬9…‚À¹|¸ÂÁ¾¼s™§»1SóCÆrµçc6Ÿ:#8-““­?§É)õvqN,YmtG;¸§šç³zðéHžøžÙãá³eCÁÿíDe†ÑšZÚÙz{š,}4ëzHlÝ,ëìÝw½”m­ús_©É‘.¶ +5íz€`¿Z] WŽãq¾öFæ¥âü™ù$h‰¯ä aãš"¸JÙíNw5²5wžÆIpYó½=xF»–)°fàóMŠ¬5ï?fîF‰ùóɼ= #:³iE…Ë.qM¶Wªyì|²â7«ÞÀ®ôj#Sú jáÒ“– Ín/ø¿×hÔœŒMt.Èdáùe‘qŽÚ6%5‘ v‡vnv·Hyª+ýšgʪ /²+ý⫘‹´±­9áp‰9w‚åˆÒS‘P, +uY‡­¢±Ló¹d‹d1˜Ùy‚_‚¶…áÄ ¢ˆ¬œGtdq"ï2®ŸáS{Ñd­y»óx>ØX–FqpÉV%›¬0*7]<¶9‚@²!s&µý ÑŽÏG$G,>.JP…‘`ßã ñÈžäJ5ÙI¬æíì…XkL‘‰·/Rö¶lÄÖÙï8Ÿ½59낧‡ï “.Ë»28s;CõpKÚ± žÌˆÑµGÖ%8­qô|»={»9Gwx8rQ“7u²Cnîé¿$ëÞXÖ'o|÷|¾ÏQŽ‹aÖ9ØÐ`µoÍ»ÝìzÿrvÝn¹®§Ã"ˆ%Ѭ˖÷ÄMçGîd•&Ýšèë5©Üì“XÍ%²«,¿ŠúûW:­æƒÍl«U^‰­\û¶Ûà=Êþ²1Š&nX[Å †yÜì‰ÊþxX±ÈªÿF·ß¬GšÜÃrlh úÜ@e&₧0Ëo­6{ ˆ UÄá·Â0÷hĸbÂIXvά+ð0\\Õ"R'ËÊ^Uʧ³VDÏà´>y£@$hÜ.É®É"Ñu`’ÍcØÃÔ”Laø²¬Ô.ä6ê;Ì눧´ó¥¡Œ•@o&-´–zå;keý¸€à/͇m®"Õ£<æhôyÛÌ ¬9Ÿh çöìfGÖȃßSâÝX¾DÂX"íLMtÛŒù^Ï#‹ò©ŠÝÖoj·¯=¬#0r°%{ªÖÛK4³U}ê¢^ÍèCýÅ+(&që|%ÅAWnÛ0D²'ã2ÔæÏrK1Ð[弪ÁÏXYÞl€Öm–mdåNµ&0òò±ÑSíÓ+Ðà¸ûœ™ˆ³VÔéhëÞôOÂf«A ñ<£b\–ÍÓPÓ¡5%T‚”–•;;v Vãe)¾^oý—&‰lêÏt¹AAÚaÂO–#ô{Ô/~Úz3ߊJâÛU¤q~ˆsìšl(ê$ +;ñ Z±Ä—uyÛïìΫàa=ÖÞC@~fÛÈw_=鬅‡w—Ãk Û•(ü|±;[k> Ï¬Ù×&?[„96â.Þ-;’ÓKS•|}–À²µ3xXxXLHËx¬ìL(våØ¡¿VåÑÙ)ÂϪ~FuÄð±2ñ͈—§”A&M•[;v"Kã´Bm€br”§ÇQ'§ø ŽÖ´ióÌ[r²2’­ EžÃ¢àRݯ¨â›îíl †Ž¯Ü‰|³ø}b +ÖJ#¨•  +p + ”rK,‘m _ãMÙŒ­o5K‚‡›ìLÓ¶¾ªéªˆ(‚±ùÖË3Ù(¡¡5œ&K€×gvæ3¶7Lõ´\>WÎƈ¾½ á òe, ¨‰ÓFàÎÏ´XÅ[*šQ-ÆàÌFµÔ:"E`° dËKYa¼Ô]nñå]N¶2+p¨j€­fw€XúÖôªgà4NŽ Z|†¹â´R‰š8Œ‚µŸ/=»ln¾šîö©å¸àÿM—Eq—ªXíØþA²ÆÓxDp9ÇPu7_Û‹s'ÅNiÖêñå| +ÏÚJ¤B÷?alS‹‰6wD±4Àt¼kÍ­uk ™ri|;³‰/ݪ,t42£ª/„¢$OmŠ/‡ÍjlsºÙ™Sg±›÷ +ã{5åÏ¡alºjÖÎ?œÙÞÁS\f5·å[»-i"¢Ú­™2xi=Òá·wDÓ„ë|°º‹nÙ”ÙË™7›,'9/…èÑ.­¢ù…ù‚0šF9Uqt“9ˆEhV…ãtŒ¶F–›O{cé’•$ 7cÝœá}.¹Vä5Œ¸#gaÛ¨c²5® {Ïc]Ö%† CÏùìHî5KG +³ˆ]¸ºóè»Â1µ‹k±sX½˜ÜK€—éÉbžÛ‡„ NËô³´”é{Øq¹Mjf©çgë=y‘ª·âíZŠSç÷¼4©% §Îãi9èÙeŽœ#B9Aädy‹iñdóòØK3ÆR‰aÕë)¢tŶiûQ"è 5À\}êFƒö7®,‚ÅcS®Q¸’5ÿh +ÿ>GÍ~h4gB¼ì-°æòÄæ­ô>%¨#Ö$u½Ÿ/û"‰wØ伃>#`^,ÌÐœ‹ùÆ[Â4¸Þ,1tÀ Õ¾<€-%]« µãKñçŠûpmP” ˜Æ! .±Mû _)¡Ák\ì”ë$ÜÙPºŸÜEyï+CJ?Ëš«E ,c5P¬ îN²›%¾bCš»5 ð”Þû­È.šœñ^#ñÁÛ`0'j$.õ¬ùü.š!†#}…ïBþ×1ÇýΈ;°ÑöúõÛ€ºM•-ðazöÆœÑzÉ¡á¡@ÔÖ¤æ¹I†%¶›øÛ—¹7:²dUœ&í­GÖ½~ˆÔ¬ÿà>X¿–škWgá¤e©ÎúgaÌ©h„™X»†‹‰ÍhU™YGŸÎjaâ´Rƒ¶¸M|âÁ¬¶¬É€© J ë°Å+æ¤3«¹…‹´¢HJÄÌSmŒªwÇj´–Ro_¼~Ä†Ï + #ËŽ‰0±~—Ô6±„¸¸Vs FÜê\3+RI΢F,rv„ +–káÚ¡•1\@wÂn­~›·f ¼Ù笼æX§iôXG®ÃÐ4²p*0;«›1ÉÀpz`DÂÁ°ŽU¤vXb8­9Æ0,"ñ…iDbG†Ì™u×i ñ‰ÃeIÈ:ì“MVbÅÇÛˆY³ 7Bê±F"ìN!Lã{òek-ZË‘9hŸ—U¶j Þj¯!¡–]ðX]X–nÚaÊ$À§o4Å‚—(ïåûAÄ€M‘JÐ:le¥MÁ¦-¼©Ü1³t-4‹R ÍaslîF:aA¥Ê­-Ç'YL¬ùÄ!Í"[b-¤'‰á·E‡=162ÃϨ©èaÔ&ÕÎÞšüÕÜǼ$¹‰Q¼RîщãéÝr^Š 3p‡Am(ªeÍÎZó$16#lË!oIQuÎÎ R&Ü\#BxË–Þå”ÉÊçÛt?l\ºÚJUsKuŒM™ƒ×Ä°øL}Ô°Im64s˜hÜ^,Z§+ <žÂw v„ì0KJ»æIb´´vîmSšW2}N†š}éI£(å2Ìm¤9îä“Sõê;æ'¬‘ø䉵lM¤ŽÁXüF,5£Æ:¾¥¤:`ÉÂ2Sc=®#z¿]‹Jñ¢ñ,‹Â:êõ•[õX¿šÉˆy\Єe;ä‡c;¨¤9ì3}B÷‡é––P[b‰u‚"ÃF°‹c`1öb;*—d¦_oáÖ¦k`É?»ÍîcF‹˜Îr’mb$òa'€0|«ðZ$©ÓXA‰y/XÈ«vçWÖœN¤ 3éUKµ C4¢ò¯°ER›Y%Æ4ûŒŸGþW§ÊXƒjÁ¾@h é‰ÙÌ^…§åÛ4ðbàcSzdà½6¡Û$6¡£[ÄðSC⊱9xY9?H áì.f^±ƒá„'Ät+v'ÓxÍÖ FŒÓb’є֌aƒØ¿$EDbtÊœŽš_«²íļ™Ân¥\´šÔ±8»¼A‰X;£d´Üg[·Xü +_4XYš3Öo²-Zörz +Р-Ï„òR+I|Œq“µg-)\ÕpKª¥=¥§DŒ"Ãz.ˆµC ±¤ùUÝ÷%†7âƒëbà·D¢0…ï–Þ v›)%vo]dõü›1®â2Mb pÂr’ @óJLƒ0ºèîºVCqƒÃpì6ÂB8¬IK¢À%+×$l~¥èL'†+‹À1øüÙZϤ¿àn–aøç24Âp¨O%ˆ1ƒÙ†rŠîXªþUM`¦ÄU§8¥b¹<N ‘$§ +\½¸OÔø]êÅ5duˆ9GXqŒa‚ñé0ygܵхH¦Òr_¡7±9àíŽ!6n&t$‰åbµmÇ*˜®Š†¢E`N Å`ø|\šµÆXcˆÞê;êÂðFŽ4§šç ë}êw“¿aÓ¤U„Épúö^´#‰G¥ëlzÒM,LútËnÉ?o›¢!Ö¨´åE¼õ¢†”.‚ŠÝ$_d=œ&jW³A{f燪Ž&eÜ%Öh¦XnÜÖݦÄk7bÉšyÇ5!Éaûbjôœc›½:kEÙݺÀ8¬7ƒ/†}t1ka˜w/‹¢„Ä«¿kˆŽ«x?9Å¿“õaWa>¡V#W¼Ö¡¹Š3[º¥T—MoN3²ûï.Þ äTïj‹æmBõ(¾«—Ö£kÃØ×¥¢ö°Þ^ZûJÆ>8ªNc, Ï'T-¯cL³ºbd˜ÆbªÂŒíÓ6%G¤Ï(º.v‘ÆÚZqÖŒ.‹`s$vhØ7qXÚˆ}¬§VêbùÂ8"îsÖĬYÈ¿’ô,j@´RÕ¥£·mž†Ý^Ûªj.EÖ ¥F“Xu¤¢—œy—ØñzXÃÚ^z2[À9Jôï¤ä#ˆ‰c§ì#Äš¯gÞˆu§¢±åvzýˆý3bíjÙ“Ü{õ£X³-¾éX!eÅæÅWElÙ,š1ßœÜ÷ï’‰¿2„|‘0­­YˆÕEDFÌ®sHÁЊ_@Å/ûKxÞv‰›ŸËZ°p€Ø‡_uMÑ0Û‘cÑ~SP^%6˜”eõ7*ÖSM‰ ú*¥çi4¨û¬¥ "êÎøÔÕ%ĉÖKOo³K'Û»)É âANþ cXºúˆ¹öAÕÈ#vˆÒ½ÂØ=]œD•SàTT´‚81öwQDLDQ»FObØú²¬„úÔÓ³[áTŠëœˆ™j]&‘&Kºæ”V0âÛ_xá°—JuÇd£k‚ú¥p­:Ÿ¨),0,P´oro]œ¾Ä°(͇'VL…Â.ÇÞ_*Æ‹au:ØÍð8ØÕ)zãìÜcý$ ·• -&E—˜ír 6ÃxÅvv© ›!ÂÁè‚-]&¹Ù”¨#’†ÌËfg!O­8b‡½Â0¸³M_Ê+׳QNm6ãYsŽUjɻﺧÄL‡q-'Ÿ;¬˜Ä`ò¬MEÜ|øœ½¶Ü Ÿi‹»Ûfº¹˜*´8ô¢ônبNI2¤Î¥øo9†U¡!iý»žý¶YE,MFXSå$ätÝMØIš‹,-buM`÷ŸD²L¡¼¿ðY3Ž v±?â #ŠHb0Ø!¼Hlž©u‘’#®ÆrY2!Fg.Ñ)MLÒô"å#ójÑœ]|nšji†;œÞ#´Y:T\E«–Š0ŒífÖ@ÎZÓ`ÈŽ„E­RãʸÚFÏF §Ÿß@I+’ò¨(ƒNb¿À&–žõV3½†‡æM¬xU¼ÒP31rE8_±zzFYFìNk؈IIbØ®¢ Æ~­CÂÁù‹2<½ÈçߌÂ_|ä䩱bä‚å¡5ˆ9û«AÆ^™M÷k1&6S;¸¯Ã(žL/­;ÆGþ,3wÉ BÌiÑ'¶F“l¼¨Â…ùª´û’%&>dS ‹Éâ?ƒ—:eT{/§”¹™ V>kª»!J¢¹Æ›`„ù#†c쌣ȉu‰æCƹIZ„';“u.ú F&D¨‡öŠš$L?¾;¶m4Ó[qªDÙjÑçÞämÉÑí»¦›” ‹A 8 iOÇp.O#HÓ4†O꣤x¨ªõ„zÔ–ñdr´)fÓ(mæ³-©6MæV­.²‹Ù¾‘ÎXjsC;;='1¼.“• Ç><¾Ä8‰mŒÃY:ÞÅ„6‡ˆ§ 5Èuéë‡9™…7í3hQ‹O«± ç+šÙklV‘Wk>.„ kË&¼4’‡oÌáÛ’Ì,EÃkkcšÖ,1”Ñ™²‰ÄíÃ_Ž‘yN iÄð`ƒ6šØô>@ãvqQSaœ´*vkÄŽwfX‹&s6GÁH†Ò8±‰ c(PìL=or®…^™†Rs./b-.O ›b»¼1Ž¯²²­Ù`P$¤V¬˜ç|Ðg SÓ¼#‡d!¦h&7±åUb|4[.Æ!l½zÄê´¡* %cãùx!¬>']‹a:?‚±®e€=ZUI#À¹à죔NÁZyEfn÷ v=èvñL&ã< E¸¾–-†>¡I0{ç°.‚6I˜hã¼tõ(ôd:î[ ÚO.éCФ\É_Á¥\Ò<‰³ÔFô’ÅìЕĹ@ÄTbý'ÄNïA¸’–ž!È„yv‘D*D-W´ÓÄMÈŒ Tå쥿¹Œy=°#`A0›†ÿJ:YÞV#®’Íø¤ä¬3”p•«DSÄU¤&0í‹>ÁÄf±mtqØÈ®ËzÒü†’‘4O¯„Àit6Eô»žÜÝc2…Ñ$ ++ÉFŽ5¼ºÎlIC°Ñ"ù'ç¶@¤±³Í5?¥Rç´íŒÝWC±æCûÂlÙUqM J²ˆ]èp‹uÊ'ö Y`µñÛt@€FàžM~ –ˆ+Ns†¶J¸, [Å€ŒƒùF@pº€‘LsófÉõâ +]£SÒˆ6מƺ‹O B¢d8joäJÇ+×D‚aœv¹¸ X~¬‰ºz”\ê,ÊᣬR Ê,]WœOŸ†Š§üi]–gŒ'yÒ—ÍÞà‚âÒÏç56±ýšxxã\gãýç³ÒÎ1ü + ²Vü 7UTjbèÃ~ª“\<„i\ïÚV‰áÙ(DEHI}:¥V‘Jâ iL¹áãdz +½Á ‰XC­qM6ó›¤8L¾Ôraøü^ç—óÄfdvÖ$G+²™Fó¬XТ)Ja—Is-?§kÞÿaªš©u͇<¬ò—É„¸•äÉY`§t²¡Dþgçë^œjØ0ÁÏ&¶÷)…µ€v(ú¬j¶qƒE>e–èHÄȧà Kì¦jçäôÙíñ2lNŸ/d`×f÷_¹u›ç¢± ™*cjz؃œ[`Kå ËÊHqš‚n+_ȾxR¬`si±5øXW1÷º`×$'Mƒ‡‡ ‚1…XË켆ƒX|¡³*̵«"µó  Çaù°6hŒ©\Á-Þ¤Iˆ¦ÊRW7»qÞrSÎ%9• Nã^kü¸'»¥â=Î[àäæ| ¾µ¹Ñ∯kâ­\ÛÃç.^Káá±Nãóßôi„¬bŒÇÓ?)Jucn¢¼'ᙇ–ä3Vÿ“ÛÓ¼8àŒá(n[&°º¤"¼î>Èæ™;¿ÄTቈæ +?¥hUD"äIËå葉7hIÕ.ˆ‹”`3‰ -ºÜÃ}æ Qg2æ`Y×hn(Èd9‹iòÜÂ%ê +ÏOœ“ÒT´à çÛ¡¤"8MIÒ8fZÔ ‡Ë»ŠIiÑ;Åþ é<]½5—zA™éµ=¯¬‰«‹#3zÂÖŒÉJíŠV[c—J+Á’N<ÙÎD¿Àò•B «g¥è®œ!yÿª$—›<ëï÷%=4¨×dZè5!ìóN_a‡!‚tÂ%äKÒ”9-IaT.ÉëüèÕ¶Þ1]íà¨ÆÄÎbUØ?È>ä&âq-èdC·;À!òQ;h"œc;Z/烹c¦12$fGð°t*Óas—áVÝvVVÑϘN€˜Ic”®}BhE êmš¹)ßbŒB˜¿º›¬€lUjÜ¡{@_Ô¸±=ê"·Vµ,º¢ëê¹fUßd±‡ÐŸ$¸|`G» ÛŒ ~¯lªOäQËZçøtðŒÜÒ7p‚1ýOO”]c˃£±/ß‹+2‡Ö•ƒÊM%Ñ_ëòGžˆ`(Q(ònÆã"ŒDDAsÑ*E;š0Ä ªºÛþHQû SXI7ÍöpDÂÃÁnåì­PaÓó=Òk²ft¦%8¾^ºGìSù6ä+g3:ô’Š³÷5gÈ\áÈÁ3<Í$Ê^g"K ¼S@¢?]£'´çmK4ƒy¶²xGà¡ìaÆçNyGpÆL8óHXåŒïýkÙêiÍ2Kj€÷c˜¹×XLäâƹU]˜Ø¬,*ñ©‹çÇX²ÍÞ9l™Ûý /3Î6®s2ÂOçnwpf^íF€q¥;ÈÑ\Möµ^Lg«óŠ*¢(.àˆšmÚÚ 1Òà<’ÒD—æÊ-Adž÷&vΩX¤^ƒ~a’œ±õÝ+˜Ò•7_•Sk›p]„ß̵æéã¸"ZuRh6Ã¥KøŠàaœb~7Y¶Ìʾˆtîè#qpÄ\ ÓÆS2 烻û;“Ñ÷‰à¤‰i5˜e±ïÜYY<šb#gï×ØGS– 9€ŒÌI7i5÷HE®p¢(åÎN™P’OJ*ˆ™c +\W[±@#BT¡£h¤½,Ïù,¶ßkâ¸Ó[hº:؇Ó°´ÀA²±Ç/Áí +HÊEµÊ= ð)ù¤G€‡>‹eá8Áe[ÅX×Í5•bÆàË‘bªÛ&z€]T ŒÌ§š-ŽdÁeRa&}Ñš‹ +$=ͲBëD¹ßòÊ»Óè Ä>]AzBp…€«OX )N&áRâaM Nùá@'“o3ãq3M%|WvÕ5–ÊnTž‰,ìÕ…Q»&Žv´Ç +‰·mïG ÈƒÕÆÂ&v{r‘[BG’ØR­)v‰ýœ²ÕÒf‚Lö\·˜,"™—Óz&ìH›6¼zÀªee—]±¡œXé5==w”9XÕ¨Q>ž•Ó ¨&8“˲HoÚMi‹{Í>vUQ"4n V'‚`åOUf,0oÿowrõlÏO&Š'ny2åE„Àð؉³XÂOáì8æý ]à¸qšÜ!–Î΀¬Îdwc÷MÝ^äò×`À£¤.ry-?Mxóæˆp¾VEñ1ö ˆwµ³|T“ÄŬ³„ nfž:¼i¾‘^טå‰„úÓD±¬OãêÒˆ˜Ü)Áá¥ÇÔá#–\ö…é´@š"7bj(YõýìÓ\gkD±ÁÀÄ‹'Nö¯Ð)°^fhy.kùXãËÕ¥,-ßÒ3"ÈFÃà¬Kz˜Í¢µÚ¤]°ìêÇ-øTƒzt®^J½›{ĺêùhö§Œ#¥æÐzh2»ö“5ˆû¨QÀ~væ‰D~Þ®,.A;'é&vìIŒE—f³œ¸„µ‹‰‰ýòlJw=L–EJèa¦-¾õCŒÄ÷3Lìвqwg—cÈM~!cæ#ŸåŒ 1p±,Q)¦ítfƒÙýòeä=¢ +̧ˆƒ‡¯YLMøY=›ÖúAõé4#‡Ë—½­dDÓÑðîXCÀ VÜÍ)ÅÄš@—_(?ŒŸù"0bEi¹²ŽØ6[5J08AMV»Wô œdEXNyØM<Ý?ÉFþ`À'“ÐœäJ½bjÚL*¼ÅËdǃHFÕ9/5²x4i,å +z]œ|\¤I¶(s€‡ÓÜx‘¬Bi Ûù³©¦¨Sž£k3h%:”ŽÚMçŽ\ÓuxÔó¹ëEôEV|„‚6˜ÍfÑ0]£“×ÌAøLÍf+ÔÚÆðN—,r{&óoÈçdíp §á‹ì†µ¢I ðhŠT¿õÐ%æ»v.«Ëé&5JJåd*Röª{]KQ‘‘Ñ,Ho¢çì¤<<Øjò›-’³ 2!*X^p'ägÄöíô"vR±Fœý¸Èî~#t5‚Ÿ¦Z| ÐEïšqøÌq‘ú‘ÚÃÇm¯çŠë3yÄ‹éq³i;ß5‰IîaB-ÖÑ ‡KOÕJ¤9ërHNI°‚ª…ÜÌ–3q‹Q×kyI›C£ûš´(Ê{[‡Ž°qÓ‰,F@ÅÛÏvÊܸÙ ìš;Äú:Ó]À(tä¥y6ìã=µŒ\ÜŠªTt“^4Â%?Ä_¦9b›ØpZgpÝféI«Zã\/eÐ +'ÍFLq¼6­.k”Á´BcIî/“´­6ç°¼¾ vl1%:fò‰WˆÍ$×½rµ’uwB VKíÞ-fâìº#Ö°Är9àòb«±nld…q¼]Ó46ºŽtÉYµуx>ÚJÑF$áòì™T‚Í4Wý¥Ð»qŠ0aI^ØAóÛž³…¼Ì˜{4ð`}"Ø, }4²³W+Î[ Á3G‚”{‡š¤·g6Nb•r“/ac´éñTcdi·5M¥kÞÐ¥â8û¼=!‰˜CZ²P<‰ÅXiŽ8As òáL›¨âH{mA¢Kèâ¡*!÷ä­’qöuiD6Ó›¬‘ÎöMã 3­¬ÖXáYÓ ›ã¸âÈ3²&ëBhv®xª=@#àctÎÙ…q•„¤)œ½xMP~Fer²•ngüe•eßVIE,·ÑD:TbÌÁÁmóuÛØŠŠ×-’r]bTU é†øøø2ÆÅlôHl€9ê\¤™æ…k3],ÿ,ê¹ú¦Ày#©%[ñ,aMs_ÉwS„õ ­¡’3ª$]WQ>%cybIîPSáD1 Ä®6i ©šˆzHæ'A0AÔ÷%È©ó˜'1éÒ¬p}h.æFœN"™¤ÒV3j¬ácÆ)Š3RóâÔš#…~/-6þKSãœÇ¡ÓÓå4’rº!œÒÝŒ*ÆÐ ¼€8ÖM¹( \Ñ ç ¦ +57Î1xêÛøè˜ô(ÕUDd*5¤#ÕèBÃÝÌ‚DÞÁu$ØÈÉý Ì%®DD™JJ]–i( °¸g¨Ø)×ëR?ôjñ%u½ioµ›0‹Þn äUcwƒKrI2ÐZ'#¥#ÆG~vua‹¸x3›Äoªý•&Ï»žÄê%Ã0ÝMËï+ÞÕ¼Ï4U11߉{'§pÑìï*O:Ÿpñu‚³­¿EàüJ.†(p[uúh°acÙU†ê ûÔ£%³VƒSý©EÔõжM’³zó~ÌT‹TDƒñv¶Š¼‘ý$!yϺv(Uˆõq8Áºƒ§TAš­£‡È + B#k1—Ü8ÀÁ½\ï /ç#d¥âÑœR‘Þ-DôæmÞE¬—Îk œ3¹³¼é‰3IÁAsç\š-¨ô¡-'Îéô…n› iFÞ9ê™=”FÍ0~,•Ò‘Àjjrš >hòVnŸÜHù‹ë õ/ó3›sÒ”h–g»¥ ¼“ד`¥²×ÿ·ßþ?4mÏ +endstream +endobj +339 0 obj +139192 +endobj +340 0 obj +[338 0 R] +endobj +341 0 obj +<< + /Resources 342 0 R + /Type /Page + /MediaBox [0 0 449 297] + /CropBox [0 0 449 297] + /BleedBox [0 0 449 297] + /TrimBox [0 0 449 297] + /Parent 343 0 R + /Contents 340 0 R +>> +endobj +344 0 obj +<< + /Type /FontDescriptor + /FontName /EAAAAA+mwa_cmr10 + /FontBBox [-43 -250 1008 750] + /Flags 33 + /CapHeight 683 + /Ascent 750 + /Descent -250 + /ItalicAngle 0 + /StemV 0 + /MissingWidth 500 + /FontFile2 345 0 R + /CIDSet 346 0 R +>> +endobj +345 0 obj +<< + /Length1 7640 + /Length 347 0 R + /Filter /FlateDecode +>> +stream +xœ…Y tS×™þïÛ´ËÚe[–­Å’¼Hò"Ë–Y–m±c Û,2^± &`±…@)YHÓÒ$“Ãd8†Rª0í4“éaB m“6§!ž$ÍIÛLN—S¦™.9éœ4Äbþû$;Ì$ißñÓûï}ïÝûïÿ÷?%"kÖUTë×é¬yqvÃö½{lÝ¥kBúÇxþbdftŠÑ~/@ð>ùéèdr¤ýÍÛ}œÀøÔØpbhäwñ4@>‡Ï׎á„j«àÇqŽ‹Ç¦öÌ=0#ß‚ãm8>19½=døì½8þÒTbn†¨à%¼ÿ[Ûv&¦†¿jyi%€E +Àœ˜™žÝsû0¬Ðû3»‡gþ°áô ŽS8.¤ +”C4Ý—ž½=+ϲgù}ü9ò*¼ïÀ‚óð,œƒ3𜂻a +vÀl Ð °â…FC‚€ +°KÒ’ßóïó×ø–?ÀwóRî]Nʦٛló ó!óKæ3Åô1¦ˆÜ$WÉ}än2E\ð{Üñ]ÜómÜõ'p®ÁU¸/Àóð-¸ —D.ž³ðx†á8rs’0 ÓÈÓ òCy #vˆñZ€ˆÉhÐë´šµJ©Ë¤çX†€÷2Ú¯Õvrð¤3:²Áç½\ÐÚ3—‚ò^sÝ&ñÒ ^Rò²M)ÒªùS>o9þ¥˜2Ÿ7óCSàŒ>GXWÔÖnK ¥X^m)®Õ™° =‰œìéµãñØ 6uõR‚sÙÚÇRW["k{í–ߺl“%1´i]¯³ÂùK…ó&î]þÅ«'†¾ðIÞm¾ù™—›ÿ"Niuæ:Ÿ÷*Š µ@™<Ù–b[ãÛbÛ¢>o›-Å:£— ÷îmu¶žtâçŒæ¦TV\-·m<IØD¾S-¤)™j·¤â›6¥xg— ÎèxŠqFSʲ\Ÿ×Ö6óy_-ð·_Œ"—µ<ЫÍöÞŒ:S$mG…EzzS‘m›è~>/ÞjÕ¶"»Uàóú}Þë>osÊPæƒÌÑ‹çóWqôõ<‘f1θ<1&øž¯8–`쾕V±Ê GA+dZ au2Ò§âOô9lyysye h jg°:¨6µ»ñ +ÏÜ:b•¨Ä[¸@ ~L!¹ÕѧÚc ëö<{ ×Ï8#¹‰¤È@Âpë•à×° 0Ü  +Ê+y£­ÑÕª £<Õµº` ãv:2 ÜúvËÕKÇ/öÙ[®|s÷L~>¦Ÿ™|Eå„ü±^&õïÜ{ãÇRéWß +þ)8ûáæÿ#½ðÄîWÞzL”wå=ƒüTC,ö—沪r™Nè6%'­",)7PÑ®”ÈŒ²*R]ég×Ëd¼…”iX6n$¬ÀÔPm ·T5!ÒÄküY”ÔR­§Ã¬ibPb4¨™¨® Õ†ìGšâ}½¦7=d•ªý--þÊ–ú©VßõÊÞÎýW +{ýÑkBn^C}ˆȶÎ'îêùÚÀÄz¦©ª¢¥Õ·úøø²íßNn:{ìÙ‚wy>ÿÒ¡Ž£èƒßå_€(‚ªH‰£Ð‚E£bsq€LŽÂIŠ +­¹˜©4²*5AƒÚE}ûýT„ê© “j3)$£=XÝHX;+ ¦€‰èwÊÈ%Á’oÈUýD×Âõ Óéœ&±ÌI®¾Or¿4™>þu¹)ÉI$ý‘D¨Š3†(Ôw#ÆÆ}ìÐ ‘†£U2!âöäj)á*d…2¹dVRDúsÞO*‰–ô—Õ…f"'Œ‚ô‡y£À¶ˆÜ6ã!ò[ÔR…]Æ&T­™þ ¦µ”a{æ.u˜/˜hlï³7µÒÒ¿ßú~iéÓ[6ßéoK—·÷Õ÷í}¢¯=CíûZ_[ÜTÎT„ªqÓ{g^Ü°£áÀæ´ +j*'¿=|%™ž\ Ý“‰>LÏr>”Ù +>hŠÔHI™]&' +RæRË•Ò\bw›d´ŠL’õ:7ðVÔ¼Œ0rÒŸÇ[¦"+-ú—~‘û¬¬¢C¡«yDQX4Xu³è}Áö¾®.R±ìñžä÷¦’7=>Úßv¶øȪŽ©ÎprúKÓ³¹eì;Ë +⦻›ZŽ½±ïà›w'ÓO”åv0=Ë·®:r*ÚýïÇÖ/G»5£ jþh ?¢S(1™Q{ (xOtYþþ)D†š3º­•ÇDå}üÉ¢^pM’æû0€+RŸ£Ç\@8êæF##쀜®_¸(ÿâîÅõIMmF4Äp³Æ>âélIŸ‰y­µ…˜üc¢ÍÖÇM €»r7}±ÂZ«7}Ñsû&sž{,Šø „ä UXŒ©œ•æç‰)I"';Œ:Â+ñŽ@ú% k&VÐ!­“r„Õh§ U×6bȈq߸pÿá0±§ß­[ÑÞ®ˆxø˜`ðãÓéãñ…Ÿ¬?r¼3y(r¨ë±l\ܾɭBqBu¤¤Ø‰Òm•é$„+™äy1+é7iŒ¼È'0®Å l,êœ:À& ÌEv~N Qk^ٽ󨣱…q˜¾á>ÑýØ7>$/‰†Y˜èÚä}þ.2™UÕâÅüÕÛQ[Å¿0Ú¿üÐ ˜I‰M¦ %©œ“æ 6w²Ëp¹22c¶˜(I¿.Ï̯÷r˜Î+?uaÞá'˜ ‘Q“ù3ŒºDBZ?ãt¨Ñ®&òaò‡ÓÉ×­¼¿ÊŽlWàOúGÁÓé_9ïj[ÿ3wy`âhÖ|ì͹ƒon^F.ˆÜßò‰ÜßÓ{¹µk°“üÎ×áN~w´{?•¥îöM¶›ý +V DÊ ˜ƒÌí–ÊAZâÈÁPLËË©È@¡CÊÛI–ÓLY¦$Ý)-JN;ÍŒÕM$ÔD0k1Ú3HÒ‡n웺6·åÁ>¿qá›<Ù<±FÍ($:£õÅt’Ì—­Ýs·ùØ;ûç~z_óÌ™~‹é‡ˆê$Šü=3ÎÕO¿ñÒÀÈ`‹ä1X¡ˆ—€½“eFy¢á‰,[.õè‰NmÀøÉýþ÷Óˆ´»?:×ñõyþ-~BYÄn$&=Êç”rŒ7•UfШ”2‰Paâ±Ø2¶ÂRÀj»ÑaÄ“‘Ú < +"”s#mÕ¬a!Yn Ž¼°ú®¼t-fž§é0ÈòÜ­ß±?—j«ýñx]äVÀDù™Mû Ê”úˆB%,“cÍ"ÚlªÔÓ*J=ÄJ íY†ù!gPéÌ Ë”mnºT`$ÿ¢T™ôÒVäåÒõ|i íK:DQGòpaƒà-bjÝXmY®T¶Ãå>L¼¤ß³‚šˆlT@žÀF2!@3|Mmq SP%ŸZ©v `Ü™ñ=k…2é ‘`ë~‘¨’5ƒáž@}IiýK{ןp;ì •k+6òî/÷t~uøÙñèddóµ#/ïÿZsOxº£1ì)­¯/︷7(iyŽó¯«ÚYÝïß¾&>ÝÝüFãQ곘—™÷P權D++ŠsÔ')•ÊÌ$!ñE˜4©»NÌÎùòpeE>£ðÊìùÌpãëÚ°W06šqW*6ffŠu¢Óº+ˆŸÉ¸¦9Dç)ÒG?Îø/f¿""ú*æl„Þˆéò”\Ý;‰c#í´¡“žéï Ës¹&O·obàx¢åÁödG ÿ`ìHÿJ…R'N&ýVï@t³Ö’Ó4ë› , ð +!ý¡^?q4¶®n¹&_³jÏòSqdžµ<ÊM¿mœÂÞ] ¹-›#Ç€$\\B³ˆ:ç¡;ÁÁŘ¯ ¶0ê÷Åvù£…µ>djÁuÔŸŠi?bq˨»gú‘ö#=vêÎî¥~DÌý‹XžxDyh½$´b¼¾¿õг‰Ã?™Ûcÿ¹&—¹cMYdÖí6–$͇^?¸åÒ«ï{÷ðùC ¿~ôxÈ°Ô×Ö?¸mö;!ƒµ¸÷0ÞÜŽT[ˆ€è©’‘ʉÃäÀRÄYA&£ý˜QÁŽ‚|w’µFN*0%bcæ[‘lÌé~¶œ:£QKý’f?ôçrB»µæùyn¼.¬®èûê½ÿæ*Ít|лÇ%Æ×pK<]~Ïã낵páO8½ð6>°ð'ÚÍ¢oŠ˜Åq+ˆQÉX<9èq—Ÿ«cuÎ jßlãé¾z¦/ñ_ #å +O¶¬*sÅŽˆ†s¿ÎjàK²mP1ržE$Ÿß™þv»óÐÃ_ØÞœøÒ§­ÍÍŒ˜oDìT•‘’’bƒš3ÊLÅ;f£¦uÞ©Ðjùõù4r¼Ÿ…MŸæÑ;ƒó2°OÌ-V‚*}ð•=³?:8w½®´´Îïè828W>¶=q"O“'È‹ž7ßóV2ù‹û¶L”„Ã%ÅA‰ïè‹[¶ÿkrß6¥B"$³½¦'=ÀiØY¨@ÿ,fbkZsóô´æ:-Z§VÊ +ÉZ“šámd­’&×Rݽ#Ðzk_¢+¯R˜˜áyf`žzýõ…§æÎÍg?Þ’V“è5Sl™ò…72q_ÀQ¯E"zV1³ÌH$î9Á(3»@FÐ ¬&£^­R +¼¬®]úÀ@óÅ?¡L9õvjpƒD4?BèÛe˜†ç7îZn›™K2·pí¥MûʵT+xõŒÊS-ç ‰Ò]̬ HßBÂÀXt̘׌q_ÔU¨ d Œ¨0 õ;m rŠñ±Á™éÿïüEŒÙ0»lܸ/òå^¡ßÚÖ¶½©R0ó9*‰pòÉ3§‰’kŸßÕ½!6±n×?oK¾¶øŸ >_c£O¢»Ù0ú͹Ž„/>Y¶¬‰ÁÆ÷"¯ˆFå‚^¾yÌœ>ª8zcêÀëÇRÛýõaŸ·‘E,bh/D!Yf&ùŲ|—Œ~äæ¶Ö],7H}ÎLe&]¥Õ„ïTéAh@”b'õ<¢¯Øs°îŽ2¤²‹ºàŒŸBeÏÒGšKÌA"–á»/l.>üçóíɶº²’úúEþÖ@Óxϲ"iñ½ëú¿2Y7ñ½k¶ù¦ÁáuU !Å#¾ão½Ÿ|†´¿]^VW_ZRïrÖL?tpKÏÄŠcç7̽}¤%¾/Ù»çÜ¡™¯¯±¨YŽíýÖA¸ó Üyx$ž »Ò}™+÷ Œ0:tS刀óçÒ}€ “ñ©ìº™slª×½5§áÏP$ýÌË·ŸÅ–O'PRŠ/“Å÷p½vœ +Ý~ööCRÝÒŠ‹‡ƒybÀe<»ðÁ¢ÂhävA A3=Y xpLçbì)¨Ã¹ð9>?‹´¯$=Çk7ëÎ]DºŽ§ïÚ!È…p|ß!íÁw›é:ôº'}_äÌÛ€ƒÌ×b%*ÛEx ²¼ªáÒÿ[áÅ%e¤&K3˜å;³4‹ó;²4‡ô‰,̓Š,®#àükø$ád8º"¾Ei:bËÒ ¨IS–fq~C–æÞ“¥yÈ'§³´€óß…V˜†HÂn‡Qƒ=â‡V(Åkf«:¨Á8±a¤$`Ÿ™Dz%øñw5ÎLŠÿeƒaØ+εà }¢{iµYq4Œ×aÜc/þá“•¸vµ¸æJÜŸ®dÃl4 ;³oP®èJðgÆÅ;”‹UâNÃxLJoûZ§g’»ÇGÇöØJZKmUuu5^[41;>i[é·­NL&gdž÷úm-““¶núج­{xvx÷Þá!eUu4±rzuÂÖ>½o´NONoß3>½Ók[5¼wxÒÅ ¦`r·ù˜Bþ«s˜Ú—غ}jw’T²Q¸ ùIà]è½k2±ûo½õ×ïV¡\Uˆ¨†|Љ²ïÅ+µTù«*ªª}Ó{}u5k6oèÿ9?'ˆ %Ö¡(’æpžÍj•d‡r³d=¿Ö¹‚ß¼¹\„Sϳ ÷YËËÿŽOæ„ +endstream +endobj +347 0 obj +5573 +endobj +346 0 obj +<< /Length 348 0 R /Filter /FlateDecode >> +stream +xœk`øß °¡U\ø¿­w +endstream +endobj +348 0 obj +20 +endobj +349 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAA+mwa_cmr10 + /Encoding /Identity-H + /ToUnicode 350 0 R + /DescendantFonts [351 0 R] +>> +endobj +351 0 obj +<< /Type /Font +/BaseFont /EAAAAA+mwa_cmr10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 344 0 R +/DW 0 +/W [ 0 [365 500 500 500 750 833 555 276 276 388 555 555 443 276 750 500 276 500 916 500 394 276 500 651 391 526 555 443 526 750 443 500 500 500 ] ] +>> +endobj +350 0 obj +<< /Length 352 0 R /Filter /FlateDecode >> +stream +xœ]“]kƒ0†ïû+rÙ]µÚB)ŒŽû`n? &ÇN˜1D{á¿_Ì›YX@Û'çëMÎ1¹TO•é&–¼»AÕ4±¶3ÚÑ8Üœ"Öе3‘2Ý©)Rx«^ÚMâƒëyœ¨¯L;° ^úf£'cɇÿ3NnfÛG=4ôÀ4µËþ›Óä:seÛ¯K½îÖ7k¨'31öÈèð›\^¤}•=±$äÙUÚ;uÓ¼óáwÏÙK hPƒ¦ÑJENš+mNܯ3;=ûu^²ÿ³§%šV}K·º·~ Oœg”‚8(¥ > +endobj +354 0 obj +<< + /Length1 1968 + /Length 356 0 R + /Filter /FlateDecode +>> +stream +xœU]hWþîüìÆd³Éj~VélÆT“ÙdcÔ.J³™I5Æê%[„d’dv3Ûl\“–þ@ñ%V°ÔR°P|’"E&yh¥±¥b +E¤h+BKŸ„>¶ (¦g&£”Z[ïìûsîùιwî=  €wÀ#ùÊ¡®žðOÁf€HÚ#“•9iodp€ð÷Ô?›*M¹Ð7Àæ©ßš.,Lý|+üÍ?Jös9ÓÈNý¸§FHÞž#EíVô“üÉ›rŹùÀvd›äª‚5I\ø…ü8YùÛŽÉ~‰diÆ(š[fÊwH¾pgJVynå-4þ‚c/Íš%KíØF²Ãß=„± =+€•¯à6¶™q¿â*>ÅyœÅx'°€2ŠÇQ¤±»¡a'؆HUÐ_ö¯÷½íëóuø‚âïâmñš8"¦ÅÂoBY°øGüþ¿žûƒÝa×Ø1ÖÎÄþ>Ç2.RŒOˆÿ]¼éF˜À«q#쥩Ç1’M ëÖ†ê낵šê5U~Ÿ(ðƒ²LßB—'emꈪ,wúȼèhs"ã»ÜÁ®îÌØL¯ÿ‡JU¢ô³¹NUY}± ²¶ÄøvMJI9#kóí4J¶ Ë†”]J&GF#Ô–iÍu€Ð.¥r¶¿}аqp4Òb‹úK™#›94*wÉ÷[ºä»;úlv#ûÌ™b»Öw÷)ç¾û®*´¶9¡*_Ó²Áhœ$m^7òã㚪 J6/kËŒõŠ.ë‹2lAÖÂv³Vb æí¤!¹yÛý-„h§ZìÝ™Œ-ÊQ0YËÛœ¬ÙΰªHƒ¹Uù!ˆ+W4Jb9$Â%i‰ã5Ùf†–¢ KŽŒÚÉñŒOUȤ‡tJ7U‰©ÊUUé³:ÕÕ‡}ÔÏ€s.—HÝ.?Ú’-2GGTIðsÂažL‡ý >nM#Ú EB›©3ˆ<ÔD<@D¸ü@s1.°›â)®µhNÖ·úâÕùz¨©)$|TßØXÏnn¨«Ûàtü½1_ ;í¤Çβ×\…;r70Å­¥±FÄ´$$œÏßKS&;ýÝ=ÞÕ¾ñÛÉïÆêvý‰ªžön~”òŸ¯;uœçIoâ{ÙQ9Íò ããFûGûµ\ ‡¬¦Èѽ÷¡‰(ØãÍ Ò]|ì?†+ObTSaž—Ÿô0OzËÃáÓQ˾ð°ô·i&ÖtÙõr0C“<Ì!Èú=Ì“>ãaðë±}ìaé¯B‡…Õ‹Yä1æho·¶ƒÆ8UŒz¡Ö`PMÉ£@x1z“¦àVšLT\]?iœé'leW2i4)F…ÞYšÙMÜ=.çÅw˜$ªPf<'+‡ÉÄ$iò®ÅÉbŸÉ$‹JÞ1ªPVia6?›“¶èR<‘èU$Í(ç ÒPL6 + åœY‰Iý…‚”v¦•¥´Y6g+f6ÖïÑŒ!kØRÖ t«P0'çòÖŒ"í3+fAÕ(@Ç©’ŽQEÊlòî&åñ‰±Éby!NØYÜ4ŽQJ-isúXÁ˜}Çÿ§ÆÑån•JeÜ¢¥«îA<ïŠ÷¨û­Ššè}*~õ0®¼áü‡ýË… +‹mbk°™oÔŠéšá¶$?<¼©ö N]âwØ~p® +endstream +endobj +356 0 obj +1292 +endobj +355 0 obj +<< /Length 357 0 R /Filter /FlateDecode >> +stream +xœk…… +endstream +endobj +357 0 obj +9 +endobj +358 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAB+mwb_cmsy10 + /Encoding /Identity-H + /ToUnicode 359 0 R + /DescendantFonts [360 0 R] +>> +endobj +360 0 obj +<< /Type /Font +/BaseFont /EAAAAB+mwb_cmsy10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 353 0 R +/DW 0 +/W [ 0 [750 776 ] ] +>> +endobj +359 0 obj +<< /Length 361 0 R /Filter /FlateDecode >> +stream +xœ]PËjÃ0¼û+ö˜‚l÷ Á¡àCÔíÈÒÊÔ’XËÿ}¥µq zÌîÌ0¬h»[çlñE^õÁX§ g¿Bp´®¨jÐVÅñ­& +‘Äý:Gœ:g<¼n,½„ ¾ÓgŽ´Âéªý€/ Ñäþ'i$ëF8ý¶ýÑí—þpB¡ä:ͯhßeø‚`Ÿs§ÉÆõœäÆÏjÆÕ–Ays +Iº‹K™ªË[ª&»?ÍëM5u—t°Mª†Q•PYÖkwVvÉÛ8"ª…(¥ãep¬È:<¶|È*>ÿŒÙ} +endstream +endobj +361 0 obj +234 +endobj +362 0 obj +<< + /Type /FontDescriptor + /FontName /EAAAAC+mwb_cmmi10 + /FontBBox [16 -215 882 715] + /Flags 33 + /CapHeight 0 + /Ascent 715 + /Descent -215 + /ItalicAngle 0 + /StemV 0 + /MissingWidth 500 + /FontFile2 363 0 R + /CIDSet 364 0 R +>> +endobj +363 0 obj +<< + /Length1 2144 + /Length 365 0 R + /Filter /FlateDecode +>> +stream +xœU}leÿ½÷ÕnlecllÀÝŽ[{ãc\¹²e:@¾BÚdÂnk·Ö´ëh·ŽIA Y ñˆá¢D9HÈD Q 1˜`BŒ1†ÄÿD#;Ÿ»E”·½{Ïó¼Ïïý=ïÝû€"<þ'·46Íx¼t œ&ï¶ÞÌœš=|ð+ïìOpî Â7èú¦?>Úw´þÐV€ÿŒÆ|á¾pGÉIJ(9ŠÎ±_É^AöühbhWÁæ#»‹lg<ÙkqÉ”ÑR‘0v â>¥x˜lyÀHD~ïXÿÙ/ÜÑÁdzhò9”Qj…LE·%Õ4ÙÿHpÂ…yа=וKO^%æ1þ 8"žb%LÀ¸‚ œÆ8cxGð2a?ö >„Ñ…ÍØ€'Ы±˱K `ž³ÐqËQ)]•.K'Ä?Ä_ÄkâWâñ¬ø¾¸WÜ-‹E—ð£ð­0&tó9þÿ3ÿ%?ÁäŸæ+¹®‘[È&ض’ÍÁMRñéøœê¼ŒOHÏE\ÀyœÅ8Þû¤îMœÂɼÆ×l•/‘ʃÃÒúöâYìÆ(†‘ÆN[y7¶“òXGÊÛ±–Ô·Þׯþò™e3JÝ%Ó]ÅEÓ + œIxŽÁ;NÏ= g{²ªÞ·MóŽ×­»Lx‚³ZBv·ÊîÌÂúÉ%ÿpi^ýM®^óNÝX U?ÃøZ]n—£FØäk©—M! røŒßŸÝT¨RÚ´€P+·GMGm›abSP©2ÅÀŠP•m ªêíªFõ&Ííy8»~èH±Vo½ù@rëmÛå.Õ¢y?¢²Áh,‘Ù6“±îµÝºæm“M^ÕÇ'25U)` +ª^aN³j%¶Š¶˜é7d[·¹¦Š°Íö*³#2EU' +¦ê1“Su³¨¾BóÊmѵš÷Ü'/é$bÜ-Âêeù ÇguÕd†ÞN æß4ýÝ!k>ÍK¡€;@r}м š÷²æm5Ëê5Lµut} ÎÚÈ¢µóx8Pã¯òp$Áƒ88!ËS(ë`¸‚é¼ÇÏbÅ­¸ÒÅ @¹«‹¸E˜¸£ ƒoò'¡’OÓ^šï¯.dL¨.-”œL˜SPÉsÚf1‰)%U«gqmóòjä<¬fióòÇØ¥‰^:IUxSk°VþÚû<‚³b†x½›*Ÿë™—;4æôÖÌž?Ïåä>ÜÞá,œ©ãsËçj®V< +þÞ˜ð;l•ÇŽ±@®kª^EWJ§Ã4ÿÑüqR<•£sGgóÝãºþ)sÇôU¿Ñ^0[ɵ;JÄ Ö™EÉì^ñußÛÀÝœ£ä>ã½FëÏÀïÏŽp0èÉØ~:o%”ºHûvª¹hïßËßK÷ç(dËò˜ƒƒmÊcžüÉ<ÎcÅì\Kä¿N#™P@Ö„ea†2&ç1[“Ç<ùCy,~&EÌfÇóX"ÿeÄ ?)ÄÐ(†hm‘·ŽzZè× /a*NÓ˜8áN4Ð}=yâ”™¦¬2¶o y¬›ï³¥m+B}„æÈÐ=L#w“ÍÙIó[L2uI ä3,US½ä‰ÙKÅ:{¦E4Ên .98šŠõG‡äE:Ù×ÒÒì•u#‹Ë òz#>šŽF2 òšx\Þl KË›#éH* 7,ö5éFgr½!·'(HÆã‘Þ¡XrÀ+¯‹d"qM§ A=Å^B Râ#íHŒôìèM$b>ÂVqýt|Ç©ˆ™‘þḑz„Äÿà£}h´—J£OY’J×ì_ƒ¯ÑפmHf´–æG šzW1¹ÛúÞþˆªvÔñóE¥¤Z¨ ºŠ§pL‹. +Á V¼‡Îó«öÏñx€¿Å £ƒ +endstream +endobj +365 0 obj +1452 +endobj +364 0 obj +<< /Length 366 0 R /Filter /FlateDecode >> +stream +xœk```pÅÁ +endstream +endobj +366 0 obj +13 +endobj +367 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAC+mwb_cmmi10 + /Encoding /Identity-H + /ToUnicode 368 0 R + /DescendantFonts [369 0 R] +>> +endobj +369 0 obj +<< /Type /Font +/BaseFont /EAAAAC+mwb_cmmi10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 362 0 R +/DW 0 +/W [ 0 [750 437 ] ] +>> +endobj +368 0 obj +<< /Length 370 0 R /Filter /FlateDecode >> +stream +xœ]PËjÄ0 ¼ç+tÜ'Ùë()…ú i?À±”ÔÐØFqùûÚJH¡?Fš©¶{꜠ÞÙ›ž"ŒÖ!ÓâW6MÖU hM<ÜfÖ¡PIÜoK¤¹s£‡ÛÎÂ5Lõ‘>Kä .èz¤1÷߉­›àòÕög·_Cø¡™\„RzäP^Õ¾èðªg%>×ÉÆíšäŒÏ-Ô‚«=ƒñHKІX»‰Š{™ªûsª&»ÿ›×»jÍ·æ“=¦jU •å E{°²KÞÆѬÌ),Cbå@ÖѹÕàCVÉùœ}B +endstream +endobj +370 0 obj +234 +endobj +371 0 obj +<< + /Type /FontDescriptor + /FontName /EAAAAD+mwa_cmmi10 + /FontBBox [-34 -250 1047 750] + /Flags 33 + /CapHeight 683 + /Ascent 750 + /Descent -250 + /ItalicAngle 0 + /StemV 0 + /MissingWidth 500 + /FontFile2 372 0 R + /CIDSet 373 0 R +>> +endobj +372 0 obj +<< + /Length1 2968 + /Length 374 0 R + /Filter /FlateDecode +>> +stream +xœV L[×þϹ/ã1cpH¯c^Æ°1ìkÞ„„Ð$³5”`°Á0ƒ &äÕe‹hÔµS²>²¨ª¶hË´¶º )­²4ê–E[¥UY•I[µMÕR)›ª.“Úm1û¯1Ùº®[}ïùþÿœÿ?ßÿŸsî9@@ _‚»¯÷÷Í¿@íþ±…yq®üø}Ä? æñÙ‰ijøQ ññùÕDêظõ>À`’‰X|bwO@åD›æ$*t7ÙwQŽ£\™œž?jzdP>ƒ²1•C_šZ´¿Ž²y:vtî›Ø~ eq&6øK÷Î+(c;½0›Î̯#Ú *í³s‰ÙýiúÓ g¨T ‡ÇÀ²ÃÙÌÚô|–YæŽp—É&ÂÂïà6Ü€+ð\‚‹ðœ‡¯Á98 _i‡8 Ãì‚>è Ú`;ø¡ Á +©Ô¡Œ¿Ãßâ/qq÷¹_rïr·¹«Ü÷¹SÜ î07ÈéÙ?°¿eϲ#L–yÀÜeÞan0ËÌSFÐzZCnód;©€{Èâ}äñ6ünÁMäs®ÁpVá5xÙ}.ÃËyŽ/äX>ƒ,—á,<…\á|NÀ18 8”c>ù ìDæ]ÐìÛñ·r† ©ÄX\dØT¨×i5ê•Às,C 8WqÞÃâÒè’Mßïr®Ö„÷•Á)mæª@®’ÕuQ™„7ý‡Êåtà_¦u.çú‹ŒÊ`“VS%‰]b2—™*¬E™ Ûbb|%\Ú±bYëæè`Dl•Ø•”…ªÎ˜ {"V‹Ì…[¢–X<úxÄVoûØRo»‡c;>Û{,þ™=¹*©ýÞ§ŒÛ?Ω E¥­.ç1l ˜…äR§Ì„c“##’ËÙ)ÊŒMZ%” /„má%6ȬM2Ë%Vôfƒ11Ç[Y+Pî²È=ѨÌÙ$tAlÒ¤Lm’¬­3»œbg²Ãå¼àÖޒĪ¥ÅÊ,I6™Ä¤.LXpoDŽD•ñ\Nl +ÂH×.§Ûå¼år¶ËÆ:¬—îŸ?^Æç\ñ€âçöá®À½B >°*°‹ò®ðÜo« E+Œ¢æõªÀ/ÿ#€±"n4X UVƒµƒŠÙJòB6ÉíûÛ÷:Øwp$ +»Öî±5Ü9ÜaíàÖWÛ¨¿¢@MüvAͪœÄM줢 +ÊÊš´¾j‹Ù ã‹’m p$TÈ8íG·µºÉWÔÜè5•7û}¶­M;hc•·„ð%ÆFo³¿y;ñšJôĶµº†¯QMÅn”x§%F‰Ÿúú™»§1KFEO—A£&Ʋì{úíÁp)«-S©+÷tNéž\ì[öÒYíPGç{mo[éÍÓ‹¤üáò¶ÍhµpåzSùßÇ·#ßú’VÏ?óêžð…æt?åÉÍžä¡¡ìïww˜ ø×îñ·™³0 +½Aix¨·ÙcÐS•à(°Zè3tPÁ^¢Ö«F¨£¶µ€bì8«L‘ìt¦2däI/™Ù²ãi\IæÀïó77ù” Œ¼ƒ`F0õò¯·þ÷Œ…\Nš|þ¤ÉWKˆÀlèw¨Ó“¼ê%úba ¸£BË™µÉþ…ÐÀBÛåáعöïƧNõ·T4 N™xY¥¡›—“=ã†mîæÙË–>)x¶˜«èbI}KÿÉ5Ë(–UÚ´<kuD^<Ì …|ô‰ñXÿàðØ£‰ÌÔÞ?Ÿïöµ½2ªÕ`àó?ë®t^üp¸uðì!£æᇛkÅr´Uïmi”¦ûÞAæ4“f™(„â FÇ÷©Wˆ“ã·»¡Øç'¹TÂc,JÊuE¥[´ƒ9kç©pU«3«>ê+3ççˆ=€sÔ Û‚mÛê« z^å+¨#*»QMTÄJº‰¯6”[™m^STÊSN +9ÒÿhRv~V”Ii#ù‰ô .¼F/&Þ_¼¡c>¹\©²\s™¯2d¶¸öL–±:³Áz&Ù›0·š¶…Ç(CÎ ÞŠ²*zA¿] +­/W“="…&ŠêŸè\xúýð¹Wƒý mß™ÐóÇßé«®+»23ÕÔqà›ªBYj0ìÃÕ¶šõe99ÞÝè9Ÿ(„}< ‚‹×pvx½fŸ‡qZ„ÛXÃÁÿ(A<ñNr—³Ã€*ÍùÛð»þü¼Ú¹p°0ðW<?e¼v- ªQ^*4&vè¯GQaû¢jô‘ÇÂÑûÐÁÚa—ÀƒŸÈ°çñôRzq0†_1È}}´HÈ„è:žvëEg憯ƒðÖ£ñÔ¤9)dO3¨Oç1‹øÙ<æ@G^Ïcõ¿Æž„-@éFÎJÁŒDÌc +zÊcõÑ—*^Óº+7!àq{ê=^×®ô‚«Õ÷9\1ù}pB¹§þ—͵Y°3•œuÓfÖÑë +Ÿ2Ìh’6qéšàÜLàt…ÃðOBÑX +endstream +endobj +374 0 obj +2138 +endobj +373 0 obj +<< /Length 375 0 R /Filter /FlateDecode >> +stream +xœk```d&FF"† +endstream +endobj +375 0 obj +18 +endobj +376 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAD+mwa_cmmi10 + /Encoding /Identity-H + /ToUnicode 377 0 R + /DescendantFonts [378 0 R] +>> +endobj +378 0 obj +<< /Type /Font +/BaseFont /EAAAAD+mwa_cmmi10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 371 0 R +/DW 0 +/W [ 0 [365 520 877 500 571 ] ] +>> +endobj +377 0 obj +<< /Length 379 0 R /Filter /FlateDecode >> +stream +xœ]ÉjÄ0 †ïy +§‡ÁYfÚË()…ºÐ´àØrjhlã8‡¼}m9¤P—Oþ%Yb]ÿÔ€½{+  ´‘»z0â¤MQÕ µ;Ñ.fî +ƒ‡m 8÷FYh²J®nW°xY‚ßàô(íˆw Q%ÿ›—èµ™àôÕ ‡wXûÁM€’|h$¬{áî•ÏŒòœ{E:lçþ§øÜBM\å?+qq\ çfÂâVFkáö­MÙÿ½_sÔ¨Ä7÷‡ZEk‰ªHeyÉTg’™¢f§ ÑÕªìùR½4·£±zû ±QéëÚà1g]Š¢õ í–…x +endstream +endobj +379 0 obj +252 +endobj +343 0 obj +<< /Type /Pages +/Count 1 +/Kids [341 0 R ] >> +endobj +380 0 obj +<< + /Type /Catalog + /Pages 343 0 R + /Lang (x-unknown) +>> +endobj +342 0 obj +<< + /Font << + /F404 349 0 R + /F406 358 0 R + /F407 367 0 R + /F408 376 0 R +>> + /ProcSet [/PDF /ImageB /ImageC /Text] + /ExtGState << + /GS1 2 0 R + /GS2 3 0 R + /GS3 4 0 R + /GS4 5 0 R + /GS5 6 0 R + /GS6 7 0 R + /GS7 8 0 R + /GS8 9 0 R + /GS9 10 0 R + /GS10 11 0 R + /GS11 12 0 R + /GS12 13 0 R + /GS13 14 0 R + /GS14 15 0 R + /GS15 16 0 R + /GS16 17 0 R + /GS17 18 0 R + /GS18 19 0 R + /GS19 20 0 R + /GS20 21 0 R + /GS21 22 0 R + /GS22 23 0 R + /GS23 24 0 R + /GS24 25 0 R + /GS25 26 0 R + /GS26 27 0 R + /GS27 28 0 R + /GS28 29 0 R + /GS29 30 0 R + /GS30 31 0 R + /GS31 32 0 R + /GS32 33 0 R + /GS33 34 0 R + /GS34 35 0 R + /GS35 36 0 R + /GS36 37 0 R + /GS37 38 0 R + /GS38 39 0 R + /GS39 40 0 R + /GS40 41 0 R + /GS41 42 0 R + /GS42 43 0 R + /GS43 44 0 R + /GS44 45 0 R + /GS45 46 0 R + /GS46 47 0 R + /GS47 48 0 R + /GS48 49 0 R + /GS49 50 0 R + /GS50 51 0 R + /GS51 52 0 R + /GS52 53 0 R + /GS53 54 0 R + /GS54 55 0 R + /GS55 56 0 R + /GS56 57 0 R + /GS57 58 0 R + /GS58 59 0 R + /GS59 60 0 R + /GS60 61 0 R + /GS61 62 0 R + /GS62 63 0 R + /GS63 64 0 R + /GS64 65 0 R + /GS65 66 0 R + /GS66 67 0 R + /GS67 68 0 R + /GS68 69 0 R + /GS69 70 0 R + /GS70 71 0 R + /GS71 72 0 R + /GS72 73 0 R + /GS73 74 0 R + /GS74 75 0 R + /GS75 76 0 R + /GS76 77 0 R + /GS77 78 0 R + /GS78 79 0 R + /GS79 80 0 R + /GS80 81 0 R + /GS81 82 0 R + /GS82 83 0 R + /GS83 84 0 R + /GS84 85 0 R + /GS85 86 0 R + /GS86 87 0 R + /GS87 88 0 R + /GS88 89 0 R + /GS89 90 0 R + /GS90 91 0 R + /GS91 92 0 R + /GS92 93 0 R + /GS93 94 0 R + /GS94 95 0 R + /GS95 96 0 R + /GS96 97 0 R + /GS97 98 0 R + /GS98 99 0 R + /GS99 100 0 R + /GS100 101 0 R + /GS101 102 0 R + /GS102 103 0 R + /GS103 104 0 R + /GS104 105 0 R + /GS105 106 0 R + /GS106 107 0 R + /GS107 108 0 R + /GS108 109 0 R + /GS109 110 0 R + /GS110 111 0 R + /GS111 112 0 R + /GS112 113 0 R + /GS113 114 0 R + /GS114 115 0 R + /GS115 116 0 R + /GS116 117 0 R + /GS117 118 0 R + /GS118 119 0 R + /GS119 120 0 R + /GS120 121 0 R + /GS121 122 0 R + /GS122 123 0 R + /GS123 124 0 R + /GS124 125 0 R + /GS125 126 0 R + /GS126 127 0 R + /GS127 128 0 R + /GS128 129 0 R + /GS129 130 0 R + /GS130 131 0 R + /GS131 132 0 R + /GS132 133 0 R + /GS133 134 0 R + /GS134 135 0 R + /GS135 136 0 R + /GS136 137 0 R + /GS137 138 0 R + /GS138 139 0 R + /GS139 140 0 R + /GS140 141 0 R + /GS141 142 0 R + /GS142 143 0 R + /GS143 144 0 R + /GS144 145 0 R + /GS145 146 0 R + /GS146 147 0 R + /GS147 148 0 R + /GS148 149 0 R + /GS149 150 0 R + /GS150 151 0 R + /GS151 152 0 R + /GS152 153 0 R + /GS153 154 0 R + /GS154 155 0 R + /GS155 156 0 R + /GS156 157 0 R + /GS157 158 0 R + /GS158 159 0 R + /GS159 160 0 R + /GS160 161 0 R + /GS161 162 0 R + /GS162 163 0 R + /GS163 164 0 R + /GS164 165 0 R + /GS165 166 0 R + /GS166 167 0 R + /GS167 168 0 R + /GS168 169 0 R + /GS169 170 0 R + /GS170 171 0 R + /GS171 172 0 R + /GS172 173 0 R + /GS173 174 0 R + /GS174 175 0 R + /GS175 176 0 R + /GS176 177 0 R + /GS177 178 0 R + /GS178 179 0 R + /GS179 180 0 R + /GS180 181 0 R + /GS181 182 0 R + /GS182 183 0 R + /GS183 184 0 R + /GS184 185 0 R + /GS185 186 0 R + /GS186 187 0 R + /GS187 188 0 R + /GS188 189 0 R + /GS189 190 0 R + /GS190 191 0 R + /GS191 192 0 R + /GS192 193 0 R + /GS193 194 0 R + /GS194 195 0 R + /GS195 196 0 R + /GS196 197 0 R + /GS197 198 0 R + /GS198 199 0 R + /GS199 200 0 R + /GS200 201 0 R + /GS201 202 0 R + /GS202 203 0 R + /GS203 204 0 R + /GS204 205 0 R + /GS205 206 0 R + /GS206 207 0 R + /GS207 208 0 R + /GS208 209 0 R + /GS209 210 0 R + /GS210 211 0 R + /GS211 212 0 R + /GS212 213 0 R + /GS213 214 0 R + /GS214 215 0 R + /GS215 216 0 R + /GS216 217 0 R + /GS217 218 0 R + /GS218 219 0 R + /GS219 220 0 R + /GS220 221 0 R + /GS221 222 0 R + /GS222 223 0 R + /GS223 224 0 R + /GS224 225 0 R + /GS225 226 0 R + /GS226 227 0 R + /GS227 228 0 R + /GS228 229 0 R + /GS229 230 0 R + /GS230 231 0 R + /GS231 232 0 R + /GS232 233 0 R + /GS233 234 0 R + /GS234 235 0 R + /GS235 236 0 R + /GS236 237 0 R + /GS237 238 0 R + /GS238 239 0 R + /GS239 240 0 R + /GS240 241 0 R + /GS241 242 0 R + /GS242 243 0 R + /GS243 244 0 R + /GS244 245 0 R + /GS245 246 0 R + /GS246 247 0 R + /GS247 248 0 R + /GS248 249 0 R + /GS249 250 0 R + /GS250 251 0 R + /GS251 252 0 R + /GS252 253 0 R + /GS253 254 0 R + /GS254 255 0 R + /GS255 256 0 R + /GS256 257 0 R + /GS257 258 0 R + /GS258 259 0 R + /GS259 260 0 R + /GS260 261 0 R + /GS261 262 0 R + /GS262 263 0 R + /GS263 264 0 R + /GS264 265 0 R + /GS265 266 0 R + /GS266 267 0 R + /GS267 268 0 R + /GS268 269 0 R + /GS269 270 0 R + /GS270 271 0 R + /GS271 272 0 R + /GS272 273 0 R + /GS273 274 0 R + /GS274 275 0 R + /GS275 276 0 R + /GS276 277 0 R + /GS277 278 0 R + /GS278 279 0 R + /GS279 280 0 R + /GS280 281 0 R + /GS281 282 0 R + /GS282 283 0 R + /GS283 284 0 R + /GS284 285 0 R + /GS285 286 0 R + /GS286 287 0 R + /GS287 288 0 R + /GS288 289 0 R + /GS289 290 0 R + /GS290 291 0 R + /GS291 292 0 R + /GS292 293 0 R + /GS293 294 0 R + /GS294 295 0 R + /GS295 296 0 R + /GS296 297 0 R + /GS297 298 0 R + /GS298 299 0 R + /GS299 300 0 R + /GS300 301 0 R + /GS301 302 0 R + /GS302 303 0 R + /GS303 304 0 R + /GS304 305 0 R + /GS305 306 0 R + /GS306 307 0 R + /GS307 308 0 R + /GS308 309 0 R + /GS309 310 0 R + /GS310 311 0 R + /GS311 312 0 R + /GS312 313 0 R + /GS313 314 0 R + /GS314 315 0 R + /GS315 316 0 R + /GS316 317 0 R + /GS317 318 0 R + /GS318 319 0 R + /GS319 320 0 R + /GS320 321 0 R + /GS321 322 0 R + /GS322 323 0 R + /GS323 324 0 R + /GS324 325 0 R + /GS325 326 0 R + /GS326 327 0 R + /GS327 328 0 R + /GS328 329 0 R + /GS329 330 0 R + /GS330 331 0 R + /GS331 332 0 R + /GS332 333 0 R + /GS333 334 0 R + /GS334 335 0 R + /GS335 336 0 R + /GS336 337 0 R +>> +>> +endobj +xref +0 381 +0000000000 65535 f +0000000015 00000 n +0000000145 00000 n +0000000197 00000 n +0000000249 00000 n +0000000301 00000 n +0000000353 00000 n +0000000405 00000 n +0000000457 00000 n +0000000509 00000 n +0000000561 00000 n +0000000614 00000 n +0000000667 00000 n +0000000720 00000 n +0000000773 00000 n +0000000826 00000 n +0000000879 00000 n +0000000932 00000 n +0000000985 00000 n +0000001039 00000 n +0000001093 00000 n +0000001147 00000 n +0000001200 00000 n +0000001253 00000 n +0000001306 00000 n +0000001359 00000 n +0000001412 00000 n +0000001465 00000 n +0000001518 00000 n +0000001571 00000 n +0000001624 00000 n +0000001677 00000 n +0000001730 00000 n +0000001783 00000 n +0000001836 00000 n +0000001889 00000 n +0000001942 00000 n +0000001995 00000 n +0000002048 00000 n +0000002101 00000 n +0000002154 00000 n +0000002207 00000 n +0000002260 00000 n +0000002313 00000 n +0000002366 00000 n +0000002419 00000 n +0000002472 00000 n +0000002525 00000 n +0000002578 00000 n +0000002631 00000 n +0000002684 00000 n +0000002737 00000 n +0000002790 00000 n +0000002843 00000 n +0000002896 00000 n +0000002949 00000 n +0000003003 00000 n +0000003057 00000 n +0000003111 00000 n +0000003164 00000 n +0000003217 00000 n +0000003270 00000 n +0000003323 00000 n +0000003376 00000 n +0000003429 00000 n +0000003482 00000 n +0000003535 00000 n +0000003588 00000 n +0000003641 00000 n +0000003694 00000 n +0000003747 00000 n +0000003800 00000 n +0000003853 00000 n +0000003906 00000 n +0000003959 00000 n +0000004013 00000 n +0000004067 00000 n +0000004121 00000 n +0000004174 00000 n +0000004227 00000 n +0000004280 00000 n +0000004333 00000 n +0000004386 00000 n +0000004439 00000 n +0000004492 00000 n +0000004545 00000 n +0000004598 00000 n +0000004651 00000 n +0000004704 00000 n +0000004757 00000 n +0000004810 00000 n +0000004863 00000 n +0000004916 00000 n +0000004969 00000 n +0000005022 00000 n +0000005075 00000 n +0000005128 00000 n +0000005181 00000 n +0000005234 00000 n +0000005287 00000 n +0000005340 00000 n +0000005394 00000 n +0000005448 00000 n +0000005502 00000 n +0000005556 00000 n +0000005610 00000 n +0000005664 00000 n +0000005718 00000 n +0000005772 00000 n +0000005826 00000 n +0000005880 00000 n +0000005934 00000 n +0000005989 00000 n +0000006044 00000 n +0000006099 00000 n +0000006153 00000 n +0000006207 00000 n +0000006261 00000 n +0000006315 00000 n +0000006369 00000 n +0000006423 00000 n +0000006477 00000 n +0000006531 00000 n +0000006585 00000 n +0000006639 00000 n +0000006693 00000 n +0000006747 00000 n +0000006801 00000 n +0000006855 00000 n +0000006909 00000 n +0000006963 00000 n +0000007018 00000 n +0000007073 00000 n +0000007128 00000 n +0000007182 00000 n +0000007236 00000 n +0000007290 00000 n +0000007344 00000 n +0000007398 00000 n +0000007452 00000 n +0000007506 00000 n +0000007560 00000 n +0000007614 00000 n +0000007668 00000 n +0000007722 00000 n +0000007776 00000 n +0000007830 00000 n +0000007884 00000 n +0000007938 00000 n +0000007992 00000 n +0000008046 00000 n +0000008100 00000 n +0000008154 00000 n +0000008208 00000 n +0000008262 00000 n +0000008316 00000 n +0000008370 00000 n +0000008424 00000 n +0000008478 00000 n +0000008532 00000 n +0000008586 00000 n +0000008640 00000 n +0000008694 00000 n +0000008748 00000 n +0000008802 00000 n +0000008856 00000 n +0000008910 00000 n +0000008964 00000 n +0000009019 00000 n +0000009074 00000 n +0000009129 00000 n +0000009183 00000 n +0000009237 00000 n +0000009291 00000 n +0000009345 00000 n +0000009399 00000 n +0000009453 00000 n +0000009507 00000 n +0000009561 00000 n +0000009615 00000 n +0000009669 00000 n +0000009723 00000 n +0000009777 00000 n +0000009831 00000 n +0000009885 00000 n +0000009939 00000 n +0000009993 00000 n +0000010048 00000 n +0000010103 00000 n +0000010158 00000 n +0000010212 00000 n +0000010266 00000 n +0000010320 00000 n +0000010374 00000 n +0000010428 00000 n +0000010482 00000 n +0000010536 00000 n +0000010590 00000 n +0000010644 00000 n +0000010698 00000 n +0000010752 00000 n +0000010806 00000 n +0000010860 00000 n +0000010914 00000 n +0000010968 00000 n +0000011022 00000 n +0000011076 00000 n +0000011130 00000 n +0000011184 00000 n +0000011238 00000 n +0000011292 00000 n +0000011346 00000 n +0000011400 00000 n +0000011454 00000 n +0000011508 00000 n +0000011562 00000 n +0000011616 00000 n +0000011670 00000 n +0000011724 00000 n +0000011778 00000 n +0000011832 00000 n +0000011886 00000 n +0000011940 00000 n +0000011994 00000 n +0000012049 00000 n +0000012104 00000 n +0000012159 00000 n +0000012213 00000 n +0000012267 00000 n +0000012321 00000 n +0000012375 00000 n +0000012429 00000 n +0000012483 00000 n +0000012537 00000 n +0000012591 00000 n +0000012645 00000 n +0000012699 00000 n +0000012753 00000 n +0000012807 00000 n +0000012861 00000 n +0000012915 00000 n +0000012969 00000 n +0000013023 00000 n +0000013078 00000 n +0000013133 00000 n +0000013188 00000 n +0000013242 00000 n +0000013296 00000 n +0000013350 00000 n +0000013404 00000 n +0000013458 00000 n +0000013512 00000 n +0000013566 00000 n +0000013620 00000 n +0000013674 00000 n +0000013728 00000 n +0000013782 00000 n +0000013836 00000 n +0000013890 00000 n +0000013944 00000 n +0000013998 00000 n +0000014052 00000 n +0000014106 00000 n +0000014160 00000 n +0000014214 00000 n +0000014268 00000 n +0000014322 00000 n +0000014376 00000 n +0000014430 00000 n +0000014484 00000 n +0000014538 00000 n +0000014592 00000 n +0000014646 00000 n +0000014700 00000 n +0000014754 00000 n +0000014808 00000 n +0000014862 00000 n +0000014916 00000 n +0000014970 00000 n +0000015024 00000 n +0000015079 00000 n +0000015134 00000 n +0000015189 00000 n +0000015243 00000 n +0000015297 00000 n +0000015351 00000 n +0000015405 00000 n +0000015459 00000 n +0000015513 00000 n +0000015567 00000 n +0000015621 00000 n +0000015675 00000 n +0000015729 00000 n +0000015783 00000 n +0000015837 00000 n +0000015891 00000 n +0000015945 00000 n +0000015999 00000 n +0000016053 00000 n +0000016108 00000 n +0000016163 00000 n +0000016218 00000 n +0000016272 00000 n +0000016326 00000 n +0000016380 00000 n +0000016434 00000 n +0000016488 00000 n +0000016542 00000 n +0000016596 00000 n +0000016650 00000 n +0000016704 00000 n +0000016758 00000 n +0000016812 00000 n +0000016866 00000 n +0000016920 00000 n +0000016974 00000 n +0000017028 00000 n +0000017082 00000 n +0000017136 00000 n +0000017190 00000 n +0000017244 00000 n +0000017298 00000 n +0000017352 00000 n +0000017406 00000 n +0000017460 00000 n +0000017514 00000 n +0000017568 00000 n +0000017622 00000 n +0000017676 00000 n +0000017730 00000 n +0000017784 00000 n +0000017838 00000 n +0000017892 00000 n +0000017946 00000 n +0000018000 00000 n +0000018054 00000 n +0000018109 00000 n +0000018164 00000 n +0000018219 00000 n +0000157489 00000 n +0000157513 00000 n +0000157540 00000 n +0000173473 00000 n +0000173334 00000 n +0000157738 00000 n +0000157993 00000 n +0000163686 00000 n +0000163664 00000 n +0000163784 00000 n +0000163804 00000 n +0000164321 00000 n +0000163963 00000 n +0000164776 00000 n +0000164797 00000 n +0000165049 00000 n +0000166461 00000 n +0000166439 00000 n +0000166548 00000 n +0000166567 00000 n +0000166958 00000 n +0000166727 00000 n +0000167270 00000 n +0000167291 00000 n +0000167543 00000 n +0000169115 00000 n +0000169093 00000 n +0000169206 00000 n +0000169226 00000 n +0000169617 00000 n +0000169386 00000 n +0000169929 00000 n +0000169950 00000 n +0000170206 00000 n +0000172464 00000 n +0000172442 00000 n +0000172560 00000 n +0000172580 00000 n +0000172983 00000 n +0000172740 00000 n +0000173313 00000 n +0000173396 00000 n +trailer +<< + /Root 380 0 R + /Info 1 0 R + /ID [ ] + /Size 381 +>> +startxref +179131 +%%EOF diff --git a/figs/test_nhexa_comp_simscape_Vs_all.png b/figs/test_nhexa_comp_simscape_Vs_all.png new file mode 100644 index 0000000..775c581 Binary files /dev/null and b/figs/test_nhexa_comp_simscape_Vs_all.png differ diff --git a/figs/test_nhexa_comp_simscape_Vs_diag.pdf b/figs/test_nhexa_comp_simscape_Vs_diag.pdf new file mode 100644 index 0000000..fab4fa9 Binary files /dev/null and b/figs/test_nhexa_comp_simscape_Vs_diag.pdf differ diff --git a/figs/test_nhexa_comp_simscape_Vs_diag.png b/figs/test_nhexa_comp_simscape_Vs_diag.png new file mode 100644 index 0000000..fe0f340 Binary files /dev/null and b/figs/test_nhexa_comp_simscape_Vs_diag.png differ diff --git a/figs/test_nhexa_comp_simscape_Vs_diag_masses.pdf b/figs/test_nhexa_comp_simscape_Vs_diag_masses.pdf new file mode 100644 index 0000000..261f1e4 Binary files /dev/null and b/figs/test_nhexa_comp_simscape_Vs_diag_masses.pdf differ diff --git a/figs/test_nhexa_comp_simscape_Vs_diag_masses.png b/figs/test_nhexa_comp_simscape_Vs_diag_masses.png new file mode 100644 index 0000000..67fdab4 Binary files /dev/null and b/figs/test_nhexa_comp_simscape_Vs_diag_masses.png differ diff --git a/figs/test_nhexa_comp_simscape_de_all.pdf b/figs/test_nhexa_comp_simscape_de_all.pdf new file mode 100644 index 0000000..cb7e1a1 --- /dev/null +++ b/figs/test_nhexa_comp_simscape_de_all.pdf @@ -0,0 +1,3146 @@ +%PDF-1.4 +%ª«¬­ +1 0 obj +<< +/Producer (Apache FOP Version 2.4.0-SNAPSHOT: PDFDocumentGraphics2D) +/CreationDate (D:20241029111537+01'00') +>> +endobj +2 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +3 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +4 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +5 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +6 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +7 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +8 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +9 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +10 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +11 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +12 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +13 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +14 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +15 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +16 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +17 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +18 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +19 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +20 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +21 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +22 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +23 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +24 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +25 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +26 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +27 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +28 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +29 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +30 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +31 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +32 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +33 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +34 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +35 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +36 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +37 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +38 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +39 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +40 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +41 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +42 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +43 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +44 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +45 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +46 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +47 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +48 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +49 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +50 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +51 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +52 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +53 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +54 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +55 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +56 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +57 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +58 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +59 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +60 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +61 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +62 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +63 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +64 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +65 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +66 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +67 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +68 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +69 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +70 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +71 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +72 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +73 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +74 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +75 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +76 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +77 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +78 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +79 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +80 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +81 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +82 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +83 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +84 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +85 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +86 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +87 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +88 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +89 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +90 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +91 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +92 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +93 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +94 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +95 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +96 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +97 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +98 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +99 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +100 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +101 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +102 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +103 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +104 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +105 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +106 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +107 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +108 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +109 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +110 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +111 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +112 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +113 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +114 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +115 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +116 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +117 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +118 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +119 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +120 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +121 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +122 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +123 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +124 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +125 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +126 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +127 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +128 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +129 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +130 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +131 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +132 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +133 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +134 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +135 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +136 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +137 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +138 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +139 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +140 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +141 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +142 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +143 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +144 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +145 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +146 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +147 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +148 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +149 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +150 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +151 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +152 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +153 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +154 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +155 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +156 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +157 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +158 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +159 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +160 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +161 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +162 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +163 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +164 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +165 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +166 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +167 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +168 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +169 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +170 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +171 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +172 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +173 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +174 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +175 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +176 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +177 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +178 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +179 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +180 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +181 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +182 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +183 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +184 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +185 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +186 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +187 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +188 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +189 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +190 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +191 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +192 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +193 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +194 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +195 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +196 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +197 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +198 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +199 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +200 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +201 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +202 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +203 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +204 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +205 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +206 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +207 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +208 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +209 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +210 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +211 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +212 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +213 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +214 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +215 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +216 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +217 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +218 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +219 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +220 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +221 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +222 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +223 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +224 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +225 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +226 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +227 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +228 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +229 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +230 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +231 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +232 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +233 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +234 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +235 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +236 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +237 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +238 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +239 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +240 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +241 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +242 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +243 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +244 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +245 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +246 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +247 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +248 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +249 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +250 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +251 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +252 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +253 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +254 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +255 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +256 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +257 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +258 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +259 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +260 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +261 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +262 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +263 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +264 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +265 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +266 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +267 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +268 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +269 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +270 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +271 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +272 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +273 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +274 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +275 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +276 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +277 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +278 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +279 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +280 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +281 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +282 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +283 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +284 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +285 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +286 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +287 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +288 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +289 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +290 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +291 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +292 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +293 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +294 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +295 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +296 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +297 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +298 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +299 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +300 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +301 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +302 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +303 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +304 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +305 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +306 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +307 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +308 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +309 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +310 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +311 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +312 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +313 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +314 0 obj +<< /Length 315 0 R /Filter /FlateDecode >> +stream +xœ¼½ËŽk[r®×_OÁPjŽûÀÁ,[ À [ÕÔ:†$»‚~}ÿßc2I®¬½É¬EÕ¹Ô*F’1ç¸ÄýøÏérèÿü ÿ•{¾ü¯?ÿ8>Rnþôó_úø?ÿ³\þf~Œ^F[=)]þýÇqùÇéè—räËŸTýÿúÍÿ:ôßÐøïÿøño?þ¯ßû±¿ýÇÖïý¡øGýð¿ÿø—t)ÿ*òÿ£ÿõO?òåÿý‘>ŠÿsùÿÄýÿ¼á|òùç?ä’_çRêGš³å\êÉîö£çø–×ù¶ùqäÔô;åä{ûÑs|ëë|Çüè½4Ú•ïíGÏñm¯ó]ýcŽq¤š®ÛzûÑs|ûË|K>üÁ¨GÞ|ï>zŽïxï,lælG['ßÛžã;_æ[óøhÇq”£ï{÷Ñs|×ë|{¾‘ÏqIÇfS×Éæ“GzàqˆINå#é¨NšÍíî£'Ù¾.‹x§<óGoyMþG¥»žbýº€2ëÁ‡­¯RúÉúö£§X¿.£Ìº—œÕW®'ëÛžbýº˜2ë6>Ž1úñ¹Þ7Ÿ<Åøu9ŒÓÇš³±æ•óÍGO±~]T™u}ö£õúÒ·=Åúui¬ËÇjsµ2¯‡ìö£§XC`™õñ!ýSô¹à·=Åú{2+—ñ1Ê¡#u\Yß~ô”Õq|ušÒ Ò÷õzµn?zŠõ7eÙ¡‹Ô{^ë“õíGO±þž,Kk}¥·~ç1»ûè)Öß“eiåyÌœržWÖ7=Åú{²,M)1›õó­o?zŠõ÷¤Y’Ù! «×t•àw=Åú{Ò,%ѵt˜ûuÁo?zŠõ÷¤YýCöÝqÌÏ¿ýè)Öß“f©ÉQ;S;eøÝGO±þž4K5Œ¥õ=òõ­o?zÊ—ùž4Ãk’ؽ§ë1»ýè)Öß“f)Ï©¨©c}}ëÛžbýMi–u“ª,WÖ7=Åú›Ò,-YÎCæA¹²¾ýè)Öß”f©}Ô|¤ÒÚ•óç'O1þ¦,Kù#•ÜAŒ“óÍGO±þ¦,;´¶K¾òq¬“õíGO±þž,›ëcÖ:ñˆà|ûÉSŒ¿'Ɇ.QuÎqž°ÛOžbü=96ŽºÆ{s^èÛOžŠŒ|OŠõú‘ûªÇJ§Âºýä)Æß“aMGiº¸ú4ß~òãïI0i¦9Ƭi7êö“§O~É£Jí¡®o|óÉSŒ¿'½äOÍ^Ò\có½ùà)¶ß“]µ~¬œË*çɺùà)¶ßô(Û‡Ü Y×Ǹú²ŸŸ<Åø›˜.N›Ç÷x5E>?yŠñ÷¤Vÿ1_Z¾*§›žbû=™u¼©n¯Æ¾>lg`ü)6élÒÓeLô«¦»ùä)¶ùlÿª rÜóÉÏWéŒ_÷ËÇóáÏ'õ"žyM›Çqäg¼öï0=Y–ÖÖZã™àÈË»ÿ:taõNrÊ‹?Èó¼‡é$yÞÃô2<ïaúé·0ý£Ëñ¦”PzÓ?È&½…饒ÞÃô.ôž³º%µÛÞÛ1žp*¾#hŽG1ó~÷Yã ó~÷Ùâáò~÷Yâ¹òëùý¾òûõü²ÑÒä üî³Ð‚ä×ó{È>?È7ðÛ¦¸ Ù__-Jù–Øûu¿{û¼kníI÷áà «—\‡X>x 7ßà6ÜlO»1¸å2þìxݱzÇ2þätÝq|«÷•Žñ1†6lŽùËOãO•7¼^+Ùx…écÆ-Ó—Š5^aúXqËô¥2W˜>ÔeÜò|¥@ã%–w<_)Íx…éc-Æ-Ó—Š2^búP…qÇô•rŒ—˜>Ô_Ü1}¥ã¦•·L_*Áx…écÍÅ-Ó—Š/^aúXmqËô¥²‹WTòcÅ Ó× +.^búPaqÇô•R‹W˜>ÖVÜ2}©Èâ%¦UwL_)¯xÉÌz¨§¸eúRaÅKL*)RRñW”w<ßcPþT¶qËó¥úW˜>lÜ2}©r㦥·L_ªÙx…éc‘Æ-Ó—ª5^búPžqÇô•:W˜>fÜ2}©Bã%¦÷%w<_¨Íx‰åC1ÆÏWª2^aúX†qËô¥zŒ˜>`Üð|©ã–¥7,_ªÁx…åCÑÅ-ËWª/^`ùXnqÃò¥º‹X>ZÜ°|©ââ–%·,_©µx…åCqÅ-ËWª,^ ÈÜ—UÜp|¥¾âû [†ï ]ü·3|¬Ý¸óz_(âxÉ ¹¯Ú¸³G^(ßxEÜ×kÜÊ€ +7^NþÜðyO÷&uõ«…®;^o‰p}BºgúŽ×ø£{¦ïˆpýŒ<ºçù†×˜£žoˆp}6ºgúŽ×8£¦oˆp}0z`ú†×Ø¢{¦ïˆp}*ºgúŽ×x¢{¦ïˆp}$ºcú–×¢¦oˆp}ºgúŽ×¸¡¦oˆp}ºgúŽ×X¡¦oˆp}‘ë»çùž\ßC„ëžç;"\_@’#Âõéžé;"\_À#Âõéé"\_@#Âõ3èèç¯p}7zàù†×@£{¦ïˆpý 1ºãùŽ×Ïà¢;–ïˆpý +ºgù†×Ï€¢;–ïˆpý %ºcùŽ×Ï ¢{–oˆpý ºgù†×OÀ¡;Žoˆpý\œsÇð=5Nÿí ï#\^ï¯pýŒKz°G~}„ë'DÒ½ øõ®ÏÈ>g„ëoÿ¡õ’ûGïãò§;~ñd™ÇøÈ¥ç:|Y2xÅõïþô#™ü7éò7ºY³¥%±Ü?ÊZ²Û.úóå_þ\þçå_/ú§ÿ'¿ÅK?[$ïÓlº=?ýl¾ýYžžÔû7Ÿ^'*¹[?ô×9ÿ…ÇUú6ŸtPÍwæS~æóÔn4ª‚uR–nÃvå÷~þ »ó{ìÞ±K¿Çï÷v«~s·NcÊÅxÃnýÞÏ¿a·~Ý;vë÷øýÞnµ/vk!?ùýÍñqø?‰FÊÞ|°ˆxD°kËZ»6ç‘~~„”>giùxœÖ¤cu>DÿySYáâ9¿d9Þò{kKM_ñœïáYçÇœs­/ßs½‰çñ1ê1u¾àù¿½‡gÉmå^çW<ÿî=¿:>é eù+ŽÏQà9ÊW·$å{ž¿cªµJÅ#ZR¾üß_‚àëgRº},9;mô)‹òãHëXúÁ 3ò'}Írà–:zêýƒàÌ*½—ÃA(bRG/³·EK‡,ž™MiZ îb®PÆQŽÙg|IÎëÒ%ÉÁž6ÓQ‡£ÝIf“Vb,Ý(HU>u‘Î5©|´œzÚ¤<Êœþ¼ãC¥ÜJâóC$dFy~,ýr3™Âúµo—JWíH/z8i)‚y&Ý€'Eê ÿÚZ&u-n=VÕkˆTYŸå¼a*Ë‘XO‘ôp-•áoÕ¤WJ+M™"é)d"M/¬|\-«d‡DäÔ¢ ¹Pzx“ºŽB™y´i”Üõ¦É$½U®%õjR“¿zTG‘’L½\WI¥øµK`¦IZ>=mÓ™täq¬?ØAñÕR^—©KWÊ<¦ŸýÙ)Jç5:Q¹„¯§‡¬úM(µ”c$D…‰¬‰H©Ê6,Ùœzýh:h©ÈRšMfi+­– ñó%iMê½ ¡ +‰m˜U¼3¤¢×ÔK{ç¥í´EýÐn³8«šFþM‡D¾.¤®ÿ.µIæ^Ó¯iR;’ˆqš†ö8§•e¼CÒã5ír𺊤Ìk8“¦.î²\8ƒE/2õ=ûôzfšÆ)”Ùr/+N¡Ö¡S~ÑŸ-­{ŸÕ«¡uËIˆ$CgÚ{â3´tgÒ„¤k¥×üðŽœê*,¾%«ŸƒÐc5–LÈ¢g˜­[Êé!ôÄÞ¯UH8µ”L9´£Ai4Ôgueëý¦î¦I7˜ØÉYÐRhIM’C ÷Oú ´®gðåÎ`«už+Vˆ(’0¾¸&%ÝTI˜ÕˆÅv}ZË2A«)98—(qdR³?³û '©…l3¾Õ9[YË4 éRëßÁH÷¶š©lÜ1‰Àæ“Öûã¨.]éÑ +ºFNÙd p1-t¤³5f6§[¬®ŽU˵7 @Ý =víêeÉk=Qíñ¥ˆÂH^üæ“”w½ŒŒÑ NZã#"™Zb½¯.EÓæ m¡DfŠ—Bjê´ô1qe½jÑÍ4…Ÿh­ë].]®‰äœŽ½—Oò´KN²D/ºa…Û&Én’dwo„Â.]¢béÙŽ¿§«¾x+]?™ë³kã„å<>$Øtü×RÖµtÎsÄY +E¢L²Y»6£rp³ó*µ_:Ö¢–"»>!4KÖÉ™ÉQdIñ’üÍEÇÕlÚé¼€{%päÆ^Í&+IʼöQL’(’LÎR›—vè¶aµÅï @ˆºyròªÞWª¦µxéÙÆöë"9ÞõRrò¼‡2┑~òR´^97½²úKý@"Òî b×yL%HºË!ÕÛÅjPB} ó¢Eªrü´Õ²ÊÑ㭪ܔµƒ9µ£ò }^¤'®k¦ë–÷y¦ž¦ï”¹–I—M—ÔËŽÓ#Ù·Hê°õÚ±Y£_¿DŠåŸlŠCoä 9ðW)ZAdh{—–)r.ÄY¢£8c¤Ý´ÊA+”èÖ×~ëzÉØqw…¬ZˆÞ¬‡O^)‰+wÓºžµ®îXºHeÆoÊwoú·Îìe-~¿J“t¿µûS t‘ÌÓ#J„øÑ)Òu×ñV#Z: øÒfºM­J #™šT€~À«Ø‘£+KeO.¸Œ`éÿß’ÌÖs)YÆ–ŽŒ)d’ôÃ`} i[t$êýðör§¾,A*ÍÛ+’Ày§,(6}‰&›Q'Yœ{’´ùD?J aþÕ¯%΃ §‡Ã¡Ã-žB¯Reõ$‡Î+¦Ð²ü–öGÝF…W#úQ%"‹P²yA|i"Å©3oŒNÕ¯IÊZIëõóN¥gDÜ PÛ‡M»0ªM·¬u›YʬLö9ó‡Ö^Þa+ I7 gU%«šÁMw[æã@ÈDÔ»HOEéáI›¨9\9)Y›)5±d3 Iøa•ãõÐÖêëÚÿúL"j† ÒÿeÈvx-Fæjš¤S$ó¸HÆ#Buê¤n" ðqN aˆI5«­Hm)~h—,¬.¬7)Ïø=-†TXÕEbå«äy á€ETv]QÉ-Y^%½‡,´.åg9”yž²ã°U,Ê|)ÙjFGÆO–‚v\ö…t Š@Šå4IFçU2[)ómê,Ø|Ë2þ%–Žƒî¹®¹ìä¨iÒŠH¿mý­­êIúl†ð_²rZ‘*Õ"el¾ÎÉß+º4’ z’‹d°ü©i3ê|èÿé†K£IüéÐÔ^@™º¶2I¥ÇªV}’&9â-È3&?H²E:(ÔÓBzK&Ô“$™¤RTz@Y#‡öí´8ÄG<„„¡>NˆüŽ§ÓÄ'vq-«§"±ž–\”Ùé#MŸ˜ÖmÔÛøȲt™ªI‰M•Zv(eÔk'­OdËzEkwÛÓC×n[aa ™×/\’«¦øVÅ0éH¨‹ŸV¶[;N’vG[E¨óÜí÷ +ZÃÊ=F‹‰¥,iI÷BçGúX»¬¿šû'цñbÔ ×dž”b?ñ.MÚuÆz¬ÏMáHÆ×6e×É‚@¢ Ùx*²¸¶S'1¥wÖÕ‘/ M²VVwá`¥¢UÆ>öê’…‰$œ¤]{‰/œíËaQ¸ +–í*ig<ê¥å èùjB|£µÍœB,ŽNIá”gLÝ©?qªA’âMÜ ­Fˆ.…Üx-K;$†”fÇ´z…$¯+Ί@ZAÄxø‰\” ]aÉè¡ä=J.ê÷ˆ*H:ËtÓÙ°ê½ëÝB—ôåˆÅ%ú† ƪ‘HC;ëp¤©…íX·:¼Zr +4ýEg¡rä—ƒHñ-]d­g"Y©s]dÌÕâ[’À'2t’=™¾ôqQ2'TVC +M—D·(N¡4¾”KrÚ‡§a ­øV·ÎtM%œÎØýŒ9m^K„dMÕV7 Ož¥Fˆé¼ÝP$M“[w›Ë¥ÍÂò”mªã™‰šØZò\,—V‡A.˜Èè™Á±»I)¼û‹‚=™Lážb ©5H„€$¶pk¼L’ϱøkØ-Ú *ó&iKK£ådË'™?~-™»zny\¾ã씞²ÆtºÄ # Y0  ¯‚QÚ1¯l”uÒQÒ q +ÆÅ¡½|O¦‹©´o<¤^GÚ“(Š /9²YBÈRÖ]Ã>$î©+%+ZîpÝ4y}‹j Ž,KkåøÚÄÁo«®+Øn3¾¥eÀ_Å/Å<œR3L/hº°“@•hCÊG7zK•Š–’s*ñ€åˆ©„ûh’n$Ö}ÊTr')mš¤ª,Ú¨TùºMÝ‹‰m®ßªs†¥ª§Kl‹Y‡M–™ån²œ­·g”M[(?[£VduÖª/Œ<¹H£I\è^Ô IÁIöQØ_¢”ýüúCÙbº]¡kVÓéÕöÌÊhl}É[PÉÖ—GyHÁw¤BK§©l’¯‹L&~.•2/©M­7²£QD—bÇ*îyÅ*´×-•…¸)“pSÆñ— +æ,„‡DjÄ %Iµ‚6°¥–´ºþ=„§T“ô±ïó”âš{!D’œ—ò!feûªânš¤ßך[ž¯Ð¤u_["ª’£Kú™k«3¤í?â1ŠFç-$F^ŽoÉà&™Û½ §j«Úø’fZ\[Ù6cŸÈ—û#MO%ý›XÅ&QÁK‘ “õÉ…N´¶ÈadzÊÙY¾Ñ¨)Yzü—I´‚X~¯tv.cÓd]ëèYè¸â.†Ž•oC+ÝéfA€¹PÃÔ/v‘ý£Ýæ·n´V5}søµp¯,%¤õ.¡1Nõ:‹ÖfhíO)’VGîhé*Óq:c?¥Ö*¦oæF¨BÙí¥Ç÷ä¹Ï„÷ï«"ŸcÌðq!áýkÕ»i2i*jÁ1é$Ì&dR’V—ÃÐæ)¤¡¡(±QL«xÀºSì› éaXhJ¹ÖZ6;×Ò— ×I´†.=BââÞIÂëžmiÜ°¿íZËM•š< +Q!Óª~A¯^6Mv{ì4í¢ä{X!˜ç5s•kAŸ„"š¿¬ü1ÑôTr×B—¬A‰c ?ÑÐÞ‡dS+›¦³"¼‚6¹$Û~Áf! +œ½Ôû׷&•µ(Û¶;Ö MšfaÏC“¤Öæ¦0S%!ñ—‚Ö„€†s¬Å=i’šxæÉV1^.F¸i0‹Œ®UM“„™¸ICËN=µIC*TvpÐK¦+è"Ýt=eDª ɽXË$ý:b9vH6^¢œ—ÛŒ±&Ó¯G€šÎ;W¸›Öd”ʨŠÓúRB‰6ˆÂ M ¡³j[ÍŽv¢¤!"E…hN&L/µ g°Õ“$ã£ñ`P´‹²¿]–_+†EÛª›8qcÓ–S'Ë$Ý$ɇý5ý¾Õu(e6·Bºkÿ—‰™â„ˆ›d)¸ÖÝøi2—‡½÷BÌ]'¬øù­^t“$ù“불ê0Éfå÷ñ5c½Zø\“Š¿Q}°8µùˆÝ‘=ŠFʶ¬(Á‘w¯CW6M÷Lngwá÷8öWH­aš#häi"eI»ßLH±¾w`ÞYY«IJ¾o[xO—h>D”õë{3®H$¼F&æt—¾4Âzrfíï/# öS’à#o"ýl­c:2­õˆc‡„È*±­‹üfz IúR~XxlDª »ß–œ^8GzL~¿ŒyH²Èâ¯Ø‘Y½2M’äë­‡*”^?®úN4‰6ìP@˜êXm!ãY®˜vdmÒÒQs“$£äÅso‘¶^œf›Ü:)q˜1ð³®YE¸aÖMÉ[ ÈT(D4›*Ú@aæuÒôžzù7NÊ­#,CYƒº‹R1¢‚–h¡šH à­¯³þ¨QλiØ>³›-é䤓6®jR4¹Z•,ƒi2Nt§µ¯<‹˜K¸Éh™tgŽ¡ ƒB™Üq‰D’ çØ™"|\߀Š ý]ÃÒ/r„W”âé\Ê92"]î]XqÝH|¡`6-IZð¡J¨hù[ò;uö3VÇ¢¢ß¬$(6}CtÎÒ‰e&ž9çÜ„ázTÜPâ‚ Ï94 +WjL¾›•Rÿ5Uóõ‘æ*Ѫ—jg=}Þ4‰·F’,hr„‘€N%¾Ü¸­vžÅ°A“]Y‰­§®Ú•€ÔAP”g¬›%Gj^¿¶ô“ô[¬^¨Hzà½XC6V¸Ñþåæ!¥aäqK©ð’0-ôú »‘y”Ås ±) vT5ü(zu´Ýt+ ´Mcm~‰/ÚŽ²íÚæ&T&ôMk‡|qB<”þRe=7 Që°Ž"3À FuŠ”m”D‘ü&‹Tã:¢£+ÕY^ÌN9ÆÇQ7íS¤@ëºãÍ¿ŠîÄãZô¨–e’üÌA+r‰Ñ¢—(!–Í¥áÐô+úi|T¶oóÛî˳XR-dØ6(ÙÊ[(ÒÏ?ƒ`ˆx¡Jß Ö×€ +‰Ü›4Þ T ˜'+–|¿H:G¥EE;Ñ Ì[ÙxÿÉsáò1ÑËm¡ QÓRÚ$i-Óß"¢ÐË&-Guåý-Œ•t䇚<jlMÒ"—•Ð‰âÜ\Z û¢‹/›0({›ˆ»Ñ:äi†ü ÉsP,% +VPûçÊÚ›Ð$‚m¤xˆJ!¡¤´9ÉnÊGè<çpzSjBä×/•,%º€„‹?£´1ÙG×?€$¥Ìy’V¦<»:Ò©š=P®§ÈhFŽÚ³x@œi—ÒDq†ìöQö—E:‚u>9ÜÒ™ê¦%•Ò‘eðò^¢’È7‘d$ HÒ_zÉàEH¯¶À«PôÜe˜P'.’®­½“ˆÏ’ )^Ã|oAj@)$ú†w+qÅ›d‡ÕrœJÃfðÞɆt-|‚$«¥µ0—ÚÉ£ †`HÍñìûs¡„Iž`ª¹N Ói·Hqb) +‡á`\SPÝ+Ϊh)@3xãØí›4 K•à$\Z6^JžvåÎ䵡¿9Ó…>$šÓ"—ÎP 06>G¤äèDT/D9¦ûWî„Íb(”TŠaç2~8oAj‡“‚•œv)ÇOjÖ6 „ Þ¸Ä K|ñº%XÑï%ž)–)fw8¢’b§\Ë-ù¡ 1Rˆ:x‹TGìô²½Î!Òn ¸â§$@%4Uû«®Gf’–ð…áE’²Øê˜ßA¦9 gÃO4–l?$]‰²7„f3-*„ J¢ü»Ù›$Ø…W?{ðjr¸G +ÀJ¥$él/6ŽîA&¹Èâèa(“ÜH›—h—¶Á«`ˆD‚” ™ýlŒÁ jÊB@ŠDå6>æ4L#Õö¤`u+ÉK1m'\ œÈ¤`”©°iCÈ£S¡ˆGªl!J ºˆxP%¿Eíç CÝ‘‹ƒô.“ß‘#‘I§Iú^ ó¨_d™c ‰šóâîµ'·¡a¥DG”56 +\]“HÒ$LÜ Iç›Xh| o%…‹ K2€Ò¨MZ˜˜ì¦‰ƒ­óÔvÛëŽã‰Äü,Î767c·ê®™…„^—)º¢†Ž„"5—Àaqš2‰#`]2=(]1É)X€T¡Jó×()H.´²_¤p"̈‡©[Aˆ95P&Qj†£l2Ê ;Íy¾ ý˜Äï]ß!hš¢ÐÀh§ÙÏ ­H wÉ/ÙÀŽE‘°j].aQ]ˆÉ@¾eÚyŠ]/#B…·Iß—{k?$¹–’:“(XBƒRop ôµN=LûÁcFuˆjŸÒ‚Ì îT—’/£•Z^²è\?y Ì83Š$!á“ð5©Ñõä +ˤ×–A˜3â:º\u©FƒªãØß±(ê lo:X{¤Ã’Ëv°šK1ï0ˆí t /i¼!Ã/Ç ¡ÜS¢¸^ŽwzÂÛô†TÙ˜U¢ø4…Ê1Fm{¾=N4ýÆr¥¦ÎÕZÒX±YØÞºeò ØÀ‰$&4%¡4Æ‚Ô¤Þ†Ùp¹š HUÚ(“§(d7@*Ž´I…"nH ƒ/Ê11Ÿ)©MFŽºþ2íI¬gr ®éàažõ£Z'EwQ| _ZHN1g3BUvcèy[}+­$ʦn’$§> ›´=ѵԼI¬ž1žzí±A{ÑIédƒD)ÑŒ(x>‰ÎÈÒмñ´œ·ÔÅ‚qq‡Œâ[”J‰ü†Mï´MšÔvNŸ‡K‡±ø/$pFnˆŠfDHÀ‡{JJUe#‰+¾4‘œQdì Ä\ˆ-©èƒoà•N +ÓgQº•3€"Â¥3’á›v΀ÛÙeÓ€ + ²ãƒ½!b¯:“0&úÁjŠŠKÂñDfdüòà²Í5Šóáò#¸Ikmt-$SÝÜîoQ¦s¨GÀ¬ T·‹­]ÏwìouäfTeP‡M 9òô°-„á£DW}Ä·&-\ê ép– _x0(KÙéCå ¦³§ºLõëºêý>6)Ó±Žº—éôõ%€2Ì ¡ˆœ +Ì%¢:—t{’Ætˆ”P©.Yˆ×JÃ6“(CK‘¶…Dü|‚ rI@+xyÙ¤’ƒVuãl°˜² ¨Dü§zb))H¦jÄð•ŸxI²Ŧ7ék}ظ„´ô ·• 3à9ø0t䢂‹vÿ\ŸQyÇ zF*‘Ù‡ÈÔV‰’¸ÜÒé uÕ4• ¦™Ãÿœ Ö _’ìE‰=›n´ ƒ«D¼±õ0º¶I€™².`töY1Í®¥rpË«c£³ð`êá œŠåå@:¥6»K©h¹PCPm’d6˜gwcС8ëD{N ÜjªŠ å$™ÔU¦2~jC 8ÝKAkRÀKg®»þ°Ygí)ÒAÌÑ9i N‹#·]OA¸£…r‡´¢>rø‘³¢8P™HzsŒ³á °=WÄ‹á"¸ZÚu™GÔ‡gÔs´$2°ýd·qeœ=….Žq[C‹¾ûï-¥Žp uÉ©…ŸeRcqÀ __<0]81U¯K%Ù^‰ôEŠÀN±ÉXãûÀ»ˆ¤,ñð¥Æˈ;ÇDBƒÈ(•aÜK‹ÔUNÒ’ˆÒÊ hV9à’81z£ñ¨V“¬Ær ¨jÃ0\ieýß~BUAéB¹ý‰.#(΀Å:µAÚŸš“¹†zÌöó¸ðB[–¦M"Ò‰ QïÔICÅ‘Á‰éà;ÝGçø Þp­4ØÐC{G´¤/_áJA°Ûý3™ e!= H\U‰­u"ÕðaŒ0,¡eÈ\î ŽC¥/x\)·RT)©*ÉKYŠ‡fžþ[ å”(L–ƒán”¬”-w†¢ÉÁR\{àè;GF¡æŽgnÚÄõ­Ô@$î~5Œ ì¨î‘ø¤îš ˜m÷Í’\"¦s´¿„{rXm‘£§vÅã…Öèà tWŒAZ˜‘5ÌíLšhÅ"âÅȪ+g”žnEò”-•™xMVw:×m‹VêɯZ\É¢ð#¸˜K€B$3 TG‡MÍ8I )šO:’íØ}pd¦³{q2¹)QV6wœÙ7à”xÔ öÅÒ§h™A)*nÆÙRË·³äuÜú n®L§@ +ß½¨–Y'ièã´ž ˹ÒX yE»–]öÅUü`}å{Ë'»—È]Ø·ëI +¡¿8ÛaË]î &ßÈ’E:Vöh¸à}EÖº&‡Føñ26j6qüdh›¨+Î.GÉ—+X»›m“Ý¥—@%|p¥Ãò¤ÏqpcÚÂ? ifÕ—ÀªâpéÀK&ŽÝN—FA*øâ¬)Mbc¨M¦ŸU_öäYý²) {€9¢ót›Ò®'ÜQ¡˜†Ñð[îÄ S“6¨˜¦Y`¡H0µ¸4+ +äêp}âŽÁ¦,‚Ò4!žéKH«2þB‡%ŽGÓvjG: BáÑ fqÌŠzz5rY†S²ß]ÁÀ’7‹ÇѳH7W@Íé̦BHÙ%¤sEt’t¥(°J £)vëe?<¸ÕÜ%ƒêgkmdô îªyE£pBfH˜ëH~yW„²XIaô"—-#ç=/eØÀýn ÂA1 †C#õ•ÊÇ 9¥¾Í¢‘U^Ì5§4 kè¦F x1y¢‚ rl^+O[æóPS‹zÜSí 8[ä䨗MHs€?k%À ôà^ Ù]ÞŸƒ4SûÑ;ÆL¡ÇáwZ\´zb‹ÑäN®~;0£ñÃéµ´. ˆë'ìX÷±PÍIÕ4UŒÑ l1¸h…¤-èúá@ o£LªEç!Ü.Ùq3R@`‹õ*ňt ;Okãs©^tWpÏ  \…øAŠ=Ùœ†èA¶m“ð)S²éEöìV¾IßRÁ*?®mT$NM1öf]¢ +Z,Þ §¦-žh„\ÁŒÖ(ÝÇ©”³Ñ#yY—§Ð¯.v%`A{Ñ/ªE˜pñL Š9€o=I‡WC)Ô2ƒšàÑs Äb=„´¬£x+‘èî²SüÍg™8(á¼x…¾ÀO;‘/ÑÐÖˆúh­-Â$í)ù<±’52ZT¦Å‘K¹ˆ¶iÑS$/A ·]@° +,~°~–H#µQÛÀ°ëÜdbô~ll1÷súþ;*N-Û‚!ü@­áLEcÛæFc׉BÕŽ³6ÈãDOE;-´`®P& }iMàî&h] +j]!áÖÚ€T§W;FG >n EaX†4 ÀGˆx 8_J.ÝEÚƒÖPZà€òfƒ#ÉK.î-(¥Z×âR×jÅ8†[êœ*hZSh+QÕ&Ñ‚‚Öm`Jò6&-Ï£$#ƒ{#VXƒõÑŠ’Ù” ¢ÓÍ^Ýj m"‚´ˆžPãùMÂŽ‰³aÃ$B$FìÒ‹ Ël¹´zžW¯AƒÝ\Xtöë'dwœq6̧J_cCI-èÏd9q^ùþ1n­¸¤F4T-4Yë½G©/ø[ºBá°¦JËà9¦ÑGj1¦EI-K¿"pÏ®DîŠH…ÚþZ³7†ýÍeˆ“Ô¸dˆ³2v“™l(ÎM£½Œ¡¡ É×m(0H†¹ëÄg€hýÞ6M¶¨|‰èÖ4Q¿!)êHs×'¨ˆL> ¨Ý#Ðר +~x8M¿ÓývèÁNÆ3ƒÊvßLæBH$:¤|Åú¨kõüŽ¨w…¶ô$QGz8CJ#˜ø^ŀ¡¨¦Mí0©Ó¨›&Ziø§a™Þ¦uÀùZY›Sô! þfœVJ[V5T“RfÙ+=»¤9¦ôrÐd«ÌÝ• •ÎMÅ)¦î¡lHi´¡‘yÎɇ6‰g°”*%pn’FéiÒ£nœ#U¥sc •ˆÔ”i†=f™= ªVÏW$jÙýÆ’U3À–€%âî4b³9†'[‹ãï€W‹&–ÉÃâÐ'HJ¿Ùª„B +y-m™Æ-¦çØ_H׳“‚ÛÖË›&ñš“i¸½SIWdhw& +à5 +Ÿ&<=šŒ°ø"‚,H ‹‚Š&:oõÝè°íZpœ±bw¸U +q¥È¸ã¹ójè.T¢OŒÓ"“Žji‡0ÒÙOË0N| +A ‘g¾r«.K¢O(´dyËfb zÔ5S´n¨x9Ä^O‹â^ÓtºåÇ›ã÷96‚ZFF¦|¡ÇBw­hLH'ÙÖã¿´RÏRÚ k¢ºÚÚ‹HÆ0Éó¾qvÔ€j9bæàÙ¹{* ¾†A1ÅV +üÖÄx?ëDAåˆ!Z+²“Wqm£›œW"ŒA#Z6ì7DŸ´‰>@‹™Ä8]$¨7-9z;‰6R\?Gß¾£GFpƒõ Æ,æîÚÌ)"p‰C‚1:]dw6’-rqQ³ +Í4¹s·ÿpìklWF'k²¸M³¹6Ô‘[ A¨‡$¯7hqÐ'ul -<Éö +& !T\SÑ3&‘­¢+d6õw"%ç)§`={’üf@.Q¦ÿãõdÒ†æàljz˘„s·KÑ«Ì8^Ôhw‹‰llv= 4О*d·%#U t +t†ƒäÒ:1jm:¥üçøt*ª[ +ªC¢Ð¢†DÏ.u¥ß].× iuâýÜq÷„G:Š…½¸6m‚|&-éþ2Dà"šÀ«{¿¹þÅ%oÑà7ƒ¸® ³(8ÊŒ“;i½Dã [`Á3ÞJ¿T(¤IwnPZ³iºÞ5º~` OyT´ãÅ1 „§ž +(Í «j‹²)À¦×ÄàoFAíÂÑ€ËÀoQAÓäBõ»ñr®Ë¡k)ÅQñœ 0¤Zå-b4Ópºu™¦ûFaе&­ùýß <šéÛOÊì|P 4(´Ýs¡Ñ΢Ïõ¡é#=ðz uÔ©µ›¦û!Ûi‰Ý^ϱVÀ€ÆižC’º§ú/اíèñ¨Äì$nÀO*BVvÐBÙ°­€ÞPüÉÄ%à )+Ñf³ú Žì~OÆôRÛVòI›g+ʱˆv¦5“!Ø=M@²¢A P\æƒà¢¿GVt#¤9z7‘‚ßµ¨mƒZƈ^vÉ$`µiôA!áß,tܨ1(r¾´ú+°Î4o +ÑᎥÃMh2Dr¬D9ËNWbãV¢Ùh”r胦8­RQFJ-õ+°ƒCªãxEJ€¶½ ÂT(%B>é/`„MA»ñŠ³‘ºÒ£Ó Z£õ_;´£v<šñ7Q®c¼Ä'l/'‡¢fèƒTN ýÃŽ+"b⻶\Ñð!*Ì7žþv5‡M‡=†!ÝáçÒ70”3Ð'øL†ãn€·H¹æ UºÜ8™.tç*›&ŸwÑÄ´~ì Qù3].CúHK– Ø>RnvÐÜÛJ–UÔÁYèÑ(Ï(ÁDÄÆ 8©¼;X4ìžÙÎ+Ò<ÿv7ëŠÖ»ZÏ‘6mºÎ ‘Ò(H{¿‰Ï$ÍDÃ@Ó$­ˆQG‘<]†v—Vªô2›£ï}:š–V4=çN¿8;žœGªH‡@NešóŽÿÎÌœ`ó—†Ì<ˆø!èuqß;y¿3Cç/Ï´y–›¿$Œ†ŸÙ}ñví"BϤº¾XÌò—=ûó¨”øù翧ô×.žûfù£ÅûD_†«a;Éê»üùuaÅâ…1< ÿý?þí÷ìoÿñŸ%Cþý¿~ÿÏçÈ6ýÜ'¤"?LmchÛ•õÉè°°©/³inkJ²ov·Ÿ<ɶ½Î#&SÖRÏ×¼ûèIÆýuÆ»é¶ûÁoÆ·=Éx¼Î¸·Ï†ü›ñíGO2ž/3îå¤Áøî£'¯—K¡ö‘ +Æw=Ǹ¯3^®§8zrÓŒo?z’qz™ñ)$þ|O°É›¬€/¡VÓåe|N4Øéö£'Ù¾.‘x§lpÝnë¢éX¿.¥Ìšb ²Ö·=ÅúuIeÖ½ô¥¾­ž¬o?zŠõë²Ê¬éi°]îÍù擧¿.«‚1Íãf4 ?9ß|ôë×¥•YWW¬rÒ¯/}ûÑS¬_—WÁºNhw=d·=Ãz¼.±‚5†6ÙÏ¿ýè)Öß“Y”:Ê馺óÊúö£§Xçï±& .w‰þÖ'ëÛžbýMYæJ¥@Íúö£§XO–Q/­­Öw=Åú{² `x·c8Yß|ôëïÉ2@Ä7fý|ëÛžbý=if|zÚ³VNÖ7=Åú{Ò Øn·ÇmmÖ·=Åú{Ò R% 2?üö£gXÏïI³ä¨HM“¾9›õíGO±þž4#LIßi‚¾'ëÛžbý=ivΩí=]ÙíGO±þž4‹Æ£ô¿½šGw=Åú›ÒŒbq*G➬o>zŠõ7¥ýáêànÖ·=Åú›Ò à~ÌÉùó“§S–Ñ›€BoZÏœo>zŠõ7eÙáFcR²Yß~ôëïÉ2Ϋ¤ÜΛuûÉ3Œ×÷$Ù ^pP3rž°ÛOžbü=96œÅ"D|^èÛOžbü=)F÷«¾"_Œo?yŠñ÷dm\H/ói0¾ýä)Æß“`T6 ÊjÖy£n?yŠñ÷ä–¨$ ³ß|òãïI/†N-[có½ùà)¶ß“]Äpsö܆Íöóƒ§Ø~Ó£$oMÂéW_öó“§Ó£þ´b+WSäó“g§ã{b+&X¶|ÕN7<Ç÷{Rëx)bÍ¿þúŒ±òçø”oð¡]iú`Ÿæóç'Ïñ­ßàûWÝ’ãžOþ |¾Jmüº_>ž>ù«öáQ+ù¸g\÷ï0=Y6DJø»ÿ¢qy«üë¶ç÷3>ïaùÙž÷0ýƒLÏ{˜þA–ç=Lÿàj¼…饕ÞÂôRJïaú餷0½O%½…Å)§­×ÀQäûëÅÌñ dÞÀí>yü _ÞÀï>gü ZÞÀï>Uü UÞÀïw߯ç÷‘~%¿žßC"úAŒ¼ß}þùA‚üz~§%n+ö—ÿú˵)ßz¿îwoŸwn£­õ_nô>º 7¬^ò^`ùà)Üp|ƒËp³=´"9í_¹Œ?{]w¬Þ±Œ?9\wßêyUD‰ùËOãO¥7¼^«Ùx…éc‘Æ-Ó—ª5^aúXžqËô¥:W˜>fÜò|¥Bã%–%w<_©Íx…éc1Æ-Ó—ª2^búP†qÇô•zŒ—˜>`Ü1}¥ã¦¥·L_ªÁx…écÑÅ-Ó—ª/^aúXnqËô¥º‹WTòc¡Å Ó×*.^búPbqÇô•Z‹W˜>WÜ2}©Êâ%¦ewL_©¯xÉÌz(¨¸eúReÅKLJ)RSñW”w<ßcPþT·qËó¥ŽW˜>VlÜ2}©t㦵·L_*Úx…éc•Æ-Ó—Ê5^búPŸqÇô•BW˜>VfÜ2}©Dã%¦÷5w<_(Îx‰åC5ÆÏWÊ2^aúX‡qËô¥‚Œ˜>V`Üð|©ã–µ7,_*Âx…åCÕÅ-ËWÊ/^`ùXoqÃò¥Â‹X>VZÜ°|©äâ–5·,_)¶x…åCuÅ-ËWÊ,^ ÈÜ×UÜp|¥Àâû [†ï ]ü·3|,Þ¸óz_¨âxÉ ¹/Û¸³G^¨ßxEÜ×kÜÊ€ +7^NýÜðyK—¹ö1 ï× +"\w¼Þáú†tÏô®/H÷LßáúztÏó ®/@G<ßáúntÏô®/€FLßáúbôÀô ®/ÀE÷LßáúVtÏô®/E÷LßáúJtÇô-®/@DLßáú>tÏô®/€CLßáú2tÏô®/ÀBLßáú*×wÇó=¹¾‡×=ÏwD¸¾À$Ý3}G„ë 4Ò=ÓwD¸¾À!Ý3}G„ë ÒÓ7D¸¾ÀÝ3}G„ëgÔÑÏ_áúoôÀó ®/F÷LßáúctÇó®ŸÑEw,ßáúWtÏò ®ŸEw,ßáúKtÇò®ŸQD÷,ßáú?tÏò ®ŸCwßáú¢8ç–á{jœþÛÞG¸¼Þ_áú˜ô`üú×Oˆ¤{ðë#\×È[>OE¸˜í.‰ë©…ùÆŸW&Ð œDÉݲ;“â¯ìøˆîÞn˜'™ÎüHO€0­Ò9:z¹zRg™£Ðf¼{´ôM8™$ÀE÷]•ŒŽY;Ñt‘ÎÊ1觙Ƹ#F +V¦FO,¦IÉÊt³ÿÊ4—k}ô`ðÓJ)2Ò?ŸÉ+Œt‡$…ûnJ¿ûSߘèàÛ øhL*¢Í>´B­w[A»©ý ˆ+übC kb¨¤iƒC1U¹óöA2S ¥Üê¸%=3\Ü[´Â„J7:mt¾íÌÄ`ODê ²ššÐè`K øLTf~Îuhœ^cX‰½Ü{inaÛ2V=…)h“‘àÍcÎíú7Ö觯Á”÷’½&Ò‹”ùrXjouz¬ì}‰:mÊiÕ3”Ç6ÕÞÝž™gm²h%}6̉!è3†14ÿ^½b2e–G 6­}t†©¢i“]2ˆ0ÇOæÒÂwת2:³xô"$‘g¦;Ÿ4YÕóS2Å¡ í4­NÝÁ<Δi´k§Y8}ÿ'ƒ¤3­Ýý›t>ÍîtZìEÌ݈í÷…ôÌwžl¿É á³íôÀ/mrˆÆ$ÕZc¥™cÝ°»× +s*£|.ÌsÕyòˆiLØÐõrãbbôÿŒ¡"0§‡þZK­kQR±µùáLÞ!ÌB§m‰ /¦§ 4D¹0xÔ£ˆÝ^Â?ºyH?uûWî%¾VA êúj¡‰Q-zÁçØ»Ûj'6fÅEh»10l†[uaD^fÂñ°'CTµ{¤_þ`"ÎÑm4ÝlNãb°=ó6 M¿W|[sÌ&׳芖´ÇAcÔFgúçò¢ŒÄÍð+ Æ6é>йšŒd:÷9¾6èFë¶Ö>+k÷Å5m}ºx:ÇÝ7!µÆÄs?&Sk™GÉ0Ä"cbÆþÞ(‘ +º@Œ69œÌ–âܶååL1©¸ÑÆ>Ÿ£ ³K™$šØvŽ-e™˜cU©^$ûCÞC*ãQ˜Gx£ÊPžtļCK¦˜G¯jY‚}Å¢­|F’!6u}õžRV ט‰Öïí¶ò‹ñ[©;HÐ8ŒëˆaJtœg†jiäCÚç¼ûQgIé£Ö¼o ]ài¨Þì¼Ñ¸X¯Þܸ¸qŒçuøW;Góóß~tÉ»cøÁ¨”†;½Ü³dm¥ìÁ Ò{Š¢våÁ\Øã¤DknÛu¨f¦ ºyÆ̉ÎÐÝÊT?¦ë>²‹Ýbª3–£é=™’Ä(, }æäš´<çšárР¥¹×ª3Bã<•-Ü lq“hRïÙ5å"…xŒ#¢#÷±ÒÁÜŠKa2=³N-ÅäÃóÜõã…ÔËdhŒŸÜø^ +Âé s‹Q˜Òù–j…Ø`‹W"Óá^¬öx'ú-¦\kû·Çîι<ÃJXØÌä'æÜ!<õÌôt>çùîu¸—6¤NÛíé.öôÛi?º‡•êØHÛBJ$ãbpQ' +ÔwxO™§Éò +^ºE:òžüÔc.s¹.½ÐÕY c¨^§z‰7¦Ù¸§Ù1!÷øˆ–Î)¾å¡`«1 ¦Ê•áp,²S0J˜;žq– +.èŒcA;qÙT‹cW=õ¤!Æ:3†^Y;.#gxSôòŒo¡<â"4¦G1®Æ=ç»32ZcT»Å4u};z·Ð~¾z7Ã|ºÛéwb‰¹És•X,©ãUr«õc1=0ÜèüŃ˭aRÁÂd0c)Ú‹wF$ù‚äÝì)Ð4…Y 1£æ< ÐÑqêž"â s9sÝì&Â_»Oëþûl•-˜„”eTËáaV“§Ïw¦‘·twgž#C˜A?<ü¡“<ºbT×ö0Ò$údÈxeÒ5/ÉÜ “˜SíFÔŒŠÁ +1©2!0Àg=1´{$ftmöK¶µþÚó‘:óèðâaû1us|‹¤òÐ*ÌÉÐä“3$R3 vGox$íHa0wrÚý6\y, ÷˜GMGé­áßø{ƒøDÚ¦‹'8Tý' %Ð9ÇlÆtK†­¨§&7IvV²¡#-—Ö0üî’z•N(v?dt‹bÓHRKç—ž¸ž¥ÉðL¿ù`Ñ)®&ì‘S'MÏXb4’§ £}৓®K’³¡¤bÆšiÚyéžW&ûçÖÖ†&<†\çì ­•ùŸ¦ ,“ΘÑd긻û9%e%8C‰c¿ë}r‚¦;<;££M8t™úæçiO«˜`BGË,k ¹HöOåXPÑ9HR=c“bÊ­7O¢yØ鉡­3"Y:öÌzõª0i:ž”bôSÇésé ´uŽYâv- +"V¢‘ÙÓ…SªîÔãkx ˜ÁÐÍÅH få +éÌ ì‰ÄêäX‘Žd«y0p±Ôã|38%¤%l1×ÆèdY6ir‰G-k–É I“˜ç|"Òµõ˜¸#LCÙ`أؖcöžxåO?<<®zè®ç·}NÒú°+èáGÌ0Ëýœü(«˜’.ÞÇL.F6h×ú¦SŽâ¤ff V íÁ@¥âÀA wbð#ë7™yÒîÓÆcÂÇ‹±ñƒ¨ÙyH¸âu®ê\&>ÆsØóLúA¢ôÐ9Ð0Í©ðÁÅI7Ä‚O'GBä`‚oŽ¡6SMñ + _:Ç0/ÌL†èÆ$ChŸ³¤˜ƒI#^A,´¥L¯òHƾÍðV Í«nLzªé¼òšûux` ~’‡°Æ³LºjI—eJp”ŽšÂ†¦ë/'‚XA£§QfÄo<ËÂyg°EQ³WÒÖ&ÍS>Ë6¬L8Ž¸’l˜ûZ ±NLÇÐYì1}K +J‹ÄÀ_b‚9¬Òúý$≘™M@†ÉõøIâ:Ä“«lÁMâÞyÓæUv‹&PßÑÐÁÔ3½ãªLÓ¹Ð5aSìÄ2b‡X×âóÜ2ÙlrV»ei¸™vîu³‰ô5\KH;y +iÆŽ|GŽW5æÏܸCÊ¢§bâòI# +ŸÑÿ„¤¥ðZkñ††ïˆ F¢v*¢~Òjz~FX—n˜Z㤵OŸ=¦­N%®…%Q£m1Ç2†IBÓ»T¦˜[QÈèZh•‡Þ 4Ê1eÝ”MÛqä¨3–}IÓCw­0ìÉSÇaèñ—¤Ú‘"ÚVZÎD¿â¬WFö5æËšÂ,$Â~&InÉêÕF‘vtô˜_ MRû`\t¤õ.r}üv•y~I/ÀÁÄ<˺Õ9Žºç{áŸ:Þ®}ehz̯•Œ"³‡Þ‰&ÃhlšIC‰V˜¸½Å÷ü›-.EðCíÒpÿæÀ† Ñ'šŒJFbÀúžœÆ>·®hvîôþšØ:‡³IíªÒ&ïe…×&Y £O o6ÿ¤DuTù`”Çh;‹"ï¶4'†ôá£ÝuÁL“_’Ö +I%š–RòÄçw%ïxÏ`Ú×µ#ÿ:b3l’¼+Aa?§4ÍÚòA´W2Ù¤ÅRÔ³ÄsR¸Åx4œÑ$”;Ó 7mIµÆ^ÑÐ>q :ÃÔE@¤ù[¢9Ta§ C¦…½hБ}•ƼäqXÔ’>"YP¯´©+¿dR9£Áòš F¼)ÙL5ïw#¤7$ô@Öià¿å8šòôCEcQ9O›=æ{Óˆ/•²Q.ÆSÉ‘Téí )bò4÷“° +‡®'Lþ¡T9ê"¾§St*ÐU}h±Å6I§Á¯nÚBš¦¸$RŒCÖ©Á$Õáé1QZÕ¥[ÌiÇ9À„Ŧ­=PV´0bR”Û ¢./¹\8*2~ä„:gMÊ/F5ff¬êy4+4$"-G +¬cŒÄÌRhDÆfõeFÓ{t|¯Øìlc笥-r:öûÉ(GŽEÓÛ‡Ñ>˜„.Í8IöLJ[˜Ï§qÓÙçsäñè#à {wØðëfÞ˜h¡Š¼‡6B„ÇQÏï5;i¡—ÉÈ9–¬Œ÷ëL<²}Wò}Ÿ“6¡á­R `û¡~" +wx_d­µ*mO‡&ܧj;`Í=ºš„U=ç 3  w> Ùáp Mky‘ šŒSí:Óq +rgï‘N2ÃIºÉëJ'M¢DrŒÀ +4íƒ8Mãv  j{ò6sÛÃà'pEš MÚ$ÆJ(Ræi§y +Gý~%°‚SJ°\•ýô`ɉºi’‹¤0åƒÊbüuÛ4bAG„ë I¸·ØZý¦”“LM"¢0-ŒýµÅ¤Õ˜½ +­V=[Þ´¸˜!®D›¡›#c?¿Ž8d>Ï[ßkÕ¨ƒÆ¨Jâo~Rcÿ™ÆàôIâ,2ý“ÁŒ›)ZË1’Ú¿I••¯›&•×³¦Qs ï“‹$­·s, õwØÚhžt¿i{!Aζ ~¤úÚˆ[;mi#ÓÞ"9ב҃¶[â{’àM·?¾GdGÞšÝ<~Sâ®Fj šÖ¦ödkM´AxË'‚ÈÞ”Íï¸ìºnsÞ"~q®"T»NÒÞ"†/æöæý(Ìqà%ÖÉsM›ÌÞ¢ù‹ é»ÃþAŽ8#a¯-bÖ[îL»t$B'Rìói|ŒQ§!ÜÚ´e\÷®Wi‚ZÖ$R½3vA¶äʦIÎk»F< +/“cÚëI²ã¼ ŽyÌMÓ”’BvbJݡn›¶Îð­_b–-h"4GƒÄÔј± I÷ú©:Ñ(’%¢~'q¯œzÇÀ×1Ñ÷-øà&{‚€Ð¦i#ÿd.MFz¼±w±`ö;4= "(oZ'õ\j|sÃxnÓ˜t}µẍ]lš,ƒþ@ÆtÛoM,'Q¯vÔDÔ'™xŠNì±b‘Wœš±i²êJ#e±òIÓ&|Ú¸’²éŽdwF—Œéا¥£ó5‡}ÌM“m­Ë¼âÝtž—ÓÏÐt¼‡–rú€a`HGÄPzh ßEB —]øÆ'm"cë!-[¾z-çA(ù4ƒM`2;(IjZò`Æ®j‘§´UÝ4,H™$±–dûW‰·3RRêcí£Gþ$òºÐlÈ·4òScÎ`W ÌÊ»ðud¡HûµMá´‘nñ»ÒÙ3ÂðÓ‘\=—t{&ŠF<¤\ØZ,8âI(?){M¨G‘=ìyïÚŸÙ°Ë&‘TÙ½¥›äõ®^›Ã1×󮩪{.|Ð"¸îmՖ˯+Ó©h2-¶lp´öZ-'Ýßn-ƒâ?t +êè›Ö¯vG]ƃ³ýаŽæ€§ºNTmûˆÉ+¾,âŽ×¹ôÐd³Fr=Ž;‘Ì¿¹nò¡k7zÚ´zµ¹¦CS67MÂé Ä–žtš—:‘¿Óÿº¸ºîÚ.KhM*Fö| +—ŽH—Aƒ#qrªtâ[d,*‚ÛѲ2ž2!@©u8öÉò=¦/:´Iżu=Éâøñí«¯M8*Çhû ‘š8Ö;XÀ†Ìó{ëj¨AÃ_Š ƒ˜âļ vï8W›¦# ]ß…Z½Ršg—Fûí’EnJ(Ì…UÚ¦I—C|Š 2†À¦–‘Ü óAÒHä+I<)Ê1ËþM²°û7Éï´3Ö¡:¨;i¬w„5ˆ†8D»ÀÈwW¢mk%S$Yë¦Õ[O¯à7Ú4VoÌ|ÁIqÍ49æy?)·Þµ­–( ý*3GçhmšÃŒ¿B“\\‘íž„ñ³.Kt[›D~ÊÑ>HQÙú¦ÉdæœÅJ˹š;=“¯‰“†ñ“…ºwoY»O—½‰Æé3®¥hDŒŽ‘côW˱öéc§éâå¤äõ ÖiÐj¼yÛƹܼeóšÔ€ìê‚e^c\º~$DSÔíYæHíý­^-Fÿäe>iýZ@Íâãì‘ØÐÕJ§ÏE‰Sq”ÒŽ0¥Q€VN’tÅŒPÕ øÓ žµiDÞ é™&I +hx¢§Š{)Ù™ã 3†üˆ°YvqŦIX¤J"|Üt,#(H»Õ¬Å'[fZ—ð>b0=4ú¡ðqùæÌЦéS³Mâß9ä YCÉ&»J©°Êò3­m˜ú¼ž¶K"9oÕHl8.ñA|:Ü5ê§D#[µ"uºƒ#JÀ¥¥o,¹´«Pá7õ®3.r9nÏ÷L4ä¤Q<½óäJt¯†Ýh$_\AÕá‹=ò«UKÀJOÉ¡I–‡Ìò—*!-ö ¼CÖXWhèaej¾„ˆ ^®q "¹¤Í4Ù®ƒ¼èå7·"rÄ ï6Þ·‚Ðr¸Z§ª£û®Uçž%ß#ª_‰ É&²Æn1´Ñ݇¼¢.ôïÄ ì…§ípÅ0;Þnµ'g¶™â8vLEÂê¦ú5hºå¹G…RÅ‚8Ë…M g0mZë ò¨¾´#\‰P8Ú[ÐdÂ逦x­`wÚ"Žgœ'Ó(S”§}Ä×26U”úTûëºV£Åq WÊþI.c&€™M«’3 +b+~w DШ8b¥í[»'ð +Mþ…Œµà‡ÿœ7€ÓÚ¢ÆÚ:ìßFøžãW((*AÃ/Öû¬ýzº8#~äà—2:@¥«"üzE²Œ·}tKÈИV>¯´i2¬tô½br0Y¾¨Ê”?‹%ZÀ^’£ +5dT&gkÐdwDѯïþŒ¢Ó:J)©òTô_+#“D:¨„ÀhRV:oñ%†\<ãÀ²Lñø–ôŸøŽ¾¯£h9`Þ=sp‚FOl-¬+ÚA5È8it€4¤ú7j‡hN®>GW¹§HT˜öÑ£D1 Úú¢„5ŠÊõ()ù{N¦†ðƒ6H#ɧK‘ß°õ·AB$„¬šö0^Z!™½.˜AGŸ²(hºžÇ–½dõ ¡ ."ÚêºLŸ6m5¬xÝj¹K;æ(§t¬9>xÑŽ#åß%%%ýmÄä²”°lÒªŒ"‡H†¥:E†ó$pŠÓ6š ¸´FÊtU˜0õ°8Ú¦¹tpG?BÍÔÛÆ£HávêÏæÚŸtdÜØ¡ ô1À+`Rô ”Ï€CR¶kÝây@;È¿s)À©–Þö4j8ç¦%œâ‚&“÷lÀѬ&i„k¦³·ÂVm˜e:áB¢”F}È©|#:#Á:b¡±¢( oñ“r+(휥UZÄ´"H^¨­@ ¸$í¤ ²Z )Y‰ ¤Õè=ü="­ºicÓ–îOËdÓ%Ç ¥Ó=. eõ¬Ÿ.B`¿ÞôÑ"5I…Î^1)j ‘\:",Œ€RÃIF !@\ÎåŽl¸ñZW­9Ô\°‘¶KG_§ÙS(;àdò]‘Ŵ‹îeÀ}PEyB$ÌÆNZÔìe21*$æn¥“[Ûu ¨uË零ô(º†‘1;HÝnÄ ­‚z’iB‰ Ù4ÐBQÍѨ¯Ð³àx.Bûºç©°M†™žÄë@RŒª›VK ×ªãD!YÝO.]ëZ1™ÒÎd€ÃÉÅ•c›fή_'dÉò¥@AÖLTÄ–u”Ìé9ÂGœ3‚© ÜC=ªnµg‰Ä>µZoY…A"R$g|Õµf“Í&iQ«³P™\Þ}hÔ3àPÖ‡”§¬®Ä•a‡·…‘ >-Sr>G óD¦ê8?õyÞk— +‚¾Ãv•i7ËŸ0}ö ¿É„Nº®KŠûÓˆ–ˆFñP¦X-Kê§à×»& +Rh=ÞINÈÒŠ]m†¨R&¥ÛËFÚeúd¶t‚|ŸJúgÇ)=\"I®eG©í^Q6m!æú }©Îý›Xk!KtÉìˆì 2×¹puÊ0n?L·$HÈÒ©ŠÜý +§1LP7>³H™L¾Nv Îd"è¯5©\ä»›&9•:v.Z,à[¨.»úÉŒáàò³ %;Ö1,ZxF=ÀÈž´¯È7¿@ÊE’R+]¦A‰…²ŸX2C‹×nø¬yk+õM“dˆh½T‡±8¬€ÅšÎ>ìVhÑUG^¨ûD(¹×ÙÜ hÀŒ’µ»‰Úh³‹…&ù}Dp#2²•ê´*L‰ÜƒÔ¢„‚ºY$ñ›ŽžlÇu©n H +{V™”KÜTvÍ æ„çFŽ ýÔ¶µB6Z:³®pH–¬[É[Ÿ•áw¢Å^C{Ú6…¦sX*£µ#­xu|—ˆÄW—²éwwÎ\¥d-zf¸6i´]݆5zóÛo¦–£Íub.ÓYþéÒ¿B½Xü&-qˆæ²é,÷#ÞM-6(ȕшmœHMÊsääHi@ IR*ÌÔ e-Od(9®ŒáBx‰Ì·Œóâ9Ð{¸pÆ¥™“ç $´iÄB³ŽÏM„§ŒnY.!%h!52³k‡€‡ˆM +ÍB¡_üIt·¡)yM#Ã]ïš‹}ŽÕ—õ°CÐ÷5™”Ï(Ú*ç#\ª†ÛDÓ3šh¸@Z¿IA©«%Ýv‰: ƒ5*ƒqàtGíüäþÆ‘Æm’í=mh•×ÏéÒcD‰¢l í1†“FYeÁÒ̸FÔhÇcRr8ÇZÜ ŒÛ¥Ò2Gα—`è¢ê j¨¿­A«²Ñ¦Íׇ-MLËIV|4Ùl=p½”NS^šâ‘a;C¨ ÄШ~Wh"«pÜ ÒÏzðZÌùt‘¢Kº{¤°ã{ Ÿ |È.™ÖnuYF0à=M™F÷K#ê*”ûBÒ k^22gT*…Õî—mbj.ǦÖØè´ê™ä`ñ:NU`f\ü4W=.RjI¼(m‹$µåœÐJH¬üØF›‹úù’ê&/w9ä0~lm +\VÂL{;AlünS7ð$ƒŒa§K¢ŽúžGu)CÇ,.-jtÒ& +q1M(L;(?}“–ÝÉ“´õÒÒ/ãœ;D¹6W|k"†g)JÝ°NÕÑ6¼5;Ä5@ª‚Z%Žµ_3Abr8+Mõ0Ý)ˆd½Ou„‹ë56)²2²; +=I ¿.®’vEZ´óxX<”_]™ªÝ=šÁ §äÝ x×? Þ·G)³w˜È½Ø@J%éyœ«„›T]D—/ S ÷-Ž ~’YË Šôe—Tƒç•ÅX(Ú5l"âWX™ÜYñGÝxÙüá1PT5Ñý#048I„È݉„•-!>6i’­Ç¦XFÛÄšã 4oH¸HÄ ë¨'¸…Û•€æ%T=^9[ÞaSH)Ò¶U<•2ºE¨Õ ¤µíPH âwYa‰SýJñ³“Ú‘£ßÒF«ù¦‹*éu +ÝO¥ â«i^Â’¥i/.¦U õãõ(ÜfKJ¬ÇÇ(D”7’bغ!‘…æÇFªa~vJÐêKmXXe±2 kXq©;EQ©MÕ=Ý€CtFÇ.Ðñ/MVBh›´À¢Þ) „¾T¼±ÔΊ(ÐÆ>¶ýÆ“D;•_ùb…„¤Ü#>JZ~'^÷[”€Ùá¦Â„l”/˪N›”>‘ÔÀ/ÅqÂrn¹Ô‹Ó DbKzŠó1ÜNYÝ=~¯|¸ˆ ë‘ + û1¾Ï+b\_s–ýxd×Øx$χìÌÐÖŽ1YÂðJëDq6lŒ£×ªóÕ—+kQª +(NVlŽPXepi|AƒM Éë+_A˜‰´6Àõ`kü¡¥m³íN pyÜô2](='Ÿœ* ëŽ<3%Jf]LŽY~ÁhŽ“’`¥-¾E‘Žîv#–/ˆª#®ª©ítXFº ]q̄圾ÎÀàÊ$ Õø@‰fñ{Ñ3¸~f@8ËGí;¸± gé'Ày;¦Ù€Ô†;ã­HV:Ú.EÒ*ê‘JÉpÝ2 +H¦…Ó˜•·ìj©Î¢w²ä!8¥#“&€3ˆÉÕŒcÍÄíAKo2Øg=†¹É¸]–ãÄ>Zvx4Ö~J-û1œh¤'7ܶv…ESŒ/q¸è¡=Á¼;Vš/¾m©}£³Áà´î46HGD8ìs*QûÏj ÙÒˆ6x>$ ÑgˆŽß[Ÿ8ÖV\û¦Køæããz͹4´*Ùxi¸Ì'´}èx|v ÑýoRß™Fƒ¢A¾Èº³bÓR¤¨ …dp(}!z¤ÍDZ¡ÊR6˵H=ú6è —ý`õ—3ËÀt®˜Åá)»Ê¾öTÂaëÆ—èb`6ŠýpV÷ï¹5 ŒÍ´ºf¥ÇÝY+Ú>1 _Œ÷]®U$žúÑÝlÄ Nhj©=¡—ô*'$h¦o2^v$…¼oÆ× Gq7’]­k{â¥'á[rå`Œa«Ÿxék.¹¸N–^.ñƒJU€9ÙÇc«œœaà¥:µQ§Ñ|@TFƒJ”FÍø Š^.DÃ(ãa® ­ÅßNÂDä^VRÛ8z@i˜…@¸q»Ü(ôšƒ‹ú·ëAv Ü=†OþÙ¯2þ›>"ê„\€™]UµI¼UT+R³%ƒ¼oyŒwSV4t0Ø“oT¹ƒ{vC&LC÷£ÀÄ9PLd–¨-´ Ei†V"¼ ìõU\ÈnëM9¨îèžîªÑd¶Q±ÙuD¨­rk›#=Aí¶aŽ?ãLŸu_e¬hß{´€Ä^Ü,9FLò!Ñ©Ž *àæ\ÅÅX ¿šDG‰x¼=säÉ+@>-L„¶7ËoܵfX¿•Ë³LÔP4ìˆá¹‚yÿ&ÅtËØcÁ^j—]_HD‘¼š §|×V>Ak¸8èRC":8Þä°û¦ÉjÀÌ6òˆqœŠÒÜ]‰mÃ'3‚™ö¾þ.âÊLMŠiÓiú((fžíˆÿf”ò'n!0AÔLOGÏr:l$* ZêZæt›#€v‹0Ó…vÓ±GÂWDUÄ"hù¦ðˆþMWâ¥ô,.Ù&”–ÎBËß 9–y:œPs/.ÝÖ‘ëI›øÔ¸‰„]'m¦¢:xäN,ШïDËìpªi²ÅùÚpäìÒµs£Óñz +íówɱËÀ“ú…•Æþîè^gnšŒ¡Î}–šjwÐps o9ˆhN÷ÛjuœØâ8òÉÊ–ŽÆoÆï*ÉâGÑitÒ×40¨ŒfXÝ‘Ðå& %€²å3á×;û¶>ìV}y顤3ŒOcEjº9ÀGiˆXy†Ü"ìn˜™•=¢iîrQÂO|{l«i 0f·eäN`²ò¦Ÿ)Øl-›êØß#é8£°Ê1Ù³GÄoÆúÒÂpÒ­Àqxª~óëÛf á9 {âÚähLÜ;´_I|G@»‡l¦ +ø–36ÎÆ -'ÍŽèwHñçÀžà•]ItØnß%ÈøA`g¯¦Ñm„12×µý¼lvCŒÐÀ¦uàĘàݴĨ†×KRÍâ.8«A˜2—M#ëg$™3ÝaŒ  žn÷©986lw‘.WPyX=ìæx!H°,Ò€=0êž Ýú£bM +tÓ8n¤ ƒ™š)Óðàäø-'X0WõÔq™ñˆÆ®ç0)D'VV‘éV`šþˆ˜ß‰yÍ‘YŒ<Ù›¾ÑAµ[æí¶®Än4Ú4 \ç‚ÖÀÿ —hLœëý›d$F;q­uÍÁåncÚ„ ^ÜDë -úl`(…‘4oñ†EEƒCcT¥?©x‹åTã¼ãÑÆãšÍìhýe êÚ}½EýÚ´©ä&_l-·Dkk ¥ô¦´yf]2üWIuNà1ã¸4bòù„”^õ Ñk+ô§i{ì¾ù³™Êo 4qœNñ½ëãh—Ð5tâj4ᙚóÿ9îÂiÝ Œoïž<â|X_Q/ÂóZÏäûUè»G÷M[Q¤gÑÙ(‘ŠÊ±ßŒgÔwDÞ¢3mlºi\_ÛbUn¯» ÿ¶1‹´)3…ί»bä!¥`cZr¢½tÛ{œ#:ÂœèI„x:{üft¡µv¶ä¤u`î#~“¶‡#“Ù‘ñŒÝ¢é—f¬0´EoÔ)%¸Ø°ú$‚ˆ\±‘€)ú÷@¢ÞÎ&ͳ-4)ŠwÖ4ü|²þ3Y}éû´w,iÓ2Î|hDœ§µa šå8ÁwtN1Kš¢þÆ lÚ2 ùˆì3P5 ¦•O.4™Ö:NqÞÝ^VTJˆ­‡ õåŽGÍ =¡Éûlndù›Qm9êCÐêx|XÉqŽ(¡(#0žÐè®s¬ ösÉS´œ¦õ túoF§]›dUhÄoãÝ/­hÝ4Ú>nÀp~aDOhƒFšeP2IýdËÄp­±ñ[‰:MY Í$Rð5ú Ûg%›Fƒ¾y"• +2¹Õ4ZËœò«/Ð0#êLI2Ó¬nWåÒ’Ù*¥ŽàLÎ8,w” °UtsDp:ÈFpþ8i²s¢0†—ÛÙ]±Vq¶‚°È(å©·&Ó]9¶ é MÆ€?IN”%i»ˆ6áG#h¡á»6 +„mÏôÐÝk‰½’7~tóˆ:žñ ÕCTÜã@IYÝBê,dÄq Z0N^I2eÃ,êGÔ‰#3ÉlÊ6Ýl6À$e[›ÔS,âó)¥#k£ŽÒ~Ä<“î>®b „Qëóu$÷¸ k# ºG5à: I«kÈÄñérºú…’YD¦Ã!E.³¨•&vÛ,Ž˜¨QéŽhÐLº„{Ö¿llfLi°Å7üÍX¿îsBˆjµM£&AËp­Örtá(f‡¸RÒçk·T LÁÙ0ˆz°,#]±EOↀЪ|ºtl@êщ J9Küµ ÒuÈËèQ‹S´6 x¨›YB«8C‡÷4pÊ‘—t¹#E¥<Ó­’zéáSŸÈâ»"zh™^QÝ@ýßþu²` ú¸üéß~ü§«äÏÂzC´/N½ÓɲIäIÁÿ¯?ÿø»?ýHþ»¿á¿²ãÔ õþôçË¿üã8Òÿ¼üëåOÿôãïÿtå“æ_É'9*K‡(/?ý‡¯üò#¿ú×óãôiÃ=Ëò_*?¿ß_½Žÿ ¹±/ÖóŽß7¿:™Edøç߯oX?ïwùb¿ÒýûüE0GcÆgànÆxVYBÇËê2 *ÿý?þí÷îoÿñŸ©Šø÷ÿúÁ•Ï¹ZûOhH~ÍÁdŽ+÷“Ó`P̧¿ÎÇ=\3µùÝ|ò,ßñ:ßÿŸ¸wÙq-i²3çùñujo¿lw ´Ô% ôHÿ¬Ñ£Jä?hèý­o™;ƒd0Op3ƒ’ +ª:I ÒöÅÝÜ.k™¹Qâë0_ô¬æ~Zó˜MÆM« Í7=«yœ×œËç|‚©ùú£'5ïÛiÍ„®Ÿ}W窾ùìYÝûyÝn®¿ZdMÝ7Ÿ=«;½ àÆE©ÿãYmù¼¶e'þùi'žÑT¦¦2>²Æî§ö †VÝ­àëžÕ{Þ*ù¶îJ—³s¤­ü¼© +åwƒ¥ËÙyÒV~Þ^…ò»Óåì\i+?o²Bùí érr¾´UŸ·YSõíÀérvÎ4ÊÓ fËÊïO—³ó¦­ü»ÊoP—³s§­üÃÊoQ—³ó§­üE;v?ºœCmååEåwƒ©ËÙyÔVþª}»P]ÎÎ¥¶òíÛý êrv>µ•¿hßîV—³sª­üEûv?¸ºœWmå/Z¸ûÖåìÜj”ç-Üý ërv~µ•¿háîZ—³s¬­üE w?eºœ.må/Z¸ûiÓåìi+ÑÂÝO.g‡M[ù‹î~út9;tÚÊ_µpwS¨ËÙáÓVþª…»›F]Ρ¶òW-ÜíTêrrµU¿jßî¦S—³C©Q^^µowSªËÙáÔVþ¢}»›V]N©¶ê­ÛÝÔêrrXµU¿hÛî¦W—“C«­úEËv7źœ^mÕ/Úµ»iÖåäk«~ѪÝMµ.'‡Y[õ‹6ínºu99ÔÚª_´h·S®Ë¹áÖVü¢=»>]ÎÍœFq}5½B]NΞ¶êW=µÛaÔåä j«~Ñ’Ý¥.çfQ[ñ‹vl;—¯gSiW)»•qNQ}E‘Ç%p9.çàÕ'Ï)>^Qü·¶Ë³³ÄÕK~YÕ'ö»>UœÑyõ¸Òy +óqFç=ÄãJç)¨ÇwÈŽ+•g§4Þ:®UžvœÑyã¸Òy +ÏqJç|ãZçÇ)w¨kgÐgtÞƒ5®tžmœÑyѸÒy +«qFç=4ãJç)ˆÆ™Ãø‘ñ©ó2ã”Î; ƵÎ3€Œ3:ïñW:Oá0N鼃]\ë<¿8å\Ý¡-®tžB]œÒy²¸Öylñ7œÈk•ïñ!¿ 9®TžBuœÑyâ¸Òy +ÌqFç=vãJç) Ç÷+§ §tÞ!5®užAlœÑyиÒy +¨qJç-.ãZå |Æ)wpŒk•g`gtÞ£0®tžBcœÐy¾øTy +„qBã=æâSã)ìÅwP‹+g '4Þ#,>5žBZœÐx¬øÔx +`qFãžâJã\Åw0Š+gàgr.·è‰O…gP¯çx®ô½'+ñ?[ß=6ã:¨=Ñ8å}ÜB2®ÐŒ3{ÿ‰qµõO 2N×t>Õ¼'KË8‡=8>x—ººQö–ÜÕ#¢Ò­Öwd¯1”nµ¾#õ€št«ô ¬Gœ¤;¥oÈa="#Ýj}Gë éNëòXèGwZßÉzÄ;ºÕúŽ\Ö#ÂÑ­Öwd³1nµ¾#Ÿõˆbt£õ-­GÜ¢;­oÈi="Ýj}GVë›èNëòZhD·Zß‘ÙzĺÓú†ÜÖãºÞµÒ7•õîÒ[·Jß‘ßzÄRºÕúŽ ×#zÒ­Öwä¸ñ’nµ¾#Ëõˆt§õ y®GL¤[­ïÈt=  Ý)ýù\×#îÑÒ7d»‘Žnµ¾#ßõ€mt£ô¯4£ïÈy=àÝê|CÖë±èFç;ò^E7:ß‘ùz@%ºÕù†Ü×Ñ­Î7d¿¾’‡nT¾!ÿõ˜s¥ñM §ÿùo“`wañÏgÁ0“î\”ŸÏƒ}¥$݃ŸÏ„}"!¯=• cp°¬/ƒ¿öôÝXøî`¾é1&ŽÎÿÌýjÛ…"~ÐÝ]¡Òøgqì´NÜ-›Ä-ó¬ÑÜ í¯‘¥ƒAÚn¤ß+£×@Z$—cêÕó§ºGT";6f)EwÏÚéyN_ÿÝ2ä1ÿ]2†Ê\0ÒüagÀ\ô<¼ +hLÛ-cþs?Ü¡¹L³Ý‘1ýóˆáæý`Z“g@¤˜±ø91å.½Â÷ê6Ùö¿¥°èÍx¸O{*SÖ®/……ôÊ[`²eÞ‡§ºxl㚘-u&t0MY²T<”Å-0i{yÔØhÆém=¾ÇùsS¦£DSäάæØ1mŽQýHG‹&žƒ†ánÁX¤Å¸R<}xhäÈžä[á•ä´¹Çô-R½2~3GC“ÕŽd†n÷Ø´@c7=R;Çd4£œ;@ï‚å9FLæÖ]ÒÏžq»§Á0”W"¾wðè=Lñë¬Ó{9dº]m¾­™˜§ÅÔâ¹¥hÎPm”Ä d7ÏÁ’-‰(ƒ·1êjDžsU,+>|<'Àer2åŒAŸ¬óedä°ýòÐ Ý:ëQv3;‹<°¤—•D#fmt–LV}÷ï1C†NÒÚQ{Ì 4°O¶f7Ðë_ãõm ZI´çgp(o¶Fܧ}΃âéš×ÐÁ¤Ã-EÃkÎé•3p(Ôµ«Yæ ˆØé~;BFÃÎ9è¾ÒÚÛÏ™y›4¦%ù` Cib[Ò1>ÉÜÊÎ~ ý ^#“`,Jž¶ë>ãÌT׺OG¼œF&7¶(óéó–õOß4ÓËœ)ëÑLº†VãKy˜Ú¤C—ù_s³ÒÙ}Mìö4šä›7¥w¥ý?×dõdAñ4:ðuäЮTËšaÌ)ç1šikZ\¾É4Õ=ÃL[´ŽÊŒü:t{0ÇÐùry…Ñs|¢jæ—Þ=b‘áº1 n07•¨ÌdÔ Y  {.§Žq¹ Jfrpä³æs¦uúÁ³Ø™AŸÜÍyŒí—¶Óû²1œÏ=³µOIÌÇfг¾=‚^6ƒQx´éƒt ‰7÷à ŒsÌ3Ýõå7•8hƒ^›Œrõ¬D&ìÁ‰ é¢¥͆gCv9eL,ÓêmVÅŒè£Îoi1¯‹½Þ£¥£:¦2Œá™ézòŒøÓËiôË÷Ô¥ÑОázsš£Ž!ZX‡,]Mz$§»»tÈÈÒ™Ÿ31±1Ã.ÓVô;la-•rø÷õìç÷*³´³1i 0ã2Þ‘=P‰\˜ÎÙË¥0’J‹žÆ†jY~=†#dL¸Œ Á´{í»£Å$rçäqJ•á +t¥ßâ*9„YéLÓÝÉxàˆ†ˆA#TLµ*{0òÞJ\‰ MÌtˆ{,Z§ã¶aÃm#>“zÙJ}ª“}÷~ÑCa)踤ÝxÈ0;™9§†÷h-5=—©M‡§— Óvghéü³ÍäjGð›Ç1¢YÆ ô¢% c¾1Bc[s%$ OÛÆX4{v‰!@–%\rOxNl\c†ë„Œ£¼3ˆ¡xì£^ÿP2t—ص¶°Ò¼Ïë󓚆OÍ´˜ 'Yù5çE†"{Å`ȸºrWfhgábÈ摧Œ[•Ù,CÜê>•¹“Õ<‚ˆnáݴ̟ש…5¶Ó2“ôë-ž5£SÓ<ó3ƒa +YÑøMOT’)à eÐŽ~û(ó:u”g†(Ñ™41OñÈbÒ± {õ¬ÄÊ„”æ×L9·ìÁhP†ÇÏ%‘måcï=/w‹µŒ‘Úˆtý?¸-Õ:oO2=„Amó|4´xÔ™IÛXó°n™cnŸ;%7Ÿ`ÞÏZÖÚ\Z‘=–5ƒºÖì6Nf&ncʆΜ㨥¸å¹i )˜¤eÇDj¦¿¶ùțԙ¨¨GæñŒ±ŒÕÂ(öµ×3ϲ'o.ÙX#IªsbÛK<–€d+G3÷8]$*<%)‘½“ùèǼNMÏ=xšÌ€‚¸;Ù“ËdW½…$¯a_›ßüò†§KÅÌ-Ó)<Šµ2J^QEZ·Gí3öÏt€k¬ Îöþ…¡qrê–$¦Õ2üW›™¹Èq•Ú6Šzªg°Lu*ä¹+µí‹2ÇX;}‹D…eZÞ1»˜á•:0< Ò2í 2»‰¬ä>­!Þ²v|H5­aã6ÇäâŽhçímZ@•ï«;軯²Ç´<†cp™Ä›ÜÂUŒçÅÄ$íÑÂÝ32,åù½+Îë`N à„ÏÅîAe1¦¯‘”"ŠìñÔcÂÓÆ:æØH/Çü^%¤•×ý=ËícÉ´‡²_9s*ˆeùÀ࿆Tm9@%i·iÕEDFDo@ÆfëK¨ÿò¤á(,ñ6:yRŒq"ÖbáçÏ’÷pV¢:ÀVH§ç; Û²½DíÔQäü†N¦Céy†…ÁwRty¤z,¡‡y3[`wim lîÐó'CÒ‚äh®óV†'æEø@&举0/Ë:ÛP°ÛôÚé¤Ís¾—IÌ­þ"aÓQz˜lDÚš6=…1ï6òGòµQ¦Í'ªêrA+éM¦/jÙ´uja¿Øn9 ™ ±ü´Á“¦_ˆ3ú”ÿ#3ÂF[¯¡3©9Æn.eyÌnßrLk$)GÖwso <ö¡ÈNêÕ¯9_–­MNj:&µŒÝc„IÓvܼ{%Ô ãȵ@§2åò´+ia˜ü)ÐÁÌöHRòuÆør§Š3+gÒ*xá²¥Ô»´Mˆ "áQ0½9EJ:llÓÛáe¦OWÇ…%{Äé…p­#Íø«6–F¬<%cžkd¸÷º/Q»œLŽOúVCX‰ƒ˜ÐW,dð­ìÅX£´"»OVfŸ‹™­X~ èžø<ŸŽâX¹Ì/w=AO¢(þÚ—PNp<óÃãhº/•Le×±Ëðl/w¿1„ºÄi˜¶-¡çãÖG.ã]-ì[ìEBÞ8>’ZùrŒ0[ñs>–…:)Iýñ³„Üz˜qþ`PåÖÉøóÐIì8 óU2™6Üëja%‰Ñé2È×Ó$6æ=µ©‘9†ËJà>,Ÿµ2(1¬=îCNk4âNVOήr²P?RS ™²°…‡z´~(ª{;^”^fÔ«…ÔC«-l—ã‹¿³¡úÔ)·nŸI9„#áýŒ¶„Ú‰<øî9Ò; mó› õÚç Ãñж§gÈjãÉ®°½žµ•ZÍó›2ìëtB¨Ïלb É(3Ð ‡a'?5ým 2:×õýb°õºÏvò†eƒaËû´aa¹FíiõVîš·à°ÈØh!Œ%¬zËÌ¡¶Pk‡zÁü&ñÙ`þU ae†_Ú—PF"oö4D¹3Þ7,0‡’Ü-*aÕÈ9Ù¢ZçH ½ef¥ïRïG±wŸ';¾ÅæÀ·éQÛ¦0K¨¨ ו¹íÌç›B‚…»êáÞìa=À´„•)ò}Mþ®VO–"ÆeEË âIêTjK¨ˆ[ît‶º{Î{ŸØ÷½3Ä[«°”²„s¦l±ƒ~ºi8_ò:­‡WÇ «cÉtu{ìL¹OzGúâzê\^L”¶P‡œvÅq,¡¤c{ åª'J<*^Ü8h™Ì€s†öÊì%Ôiå(×ÞèÆ æyîá +l—³3or,p …… vANÛž9•rLhægõV¥%Ï Jø?-liIÈ#-Éu +ï/d:äÏ_e½öAi!WöͬœIV>O +<þ•/cuä9v-ªy9õ† ÆÓŸFÿÔ³žõ³ùë­Ö%l—³¶³Ž]Sjb°åá°C^da¨|¶)Ά„ÇÍðÑJd˜çÅÁÏÕByqŒùlKxx¤iPÝ’0 o>œy KFà‚w¾dáŠoA„¯žÉ=oÑ3[#%#2ÕROK!–‰h»Ž™=¾½,á¼ ÆÜÛ  •¤†.‡4ãBåb+?–PeLµÀM¾‡ÐaÅlÂ@½iKuæèéGó\é%¨ "6j”¬OvL²wÓ]¼œàÕ'6ª)dŠ¼æîXzb‘–ùFÖMUDëtž3žh¿/!NuóÙ€-:æÒ*äQReÎmx•™àbÛ—PQbgQ Û™*Ÿû¼M ²l˜Ÿœr¼xQKxÚÎ3`ô¯|±x'rOeP +ó=ÉR¯fE_Bíõî:~¢âÉQ¸ŽSpëìO>;äó÷õ ü¨Éj³Õi¥ $]„ÚÞZ§#Fçý3fÁ'–¡±yðèÉ”öt,a‹°¬x +5žÙ +úW¹ZP àî²}]-…äÁ¨aÚfPï¬FÔº6.Y°´àƈ˜ÅÕÿÁÚä¥'G„üÖ±dc=ü«;ÒyHËÓV¬w§›´.õÅxq¸áéTÖ¥, CÎf×Û£\‚PÇAW=×üéqÑVÀv[&ËLmy_² +]Î`”ò6m¾q>Üãéè˜LÐ a!Ø öȱùä’·6ïJ¦–‘Ÿ9ÚSlGŸ*µL]gk1Ö½Í ËKx‰•­SfÄů)4$%ÈÑÕj3í Y!¾i3!^I ß{ Û2W|³S'ÍÓÈT‚ð4GÙnNë1,w_ÂQê!í‹´Æ\yÊq6ìžz¿@™š<Y¢ê[IÆépiK¨C¸lZîñàåk+JŸßô æ!ÈŒŒ™öFX—§SãÉÿN“v‘ó³oÏvíó<=<Ìšò^ü,Iw+K¨Go-OüwôŸ~ÞA>̲Z™Iduy1ž/sØW8x@?ÓÓAèéÅi&a‡0Q¡ŠRBåJNá%«æ}+³*»Ï@MN¼ ÿ<È¥“ÖÁÓɉeK4š— ×÷Àe‘Èr꿧DUÛS¤ÑB Y(KµÙ +ûWõtEóz*9þÍðÏ‚×2PÈÕ–°zà9þ€Ög]Ÿ®óÜ{&›‡éA9a·õ({¹w=*Ï–NÐÙØ(À: «t0K|:ü* q=Þ¶„e:Eñ£YmÝ©&ÝpZ?P ÖXë¦SƒáæciÀJ–Ã@aiïxýzx›VßX¡ÐØÎ(:OB'ÛÃeJž^-7(¦†[èÂz=±ä€×ÕùM'æ¶0/¼(Žv£º„òš‡ ¨¯fk[(+Ö]VfÛ•¦Ë+ó!Ã]<ª0 ÊÙiÇV^¬j[_b6êH¹:'†»ö½NëBby«… ­e:Ûd¯ëÑþmÏ`£~̃ÕB°/kTH·T–¨¬ò"¼«½-lQ&ñoÊȚˇº¸§b9 dƒäp÷%¬ is& ‰o¸„—|‰­$cз±Þi¥1?ݧÚ·ÞÑÓåì–™‘ÿ$C|+Ç Ц ?á]Ú/‡“âA¼¿ºd:PüB€ʫ£ÂB¼'Ââ¬ì3“°„nOŒ¢E—Û HäÈsxù2+{êìŸÛÜ§ì ¨ë•€Ý[> mUÀKè­¯õADâzzÓmÃ.ÂæTÇÁ¡Vêêʉ^â›Úò;¦ŸFD àʈø U,q›:Érðn½ÏÝVû•ì_Š!K8¢¶?»‘2ŸyõÝéúòSKK¼½™éLb¯Û†SîÒ—P‡Vë}‹µ®7[ÛÌ‘;öK£“öðs§Xú\$$úõ—Ÿ6?=.`î=âÍ Î“Ü­ÖÿÅöJ˜Ÿ{<½ÊS˜›O¶\C¿N¹úu¤ÝeИqåcz[D†Î‘Ï;Ù@F®S¤“‘œ™ãL[¤J-«dø”1"Ú÷u=XE”{Ÿ%ÖYŸ¶K¨¸B«¤MÏûŸå"Ãm8ósÄž>¨™LŸ’°1Ò„ÈLË#Ô‰e_®ç ÙU§‹KmâÓ§ÄÊnqËS(+;+bÃ…6E3ÓTk«•¸K‰mb<ˆ ‰y©›†'FÉsmM5Ö¼{<”¢§5úEØ>=ÎqëTví¡¨RÖéÈ’fžF¯>ðC˜~£‘ù"dXýöÙ¨# ê(³”†9ÐÙÖf-aÔäŽ0AûDI/¡²¼³wBªùÍ=fÎHúÚ\¯YÂ^ZÜç¡ÿE¤±„bE)ñR´~œ2 a"o¾ª-8”-²+EZò<£´Ö·„dðÅy¦’ÒWj~pQIm±„äÄõU¯F¨Æ® +§IËGÇÿŒkÕéÈz)ò3F xž¤®/ÿ¼ìëbqÅvçe–fÒ_mÉ"ÁUB£ =ù·} ‡^Hs‚E»ãçÏž²ÏòqÃÁcOãÎ)JdëÓ57®+-¡^üò6 +Ý@>§N¹k„eÛô«w ì}î?ŒÎá82©lb[¾<`?Èm:T“fDlÃFš<íR˜spaTid?ÏÍ ÎH)áè]E*›U{›DíÄ6©õ{ìÖ‹,¡ÞsÚç6b]|¡C.¸–i›îçóçڳ빓Â]B#Õ÷m7I‚iÝYâà lÞ +Ùø9§àË—³œøGŸ}Ç=ùE$sF¾£VÜ9ú‰s)ë4 ú ÿi¸ eÙ‡¾/˜1Z²‘@]úÖ~G˜>S7qàO™ü£Á¥!B„2ÿÉa¦eàDµBG¥¼ +Ž0‚-j á‘Èòhg®ª»dò2EûRê†K_Iú[Ö>6üzTœÛÕ³^Sß"m„,"Sid¨ÆÛ¶©“ƒÐ¥ì>ù €Ùtó{È(G¸e1Eˆ²ùÁ!“Ðg]”@““}ÒPœ*¨oq ÛAú5¸$R’mÆù $CH†Æ²*H‰Ê9ù4mÏ‘‚ D8ªwòO—Ù@›¥(NóˆdÉRÏAu¢›Ð>ŽW28Pæ §‡®P`sL™n~'A5[RZF¾»FÔá¬DÔs95 -,S|¶€èTªQ!… %C±OÞŽLÜEËà„$ OAº"LZÊ(‹çŠxPf4mñµ­Ë%ÇH•Ýppdœ$‰ø=¸ZŠÙæ½7{éœãÅ2€- &d­Ýy§=ðs–¦’•Iæ¢)‚©‘šœ2½«-L/ɬ1]¨IäÒö5žÙ–µA£xÞ RТ\s×3¤òé{èÎSnFÚ9{¶‘k´›0.¹–×uÔ4ECïr÷wFNÇWÝcÝÊݾäq¸åHÉÃÓƒÅå7ÊÿºÖYÍéÝÀËÈ“”ï‹[è7Û9¢v£¦,S¨}íþ`†AÚ"¡Œll>]ƒÂ¦[—ÑQ¿"OUÊ‚`³Ÿf§Df'=ºaBÛäÌZËñÂ>ùfäÏœwZœvÏÅ4â´éŸx¶“Éuë]—Ògc ùzG¼=|+]‹kå2¯$”oÀe’}Ævà3ô¦ YƽîÔ­’erò¼Û>‚00‡ezÝ:2‚&9€Ií¾vBYF«äIÐ#¥Œ-LA´Ó­x~ÑNgL3x/’ÔÔÁc¹Û)0Ú²Y–åXÀªøž˜f×ÙïÒŒÞ_K}2ôùæ²D]®¼JѨÒú¤\Žg¶Lþ†[býd ŒâÐ-OY¹¢óÙ×ÀtYóZˆ­&€½¸ÞÛ”²¼7ª8dGp6í'-ÃÁ%G1õ¿\Šd,K°GpÔ>‚)h˜ D°= Á.3X6@¾O'Ëä×—0¨µ+P‹äcC7e:…ª‰.£4ƒ‚|H}fÕÁ &R±Œåù°j‹ê,ì–í„[ÑØL^ÝgÒú:9 ½ðeÒ w³ŒM0=ŽLë1¾§S¤m“neŒÆʘ)ØÖÉg œÃä:âï” ÷ìdjŠH{D8LAÙç)#GtIAEƒGq,LrÆËÑñTì#h{bjõ¬spCÖ(¤®¦y8l¼f¼ |•QÇL¶aF>’Aïšá(ÜИ õ¸óu-Ò»e2i:‹ƒÓGý¾ï^«ÂÜÚàáR¡ß"b™ÜÀÃ72­˜²‘r -‡¬cmg¼ ° qµÐ7°¶²XMz%07~,Ån©Syƒn*ªŒÓæe›AR®QÌ Ð2Úƒ¥J}tÖz‘A²7i Y†w8…Áz@ó…Ø Ö +.r1XeF8iše©ØÀj vÔfŠõìV]¥¹yÁnÝIžÀ}§Ã#d4=aýq!ñÒ''–|Øfà–Q˹Ƞ…·'VÑØÈö5!ÁÎkñ,a:èJ²}Í\“R¾+W£zlœœ¶3ø|‡-4Ñ“V±ÝK€C @ɦ˜èépâ§MàŸÂá‚K+ï»á ȉؚ›·,ÿ2‹ÞÎf‚æ® ¥ÄiˆÇ@ ;›¯`vöX·„OúÏ „ØnÂNϼN'Þ£Lat˜b.©÷3Ãßë&PÖ BnAUÄgeö`€l¤ùŽšâ{@×èq‰á4<®Q/‹ë$8{igÓ€ €ZAr$¾ÁA&DÓ¢QFŸ"½IYÀ µgë†á°ÕYôÕ+\Æf>‰i\ PŽ å«CüTÔk#ù6à;Aô¤<ûš-:;oÉFŸÁ"Q¸NcÛC_…Mpû_G¿þ-5Ö4;Û*òUé2BÜ  +Ëlù¬VVÓ¸”  +'ˆl¸šò” M–1ÙÇZá}«â»Ø´e:N‘–WõóÕ'ÒÛ§‘µÒýàg³ic¢ˆ½ :Ô Kƒ?‚`Œ{¯¶A0ÖÝWøÒAíŒÊÖðwJ ‘»‚{¼mT¤t/Ÿ¬ñvé¢äQË^º¶Aæ:¼7â&]Ft ‡Ësx_¼ärL|'hJíç#rsƒ¨I¿`;N T9Ö?õš@·cqõyÙê ‡7zѧ÷3.CO[î„Ó×à´åêæØ3LGØP™hàN“@—ù’à2j^û1R¶Zf¿ÈÌ5p¾‰ƒ„Ó¶›™ÒŬqc\AßmÁà%XragË&ºaêb—+‘ +Ôªý°«wÈÇUè,ÒU¸hAäÒÀéÌK?0¬^uìß‹ã>D »j)Wr²{yŠdV`@7Þ¨|oÚ?hª¼™ÄEX$‚$8Ô”'Ún +%¿àM— -×c¿ô_`Ý%‡­Ål>½W8àÁ›Þ"Ë`²Ø¾ +¦!’EM ’Rb£:7‰ØF¦mbëF9œ¸Q â§tŽ¨‘†‹‚䈊Öä)båK” ßÚNá¤êšIó†oDx´Ð¶\†–2B>‚ŠÝ à±Õ‚ïÓÊt +IßãÖè#GožuäŸ×™¬U@Ö,걑®Ã: ÛÀwn„FG`ÓÍQÛ'1u‹þÞ6‹C'åÌðÃà6:_’Ìèï:éM@:"j77š¸¥Ïò5 :ñùÆàÁà–)Õj”I„EÀ¥ïv·¶Y€Òa©â=Ndìn‰´ôãfõæ ´ˆyÍQÏÀ™Ì’gÂÏän¸8&¼á ³&ÚäžUÉð®ˆüôãD(–íÛ'w–;üø¤ sl,´vÔ}qí`~ëB`ª~”Œu‰“ñEl”„Ãòç!/Ð*ÄïìjH2¡z·‰›üEãÛuÛ8’,/½ã‘ )|>OoІÚAf†Œ’ç¤Ùa|Å¿ÂHó/H òªâÝÕIê, +ÔØIüîŸ|Vʶ¤T{‘èH«~™e2%c–)'aœ7‹HA @í¹3‰^ÈcÛ,ÁŸhŠÄeòäÌï‘ÐÁ“ÄhsØ¥Åû6ñ­9÷NU_ÙLt˜/7Ýêu[Ëú¢J6‡X´1¹pÉj–S4ðƒ1“ê…K.gA‹N÷t€ä¨ ©'ç¨Y_nTœNȨyNjéΤKî“6E|”)5$ZgX˵›íãÎvCDÄJîd¦µÇ4žPmÛäo“{ŸmnÀPŽ¥Å%‡ˆ5|”~$Ó•`pÏïå_&BàzI·VGÝÉô̆U–èKO~NKn–:á ëqUç-Ȳ&“ž9M)Œ% Qз–yÞíuîáVLr,ó"Ž$©¨¤æ¹ÆŽŒ|”Õ$¯L).êÎÐ! §ÏyO¾j,uÀæ‘Ûêe2Å`‡í6¢%)ù=M#@l¤“–‰ÕT ôI?ã\Ö•8iyÄáP÷q‘õIpEFFBçü…€~Œ å{-èè!#98û7JŸŠ¼¡i«Žò$pJ·•àÈ9Åvøþà +LD32  ÎZcºt2:hÊE¶]î¨ú€Ðð&HÕ4Û™•‚Ù„y þh9¢#2 ðMq?ìû$[ï˜[§þ? +#Òíë{;ö69oI-ëP'¯^Õ§A“›ó5—-Ñœ3å¡PVù Ó8U—"ƒXñ£B†+¶äÇ"¿L6`.isÐÇäµÃ¶˜0sË îls:ŸÌ'8è§^%¨Å[yŸ 3ŽtL§òôçêàf˜èО&Mô.4s£Žñ,›Òr»PÐ/ý9À‡‘¢[Oå`­ó–¸ÖeÑ<Ëä$© +wdØ&3;ÿ +``ŽÞF4(*“:JxäS\‡1á#YÀò·.ä6Ç\õ@,!­PŒœ%Xcáö X3ǼríÄá4ßÝ´Å–Å"H +|ç›.<{T"ª>è¼VjNc‹ü%\¤#s±y ]¢wá=¹cµ[XH¤TWO@Ó{ȳÏMO¬Ôúˆ&‰/}²Ï#•`é‚,3W>€€!¤gÒ‡åÝÃ6. hpÿt=‘Å4C¥à­¦%t^Ç“”Ó ýÂ׿{œ2\;ž–x¡E’™ä´¢ +6/¶Aâ™PÈLªYnÜ–AÿìÀFÕVÈë8ó1<³ع+”:ëéy¨³÷Oú6);-Õ:?'I[´Àj“sDe‰°v +á&êÚñSAF¦=z¢„0™ +p‘ô©[Pâ/êÓÁ¸¤Í­1§™N•îÚ‚Þ&Y­µÓ ³ÏVÚ§ÐâŽEþ#›ˆoKþ䲂5'ð 㸞€4b°Ñ½mà 6•<„ôqï£ÀÒ‘i±–öywmðÞ·íø$Ë>ëÂÌzþœË’8¬]Ø@0É*ŸL`z8¬¦›`ðJäsCH7K¶» gÝöo¶?%óØR¡ÑQÁÒ’x, .ŒAš6b1]O]àÕ#,ò±N·Hx®ÎØ™ÚùêGb¡ÞÈlZD6?ÏUjÄ'¥¤Ëå€ÞàiBÇYІ› G‰&æûH_»°gÛXÜ6·H0àm' …;9™7ÝpCHò‘"_EážÛ~„0Ad +Ö; +`8ào6§5Ø5Æ™iñnó¯ðDR0(*…ä4—õÙ€Ä ¨òS/ŒÌzao"£þ—ËDœ»Õ&KF™*yCúóÃ\)ÓM\¯YÂ1ž…Ñì˜*û¯À’"ÝH0ßDWxxt64Mˆ0„¾v’Ox ƒÐb`!Éßçó!>£¼Œ+›Hæ(H¸tM @Íb ån(šžHQZ„-Þ)dD +1{Ú/„ÌF9_¡ZÖS1œÚH²7“K!]ê‹Ñ!ífpŒ}½j¢´aîná¡c&ë>¤Ð¶A“ 4«ª,YŸ\) ÛqÅ°&N«Fµs]3T”µFˆÔt=‡9»;ZS;ä6úÈ­ ÓÝc‰6'Å‘æÇ@7Hì\œn¬OL0¸‹Ü¢3BEÿfN‡ÞÄ­ýo'ùQR]ì‚jÿá4*B}qÐé:„îaUÝãâ)é1»_¨31(È´ÆÖu’~<-H²º(`\ ž.ì¿^g£ „n¼²¯_mô‰…ŒÕ¼zYÈÚªªÉÕ5.‚Ÿ LÑ‚'‘§ZdI„àù2¢ì,BpyR”ŒVdEA¬¤o.ÎÐ";¸µ½eÂÚÈë´%r ¨™žO¢}gû„7»÷¦“ãÍÂþ Ô3MG‰ƒÆªœþà?'ÛJÖÜE#7B¤ôœ(_„“wŠNPj!,tmÛÖ,k««Že@Øš[YHhp›–âÜ›á-°³Ô^ÙÂ…–Ëcq0ú℻ѸaÛç"vÑPÛ» ´ Më « +þl¢?2 ;òb[%ltâ±°bMK»P±´‚³“¬µÁíG„°|&’Ã>YþÉ!v›™F/}zôø}Í8¦=4æ=Zч +C›¤T—˜»lÑõ†Qp@£V*Ü,%Û5 -\Y˜\ KI[*:ø›º ´¯‹…Ž1Ûß%ŒNŸ¤ˆ±èìonø8óÌ xÓ9ÛŠã8„ ]ë|AÃNÅ'}'ûèìö×Ò42tgØé~Š¡5&c¸›vͳ ÆG2*‚–Nsµw³åvg\SÆY"µ_X/«Ã;²ª“hÕ +LzYðI„¾Û¢’›Ù£i’çþe<úÅ®•È’³®ݲdñ Þêì–šèi©Ð©”éÒ½µh¤m¡\p0ïš5˜Ì™˜`RÓ6ØÅÜÛÂfpÜ⮤OÂN>u›;žèm¹/ NL´Îßg&hÑ‘"9YYÝ*/d´O<&A›ö{º˜?!<è R*4va%èÒ£óBZ}ÔkÊ‚IÄþYÎP{ót(_ÝIX„S5ƒX³ÛZ¢然 Œá8œ»Ó€Aø×ÿT<ôø²üûÿ¿¹‹>€ 槌pš&us‹ÐÿïŸü‡ü±ûïþ…ÿƒÑbã?þùñÿüoô9ùß?þßü_üÛ?.zø…¿¥‡vÁÁWÂú:Y_ô¥{}åïë£7OsŸú/úöòõþþös¤¿-©ìñàyæk}/þ¾÷ƒ­üòû_îçž9– Ž}_ûíýü%ee—bF²ìv—{L\áŸÁb8êõ¿:óWþÛÿ~¹…ä±-n¡qÒÒÁnw pÆñ=XÛPÚ_¯¾þæU<ý»;+Ý;¾üþöo?ñû ¿dôÚ×ßߟø}jm@ Ú×ßo?ñûÔÈL¯ÿú|þãOü> "€ªõ¯×ßâ÷qëÜäáMï—yœÜÇ×ßÿ‘çO… ã×çó3×ïŠÊqpºyãGгN‡áþ`ý‡QJÄ­ßoâÈ/¯L>…]¦ü}WtÄŸÙ¢þæ6I6¯LÐOÀßüî_Àýÿø‰ß§Ç½‚þG¯ÿÿü‰ß§À:âomßü¾É4ŠþúûÏïßü>­Z:-š¿>ÿç·Ço~¿—¤”¯¿ÿ;_æéßïp(pA¾þþóÄo~ßÕ¢A.ðËïÿÈúqƒTÒg_èÏlòæ‰׃'ô#+”l%lÜúàŒ{ÞÇø]RÐœÿéGiØÈD¼ëºÀùÁ;HÛ³gÄyÒöÍ1áv¶.‰æ/ÇĵììdDÔn&#.OüŸWÞù•Ë~qäñÔ¿Ñxqþ·ãêÀ?ÿ( Êœ]å_yŸˆ‹ù¯pýóƒÿúŸÿ ý€ÿëÿƒ~iÝN‹Ï{Jw÷Ä°Gˆ"½3²©Ì ¹ù(?3dÖºûyÝ 1“Q¯yé¾þèyÝã¼îÖ}Èí­^t_ô´îc;¯Û=!æ º©ûú£çuï§uçè¥ÉÐ}óÑóºÓiÝk…ÿój…?£)OMe|ݦ˜^öÔçþyFO9©‡òÎep^(¼ùèyÍõ¤æœ¶Ïi'ó-^ô¼æã¤æBÓbìþV//óú£ç5Ÿ·U¬š +QÆãZ¶4_ðÍGÏé>o«¬›ÞE«~0u_ôœîó¶*tƒÿ)è[º¯>zJw;o«¬»1èqŽ}™º¯?zN÷y[eÝ®¹5Q_º¯?zN÷k¶ªÒàw¢/º¯>zNw~Q7“Èçಥûê£çt—×tÓТ)>€ã:u_ôœîú¢nZ˜D_Š‹î«žÓ}¼¦;3_r+Ç^.{ìú£çt¿h×\éÝQØ–îëžÓý¢]Û]-‹v@S÷õGÏé~Ñ®;Ü%éb[®?zJwÑ®‘¨°äÛå™_ôœîíÚæà&§_t_}ôœî×ìZ¡L3—–]»ùè9ݯٵ22èáa*K÷ÕGÏé~Í®Àp1áßNÝ×=§û5»Vh•ÊFƒ’¥ûú£çt¿f× +W쀾ÖÚÍGÏé~Í®ðP»¼Â±¶Øõ'Ïi~ͪ:Q0Û¸íý¢úê£çt¿fÕ +0ýš=K—îëžÒ=^³jÅ/ŠÉýòȯ?zN÷kV­7D¦ê«OžÓü¢MKn°ížiÕW=§ûE›æ‘Äîµü†›žÓýšMËîàØ<Žk¼×=§û5›–; ¤´å7Ü|ôœî×lZîpš’“—@ÿú£çt¿fÓ2{ ¦äÔ}ýÑsº_³j™vâú!Y^t_}ôœî׬Z¦ @ßsÍ—xèæ£gt×yMwuƒ:ÐRÝW=§û5«–=¨ {ŽôE÷ÕGÏé~Í®e·}òdÒË»þè9ݯٵl&q—îëžÓý¢]Sð„0çËQróÑsº_´k‡áÙlÍNæÑ.¹Ð•­|NO{A ƒ(ú~I]òœÞþ‚Þ¿½oîÊ2éÛ|ïg åç~9VÃÓëÓ×ÿ¢&X¿gÂí'U|—ž~‹Òï2ÓoQú]Rú-J?×F'7¸ -̆ñ•7ºn?z‡Ò/…„ûÚÂ;”~©!Ü—Þ¡ô~2¯b<çÁ=«á›êê[t~SU}‹Îoª©oÑùMõ:¿7©?¯ó{‹úßT‰ß¡ó{#þ7é·¬ÒÛSN[´¾úAWâ¯ñÂñ¥÷@/Øw(½Gh|m¼Cé=4ã Zã J¿=ùß¡ôÛ“ÿ-JïÑ'_)oPú­»ñ¥—Ð2þõEÅ$vü×&Ói.¦n7NŸú ,ß¾}oÿ =üÒ¾²aÒþ×à¿ç5<¢E¥¿þá#ÓNÿ{§ðo/]ë ºß¯^ÖÀãõ,7Ý‚¿1µòÌïÓ˜–YGÌz~ñý|BÃkèy¯="ÌøÐSîo,£ß`üϨxí!ÐðìSšfc<æƒ1æÈí߇ÛdЖkÄèªûbV¯:ZÜSRÇø¨êç4¦LÓ9í‚ß0“žW@›Î‘˜pýEÁï˜ Ï+`æ3|ÜAúÍK^¸sÎõÁüûÿ¼‚Dƒw:¿ë ÏÓ¤Á—würÇÓ¿Oãhß^ÀolßÓ?¿3Ø”öª~¿üÀï¶æ1ß?þßàþŸþ}f³@£yô|~c÷žþ}zpÌ¿¡<ýûÝMP€¥~]>éYVÁ+ÙŸŸÌí¾€s~ášÇgBì§SÞ÷ƒ+U§*gbäûZÁ•Î· ®^`Vvø'å×Ú˪w<Êe—o®¿Àüº5?½*¿@¿¯tÀŸQzù¾Vz +ü}JéØûFéÔ÷¥÷(ïk¥§àÞg”Þû¯•žÂyŸRz‡ë¾Qzà}Jé ûFéd÷¥÷Hîk¥§ ݧ”ÞA¸o”žÁrŸQzݾVz +Ä}Fé=hûZé)ôö¥÷hík¥§`Û§”ÞÁ´o”žÁkŸQzϾVz +¨}Jé0ûFé„ö)‡ë‘}¥ô4û”Ò;(öÒ3˜ì¿áZÞè|kùö}­óþûŒÒ{¼÷µÒSÀï3JïÞ×JO!¾Ï(½Cx_ë<õ>¥òÚ}£ó ÆûŒÒ{L÷µÒSàîSJïÀÜ7JÏ ºÏ(½Cq_ë<ç>¥ò¾}£ó ŽûŒÒ{ÜöµÒSî3î=`ûJé9äö¥÷Hík¥§ Û§”ÞA´o”žÁjŸQz;Vz +¤}Jé(ûFétö©ŒÉûZé)Xö)¥w0ì¥gðØ'7t£ôM ÿ5JïÑÞ×JOÁ¾Ï(½‡y_+=…÷>£ôß}­ôÐû ε®7å}=>–¤õÏ’´@¸Ñõ–<؃Þ·Jß‘{ÐôàNéò`ºÜ*}GìA›ƒ[¥ïȃ=èop§ô y° !ö £Á­ÒwäÁ´2¸Sú†<؃·Jß‘{мàVé;ò`ºÜ*}GìA»‚;¥oȃ=èSp«ôy° +!ö 3ÁÒ·äÁ´$¸Sú†<؃ºà­Î÷Ôïò`·:ß‘{Ð÷àVé;ò`Ü*}Gìk§ƒ[oȃ=hqp§ó y°½ n•¾#ö ©ÁÒ7äÁ¾v3¸Õù†<؃6w:ß{пàVé;ò`Ü(}KìAÇ‚[¥ïȃ=hUp§ô y°= +n•¾#ö 9ÁÒ7äÁt%¸UúŽ<؃vwJß{ì¹Uú&ŒÔÿ¥·y°[¥ïȃ=hwp«ôy°}n•¾#vÍB¹Öµ?ÇBI­G„¹Ö{¯í+Fšñ³L¶û8N8¾ÿÝÌHà^åB}ùÝ/pøã¯'¼|«'¹{|JzÄÌLj)ýÅ |3Jæ[EL+ ÁWEùÀÿ©7R0³Šñ3àw¼šß*xÇ;ú­Â·¼¬ßjüÝ[{0iè¹·ÆXh‚’šó{6Ôo¼ã­ýVá[ÞÚo5þî­ÕïÉ4ÿt"ïú¬ïՃɆ—­êlµ¤¯CUþ…¡ÆGÒã=|=rnœý®)ÿhe,]ý¡Îãt~DçÀQöGJ0}~Di鞣9ÞéêÉÏ(eºÍÖµš(}0ëâG”f&„&æÄ>Pú`ÂÉ(M»÷¬²JP“~æñòJÌú@çƒQ%?¡S›T1oéí‘Î ©ŸÐ™©*¥Ô®¢´ ŸÐYÒ¯¬(¥>¼Ï7†ãðà¢öè>÷í=:[êñët>8?d mžÔò£Ír‚Çtj‚cÇ9\ÛÑ?*D3mÚ;—–Π늜æ´îm0Þ]~s˜JD—qÊI²ÜÊt¸[Ì`-k.´žÛR÷¬mGKÇ6§Ö2|º3–Õ¿¹UËs¨/C™:ÎÆ'éçúæ\S€e«™Z®¸@§â()æ ÿyÛÿDÿ×fœÀn0:ã £eø~•¦œ™OCÛëî÷U‹8§¡»ñ JdFÖ¨0¼Z”±eºÇ¤íÉÓŒ.!«zb+hÓoƒçêÌŒsºSf¤¶Ö„dǦŲÎ4k=@¦Üízzz”݉_=ÿ_Ú¹ÚdÞËVo²¹zpáµöäñéÝmXiKGÈ®ú³èI1äS‹xÚ>¿˜þ~é”ÝÅS™=þ2²NéPiú¯‘ýPdOµÚ[ÂQ¬²ÓfjÅþ'Q¤êC›NG“•³eØZS·¦ïéôëØœ¤cPý‰]‡ÍG!¬ÇÂ{Ëô¤µ™Mýá(˜aÓ1ë™ñÛ¡u®«.Gû5dÛ/H&ZW§ÛÓÍ–ƒªWÈ@0dúÓM7°ó“Zí,¶G¢oz »«rmÓC®6úž†®fPëÕ#ÖC×ÓÞ[È8œdϾ»Ê¥=Û´ýœ³Ö3ñ gUÉU?/G¹ÆrÙ×ó@{“÷£­Ã°)~Óº&C£»ãéJgÞËžu®RY£sXoKv,õÐ×™±­—.ëT´„óp-™bƒ#M¿ëâ‚óÑy²ÈøS­;º“gŒê1ãÌñžGBý•Òè1o6ŒêÖ–iµ)]¿ò¡c?;£ÎÔlFÍFÏ'ýf–µ›g—d¯çBuE;Hªí_âñêÿéÖŠïA?°Lx"¨’É›ï/ýb8{‹G&k¨3]ÞžDÙ²Ï?ýˆo¡:ëXhr¬SP›þ óWGíó꯬ë +ÂT~E>ƒN˶”t£)¾WtçÚÅ ŽG]Ö­½ß;´·µÞsI¾JIôÔcéêÿËN׸»]F-y®x‚ÓÝúKÈ/«™JÜl¯NÁvØè¥rø#“U“Ó"K/vp{ú»vŃ¡G‘LöH*Ç ÷t$¯£›ä\Ap–;;Oö\~ÁpÅ+w`PíÐCát××/V‡ª´pœX&ëÑu䲎³~$­Û” k¿ô :dµþunÉ›`Å&Ò+k›7‚+m2-$I¶°:‡î½d½O‹ž{9vÎÈtþRÃiØM +;{Œ +]¦tË×ëG¬wŽfýž\2]Jg¯ÖÄ|C4DÑÏp’2|úž®LØ2yI+Gî”_Q@ï⑵Šyßu¶i_nüæìS…L¦_j³—“¦‚Ì …Z-t¸½=nOÛTþ‡Þ¸Ìt=”(Bê¤ÀÓzHͥ؄QÝ\âÑ€¬ÉM—Œð\Ž•”‡L~—eÔÁ s•&´i³Sn• Y@­€ýâÀʾûê/{±)æ×[Ó¤ã/iƒ¾§ ]§•/VWÏ!¸­vÙþÐvàþžºJ†/†!AÔð¹±j<“†´µlAÄÙ%E&­ ë/¯8²KòñåZ+TÒÚ¨ŸˆƒÄy¥ÃEÞ›–JµoV·f|‰Î}­âé x‰É-•Êéf)ØɹÒÓ‰$ÏVGŸŠ—‡¬­®Ç6®2Aú²e¬þÀÔI†³.KKSǪ¼ù½…ÝÅ1@d6ý‰#v¥¼‡œc§9’¾ÅÑüµçÎú«S6vÝmbçé~ä&ËÍ[—ÙÄxÉdH&S¬Úìá%±–f–™÷j×Ö°ç¡­#£ã ¢Z&£‡[-R«ÿ¨cì ‡Ë/÷Q¾ vOÒ !ÓÚ ‰›-“S"mÅ/H2ÂKíÉø^ÁÑ9°e¾J¹5r0Ò Zªtžå`ï1YÅ•fB·Drð%‚ADz|C>¨»_Þª"H|³1eZ^Zé°aÌlÀÃ{$kÓ7œ±Ãuʆ©ÐkŒ¶ÊyÑ*×êÓJ‘-Ñ.ì–%‚2&Pæƒã‰¨|4½Ë—"g£¤°¢ +C´÷•CÉÜ­7”rÚö¯Û& ¯ˆÂ„[½¯)Ñ’ÞuFl8ÓG•ƒ5_$µk=m-ú–NMÊØ­M‰îEë\_ò¦õ•J| óÓäÒ9¼àDØÓ!ÒN;¤‹>X +¨IƒÅFF”€£F0Í>ÓÞÒßíS¦ Ô;b0´.X Meó–9Vz®9E¨¦ÓMoÍ9­:ÙÖŒ«¹;æ"ß®/”)ÓÚ2SzȲä`;ó¡uÜýk>k½ù!cÓËPæmKƒžCž2íãN.M ÿ»É8ØÉ…3 ÓÛ½(WÒç"¢]¶¼ƒ’ºÂNÖñ=²Ür¾9œa¼wÓª.¾=Ü}7¿¬Âum l|¬ÂŒ sS?† pLÚ¯Õ²×CÑ«t/ÉìäŸâ¯X šóM>Íuqät¿Zñl:j±ÿ%Ò +ðŸÊÞwQ€<â"eØ[DÈ>ZµuVxå)|ÐTüOH"ïãж‘<¦Ì‡Yïh#¤SpÏ«“óëøÔŠ‚ôÆ[¶5C$›¯ÿfÂzÉ­hR6»N‘^¶ÜÝý°A‘—"7ºúk•|éLRÐγð{9ì¬ÜßM”BžäNW¦<S¦Ã@§»ŠÜôê¶2â¨6_¿÷+éõéŽÒ”afÍËÀ 0([ÿ²ì…¢•ßmPr¨ó+¿#3t؅סþ‹ØË/$d=Îœoÿ4DU¾ª",)œt½ÅG–D牙ë…ôàFV$^D$>cˆtgZk5.E/O/µããËW™,Ý –’Lö™x蓢Љf©ƒNu0¼ä®×iy$ÿ*Œt²Ì:Hڼ̡?•ó[7þ¤'¿Zö“lóàÍÊîépuBzŠìE,(·]‹¥R ·hÿDÉ$²ÝnG&o»ïZŽÍÖR¶Mñx«SDJ1a>‹ƒ¨qñ§äs&Â/|-d2ÍZ­á¤8—å¦ß œƒöæ`Çàè9 ¢M¢3ð8âBÈ™ë3Šøziœ_¸yÊ éÌä%Ÿ»¾îì“|ñÈÇèÑÅ„L‹Û~ºdróäÌOLN†˜„"³ÙãAr +Zж¬Â­ãË¡HkHYšÚùL#Óûà´â7ùƒ¯eË29h¶ì¹Œí* èd—ºA-xIR‹ízŠÕŸòâñ}œÔGv¬èGÊ1Jüš–¹ËÚ;˜¹Æ‘ IS¦Õö ¾Ý†)²>ƒýf‚Ü»ê΄¥Ÿ[•’¢UôÈôùß½øêe‡ÆØC¤U¸)”‰ú>FW.{ðÖ§  ±eœ û”QW”Ïݺ|û’¤Ü°snºmÜOmÊš<—ú€DP+Û\vDÙxí¥úÖ“ö™Ö)“ý§œ·° —ü²¡5HÌâÛS…àGFž°Ïš1/üø¬»¬Ú§ûoÙg¤VŒ.”!ìlGE6zäúÆ”Õ)1/Ì]žE©KÄ“•Ù¨‰P «ä[p×|E…Ë„¨¢sWk*M™ƒ‚å2›oêÞRË°YaÛøÉ¡ëØK:¦Hû– +ïá+Á£I%¯¯‘ÁÖŸ{ïã›Îâ?ٜǤ½ë6¢;>:cÆ;` eY%é%/™Ó¬P›Üe|Û˜²º\cgð"ÂmE6JØÕX ²÷-<4r¬ºòÍÅÜšð¦t—£´)“û±Ùl×d"û +€H¥ìDqÅ@‡t=UE!cÊ.SS*Y[E@:JÖ÷d\œM‘¬+®ä!#å¿ëùÑŸ3·OÛLæWŽ[ï¾Nl .;/g„l\wt´OY¡ÌSB°EÖá˜"9z”ÛS@˜Ú%¦"½¼÷‚`î’'#ÞxÆÝ]íõoFÄÀ dúÁÝî¿©pªÌùtd˜ô”šb‹‰Ý*.…–)Ã2ø4ìÉ&ÇUGª— +؆F©œGFYÖ±s,vÉŠ~f›62fᆬcýú@„²LÓ>ä«SQ6JÿѸ×2e2*c£ÒÌo¦UûÙîdHXv¦5î]K:°'Å÷§§Ygh·£¶xÖåœî˜³k”èŽù\zºz•BfÔ¹fš¦Œ¼Ç PÖÔsÜgG¶ñÐaÛ\Zœ29`ÃXlU”[Ÿ².U¶ —_™Jdfèàç0ä + i2é +žDuÞ­ÈöïyÊaLÜãCöŒz@Ä$ÿ´Ý”IÛF¼o4_„q)T-jw6uH&² YÅ3M^FÚö2GÙ…L¦kÛw–_uYDÞIlgçÓðÝqÚïòìåð,•m´xb³ü´O™^–ñ}~uÔÉ/·WÀ±uÀ}œÚÔáˆûÛH9–hż‘Âj#~§„ª¡~R»åâ”H&ó ~Sq~!zš22@2žu:²•5v—®z‹$Vö©­ûŽ“K¢øã Íë¡Œ=û5Oz qÒ4|‰=Ö¥‘|ÀJ!ÝË9vD˜•¯J¤º‚WÁC!,ì>&|‘2#ÇÌpSQÔ Þs„Ç¥ã|"kéeéòGlcuþˆŒóJ1€…z!Z½±%ñˆ®½?m]ªªiÊô"Â˪Fí+·‚Lg*ÌÞæ¯z›èOý½F5dŸ5âJC‹÷ŃÖÙœÍÝÅtXÇ=ø(‡ ü‘ÁÔ5üŽrDö)dZg²3,$RÐ+ +Ù¡ÍæȨ jœ²8¦ +‰¢*§¤*mñ\$¸Í†NÑŽ=^{5xbß+.PÛdF Ô—‹”ÿ9<Ã¥—¿7-£dÓQϾmÝUwBÖ´äJèR}CTœüZí׳ ÒóÀ\Í »êÒe੦¬šKÔ ¯xÛt!*gÉLò›àlÔ eÊŽà!yy:·äÔ‡i¬Ô¨äÆuofp ÷5dÚAÚ]Òéï=Õ)Ê@nqžZgmŒYÐAtÀ «˜•ÎÉl—¸MÙh$dŽ`£ÛÍEFÌ+c$›!—ÑSeL™\5çè|çõÊ×ä†Ò¡Ÿe9€·ÄÿÏ=~Ó5ª]±vÿUg±£”içqâQ+тا­’ v³,ÞbýB[¿9ð £jœöéYñž7y™$•Zuì/‡s‰z(È~,P»+r¸ƒtUE­@½Mpw +àQË]¾ø°`ï.–¥éº§§y*h5¦2$ƒ…${p±¬TÖÀ†lxZ;-ÞìC¶é§‰Ré¡#Šƒetš3ÚÙo|ĺ+?Œ§F¨Áï¢uxœô¼Ñö÷ã8ÇéÀéÒ¦·ooNùC\G8d-Ù^ÐákÔ¢½eÖð>:y2Ê Ù²-8}Ê´óªI¾×âËÃi:ô´³e:åäUmÁ!¿˜*Ëäõ)zäÁzÔÉ_ùDz;û¹)h&²Fdûãk +pW¦K'-§Ã¹Y$û¶@gˆ8ú7Š]ÈÙ÷yÂïäôrFAž€ì[Ôç ®p*èEËHÔãkT£zbÙDPÅ÷š¡"Åå„ÙÍ Ù "<„LáUi“mAì­KÑ +Œïére*ƒâøÚ¸Ÿj™öš¨xAŽ¡%ÛjÀ$@²-‹Ò®<‘€»+~ ²`ÖØ]Ëœ$ʦŒZÊáÃ%“ÖÔY‡ ä=öLàl™ØmQ*¢Ð$i²ÏRµ6ú/ºÑìÅ/}·á$/ð¤ +‚>F5Ô°®² j ð¾±ÍkiœJIÁ E:A+$Q6H龃,Û„Ûß؉ütï5…¶D»šÉ¢ñê•© P¼ÓÜA"™œHB‡-Ž·>…¼Ž=²(Ü©ÎÇ1/¥ œÔxAT›³8»e:/ú„^À;R4°·2Õ%ƒÎ¶à+Á¶0>·Gl>pƒó’I·Æêq ÷s=&,)Ò3„™^‹ŸXæIø4ɲ:V  µ¦+K®$ZTÑhòœ8æ¨Ý!Ó¾Ž.œ$`2P?BúO¤?²®û–ˆ:Б¥QÌþ˜ü(¼™ÃúnB™Ë!XVê†EÇRÀ²öâá–\êLÏY{öŠV¥Çܦ:˜Z-Ú)"‘æÌ–mÕ~¿X9Ф!£Ó^ó4t,=h9²ÖGoDåa/F/fÏY"ŸáóJh´p!–ÉÒB¨ˆ+† $óœØzÎá‡Lë~86%o(ª cmæ$QP³,rja«jð9zeŸƒ•Ê‘± $¯¼Yx‘KNf¥.àÆ–¦¹Ç2Â=ÛH•ç}Reäeåà@ÆjEg‡ ì´KõŒ£ ‹í˜’ÏÒ¥ÔÉ;yD&xHÔ;åg·àGw²GÕÔ"u˜Øe *ì³±O}‘@‚aeõãîÃ2r#=*$;Ø’²’‰3zOÜÃy}iªã“:eÏ@æbx£g®=˜o¤º%Û­ÎÕ…CŽûöÃÅヤJÂ_¾â½¸dóˆ²Þ‘lüNíîز–)ôÒvYMU5HYd½â¨<ŽE•A¢¸ÞLK(lì•@¶_ÐÒˆH}ìA€òñû,Hvúu\d”ÉØɤh%{5€è`PgHŽ ÊXY#­¦·°‘/J@o06öãw0P“÷8ì®}Ud¡æQ‹² ÉÞ«ó§øÐ*ÛmS62®.ÌX–IŒè·>üY¡‡Ò'«g$¨e6ŠÁ)ÐO¡^»Þ›|ã¹&W!‚ï'{¤+™ú&oeÉH÷6j‘ìŽe`(VÃf¯¨‡]¦Vë°¢:Yý¤O6N™2–%CŸ·0A!¤î ×2f‹®mÐwÓ‡ôæ³e…[â“5‘߇(µYÝæaÓÙkh£8(²Íqóر´)CZ@ÆNZî0€]ŠŽŽP§gGj8¾—±´ŽåCFpå²}¸«m7õùŠç0€‚I¶aRiϨÐ#“a˜É{ḏ¢AwÈkžÆÄýùÓf{å\~ zM3' S66ðN~ÈÜÿtÊ)²oëKòµ”ãäÄß»-`¼ìzYäÐ7e`á~Ç[#A1±½Ð7ômÌ%©#ÕP>dd°Ê8#ÂJ†BÑ‚£DÉ[ŽcY4ÌhÍi&‹ `uÌ~3›c >ÑFÕƒ5C\ÄÞ§Õƒq¸’¹²¶F·C(tÑÃkmKÓ~õd ‰  ¹Íõž0¿fåNš)/ÂÀæ>ÃŘô,Ó@¡Œ—8“d|±¸ñ›´‰”Ì æaW$8¡T/ô¼’í M9»“ýã.›Ù3ö³8à9t-ƒ‚¨Pü°ýÒûÒ^Ôê^TÈ›.%;®Ð¡}¤¡ÚΑÙ×Û†L‹§ÛŠºp®{´ K¶0[#¬r"b§”¥8¯Ç¦­ËקA#3ä'†‘w 4GºÎ$ÝoE §»:uMRO/À:,D % +QZp9ªÈôhe¤Â‹ŒØlXlm‡ðèÃÀTÁx ø: ¸›ý!=nÆE+Ï×ð£[§ÒKá#h´œ7ÍUöóߨ¹}ÊFß ¢ïFW•­>‚bÛõóŠB“alÚ[`éã:ÁìÁ0ðlkn¶gA¿-%‘^䈙û™°Iײ•~œy»9‚JØ$\R¦˜os3¯Pt«Å’a;}q·iwb +ŒÇ•9Í“×EØÄ&DNŽ‡8¸þGðv3í'¸ÍŠ/®GFU‰-ísK’ó6‚ÍI¥kÑ. §ì`ÚMìÈÜÈÝbŽO‚cȨaaH1âÕ`ûù5PíC–S¯äø ö²SÆ#|§Û/Ù¸Üz€›×qq¦D{ñŠ{²¶Ño+zù¤¶-µ +ÒÉ=€À´éŒ¼ ¹Ü™¼ŒgŽÂeÐͶù›@š¢ÿ°F'öIUç°6³{÷X=“•R€¯-2 # Üß±œ2Û“e#,HÆöÉ æ,Ð[;ÈÇwÐ<ÅÇ,œíV'¤Í85ýË2pwÆ1[ó“¶XÌ1O‚óœŒMïT~ÇGà®ß—¸s¢(x´ü 8(J:3¿Œ¬€<ù¬Ñ¦ 3û€6ƈ’m v qÔÜ—©ÒP8´O3;à +¦i øœã3V‡}­Ø\^´FG{=ω,WÌjÙâè†}ŒÞØø³I5¦¯^—lþ«ŒêIV·™_ØuãBÀ'Oj,a-ÜžÀ(“‚*ÇD"$7¼"ßD zʤ+ À#€ÇlÇbXsB¦ʸYßÊ/Œ{b¨/o˜äºíhÇÇó;‚ÛéÀùTdCWb€-XȨÑh~rú“1*°)õvœ|ü3HÈ•Œê "ÒéþÓDcÚXÍi"àQ +¢CÖÌœ‘«WÅïÞûÓtbâXzkšã:AdyÊ((ê+#8®ô¿ÛG\'=…ºÃ&sU9Ž½->1ðÀh–‡‹<›±Y¶cl¯T[¦û –%Œ-ùùl +QZ=PBFŽ*zÍѧm2ö,Ko@¬f§x#Çj×®ÛG-d˜¬Š1w8"yMV…DFóSË8»³5ˆÚ¸´L‗±Vdò0Ñ1/‘ŒHÚ¢ ËRÚêL}c&û;&–ÕHGÿùG¸K¼ ë´´OÆ}§ø%S ˜Å´S½#nœdyò‡Á£Ø¢âh¶í¬šXšÆŪàZSYi)Ò”2*½D$nF­®„,…e`t÷yÖÓm‚nZxùDuªn³Ú…ŸH#"ê¼–hƒ´°úõwb¦'hÐ8e°…Lg‡êy¡Èýiì1‚Ö5i Ã G,s;|¨QÃ\OX$3XÅ“Ê9²í¦ÆÙtNhý$uL¡ ü¹¤‰ šéB9Xjf +Ê&K`1Ñ`ù‘Y|Gœ,-)—×IQ¦º¢êíVÓ~è×´C öi°2»;hÄ×Ìù“ûЃîx Oö¨.eŸ„M6]>ú"ˆ¶ÝôîÝykº û±¢5DZfYc_§¶H ¬¹tôyÒ?góD3=›sJA“ìt~˹Onµœ%®e|3ÒD22X Ë!/@p†*ÂÛ5êðÀ~Óʃø±›z têÂõX€N=9úÖè ƒŒcY¡­¨¤€L…»t..~ð‹º»1ûnI£,¿t£°ïŸ¤ "(½:óL]Žˆ?ÍwÔ×¢Ñg4 ½À’ÌwÔµ(Ø–Q‰ëä˜hÆ5h‹ü +H@#7Ÿôy@B\7á7j]Ω!Âm'~r›Ÿ=dn“¼åE ¼D®+“©Dyõ½¶èµ ¡! þúEDô.à'§„Ù/Ô}øO“ñXê.öS_LX§X»›7Q ~HúYõ"Ã4ÃEDŠ‚¿ÓP·Õ çÉ›J ¼‰Ÿt)˜»ˆèJ@^‰ŸüÊݬdÓVfSBâ H@æq£Ô±MÆÖEdÇgÝ„ŒÒžÍ2 ¤ÉÞ/£‘i›»©e€WVÅãOÓÎæR ö…;O[FÃïÙÙqÅ—$¾QpãFÕó8ÊêEé憊QPÕl¥1_‘ÁTZŽ¹B*­n!cÉAp´Lv M+ýV›Ã7ƒµ´k€ÍÐi»Ú$§ ¨ò˫ò~aÆ!!sLYƒ®óm§L{Dæר¤áЪŒE¢ÂÖÚ<EèÞÛ"C e‡Ñ‡À/Ò>«™šqM2>@™åó½>U:vPï!YptÓìZ€9I“ç`iMÒj:Vé€u© ³Þ&â•‚l$*‚3C_« b2ñ + dJÐd’æŠFÛ¾¸=$Ü”ÐõfÃ5Ãä=H^Ì'´-þá˜Âˆ  ³íÌGmdn![É Â?ìÑ“8wò0àÔ)“É¡ej‹FlÆ/hÄ´Úù¶ Œí“Ú3e‘øžpáù(ƒ9b ]`C6Ü&/‹l-®Hó;ô Né#X%Ë{¦ú«W÷ÉwõÍå%¡203Ý„ž—VÈè=²Mã ™žÝ¶E™]/µ‚á :±S¥3(¨LëåºjÔ¦jЕ€Âo\§ò°³ÒžÀóúLˆŒß¶`:¸yYäa`÷Á‰š}J|D¯vdn¬2í·YÕ‡¹’A5€"ðþtû‚Oåûìcß&סýšiéd!k´7÷ HÒÁPÌ)2·A ª»ª!ƒ8´(·„OòzÌ7b€ÿè„yþãÐiß2}wËseº÷ÓAÐÊ‚ë`¾AéSÖ¥|[sê˜óÓþr:>5båcЛÔÛ»IÛ‡iÆ=”)ôüÕ£§õu B´;º~ý匦¿ž˜ô´>à/Ú…Z*_õ}™—ôÏ1GFT6úëóÌ=äêéßwÿ:ð~ÿÁÔ®¿ýüÜšÄ˃ç·?9ÿc—b†úáEÑùŸ€m;Œå_—Aÿúoüûïð_ÿóî÷_ÿûn~¹æê—>é'éndàÇÿý‡J í˜×qýI~f¼0š÷í¼f¼d æz7=¯{?¯{¶E·º¯?z^w:¯û¨Ÿó¦îëž×OëÖIøÙ+tß|ô¼îrZ÷Zßÿ¼ZßÏhªS“Ž²‡|ª/30/;ês÷<£ç8©§R¿[C×=¯¹Ô|8Q1ö†æ›ž×ÜOjnÃzœ—µ~®?z^óyKeìï¸ÎQ›|óÑSºÓy[eÝ”ˆi›Scê¾þè9ÝçmUè]2ƒÆ¥ûê£çtŸ·UÖÝ`½ù—îëžÓ}ÞVY7µÚ R™º¯?zN÷k¶ +-m†ß\t_}ôœîú¢n`LÇüôVo?zN÷ñšnZÃ6ÅcS÷õGÏén/ê– ]þ÷‹î«žÓÝ_Ó«ÃÒ#pé¾þè9Ý/Ú5XR} æéÔ}ýÑSºó‹v [kÕ¸À©ûú£çt¿h×v7# +ÀÖÒ}õÑsº_´k›³G'q:u_ôœîíYîMw(Ïï¢ûê£çt¿f×\¹…–‰Ë®Ý|ôœî×ìZÔ¯Ú0|yé¾úè9ݯÙ5ŠÈt÷쉩ûú£çt¿f×ÜN¢À±_žùõGÏé~Í®‘| +âM_kíæ£çt¿f×ÈÜíp?ÆÚbן<¥¹¼fÕHlnk^ÍR}õÑsº_³jžM¡X–@vé¾þè9ݯY5p{½~yä×=§û5«F¶¿»"SõÕ'Ïi~ѦAõ¦_X¬¥úê£çt¿hÓ¶Fÿº,¿áæ£çt¿fӨܦ2êÅO¼ùè9ݯÙ4Jé‰Q^©-¿áæ£çt¿fÓ€"l¤M½ú×=§û5›Ä#:ÛÚa7=¥»¾fÕ€³P†q÷œ¥ûê£çt¿fÕ€õ@vbpê¾þè9ݯY5cxá_Ë\º¯>zN÷kV °P Óp—î«žÓýš]3Nq À˜º¯?zN÷kvÍ“…vÆ ]üÄ›žÓý¢]K1².ýÒ}ýÑsº_´k‡áélV=›GûÌ…®låszÆ zß¼‚ý È™æ5}ó¢}³±À^ßmÑñ;`¦a=á«ùù•_ì´ÿV:èw&{¿Ñøüß<î²ß­ <,u©”p%l~-<¬ù‘*ÂÃK*ç=]ü;·òçbÌÓRŸØÊ7u˜§5?\aZÆ-Òùݧò§^ð‡µ®5…_Yôµ üqÑKÝà—}éþ~ZôJø•E_Û¾½Ôÿ}eÑ×~ïÇE/5~_Zô¥ÑûiÑ+ß—}éð~ZôJ«÷•E_[»½Ôã}iÑ—žî§E¯4w_Yôµ™ûqÑK]ÝW}íâ~\ôR;÷•E_Û·½ÔÇ}iÑ—¾í§E¯4p_YôµaûqÑKÛ—}éÔ~ZôJËö%‡ë¥EûaÑk½Ú—}éÍ~ZôJ“ö?àZ>­ù×ò§>ðÇ5/5„_YôµüqÑKàW}íü~\ôR ø•E_Z¾×¼Òû}iÉ—^ï§5¯4}_YôµÉûqÑKÝÞ—}éî~ZôJ›÷•E_ں׼Òß}iÉ—~î§5¯4v_Yôµ‘ûqÑKÝWÝ×î‡E¯µr_YôµuûqÑK=Ü—}éÙ~ZôJóö•E_›µ½Ôµ}iÑ—.í§E¯´k_ʘ¼´g?.z©OûÒ¢/}ÙO‹^iÐþGrCO‹~(¡ñ³èkû÷㢗úÀ¯,úÚ÷ý¸è¥ð+‹¾6|?.z©óû½9k}&ï h°›ÿþ”âKìi­äÁÞ Cx^ôy°7S^ý@ìÍøƒçE?‘{3÷àyÑOäÁÞ ÁË¢ȃ½mìyZôC=Rÿ1‹>çÁžýDìÍüƒçE?‘{3øàyÑOäÁ )Okýš—°ýhðm˜:¾|ý÷·³Ú=åÖ :èfr…ߧó·ÉùW +Ó‚™ã?6&ÎÓ‚‹L~áb1…áhÃÀW”Æaž¹yOÑ=l¦º“ìúAŒëé÷̶>7aŽ7Š!8æ“ ÍÄÛ àf¼>»õ%:ZJE]–ÕÖkÎSWŒ2›§Ì›³¨AÌbB¦·«‰Ä ¬9’ýñ'¢s»Ñ°ÞAû¡µ÷ (ÇL³c–Çßql1›¡è ÓŸ dØö]¯­{–º¹K(ýVÆ +AR¬-ÇT^5(¾ª6̳´ mD&‡Ë4}È âh¦­ÝM¬¤3¥‡3ÅÔpÓö>ƒtiùú~pp}ͬ&P;œ›,¡7ìbˆlÊa‡Hʲ ËÜq˜à +ªž +ƒªó7Ð,ó8%1†EõGߦl|F„ªðºÅǺV×'”ßs‡ ÀøÜ »G;7ÀBLµ5½coKÆ ™µÙ±h,$ƒªN„ÛÓPŠè‚ì +Ü@@Cà4ƒ´¢[ÌÒ©ýYLßìPÚ‘±>ö€„ªÔ²({›:bI°Lw ANŽ¬›¶´ÅNOH•!2é@ïµÅ©) j‡dÜÃü{‡LP·«&ÍSÛ ‘/ñð[M(ƒæIûZšÙÇõ¢~$I &§Ù«ŽœwÅj½'[ÓY\Õ½ðA:`îÖ£Âï´Kr@ûŒÏ5æ‘è{ šØ,O4`–= 4Mv£ÇˆÇ;tu¹Ìkbò¡C¯oú*“Z-gß½ñ¾…Ëe]ØÏ þ[íJiæ½X§ÁKÇ™`7Ïjò—l3!kÖ:ÊAJ2Z9dÚêM…#°7ýUÐJõó„d#h©y h!“G±Ã§»×ÅW‡jp'¿‘Á '§u‚ ŹÝµž€¤üN]L]é¸D£þ*MóqTõx›¥KWIf6Ô“6ŸCûê¿{ ž±²ë_µxv|h˜æÌ + Š½`të¨ÛÛQ°ø¥Ì8JªùQsÚ«-ö Ú¬‚6«‘§»6~w¤S¾:K;ªj»»àOÓÓ,nsÀ.áŸ9aë(Á³wÆ<ËÊ u8®6è§, ¥äЖ±ó‹\ö€~èì˜êØL1THfë,T!Ó±.R¸íж@Z# ¡3T-ƒóGºD“õè+属–uò'lîpuˆh‚ìWª®îaªhŸÊ<Êì{|ìäeAKEèÔÚgÈ&F¶É¡¯þ¡4oß¡¯©ëtBÀ—Ò™ŸÛ¡â2Yg5.|0Å/V‡OïRú`ÈFÊ(#È:ø®N™Ôr8Ð^kKŽøT¿ï gzUPnwËiWºéè'<òCf<¾òÄ¢°š˜\×åÀŒ[&ó¢ý—-Õ;€Lß-²ýPRdCô%#ÚaϘïÖ©y(’ü~J1eui^ÈfúÑøÎzã¢ôÇôå}ô‘—Õq7Ã8Ë‘C<ã¨ð–¡Q«&I¯ì³öÅæò [¸œ^‹OëÐuZ¦#pttW‰m ZŸø™ÐÝ\¸p¸é†.úÌ£Âb3õ"jPÈvK<ìG&ߺ©…å 23'O‡áúéÙö3˜ÉuhðYd~ZP'SZ¬'¥ Ÿ‹ù©dg÷F™.©4Ž\ J›ðøéÙýZ¶JÓmÂ|¯ž¤Va<}Ê ÛÂX†ç×ÄËAß5ãv5Ρ̊ ¦q6±Î‹¶¦†Âƒ¬Ñ"â…È”nƒñ›ëjƒ/UþCÿlmÖ{3¸V½a ÎÙnåá$›%k6â;¥ú}Ì·¼›ª7»2ü?ðÕ¤ßã@èß4°n–hJ³)ú É +Š 5# ÉOãlÂדD˜”°Eö¿Â,̹Õû Öײ]9‡°Íù+u)ôÓb¹Î‘KX~Ên‡<®%ø2½WÓ<ò°sJ]Åç´-zÚ“ðžÀ}SXŒÚ׺& `1ÊÍZ0Ie›ì fÅ#‰E-#›ˆù¨ù†ô¾jq†Zÿ ë¥}GAoîÎØê9T¼ŒOµ”´ÏH¾Ê>ÈÙdÔ+-‡}939J&ÏD®Zxœ¿º§ÓÙ¶Ãä®UW¶rȤoðî-+?LÇW¤¦d@áT² ¶'WÇ8€æƒ´eÓÿÂD'?iBëí½–ÕâsVýr+ wï ¬Ð©²Õ“fü!WG‘\2w=çÈ´²  u?™ié$IsÆ°…TÉzlÙ°e‹ëŒéÜoVO/&ÎdçÄËõéÅ„¤®Ú¥BAœ´þ…o'cSzº±ŠÃüP¸šœÕÂwj÷‚øP§_'oº .g79WÈÌM¯[–F[Z†_E"8þ<¸” ö¶ÄÇäM͈^âéîíA@ð«Yy¯À{]Z@ZMšRŠ‹OIýéµéÆ6Cï{=Ú„]þÛÞFÊ8_ůÈä±뤓tÀjêìÉùÈï¬+Žû_fTéÝfßMöNyh´¨qã"Àï»Ç/û‚[úÔ=(%.%ü¾ez/–µs%Ïô¾…È»DÆ*¹Ìã—4ÅuËÛéd¡4Žü1{Úy=«ÞÁQÃ&À¬©÷ŸƒpÍ8No³NìžDÚÈpò›¬Kb…-înÈ¢ðE¯@Xoª/d‡Úæ¯G Ä3´;œÂ˜nþwH+ånI«ú`úP)b1O¸\,ª.N¬Wé\•U£–Ò¹‰m™ÚŠÕëæ›—ƒ%í*`‚ Ö¦ùñdÆդÖÍäÃqi§Ñ„ë[Mmà^“>6CÅ»µ­¦l,mDAFç(T 2Øîå"aÑ¡”G@ÂGÇ·•`)l]H–Øé‰×h£Pìø–vcUF¦—'‚J—ö@>„ý$ë +…0Ñ|ZVIËv¢×bIÈôä'Î|ëÈ{éÜí&ro§ƒ¨øXÁFì2ÁÖ®õÞ¥eøR-H|íóKÅ䶜ð¾.-éÀ}Éô«¹d¡3‡;[¿å´L~1Ó›)\îY !ó#þàF7ªQV´âG&Ÿ~ÊÁ¨Z‘NÄ7ÈÈ Uøâ›99Ûv˜$Ï2Xÿfµ½'ñ%l)Óe–3RªK4ºž±e6é™ýô–ú±BIŸ„‡-D„4œïd³Á$IH©8Úa;sâó –“¯¸Ü@¦)÷ÙÂTà0G„ü)›a,[œ\¸‡#ËvÜ-©X›­Ž^HžE \(ˆŽ¡zÝô¹£øž ’GWåY„-‘ +ržÅ2“Én#‹8?;ðê;`ì'v¥ËÓ=GÊô“jäºð¹ô>2î’r ûS‰à¸•:Ñs–IóË)«øÇ¢¢ ÑØ’¦Ü|­§8Îø˜ÜV‚.þÔ4d(–“Ñ%º¤6¾ ;•¿Ò·à¨Fv.ÊM—ã¨"Þ´ÚÇP°SÎJ;dR·§›ÆG[ RËÊý¨´`Ñ•š‹Ÿ"weÏp>Pp÷y0%‹“­×ƒ“„Ï[o™î¨vKA]è<ÖÈ žB‹b9 +ázQ±_°Ñ.ê]x=µ LB>7þ‚¼ÉÎ+ÐÙÓAˆ‘)!7ELÖKQŒÌUüÊ“ÙNñ£9륵H)žl»¼ÉFF£`ª„{‡è µíŠã1ãgN2²º!äÊtb}´C4–Šî¼œ"—Ã))y6?©éD;Ç/­ü^ :Z©äÍÉFÉÆÝkBv8 ŠÞÀÞL”Ÿ³ ºOk’‰¬)7õ-÷AÞÇÊ—žÜÏârj·ìŒ“2²çÖ0<9$ÞÍü )ëºKÍO®GÕ“Ö=¿’'„"îã€1w‹æDI*Z¸°uG‰o”7¡ ÛYdzÅúýsÉHð»då;î³Ä“ľ=P(+ºì)“Wí¸›pFþ6QH2l#ëw­ßh ?ëéaõctBõÝèÄCvº¯{|îöäÊ´te°$ ƒÝãÙQû©oÚ-ƒß=ÉOOÙTSÙF²ª….O™¹îÏ2¨¤eÉãsNœ(@@trjg¡Ùu q‡õnwËìÈýH™T÷&ÿø´¦•B!ºöã5HÐw=‡“þR¹M[K&›FØÆP¯‡ç­VNO‹ÏÉ@é ÅÍ#k½ø£‘‘Èèé$ÐZ.ƒ"CØÌ¥ ö%;õ3+Š DñÚîxôS!„B'.¾{”ä_ݾóäÀÓƒ–yAí„Çu!ƒXol"Ô±zöW36:UË8›ËœK•´edÉ×0EyˆHC€,Ýÿc_fQ¢/ý¹~G…xü¨±6¾i¥“N2y-‘¿;Q?¡0ùÐþn+F}Š‡L÷Cz×Y d²Õq› l´¦íáÆt,ÜÜ©ö…w ã.€DºþNÏ#’Š«Ù1 +šndò¤”C w1…S(o"%ÝN¼&ˤØí˜ûé"¬s‡@ÈËÌÎ$ËFºéȽN²úe8×»eé(eR>Á9l™ è€jÃíÈJ¤#jæù”éý*Âñ¢Jiˤœ&­ñ¹NÚ%RÒȺ,vkN-“hÑvjå„áøŒÒ +…Iê‰öŸBÔoít¥ÃEdR…[¦»$›ß44j²ù7ï–Q$ÒÏQqÒÓêvY&%2ÓÚIDvP÷™ª" éŠg+÷YbÈ p/g¼;4¨ô™+š-ºå¥bâéРqC¦«â¤æ‰m0Io±Þ$Ÿ–'S²)}ø5ÙÊ»ŠÈð<8¨T]Æ„2w§¤0Sv3Ȥª«ÌB|g§‚*‰ª¥`!Zƽ§lÈäo¡s¯cÛãðdÄ|n.ž¾l=e:‡ÓÈH»Ï¸¯˜T!íb8í:z²šõLÙ‘O„H†SÁYÄÒ ;Õèé×PñTñ€fʤ™t98c²t:QIÖE% ÊWJiðP -ž=ÂZ‡k<ÝÉ8»2a +ÿjŽ³Ñ}ë‘áøÏÆ‘ŒÚ·løL™ü:?|Prfý`í>IÈòôí"X_ž^ÈFIj{ŠÉ£1,,tÕ‰ //Sáº)ìåŠ]fÊÈÊ êÕQ•©šqeQ”Ã%®Ðš£9ws¤ì°vâÍjÛÉþ̼ RkRA'Ä2Å3;å‘IwÉSº!fóêÌ2ü]GRáÜÒÏÓ9-gù­‘6¹“zóGÊÆ2ÌTg`<âÙI›OÕx,Õ™Ž@¢ªÍÝð±'Š@‡,V;ñ£ˆfw×ÈdK ³|:'n®Òv²ÇA¹~’Ô¡²†¥ðË•¼=8åøB£¸`LEn®OɈé…Ïf‰ÜmEÙG¼©™6b”`s&ûŒJaÈî†×éšáºD©J–SñÖ=Ó¥)Óv×2*z¿·iÈ4‘»FFA}ù*ä°"[×â;åëeJõèPüLݤüî'×þfç'õ?ý˜mÖ”éBÉ?Éß)¥FÒ6>ÇéÓ¯í–éë7“!J™vÜmdìì“nÅŒ¨âØMš*θ@’)„‘k°ÇãÑ0‚#š²v¹Ær¥ÒbËõÇ T,¯8T2}f#Ÿ[™0d +—¶(Ço¡j¹µ%ë¤gOÙ®wÙÇL™ì]ÇÄzúL Úé†Òß%¶å¤YÂ[v=°Fœó'ë·ç/!êu*7VÓ/TTÙ–Lö•4f¬&õ#O¶¦hÊ^†Ž&-ÿ̾12ÊÃRæŽðÈŸIK)è)ÓÆR™Kµy“Ií mûÈK"oNþoœ[Éz–/¼ž¢%Ô£¸¤]Ìðz» b ß•£*Ù°¯LÇŽs™>Ù]d:t«Ããäi—Â!£N˜>tL¿cFä¡JÊæÈÒS|¥4íÀµ×™vÙÈ?e“oGȤà›˜¼w„’Öå(„ÝB¦'“G‘jF^IµÒœqÛ¢ñ™<[9j„õRbRT5ÛÜN2õØ£Ö:I‡Ǻ!’#µ…>å;ðVKx,Óíî[TóÙé’y–?žg/ûÍ׎—ìV^âɉV"›áµ)úcEÙýJ;¥!“M•6iñ1½àâždzžº|vHnV‘µBÉ´ZE;µUâh¢Ëeßp#-Ûuÿeúã+'• =:Q*Ŭ¨±-Y§‡)TUlbF†Ñ”7Û-«ôcE]Ö[\nŽvA§V‘µ~dÙ*Ö¢;‡ŠÑðFwÏh3‡Ï˜~§üªýÜ—LoydóFMæ)Ð|Ⱥ1^žÎƒ®ãKdåÇrêu›èÚRÔÃSŒã í}Z#„L¸l‚o%m ·|à -»éJÍl’Orža)‘Ùa>âí(ðTœ%LýÜ#*ÚHP7`,;ª$µí)“‘U8àK91ßSámüJê ÕÊ#,vwKç’iÓ'_맫{>jÈ‘ê Îxr9m¥Eõyl¤mØ¢¿SZ7£FDZjY_Ïx]¡2ù¡è”MËÊ´Œ¾d_ffrÄÜ –²ãæSqatI$[†û Gº“_Ùwýž¶×”Õ[#$;¶EU%e·6¯·Q—›ñóñ.+0Ñ‹’?ÛSÖnþg_G?+uȤ'9}{ж œŒ€Ó˜~ôIû”õÕ=ˆ¬Ò^4©"“žÄ©‹Õh1³ˆ4“žˆÐÝËÕAIqɺüÅ®§°L}ckÊfÔã;qO÷îÈq8Å¡vþ”mo-ET'6­ãö–¹>6—£†ŒœL:ƒiíe’¼,î}“Ï!M•Ÿã&Èâ¹ÿËŸ“ºŽæ=¦›!¹)¾Ón¶#”€dÒŠѶxtÌ´÷õ¹s…„~{ò%´¹~ë{'™Ü!“ðK‰åh–Asé2Ôž[Mz/’±Ó.ÅË;è棅¨Gk1Jí%em¹x|Gww+‡ êrœ|ÏØ1½þÝtÈng±Õlm¤ÌYFүȜüXOG8‘zà¢ö‰¬‘‡&:ôÏt“оdxÏ4K†ŒN°]c÷=qå0Þ‚´Ùà”ÉÇÞFtÓ‘’®šu}ŽaÝ`þ΃âø-…kãb]<Ÿž ɈZ<{ŠVÂ5dœÆª}‹skµ\âsì`‹ÖO/§Y{MQ[N£ew#UK™ÞœölÙ³‰9‰'/öK·ìÙ¤>W¶ YsßQ§›Q +8R¦µ‰ƒâ¥gãQ»ÞzD&gw¶Ï»´¤Ü<Ÿij;Íγ¥"‹ÜbʤÄäaÌ|wzY%ô4uŽ'Ðb5iÉU²G¦ á 1çݽgÈÜ®ž(²‡²(²c‹ÔYìX8A%e³ÐU>oß©cçáä—í ã§ÔC +w?R&çåH£'% ·ns4ï†å†To]²Œê–lx8ï¸DÙ2ïtú±zž­)ÓwW7Bߘäa!W¯ó^Ǻ^265Ü’Âõ’ÛØó¼Ó)¡})){Ð,´6fÈêöxÈPœ·&×á¾Ý¬ øs#s!Ëâ°ê²·GšÚëô]‰PzPëi¥EÖß͘2Ñ÷õWp‹´«ºÜõ?8œ×NGäõÜ 2½K"¬¯?<ɶ ²é-s…NÚY·€ÈEÒø;gJ‡›óú@ö]G& §žG/š±Hþ`Îqœü§t|%ДÙIÆQg0‹ÎÈÎdBÈŽus¤}¸3©P¶ãäj—T'ÈÂeO\ƒ4àj=&ïvЈzô”éKÄz"…‹€QÐ…ZF ™{κ@XÔ“ϯìŒ8{@%¨êgµ”éVjA§‰ªuSãîßÑc2Ýç‰åæ ÛM9ÚfÃJ8ã]g€LïsâQs{XK–Ñ+1CƒœåÌÇ#ǽ׺dÆ +²–UYü­ÊEÞÏ‘º $:ï©9¤£ëbËçkR;‰k +Iüj ™dôë8x±’ÈÇ“mqš9e“Â]ÄÞjN%Þº<`\ +ý€x =j‹ñ9ªômÔxÙ2R‡!ã—éH”ø•íµ—øJ`Qú¿øv«dF)|ÇÖÌ2÷YëîÄ·©ùl«‰h§F59^+¥~wy!SHeA‰ß/C¯øŒåpu4Z>›¾?ar”²,Ĉñâ¦â–­o5e2ö»[Û‡»È¤ Gˆ:É‹=ÚjLCb8L|%öÃ}õ%dT4GyRøqÏf@x6Z/±A» +F®Ï€éÈ#ÂA ]CRðn`v¢Õ)en·uºÙ™¹¬D/’ºwÁM^[ÀÙ´i#÷¾j½¥1Re‹g îß#lÔÓîº"¢‰=EôáÑp²UšGãA Óéô6•ó‡AK\C'›ÈXéßÑ0Å™ÕL„"›îu_HªÂý,#aðûóÍîã¡3€vìv²ì¼èT¯ÓµÒ0áã!šˆ!zߎÈ.8«‡Çˆ(|,¤e4ùß’ÑÉGê• ¸µë8ê4FzXaÒlÑÕÚñϤ`ÁhÊŠøwH‚>öQè†ÚR,o_ªíÑáCæQ#7ƒˆ>«ÝMë ÎÒ×€÷¸dÏÚ‹Û÷ä—Œ¸”àžžèH,˜{ ¸B6uz™ÎÚq£Òéøh·tàNWž\@Jäqä DZ9ªœ5€b8òn\>"U­ŸIîý+°gr`Î[j<àÎÎ¥é6ÂÅxrŠ·¬îÖÝÁõî+dñÜÚÈòf}9¾Ý] +‘8VDߢq4ÛÄBß"íò‰.«²Nòð¢},¥ G”¿é» ²¼xY³-œ¬JÀk XÓýÉtL§Ë’ŸHÀm«¿:àqmU¨‘ÉŠ#ýØôQ× # Ú¦k’!óôŠUÓÀ«WlüiÈ"H/‘¬”"{*¯‚ôˆëHø ·î,ÈuÅ̬Òö¾»3IJFxõ}z2u]É}o—‡ìZŸi‡;"ΔÉýhQ2.TÏs¶"ƒ=rô®Œ)Œâ#•°eîqwÜcs¯VËœ?ntæO!Dë¨s¼“vÚ»‘õíìq¿!Òy,™n…œ”&é+ õ¨ÞbŒÆ”HÑÊÆÁÞ‚¥H¹¹–)ò 6‰V¾¯SÜCùuRÑS†ƒ¼Ñ8z†Æò1ÜÅß¾xº8`ûÌÖ#.Òz%+Kȇ"“sE™gÆ)Ò´—-IF?e€I7Æ Œ­´ÖYc£©ðÊ0êÔuȤjÃðc‡Û1H¦ÖЋóæj¡Öu‰Ã²Ý¥›ÌíÎŽ–w°‘Kߺ1ŠÈ +ù³èÚp¾0·qnâ.Óµ$÷ªÓÑds«¨Ofna"¥"yIídõ#© „šŒû0©ò÷­B-;P¶‘سY÷^RÊ6Z‘lÎ…¥¾Ešã ó7ô&\ÙŒö½€KÞÒj³<éövx ˽¨{@±»ì˜t¦íJ‹ô¢UKôÄ<}ZˆÜ™CáI6‡A–„c{T^úé®w"€Ò’Ǫ)CI–…Òµ¦&åVð$]K­EOÐh*»5\Ü”²ÅÎœž§Ÿ8¶tè߶È%° ¸i¤·uj—‰è¡yû"8v“à©mNGt4Üm¼@'t’ÁÑ“Œö¯pâ pP ¼Ñ€h¦‰cÄçèòÀ†ái²au1aâô +¸Ì¼ƒg2ÎÄNÒΫáòÐ÷0¢=™b(rsÄðMö¨.!=ì¯î§»ÕÖÃ×Á‹mÀ[$$dóÉXy(v¢çê°³IýæÇüàRôTôaR5;‡~A‚R1Ѻeïö¼8a†Æo#º´)qºŸeÄçÈvon›t»„þÑEú +Pj#q 5 / &  <þPŒÖð!%D ï+«dF¢Wñ4V:3~'&\礞Ùa¶G¹ÿ+°¬´WEI\#' ÄNÅKrºètÐ3utà«_sE©E]SÊBªov"§ÃùéNÌÀGô…ÎuSî ª$@&0°:ÜG_=¨LIi=ίĊÊ=¨Ü4ß»ø)$H£UÑÍ·r†;§ê+ð±î˜³«Ùl»æ ˪Kê+ÃüúGä=S¦ÖcË*‘…o!¯ëºý3ØuŒö„Sƒ«í·‚Gu¡QÏØLc˜^@I‡ŽÖüHÖÄO#*R’QÉŽ‰Jz¨’S4ú 1½¨N~6*~ ±Ö­JÊ:#i2÷†lF'ø#²®àxu@|0Œ9íæãíG¨T¦ãl{¾®ÀñF²[Ä·ÄPÌøJ¹nÒš§Á’ ¦y_{`f\œØUAéëb—"lÃ1¸Öì(ÿ{¬X‘Éawórà£sõÆéÖŽZüoΨ0—(²Æjmk±HòB2dF4›[ìÖYø°a[b` Œsãbl3Ñ“Â%Wõy'=‘ç6Üîh4¦ +ËŽä±Ð"+ÔŒW“ª·RÊB ŠwÖ§ºâÊ”,`[V* &ÍÅ)cRj‹Ïu·½»§6¾äÁëhÛÈ«ú·èÎ/Ä4Ñ>ãaH±!+4œ)›é¦FO‡eÛâí= {‘§·Œ2Ž}A‘þ¡!¾”ÿ3ÒŸEnËnƒ¬}˜ÿ¹¤^‰¼ÝûI‚§#š¼†l õ²š¬ŠrØô+ÌÒ·‰r3é%Js{DöÕ0=tíéfÌu5«qM0li†@0ëO:;Wh,5"3—·RËJSéû5@yêô9 ÔÃá_ÅJ +jÒ.Vü¹‡Tèæ†E0[í`JÃGµx³‚kêªz€Kîª „_ÛÐÛ'MdÅ׬g"“Á ²ùÄ7ë®éz#Of×àgÝ~¾`D•Ìáø +ðsuWNq‹ÀEGÿçá¾q=:þ&GPGÇ%Ž<1TlKL+лpXûÀè±/Ü™kDRˉN'ˆªÑÊ-í9™!€Ñò5ƒ¶§‘²4›µ`FGÛÌBFߎ2J-ëJj:AŠVÆá[šŽÁ[̘õ®y›2¨=èšê_õ˜í hZ§RºÇ“öH5émÕ”ñ«ÑFs(]Š›gê9Z¯õS\ãÑ÷þ”½‰Ù8”¦o€wB¨nPPŒˆÙ*a¡¡ä +“*ñËÔlqe‰ ¢w­Ä•Ýe”xçàE"“µ[“×Å)Yéß%7þ€ú¨´>×PÀÛdôÖUà„Ÿ’é……š÷_y˜9’§€°wfGÍ8Ò­õS°²u1ã+€ÖŽ64gÇ%o°.¶´Jg’¾³Ò%:ÎRã·tã‡6ðJ\/|H¢Â¯Z»¿“‡gÀ¦.ÐêA÷ˆdxœV;@Žv»`,¯^ &Ô…Â6ð‡¢5€÷Px …}É \/¶&†™¶·ÔÎÕ·Ž„må[­9ñÏ +×+ÐÈlNœbdÌ Y£¢@ÔF#s+º¥ÌØS¦û Ó;6xü+PØÑŒætŽ9ª_ ÃfŒ #ÀªË7 ¬Â(DÕláçñHí93 ¶Â_G¨ÄÖUÐuœ)ÓŒ¬ÛI׎«’Ä&àõÈ*^­D —Òª,e‚ËÉë# \w³¼+¦ÅsPäF >ØÅ +jNúãaϸ „Q«0ÎñtãEþ–áŒY$lí@éöp?ÆCÑÚ§“Nº@´Å–Â-vpªx[C€b×DKxìué‰]àÖ‘K-1žÃ-îÑ¥PìéÖ7̳ß@~@±Ç¾°þ¤ó÷ ýŠ}—±ÇÉ`dò#¦«8Û>#‡iÿ£€kv^™Ù®|ë-PáÓ="{^qÒòÌþPd<\4In”„ôÄgB¸é:Ÿ1mBÞ‘üÖÁ‹ï¬?ÜñŽËÙ@³Y}þ™¹/TKPœL™©7xÖáþ9…KˆçS[þ&.è6ãt T³¯Ùxë:íùKFÔßò•xkƾ*BGÓÁ£tuxH†6×Psêðôì·¿…¶µÌh¼ì Íe7S`ŒvI´AʬM\–¯Ào."˜j¸ìo«F…Ÿù‡AÕ·¼ÓÍG«©›,ÆtÝ8`» ^™DHeÿØ N%GàQ3 +ô*»+ XöàÁp +½'L˜Æ¸¾90’}o´»¸ÿˆA% &Œ\ÜÏ8,ÄR}œa•æém%–bÌ‘êÈõ-œaÈ¢§Sî õ!sÙ7z¹€WÄóa]é ?ÄyKýýc÷? <™d§ž!-(bý÷ù[¦µo—`*æÿî\ê(é„$>—Y^#!Iä_{Ô¬,•ý—†UÏ .æ.?tòˆÈ'ÖCïI†ß ¨FR7¾ÓI¢z‚E6ÁEç3˜_"ZŽºOzº¹ðÀ˜Ÿ°‘ë +q[B“I& Ï®Ct ø‡a½ +ójÊðà*,'_eˆÚXèOÌðm "ð\*ãŽp‘ѵÔRv =HÊgÛFäçîJ‘“õ€ +ÊÞ"mb|î¹:HÎéb^ÖlÁàêwÆ$ƒ·‘¬?÷J¶‘†œ³$vï6c,íæù5®ðSô ¬)#—zÃî±Pá•+7çX0»v›©Ú›cÆ +Û©#Í•~šqo29Íì«T®ÞºS2¹^Ë7.V7 ÎÈz +aB©ÕŽIŠÎY<9¡Ô\S%S²Ìü‡®Ò¹ÄÒd³Mƒ=ЇŒÃJ5Ü¿p …Ö…„€ÆœWÀQmCø¡lŠRäX{DgU¥r7#ëܪCTEF£FA:ÚÌzÌ#qªã¶ÆÝ’%~mÙÝlÝ ‰/,)›'s²’:b_q܆•ê¿hlóè«YrJ Z +y›1¹t_þÛ•34¶ºÒ£¸ÒÊ Y£PÏäÒðþ0–s#ÁítýØ]× cmÌC‰‹b©œåèñTå¨#—;hÜ åå¬ÿ}ê¡TŒî‰Ê,Ø—š3.¥ê˜\ýœHA(u3Rž¤þü†]FG z“êkL)² uXSÝ'ÚÂcª,Ûï#¢ñh‹ð?"yžgâd²ÿ +âjÖ:@€×˜,»5)°n´sž i«m—“냵$ +\vÀH³ç4d@‰•®^»œ“òÆ­úeX¢ jF4ì°-`à`÷˜äŽö¹ Nßs¤n´Dû +*qÞ確µt5+üa  te”ZÜ’Jj;rþ + ÂÑ¢‰7zB‰ÞÝ 5[°Juì ð°oêp¥©r.пC™ýR´ÕiŠþÛ?ŒÎÓ†I;Q‡c䦱X Róœ¥ðwÝZ%'…Ëðuý¶ÐÐάä=.%ùŽèa/eæ{ ·Ëý•9æ†ÊözÇ}ê‰[²P­ë&Ó$ôÿẕMPP€¸  +¬(²Î¨—™¯¶GÔì–‘ž§Ò“²I>qt—–e@wºn,*?ò¨ËÓ¢þôÜaYNÊÎ{Œ‹Ï¿É¤.2Šÿ.›0LFöÜýÒ¾…«€×¦ŸâɵÅ;ûqÜ0ccMäDD½GbØ/Ô9` °#ÔxF๮èoQ䎑$¸Lç‰yÈÈœ5-c¡ªö5©™ž2næô0ƒâ ™㞨¾s¡ªPµTJá|?³ä()[E´/0s,2ª([c¯-“jjÙ`‰^ØL?÷HÉì÷aþ]²‘ ° +s””­á3mK†Ø-:cÜO‰zn‹;û"éÚ@r"“%‰œ nÞ¢`œ@ óŒéÔþwYðcÏ_2yÍQr[œüÜ bÐÎNBù Î.$gÂh˜¶v2‘.æFg&×W€h˜0ë†d7g/€2Òµ13ÍÍte|He´¸ªÚ¼ +¿!‹¶ôrD‡‚žšbü× Ô²Ó7ùE£ iY¤øNÆÔ+,¥DƒŒu+ZÀLnª‘œÁÈ?$ÊÄc5<[šüˆ±þ_úØV +ãÙ ð ™u‹1×ÔéÀå„)x>æf +¬è뻪 ß8FwËnãdj +΄ôü•…™È„ç‡F½“®—èÛ@¦¸nš™Þjü!-5ÝœH¯ T´G|ˆa)Btdåí+°™…+«ÝƒãøØé ¦žþŒ™ì =‘ÁCkóг˸,™Öž±I‹aÔ4O1AU üËçÎ…¯ñˆ¦Ã®´ec;¢Ýñ¥mŸÞDÒ4%¦>ѶÿÏÿJW.  …îÿ_û?îË_­ü;‘=H¿J¡éÂÑaJ_ÿùûßvÿÃâŠsÚ4¸ÿýß¾þÇ’K±ÿç¯ÿùõ÷ÿö·ùûm¡}ü£ íÎÙ*²üò`‚òmÁòº`û 2dìÜÉý´`yó„ÿøVV2+TØÞli}\ð» ´ÃO$gðçÚ'¶ùX•Ì›w¶??Ñ¿ "Ùµ2Ô ²ëIN»+ÂHRZÿgŒ’Aÿõ¿ÿö¿þü+ÿùÿúHaþ¿ÿßßh4.‹wDoàK)/Ô#0xæk©’&÷áo~‰€Ä+—ë+âœ\¹ôã_ýúÚõòÚ3g™qk?ýÕ¯¯Ý®¯]Û=û‘k?þÕ¯¯Ý/¯½Ë–Þ§XåÉ{ú»__ý¸¾ú:ãÿöxÆe­3×jóë-Öê'>Û½ºß _Yg\\G!ÂÊ!ßåã_ýúÊóâÊŠýÇ}ÎnnêÓßýòÚçvuí"ŒÛññ~}µë:ʇå•`»]åÕöâ×ÕT,þB´Ý®òk{ñëz*&ÜnWy¶½øuE‹¿o·«|Û^üšÊ‹¿p·«¼Û^ü›Šê•ˆ»]åßöâçw&änWy¸½øøæâ/ÄÜí*·Ÿß]ü™ »]ååfñ±}sñ¢îv•ŸÛ‹Wýv·«<Ý^ü»î…¸»]åëöâßÕp/Þí*o·ÿ®†{!ònWù»½øw5Ü ¡w»ÊãíÅ¿©á^‰½ÛU>o/þM ÷JðÝ®òz{ñoj¸WÖív•lÛ‹Sý²o·«¤Û,>¿©á^Y¸ÛUòm/þM ÷ÂÆÝ.’p{éoê·WVîv•ŒÛ‹S¿½²s·«¤Ü^ü›úí•¥»]%çöâßÔo/lÝí"I·—þ®v{aínWɺ½øwµÛ {w»JÚíÅ¿©Ý^Y¼ÛUòn/þMíöÊæÝ®’xkñº}S»½²z·«dÞ^ü›Úí•Ý»]%õöâßÔo¯,ßí*¹·ÿ¦~{eûnWI¾½ø7õÛ+ëw»JöíÅ¿©ß^‰¸ÛUþm/þM ÷JÈÝ®òp{ñoj¸Wbîv•Û‹Wýt·«¼Ü^ü»îæAüjÒ«î—Sl÷TéÊeþÚBûwòôŽqŒý–`zü›_[¸|gáøúü*¿ú»:Ëïûê8¿žÓ¾ü«ã¿FaðWÂñ_\â¯ØYô¯sןYöMÚú# ÝD(¦èÃtûÐGÞ[¬õüWŸXôçúÂO5‡,{¯0ÜË ŸXèõ¾Ñø0ÍuûÕþ´Úú‘ÿ¢Êú‰5ÿªºú‘5ÿ¢ªú‘5ÿRyþþ5Ew~`Õ¿¬fÕw +ûë¼Ô¥?rŸmBÎáY¿_¹äROó‰%_6~êáøÀ¢?ujüÔ¼ñ‰E_[4~êÚøÄ¢eå?±è/Xù,ûSÊÏ­)Yösñ‘…î¡cþçO‹D‡Ú¿×sWh°,•q³u~éZÏ;ËØK‹Ú?ѯì·õsS\Ùÿý®» K¼k‘,òÍÒz?Ãðç?âUš÷Ê_ua~‰ÐÚåO=„€^àÒ ÞeÿyÇ÷wiÿ“ÆÊ+K|o—.¬ðÍ]òHæ_»v–úïYâ›»ôë+üê.¥ú0ýúÏꃡ¼–“R#7`XúOOäe`é¿n̼ގֿüÉ#ýú +úæíÍ +ã·¬p€›)Ç|ó Ûïy†N«}?Ž7ÏPþìÅÿú +ÕÜ4 éýùþëoY¡€yaDßÇvÉüJ§üÏŸ_ôü €üîý|÷þL þò÷Ã%Εúfö;€Ø·ÃÌðæüëïX€W@"ßmÑŸ©À_^à£Á„Ø7 ¿c`{ˆ7‡¨übÇý·R@¿3™û­æçoüêóžûÝiî×2ÁÃR—êWBæ×ÁÚ©<¾¦}N{vÖïÜÌ7E—çÅ>±ï +.Ï«~¸ô2à"‡\×÷wÍŸºÃïK]뿲ækSøÚ—šÃ/­ùÒ þ¸æ•žð+k¾¶€?¬y©üÊš¯ßk^ê¿´æKÃ÷ãšW¿/­ùÒçý¸æ•~ï+k¾¶w?¬y©ÍûÒš/]Ýk^éî¾²æk3÷Ú—šº¯¬ùÚÃý°æ¥^î+k¾¶n?¬y©…ûÒš/Ûk^éܾ²æk£öÚ—¶/­ùÒŸý¸æ•>íKnÖK[ö}ÍkíÙ—Ö|éÆ~\óJWö?àN>.ùoò§¶ï‡%/µ_YóµÛûaÍK]ßWÖ|mò~XóR³÷•5_z»–¼Òã}iÅ—–îÇ%¯´v_Yóµ“ûaÍKÝ—Ö|ià~\óJ#÷•5_ú¶–¼Ò¿}iÅ—víÇ%¯´m_YóµKûaÍKÝÚW"Ú×æìûš×š´¯¬ùÚ“ý°æ¥ÞìKk¾´b?®y¥%ûÊš¯Øk^êľ´æKãõãšW°/eE^ú­Ö¼Ôw}iÍ—6ëÇ5¯´[ÿ#ÙŸÇ5?”«øYóµ‘ûaÍK ÝWÖ|íß~XóR÷•5_Û¶Ö¼Ô¾ý¦›‡¥>”ÕÝ縵 ýöláK‚ëi±d¸ÞÍ=x^õ9®w^Vý@–ëݤƒçU?‘çz7âàyÕOdºÞÍ6xYõ¹®wC ^Vý@¶ëÝ4ƒçU?‘ïz7ÆàeÕd¼ÞÍ/x^õ9¯wƒ žWýDÖëÝÄ‚çU?‘÷z7ªàeÕd¾ÞÍ(x^õ¹¯wà ^Vý@öëÝT‚§U?’ÿz7ŽàeÕdÀÞ×ýP ð% ö¼è'²`ï†<¯ú‰<Ø»iÏ«~"öfÌÁó¢È…½›oð²è²aï<¯ú‰|Ø»‰/«~ #öf”Áó¢ȉ½›að²è²bï†<¯ú‰¼Ø»©O«~$3ön\ÁóªŸÈ½›Sð²ê²cï<¯ú‰üØ»É/«~ Cön$ÁóªŸÈ‘½›Eð²ê²dÿNSÏ㪟j’úZõ9Uö¼ê'reï†<¯ú‰lÙ»)Ï«~"_öˆQyZì×ü†íGƒ…žc½öÿþv @»çæ* }l æ߆âpíäÞos÷ø«`‡ôXðv·s´Þ“7@ñ3ŒŠÈ …©xB¾§Ïä]þÀ–kLÁ‡ö0 Ý\2SN¶9-öS0W™'/w=_ííž²¾-ŽDÉ`Ã\7/ßUçÔýÞ€U£Íù’aÎaË ˆ\Ãç!{Ó2C²ù#9éÊWÇa; s³¹{„ñéßÃp¬ó’4¸e,d4˜ÏKë¯<χŸ2áÇ+cKRsÂâ÷_Æ“9wï­dP}jõѸ)4}“”·­n +QîTT +ÃÒ‚Ù±ëV€“éÁǾ¡ÀÞ o&[¦wyšëP2ý´^Í –³[4² +ÿŬR˜†aq+þñŒ44qÅb4@ÆémA¸ + ÈÐÿõfzŠ©ÐõÎœ²kkÛ„ðÍ¢òCßt˜Êœ`sÜj¦¾D†jjö©mŸÉìøá!õGFŸc±<"Æ ¸R`Útv°c*;í¾6±›;élŠ¨}Þ'då½õ†Yœf FWd@˜Ø!H£ô¾CÍr«&?±¹TeɽÑlÂçn¿Y6½›7Î/©–®š–¨R$¨{½q¸Lôо½œfõm%~Køj_jÊžA´¨}ýav5ÓF‘r<[É1ͯÖ{ð8É” øC7“é†þh›N2ÜÇ椳‘©UÆt“4@¡ÎŠdZBWÏt”ð:šgWÔ`U-IZTiºŸý(¦Ñx‚“Â1y#‘B¦#¸YWóVž°OM\˜lSYœmu“RÐûÚÏAÛqœ½st‹©`ƒÃËoA[÷¦^ûÒ;•{;J°P£ê"ûsÁ+¬o„Ó’³ªm›Õñ„O«X›ÁJFØŒ_ÑÁ·ä/ƒv-£PدH‡®A}4x„æ<è œn‘þ¡ëw`Ôµ:?RÏVÐT= œpÚ~™‚3ø…“KÇ2çt68’ùÜYÌ.ÙÜîŠ}ÖÙ+¡ZÍxžhø“µçG öSƒZLÛ[‚˜]·\‡Ì§B5mÊÆ +¼qˆé’ÊdÂÖÔOiêý":ýš9ˤ@Îuˆå°dÁ9²“{Ôž0—Ÿ£˜EØ2½.ô«•€Õ¦»ŠÏÁn3õLÀ«/IÖ[Éô uÌ.ÅÆM'O'ÝYCXîtöÐ×Ê 3Ù}+nK‘«Z¼¤îeË-JhëçQ‚>ºÀýGWÂþn1³ÆV®÷_è–k°Wó¿Vs¼ú!÷’žÐk‡h¦Z¹éÆ=6!o ŠHF´G•K2SÒSÀšq>âÞcvó«dÅ‹›.öÁE5Í—täR[é(J(ã¥ã‡3iµöÈg aE×[“8†œÙÍaf +zýXYʺ„Ž˜˜eŽÚOÈTkl¼Ü¥‘,³¶qŠÛd×r‡Pï·;ÏŠ‹šBmÑ9¹YôŒLªÎSM¡,[ë»ù©ÈmJ«H“æ1iÐìÁ„jJk©«s—[TSˆ$J¨ã@Åa aÁ1 +…Õ²¼f=e;—N¾càî7âW™º}“Ðೊ«ÃïÑ)¬è«AÑÁŽŸDBm{Þ£fŸ@WÇNÀ0cdÒ!Â%‰yúŒ£¿‡œÛh χ7àÝÛ´P'¯Øiû<á!$?àÖ9hÚ¬àÑ ¡e’—‘™‘Iêc¤*éht]rùèK©“‡l'ˆêætÃÞKKš~:„xLòoa‚Á>K ܵ ÓéliÖ¦=ý†VøÌÂí Õ¦?œ©g°ô7=c‡C&óÈ7­÷Útœ6° É¨%œäò@Ëцäï9PÒÝ2X[%¿Pá)9â´GV¥ÅÆ> >‘¡ÔwèÅï¹À·æ?s¤9¥Zc äívõØ +ý¶Xò0C°ü ˜’á”+£-„;q7ù†m.‹Å5ÒzÈö@ß¹Ÿ©ex¹¦G†(u7v…Ù/„Úvg¿M¹?Šãм ÜÆA[ØàÈ£8óȾó´C~§x4³]Ž“ñüØèZR™Z­¯<.»ðÃÉHÊ7Žw‚½´½CâÙ!!^¨ J‰BšMV¶.!¿Æt§Ô^t§‹5ê-Ŧû ÁÚ»«…øƒµìŽü(‘o¹ #ÈÞW¯ðs{KMKeÔ/—¿B®õGªþ“W/Ëi•Ø`M?õwiQàš½i½Yîl=í40¥Öä¥kŽÅéØs;œ?="e/Ï!I¥;„‡ùRèl‡¹çõ†®ëäÝ<»‹dºíãÖ:&!Qú,ÎýÀʼëUê%œ{Å'ç;×?ºÛ(ÍRñÖ{øk¡îã±Ø—Ù =ÀΛ¾Ô}ÓÈCÏ­%®Ø×ä²Õ^m©É}‘îAü œ‹Þ‘c«ø ^‚…8MIÛàm•Ûë› åZ–2…5â‚}ÉtÜ‚£šŒ¨ùAÚntŠY £Rn'hÞÈrž¸Ú-)/æG´%Ô5ªÎ«Qw‚ÔQÎDlÞC¿MA‘—ó©{œ?H6c‘RãôüúeÎÃí¹ÃeLŠìl±·ÐÙ¡à®%ÖKà'å'ÉT9óÑC[” (]ÂséaÔÅ ·|L(qµ­¡g¤ôªÉÚÕ%4I6-mŽñ‰–ŽTB$§T–Ή„ Ð(‡fÅ!…w­ã5òªÌr÷­.ÌE›±ô}ÓÞ‘,±º(Ð¥®%‰YÐÌGä1Z°²ö%T”t^²&‘–aB¦·9ô;Lêeqq –pÜ48jF—1k—êm..m§\ù®…PÜi¬t…B’õ›0B„,¯ËÙ«æÉ´’{S‰;É#Wq]²EJ‹îÒ[)¸!ƒÝx ³…k%‹»éw);óC÷hšø šD}ÏM:gqäLD+éædEÖÙáN ¥ê¥¾¬.¥;uÀô¿3„…¸ŸÝê*–—Í ]*/‘TŒˆã´’Í·—%’=œàk—Á&2ríffæcXA>iè „çÍ&¸OX¿-2öJy’TÑYp®®¢ïƱd#؃»e#C ¬ÏÌ“\·Æu)=—<Ù,ýì4~ÝrBS褑·\Jµkãš3œ’ašú0H~gg'¹„ú-XÅjá¡/ÕqÈoµGÔÝ7K²R*^NÙ~,áˆpn·ð”~©{>ÉN’a“N¨r6TÀÞ8mM¡)ó¹táfïµmbÀHGÍ9â‘q‹§îŽÃov.!z“Ĺ„°/ËæD©‹¸„ÔIª‰NŽÔÚ°,¡Ìâ ­/g2µBl.ÑiºXx„¡Kx†7W)ÐÇy¦r¤_ݱ…2fÒû¹·»›Ëïf¨Üip%Ô¡Ù3í‡PZd×Q¸ Iðj뇭¸þ‘Bã™B¬ú¾^Ù ·x3O‰ËU#üT„re‡d£u‡ÒHaQœÇé^"$m ‰3²‰ñkk'.Çú=²_Bç} §}½iLÓβ!ƒ÷8Tlà9zÉü<Åa‹úN]®×|R£pB_^E¹í…èmÂ÷ÛìqÈá¹9ü¥&êfwDŠ©GÇ'<^Ŷî‚TJKÆf 5+= + zÑÃlåÊ$8à9)dwi…4‹6à"²&töŠÒíÚa$Î<ˆ…·D] +³vÕ]ðÀ=ÂÐìJn'Z²°çMØ‹²3×tßtàjÏ'‘&qŽ—Ô<=šnØXÂÈ y÷(/Ýò;ÔÍ:k$eÛ(}–z.Y?úWóÀùظéù¥hÒ#„Ô…¤;oBHÇÿ®øT«Ùz¤¸~˜qk„=nK(mäè×ÂÉÉîá:íð>ßL¦¼î—În_B΋m¸¥ðÎðc g\Û(Oéß[¾‘ZðÎP¦ÑÚhkA;+ ƒ¥,gYÉRÉPG'‘SO2#ßd…Ñ9js.•A=Ÿ ¥Ž(ÐZASGSè¯ u¡ø5'r:.!Þ†Öði&á‡?¼ŒB%Ùµl­" +…JrFZnº]·æ~8„<ⶥš•P"=oj 5‚öÊÁÖɦ[ã}f¡-<¬ N¡ˆ~ñ8R‘ÊÃØ–%¦Ê¨W“åËÂ%G§I(’À +…íõ7Þ¢+Î$ŠÞy:@±„8™id:åV‹´]ô¹žR +6Ó¹&ƒ¨ع4ŒL·"ô¼ðÜE=„òñK(-C¼Å'µ¸\˜Ô•xn§tš;ÂRâè[8(ƒéöÐd/´Cs )•Z—» ÄZ,ï&‰Imµ4dtˆ0dïHÏ×í楡Gg¤7&¡O~ôaÙ}ã“ôéG™°Z¨+¬¯Ms!¡,ËyÒÜ„ðѥܕº©Q×­T"®GÖoŒÓÚ™zIáœÃ_:ô5û¹çÏ)?œ‡l( ÑIûù.á=³6¨ø„7ÂJò¬Öx%ÔTêê4°°ß}RrwÁ,…ržåùÏ¿¶Ü*Èni¢Èé°Ü“žÊÞ¨àÁ?<°ã¡Óø?ÑÛ B¨.‡ª.a÷Jrµmóö‘URãËvâ=o2Þܹ[¿Z¨%ö?—ðpŽ®Åžm·•Ê]]^5öéôãX¶\"²UÒÒ·J}2Ósm€yÞ¤¦åZòì#RŠòeWVa_m}¼ Z)¤‚ÆN)¶ðC—¡Úõ¡¾Ò_’ðùíK-+hÀýŒOR&ßÓ¡ááÜRµ0†·G¢k ¥j§ë®þZr{”¡r[¼D‡Gr ó¶âíÝœ)2dr­¤¤%Ô¿›qV'‰ýÚ‘®„Ú',”Çé¢ÜòU £n˜Ï‰+xf“„¿vÊtÕ%¬”¾Ò×¢…ᤑ#ÍþIx’%>¯)e,Áii×K$“ÅÓ_Üî2nb³ +«îu#Jî%Ïž„}u["”BÐiNŸA¡7?l’ÐIË@OvLj¥±ˆ›ëŽz«? “&KÓídÞlû +u%”‡’êƒíÑÉóQ³„ͦiºUX­-™ÜÇ0c§|ŒV×Á Ù|O¼¤^òvÖ%bixa“R›|Ý•h:9MG4.´©ßÝeÈ2e(7åážOGþeÛÒÞѪ·ü7„Rº.êÊ M°Y¨øç–Þܱqz³› ùÃû<—Ð×&áÚ~ u˜·ØžÃòsÏ%逹ywÀîÒ\BEÿnr´âÓ’Âå¾vЯԵ)ñ˜ÎدhŸ´äù„zï›{ƒ>ùÍ8îîž!,ŸòɤR2‹«7ðÃFžä[{Lh¦PæÞÜ6‡Pg¾®œÆ¨÷R„3`Þm `'v¥›¬—ð\n!B(©í<²R»$n:o7½ÃÿrÉ"=®A¨¸m±XxÖȱPíй+vÔõ)­OˆŒP[$oaÞ„²6QÕétžIázšx +åî´ØX(¯“¬UnžAIúþZ”q©C$l5ú4-¬Ro2Ce Ï3KÀ|mÁø·´(óåP"¤qVªb_¶Ê1rØ)ʵ¾<T²þáI—4²‘-¤–ù¹rê¾^ÊÓ[Ë(ÙÕ_M>XÞ¿Þö±„çò6ù$5CËÜÝ¡¨SvÿX9HyãQô± Ý_[¹'+ÖCÑŸ.ŠÛhúéùÉ »`‹jÂ*Ø÷L™M&HUì>$ô&:õ6–ðT€Mk²?©KLÆ8EŠ5¼ß1cM=±n[[Â>ZÌÅÓî+[D¯Z«Ž$#D£í# +rù©õvd>ò´OfÏËÞǾ;Q©EÓÃu§Â Çá¡KC57„X¡é,„;QW†VÓL”}K7ô´…ÇòaAP¹¬™ý¤lC³ €È:„‘ÎJ9”Ý.bµ; ‹ÌV;-Ô½Ü÷T‡’Éz›þR*y7ŸzÏroN<á‘úGBÝfí×8ü­òÊ÷ó&r9®‘E»›móù)2K5oùˆ´=”΢çÇñɺúžqæcù¾ÀäTàžx"Ž„ …_m)ÓNGL!§‡$¸…×t¼ëKœI¢Û¾8E™†Ÿ–Õ{ Ñ£Ù¦oa[~1B úm ïêGkÆ­LTJ÷~ìhѥźeRLB·ÀÓx‰°ž-0)$éåt{Ö*^ôš ÐxŒßöæïþ +Óòct-UÛ¥ÿÁ­¸k![<"ûhX˽ß ýxUƒ'šs·T€‡¯­Ì¨Ìoèe}§ô åèì2ùEý¦ f85ñR¤¥8ºôõªŸð¼•¥&ÂÖ‹Râ Tˆèâ¿•ÜO:aÇŒòÜp›»vãØã6Ë·”ÏdK«­"}C|aO)ç}[²ˆÎ@ûÇ­`zÐOÙϼ°­©ÀwÚáÊˈûºÎ52ª|Q TpC 'øÝ[ $ÍÕž2Ê:²cÅ™2ÅNÛ]¹ƒ(¿†%²h: +¤Œ-#Ž—l¦Bo×QLÁIxhyqèˆVH]¶Å_ ¹\[ôvWJ +¬>Þ·¶Ä Cœö8Ý-*¾€¤…i&,>ѱé N*¤È"³š\ºØ?å Œ,‘N3Òfe ¸´'8J²°B¦;ªC+¡š´ÉÆ'¾Š²‚Ô‰s¸2ö¤­9âñ1²AŠœm4è Êf Ëè”@cœiOìIÊHìºÐ€ +ÌC Þ%µ¹Œƒq£¢Bqø øü£àkSh <]â ¸“B#Y:ͨ,é—îîYdŠa¢“!)Ćz‘ÖÞ¯jÉßÕéˆ.,9r<XÈ®èï+É…¥íÉmÝã"3?vëð¯kÙÞ6=Yrýý-2ƒntý +ÃÈVËËAF´`¾õë9ÒþO+d‚¼V\Þ¥ N7fZ ·ò—èD8¦s/!s¼gµË@év⶯‡ÙôUól$ÁµY. \ÿRtëQº$ +­¬vÆpf2š‰º3‡˜~>ƒÊvûTLŽê#ã²Í!mt@á)E¢)k²zÏ,ôI¦¦Œ3p-`Ñ´ÑQ,”yq§Kæ^Çpf´³(vƒ] ¼85YŸI§—ç鈮–5´{ÃCïNÌD€²¹Ù°j§é;—¹7ù\ˆ¬NF}5Óô­‡ko6³RþJzeŽÈÉêDœî¨ÌÐXÜÙ†Ó‡ŒlŒ6)àmÏ÷èæÌ’JÀ—{¤m: «GÀ\%ííä—Gñ“ÑlHh5Û# ëÅ_A?DÀó¨=í`¢Šox¸Sç‚àÑ7Nc—•Æ­ .d3*?9ˆz;Ãn £eVÇf}IYLg­õÝÓ?S d})m¦³¨ÿŽß‰?°Ÿ7ìî?¡¿uÁú仜ܓôГžIÚ\¨X¤eãJʆ¼²7:îᑇ8 EuíFÄ îPà0Pc"¹áͽ9¨à !DФ¥ZÃ'¦]'T—N©p‘èí†u#ú-Öøñ…­“òKhà±ëwGMÑ.—R‹„CÕ”K Tñ0d*´Îé[FmôC¤F&­M ܢКÔÙ´¡‰:_ÈÆʆ’l¡k¨ˆe;ù”,z çÝîÎW€é·-¼E2nsŒHƒ «÷ ¥L®Uxàw··ùHÅ×QË@$Ó¬P>nª\ˆƒévŒ•ó †ÇÙ-Š¹ÉƹVŠN½>£üyGR¼*'Í·Ó1i¬Çû`Ï·¨ ÈÃêg¸°º4wÄu Ù½–E;dR‹`‚¢¤IÜHµè+ —:¾î­qåäTüáõŠ!Æ´»¹ÆóðŠû¥¤~I“o‹Ð0À˜äµ R-.8µ¬"¥Œ¡YS*$á­x¾Ä9`ðÙz<+ô_Ý>ƒÜ´lq!ÂYÅ8æ%  O–(Š"TקÓB±·,f¢¸R·2h“ÎR…¡3P¡äô#E¦ûXhcŠ;Íñ5à YYt3è ŸY8t´=Ì ErÇëÁAW« @ 1Bœ½êB­ö¹Fˆžh‚ +4éF§Å¤Õì.צڱF6È +» +@ÉD;”ë+¦˜=•è¯Ñq™#P¡7n®7íl©¶Á JÉ®>*Ýðƒ£°; +ñ[d=\hT£WÙdúÀNfJ203Òò`WÝ©å.M9ÒgIú¸À®JÉnï’²/szvo4õòy ÷tébm.ª®µ¤Ê¥Q ÿjÏGhБígÙRS–[TÜÔ"‚øWÀajÇ›{ Oòƒ}¶ [˜œ”ÝA–Ñšg°öM}§>7™ 2Ñ ®Œ{ÿjÊ&=ÂÑz(OV‡(4)á’lW¡WžE)w…¹.‹Û-‹!o-K¯ÕiKј•àiÞ ÚtÚE…¨ºõ’ªœÔ¤¿“x)afnçWÐ0fÄK‡“<ÃM¢º,µœuári?ÓE= ºS¤–Ùù©·Ü7 ¢-ºR xø(?šáôSÑxO÷l˜NÊtÀzìP$ª/€¾&=ï0$äŽ\ÝÚâsLô$ãbVò[r„3›<„pêû4ÐÌ °7˨G)ËpXF8ƒ@f(9a-ínzñgÊ©ÐA½ðI'.ÑŽ œ°W1Wœ}<íW œ†(s[cÜÁP8ë¡g¶\Ö@ÈÊ1q:O#¢eªºÒªÃrŒ%›Žpà|în¨§½,€ÚXsâ,ÉÓlÎ-h•Zé"LÝÏ…Ž¾å¸j g4»¡'¨=iÍÓÀSîå®^ §·…M¬VçÝ:(eQ×ÙÌ4 +¬Ó!éWઃ¬Må <ƺ§F"jÒOqݤ}ˆë-PÖî¬Ó8ÄKôiNn·Ú¢ë!‰Lú6:ì(Òÿš/¨‰ÛÖkOmüpl½Êâæ{ƒK”b¾ŽÝVÇt¥*Rkôv;qóA:Έˆ¿Ž½µœÚÁ,T:·Ð€ÓÈô¾OCït¶:‰N¸+^†¿æˆDpÜ=B1Àc$Ķh‚ã®+j¬ö¡¨¸†ÓHä„Ëx«]©-•Ä÷΀|ÛK58EÚÖ­¾_ñ>W8¨ºÈc¾ã}€ sõqw²5j%Aáëf¹ËæH  dÆxKçzŽ†5µ;·F3‹fËâ4~Ö¸7T#¡ÏŠî´ÁáÚZ×騯²6àðq}õ¾ÑÑ4îØð/ø0Ì%3‘K²ÿxû0J™¶ãœ.ká´»ÕNîIžñ9wtáíÒ­(®hëH e )&Ϲ1ÖÑhÓ-…Œº&ö6JÒ…%`¸¹¦ V—ßôn4Ù'Þ…hjä¹Q|bOˆ¦ìÕ¯¯`µ-„ÍntÕdB‹oÛ¨iÜ,, Ìq›Ž!çzÅ3 ,ôœÁÄï þ¾rø›àµ1H‹V¸ýÖö#·'¸ z9gh!½ä!œ#ò!<ÌËI7º„õž‘²ðÄLÐ&í© U{òˆ«ÖŸ”ÞuZÍBÚ¾ô>­5YÓ£ø!€t^¶e-GYVìÁD&Âé„Ë~ãw^ƒ'/дÁl™ø¢+ýžÙj÷öÈh$Â[Ì>Ì–D :<b!%©}pÕÝÍÝ#œ–ð–ª.2dáÑI:u,‹_‹ÍH'BݲF!ÈhÎõœ'^ÄË=þ£–†J¥é‰Êœë/s‚ç³eS¥W+g0ŸDv¬ç$°êT™Î–7 °Ú(ªá<ˆ‚\Í <@à+NضçF G”Ž+rún£<¶3Æ}I؉NgNå¶p¬FrizôŶ\cˆ×O‡DNK™y‚ø&î4¦–ÝÓ+<[Y_ 2#Qœ¼Nűî$ ¡L¨“囤¤²û¡=:cŸÝ{çQM7”{Ñé1D÷»î7ûMUȪôÇ9 àÏ÷hZ2Òx✉÷èwÝØ"Pvo%¿”À«;cÚ¬ö7Îv‚ q+k0žL ƒ•âyÍÕƒŠÞWd|¬Ñ@Üw"%LJydÈ°_pÞ&µáÒÒ Âd¢¨èhªÀ®Ñð² %Mê–cÇ,¤I‡J]‹Ëœ§š-˜ÀØKvcà3‘|-ÙÍŒÝÈ+»®xPÎ¥äbvÐ ÉO¹ÌvCΓé÷8Ejó¸¡7…凇Ù}fµdÆ^™½ÆhF èšf@Xf«IàO«ÍÚÙÍTÝΘGà€È™¶àËøùî-‡o˜3q[NPpפŠ':]R7¶XxþHLÅî°ídâÌ™ö µ’°\@¢· VE¿'2¦¶éa`—ÐH]7 zR ^jK¢³¾ÚìvàùÍÍ5!Üéô›‘5%ï®;¾Õ…Ò.ÝkŒú!ﳧ¥ÆþÞútwJç @]ªmFæ”´fŒ“Ú—P&} {³„ߺ +çÚ Z"›à¹^å¶XxÐÇ4#yjÐVvƒZÈ5_ý–X…í·+vŽÇ±äÒÕN¡ A¤]@Wµhç -;r[íÑR(¤ {ˆÀ›ËY9}ÜŒ$¦´ÜÊÕ–_0·èèvC”S7ŒVwç*å«ä|bµî49-~¯µ ˆ¡Ùƒ2n ¶<²žq!kaì¥G*VTt~+:G[~ g~§SÙ²Q +Ì8™ÚȤA–ù”¢Í¯¥ Gþ,$)àž±£…´?Õ3àÉRx«ù# ãá>n‘²ª¤2ÏÔƒ9sžÐ AÞV‹àüV\é•á;è‘DhƒñãÉ’é¿Çm„7³íÍéµ=êŠK8<:’«;”ч”L2ØzLAøÔÑCøÆyÆŸ%Œ76æ‚wrWòªÑ³ ”ŽåL€œô.iöȲ’^ƺ,x]*5›iHK£y÷¹@ÜŒm1Ž”õ¼¥–Œ‹f0D ˜áwr÷üûT–$@]±¶ÑÍäGL”¤å) ,¡4t\+p€ÓÌÄQ¿é÷lø³ñ¶´etó™+F˚Ȥ$ôx!ÐÒÚÀª·eßN/SGF·ˆÛCˆIk$žã.4Ì7áÂòdnSÊ@!ÓÁ#L‰cè|~ÐØõìÚÆSý²okáø¸Ñ˜¸ÉÜCE“7,ñN þ¬±Äô%œ7ÙÍOŠß@Bw7ôs¢ŽÍÝkz‰áÂó67gNW|¿¡…õÓˆåŠe$eyçé29¿•ZO=Ž[/&¶ÅÉNclŸïŒAéK(ý¼”ÿp;£'â†7”„ýÁÒº»¯±'`~¥dÇó“¼…‚À²'p±[†Y®u@.Û?‰Ý®f¡;¦ÔtƒÏuvÖÅ/ éHç2°u k¡çÖ4©yT±¶h,tj¹{…í¨…Ž; v ƒzX2EžBYÂìß-®ÊSfjb:ÜŸ e;0¨ú3ÑËØž¸:<µãÞX‹é¡™8p€ä]¥PfžB·¨K÷@ïn9ƒ …3w/p€i²BÈ\Ÿ3LŒÞÝ™¬—ç¹õ;%Oho?"V±àfƒJµð4d"ŒôÌÙ¢®¼æ¦Ø{,¶7|_h>Æ_Ü`­¤NS´®â“Éb1ÖÄF:]!¤0lˆ{ >e“±R ±4xæè…“øy'!‘¿„Ž}^¸/˜¸…çíÉŒ]m6.û’ÄcY˜(¦üVòbîžm1thsÁ$,ÈRùxvgGlwÃBFèDéð|N€;înA̞͞sý¦,¡NN^pRŸ6™DÏë•`xáxVÎðù]–€7Ú#Ö'=)«Ç”ZBMí£~] +ûÕòbx!Gka¸;“~ÏáRª°^ ±[_óˆ<óhŒ;ÂÒilNæ{ÈwÈTÍÈÏâ¡®x ’Ê?´HQ“Ýó1S×]7èÙáö}YÄb½éÅ z“+Ç,OG6ÇãâÜNýð-Ïed9£A aa³{*‚K1ÖZnÁ½U(°ó3gbää×ô- õáI99å˜Dóܳ›0­»;EP—´³…ÖŠÓ=}† ®ncËñ5FŽ ÔeÌ­ !À1'»Cˆ×)“‡Öä|²èðÁ8â£$zcv¦Z"jm×íʽ͘ ø³rΛÉ`Θ«Æîâýuºm#)êIV šA[èÇ™6žGœŽÌQò€¹„·é@`Èd[s„¼áU§û¦ö˜lÞb^@º¨ {ääîö»õ3Çê˜IåDFwpf<]לÑBKHÙ:f(€¯éÔX.÷Üc[Æ~–{1ák"ÞfŸGÉä¢Æ¸œ€;qQ2°²ãæp<×?€„pºYŠñV”Œ—P[²;A‹PàfÃθpd´ŒÔ0 *ǨD;´d匙Û7ŽÛúæÐN8& å¼ CÐU<(‡)rÙÝf(]ÝV%ÕBéèI»Ø#o ˜£çW„m´ìág6VŒ·Pn.PÅΘ€Å[v0á›:[ø f”¼æصˆÊ>`Å\¯¹E…{àî¦ó³ Ì*ªìè7°Æmæ…ûBï“ Á\Ôy$|2|ýˆ6Ê?9¡£žsX¨lïç}<@7;=hZ` ÑrGG¨Ü¶Ó{ö# Pf#2´A[íÓF*4§é÷hú3Š¬Åc.¦½6÷èÁ•ðÏÿÚ´›Å“b¿þþ¿þö ;XHT˜ÃýEÕýÐ5¤…ØÂùûßvÿÃâ(iDßÏßÿíëü'©üç¯ÿùõ÷ÿö·ùûm¡}ü£ ‘£‚wkò£µ  èµ`y]°ý†ÿ#EP÷7 ¶ŸŸðßJúi*Ä7[Züî *Öé–ÿ¼ÀOOô;¶æg +ÄíÍ>’ÿûoÿ?i@ +endstream +endobj +315 0 obj +82867 +endobj +316 0 obj +[314 0 R] +endobj +317 0 obj +<< + /Resources 318 0 R + /Type /Page + /MediaBox [0 0 450 262] + /CropBox [0 0 450 262] + /BleedBox [0 0 450 262] + /TrimBox [0 0 450 262] + /Parent 319 0 R + /Contents 316 0 R +>> +endobj +320 0 obj +<< + /Type /FontDescriptor + /FontName /EAAAAA+mwa_cmr10 + /FontBBox [-43 -250 1008 750] + /Flags 33 + /CapHeight 683 + /Ascent 750 + /Descent -250 + /ItalicAngle 0 + /StemV 0 + /MissingWidth 500 + /FontFile2 321 0 R + /CIDSet 322 0 R +>> +endobj +321 0 obj +<< + /Length1 8476 + /Length 323 0 R + /Filter /FlateDecode +>> +stream +xœ…Z xSו>÷mÒÓbk—mY¶Kò"É‹, [^$¯b3ÆãÅÆÛØ`6±B š–,“aRšRB©Â¤-“I™,ÐlÍ×7Mó¥m’¯mZ¦™všIçKCü˜óždC'M«ëwï}÷Ýwιçüç?/*Ø4D–,+.Ó/ÓY²Ž³k·m±µ,9ŽýaûåºÉõã”ö…~rÛÏÖÅ×}ãÉŸàZ& ãÒðPÿàºßÇk9®¯Æ õj.€ã1ç oÙñÏßP~€ãûqüèØÄÚ~ vÐwâøôxÿŽI¢ƒ+9^Û6ö}Íre!ŽPG&'¦¶ÜÜ ¼õñþäæ¡É?vžÀî'8ÎäV(‚z¡G˜º9;OѧÙíìò:|ïÂ[€³ðœSpî…}0`VA'´C+,€ÔC „!A@1Øe‚ììGì‹l‚=ÍîbÛY9ó#§ú:I}N}BýŠ:GS=”‡Ê%×ÉóäÙGƉ þ€o|ßù¾õÇp^„çá2<—ài¸$)‡ÓðUxîƒcp¥Ùq˜‚ ”iåe £vhdµ“Ñ ×i5éij•RÁËeËÐïE<¿ÛÑ£Îúu>ïÅB€†Ž (ê2WvK—jé’Pv'HƒæÿMù¼Eø/Aú¼É?d Îú§íª·5Û†û´ ¯¶Óàì· >‰íè²ãï)°gw·u‰ÆekNÈ\Mý XÚe·$؆yÝ–þÁîe]Îbç_,ÅÎëøî¢/ß½ðKW²®úºë_x¸î/Ò”Vg®ôyŸGµ D!6%è†þ‘5kê}Þ&[‚vÖ_$Û°­ÁÙpÔ‰7Œ³>#¡uÅÝ2šF‘~›$w"jÁ¾ØM4[±îîë¬Ç-ˆ³~$A9ëªÂ Ÿ×Ö4Üèó>Z`o>WB\Ô² ^m¶§(úh½3Aúë›Ñ`‘Ž®DdM·ø>Ÿo5hPÜRðyý>ïUŸ·.a(ôAò×…íÆU }=‚ž;Û³[8Ï¢ÿslƒØ~ ›ãXŽ±Çßƒí … [Æ‚òe ê÷ÔGÒv¤oÐȱá}m#6¼¯ý@÷(€Çz\kÀ÷±™p_¾×¼cc-ãßc^þÎæɬ,„¤É,eɨü±^$UïÞyíÂëoÿ“dŸ~˜0Ó?fÞüêÛ'Q:Qž³(Oø¡"U%ÅE…zš 9ùK‰²9I¶¢B*æÍn`õd]z€áh².,Ópƒ¹èL­h¸¨D_^òøI°¼– ÔÄhH#2sòêtøIȃóÁr?ñ¸Ò(½¹–ˆ}§# —t>¾oQs×ú'û{¿5ÝÙºtíö+ã®îšè>Ѷý…ÜCø¯Èhí½Ÿvn\¼»¥vo; íúA]©ÿ¡ŽÇz]Ý´m•}aðüê‰ï v~}té]‹ŽMy×.:†P§ËŽw7MEJVGÖà9ÌêíED‹Dæ™IVŸåâÅà vRáÎSä>§x,4c&me„mUë«&ux¿µŠÍäèÆ䉇䧂ÉSB%8§Ã,¯I+Æ(Ùõ÷”ÕR·”58ƒ‚}çVæíýóÙæxSea~UU¾2ku v¤c^®<ïÎe½_«}a×’5>¥i`hÙh)EHÞ:ßá·?Š?Nš\?¿°²ª ¿Êå¬è›8¾{UÇ肃g;w¼³?ÛïÚrfÏä“K,i4Cw=½õ®ÄC¿Šz› Š#î B™ˆC®P ‹g²ZÞL(FAɈŽd’*“•%ÉÕý~<Ù A­ÊŒÚ€Ñi4˜F{°¬¢†`,URqYZŽù•Wv,™ùÑ’‚‡ü†´Çè„ÂüùÊØ+…æXÌ\øJŒz+õˆϲÏ@6äBi$ß‘c΢QÓé„8€W ³åÊrs¬Ù˜]4|iÁ€³K¶¥`°Ir˜ z’(C ¡í4'I„úï’ œ%Ë‘çõ£m3WÏMé}Tÿ<'yþƒXœù•ÉôÙoŠL±XHA"§²´@iŒÒP"©Àø¯Ag>Dß uЩNWRZ"nA‘&'L1ŸÃ+À[I.éÍpX?)!ZÒ[XnäꈂPJÒf•¤­ÃŸ$oEP+žzÐ%ù‚9ÚYâ]1 ¿d¢¦¹Ç^%ÿ²ú£‚‚ÇV­ÜémŠš{ªz¶=ÜÓœìm¨§)f*¢ŠC¥Ê˜éå®Éç:7TïZ)DEMEäÃõ{/Ç…±ÙÑà©‘tAaŠñ¡ÎVðAm¤\N +í¼‚(I¡+M¡’g»ÛÄkðTxÈ–ë¬hyžP +Ò›ÉZ9ª8¥­ü³Ò§t{¤ +-†þlp²`sO[)ž÷`Gü…ñøµ=®ïm:·QËøg8Þ¹ìX0Õ’QH¿;/;fÚW=øÖöÝ?Ý.Ìh¡:æ¯^´ÿÞúöÿ8¸|>ž[*’ÆÞ ÈŠè·xx}JÖÀ]J¾¿: +I º¤mK$ã1ÉxŸ}>kÜ“lbu6¸"ÙYéz„ˆ`N§4<¡ûâþ9³úϾÀ=»?)¿ ðe5=ÄÓN5z­9˜°¥3[’3;•¹îkÌ©°z%_ôܼNe> „"~!éx*4Õ–§çeJ°,S FaUx‡#½2Ps”5+x!­S”3žÑ. +$†k y"îkçîÚ&vá½Ê͵áâ¾ú]÷ý/ ~vB8›ùñòý‡[ã{"{ÚN¦ââæufúˆÊ"ù9*·•×É“Í›2E61+é5iŒ¬$ÃQ®ÙصyûoÙ $Î/ă¨0/lßxÀQ%A +×ÜGÚO~ûrE:˜™Ñ¶n省d,9*­À‹ùÛ‹×ìϪå ãùgc«‰Ì$ßÆ+I¾G®`äYˆÍ‰âRL¯Se`ÌæéÕešÙå^ÓmÉ-F0O%/“ù ‚º$BZ?•Äpù$þòDü= ï*µ£ØÅøGx-xBøµskÓòãÎŒù½ÑåZóÁŸîØýÖÞºyäœ$ý Ÿ$ý5¯4´ ´’ßûZÜñg×·ïu©¼yn§¿Š !‘¢œl*ÝÀ»ÝrÈóéÀò’yIMúrrÖN:´Œ†£ +oKG³éÓŽÓ."cY- Õ½NíÉ$žkÛÇ_ܱêXß8ó»©]’F)e:£õ9!N¦‹—nÙg>øîÎ?;T7yª×b:÷ɼÁJ™2k˃”sñc#ï$}ãc(‡$l‘Ì\ +é ä²2£wÒÔz–hX§èŒ=щùãc’ñà +Xµz¦]ÜcJúî‘úˆRÍÍS`Ž Úè#§éD¬„ˆ¡4EQ/3µÎ<3OeÑf%ûžJmÒË?]™‘Œiömv;òšÂˆÝHLz´—ƒS)0~ÕVÞ Q«xWlb1µØ’g©…SvÐnt1fy‚$Å- 9ኈƒº&Xuë–Ps„»ÉÓWIžY¼5S(Ó™eEx Ò,sã÷ô/äÚ2,V¹0‰òø Ís6â$ÉF,¡Ö£p·Ùã_«õ½ôÉ ]Ö×þ©dçu˜»Oaî.ƒÆHØ_A«‹x†R;l*F^ŠPdi*ÅÞÈ—’²?½$çY )ÔÐtÌHhŽ*Ÿ#j hUz+D›"/µT +º©tÉß+BzCjc=]Ú]+º[åiþhÔ_­¿{ñÖW·µî¼œó»«¼ÈedVW…Ö´n8z_[ÇC}£Ë©ÚÒâhƒoñá‘yk¿ï>}ð‰ì÷X6ëëÂIÔi–‡-„¶H‹‹dêRÒŸ›Meº¼¨Wä锄£5’Ïë´”ÉÁ/¨ä€ ’ÖRÃe§½Ð‘O¸–X‰èâ”~…%¡Y¢IáÙÕò@¨Läšbf•IÎ4§íA“%/N)€æ ûÅ’ÇWn4–­¨;¢ÓmŠ­öö­j=^ÈpŒ¿¶Öï‹løfGíÑÉ–ÅwµuŸîßýêäšçw5ì¡ÜæÒÇš_»£jË`µ^§áÇiØ®&$âóF"Þ® ®¦±¦Î²´ƒölúþúù'ÖsçÙÊÑ.˜d*ô_b‘Ý¢¤õ9¼™OWÉ1µ™4ˆ»:W†RÁX|§ÞìˆCD1¨{‘H;ê +Å\„@‹ŽTfFWˆ^­5Hü"¨ƒÈCÄalzšÌ”“Ëä²<“œžž9?-ÈùÌ,^H›F¶ä‹ÆÌ7âÌas,zã‘h +š³Ÿ}h6³Š§ã1ĪvĪ«Ê S­’ð Ï»ÍU"Æz˜°óæRîbd4SÀop9€ /éµ°4—FÄ@V(Ùt$†bÖ*¯È $ÝRvë”*æHÓíYÌ3[UHWC•ÛŸ#êxù@øH‹'P•_PueÛ²³£Ž<‡½ºdiqõ +Öý•ŽÖ¯ =±!V?YùâþWv>Tמh© { +ªª +ÆFZîìù žƒýËJWF÷ú×.‰ Ôo®{«æ€‡˜k¨Pç,ŠÔ—祧qŒ¬@Žä9iš9S«¹»RÊ8YŠpIq&®Qzy{5T®DÌÁ\=äÅ2‹ªOº«¨6f‘Õê$§u±¦øbHœ«Kôã¤ÿ"¢çÉW1ydâF]¦Š©|·ÿàºæ»›ÐIOu´†éœB“©Û>Úw¸?z¬9ÞèÝݸ¿w¡R¥ãH«F#¼ÝÕW¿RkI¯]ßØ3˜`•œð‰^?z qYå|M–fÑ–ù ÆcŽÎ¥,êÄät]âþˆ[IŒ*ÊâIGm“”(+CGëœI¼ÒÆYâ’*‡¿Eç5$¥QуI*æ²ï\Q³&èqWxTËF¼/ÝFj»'baW¨Â2︸THˆµÄ×%^’ÁH‘“º-%R†ÄÔÅ#éÕY l~Šžç!=OeÊ¿ÍÎMÿ˜†¿ïKi÷‘{nQîÛHv2§_EŸÑ@žX÷[ܼ"yɺ¿Cu‡] a÷\Ý/åðYÆÒQt +È;8™È<ÄÂq×›;ö<Ñ¿÷Ç;v^Ûyf£ÉenYR™r»ùqóž7w¯ºp÷âCïíÝ5½§ú—Ö9–ªŠªck¦¾¿[´ÝK˜·ÏbN²)’ž«¶h(Ý3‹yWüøP„iÓ¡¥È")4ÈÒ(ʨ!âù‰ q×æoŒ”—>1¡Ðs +fðÐÒ<ÒÇ)Y½B`z®9±=p’؈âw+¥ŒgÞŸþtrf«pר“ÜÁLvQAòÐ`Žh2)¬¾¡ +ÁÎ¥C»ÑLå]ûö%¿û°guxâ…‘¼<Â9ä*Jn–JG¹Hˆ±‚]¤¶»L/Ú³P‚ÄÛÀ0‡è¤°qL¨REHJ ?)¡ÃØ8=MýÏ=¿;ÓÝó­ßN•U¼6òƒÚ¨×­yvô5WAâßP4õ&ÜuàÏW7ßí5ö.í|ë¾ßïZ±’³æ$uºùetC8Rf!VO)1Äar Uc¬Àóâ÷$7²æ ÙYë$KŒœ£ò“Õöí"ë~:)VÄ8‘”‹òŠ_›ê¦§™‘ÊpZqÏ×îüw”ï‘W8ìy€pIY…¢;\î@Ùfþ„Ó3ïà‚™?E%ŸD[2Êi”X}anJÈ<³ Ç/šÒH,:~ +SŒ‰,Õ1$ÉëSß¾nÙTBc»Ç´=™eoÙóÉ÷8ñËMÂ¥éwˆiÓ=Ñ“O^˜³d_bëæóÝ‚"£žÞ=ùÍI#J|ê@ß´ˆ¾™ + +}Ó€IŸXS¾©G( VC’ßZÊ̦,”BA8ç<„‚®ž+ezŽ9y¥·tôÌf†@Ç3¤“:F#í¬J¦d¶O G®< üVøão{˜$ÇB>"r¬fhˆ„kV3¼Í‚ Bg-Ðr^=¥öcIÁ8CqçQK2ÂFI(‹Žöš_b³L<”CR+~ô¡d"èiEy1]…$>kp&ëãÛ«åûH¡äEãŠí‘¯L²Jýꦦµµ%œ™MW˸£œº—“©˜æéMí£Ë6ýëšø;‡¾Õ_íóÕÔødºëÕ¡Ï´ôûbc…ój), ϳÊúz§W¬6 {BÅ®ïzs÷pb­¿*ìóÖТOSLñÔEPñj1=;]&DT–d»åÒgYÿÚŒº×„hº<_îâÓ$³w ‘€SÒ‚š-£Bd5,UN’!$üZ×ÜSr¢­ï±­Ñ×â+¾â_ÑÓ4sµ÷>‡ñξæóóªvHõ?Ùi]tàÉ®oïhúÆVÿä|¼ Ü¿`÷ý‘öçïJæd©f*„’H~~ž!1åð¦<±fÊI¡l>êÒªÔjÙåY"2x¿X.Ýâ!w²¾K–{øY VNÂîW·L½¶{ÇÕÊ‚‚J¿£eÿÀŽ’ðÁµýG25™œ"÷’ùŽ·ãñ_Z5šççe¾Ï­ZûoñíkTJO}cò}Œ†ž‚bÌ£y”Ç)äsÚ,…RaÉ4¨XV—†¸ ¤ÃçÖ³¤4™E¥pè5ud®H1˜-Dú:[¤ˆlÀ}‹¸Þë)¾£½Yx]ß%6Q¿~³YHGÝê,á±ì…c‘…›ÊÝYf¯È}ñ<õßnc,V*gfÞ Ÿjô™.C,VUùù£õ-kç»ËÍù{yÛØˈN¨Š;Ô¹"^gaM-òÒL½ÈK-Ϥ©ø²Ô”F±6²T%›kŽ›Þ†"'µÏõfÙ©„#ˆlÔÐ4Õ7M ¾ùæÌ£Ó3g¦“‹ +iäcñš$¤TÑÌ[I. ~Û ¢]s¥ªYMÉ̼‘ÈÜé +‚ÞkvOÐ ¬&£>M­âX¾2‡žû°(â­X#„’ÞéÔۥؔIÇ¥s€n3sTõ¥›æÛÃfê¯ff^¼Ò½½Ðc•‡fœ£å¦šÑU¤]­PqòÏÿb*ôÜÙ/ÄᯄYGî;“MBOòÊ<ë(B²’…¿ó‹€ö²g„Ì’ª’/¥öM¶½­÷8V§Wÿrå_xøæXnë8±+LJÉìs¸_3N…n>qó¸\7·ãìÏC}±µaëL5,À ž;5Ì&R!¨mŽÅ¹Fú^¨Ä¹qí'îö׉ÏË: †×vÚƒë씞Á=ñù—¨s`æ,ÐÈâ~¬¸¦¤çBÒžxõà~uâþ’´X $¿,«Ð0XnÃèKÉŸætZ ÏÍéÍ“òTŸÂèkMõiœßêc$GR}ÔdvçßÀ•„áqtYzJìÐ[ªOA©MõiœïLõìoIõYÈ"'R}矅˜€IˆÃfõ0 [¤/@ P€×RÔ¶ÊÁ‹ýzè‡)\3†ý…àÇ¿‹qfLú/µÃ0Û¤¹(Έ+Úçv›’FCxÂwlÿƒ¸²÷.“ö\ˆïw²aö›€©'D©Ä†`-ÎŒHwD)IoÂ;>|ÚÐ01ß<²~x‹-¿¡ÀVZYYîµÕ÷OŒÙúm‹ûÇâSÃCÛü¶èؘ­]\6ekšÚ¼mhÐ_RZVß¿pbq¿­yb#Þh˜Z»edb£×¶hhÛИ¯_0ÛQºÕ(Ç8Ê_Š’ÃøöþÕkÇ7—bWÔl=lEyúñ.´­ß:Ö¿ù=õ÷ï–¢^¥ˆÓ¢…|ЊºoëxPê/-.-óµNlóU–ÿ£}èT îÿ_¿Ø92íPæÊÓÏÊ4µlƒj¥l9»Ô¹€]¹²H„{/ÑÕ‡¬EEÿŽ¥ +endstream +endobj +323 0 obj +6194 +endobj +322 0 obj +<< /Length 324 0 R /Filter /FlateDecode >> +stream +xœk0¬_ ´P¡U\ø¿¸j +endstream +endobj +324 0 obj +20 +endobj +325 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAA+mwa_cmr10 + /Encoding /Identity-H + /ToUnicode 326 0 R + /DescendantFonts [327 0 R] +>> +endobj +327 0 obj +<< /Type /Font +/BaseFont /EAAAAA+mwa_cmr10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 320 0 R +/DW 0 +/W [ 0 [365 500 500 500 500 500 750 833 555 276 276 388 555 555 443 276 500 750 276 500 500 916 500 394 391 555 500 388 333 763 651 680 388 500 526 443 526 750 443 ] ] +>> +endobj +326 0 obj +<< /Length 328 0 R /Filter /FlateDecode >> +stream +xœ]“ËjÃ0E÷ù +-ÓE°%¿’RÈ¢šöliœjYÈÎÂ_Ywš@vräyÜÑŒ’ãééd»I$ï~ÐgšDÛYãi®^“hèÒÙ•TÂtzbŠoÝ×n•çó¿=ñè +endstream +endobj +328 0 obj +400 +endobj +329 0 obj +<< + /Type /FontDescriptor + /FontName /EAAAAB+mwb_cmsy10 + /FontBBox [11 -215 942 727] + /Flags 33 + /CapHeight 0 + /Ascent 727 + /Descent -215 + /ItalicAngle 0 + /StemV 0 + /MissingWidth 500 + /FontFile2 330 0 R + /CIDSet 331 0 R +>> +endobj +330 0 obj +<< + /Length1 1968 + /Length 332 0 R + /Filter /FlateDecode +>> +stream +xœU]hWþîüìÆd³Éj~VélÆT“ÙdcÔ.J³™I5Æê%[„d’dv3Ûl\“–þ@ñ%V°ÔR°P|’"E&yh¥±¥b +E¤h+BKŸ„>¶ (¦g&£”Z[ïìûsîùιwî=  €wÀ#ùÊ¡®žðOÁf€HÚ#“•9iodp€ð÷Ô?›*M¹Ð7Àæ©ßš.,Lý|+üÍ?Jös9ÓÈNý¸§FHÞž#EíVô“üÉ›rŹùÀvd›äª‚5I\ø…ü8YùÛŽÉ~‰diÆ(š[fÊwH¾pgJVynå-4þ‚c/Íš%KíØF²Ãß=„± =+€•¯à6¶™q¿â*>ÅyœÅx'°€2ŠÇQ¤±»¡a'؆HUÐ_ö¯÷½íëóuø‚âïâmñš8"¦ÅÂoBY°øGüþ¿žûƒÝa×Ø1ÖÎÄþ>Ç2.RŒOˆÿ]¼éF˜À«q#쥩Ç1’M ëÖ†ê낵šê5U~Ÿ(ðƒ²LßB—'emꈪ,wúȼèhs"ã»ÜÁ®îÌØL¯ÿ‡JU¢ô³¹NUY}± ²¶ÄøvMJI9#kóí4J¶ Ë†”]J&GF#Ô–iÍu€Ð.¥r¶¿}аqp4Òb‹úK™#›94*wÉ÷[ºä»;úlv#ûÌ™b»Öw÷)ç¾û®*´¶9¡*_Ó²Áhœ$m^7òã㚪 J6/kËŒõŠ.ë‹2lAÖÂv³Vb æí¤!¹yÛý-„h§ZìÝ™Œ-ÊQ0YËÛœ¬ÙΰªHƒ¹Uù!ˆ+W4Jb9$Â%i‰ã5Ùf†–¢ KŽŒÚÉñŒOUȤ‡tJ7U‰©ÊUUé³:ÕÕ‡}ÔÏ€s.—HÝ.?Ú’-2GGTIðsÂažL‡ý >nM#Ú EB›©3ˆ<ÔD<@D¸ü@s1.°›â)®µhNÖ·úâÕùz¨©)$|TßØXÏnn¨«Ûàtü½1_ ;í¤Çβ×\…;r70Å­¥±FÄ´$$œÏßKS&;ýÝ=ÞÕ¾ñÛÉïÆêvý‰ªžön~”òŸ¯;uœçIoâ{ÙQ9Íò ããFûGûµ\ ‡¬¦Èѽ÷¡‰(ØãÍ Ò]|ì?†+ObTSaž—Ÿô0OzËÃáÓQ˾ð°ô·i&ÖtÙõr0C“<Ì!Èú=Ì“>ãaðë±}ìaé¯B‡…Õ‹Yä1æho·¶ƒÆ8UŒz¡Ö`PMÉ£@x1z“¦àVšLT\]?iœé'leW2i4)F…ÞYšÙMÜ=.çÅw˜$ªPf<'+‡ÉÄ$iò®ÅÉbŸÉ$‹JÞ1ªPVia6?›“¶èR<‘èU$Í(ç ÒPL6 + åœY‰Iý…‚”v¦•¥´Y6g+f6ÖïÑŒ!kØRÖ t«P0'çòÖŒ"í3+fAÕ(@Ç©’ŽQEÊlòî&åñ‰±Éby!NØYÜ4ŽQJ-isúXÁ˜}Çÿ§ÆÑån•JeÜ¢¥«îA<ïŠ÷¨û­Ššè}*~õ0®¼áü‡ýË… +‹mbk°™oÔŠéšá¶$?<¼©ö N]âwØ~p® +endstream +endobj +332 0 obj +1292 +endobj +331 0 obj +<< /Length 333 0 R /Filter /FlateDecode >> +stream +xœk…… +endstream +endobj +333 0 obj +9 +endobj +334 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAB+mwb_cmsy10 + /Encoding /Identity-H + /ToUnicode 335 0 R + /DescendantFonts [336 0 R] +>> +endobj +336 0 obj +<< /Type /Font +/BaseFont /EAAAAB+mwb_cmsy10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 329 0 R +/DW 0 +/W [ 0 [750 776 ] ] +>> +endobj +335 0 obj +<< /Length 337 0 R /Filter /FlateDecode >> +stream +xœ]PËjÃ0¼û+ö˜‚l÷ Á¡àCÔíÈÒÊÔ’XËÿ}¥µq zÌîÌ0¬h»[çlñE^õÁX§ g¿Bp´®¨jÐVÅñ­& +‘Äý:Gœ:g<¼n,½„ ¾ÓgŽ´Âéªý€/ Ñäþ'i$ëF8ý¶ýÑí—þpB¡ä:ͯhßeø‚`Ÿs§ÉÆõœäÆÏjÆÕ–Ays +Iº‹K™ªË[ª&»?ÍëM5u—t°Mª†Q•PYÖkwVvÉÛ8"ª…(¥ãep¬È:<¶|È*>ÿŒÙ} +endstream +endobj +337 0 obj +234 +endobj +338 0 obj +<< + /Type /FontDescriptor + /FontName /EAAAAC+mwa_cmmi10 + /FontBBox [-34 -250 1047 750] + /Flags 33 + /CapHeight 683 + /Ascent 750 + /Descent -250 + /ItalicAngle 0 + /StemV 0 + /MissingWidth 500 + /FontFile2 339 0 R + /CIDSet 340 0 R +>> +endobj +339 0 obj +<< + /Length1 2824 + /Length 341 0 R + /Filter /FlateDecode +>> +stream +xœV}L[×?÷}ÙÛàO Í3æËØÏÆÆ@ŒÍWøÈMR“Fƒ vf°ƒ ²e‰(j‹’•ôCY4M[´EÚ2=ДFie‹¢­Óªªê¤­Ú¦®Û¤)ûgë¤tkÍÎ{8‘º®[¯}ßýsï9÷wî=÷ÝÔphì}Öã3ôêÓŠÔ›á§K!þ±Œ§'&)ÝÏ"ˆÿ‚õ·Éùñ3{€þ5Öt<‰NìíÉ¢ý´iˆ£BsŸyeì‡òøäÌIÃyåÇ(“©1ô•wmo£l™ŒœLÃC¸ T£ÌOE&cï² €º”Nef6Oƒ@uOêOOÇÒ‡Rö ÊD¹8P‚¶ƒÃÙ#ÙÌæ{èù½ÂαWI!aàCxîÂ5ø6\Ëð*¬Â7á<,Á×aÆ! +G`ö@/ô@Z¡¡êÀÛ•*ÅGŠbî=îw…}Ì>bþ˾ÃÞ`žeO±'Ø}¬–ù3óæ3Bgéè‡ôÛô]z…>FSs”‡ª"wÉ*i&¥°,>@oÁÏáÜG>·áÜ„°?†!»ïÃUøNŽãë2Ë ÈrÎÁ‹ÈuÎÂ×àÌà ÈÀq™ù #ó}ÐÌ» Ù·=åocu³ÉhÐë + ´u¾*O©àX†¦¸ÖqßCüòè²=8~Hp­×„œÁ.j’›¹U5C" þ‡Jp9ñ/R5‚këAFE°×]ä»øx$*ÒØò"²GøèZ °| lò¶mCûÂ`*ø®¸¨¨èŒˆ°?l³ŠlhÇ5z6l÷Ø?¶zì8·ó‹½G¢_8’­¶m|θícY¥Ó5 ®ŸbØ@p$’Ë"Š$F:F‚‚«“i{pPlh6d-Û±CdìA‹˜/ÅŠÞ, 1áeÞb»±Å.«Ø34$²ö º ö`B¤ìAQ]c\|g¼CpÝ°›÷‚Hb]Ç‚ÔòüE/í"‰»pÁÂb`dHšOpaWHBº^\nÁõ@pµ‰Æ¶JÏb?žB¬#˜ñQ 0€Š²ñT+À½FÀÓ²®`ÿê[ãØß·¬ÓBX£%5+©×ÜÊ'-+â:MWaÓÙ:(>[N^ÏÆÙƒÿüaó6ÎDÁžÍ ¦Š='¬ žJ;ÕXš§"…ŠQºˆ›8Hi5ä•((ƬöWZ-: §·ÒÀ’öÚéls:kÙ²Êz¿¾¡Îg.244úíeõ»¨º +Ÿ‰p&c¯¡±¡™øÌ&-±—UVqU’¢ÞàF‰Sp”Éh&ѳ¯¼ôp©%bÍ(©%Q䫈±8û¾¶9*bÔÅJUùÁ‘Îcš{W|TZ=ØÑ9ç¨ÞÝZti‘”¼ÚAÞ²mV¶Dk.ù×xY ü½¯¨µÜ…ëûC—R}Gî÷Ä fÿ´·û¸óáÍ ú8}ß4j·—P¦¼‡RJGYp& 4SH*õy¥äL~e![F&ôL!Gy¤ ½ Gí&¹°MF-qJÑšåpeBKˆoŽ"E|etu`õ“‹áÅÛ.p¶‡>ìæT*Ó—ÍnÎýòjM¨ü¹•ÃEã×G^&äòóg3Ö…çž_NqE*%“˜§læ¡áʦg†_“2„@& ô +P†@¾†ëUîˆÉyÁí®5øÉ.‚Öq”ŽL=F–ôI‹‚KÒèßEpsýòÖ:IYë i1hyq±ßðDG6=()=ä$y¿¼Ýbö'ŠEg{)¾;¦Ë ”™w¶/ŽQ4YUøJ‹+¨KÚæ`ûVz˜á`û„ÞóÕÎÙo|:=ÐWÛúƒ [¸3Ò[YS|mêX}Çðw• +jÐZÅ—¨™O×[«¶Ò$|z¼»µ¥ç,|¦æ rX— æLöÈV˼ã”S(Ÿ…ÿQ˜Y§Ù«Ù#€µµ_9¿[Õrg:ZÐò¼‡>g¼y+ ÊQN‚J4&OìÐ_¤ÂþEåèSO +K=‚Æ{è›p˜È0«x[H£X÷È™¯FBfD·ñvÙ*Z¼£žø: +÷žÎ§" 9L‚ìÏaõ©f_Ìa4äæPÿ;I˜<”îÊV&`$|S %í9L£~(‡Ä 9ÌB ùVs¨!HAïÉiHÀÄax¨F­[/4áÏ.ÄAˆàMš€$â>pãs5I´Ì U fe];j¤ƒO½ed)†m ç˜ÅgGÖ¢oŸì³ç—<ñx'§`*g!±’<ÅpgЗÔ#±è—gŠa€Ön¼‰SéùéÄD|†¯9xoS“ßÅ#™D’ïsó‘ä|&›uóíÉ$?( Ëðƒ±Llz6u×z}ÁH_j Âw¥¦°#”J&cc3‰Ô”‹ïÍÆ’B'˜„9dwyLâ/¼kQ99:69™ð"–‚›ÀÏŒ$›F16q"™þ†ÿw¾u°zä¥ð“+…¡ ò†€×íõx}žԬÐäÿ®èÜ98%}þ—õMá ËY[á6ÆÖj +^ÔMåÇëÂL8,hêáüMºe©Ôéø7nØ> +endstream +endobj +341 0 obj +2035 +endobj +340 0 obj +<< /Length 342 0 R /Filter /FlateDecode >> +stream +xœk```df #† +endstream +endobj +342 0 obj +17 +endobj +343 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAC+mwa_cmmi10 + /Encoding /Identity-H + /ToUnicode 344 0 R + /DescendantFonts [345 0 R] +>> +endobj +345 0 obj +<< /Type /Font +/BaseFont /EAAAAC+mwa_cmmi10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 338 0 R +/DW 0 +/W [ 0 [365 520 464 500 571 ] ] +>> +endobj +344 0 obj +<< /Length 346 0 R /Filter /FlateDecode >> +stream +xœ]QËnÄ ¼ç+|Ü=¬ÈcÛ^V‘VYUÊ¡5í0)RˆCþ¾à¤Y©–°3c°aM{kÀÞ½PÚH“½@èqÐ&+JZ„ ‘#w‹ân™Ž­Qª•%g·1ØGÜLÁ/p¸JÛã$ª”ó½6¾šnÏv³s?8¢ S¤Èšî^ùˆÀ¨Î©•‘¤ÃrŠò;ãsq%áb}ƒ°'ÇznÌ.y´.ÏÑêTýßyµªz%¾¹ßÙ*ZM¨Š(z¹¢3¡§ª´iŠ¿ +÷ ¢å%…ÇóÆ^ÏÓÒ(÷þÄì}l&I=¥n´ÁýKœuIEëÎ2C +endstream +endobj +346 0 obj +258 +endobj +319 0 obj +<< /Type /Pages +/Count 1 +/Kids [317 0 R ] >> +endobj +347 0 obj +<< + /Type /Catalog + /Pages 319 0 R + /Lang (x-unknown) +>> +endobj +318 0 obj +<< + /Font << + /F404 325 0 R + /F406 334 0 R + /F407 343 0 R +>> + /ProcSet [/PDF /ImageB /ImageC /Text] + /ExtGState << + /GS1 2 0 R + /GS2 3 0 R + /GS3 4 0 R + /GS4 5 0 R + /GS5 6 0 R + /GS6 7 0 R + /GS7 8 0 R + /GS8 9 0 R + /GS9 10 0 R + /GS10 11 0 R + /GS11 12 0 R + /GS12 13 0 R + /GS13 14 0 R + /GS14 15 0 R + /GS15 16 0 R + /GS16 17 0 R + /GS17 18 0 R + /GS18 19 0 R + /GS19 20 0 R + /GS20 21 0 R + /GS21 22 0 R + /GS22 23 0 R + /GS23 24 0 R + /GS24 25 0 R + /GS25 26 0 R + /GS26 27 0 R + /GS27 28 0 R + /GS28 29 0 R + /GS29 30 0 R + /GS30 31 0 R + /GS31 32 0 R + /GS32 33 0 R + /GS33 34 0 R + /GS34 35 0 R + /GS35 36 0 R + /GS36 37 0 R + /GS37 38 0 R + /GS38 39 0 R + /GS39 40 0 R + /GS40 41 0 R + /GS41 42 0 R + /GS42 43 0 R + /GS43 44 0 R + /GS44 45 0 R + /GS45 46 0 R + /GS46 47 0 R + /GS47 48 0 R + /GS48 49 0 R + /GS49 50 0 R + /GS50 51 0 R + /GS51 52 0 R + /GS52 53 0 R + /GS53 54 0 R + /GS54 55 0 R + /GS55 56 0 R + /GS56 57 0 R + /GS57 58 0 R + /GS58 59 0 R + /GS59 60 0 R + /GS60 61 0 R + /GS61 62 0 R + /GS62 63 0 R + /GS63 64 0 R + /GS64 65 0 R + /GS65 66 0 R + /GS66 67 0 R + /GS67 68 0 R + /GS68 69 0 R + /GS69 70 0 R + /GS70 71 0 R + /GS71 72 0 R + /GS72 73 0 R + /GS73 74 0 R + /GS74 75 0 R + /GS75 76 0 R + /GS76 77 0 R + /GS77 78 0 R + /GS78 79 0 R + /GS79 80 0 R + /GS80 81 0 R + /GS81 82 0 R + /GS82 83 0 R + /GS83 84 0 R + /GS84 85 0 R + /GS85 86 0 R + /GS86 87 0 R + /GS87 88 0 R + /GS88 89 0 R + /GS89 90 0 R + /GS90 91 0 R + /GS91 92 0 R + /GS92 93 0 R + /GS93 94 0 R + /GS94 95 0 R + /GS95 96 0 R + /GS96 97 0 R + /GS97 98 0 R + /GS98 99 0 R + /GS99 100 0 R + /GS100 101 0 R + /GS101 102 0 R + /GS102 103 0 R + /GS103 104 0 R + /GS104 105 0 R + /GS105 106 0 R + /GS106 107 0 R + /GS107 108 0 R + /GS108 109 0 R + /GS109 110 0 R + /GS110 111 0 R + /GS111 112 0 R + /GS112 113 0 R + /GS113 114 0 R + /GS114 115 0 R + /GS115 116 0 R + /GS116 117 0 R + /GS117 118 0 R + /GS118 119 0 R + /GS119 120 0 R + /GS120 121 0 R + /GS121 122 0 R + /GS122 123 0 R + /GS123 124 0 R + /GS124 125 0 R + /GS125 126 0 R + /GS126 127 0 R + /GS127 128 0 R + /GS128 129 0 R + /GS129 130 0 R + /GS130 131 0 R + /GS131 132 0 R + /GS132 133 0 R + /GS133 134 0 R + /GS134 135 0 R + /GS135 136 0 R + /GS136 137 0 R + /GS137 138 0 R + /GS138 139 0 R + /GS139 140 0 R + /GS140 141 0 R + /GS141 142 0 R + /GS142 143 0 R + /GS143 144 0 R + /GS144 145 0 R + /GS145 146 0 R + /GS146 147 0 R + /GS147 148 0 R + /GS148 149 0 R + /GS149 150 0 R + /GS150 151 0 R + /GS151 152 0 R + /GS152 153 0 R + /GS153 154 0 R + /GS154 155 0 R + /GS155 156 0 R + /GS156 157 0 R + /GS157 158 0 R + /GS158 159 0 R + /GS159 160 0 R + /GS160 161 0 R + /GS161 162 0 R + /GS162 163 0 R + /GS163 164 0 R + /GS164 165 0 R + /GS165 166 0 R + /GS166 167 0 R + /GS167 168 0 R + /GS168 169 0 R + /GS169 170 0 R + /GS170 171 0 R + /GS171 172 0 R + /GS172 173 0 R + /GS173 174 0 R + /GS174 175 0 R + /GS175 176 0 R + /GS176 177 0 R + /GS177 178 0 R + /GS178 179 0 R + /GS179 180 0 R + /GS180 181 0 R + /GS181 182 0 R + /GS182 183 0 R + /GS183 184 0 R + /GS184 185 0 R + /GS185 186 0 R + /GS186 187 0 R + /GS187 188 0 R + /GS188 189 0 R + /GS189 190 0 R + /GS190 191 0 R + /GS191 192 0 R + /GS192 193 0 R + /GS193 194 0 R + /GS194 195 0 R + /GS195 196 0 R + /GS196 197 0 R + /GS197 198 0 R + /GS198 199 0 R + /GS199 200 0 R + /GS200 201 0 R + /GS201 202 0 R + /GS202 203 0 R + /GS203 204 0 R + /GS204 205 0 R + /GS205 206 0 R + /GS206 207 0 R + /GS207 208 0 R + /GS208 209 0 R + /GS209 210 0 R + /GS210 211 0 R + /GS211 212 0 R + /GS212 213 0 R + /GS213 214 0 R + /GS214 215 0 R + /GS215 216 0 R + /GS216 217 0 R + /GS217 218 0 R + /GS218 219 0 R + /GS219 220 0 R + /GS220 221 0 R + /GS221 222 0 R + /GS222 223 0 R + /GS223 224 0 R + /GS224 225 0 R + /GS225 226 0 R + /GS226 227 0 R + /GS227 228 0 R + /GS228 229 0 R + /GS229 230 0 R + /GS230 231 0 R + /GS231 232 0 R + /GS232 233 0 R + /GS233 234 0 R + /GS234 235 0 R + /GS235 236 0 R + /GS236 237 0 R + /GS237 238 0 R + /GS238 239 0 R + /GS239 240 0 R + /GS240 241 0 R + /GS241 242 0 R + /GS242 243 0 R + /GS243 244 0 R + /GS244 245 0 R + /GS245 246 0 R + /GS246 247 0 R + /GS247 248 0 R + /GS248 249 0 R + /GS249 250 0 R + /GS250 251 0 R + /GS251 252 0 R + /GS252 253 0 R + /GS253 254 0 R + /GS254 255 0 R + /GS255 256 0 R + /GS256 257 0 R + /GS257 258 0 R + /GS258 259 0 R + /GS259 260 0 R + /GS260 261 0 R + /GS261 262 0 R + /GS262 263 0 R + /GS263 264 0 R + /GS264 265 0 R + /GS265 266 0 R + /GS266 267 0 R + /GS267 268 0 R + /GS268 269 0 R + /GS269 270 0 R + /GS270 271 0 R + /GS271 272 0 R + /GS272 273 0 R + /GS273 274 0 R + /GS274 275 0 R + /GS275 276 0 R + /GS276 277 0 R + /GS277 278 0 R + /GS278 279 0 R + /GS279 280 0 R + /GS280 281 0 R + /GS281 282 0 R + /GS282 283 0 R + /GS283 284 0 R + /GS284 285 0 R + /GS285 286 0 R + /GS286 287 0 R + /GS287 288 0 R + /GS288 289 0 R + /GS289 290 0 R + /GS290 291 0 R + /GS291 292 0 R + /GS292 293 0 R + /GS293 294 0 R + /GS294 295 0 R + /GS295 296 0 R + /GS296 297 0 R + /GS297 298 0 R + /GS298 299 0 R + /GS299 300 0 R + /GS300 301 0 R + /GS301 302 0 R + /GS302 303 0 R + /GS303 304 0 R + /GS304 305 0 R + /GS305 306 0 R + /GS306 307 0 R + /GS307 308 0 R + /GS308 309 0 R + /GS309 310 0 R + /GS310 311 0 R + /GS311 312 0 R + /GS312 313 0 R +>> +>> +endobj +xref +0 348 +0000000000 65535 f +0000000015 00000 n +0000000145 00000 n +0000000197 00000 n +0000000249 00000 n +0000000301 00000 n +0000000353 00000 n +0000000405 00000 n +0000000457 00000 n +0000000509 00000 n +0000000561 00000 n +0000000614 00000 n +0000000668 00000 n +0000000721 00000 n +0000000774 00000 n +0000000827 00000 n +0000000880 00000 n +0000000933 00000 n +0000000986 00000 n +0000001039 00000 n +0000001092 00000 n +0000001145 00000 n +0000001198 00000 n +0000001251 00000 n +0000001304 00000 n +0000001357 00000 n +0000001410 00000 n +0000001463 00000 n +0000001516 00000 n +0000001569 00000 n +0000001622 00000 n +0000001675 00000 n +0000001728 00000 n +0000001781 00000 n +0000001834 00000 n +0000001887 00000 n +0000001940 00000 n +0000001993 00000 n +0000002046 00000 n +0000002099 00000 n +0000002152 00000 n +0000002205 00000 n +0000002258 00000 n +0000002311 00000 n +0000002364 00000 n +0000002417 00000 n +0000002470 00000 n +0000002523 00000 n +0000002576 00000 n +0000002629 00000 n +0000002682 00000 n +0000002735 00000 n +0000002789 00000 n +0000002843 00000 n +0000002897 00000 n +0000002950 00000 n +0000003003 00000 n +0000003056 00000 n +0000003109 00000 n +0000003162 00000 n +0000003215 00000 n +0000003268 00000 n +0000003321 00000 n +0000003374 00000 n +0000003428 00000 n +0000003481 00000 n +0000003534 00000 n +0000003587 00000 n +0000003640 00000 n +0000003693 00000 n +0000003746 00000 n +0000003799 00000 n +0000003852 00000 n +0000003905 00000 n +0000003958 00000 n +0000004011 00000 n +0000004064 00000 n +0000004117 00000 n +0000004170 00000 n +0000004223 00000 n +0000004276 00000 n +0000004329 00000 n +0000004382 00000 n +0000004435 00000 n +0000004488 00000 n +0000004541 00000 n +0000004594 00000 n +0000004647 00000 n +0000004700 00000 n +0000004753 00000 n +0000004806 00000 n +0000004859 00000 n +0000004912 00000 n +0000004965 00000 n +0000005018 00000 n +0000005071 00000 n +0000005124 00000 n +0000005177 00000 n +0000005230 00000 n +0000005283 00000 n +0000005336 00000 n +0000005390 00000 n +0000005444 00000 n +0000005498 00000 n +0000005553 00000 n +0000005608 00000 n +0000005663 00000 n +0000005717 00000 n +0000005771 00000 n +0000005825 00000 n +0000005879 00000 n +0000005933 00000 n +0000005987 00000 n +0000006041 00000 n +0000006095 00000 n +0000006149 00000 n +0000006204 00000 n +0000006258 00000 n +0000006312 00000 n +0000006366 00000 n +0000006420 00000 n +0000006474 00000 n +0000006528 00000 n +0000006582 00000 n +0000006636 00000 n +0000006690 00000 n +0000006744 00000 n +0000006798 00000 n +0000006852 00000 n +0000006906 00000 n +0000006960 00000 n +0000007014 00000 n +0000007068 00000 n +0000007122 00000 n +0000007176 00000 n +0000007230 00000 n +0000007284 00000 n +0000007338 00000 n +0000007392 00000 n +0000007446 00000 n +0000007500 00000 n +0000007554 00000 n +0000007608 00000 n +0000007662 00000 n +0000007716 00000 n +0000007770 00000 n +0000007824 00000 n +0000007878 00000 n +0000007932 00000 n +0000007986 00000 n +0000008040 00000 n +0000008094 00000 n +0000008148 00000 n +0000008202 00000 n +0000008256 00000 n +0000008310 00000 n +0000008365 00000 n +0000008420 00000 n +0000008475 00000 n +0000008529 00000 n +0000008583 00000 n +0000008637 00000 n +0000008691 00000 n +0000008745 00000 n +0000008799 00000 n +0000008854 00000 n +0000008909 00000 n +0000008964 00000 n +0000009019 00000 n +0000009073 00000 n +0000009127 00000 n +0000009181 00000 n +0000009235 00000 n +0000009289 00000 n +0000009343 00000 n +0000009397 00000 n +0000009451 00000 n +0000009505 00000 n +0000009559 00000 n +0000009613 00000 n +0000009667 00000 n +0000009721 00000 n +0000009775 00000 n +0000009829 00000 n +0000009883 00000 n +0000009937 00000 n +0000009991 00000 n +0000010045 00000 n +0000010099 00000 n +0000010153 00000 n +0000010207 00000 n +0000010261 00000 n +0000010315 00000 n +0000010369 00000 n +0000010423 00000 n +0000010477 00000 n +0000010531 00000 n +0000010585 00000 n +0000010639 00000 n +0000010693 00000 n +0000010747 00000 n +0000010801 00000 n +0000010855 00000 n +0000010909 00000 n +0000010963 00000 n +0000011017 00000 n +0000011071 00000 n +0000011125 00000 n +0000011180 00000 n +0000011235 00000 n +0000011290 00000 n +0000011344 00000 n +0000011398 00000 n +0000011452 00000 n +0000011506 00000 n +0000011560 00000 n +0000011614 00000 n +0000011669 00000 n +0000011724 00000 n +0000011779 00000 n +0000011834 00000 n +0000011888 00000 n +0000011942 00000 n +0000011996 00000 n +0000012050 00000 n +0000012104 00000 n +0000012158 00000 n +0000012212 00000 n +0000012266 00000 n +0000012320 00000 n +0000012374 00000 n +0000012428 00000 n +0000012482 00000 n +0000012536 00000 n +0000012590 00000 n +0000012644 00000 n +0000012698 00000 n +0000012752 00000 n +0000012806 00000 n +0000012860 00000 n +0000012914 00000 n +0000012968 00000 n +0000013022 00000 n +0000013076 00000 n +0000013130 00000 n +0000013184 00000 n +0000013238 00000 n +0000013292 00000 n +0000013346 00000 n +0000013400 00000 n +0000013454 00000 n +0000013508 00000 n +0000013562 00000 n +0000013616 00000 n +0000013670 00000 n +0000013724 00000 n +0000013778 00000 n +0000013832 00000 n +0000013886 00000 n +0000013940 00000 n +0000013995 00000 n +0000014050 00000 n +0000014105 00000 n +0000014159 00000 n +0000014213 00000 n +0000014267 00000 n +0000014321 00000 n +0000014375 00000 n +0000014429 00000 n +0000014484 00000 n +0000014539 00000 n +0000014594 00000 n +0000014649 00000 n +0000014703 00000 n +0000014757 00000 n +0000014811 00000 n +0000014865 00000 n +0000014919 00000 n +0000014973 00000 n +0000015027 00000 n +0000015081 00000 n +0000015135 00000 n +0000015189 00000 n +0000015243 00000 n +0000015297 00000 n +0000015351 00000 n +0000015405 00000 n +0000015459 00000 n +0000015513 00000 n +0000015567 00000 n +0000015621 00000 n +0000015675 00000 n +0000015729 00000 n +0000015783 00000 n +0000015837 00000 n +0000015891 00000 n +0000015945 00000 n +0000015999 00000 n +0000016053 00000 n +0000016107 00000 n +0000016161 00000 n +0000016215 00000 n +0000016269 00000 n +0000016323 00000 n +0000016377 00000 n +0000016431 00000 n +0000016485 00000 n +0000016539 00000 n +0000016593 00000 n +0000016647 00000 n +0000016701 00000 n +0000016755 00000 n +0000016810 00000 n +0000016865 00000 n +0000016920 00000 n +0000099865 00000 n +0000099888 00000 n +0000099915 00000 n +0000113755 00000 n +0000113616 00000 n +0000100113 00000 n +0000100368 00000 n +0000106682 00000 n +0000106660 00000 n +0000106780 00000 n +0000106800 00000 n +0000107337 00000 n +0000106959 00000 n +0000107815 00000 n +0000107836 00000 n +0000108088 00000 n +0000109500 00000 n +0000109478 00000 n +0000109587 00000 n +0000109606 00000 n +0000109997 00000 n +0000109766 00000 n +0000110309 00000 n +0000110330 00000 n +0000110586 00000 n +0000112741 00000 n +0000112719 00000 n +0000112836 00000 n +0000112856 00000 n +0000113259 00000 n +0000113016 00000 n +0000113595 00000 n +0000113678 00000 n +trailer +<< + /Root 347 0 R + /Info 1 0 R + /ID [ ] + /Size 348 +>> +startxref +118989 +%%EOF diff --git a/figs/test_nhexa_comp_simscape_de_all.png b/figs/test_nhexa_comp_simscape_de_all.png new file mode 100644 index 0000000..0768c8f Binary files /dev/null and b/figs/test_nhexa_comp_simscape_de_all.png differ diff --git a/figs/test_nhexa_comp_simscape_de_all_flex.pdf b/figs/test_nhexa_comp_simscape_de_all_flex.pdf new file mode 100644 index 0000000..1863fd1 --- /dev/null +++ b/figs/test_nhexa_comp_simscape_de_all_flex.pdf @@ -0,0 +1,3125 @@ +%PDF-1.4 +%ª«¬­ +1 0 obj +<< +/Producer (Apache FOP Version 2.4.0-SNAPSHOT: PDFDocumentGraphics2D) +/CreationDate (D:20241029111728+01'00') +>> +endobj +2 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +3 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +4 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +5 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +6 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +7 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +8 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +9 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +10 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +11 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +12 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +13 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +14 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +15 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +16 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +17 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +18 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +19 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +20 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +21 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +22 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +23 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +24 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +25 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +26 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +27 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +28 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +29 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +30 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +31 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +32 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +33 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +34 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +35 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +36 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +37 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +38 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +39 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +40 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +41 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +42 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +43 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +44 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +45 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +46 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +47 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +48 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +49 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +50 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +51 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +52 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +53 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +54 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +55 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +56 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +57 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +58 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +59 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +60 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +61 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +62 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +63 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +64 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +65 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +66 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +67 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +68 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +69 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +70 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +71 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +72 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +73 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +74 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +75 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +76 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +77 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +78 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +79 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +80 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +81 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +82 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +83 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +84 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +85 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +86 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +87 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +88 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +89 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +90 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +91 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +92 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +93 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +94 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +95 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +96 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +97 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +98 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +99 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +100 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +101 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +102 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +103 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +104 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +105 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +106 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +107 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +108 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +109 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +110 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +111 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +112 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +113 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +114 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +115 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +116 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +117 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +118 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +119 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +120 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +121 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +122 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +123 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +124 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +125 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +126 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +127 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +128 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +129 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +130 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +131 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +132 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +133 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +134 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +135 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +136 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +137 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +138 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +139 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +140 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +141 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +142 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +143 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +144 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +145 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +146 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +147 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +148 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +149 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +150 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +151 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +152 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +153 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +154 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +155 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +156 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +157 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +158 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +159 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +160 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +161 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +162 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +163 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +164 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +165 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +166 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +167 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +168 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +169 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +170 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +171 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +172 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +173 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +174 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +175 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +176 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +177 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +178 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +179 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +180 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +181 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +182 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +183 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +184 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +185 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +186 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +187 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +188 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +189 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +190 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +191 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +192 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +193 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +194 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +195 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +196 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +197 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +198 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +199 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +200 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +201 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +202 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +203 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +204 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +205 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +206 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +207 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +208 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +209 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +210 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +211 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +212 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +213 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +214 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +215 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +216 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +217 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +218 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +219 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +220 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +221 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +222 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +223 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +224 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +225 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +226 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +227 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +228 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +229 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +230 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +231 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +232 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +233 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +234 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +235 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +236 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +237 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +238 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +239 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +240 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +241 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +242 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +243 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +244 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +245 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +246 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +247 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +248 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +249 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +250 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +251 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +252 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +253 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +254 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +255 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +256 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +257 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +258 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +259 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +260 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +261 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +262 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +263 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +264 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +265 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +266 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +267 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +268 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +269 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +270 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +271 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +272 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +273 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +274 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +275 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +276 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +277 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +278 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +279 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +280 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +281 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +282 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +283 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +284 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +285 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +286 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +287 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +288 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +289 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +290 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +291 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +292 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +293 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +294 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +295 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +296 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +297 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +298 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +299 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +300 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +301 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +302 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +303 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +304 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +305 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +306 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +307 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +308 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +309 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +310 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +311 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +312 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +313 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +314 0 obj +<< /Length 315 0 R /Filter /FlateDecode >> +stream +xœ¼½Ë®cKr¦9§à äÖò»;P( Õ- Ѓn嬠Q5$¡qr Ô _¿ÿï7_Ü$cç9äΠ².'‚¤­å»ÿfÿù#]ýŸ?ñŸÜóåþåÇñ‘ró§ŸÒÇÿù£øåò§ù1zmõ¤tù÷ÇåŸ~¤£_Ê‘/ùQõSüé7ÿéСñßÿøño?þ¯ßû±¿û§Ñïý/C?ðOúáÿñ?Ò¥ü«ÈÿþöÏ?òåÿý‘>ŠÿwùÿÄýÿ¼á|òù—?ä’_çRêGš³å\êÉîö£çø–×ù¶ùqäÔô;åä{ûÑs|ëë|Çüè½4Ú•ïíGÏñm¯ó]ýcŽq¤š®ÛzûÑs|ûË|K>üÁ¨GÞ|ï>zŽïxï,lælG['ßÛžã;_æ[óøhÇq”£ï{÷Ñs|×ë|{¾‘ÏqIÇfS×Éæ“GzàqˆINå#é¨NšÍíî£'Ù¾.‹x§<óGoyMþBéX¿. Ìzðaë«”~²¾ýè)Ö¯Ë(³îåCgõ•ëÉúö£§X¿.¦ÌºcŒ~|®÷Í'O1~]Nãô±æìc¬yå|óÑS¬_Uf]ÇGŸýhG½¾ôíGO±~]Zëò±Ú\­Ìë!»ýè)ÖßXf}|HÿÔ#}.øíGO±þžÌÊe|ŒrèHWÖ·=eußcæ‡t‚ô}½^­ÛžbýMYvè"õž×úd}ûÑS¬¿'ËÒZGé­ÇyÌî>zŠõ÷dYZùc3§œç•õÍGO±þž,KSgJÌfý|ëÛžbý=i–dvÈÂê5]%øÝGO±þž4KcIt-æ~]ðÛžbý=i–Fÿ}wósÁo?zŠõ÷¤YjòdÔÎÔN~÷ÑS¬¿'ÍRÍci}|}ëÛžòe¾'Íðš†$vïézÌn?zŠõ÷¤YÊóC*jêX_ßúö£§XSšeݤ*Ë@•õÍGO±þ¦4KK–óyP®¬o?zŠõ7¥Yj5©´våüùÉSŒ¿)ËRþH%·Eãä|óÑS¬¿)Ë­í’¯|ëd}ûÑS¬¿'Ëæú˜µŽA<"8ß~òãïI²¡K”Gsœ'ìö“§OŽã£®1äÞœúö“§"#ß“b½~ä¾ê±Ò©°n?yŠñ÷dXÓQš‡.®> Æ·Ÿ<Åø{LšiŽ1kZçºýä)Æß“_ò¨R;dh§ëß|òãïI/ùS³—4×Ø|o>xŠí÷dW­+ç²Êy²n>xŠí7=Êö!wBÖõ1®¾ìç'O1þ¦¦‹Óæ1ä=^M‘ÏOžbü=©Õ?dÌ—–¯Êé惧Ø~Of/EªÛ«±¯ÏÛŠMú›4dÁtýªén>yŠmþÛ¿é‚÷|ò_áóU:ã×ýòñ|øóÉ_ý£ˆg^SÆæqù¯ý;LG–壵µÖx&8òò®ÄŸ]X½“œò_Çâò<ïaúIž÷0ýƒ Ï{˜þAzç-Lÿèr¼…é%”ÞÃô²IoaúG©¤÷0½Ë#½ç¬nImÅö÷vŒ'œŠïšãQ̼ß}ÖøA¼ß}¶øA¸¼ß}–øA®üz~¿¯ü~=¿‡lôƒ4y¿û,ôƒ ùõü²Ï2ä ü¶)nCöןÆW‹R¾%ö~ÝïÞ>ïÚ†[{Ò}xÅ£ÇpÃê%×á–Þ Ç7¸ 7ÛÓn î_¹Œ?;^w¬Þ±Œ?9]wßê}¥c|Œ¡ ›cþòÓøS¥Æ ¯×J6^aúX£qËô¥bW˜>VgÜ2}©Lã¦u·<_)Ðx‰åCEÆÏWJ3^aúX‹qËô¥¢Œ—˜>TaÜ1}¥ã%¦õwL_)Äx…écåÅ-Ó—J0^aúXsqËô¥â‹W˜>V[Ü2}©ìâ•üXgqÃôµ‚‹—˜>TXÜ1}¥Ô⦵·L_*²x‰éCUÅÓWÊ+^2³ê)n™¾TXñÓ‡JŠ;¦¯”Tü åÏ÷”?•mÜò|©~㦷L_ªÜx…éc©Æ-Ó—j6^aúX¤qËô¥j—˜>”gÜ1}¥N㦅·L_ªÐx‰é}IÆÏj3^bùPŒqÇ󕪌W˜>–aÜ2}©ã¦7<_ªÄxåcéÅ Ë—j0^aùPtqËò•ê‹X>–[Ü°|©îâ–…7,_ª¸x…åC‰Å-ËWj-^aùP\qËò•*‹W2÷e7_©¯ø~è–á{Bÿå k7î¼ÞŠ8^2Hî«6îì‘Ê7^÷õ·2à…—“?7|ÞǽI]ýê@áC„ëŽ×["\_ î™¾#Âõþèžé;"\?#îy¾!Âõæèç"\_ î™¾#ÂõÎèé"\_ Œ˜¾!Âõ¶èžé;"\_ Šî™¾#Âõžèžé;"\_ ‰î˜¾%Âõ†èé"\_ ‡î™¾#Âõnèé"\_ †î™¾#ÂõVèé"\_äúîy¾'×÷áºçùŽ×¤{¦ïˆp}FºgúŽ×0¤{¦ïˆp}@z`ú†×У{¦ïˆpý :zàùë#\_Àx¾!ÂõÐèžé;"\?CŒîx¾#Âõ3¸èŽå;"\?ÊîY¾!Âõ3 èŽå;"\?C‰îX¾#Âõ3ˆèžå"\?ÇîY¾!ÂõpèŽã"\?çÜ1|OÓ9Ãû׃×ûë#\?ã’ì‘_áú ‘t/~}„ë³ò†Ïáú»¬G½äþÑû¸üùßÄŽ_ré¹Î#_– ^qýû?ÿH&ÿ)]þ¤›5[ZËý£¬%»íòç¿\þǃ˿üëåÏÿüãþì·xég‹ä}šM·ç§ŸÍ·?ËÓ“zÿæÓëD%×a‹ã‡þuÎåñc•¾Í'DóÝŸù”Ÿù<µª`”¥Ûð†]ù½ŸÃîü»wìÒïñû½ÝªßÜ­Óǘr1Þ°[¿÷óoØ­ßc÷ŽÝú=~¿·[í‹ÝZHÇO~:>ÿ/ñÀHÙ›σvmùCk×æ<ÒÏÒá,-Óú‘t¬Î‡è?ïá¯`*+\<ç—,Ç{Xvom©é+žó=<ëü˜s®õå{®7ñ<>F=¦Ò<ÿ·÷ð,ù£­ÜëüŠçß¿‡gN¾ªGûŠçÿþ¦µe;%¾bù¼…¥.g=ä;Ž¯XþÃ[XJ\I åùåúÇ·°¬ù£Œ£¶/ßò=ò ÷ ä5¾zËt¼…åÔ^ÎÔçWÇ'}¡,Åñ9 +eQ~iK?¸aFþ¤¯YÜb@GO½cœY¥÷r8ELêèeöÖ£héÅ3³)M+Á]ÌÊ8Ê1ûŒ/Éy]º¤#9ØÓf:êp´;ÉlÒJŒ¥©Ê§.Ò¹&•–SO›”G™ÓŸw|¨”[I|~Hƒä‘Ì(Ï¥_nf#SX¿6ðíRIâªéE' åO0Ϥð¤Hä_[ˤ®Å­Çªz ‘*볜7Leù!ë)’®¥2ü­šôJi¥)³@$=…L¤é…•«e•ìˆœZ”!JoR×Q(3– ’»Þ4™¤·Êµ¤^MjòWê(R’©—ë*©ÿ v©Ì4I˧§m:3Ž<Žµâ[#(¾ZÊë2uéJ™Çô³ß";Eé¼F'*—ðõôU¿ ¥–r¬1ƒ„¨Ð#‘5)UÙ†%›S¯M-YJ³É,m¥Õ$~¾$-°I½×£!T!± ³Šw†Tôšzi¯àà¼ô¢Ö¡¨ÚcgUÓÈ£éÈ×…ÔõßRkdî5mðš&µ#‰§ihsZYÆ;$=^Ó.¯Ø©HZÁ¼†0iêâÎ!Ë…3Xô"Sß³O¯gÖAÑ©iœBY-÷²âú÷g:åý³¥uï³z5´n9ÉÑ€ÄbèL{O|†–îLšt­tãšÞ‘S]…Å·dõsz¬Æ’ Yô ³uK9=„žØûµ + §–’)‡bô#(†Òମì`½ßÔÝ4é;9 Z +-©IrôþI_"Öõ ¾ÜlµÎsÅ +EÆפ¤›* ³±Ø®OkY&h5%çÒ%à‘Lj¶àgÖaä$µmÆ·:g+k™$]jý9éÞ¶Q3• ƒ;&ØcÒz•Ã¥+=BA×È)›Œ®3¦….t¶ÆÌæt‹ÕÕ±j¹öf¨Û!¡§Ó®]½Œ"y­'ª=¾Q˜¢ÃÉ‹ß|’râ®÷‘‘1:ÁIk|D$SK¬÷Õ¥hÚœ¡-”ÈLñRHM–>F#®¬W-º™¦ð­u½Ë¥Ë5‘œÓ±÷òIžvÉ©C–èE7¬pÛ$ÙM’ìîPØ¥KT,=Û‘â÷tÕo¥ë's}ví`œ°œÇ‡›ŽßáZʺ–Îy’8K¡H”I6 k×fTnv^¥öKÇZÔRd×'ä‚fÉ:939Š,)^²“¿¹èÀ⸱šM;Pb¯ŽÜØ«Ùd%I™×>ŠIE’ÉYjóÒÝ6¬¶ø½Q7ON^ÕûJÕ´!=ÛØÞc]$Ç»^JNž÷PFü2ÒO^ŠÖ« ç¦WVÿR?ˆ´;¨ØuS ’îrHõv±”Pü¨D‘êŸ?mµì€rôx«ê#7%Fí`Ní¨|BŸé‰ëZ`£éºå}ž©§é;e®eÒeÓ%õ²ãôHö-’:l½öcìCÖè×/‘bù'›âÄ9HüUŠVÚÞ¥ƒeŠœ q–è(Îi7$­rÐ +e'ºG€õµßº^2vÜ]!k‡¢7ëá“WJâJÇÝ´®ƒ§C­«{Á–.’D™ñ›òÝ›þ¬3{Y‹ß/E§Ò$ÝoíþÔ]$óôˆ’!~tŠtÝu|‡Õˆ–NÂ0.¤´™nS«èH¦& ð*väèÊRÙ“ .#XúÄ·$³õÄ\J–±¥#c +™$ý0XHÚ݉z?¼½Ü©/KJóöŠ$pÞ)KŠM_¢ÉfÔIçÞƒ$m>ÑH˜ÿƒEõk‰sÅ ÃéápèðG‹§Ð«TY=‰Ã¡óŠ)´,¿¥ýQ·QáÕˆ~T‰Èâ”lA^ß@šHqêÌÇ£Sõk’²VÒzEý¼Sé7¨ÔöaÓ. €jÓ-kÝf–2+“}ÎüC k/ï°¤›†³ª’U‡ Í঻-óq d"ê]¤§¢ôŽð¤MÔ®Šœ”,ŒÍ”šX² +†Ž$ü°Êñzhkõuí}&5Céo¢ ÙίÅÈ\M“tŠdÉxD¨NÔ­S>®Ãi! 1©fµ©-Åí’…õ¢Ã…õ&忧Š+«ºH¬|•š¤‚‰uŸ2•ÜIJ›&©*‹¶*U¾ƒnS÷bb›ë·êœa©êÀéÛbÖa“ef¹›,gëÀíeÓÊÏÖ(‚Y‡µêÀK#O.Òhº5HRp’}DT'ö—(e?¿þ¡l1Ý®ŠŒÐ5«i‹ôj{æ@e4¶¾ä-¨dëË£<¤à;Ò¡¥ÓT6É×E&?—?J™„Ô¦ÖÙÑ(¢K±c÷¼bÚë–ÊÂ@Ü”I¸)ãøKHsÂC"5b’¤ZAØRKZ]ÿÂSªIúØ÷yJqͽ"IÎKù³²}Uq7MÒïkÍ-ÏWhÒº¯-UÉÑ%ý̵ÕÒöñÅG£sŠ#/Ç·dpÈ “ÌíÞ…Sµ¿Um|I3-®­l›±‹OäË}„‘¦§’þͬb“¨à¥H†ÉúäB'Z[ä° 2=åì,ßhÔˆ”¬=þË$ZA¬¿W:;—±i²®uô, t\qCÇÊ·¡•ît³ À\¨aê»ÈþÑnó[7Z«‡¾9üZ¸W–ÒŠz—Ћ§zEk3Œ ´v§I«#w4ƒt•iŽ8±ŸRkÓ7s£T¡ìöÒã{òÜgÂû÷U‘Ï1fø¸ðþµêÝ4™4•jÁ1é$Ì&dR’V—ÃÐæ)¤¡¡(±QL«xÀºSì› éaXhJ¹ÖZ6;×Ò— ×I´†.=BââÞIÂëžmiÜ°¿íZËM•š< +Q!Óª~A¯^6Mv{ì4í¢ä{X!˜ç5s•kAŸ„"š¿¬ü1ÑôTr×B—¬A‰c ?ÑÐÞ‡dS+›¦³"¼‚6¹$Û~Áf! +œ½Ôû׷&•µ(Û¶;Ö MšfaÏC“¤Öæ¦0S%!ñ—‚Ö„€†s¬Å=i’šxæÉV1^.F¸i0‹Œ®UM“„™¸ICËN=µIC*TvpÐK¦+è"Ýt=eDª ɽXË$ý:b9vH6^¢œ—ÛŒ±&Ó¯G€šÎ;W¸›Öd”ʨŠÓúRB‰6ˆÂ M ¡³j[ÍŽv¢¤!"E…hN&L/µ g°Õ“$ã£ñ`P´‹²¿]–_+†EÛª›8qcÓ–S'Ë$Ý$ɇý5ý¾Õu(e6·Bºkÿ—‰™â„ˆ›d)¸ÖÝøi2—‡½÷BÌ]'¬øù­^t“$ù“불ê0Éfå÷ñ5c½Zø\“Š¿Q}°8µùˆÝ‘=ŠFʶ¬(Á‘w¯CW6M÷Lngwá÷8öWH­aš#häi"eI»ßLH±¾w`ÞYY«IJ¾o[xO—h>D”õë{3®H$¼F&æt—¾4Âzrfíï/# öS’à#o"ýl­c:2­õˆc‡„È*±­‹üfz IúR~XxlDª »ß–œ^8GzL~¿ŒyH²Èâ¯Ø‘Y½2M’äë­‡*”^?®úN4‰6ìP@˜êXm!ãY®˜vdmÒÒQs“$£äÅso‘¶^œf›Ü:)q˜1ð³®YE¸aÖMÉ[ ÈT(D4›*Ú@aæuÒôžzù7NÊ­#,CYƒº‹R1¢‚–h¡šH à­¯³þ¨QλiØ>³›-é䤓6®jR4¹Z•,ƒi2Nt§µ¯<‹˜K¸ÉÅ åJ£nR›»ï´8¤£oÑá…tÃã×?“k̪%“Ë, É ÃFÛ$ÊE´}“´3„"Õ¾Ò*Rdûk:Ûr¢Ú¦µ«1"š¼–vœ”E೯xù›im±n;¯Î}B“œk’cÓ†nxÈR½Ûî–O2pë@sxoÆ¡EîúK7îøZ„M“C£UÞï}·„Óe/Ì~}9ÝÝÐhD,õrri´á WR^S ¨$2dMæAÓV5äb\‚ù$Nj +!‡šN’Ü7²ÒÙ4Ü,™Of‡(Çÿd~ +È\®–aÞ4YPΚÖä.aoš~0Êq¨#’:Óñ³u]mèéxMTŒh ÑT\ ­'ëxÊdAµE-;SÉüj_¼ddHu]"MâtQO"øRdÞ&‡„ 9E»g‡Mœñ,Å¥#d M#ç GÐ$T––”ç$v/³ï±/ÚÂåY^j÷Xç='øåÕ¿©7ÀŒê›F]—<¥ìïé’ëˆwh¤stؼ.(Æzº[ÐꙦ2MÆÏ17?Âœ:#vÍ›L*Yb)‚•â†Z,<ü=^mZø—&½P·%»‚ÔÒù½VN1 îØò¯¸B’‚Ö©9 mB4–Ì ­×®«.“ªå|~O–E,=´L” ï3!9m{Mã”OÛ"†ÖusPÈ‹ðœja‘ˆ‚à$t”»Ä}ÆäYD"=2ªC2Š6ZœHÓRÝ5Ѥ‹¹Ï6¡!çõ+sÓ*gv<:\N±lÒÌ.*ãå +nT>•—´1HÙaåEzì°+ ›”rÓ ÔH‘@›üK»Úƒøƒ6 †F]iƒMkX‹€­ƒ&±œ‚‚&EÇ#u‡šÇŽsWDz;Õ/#h”L'@# qP¡­ŽzФ¨Ãã7)Ïm]CHœ=Ô(2û5!‰ËêЩë¦é€é‘có*F Ù; 5JZ¢^anÕ, %€‰H^ÙÙŽq'´J-iŽ¯éÁ"ž_kx©ž4ùk²÷pm¡É÷§„qÓäàkYJÐH«:w +<”!u:e©Ò i?¦|ü4£Æš®ý8o ÊŸðô "+/®® áñKZd”åpqöoœ4 õôaÇ[jlRß´¡âK +Mª3^AàÓþ˜º4-”FÅž•Î°o8H¡J¬l ,‰·ƒ\4Jr +««ùžTŠ^L“ý‡6›¦w$ß“‰×ˆamí® +Iqhâ• ž¦‹ndsï +‡ê6ŠíùHªÛ"T{Ê¡!YБꮚ&1&´Lº3ÇPA!Lî¸D"IsìL‘>®o@Å„þ]ÃÒ/r„W”âé\Ê92"]ÿÜ»°â 5º‘øBÁlZ’´àC•PÑò·äwê2ìg¬ŽEE¿YIPlú†霥;ËLúRM²± wê&wDôQWÞß’“ÞVDÏÈ5yÔØB’â‘Œ/ ø#7—ÀöH{;9¤§Ê÷—’kî-­HòT‹1É­‘(h{lBC4¨zš# •BBIis¢U±—ÀahÇ”¼!ïR.Zp²”tê"pT á£k ? üŠj ›…V¦<»E3Úm㛤 ×Sd +´Á|D9Oü δKiœå{´ià.‹r+¬AÉu³’g›)nÒ‰6‰(h±j%du”D¼éæjå–7IêK‚5XáÏIÙ¥’nÚaN.öX+QjÇ“‚W”l<ºAjÛˆB?…¬Qô/yß27çÀ: r,s¼Œß‘!3·p5·l í‰IáŽMšzß^ƒ×qæ86´‡*9Љ×ct’_ã\+þÂ+§€U‡ý’Ý&a…^N@Ö–„?eO™q>é‡1õ •ÒA½~&a&5;öœ<‚ˆi–zˆ:ØŒ¼gQeB`ŠTlNC…(„H!œdbJvê+Îþ,5Þx9·ŸÒ¡ìQ&G„ Q»—9 ˆÉòsVÂ*Vgp¢ìÒ%ðJE&ëRf«Ð›+FÔ~T¡ŠPÑ®wŸeòxyTQVW6‰”11èb’K3fH +—QË1ÉacJTSt< s$ó%pwÄRQ”Íètä`'Ûi2&¼ê ¤Ã +I3[~â„.ßuCèHv#B“‘r8Ñm“ŽŸØ“™ H•ê0Bû¾³³ƒÊØ…Ïè?ç+Åøº!i½ëiõëÄÓÐGVˆ¤h-t¹jàõñ±O0º©‹¢°a£ž§[Âmp¶B|K:wEÑ!ª´É +Ü’x¿®#åJ4¢_Id0oÑ1º \èݹçg±í¦:ͺ’¡ñóM€’娻n!\ð1ë:M>½ ëŽË†eëæsV0ðÉL¼,;ÐÇÃíSô52$PäÚR³fh¦¼¥ÇáÂY¤Å-'tF뉓2¨dk.S ]¥E–-ÑD©Oàl$BôúÑògQœõbQ$Ü%Ú Ó‡‘üAvq>¾.…Kô=Ž@-‰+ÿ;-G¤Àm#Øx?>Õ|eC›ñŒäu1Ât‡ë­qõ®¨¢Ë&i’€æ`´@‚Ê' ãá!îí='à·œöFV×'˜èu s´éç•¢Ò x…6ÔìKfEß`àQgt1ëñ¡$ÀY2Ÿ°æ£•HÝ5C$– +…·Ìw=Ù"< œ;å®U* )õÚ›-°wÚšTnžØl‚:«¸y€KcdOl¼)nhCÄê¯lKÂO +Àn(¥Ó€ƒÐP…:Í@0à†"M¤)8Ûr~:Õü&ÝdÚí]ß@Ä)K6LjÙÿŽ'\ÃØ47 ƒ]Ó‰'¼Vt˜§hÄá&­(ÚÜmVÀHh QÙµq»ó#0y&ñ.r¼)I$ع³lÀ3iøäÕ±LŽWÉãD{¸cR›Ú[ ,ðCõ™Ó@æ€l”Ô—À‡pN `D~¨ž›Ã¹ÐH08»¢F¨{r©¿Såö¦óYPeÀf>ë ‹KÓµ”­/6|Nlèè°^¤+ø–“4iL@-2Ýl×î­ÇÈÊÔ2æ+Ú[bYÐ +t%ur$ƒ¡áŠ®€ÉE`‹Q{ ¨{#‘³ñŽºÛÀú¦É„°<¶#Béw˜µ ºiI¥w”tGwÁ`W€`¹â3-¨÷?YoŠÚXTÊ„ë~Ù Er Ø•ÞY‡=Øm_ƒ 3áÜÄ­¥Ô¯®£$ŒKÆì +D ¾#ÉZj­ŸÈ¼;BƒÝ6 +ŽÌÆè×ú•ß ϦŸ„[Òô»k ³eCRÎÞ±’jïl\Ú$!¬dî¦6w–+p›”±;ÙŒöi¶ýfl6ˆV™þ\R©øÿ¦×_¹À+fä¨GúÍèëL«7, Z@ð_îþº¿,ð‰¾ŒBzÕUÚ¶¹Á¾xŽ‹â^ +h¬5O¤ 릧øÅéîKmÒüˆÆn‡áÈKê¸Mx£ÄD¦« Møò•´ÊàmÒ©xcüF—ÚÑ œÆ]ãl –š:Ò\œ|•LÂ$Š D¢à×xdaxŽÑk†åꨙܑ2­ƒIÞhY¶f 7ۘ鳀dò½Qè fš{Üé¥i<2¡‘¾…ˆìt8Ñ~Õ¤AK¼Ö’Á¼ w”³m°'sWöþ}1ŽË„ç¤'¡8$š¬À˘¶œ/‹Š2Ï«Gë'ÄÙñ?B=Æ#'jÔ6VYªGÚfu¿ÜtåvÛˆV\=yò#ɈÈÙU>@dœcÍG´Ö¦UØ•¿ÒzRĵG¿L`ÌôDÀ#6ÂùÒøz³áº”Kí6)8{̺+š5 ×SÁ€8¦iÕ=™ª[ʹL“Ó¥C2R Èñ‘£Þ¦‘%­³lÈ1ZfCɹ±:‰ D0B„6dÇÆÝáðÝÕ. +Rè¡u…/ ðir;³Þ£‚x0‰|Θi]OLÁÓ¦­²Ĺ^ÀDàqù¤°€`Htv»nZ5¼•T‘úͥíVx} èk * m1ã„ÀÌÆ)âÑ5!ÚùåÅ Ü­/&MÇt÷ÐúB7µùíèh‘ EÇÐȉ”y +Pñðlx°û+mØZvvh¥ÒNLn¡U  ‘A*шàmr¨`#:P-ŽÃNƒBÑв&~1¦$ &­ÆÞtÃ\Ù;nP¾õÃedœSëÝòHÚ'Eš»¯GÛÐTÓ¨ÃZl«0ÂcÇîƒG5覈LA½4Y'JVâÑ}d'Õ­²Öe†)mßÄ´váÆ[#:B“½›r¨—<€M}™Ms/Úi‡9ØÝ~ò$Ûö:[Œ˜LIR=_óî£'÷×ïNénâ¿ß~ô$ãñ:cZèŸS6ãÛžd<_fÜí-ﶱÁøî£'¯—K›6ÿ +Æw=Ǹ¯3^.Y‘m(q²ß~ô$ãô2ãSHüå*$ž`“7Y_æúGp6—YߟàÛždûºDⲑ»{ˆ¦»žbýº”2ëÁ‡»Éf}ûÑS¬_—TfÝ í¨N¬'ëÛžbýº¬2kQl—{s¾ùä)Ư˪`LÍþŒ©'盞býº´2k2) +Ù'ëÛžbýº¼ +Ö…˜*}¯‡ìö£gX×%V°ÆÐN9Yß|ôëïÉ,êIx +ºlÖ·=Å:5Ýœäæ…9Yß~ôëoÊ2ç‡z <6ëÛžbý=YÔàny¬ï>zŠõ÷d¨Âñî¡q²¾ùè)Öß“e no=Yß~ôëïI37H{@ÎÉú棧XOš¹ÂíöŒ´Íúö£§XOš%_ý\ðÛža=¿'Í’ƒ"ĆÚ)Ãï>zŠõ÷¤™c¢€KÉmÖ·=Åú{Òì. 8ød}ûÑS¬¿'Í¢[,M‹¯æÑÝGO±þ¦4Ë…þ‰sÒèd}óÑS¬¿)ÍhêWwüv³¾ýè)Öß”ft[ÈŒ’lWΟŸ<Åø›²Œ†ôs¥_àÉù棧XS–îŽ2(Æ8Yß~ôëïÉ2Ï;¬äÜΛuûÉ3Œ×÷$™Ñƒº‘ó„Ý~òãïɱá,!âóBß~òãïI1Z–u†éTX·Ÿ<Åø{2ŒÞ;ä ù4ß~òãïI0Š›µ5ë¼Q·Ÿ<Åø{ò‹<ãˆHÂlÆ7Ÿ<Åø{Ò‹I!äÊÖØ|o>xŠí÷d1Üœ=lc³ýüà)¶ßô(É[3ãòW_öó“§Ó£„2…V®¦Èç'Ï0NÇ÷ÄVŒmùªn>xŽï÷¤ÖñRÄš-üõc;#äÏñ)ßàC—ðí µOóùó“çøÖoðý›nÉqÏ'ÿ>_¥6~Ý/ÏÇ@ŸüÕ? +{"©•|Ü3®ûw˜,£"#üŽ]‰?Ñ퉼UþuÛóûŸ÷°üƒlÏ{˜þA¦ç=Lÿ Ëó¦p5ÞÂôÒJoaúG)¥÷0ýƒtÒ[˜Þ§’ÞÂâ”ÓÖkன{‹˜9„̸Ý'äËøÝçŒDËøݧŠ¤Êøý®âûõü2Ò²ä×ó{HD?ˆ‘7ð»Ï??H_Ïï´ÄmÅþò_¹6å[Bï×ýîíóÎm´µþËÞGwá†ÕK~à ,<…Žopn¶„ÄilÿÊeüÙëºcõŽeüÉáºãøVÏ«Ò¡<ºmÌ_~*Õ¸áõZÍÆ+L‹4n™¾T­ñ +ÓÇòŒ[¦/Õi¼Âô¡0ã–ç+/±|(ɸãùJmÆ+L‹1n™¾T•ñÓ‡2Œ;¦¯Ôc¼Äô¡ãŽé+•¯0},½¸eúR Æ+L‹.n™¾T}ñ +ÓÇr‹[¦/Õ]¼¢’ -n˜¾VqñÓ‡‹;¦¯ÔZ¼Âô±¸â–éKU/1}(«¸cúJ}ÅKfÖCAÅ-Ó—*+^búPJqÇô•šŠ¿Á ¼ãùƒò§º[ž/p¼Âô±bã–éK¥¯0}¬Õ¸eúRÑÆ+L«4n™¾T®ñÓ‡úŒ;¦¯j¼Âô±2ã–éK%/1½¯É¸ãùBqÆK,ª1îx¾R–ñ +ÓÇ:Œ[¦/d¼Àô±ã†çK¥/°|¬½¸aùRÆ+,ª.nY¾R~ñËÇz‹–/^¼Àò±Òâ†åK%¯°|¨±¸eùJ±Å+,ª+nY¾RfñJ@æ¾®â†ã+ßÝ2|Oèâ¿œácñÆ×ûBÇKÉ}ÙÆ=òBýÆ+Bà¾^ãV¼P¸ñrêç†Ï[â¸y9qUmþê@áC„ëŽ×["\_À#Âõéžé;"\?Cîy¾!Âõèèç"\_À#ÂõÐèé"\_@Œ˜¾!Âõ¸èžé;"\_ÀŠî™¾#Âõ èžé;"\_@‰î˜¾%Âõˆèé"\_À‡î™¾#Âõpèé"\_@†î™¾#ÂõXèé"\_åúîx¾'×÷áºçùŽ×˜¤{¦ïˆp}FºgúŽ×8¤{¦ïˆp}@z`ú†×Ø£{¦ïˆpýŒ:zàùë#\_àx¾!ÂõÒèžé;"\?cŒîx¾#Âõ3ºèŽå;"\?ãŠîY¾!Âõ3¢èŽå;"\?c‰îX¾#Âõ3Šèžå"\?ã‡îY¾!ÂõrèŽã"\_çÜ2|OÓ9Ãû׃×ûë#\?“ì‘_áú ‘t/~}„ëZyËç©—D i=p2ÿÑü:j̬§C}rÇìž{ûžÇG³6«**ôŽžºgA˜V{q{|јÎ@PÓ—†Û¶cÞ>Hþ(“vrgüFÛô’Öá¾Ø¢é·W´xm4¾e°édODÒŸûnßÝè`KøLTyG‘g^,±š§Ý×[bï#÷^š[ѶÌt\£ +ÚœLkrkÈF»¾²´@´ÔgÂ窹Ä(Œ–ÝÁt7éæ°ÔÞêô0‰ûuZ•©28Ê4ÛT{w#xf1œµÉ¢1äîì–ÉÄÓÙ$sÝãµyfûêáÀL1~ªÑ†™YOhZh«0C2ÇOæÒÂwת2›½¤hŠ©7û +vžô eÖ,cĦ{ˆ6‹Úi:º‹yœ)ÓèÙNËpZÿO†gÚ»û7kóDFš’Û‹>è÷ÙbÓï +é'ÍÝ=•8~“¹Ïg3ÚéágÚä8ô •‰+Í\÷&“ÆîµÂ¨Ê¬  ³xµCžAb36hú|ì¸í?[Žß¤¼çƒk©u-êQC*¶6?ÀÝóO—”@b^ ›£\™?ÂSÏüAGçƒyL‡”©áNÚ:M·%‘Ù5ýÛi?:EôL¯jLŒ­ÐÁžA’cKëøcdž‚‰é-k›?ÜŽ™Ë#iÔîebdYYtyîÌQîô@/ñÆô÷¸3fbÆ·l'Çp +6O¼ÆØÛfš¸8C'j¯¢ÑIžZkȆn).Û0»¦h!‘büD·è ;’y”C UCÇB’³q0É„[.#bõkØfl[·#¼&]û# )5oõäûÊ~I²)6EfÔEÌÑÓŸõÓq_q{PIX(ùz³ˆvœ]"ÿÂsJžÀâ…bNÑdÈÐaÌØ ?§ã4œW_lت͛´<·y¡L +½tȼÁTl›A9%k§hL£´ßÁ-—Ä’IXâKhBÆ}4«4f7±[L<çÅ2…j"¢zæÝ–tì—0g!…k5WXQçKéi;¦!A7àf›o¢­ãJÍcêTç®í^÷…!¸ÕÕ3^:c5Ñ(.f§èŒÃqÌŽ¹/ÃÒíë… Å ÏÒÌĬbht±€³•.Z6‚¬ùæÜH‰cœjŸÁÉ ­»Ä—÷J²O¯(ýd‰7=¸3#»…ˆŸ>þ:’2hÄW"3¯¹Ÿpxt(’±M“Ì‹§aôiÙ­ŸÑ1aÀó/ÓŠW¾¬.¼7ýNLÊì %b»qÙ= Ñl1¾ +šØÆPKåIÀ7Œ†…u¨=&2 ŒyÝ!z­Ôe¶®ƒ´Þ¹½+ISÐ[¢x|ÕÁ@qÒ$²Ñ`ÍÓŸ26T “by°ß±x9«Œ[Z²Cc’ÖðÔ ²87îogš]ñÂæ¹6Ì¿*1$Ú<Žg!ÚJ\‰åùµ’,ÇžîÂ|æØ7¬ÔšÏÉžy;RÌœvߣ—ôÁxÊ“1¡iãâ(0 ƒéu«ú{ãðÌ–0]%±ªþ—GÐ’ èœc6 +sFñÜ4¹I²³’݈„aþ@wI½J'»2ºE±i$©¥ó[0 sÎM¿ù`’Ñ)®&ìÁS'MÏXb:’ÇB£}àÇ,i—lè阳fZgIÌ,“ýskkC“ ãx$átɘ¹šã9ÇS˜Ç#/SïÀÝÝÏ))+ÁJû]ì“4Ýá©S"špè2õͽ%_–QíÌDCËÄÐ(¹HöOåXPÑ9HR=c“bŠ®7O¢É 1ì¡â3"Y:öL}õª0i:žs¯duÊésé ´Ê0n×ÍDFmŒÄÈž.´¦ÇqçÒãkx ˜Á0Iæ‹õfå +é\V؉Õɱ"1ÉV3“”u«ŽóÍà”fú¸ÇöãÂ!M. ñ¨eÍ2eii¡Ûˆtm=&îÓP66Ä(¶åô"2ëØ4í´Çïzš\FvÛ†Òú°+èáGZb™ÞˆNMÿò`ÚVñíÇ›•1°bE§ÅIÍ ¬ÚƒJŃä¡P  ;ÈMÛKr;†-%|¼˜¹8ˆš‡„+^ç*¡Îeâc<‡=Ï $J ÓÌ3ÖðÁ3£ù²ŸNŽ„ˆÎ Ù{®ÿ1eѤ¯Ðð¥sŒóÂÌ<ô1”Úç,)Ä AÒˆW`­lÄÆ.4☠>´·m^…0\t~Ï; ÿ§{­Gª4¦èîåœtÕš e÷h”Êáp§¡éú׋6=¹½ÅDÆÁ€2b ´|°mˆWÒÖ&ÍS>Ë6”pÄ*5©ïÂÚfJ6Ó1tûaå.¥Ebô/1AL1Ëý$uÏ{$ff0±bñ“Ä7ó\n\ƒIÜ;oÚ¼ÊnÂ2®¬8:˜Ž®×éLfƒÖ?G¸ÉÎlje±®Åç¹-LÇá¬vËÒp3íÜëfék¸–(vò Ò ŒùŽ5®jŒ‹¸q‡<”7%3<ŒhDá3úŸ´^k-ÒÐð‘ÁHÔNEÔOZMÏßpµw@ºaj“Ö>>Ó]¤=§’×B’¨Ñ‚¶f£ß é]t'S( +C] ­òÐÛ€F9¦¬›²i;®“uƲ—45?†1¡ÕSÇaèñ—¤Ú‘"ÚVZÎD¿â¬W¦öÉ +Aaa?“$·dõj £ŠH;: š¤¶^µHë]äúøíB& /¹›Ö³nuŽ£^‰îàŸ:Þ®}e&{ÌÂ’ŒŠ™¢z7˜“µ0ŒÆ¦I‘D0”hõ‰#lÒ¢îŒÐ$ZdB®¾i2®%ºjè¬FZè  2“×ñ¼jÓ@G ©IÎSÊx†“+>RMOµ""±q¶`Åé‹Iêb‡†@éQ/7$›ê©a 1enëxÄ–˜§yñ- ›¹%m³ç¸ŸCvyß“.7íÜ‘„a®m–pð#6fZ`Ó¸V%R÷Q&Š” ²ÍMŠ‚œK€@–À ÝÔPc+‘Œs…ÃÖŽÌÍ’CR‘ù&uÙÖ!÷šm"-93‹§§J~ÅqF´zHc X©t8ãI$×mûí<ñν6M®ËjLÚÖ‹^=f¼‰dÙ5ÏÄ´º•ß¦5FëzŒcÔ1!Ž¸’¤®‡–`ñ Ó´W“HüÂþÍ—"ø¡Žvi¸s`ÆèMF¥N#1`}ONcŸ[W4;÷zÆ×ÄÖ9œMjW•&š„§œ“ìÒS+Ý?)Q}Žj„F0Êc´EL¢uR`H?:Ú=19|ç%ò’J4-¥ä‰ÏïJ ÞñžÁ´¯k;GþuÄfØ8$=xW‚Â~N†åmù ÚžŠšlÒb)–˜¨ˆöÓ©ÇyMB¹3ÝpÓ˜…cxECûÄèÌSg¦("šo‰räP…2 Ou š™¸‘}•öÁ Öâ–ôÉ‚z¥M]ùý ƒÊ –×L¨0âMÉ>`"¯±IV‡È: ü·GSž~¨h,*çi³ç|oñ¥Rö/ÊÅu¯M^K÷|±‹˜<Íý$¬Â¡ëÆ [Ì…¨‹øžNÑ©@Wõ¡ÅÛ$ÆÛóê¦-¤iŠK"Ũ«´|çT‡¦÷¸¸Úºt‹9í8’°Ø´µgÊŠFLŠr›AÔ…à%— GEÆœPç ¡Í¼5f†¬êožÍ + ɵ<~Û©¬Ž1ÒB âÚLôeFÓ{"t|¯Øìlc笥-r:öûÉ(’GÞX4½Ì…¶öÁ0tiÆI²gRÚ€ö8í̜֑â–F>>2ÌÐb9z¹›yg\¢i„*òvÊ8CF ßkvÒB/“s,Yï#ù²}Wò}R{(4¼U +l?ÔOäÀ@áà‹¬µVeŸ6­3³{¸¯NCEÄàFhVõœ†Ì4l$Üù,d‡Ã4­å=D2h2Nµë WÄ)ȽGL×1þÍ4fÙ§ã¤Ýi_rÃ>ã¢ájôIÒM^W:i%’cV i‡$rý›.§@"Ôöôm™# ~W¤¹pñѤMb¬„"e¨vš§pÔïW«!8¥ËUÙ“ÂüœG Mrb’´&°Üa0PY Án›F,èˆp4 ÷[«ß”²cŽ©ID¦…±¿Æ¸må›VkgÌ{Ðâb†¸m†nŽŒ=þü:â’ùDö¦l~OÀe×u›óñ‹s¡ªØuÊö1Š\÷—àl<Š4ÓrMKÄ´HŸ[["4}wØ?Ãg$ìµEÌzËé`Wf0ð&µOãCϬ‹§sµ6¹ôÎ%y׫4A-ë ©Þ» Û‰NreÓ$çÂËx 6´J0J¾Ñq^Ç<æ¦éNJI!;1™Ž{ìWpL„oý계hAû¡9z$æŒÎš7I÷ú©:Ñ(’%¢~'q¯œzŸžÛ\¿iŸ-øà&{‚€Ð¦i#ÿd.MFz¼±w±˜(S`†É"(oZ'õ\j|sÃxnÓ˜t}µẍ]lZÍ1‡ÒѶ9¶ˆå$ÊcãÕŽšˆúÄ"Oщ=V,òŠS36MV½S©±q¤,V>iúÁ„OWR6Ý‘ìÎè’1û´tt¾æ°¹i²­u™W¼›ÎórúšŽ÷ÐRN0 éˆî’hÕ#ÄsXö]›ƒÛ´‰hŒ­“ãÐ=ÇÛs6BɧDh“ÙAHËeÆ®j‘§´UÝ4,H™$±–dûW‰·3RRêcí£Gþ$òºÐlÈ·4òScÎ`W ÌÊ»ðud¡HûµMá´‘nñ»ÒÙ3ÂðÓ‘\=—t{&ŠF<¤\ØZ,8âI(?){M¨G‘=ìyïÚŸÙ°Ë&‘TÙ½¥›äõ®^›Ã1×󮩪{.|Ð"¸îmՖ˯+Ó©hLû ÙàhíµZNº‡ºµ ŠÿÐ)¨£oZ¿ÚUuÎöCÃ~8šž>ê:Qµí#&¯øZ°ˆ;z‰ò½Ð“úŽH®Çq'’¹â7×ÃM>tíFO›V¯6×tÈajÃæ¦iC8}ØÒ3‚NóR'òwúÿOW×]Ûe©­IÅÈžCáÒé2hbp„#NN•€N|‹L‚EEp;ZÖCÆS&(µÇÞ!Y¾ÇôE‡¶"©˜·®'Y_#¾}õµ Gåm4RÇc Øy~o] 5høKdSœ‚—ÁãçjÓt´ë»P«WJóìÒh¿]²ÈM %ƒ¹°JÛ4‰à²bˆïA±AÆØ4Â2’›a>H‰r%Ƀ'E9fÙ¿Ivÿ&ùbÆ:Tu'm ‘õŽ°Ñ‡cøîJ´m­dŠ$kÝ´zkàéüF›Æ깓/8){p¸>•ã/Ç<à'åÖ[  Õ倡_eæè­Ms˜ÑáWh’‹+²Ý“0þqÖ%b©‘n«s“ÈO9Ú)ª [ß4™Ìœ³Xi9Wsç gò5qÒ0~² P÷î-k÷é²7Ñbž}\Kш#Ç.è_-[ÄÚ§¦‹—“’×/X§A«ñæmçró–ÍWhR²«W–yqéú‘MQ·g™#´÷G´zµý“ó,u„FeʬþÉEjCe? +Åξ; 4euÓª+‡½ ZrÚ´A1V­'¿%NÅQ:Hg8”FZ9IÒ3BUƒâO'xÖ¦y'¤gš$u* á‰ž(î¥dgŽƒÎò#ÂfAÚÅ›&a}*‰ðqÓ±Œ  íV³Ÿl™i]Â1¿iôCá âòÍ™¡MÓ5¦f;›Ä¿sÈ2,²†’Mv;”Ra%”!ågZÛ0õy=m—DrÞ4"ª‘Øp\â?‚ø t¸kÔO‰F¶jEêuG”€KKß(XriW¡Âoê]g\ärÜž/2î™hÈI£xzçÈ•è^ »ÐH¾¸‚.ªÃ{äW7ª–€•ž4’C“,˜3ä/UBZìx‡¬°®ÐÐÃÊÔ| A\!a{ ¡ —´­ Y>ç´"rÄç¨úvŠ·‚Ðr¸À´EÌßmuîYò}ìm±+ømüÐ>wŸqÌ## ŠID½p´XAªö,r€M¸ôäL6Sï'áq8 H#!?Û>¬Út‚iA#º«…]˜_%½“7ha«x’›„´M+èXÛž‘?9LÔøž Ìî¬Åܹ•,3Ά|Å——dG|Mƪ´j +îº~cì” ©A™žmÓtOˆ_F Fj¬PYišdK DÜa‚P¸«v­]ƒb!Ë•^q «Ý缈“~µžuJíÞFôžûFœbØh­„0 XFÒL—}8]W7M^q)£ÓC“Z«|¢W$Ë(q‹wpÍBË‚û¼Ò– ‰«0Ú"{°ô)ä‚K­óÏB>œ¨ÂÖeI'`WW@“ÝE¿–'Ò—=ª¥‹PJ¡H­Ð³Ç³%G •PQŽìPÅå;0år¨@)Ã.r¥|ˆÿÅwôµí‚wù`á=¹è²‘4º¬X5e5ô‡7È4fɤµ"M•qǦXÙr©Þ2|?>¸)Ñ$«$H=…Ô1 ¸‚ìèˆ;Rx®!p1Ðœ\€n³Æeæñ$ÍÕoQOƒ9¤-÷_ ¡A2®uX¬…+jNΙ$½OÚ!»êlNü¦óäªÛŽ¡Y¡ÄoR.¤Î;pµzÃIÛ$é×cžQ +©Cmc, +ð"â­}G>njJv|–ÛRzD)ü‹mcˆ"<j‡ó¶"4|9qII>ìεQ‡±aB‰ +4ù¥u;­5Õq6J(%‘[wÚ¡=¨+GidMWÉcÙQeÿ¦«wT2†¨ÄÖ@´ÅË%£v˜f\ ÓæMM¥qr™u8û¦‰;1^»»™ïÑãkëÓC1„ÖhÎ@:±_6÷²iØtý`UÂ1Þahr_²€[l]& •€%E:MÇPGê\9g=]:vŠN¶pê£mÚUÿB“:3,äx¬N ½×d|D…[¬3Ì’æ²`"àߢ<À`W¤w™x·5*‘Æ¥‹6©2­8Ò ñZº?-“PŸÜIyÂ=&TzÔk Õ£ªÎ–:ð/â7z¡éƒ$]Á£€fà E€s@úÑ ¸FP)â ±r#¨/½„ï&.ÈÌéü†HsÑF +·nQN$«vµøÉB>Ò#òC`þdûŠ´ÓL.QˆÜNÝ»WÚ ÒdËOíl@Ñ:ùµ]»°¬žú.Vƒ¶ô(’=˹£Ç.2‰ÀÔä™j?{´o–ev 3$ªOU¦ÔoP0´_N2í@“ÀLt‘ÂiˆKBEv²0‹¦‹Ptu#ÀºÍu9XÖ€ (=nùJ“ˆo®a§·„–$ÎfÍè*[×yØÓÝ‹ïÐKQÍŒ¡h‡Ñj%Úâô~N¾\§Ç`.ú“š ¬Vž$æN0ìµêd”®¡ƒEÈÈ4Êp vu|s+Ч [7cQJèÕ}…*ñÈTî§I!Ýúà·üh²ð¢!®ºôà K°£T‘[m26tJõ¤d›“J¥KÀ_K=¨x7Ô1”0`qÖúa„ÅÛؤu/¶Æä÷%7íºZa®Ô;£¶ÐKÀa22îcn’NVóR W h¡ð#ãÄò +«Ö¥>bÖ)0Ûv¦T(Œ Çd¨ÁÑ\c)).ûŽþñÒEÊ ‘¬¥³Ü«¶I©‰ˆlQ‹b¿gzf¼¬ž»==×ô·éðz=Û40ùFºàøu£g°Ðpõ¿oÊ] ËYŒ ²¨dP`G„-+•íò%CØCZöÐd¢S.Jq-'R˜¼Ñú¡½ÌNx±ÕB*SÅ(­­»âì@ÝoKÝaÇ@Tw*óѽ$ª)ò“E•¢¡Dw&å UÁ¬fz%TG» Eré(Æ:±Ï)¾&û,hÑD«_ wÏ…¶Ý!!K4žø®ë¸†±ÂKÍÆ,’¨—¨œ£ü«m’;Å€’~xH¦i9Ýo`RwHEv~`Âpõ䮂¥à1&)Û5‚D!À 3fáT¸dª&¡\l%Ç~-=â$¤ )N”¾Ö†à £XçýØp1ÇË7²½Q¾KÀ9¾Ô\—O\ \çÕ÷±Ï!šüm.ûfὑÈk¬ZP¶²©Iyˆó t^ÛŽn9Áƒ‡çÐYâYž@ >+25$,ƒÌ#o×%¤°×ˆð©¨8ƒï¹|ʼn7ˆËg-v8sŒL ?o tF໬ýb”0ø¶¾6i†4õÙ¦£Ëˆ’v@×Ãu"’ÕXL‹rÉt‚®[Ä2Ê%b°î±r Ðu©;CKÀ­=Àýø‹û…ÞÝqÖ…@Z õ㨫¾ãþ—dGsk¬ JÜ–~"²õOÑ(ygä/¬¸ë8ŒØ„À˜H.Mp¨—eg þjsך꾗€e_Áæ~I‹ºQù8ŒNÀSãKŠ_~ÛÜK h[Ïr`îRÕ1¶ m—úaí®›¬R ¶‹+ô×é:iÃX/WÈSЧSB-5Ær ž í%ñ€îÑô8÷LY'Ó/úÔøàɨX7TÖ9Ÿ»5{ÆIÅHB'η®O”j3vÌè +š[zt¬-O¹»£Ô0€ÞF_V·=IQ + Ì;ú‡HÐ2$nCdâ¶I‡7,\€Eiüã„ygä{Ï}jÔ"“–Ü× g±àœ˜l3àˆ@%"ƒ3ìMÏÒÌÛÁèx˜º  Y7ÇÔ.WïÍø¬ú\ô©Ùmð/‡Ž#Æ8'žÍ?B>á^Fafèd0¶ž¡±^ÓE{ß1‡Z;I2Ñݤx9õˆ”ª>[edwu-e¢d¢ÞÑ $;juâ¦DÍ"×’=•@rðìþÖœ'É+’€¼q¡L´Tèë– z{Ò"xáOn™Ôx+ WŒ»ó~Næ¯c)æ[JWOáÚ2$¥\Ĩ5Ä“|þKù…Á :¨˜ÆÛYï:À •NSÀu¹`®40¹Y!oÝÐa¹ü”¼í“ƒ{Z6]N¾÷;Ÿôv.ä`7åÅËb>I@º x¥ö=‘Þ¿bç ÿ¦mÐ˴ך†¡‰‘B» ä ¡–6Rg¾32šVE4…¹x^Š$;Ûµ¨C§5[À˜qMéFA/÷#oÓ&Iì¢ +ªçϬTÀç?«è¢CuyÀ¾qLõÕp*ªžˆsç8W8¦íÌÛ‡ÖZm›¢T¡`.ÛQOI…ÑåDЯ5† GÑ ÇÜûÄ=*PÁ3²7¦uznÀX`9Q»¼Ðx¢¥ÛØ!¨x‘8O›ت`Lƒé¥ÿD(P¶”æY†×l“pM£Ëà¤t”‰¸Ø¢†ÞæO¢˜Ë‚Nôž¨Ñ|Å8I\mµv¢­]£‡mó¶$çÆ“QN  ›%ªêq ˵p–ä¿ñ‹ä@˜ºŸå£Z÷YÆ5Ä>ÁRu6 'T híD­æ]3¼Hœž@2WŸë5ÊÒ9Ñvâ <Ô¢6¾Š|Fo@:ÒÐx"mŒº^gœ})ÍI@Â=ƒ™ŒàŠÊ_ + lep»D§KºÙJ›Òs]ή{ <éwZ7Ž›DÆ‘?igÄè·@V³ü‡T¶´ÜFxÇÑòa®:‘ô9Nx´$mÞðN6•²óÀ àè–DÈcSwT6 +×°Í|…[.Ú’´JˆÚÔ“kø)êîxi¡Ô`?hZðAÓ¢6ÑåÒ9nÙ +‡#Ÿ¿²ìÚ)ÌVC'3Í Ê&¡7]TAŠ›ämÚ ut 1\¡Ñª§EiŸ!ËëÚ±“R­ÖÇn/bÔÍÊvj\ì€n˜F»KÑ02ÝT²OR5“Òå@îFÞ\Z8Ÿ@a|W0_Ô³…wvÚ`,i{´h¬RÝ…Vº1hi{8r ­ÁαdÄYJèÃ8uÿJ@Ìp½šËD"{GEóÙ}ÀÍ/iZæÉ-À’¯'<Ö‰ô[<²Ì¡P ØÆDlj.ß²°#ze¹:5FCD2d +Þ—ü­â j£H3”~bs|›š²jè³}Cs æ·¨<£mÈÝ6¾,™&Û#øÙ6Œ1[š|OæÁ8a´E7$êß+~ÍEGøÔ=L)[Iv¬ã}ÕM‹Z’¿,•œî}JsÊŠíàGÀˆà•iðj=ç;€¦ôdóme .9é—#¾°•^v—}j)t ˆ¦TÓC²Ñ¾ »Ú Ä–;AУœ²~X[ÛÎ\Q:°j¬ +>S€é»×K¶Ž¤]/´ƒØ œn }—+ýPR‚ÃyXоuý„};±K}¹Á›4ÏfÅd£ûØ íߌú$÷AçO×^€­<í‘énÕ¢ Óq“:Ndg^ÜB]ÀÚØ¢‰üL1qÜ)Ž³`Ú2ìý¦‘ +lcÃ>Ë'Vš< ÉÙý›n? K¹G²½@?6Õ}±šÛ¾ºŸQk.¹6 CC·ïpÝÉ 4VÊFæ"°Ë$04]Öùm¶Ý˜È(hÒcÚ9?;Õ@ÒWNK×i Œêh- |Ä2ù7à KÑ÷=Ö ZSb3´å5h.?ˆcRN¨á>'Ù4‰€Ý8N‹²^JN0q©é¬ýÄþØv!r×B‘¯3U€ø$s¥ÄG7iQu¢àÁÒí“ŠJåäçSð¾iºÑf:©Ø qžñ›$Ú°|(® ÁÐÎάkîùË™|SIàĹ\ øw—iö†TQó .Q̃‘Éðó[p@[4Õ¤[4«róÎ !K½§ÙÑ2 GdÀšä,•&Ão~`–´X0ð‘–7 bÛ_F³KV…Òq„ü%€b’/HO—2óhubÙnD™‘þKÎøP0íU´î$ƒÙ¿KÀ½$gtË:S.˜[;a[’´y/4}@e—†È7lkŒhèÎ\cͶE»BÞ ·»lˆU"*Ž\Ä¡ ýZ'J’6qý“Ø–À<Õ6Î*"p”dÌó$9íí ÑJ§F5ƒqMâ ν·ìɉyŠ”<;î Ú+hÆ %J]M£c–L£à×9û‡l#V%B”»êPÐU*‚ÊÑ{¤+¶'¹ +=gÓiõÄöà*dÄ5•^)0~mÓtlŽè°œVOd •ò²‹;«$¥è¿ ¬i#˜˜T'%JT?!5´~ ”m¶Ô‘¯ÐÀ€i’ ´»ž›FÇTm¹Þ*NY]³o´0yH¦96ÏÃ.¢«¤1,â'©qêÑ52Ãû kS$©G»hÐÛØÀj¼;áùaK9òˆØ-O3Àº„• hC’hbã˜F[W2y—@_TÀÓ0M?@‚l£/>¡Ð½HòušØßý#¥Ô et;þüo?þÓÁÐ3~ª»…3 S&ê€ñE%ø¤áÿç_~üýŸ$ÿ»?ñŸìð7xÎ?ÿåò?þ›Ô\úï—½üùŸü߯|ÒüùP0ð /^ºT_ùåG~õoçGêF·ÒOø¥òóûýÍëHiO!EøÅzÞñûæï×î÷¡‰þO¿_ß°~tw+\¾Ø¯tÿ>5fŸÄ˜!+3*'/úDöÞÞë?ø‡ÊÿãÇ¿ýþÏýÝ?ýÿĽˎ,K“7?OQ/л#üîD‰$ @£î™ ‘€nÎ?úý­o™{VfVž]y*› Hþ'mWX„_ìºÌì_ðéþý?þ@^¥5½Ekÿ™Hw\˜ßrá¾8}“j0Ÿã<wúʺÉïê—gù¶ó|ÝNsÿ˜Œ¯z–s?ÍyÌVô.¾ Î7?=ËyœçœËç‹Éùú§'9ïÛiÎt^ýìÎ;OõÍoÏòÞÏóö†ÕHmò¾ùíYÞéÞô¾0õ<Ë-Ÿç¶äÄ?>åÄ3œÊä$ƒþarð~¶ÓpBïö_ÿô,ßóRÉŸu?v¼œ6næçEU0¿?^ÎN7óóò*˜ß!/g§›ùy‘ÌoÇ‘—“SÈÍú¼Ìš¬oÇ’—³ÓÈaž^[f~7ž¼œJnæ/È­`~;¦¼œNnæ/®`~;®¼œRnæ/ʱû±ååì´r3//2¿_^ÎN-7óWåÛÝórvz¹™¿(ßîÇ™—³SÌÍüEùv?Ö¼œfnæ/Ê·ûñæåìTs3QÂÝ9/g§›Ã<¿(áîÇ—³SÎÍüE w?ö¼œvnæ/J¸ûYäåìr3QÂÝÏ$/gG‘›ù‹î~6y9;’ÜÌ_”p÷3ÊËÙÑäfþª„»›U^ÎŽ(7óW%ÜÝÌòrvT¹™¿*áng——“#ËÍúUùv7üœ]óòª|»›e^ÎŽ07óåÛÝLórr”¹Y¿(Ýîf›—“#ÍÍúEÙv7㼜mnÖ/J¶»Yçåäˆs³~Q®ÝÍö»8jŠÒgàÌÏ4éxévÏÒ {ÎïØ—ø_›k›™Ìôs,~›DzËoòGoaú]êè=L¿É½‡é7Wã-L¿ÏR½‡í· ª7±ýš›z£»´Ô{îãÑVjžVµ\?/`¶;ñòn·‰è;ÉòóüîÒÏwBå ün“Îwòä ü~«ò~žß}fû^Š¼ã]>û^€¼ƒãLf_dÇx, <Œ×Ÿ¿gg1./ +¼Ÿ{òõ·iªÕãÇmÝ{?áŠÕ)‡áË;áŠã\…ë òè,,.ýGòÇuËìKùÕÛºåùV¿«»›OôEüé#ùôñÉêøã Ï{¬ÇÏS˜3<ï!WžAQ¼ã¹â÷ž¨Ä6¿{lƵS{£qÊú¸…d\' gîþ-ãêêŸ@dœÎé|²yO”–Y )z†þ| ð.tuÃì-±«G…J·\ß½zT¡tËõñ«¥I·LßÁzT“tÇô 1¬GÅH·\ßÅzT…tÇõ q¬GåGw\ßÉzTwtËõ±¬GG·\ßÍzTitËõñ¬G%F7\ßÑzT[tÇõ 1­GEE·\ßÕzTMtÇõ q­GeD·\ßÙzT?tÇõ ±­Çy½k¦oJëÝ…·n™¾#¾õ¨Jé–ë;"\Ê“n¹¾#Æõ¨.é–ë;¢\ +’!Îõ¨é–ë;"]Jî˜þ|¬ëQíÑÓ7D»Ýr}G¼ëAµÑ ÓwD¼”Ýð|GÌëA}Ñ-Ï7D½Ýð|GÜëAEÑ ÏwD¾”Ýò|CìëA Ñ-Ï7D¿¾Ý°|Cüë!0çŠã›@Nÿùoƒ`wnñÏGÁT&Ý™(?ûZ’t+ ~>ö‰„¼fôT,ŒN„’¾ VÛÓwÓ?ºù¦sÃuååÆ,°…¬Žy˜[aàô<}À²ýÃMó(ÚÜ CìvaØz4ž¬L¾ 1¿Falh´Õ¤o3Á:ÈB;˜]}›{Õ÷Éöd{hrÈ+3Ê¡yfÌÂHó;s£+àáS@cÚÜɈpÚ`š,ÝðÚV£a¡i̽ôÜwâü÷º‡ º€‹D“ð½ºam§ÿo)ºáÆû¦ÂeÒÚõ«è¬dzåÆ'0Å=ïÃÃbô,æ7ÄPuÑh¬{0—ƒÙV¢¥â©,îIƒÜËR#£Ãc0M;hsS •º_º`v¦uÒ×îØ=<€¾ÁÑ ¿Óí8»õþa’ã +ñtæ`É»ÉÌzf”„^SF[´)½Aª3fÂcÚm¨wÝ£<ž‚>áÙ«9¶íÒÓS-ô­)¹EöغÝBc|¸Ü÷jZ¹À^Ìà‚-þîPÏT­ƒ~úñ Lžè³Ý-´#S=D;ÃÀY꘎ƒ® 1[¸¦Å8‰Úº^LãŸêxüFÌÃfȬ¿/Ñg~4·Éez +Säêæ!Z¹_cà&í…ÑŒ+HñLÔMÓ™ÈÒR-™ÉVL,fHP¦×*ÍŠmé8{TŒ;£2C{IŸ×ø»kàfÈß`n©×…‰B=\.Ñ8WRÈÇä×™ØÈ„ºn&Ÿ¬½i–'ZÆ–Š¹.iuOKÑ +Ó£¶ä±ò»‡®ç{f”ó0ߦљr·u5<{¯&]:šrrÓ&<˜GXc0š‡ÎºÑ[xFÕçݳP:Û´£z¬×… ]L5u—púEŠùl·z[ @Sf« ܸ Z{à ò¦bZ±ò‰ iÿ^¹GÌÿö¼ mòî=,¿¶š<˜ó(¹™EHÒËIbÆ¥.Ãã9´¿bž8sctü¹Qr¤¼{t¯O–f7ÐöWÂ&ñ/ ­ùuÝØÙ~ß`ÒåðlÄä-’kùp+ãáª)º^37F[® ž‚]»šv¿%÷Æ­Ñ3z4ìœè-­{°í±Î ™:R´$§û¾„q™¢…–ñIâVröc$–Þ£oò`jlcªƒ„\gÈJ¢áº7§‡É+ÊP‹¼eýO4cAŠþƒÇA4z‡VãzòžÖ¤7bòẬ´v_Ý=WMviÌÜÓ^éþÏ3Y=’F:(Vƒñ8úOOüe”³¬‘”s˜Ç´1‡ìƒq>LÁYYƒÑY-†Yef~1¸ÆV“6ÖRH˜Œ>g6AªlÚtEó,äÝšnt:~÷ÿs AVçèžzêù†c ÑYåXäÌ0܃µÐ>–ÃÚÇAÃvz_j úŽçÁaº§æã7;IÂDyÙž¬—èáO8ðôypÆ`ðØc¹i¯/»)š2_oÊŒ[l°GMìMÏì,)\Ï!ÓÂ0íŤö‹Q¸Z³b¦·ôpüU§xõä)½Ÿö¦1¹À$G3'=냵9È^A½Úö+föÅ<â$5”»ï Óy?‡]2xgîºG@ðIØ&L¼OL±Û1Ã&Cyé~®•c´àáçkíçßUfŸgO_Ò`üÂ%h,Þ‘=I‰X˜ôìåUôáº6LNaÜ&É?›#9Ðо…öæ“*KÜã9yŽ’,!‰S¶Ç[¢„9éŒ ;㔉—Ü2BÆT§â°#ë­Ä›HÐèb1 Sç#Sw¬—ùwnÁxMÖ’· CÙ¹/ZŽ‚Ôåb*b'Ó|Úð¥¦u™üôÚûÑc`]¿&ZÃòÒaÐâê™Ç1§ ™Æ†ÎKÍ7&h0ÛÖ7^´ÁÄ´í`ŽE³e§yÄ&$LrOäN\Lc†Å U.SŽ)ÌJÒöo!EcTS‰[k +ÎûÜX†,åYš†MÍÈëÆȇ_s ¥a(ùæ1yA´Êo¾Y˜¤yäI;ÐQÌe¡8ÄýîS™01M U°Ñ.Õ͘àùž:Xcz”uÈ  k-Õ*“,t~f(Œ'JÇ3=HI¢ +”;z6Ž É›òì8ñ“îtóKÆÐ2Fê5g>´Î‡$åü3fGÏ+{èódWHdÏ¿³”—õ(QZ©¯±¹¦É‚“ièÖÿŸ££Zççe¦íÅ_"Ü:bé8b©3ÃÑ‘æ!Ý2jnŸ7%7k0ßgk].¦©Å±–)TkÌ£}ÝÌmLÚ`èWLTfŽcbŠî¼´…™ ¨Ð±13Œz šÌÎÞR×F^OõØŽ©´Bž·R§Ñ¶(ÃF1ŒuÓ·T˜¦ã3œ  +$óÆ<šÕC"w»ÝxÖòrŸÒÃ#n§ô°áÃ(ª)­p·9*sD7ooSVæËöÕ0àKoÙG™¯É!¾!š³zд±^LKbÊ_‡ÏÈ°”çß]Õ¼æ´NÈóU˜ÏœY ql2½‰ìʶhÝQY•h²=†b˜v`ÙÔ˜|ÎŒÍìaq)²ÑRýnMŒ½3-µxSÝa‰pf~w¤:ß1´lu£æ°5~‘èS £ÄÁ7b3õ6Gzh‡gõaObp}έ6­~N,ÄŠ—ïT¶4Õr£1[ž÷aðœL…å­"Ìž“üÁÛg"¹ÕÄèY¶Œ¹{ƒÿ“Ë"Jð{p¢ß–ñß2#æÛ¢%öŠ]á…—Õ{Í»Î;kíÅc3q,éÈ(W=Vo7åN€~t|Ì>¤„PŽáh"2Ç’›Ç[ÒAX+„ÀŒV}2¼šñ) Ö¶9igŒQòÜl|ž)>ҊǾO½Ø™Òc>_#(…ÙcÕcÂÓÆ9öÜ_ÂKÇ1ÿ®âÒÊjÈþ;éeœö±hêFà‹izk*ˆiŒë›õï’0•Ù)Û|$ãÍÊŒ€Hˆh$l¶¾ˆú/OŽôà°b‰Ý`,_I1È oXEÂÏÇ÷pT¢ÚÁ–K§õj@Ķd/^;y¿Á“ùPZÏ0ØNò.TEôðž‰q>õó!sMÃA ‚£¹ÎO‘ëãá[¨q"!Çõ§Ä(½Ù‘AÁAlÓj„“$ø1ŒˆË$fÕN{·éÚoGŒ8mkˆõ$ÊŒ8bâ-±ç²3°/hÚÉ.”©³œsf>µ=‹Ø/²[ÆBæB,;Í#îè²Åà^ùUŽ ‘¡siH'5ÇϸͥL•'": ¦42EQ 9Žy·ûÎ,dµõC{y,ÚšÒäà¡Î¨}RÓ¸ÝöGˆ4]ÇÍ·WDi;@Î:”)“ÇÓå&1D~‰(“ÇK©qùñ:cþ±Sù™ÌbO‹ØS”-)µ—– ñBDÍpéÍ!RÂaŒ‚žˆTkWÇ…#ÀLdÞÃoG¼2pþ!Rž”1ëîÀcR»hÒ§}ÍüÜ=Ñ—´£<[¶9L?±Ç<­ˆî•ÙçaöÌlœ_Ç…°º§<ÏÕa\!s~PÑ6dÂîǾˆõ˜k~x­\÷Å’iïR»Ãólu¡µõõ‘˜HVˆS03 l[Dä?v8£T±¿Ö½,¢4ˆï¢ÇÝ2©O£ V¾¨F+,£m,¢4%¡?‹Ë­Å ýƒ@•Y'áÏ¢Ù1@çV2œ,Ìëj"3½%§E¬eM’Ÿpµ=rœ¹Í–ö˜YæÕ¨žŒ/Låd¢RS 5±…—<žWïšSd÷v¬(-^f«‰ÐC$«MlõãIï\¨>yʬÛgPâHX?£-bg€3† £}w ÆÔùåa³Þ0 ]{z†,¢.žä +× çYW©Õ<ÿR‚}i'OÎ^D"ÊžšÛ§å‹½ T†™Øó}€~é[Êzæz·ˆ(30²r6{žð!¿G&]âuó  „±ˆU»ÌjuvÈÌ¿Ä?Ì¿*AÔÁ“çº/¢„DÞli0‰rg¨oH`‰?F 9'YTë\Ä°[†Vú+µ?ò½ûÔìØ›]&ž?«sÔE”ׄi˜cŒqƒ2&±û³¹ê9ÆÜa-`ZÄÊèx‹ +†WO«Œ•%‰q9Ñi‹&u[DyÜrt§‡$C}%Gúľ{òÐ),¥,âœ'CQôÓLÃø’Õé!‘•`™é½x,Aw+‹(G;È•Çÿ;úO;ï +â Z­2Lj ÕeÅpû€;ô唟iõczúEršIØAL¤CÈ¢”`¹‚“x‰ªùÞJ¬JîÆȲȉMúÏB.ž´žFN[¼Ñ¼h˜¾,‡¤0­uÆwÙúˆ¥¦:A£…2Q’j³öSµz£ù>•ÿføg†ëÈåj‹Ó»±t>ëúu¥È<-<ã‡MezNØ-c=Ö\æ]̳i‡tv +pC*ÌŸ†O% ®åm‹X¦QÍZ¶õ„šôYû)ÙXc›N†£q+Y‰¥¼óxv™:}c‡\c£ðdfÔ>aù“eÚix”®¼@ø©J³Ägvò$ËÀƒ¸u©®v!Vû–Ü_’!‹8"·Ý™Ï¸úîpýrùÉ¥%vo†D:ãØë¶ÁÆ)óOÚûXĉ¾ÅY×ÎÖ6cäöýÒè„=¼î$ Œ‰œÄCÿ²×æÕãæÝÃß¼à<‰Ýêü_d¯ˆù°¦Øcõ*«0/Ÿˆm™†ÞN™úuiÒîŒ2hÌÐEª|Lk ÏÐ1òù%ÈÈ¥E:Éi1δE¨Ô´J„ÿG!¢{_×ÂÊ£ÜûLép~ˆú´ýXDù:%mZ†|ÿL¯ànÑŸ#îôAÎdÚ”¸9€”& DfX¢4~¤}yŸƒ`W&.¹‰O›)»Å'O¢¤ì̈ 'Úä5ÎH å¤:[­ÄWâHlãoˆÏKÞ4,1Ržëj:©±FÞc¡­Öèbû´8Ç­QÙu‡"KY§!K˜y +½øÀ‹0íF#ó…(%d›)^H2ÅÀ`ˆƒAe¦ÒÒmmæ FNî´O”ô" Ë>ø/{Ç¥š¹ÒÌI«¡ÍùšE,a¥Åwúð4±‘¬(%6EçÇ!Ó &âfa«Z²CYÞò ºRÄ%O¥³¾-'|$_Œg2)}…æzˆLj‹#$#®¯|5DÝ0nUM:>RÿÓ¯d¦!ë[$ÏcLä x’ºn¼ì󲯗ÅÛ— Yš µE‹W ŽôÄßöEÚæ8‡vÇΟ +ž´Ï²qÃÀãOáŽ%²õiÈ—‹•Q¿ì£D7ÏÉSænÙ6íê({Ÿ÷¡sØŒÅÃ1•Ll‹Ø—ì¡ø MÃlÒôˆ-Ø“ƒ§]Dsv.,‚*ì§ÞꌀTèJRYìäÈÚ[$ê&¶YZ¿Çm½ØÇ"jŸÓ>¯çâS2ÁuLÛ4ÐÏŸgϦçNwTß·©n6‚SºsćØü¢ñ)bNQ/\Æ^ÔÄ?úí»Ú“_¸@'TÂÈvÔ‰;U~b—KòЭËO=.´"Ë=Á4ˆ ×’‹DÌåÓ~Ðû[û|fÎݱ‡I“}TC"¸ž˜KT üOö2MÂgÛgÕ ŠR6Å/Âr”1Hîè^®œ{퟉(ˆ‘N­„ü#/º)Œ.-Z»zÒ‹½TI&™Vû¤…ÐA³ r]¦IGëUvë=Ñ€olQ~C* ˜YòB+‡@³w¢}æDÉÞ™SÝ¢®;L ˆ>BÛAÒ Ëh2’Ë9ÂpºåÀPãÊ@JdÍ+A”DbÜ$|y‘úˆJ&5×x¤Sšµ¢É‘~ëìÇ–f·p÷‡=•~lŽq .LŲËYó$u9‚†‡:myFKQë#KIzOÜ£žGŠT;…9Qª4ãû€f·f#Â4:פ¬_²ó¤¬yHqj‹v‡1\ñr\V á”ʉbŸCK»EHþª +lG3€s+5I$µµ!ÀŽGl¥¾=2ÓÀ׈vô#Þ…TlÂt6Wæ¤ãÍQɤeêÍ%VÛyÖ'M_¿YeGÒH–²Œ~ÍD1­^4qÇ7 øÚL,¯ÔmGIHì³f§ÚxÝC¬w2h²a° M“…'}g$™^%ê­¬TäÝDÍEUzÒQä'ÎzC‰$\÷ø3¢ž"*Ö› tTx4-à~ãƒØY¾¹ÁGºá9lõnܽœŠÔ"£®÷HòƤi§¶ººg£]q.á’Éf$ ´ä£Q¦µq†])|ð aPËLqQš1vÔ´G•_RεgiY¨Ýa)H’ŽÚ›#hx7ò'¢ð+ˆTö‰súˆ‚11Åy7dÈ8äd:êÛ»—†&MØûC-™lŒx +$]jH£–¬]ÃȲ˰iG›´±Y«èèH@µ:æå¥hŠH,HëëÜ-ä1Σ(lù€˜9"2kZ¢ƒVDk¨]Û#ÞÐLÛÈŠ³c¬‰ÁÀF£I³< L T–˜$ÉVŒø3í–^Å)rc=µ¡»ó#ûtêBÆo}ª#^vVÉ(’¡V#œF¥8pP¦â1 +úø¨=`×Ф¶eâ†v,™º3—§¹Râ/­ +;}M3jý šból fÙLÓ-¯)TßÉri¶9\×'ÔCÛ†Ÿ×’ËqDÁi ütÒºLx;ä¸×¨â!B*ƒF뙣†K#"%cÓéî»Cü¦•@€Äß•«20¼ŸaÖáŠÊA”§ƒdÙm”eµ‰V‰Pì9ê%“¥s‡JÑ28§#ª”Hj©,¦l;Z* +y6L\§W³s<"ýLJ/øÑÉ´˜½Ù£¤zPÛXÉ|FnÈà¶SPGØ0MZrU’˜Y 0lÜÉ}ÖMwª"0Á^–KœGý3X#ëIº@ǯ‰¹æõÔ¥´h²Ó´°=þŽ´œ?ÍÀŒø ½KÇÖÜãÓP`7Dsã<4Âr;õŸ;ý%ªiW65ŽVF^R7Ë}MŸõMÆ>îQ©8i’‹òÁ— ®3Ò­E¡"­y™ I†g8¦¹Ü›Iz+?fÍd‰6r ×5~‰ðöj +™Ê™€6úÊ]f<ÒÍ×GÔZÊÑÎÙfv<ªDT\¦‹…|‹²HœyM“`'.§ËÛ¯ ¨"L‰Y»lN)K”é¸z{À èŸÉ®‰Ô1“>Ûê¤éJ&Š¬LÛ[¨¶(ÝlTæټ̕("ÓU¢<“ÅÛ§~M"©î‘´¦¬SRvÂ) +“7ª×‹2KglµÎ9J0â”Ã`kJ>µ@ܹÀCJ’¢¾šÄÂtvø‡T Ì9XĹIF6Sk²ÕYòYÝVÉåd)èôÍ”"¥¢$éQÅKKˆËò‰2R*üpé&E"9ê3:À]‰fŠÍ­¢âÏûô°µ~… +È#vA‡¸É°‰©e—C¤Œe!wÞ#zaAúˆ¨Q|*)»• øæ,KžÅ_¹@'È5ćl'æI£¬ÞejƽHR–ð5«×…R3²¡Eí)ÆŽUL ô9U0’hÑ?uQõa4*Ñp-¨ÏihÂåiO\;Û¢Ñæ„ÓÐÏ3ÍÊZ"`›¡ZÂ'ÌømQ«8² ÌÖ•DZ‹¯ÓÒêM² LÀTº'e^„êAq:ýÜdZºšÖDQ!»I4 [˜HŸ†è‹ÊZ<¦Ã¡ž@é"6Ž-ökG¾Ž1ÝÀаÚ÷ å_®›·‰Iç +t¢þžÊZ0ã‡mÌvÃäZõnÝu°;å‡2GŸ´ql‘˜ù×Ø‘ðbÞBwÉdu½BY¥dQ’{0í +uJQwYF~ï¬FWK„&eîUò¢GÅ1^“¼ßn#•Å¦á5±ƒ¸q-Â¥Lš*±«°¦˜•©Ærû¯8‡æz“¼ÏzW÷Ä¢ÁÿÆȬÄá4•™25€WnÍ1+rKnøƉˆG„4t]1 ~Hnœ=rwR÷®õïËœs‰7¤Ú)UŒ×yEO‰i -?S.Ô£øo‰ª5ìKÂä[ê} +Ü%ÉA£î#‹€ì쓤“U½R$Y’6+r QI5óÂwÏ«à…jâ :ÅyZJdD¨pÔ»A’± µGyr¶8&Eu Ñ,‹(4Þ6ÒO•’~@(BU¹y†Ÿér:JC%seï°\=NÿKƒŸŒ CDe³67¢ (©ÎÀ>W¤*TÌR4J:(çŸ-±˜åF5Ÿ~.óÖ7ê&1“÷Ãõˆ:æd†>¢ZB³8þ‹Î¥žK‚ãu„Hæ˜SâºÅ­ÆíZ!²Ã GÊ*Ê—i^±^HÔ(kRÔG ç>f’œƒÂŽ|¤È m®äeôx\DU¾Éf4±û(¡–ô¤G£Ó†l½2ÿ +ku ð«÷UÎPmñæ )mªKôž…×Ô·mÐwe_j”£}Dáµ=à>.ìCLzùp¶¨Á&½Ñ@™èžºërUÖÇýIy/ïHh2ÅE‹Èç*O+®é_©6›$Éciåƒ@˜Eбë€U³ê‰RèYÔ>Š‹H½SI…Ñ™ô±½V§±Ú\A¼,¬KêÄq‚' g’ÆëÒv£a@îAj¿¼dX¥ Av§ÐÔDÿ)"sª%ftÏ“„uGï…÷\<¹p’k®n@ˆQbÓ訷êÛ,`Às;1O¹"!Â|¬ºòèúq`êâÎf\ib€C3©K´ŽÄø„«PW^#¤ÝM3ÓÆÔ•çU{4[àta %WX0kºeõˆ^Mw7 òÍ@ A—šs‘t )믔ocÖ“ÒBbq`í¶(N8Žt©9§DÈuxÍÝ~"h&Ñ0w›«¤å Î×Ü·Ï’ú(±6V¥÷ö £&Kgö˜(¤ëU( ý0Nyæ +vøn9ÀA¼æ@´íRž¥Ñ!6ÉK–KAº$„®»Ž øïB+Þ|¡ÍEÉL;Ztjt±º®S”ÿ9v‡b™;‹ÿ–ÏqùgOa«ËºŠò¤Ã}xmZÿ¬³­*.=(\¬.W¢Q÷ö1M¤&Zþ1ö³æ¾¹Œ2!ª¯ÐécVââüUWnI‹¡¼ÉÎEœ¿†®[ú Àÿ³vž¼®+Ù}=è.rLÀ/õñû>Ëi™ §çqÔE£ÒLE´ÔÒ)Ÿµ¯øu¶P:0L !f¸”c3ÎÔ“=dîôî ň³uÏAéP!´:Kî).VîHj û6÷·ŽâŽ-¤8MŠ¨ðX4à_Ñ*íÍA%w¼'þŸÞÅn+%,¥4ñ纃pÏîƬ¼ËTŒÈ©¡¤’V\eÕøæ—ÙD©û¶Ï¢*hÃxNÉLÐv‘ß'͉ïâ[@"DCZu´Ù©)Ë⿃8Û,ñ§èm ;«KÛ¸ÖAÃ-Æ}ÀÞ(®Ê—ÚùM¯âl¢M€|™:Ûy‡Ù“3–ï:öÄ€f¼ N=žåXX[×­z;Êõ÷Ùì2»I¸ÌY mkmV^••³¯ªûƒh^6^‚Bí]neþ¬äâH/-=3¦Á±#˜[’5Dµ*®¥cË)ÜÎLK³¼Þ•šý}ìçV‚eó©‡íª÷âWIóÎã\¢01£qä3•Ÿû¼ôÕŽvôñ#¦€DÛ–ävƒ 2±0Úºš†{iµhm¿ÜáaÞPz ®¶.øH—˜¼ëöÉšEÔ7Óa UJGi¾{Ž¹¦‹Œ*Ÿƒ¨1žÒñOzQ´>·ƒÞjy~uè,5ÿ’6N€7‡Ñ‰çäi’àiæ 8v2F²¸^—æë}"øK¦3Üô 5‡ê¦KKë…ÕEosPâµr œkžµÑÔÎée"øëþ3%à$ØPfÍ@ÁÚ§Â嬫“"Æ3°éiêàs¶>",D–~]xWÞ_ðxØ —#òVh˜ÑQâY«‰”Å ++C6þD€â ¶KõòY¶Úêh€0«I©ˆ2ÐZšºkFR”(z²B$M7VÍZr›ÄÙ.Ñ »u¬‚ ü<Çnp¤£»ní,ñÀÏk$Æ ö¥Eq1k1Â,t*tš]j‘÷Õ¿Åå x8‰ -«7€ÛzR[¥WÓ/ d_B®Î"'\½Y|g"aå\Qºm¬F.}˜ˆ:ˆ™¦0aPHQºŒ^±…ñNŒGõt×F1Qù5Û¸L.êƒè"Lê¬ Ùh–6‹0÷¢ßl”íi Qˆ ÒC ­Ò<@eRvyÕ¾Ö_Ÿõc€HtšK»TâfZöÚ†îÍœÃA¤cëõ˜økÙ6{‹8æòÅ+Z%¼„#ÁZ3I·¸ƒèé¥Ü–¾½»X¤ˆl¿=Ïê?êVði\²OÍmŒî8Ý=G' ³Ô»¯¢Y2iÍäPC5V,ÑSíR¨‹ ¸Æ ÓT\0F,š)b|³³¸v%cŦDÞiÃI¬ô[ŽV »A¯ÓYý€«6ŒYÞå‹" ÙŸ¹ÔšîÀ “çœÉG\ªIû,.ÓSÝ„©]6 g­Cê©&Ñö] +Få쇋`ÜpÆ_=‹ 7Ñ„"QÖZ MÜý$GŒ“=‹V.­$@å­$ý~%&¬AÄVÙëzIÒÙÄ3íR¢9wž4³¥GÇ”@ÕM¿ª›âB”©æj¼ Ö_ » lËŸå’_»ž  ¸u[¤^g_%H2ÇF-³&‡-Š¶ò"â̇öOƒÈ¥JïØ.µ‰’¸Ñ±ÈDéα41vVÆ@Ü[¼k'Š3߇=¸ê`/Ä­Ý/†:°ÑŠw.{ÖŸ%ã­w\qˆ:[Wgw«R_ËÜW_Wûiï gA£Rmÿ,Ý‹¬m#yÂi Úïfj®ÒÝý•˜€yU¼Q²¯Ðg%zXk“·¾jþ@¹7÷ýˆ …ü*w¤}]=Eô¹¥U奌N›b;=ˆ: åR€Gsl[̬hAw!¿”Ñ…pNÝDá$2ƒH_#;ÕLÔZÊÄ„x–âíG1—ó¬Áe«˜ )xJPÉ*ý¬"ÛÚ¬Ù÷ ÒûŸÅi«Ó_BÔo›=ácÍè/j"ÁÄô«"]7.m³‚7O¾å4u?> ZqÛ·}fZMD¦´èu ‘~*uûñÛFÄRbÎ_ŸUQ&R»2{&IUY;8q³˜ÐNë–M$ 2+ˆ»;¤;Œ ¥Ø/•>ŠF‹¿D/‚µ Ò=Çå ÍDúºá.â Ž1 ‘©uõ¤¨aP¢þÁѵ…»c¹µ:&³˜ßmöÃ÷„ÅqhG‰ÐXõ:K› Æ\4ht˜2Mâ-­[¶ëòì`™À¦eç&Çáà[ËBÔ–ë9«db3´Ü]ˆ:0ÛÅ’ÃuÇÌxx%'@Ý5.\ˆâBešT]•U Ž‚]5oŒ¯Üð¸ú*U¡c¨‹v k¼õK©Êjß‘!ÜrÂe#4kˆjv¢ëHø:KÝ)¯Ðû8¬›Œä'"<¯¤üÁ¾É IÎ6åÿŒ¯­¯¿ÙŠ§Ÿ»ãàÒéäËó·ÿúϧ™¯Ïߟx>!r1µóåùí'ž@u+‚¯ëó¿ÿÄóÉ]6@|}ÿþÏǬsCŒ7í/³ÐÛÇ×çÿÈúÓ’€èâ×õù™÷'“¨Ð +ý¤üÍsÿZîÿÛO<÷Uþþ£íÿ?~âùt uñ·.ÈožOqS¡©ö×ç??~ó|"@vÖ_×ÿùëñ›ç·¨¿‘çüåùÏ ðß<®+¼Þ´>ÃÓȪ̊÷ì/iù ”p~Y 9 „ðdP¨ˆ¹ažî2ôÁüÌeFK9—øž=&FÛhàöà’ýÌ“¶?0ž7Ã~Ç mfP¨Ñÿö# œŒb`Ú»¾€æDI¿2HÛ³jô|€MêîÈÎç/šôšvvÐ&l·ƒ6—³ò+æÊ«¹ø:83ßp¼øGx'f@yYtãå‰k;æÿ +ïè7üçÿþ/`bþý?þ =JZ$…úùMéî›ÀvQ›Õ;ÀÊ|‘›Ÿò33‹Í»ŸçM—4=)/Þ×?=Ï{œçÝúgÈvò¾þéiÞÇvž·[ŒÌ¹†“÷õOÏóÞOóÎÑš)Â_Áûæ§çy§Ó¼× ÿÇÕ †SžœÊøzMÎýܩÏûó Ÿr’O¢ÐkÍa †7?=Ϲžäœ]&7Ç3Ì]¼þéyÎÇIÎý@\k«—ͼþéyÎçe§¦Ž«ZøØà›Ÿžã}^V™wïŸ)–Éûú§çxŸ—UÁÛ…t\¼¯~zŠw;/«Ì›ŠŸ5Ehò¾þé9Þçe•y;•æNW}ñ¾þé9ޯɪJ¿è‰æ¼ð¾úé9ÞùEÞ ¶Ÿsðï«Ÿžã]^ã nµ•B³àÅûú§çx×yÓ'š\x_ýôïã5Þ 9ÿv¹c×?=ÇûE¹–˜û¹1ñ²-Þ×?=ÇûE¹¶;ý¥&ï럞ãý¢\AwŒæVï‹÷ÕOOñî/Ê5b™ÅÑÕ}ò¾þé9Þ/ʵÍåå,ÞW?=Çû5¹VHdƯ%×n~zŽ÷kr­ Ú´áÙ<‹÷ÕOÏñ~M®ðTæÒúeò¾þé9ޯɵB£oD`d&ï럞ãýš\+4cJ›»#,Þ×?=Çû5¹V@‹í² +Ǻb׿<Çù5©VÀ0*»íýÂúê§çx¿&Õ +e*55Zà.Þ×?=Å{¼&ÕŠËëÈ·÷Ë’_ÿôïפZ]:›ÓLÖW¿<ÇùE™–ܯÝ]ø.¬¯~zŽ÷‹2Í®>µe7Üüôï×dZvCÐæénËá½þé9ޯɴ Lœ6æ©-»áæ§çx¿&Ór§"ò 8yqô¯zŽ÷k2-3 ²—(R¼¯zŽ÷kR-7÷ãÛ™‹zá}õÓs¼_“j™Ñ}Ï´ +Z¼¯z†7ˆ¦×xWÚÄ5ðdÞW?=Çû5©–=÷"{,ù…÷ÕOÏñ~M®eZ³ º½Ü±ëŸžãýš\Ë.âÞÜ yñ¾þé9Þ/Ê59?41Êù¢Jn~zŽ÷‹ríb0<ÍbtÄÉ8Ú%º¢•Ïñi/ð)×tFŠ]ÔÓÕ/Ïñí/ðýÛ÷æ.-“¾÷~æP~îÉqžŽXŸ~çø_n»=çn?Éâ»ðô[˜~™~ Óï‚Òoaúy6B8¹1 Hì'ã+;¼nzÓ/‰„ûÜÂ;˜~É!ܧÞÁôþº®è9 îYßdWßÂó›¬ê[x~“M} Ïo²¨ïàù½HýyžßKÔ7ðü&Küžß ñ7ð¼ÉH¿å”Þj‰}x^ÎèíM‰{¼ÆÇ;˜Þ5¾`7ÞÁô¡ñ´ñ¦÷ÐŒ/h70ýVó¿ƒé·šÿ-LïÑ'_)o`ú­¹ñ¦×2þ׳öå/Ê‘2(2õ©ÙãœÂÑcû‚pÿ§=ÏMûZ0”ö¿ÿ=ÏáQåXúën¬­ÿw§Iõo_=°©Ô_|S›ö2–‰ñ®OðóÄ3ϧó4]ÅŽþâí¿)7;Ááµ%zžÁkK´§æž™f~ãý¦ â ‹×é‡gWiŠñ¸dŽ©YÚ:}ÙMîGèiK÷Ä<µ^=ö¸¨ÔøÐÿçЕqû¿)ÞzžÁA©o¢‰Å¿Ã…?Ï R2]ãÁ¤ßlúó 2 ôÊî‚ðû/ø‘= csË’7-ÑðxVZ4|Ùãß`ÿŸ~>m]¨‹°¿‘}O?~gNn:Ü!àþùåž_<'qPéýeùƒûúùnÕ@þÁûÿFî=ý|7 gœÉƒçÿ¦¬àéçw·ˆ–úõø¤g« +^‰þüdl÷œó ï<>b?ò¾O\±:•98ã#ßç +®x¾%ipµItÈYÑáŸ\ʯ¹—VïXÊi—žoοÐeïâÔüô©üý¾âu~†é=æûšé)ð÷)¦w`ï¦gPßg˜Þ£¼¯™ž‚{Ÿazï¾fz +ç}Šé®û†é€÷)¦w€î¦gÝg˜Þ#¹¯™ž‚tŸbzá¾azË}†é=vûšé)÷¦÷ ík¦§ÐÛg˜Þ£µ¯™ž‚mŸbzÓ¾az¯}†é=>ûšé) ö)¦wÀì¦gÚ§ ®;DöÓsÐìSLï Ø7LÏ`²ÿ†iyÃó=¦åØ÷5ÏSøï3LïñÞ×LO¿Ï0½z_3=…ø>Ãôá}Íó ÔûË;h÷ Ï3ï3Lï1Ý×LO»O1½sß0=ƒê>ÃôÅ}Íó œûË;øö Ï38î3LïqÛ×LO¸Ï8º÷€í+¦çÛg˜Þ#µ¯™ž‚lŸbzѾaz«}†é=6ûšé)ö)¦w ì¦gÐÙ§"&whìk¦§`Ù§˜ÞÁ°o˜žÁcÿØÐ Ó74þç0½G{_3=û>Ãôæ}ÍôÞû Ó{|÷5ÓS@ï€8×¼Þ÷õlb‚Ö? H~Ðá†×[â`zÜ2}GìAÓƒ;¦oˆƒ=èvpËôq°mn™¾#ö ¿ÁÓ7ÄÁ46¸cú†8؃Ž·Lß{ÐÊàŽéâ`zÜ2}GìAó‚[¦ïˆƒ=èZpËôq°í +!ö OÁ-ÓwÄÁ4(¸cú†8؃Î7Lß{Ð’àŽéâ`ò‚·<ß“¼‹ƒÝò|GìA߃[¦ïˆƒ=hxpËôq°¯ny¾!ö ÅÁÏ7ÄÁô6¸eúŽ8؃¦wLßûÚÍà–çâ`ÚÜñ|CìAÿ‚[¦ïˆƒ=h\pÃô-q° n™¾#ö UÁÓ7ÄÁô(¸eúŽ8؃æwLß{Еà–é;â`ÚÜ1}Cì°ç–é›0Rÿs˜ÞÆÁn™¾#ö ÝÁ-ÓwÄÁô9¸eúŽ8ØuÊ5¯ý¹*”ĸV þŒÛÜ{m_1Ò4ÿÞ™^xœ(àøþ¹ Cc²HûúÜ/pø㯇à|Ë'¹Á~JZâÌ°ª”þâ¾™¶ó-#¹‹³‚à+£üàÿÔŽĬ|ü ø[ó[ïØ£ß2|Ëfý–ãïvíÁ0¦çv±Ù8%5ç÷\¨ß2xÇ®ý–á[ví··kõûbšŠr"ïzÒ÷ê‡Ñ~}ó4æ²Ué&æ|P•·3'TË{ø}dÜÊ9û]SþáÊà¾4úCž&ýÏ9£¤ì˜>¨ôù¦…Iš}Œ‡_ú ôäg˜2hë:M˜>˜Öñ#L3TSt0}0æG˜¦ÝwVÙ¦J“~fyÙR×>àù`ØÊOðÔ%•Ï[z{ÄóA…ÔOðÌd•RêOу² ŸàYH×ýŸ'ŽÃ³Ú£ïÜ·÷ðd°k k}Àóþü‘3´yˆRË.ˉ:¦SCƘÌÆDæÚŽþQ)4“jóðÛ¨pâ'ý×ØFÌSÞƯíØeç0ªª„§±¥9(61¹»õàï¤1R[Ök­×Rß ­mGKÇ£Ëàw]XÎÑ3·*µ|8ÛÄÔ¡ÆqFnòwrj#¢MË :>ö 1x»ìusŽu—•jßSÍ»ÿnl9IüÅßɽ/Š}Á¡è1'83]¶Ì‘ã-õ†#Õ˜À|݃~k ì%~YÊ6J¯~ý#Æ{Q¨ÍÔ‹ì±¾ú³Ý]ýqL Îò÷=¿Ë]®7Ó23ÔºÆßé¯nuE¦™ˆ>RÉûQöx¦ ³˜­,‹0•‘÷œy¢‡-•ýþ8&“ëáµ2ù‡Áò›NhŽéÒµþjãu×:ðÄÔ¤«Þ~‘m'þfvø‰zÓ¢çÆ‹zÍÈ–2Í›IÄ¥ÌEé¥cÎ3?tà6B>[ñþìU—&9Žè±ÛkD7´~$0hŒ&íLQŽ}-)7m­?¯E¾vž“RÅ 0ˆÝÔ<±]ÌË"Y“ê‘’F1ƺUmøðÆvf 7Ùƒ&iÏ“JóéÔéà—쮺‹ÔÊDöÊ`¿f×Íf€ýÎÁÔ²'^™©æÐ’€RåhV¢ÿ5W­ iåW®½´Òx¦n}Ö©š;ó‡e®èDˆ¦wéG{ì,Ûµ³Ú™(Sñpø-fÎËÊÓÊk_ù»¦KR·*Ä7dvf½Hg¢X×í•\#1Êå²%}ÓñqÄø$ Çʘ“,YÍO[ª¶`ÐôO7æ¥óHv[ ”p³6-Ãî¬\Û´ÈÕB_†l* ½¥u¥ÈÚ†r’4Åß}¹nqbgÅ.KGë®ÇߺÛ:ï¹$¿¥(Zõ8cZ@ý_Éé_ÇL<‰I“$tºÎ„—_R3•ø:É^i¡3é½T”?4I5= ²´±ƒÏÓ¿K!W<;{$ìÑ$$¡2V´ä3`t“Œ+ +œeÇÍ;ú(sò0 T;ô‡ÁwºëÏ+¥*.¨Ó$=ºT.ç8ë!ilÝ¢Zû¥'HÉêüKoÉšàÅ%’Ž•´ÍΕ.™’([Hc0÷^ûÉaѺ—c·r†&ýK§!7ItŒæ‘{&í ¹ÏDTôšâ-[¯qÞQÍzžL2½JgF±ÎÄÜ!¢èqœdf|§v•<œi² ’NŽÌ)oQ@ïbÉZE¼ïÒmº—Ïœ}ª IôË@m–àrÒ´Q Y"ÁP§…Π³·ÇçéšÊþÐŽK @×¢DRšsLç!5§bBusŠG +Z“™.î¹ +1š~—d”b¸J8º´ÙÏ”™@&C‚@P'`¿°’/ø¾ú—½XóôÖC›tì%]ÂßéèÖéäÄÆjqµ±àtÚ%ûƒÛùw <õ– _ A©as#ÕX“†´µlA/„î’½"‘ÀUô—UÊ„è’l|™Ör•t6ê'â ¡¯¤\d½é¨TÛfukÆ—HïëOKÀGLf©XMKÂNÆ•Ž˜4’,[©¯Š‡¤­ÞÇ2®A ¹„ÆéLhë’Ôq4¥Ve Èî-Ü.tÄT€Ð,úFÜJY9ÇMr$;|Š£#økÏóW'mìúÚÄÍÓ÷ÈL–šŸ.±‰ð’ÈM¢X´ÙÂKbÍ,1ïÓ®¬#`ËCWGBÇND5M2F‹[M’«ÿ¨cì& f$‡É/óQ¶ nOÒAÓÙ ˆ›M“Q"nÅ$î¥îdü]ÁÐ9e~K™520Ò$ ZªtÖrp‚÷™ ­bJ3Ä\$xòÎ $-ß ªÃn•'ïHêb?CÎoëšÅù°©))ô CL–`‹íi}!‘èIö¹=ÚUyØfcÒt¼t4ÒaÁ˜¹€‡ïHÖ¥oc‡ó” Q¡mŒÛqe¼è”ëôé¤H–èvÓ±üz­suó;YÕ=H?Hÿ¥]Ðü*Ãr83´W&ÙÎ\D³ä—G“&W„£_âUä¡Eõ)¿h¸†…©OQ2o‰iÜlmÃá%kÒî:`Ã/ÓªÒr±‡’¸‘éyÒäø)ðeà +‘=&UnZGØÊ»±j®øŠiúyÙ£½õH"MÙ´ÇÆ^·,;*H’°Çy 2ˆp ûȱzÎXr¨ ƒÅ††—€¡†3Í=ÓÝÒ¿Û'M/¨=j»}54½”Å[F­ô\s +WMÚM»æ˜ŒNdkÆÔÜíso×”IÓÙSZdIr0ŒùPÐ:fŒžÄÙ£ÏZïE6DиôTøÄrÔ%bdˆý¤éwbiZ.ìï&á`{$t¢·zQ¦¤õ"¤]²¼ƒ»ÂM–úž,8·è7»3b§ÛšéN-áRVoVὶF6þŽ¨Âô s““?B†á  &m×êØkQ´•î%™ü“ÿà‹@s¼ÉÚ\š•Ó üêÄséä¨ÅýI'ÀÿTò†¸‹ä/)ÁÞÂC¶jÕy”®ðÉ“û (ÿ—DÖÇ¡k#xLš/Žl.sÃ¥“sëÕyF¸Î†¼ íxË–f$óõß ¡/ ¹åMJf×IÒfËÜÝ Y)2£«ÿ¬/A +Úyž—CÎÊüÝdAÉõ`%w¸åé˜4)i?n¸ië¶4ü¨2_Ïû•´}ú¢4iˆY×e P”­ÿ ZöAÑÉï(9Øy dïH 6á¥Ôá{yC‚ÖCçŒp|û§ ª²Uå¡H³ ¤0Òµ#òL;ðεÎøÒDýˆŠÄ‰D Àî3‚H_¦³VãU´yÚÔ†z,[!h’t_J4Égü¡#DŠ\'š¥2ˆÛ +™‘ï¦GòS©H'Ê,EÒækýS‰1ïºñ'=I°xk¹O’̓•Ü“ru@z’äì…/(³]‡¥’ 7iÿDɜijÝn‡&k»ï:ŽÍÒR²Mþx«“DH1!>‹¨q±§ds&Ü/l-hÍ:­a„8—ä¦ß ŒƒòæàÆ`è9 +¢K"xñ"ÄÌõI|mú “#Oš¼!éLž(Úø´ØõçŽ>ÉxŒ–.þ#h:ܶÓE“™'c~b¢02dùÉBÞ4^Ylú\fî¤Ô-¼É‹68Ü(J/Ã*KOhMd4Mnô©¬³è¨“å#f «5%t'Á@ýO]/?’oÕ›‹2Mg>`A“¬l:ðp:›ßðHL#¨ÇÈX!U¥ƒ‚¶YsÄ?…6ääN‡ÊaÒ} ùúæÆ-4i:(Zø‘“ÆÅ÷&häßëF³Ðá±QÐ'áªs¨¥à零GsØE¬_ÁÙÛ ´ÑäNŽÅ´NÑ´ÐÉp€ÜM‹&!‚¿¿[ÿH5Kx¤ø†ƒ8ž.zKJ>áÉÎõĤ ç A nÓk&2Ë ñ¯tû¤aêà˜&c»ÑéÜ4-½PÜeiz\‰éMBÓqxÁ¦Éšð4¶E´£œ0ö þj4i #é^Ü9ƒ~ +÷¤f†š6tI NZW³ BÿÐ^¤Ï“’Z§I>È ¨Ó$dÇzät{P¡’Ó¡K´a’™hswÔÎkyÝgÚ4Ý’^/4)‹\¬„pœì‘ñ–ØÛc"RÖ¨Þk„N©2,1òT»×C´w›FGc 9´Z9:a¾‘zò"ð®–Á/"É.qÂÚ:e{5AÓõ•†‰6¯&mwX¾IMÛNÜ·Lšö›@@5M"†ÏìWÇvðuàû¾h28õ¶#œcmnF|V•éß×ßI‚GXZÅF‹86Á“pÄ r#¥ÓG‘ ”[Z'MûiBÂæúv9XfGl­jUš7aHrº¢q8rVu/’i†¤#Ùp°Uv~pÓ­ÐÇõEª$!3~0J™1 <çmé;hƒãÛ/4‰…âE%úxuÂðÔ¥t/‚¦‹‚ZÁ\‘7¦=¦ÇUR “&ê §#Z&~%S3NŸÎ‡4ÚN¢7hE¢=;v MÑGò öi,ôA‚dmiG‡« øÁˆ<u&ÚÂ廫ÑHiçQ&‰X†ÃÓáŠ:…4é«Fd—åä2èTÜ4¤˜ì.Š3ñujsÜ Ú dBª#Û•³™‘f“¦UÔ¢Å9f2÷Ò]‹&dñì¦x“¯åwÙeÀrƒ|¡ +mc%` ¡€7y©"R¤:·[Ð"Wµ+ҽ䦽¹O`¾OADàD*NNðqËé¦Z(]åƒI(›Ýža1ä ¦ ÝP°e%ní_yšHCÒÒäÎgxšömÅ3ùƒ?˦eb ÑlÙ)r Û T€†PÉNuƒZð‘$ÛµŠÕ¿²ñØ>êC;–w •rŒOÓ1wZ{3 Ó8b!iÒtzBžAöQa +­Oç_ÏL÷®¼3néçUÅ$iŠšþFöw/~{É¡1ö énre"¿Ð•ÉukÐpˆÓß2tÃ>iäe3FAŸ.Û߶$!7䜛n÷Ê¢MZ“åâTr…c›Ç/«½TzÒý"Ò:i’ÿ¤ó¶áƒ6tñYüyr¢°¼dÄ û̳áÇgîÜiÕ>ÍÓ>=µbt¡aç:ʳђSÐ7&­Ž‰ù`î²,J]$VVb£$B>¬.’?Á]óå^“Bé]©4iZ9Ëe6ßÔ·¥’!!³B¶ñÈ¡÷ØK:&I÷– ïá7Á¢I%¯?#‚­î»m:“ÿDg0“îZœÛðîøèŒ-߀-$”i• —¬d´Y!7¹Kø¶1iu™>ÆÎ`E„Ù +m”«q$ï[XhÄXõ曓¹5aMé+Gi“&óc³Ø®É…ìË"”²ãÅ5ÒµªòBƤ]¦¦T¢¶ò€¤JÖßI¸8š"Z6VœÉƒFÈ×úÑŸ3·OÙLäSŽOï¶N\ ^;/c„h\·w´OZ!ÍS‚°EÒá˜$z¤ÛS@˜Úŧ"¼¼÷é‚ î‚'#v*`©r–Œ´¬}ç8ì¢=f›6"fa­#½} ÂI¦)ò•V”ŒÒ4¾µLš„ÊØÈ4óÌ´rA»À ËŽ´Æ·ëHö¤øû´šuæá v;j‹µ>Hçt'Æ]#EwÌuééj*‰ÌH¨rÍ"4MqA< : ,Ôs|º#[xè°mN-Nš °a¬ ²*ÒÀ­OZ“*[„Ë®H%4WHñ£ Q@!­“&^Q'Qw+’ý{ž4@F÷ø<#ëI}Â4Á’ò +¤£ç26 ÀR™z-c§xÁ)!v« ƒ“:iú§z«(ͬÃotbÐ0i§[`á +èGÿ™±ËŒÀy%¹6`ïìçxœã.Ðz2º®X_H,0 Žn|±¡£ì‹FNäCè Ù/ í&MÜ6ü}£ù•ˆW!kQ»£Ñ°ƒ2‘]Ð*–iò1Òµ—8šÈ.h]Û¾süªÓ"²Nâ:;ž~€ïm¿Ë²—Á³hdB¶ÑbÅfúiŸ4m–ñ}Þ:òä—Ï+àØ:à>´v#t8BÃ"!Ç­˜7BXmÄ#1JÈ:`ꑺ-£D4‰‡HHðLùùïiÒˆIxÖi\HVÖ¸]zë-‚XÙZ[ßšI"ÿã ÍöÐÆ–}Кԓ6!4MÖØã\j‰dVé>Îq#B¬€x=P"Õ¹¬šp +na·šðKJŒ3ÂMjD^'xÏ—ÔùDÖ@ÓféõG\cuþ }%ÀBmˆNo\I,¢këOW—¬jš4mDXYÕè£}ÅV I§ÑI±˜`öŽÕ×DÿÔ×Ȇì3çQœih±_,´tsvmDÐè.&eßà£4ðGS×°;Êѧ éœIÎpA/o(hD‡6‹[ £¨¡e1LåDUFI!TÚb]D¸Í†N$ÑŽ=¶½<±ï¨m82£êËIÒÿ(Ï0éeïMÉ(Ú4Ô³?AWwå 5¹’údß ¿Vûõì„ô\°˜«9`Wº <Õ¤5Csñz©«Þ6MˆŠ.™áOžYÎFZ&í’Í“Þ’Q¢±’£’×}™Á¢îkÐtƒt»Ä7,<Âß{ª“”Üb<µÎÙ3¡é ‚®"V:šÙ&q›´ÑÈá:Qn3>¯„‘dN¸\FO•1i2Õ£ó—×+[“J‡Ëqo‰ýŸ{<Ó9ª]¾vûUºØ^JÐtsŽÐxäJt ö)«D£ºYﱞÐÖ3Äa´Sm€Ó>-+öy“•IP©Uûþ28©ƒìeÙ€ÚM_ù 1ä«(j9êmÒ€¸SK-sùb½»H–¦÷’Ÿž¦VÐiLeHIòà"8©œ Ø° +tvZììA¶éÑx©tÊ¡ÄÁ4:ÍílÅ?qî +ÅÆS£ ÔàwÞ:uœô¼Ñõ÷rœ«éë ½4 ó›ä<ð6ò±Æ¦M9†qIW°e†ƒo8é"äDœi/“¦›WeHÓÄ99&õ"Mz@«wL»`‘‰©2ôÜQ·¨%ÑÊ€å’Ir#7âQQf"iD´?þL¨ìaeéÍ ËI97“¶PÆy’PýÉ.ã +'A;qmÎ(É$ÚË¿¦p­ Œ?“WÎÁ5‰`$OLʆ×UÓR¤¸DC´äHù^'mà€2ú\w¤ÚbÝñ¼õ":üÙÌš—¡õö®ú©¦5ào%*PìA‹¶Õø;¹³·¦EbWvHü]1€!ª +äÒnÄE-ñD#,Ÿ…<ʱOnúàôQw#[5ã3Û#tL;Jyäœpª‘n7m¡¬æֱݢáÙÔp$wy’v¹Çß¡z÷ Ú¯-µ +T<Þ²¡ôK3 ¡S›QåCRò¸ƒI"zì0ÐgW7šã¾œ‹sǨ-fÖ¦éèYSD9}€V>CÐ:«<¹I´5àÞ;Ç€O vF½¬?Ë ó ß0…ËØÀza‡ê•†vy*Qô×4Ê, Ìí¦áŽÉÌZ4…X'4r$RÙQÄ$³M.ž±;Ðô?ˆ1 Ý‘0f’i2í6W‚Aãk“sˆ¢z'+丮+œPpdí ‘h5ªHŒfO†è›&Í(çÏ@~ó;lË|ö»P…sL~»®ô(³2ÊVÔÓ £~Ðíió‡·ä,G¢pIŠ»ÆZ»¢J Ý̯RPsd¡ˆpfÓdƒ8ã ©: ß8Ø%>`.‹¬`­´LØÉŽØH ëk/F.æι¡lcÆn)Ò’˜`BL“Hn:Š»†áÉ5N¢2:icC©Öè(½Ãë@€ԫL3Më¥#Åp5j9tþc¡Ýਠ+K”HS™2r×Ç…`ÇF%«1*Üú’õ”üx aò´¢ãNäzÒôiióCÿÈ#ßãÏ@i‰´Mvú0­pl:ȃø1~#åô-6Ï“=¦Ð÷: [T¡Qx6v³ÃÉÓ­ô´‘po÷aš,†©vwP%e…E"ü,³ÑgúˆŽÞ0ØÉG]6ðn£@ÒuøªïÞ‘Ö‚ÝA”[´Ýì(ï£Í@HÔÃyãƒx +ÁIÉîÚC "Êæé0”OÀA”ÃÑéŽKkZÌ£tJŸøxhTMR¶ð¥r³J†Àœ´‡ÅßM0Tïa”4 ÌÔg %:…T~ÚµÓW}¼R¬ãbR8uó‘djw°5Õ˜O]±H\QyG´K’$^Dwl˳l ¸ՃɗIA¾Ýk j¥ì3aBè8ÊÌa-€¶®FÖnÓÀ/)ô¿àÈ”h’ìÒSqÒA]l5M Uœ+€`Bwˆ:hÐ[™_à$ƒ^d²Ë-±$¼œ$Pf³F} ؉¿ h>@ÏÚwq} È®:¹I£ü@#)9–‚Ûöö t|'ÈÛ Q‰[B€õÝeCÚv”” ‘® åÚ —HLì3-×4¿ S@¥{ƒg e¿€æwcOvú¡‹¶‚‘.F$¶¶;žx—ô“ÚÖfÐÚX0ÀóG #âÝ»¬‰ïwhŠÞ³Qñ:oZýˆúF‰Y9t%ž™eÌ|¥¾1q“Ž¹˜…Aspc@ 'M²|ž”(OØ'Mû¡uÞcï´¥²7JÐvälÊ”+DÈÛFG8²ÝˆÖ¸"zÇP|j&%gíÅ›&xõ Í™X­/ü|ÇÛ:b ˜HÛ(+ªšÄÂŒÚ#À0i#5B­%yR !KàÑ#þ®!gÝ29ÄúÊçD&§Ø»ií#e› +txWöОe|¾#Þ÷îEò—æP¼©Fåw1ƒjîX.Š7ôͼšhwTh¿ÒÒ9‚m=.y>*;õ·òxûÑ#ˆ;ês,Ÿ”p³1_“ÖI@Fòì(ŽHZ¡Çá¼Rw÷'úˆ‚P +·Ô#l(Sý8"®&ËF,6g{1¨+êÅ¢ZÜøˆ•È0é«ZÏE Œ“=â*a˜#y›p™H;Ü£#Õ¨%U¦•õJÇŠÍ\l¦ä›kgüžfûªt¢ñ! usÆ+*WA=l‘H¶]¾²6AãÒË_=¨oXqªS¯Éb¥"£e D‰ÒNutF‡ã„,9â=‡”ÀŠ¸âµ-È^”®î©m ÎÑ/•ÓІÞe'SªZ? ¿Iú·Ê0mh,R”¼Ê¤FØw~…¹ÜQ§@ ~ÓÅËbXÜä{(s•È!ØÅŽÿ€3ªa©Óf™eVd{¶(|Âqꈪl ¡–BYbÝ{1ŽÕöT›é¹Ä]Ä} "tRœ:õ.à9•Íèãm¯LBªhé›ÚH²;2 &e–ná9a@±™Ååò32¶] +Dg<@~ =b´ Ù£\À–ÛŒÈìÖ°ÉÎYØ'®‡Í m%•ì@jaJ˜u¤b¢¸ 穇6s-È%á´8Qª4£òYŽº]é⣇¨l—Fñ{â=qMDαÒʼnMwµ¼jŒ`?©‰:Ž¸(8OxÜ„ˆãåÌû•Aù¸;C8p$—ò3MLO‡i(Þ7rTñ\3û‡iÔêOt±‘ÎÞ‚,‘¥¸âF×`†¾9"­¸ŽF ó3¹ve#£¸úYî¸>…*Ž}bœ’(O‰ÚT\1½‰Ì§îÂG¬Å™˜Knë áŦfŬÇÓ«¸6Ð tšÃ!ÐÊgž¸G °~ü)Ž.3Ý4¬Ç Æ…FÞçHægc˜MŽBfz¦ÜEtªéyå)V.t`Ù]ê‹÷Ÿcœy+¾vq>àœ‚ƒ¦a›‰¶¥áž¶ˆ¥‡¶xf¹t=ü¢t#€ÿUÎø‡+>6+\0=T9K„ã°Fqô>õíG”9âW A¦UJ¸g%3%KHñÃ÷@J´8[UÎ r„€ù6BÌ©§Ië¸õ%å¨Éé7˜öÆMwÝž½ bŠ£+þ%ÀSõ¾ôL‰G†ÙfU¡ë:Hï…²ÄcÏ[ŠRK99«5 ´Ý‹ îý(an~Dåt[•=”HhSÛˆô6•Ó„žðÿ>(f¢wÇì9 ½ãjâ·_؃„ +V#‚ãîÂâùÿ¥^‚êœl‹½Ãóã‹É*Ô¨CŸ´Þ·H¥Š/—`ÕÝõqvi´L¥ÝØΨ ]GÔ¦Ò6(Íθ~e&bÜŸXæØ45©î¦äÿßÕ›îÔ1ËŸqþì¤ À}Ê&\åÏx~Ó¢¤ZÇ”f<›Aœ² £ŽênÆ­ g»/ í$ò¬ÊÅýÓò?åâ]ÒøQùMa{yÌE×ö·YA‹ûÇø„’‘\‘nïc…ãa˱C6°WâUŠ[Üt¤-2N‰Ì¯P2¸dç鳑œm{“qõ†²#6Á¿JVû¢±&²¬÷Ùg›®6¡IFÝ*È#~Úû/ïžR/g§X¿JÕ]ºbàÿÕKYÿP8;¡àJêëÜ®‚0ݬºPw{P±I61¼ÙY§íÒ„1áT\Y¢bé;lcºÐ\Ϭ—"ôLÚ]&Å&i ùAQMžAB’%ô…¥†1Jœ¨&—'µwööKi½¯±u)q*3Eâ;S² r:È¥Dñú9‚ NaNÍÞ,MñºÔ«Œª6Ò¬}Úu]JB]y«£^Û3Èý5ÈE­«dBŸPh#G×»É{‰Ëeí^:aưóÍeí´ùîQ]ׯʃ\ÕN-ÈA!68úÏ=®j—ÈΚ–Ï®2(ˆf™n¥ÞÅh/wPtHÄÓ•,Š1ÝJZšÔP¢I£ œÈÿ»;Uô ÷ÄÌÝa‡v`€ìtr‘e®CT9ûädêõá*ÃÔ—D‰=V“£E®+t4é«Æ^zÞÑPAZf`Ô“&y“99Xm8¡ýø!#šE—ƒc¬ZLšªêLDµ–Ñ\ù~Jì 5ÛÛl»"ëþòL\Xã r±*‘°Žæ&ºÆ篺  +°õô€ HYÈ1¡,Ú¦˜v…*KÕzL袾žw‰ÐáÆ>ä­SñHJK‡‹ù¬Žîâ™UC¿»óÖ¼ÐÀVíQÈãúú@®Šbx©#)‹¨v'Ž,óÛè_bô͉"¼…äCxõýLjIgi÷ÄÕ»hù†ëLe·î¤¤LK( dôpéáj…´ +ìé<‚‰èN [¦;P SM ÷«zRÁ5‚q³ð_wçó*(,p­“Rsààië ì9êzäñMpÌÊÓlpoî˜CþœÔa£]AŸxï.¶Œ¦|)¡Ÿ]ï(  %°B“ˆìºž~·OÏ{hÃV=Áƒ÷ŠÛI¤KuPÿ¨íN.ù*+:4ÅȾ¹–8îˆJ$'Ã8’UQ¼â¼Òå ;ê­L¦j‹¢¼×…Ñ£4c'};ϘŽ€„ ÷U­¹„êøÓñ¤èºNöNصЦ/X\UÝ(ÝãVâmŽ~ £‡C2. +ÑA9öf¾ +Æ‚G£¼M)HÇåå$f³D;>°»—E™¥Ó¸_DZ*ØG |®K§; ×bÖ!Œf(!m6*ùƒq)Q­´žëÙ8—NÓ_Òí©þt%º–êð8߯ÆX¥-ʱ©ù‘ãX]é̽¯+ÿOµ¹k<²ëª±&¨‹’DÜÍKë/WHKʤ€JtÀpmU©‚Ö¡ Þë‚¿™» +DÍ®BȨb9M’–³Bš òÐOv=Gì"eиü¬°ÃÑÒ«lŕ†ŒÚ1´QØ\q‰ï¾šcQ6ØIiQ­:“º®7d™Ï£ÍTd¢WݸޣТ…:h¼¿4 ÞpcvJÈ6—“&1àf;/”ðŸ.oà®rbçÒB¬šžŸ€¶?ćŒ•ÐÚDoH6ê™%r¢´êOrSµ$»ªG÷z“nqÈWî,azf­ê¥g†h=B*#ªÅìÙØ@ æZ§è Y‡³¹™ãlTH ,xÒY×HUÔô‡XÝ åO×]ƒDà˜9l«c0‚6òêóGóËî®°AšL_Æt̚弜f×]7mÈìÿf{sÕVçô§\L_š-šFÍžP¹%Á(j³í©Wq›hÇ*¿šDlÚÎô)H«3†{öÌÊ{HÃ%MiUAKàp¼Ì¢Tãeÿt¥3ádEDíÓ•3mGâFñ6´–k=icfh)K–¡Õr‹F8€z-êƒë†öv)gæ€G"ä>£ÿ«fÙ­Ì(qƒ6„‰Íëôלhw§ü¬…ser•–-þ<2‚Õ 8i”jE/ª›Ô]»‘ýñÓÆì¶cšg⎠+ãL»­=” ݉¼bÎLÎ,êPé©ÐCþžNÛ h£¹V+›6;ÝMWcÌ2@hrS¶™$¦rö¢8ƒ‘Ú¥ížk~µ½´ž5íRµ»¶ÀA“øXU£éáî¸Ûp!Õ1a®ÝÕ»DénÀ´ð}Dy.©6çœL#Úßg)-]f Ó´ +Ê ,6ðÇ®dtì,Оu¶mâÇâU>›nñŸ(©Üæ'è)­Ï"ÎW7’’ÝË¿‹ŠKj©9 üÒÝKl’+²¢9qod v«„&ø›P:°ÎmÛ'M·Ü EºW¶ +6q¢â¤7§’–©«±1‹[*³a +5z$aܤÄiÚè)4 +Щþ1’ÖA|Ä3u¡ô.¸X{:¸}Ò@~Q\êTºkPf¨{ÝêJJ[Ý÷óˆL,ÞkÕmuñJr®0 Ò)sh¶·ÆͤÂç6»A©ëD½Íá¢i»d%ÆæQn3K¼¨» _ug?Åâü£×íÄDAvT:»¨$laŒóH¿Ã8@õ”ˆ^E‰×Èg|k­œ•U6ÖWË7 ˆUHe\„ÅS€–·_ÎùÌZÚŠe +QFTŽß½T]åYÈcÚˆ«ñ1«®ô*n itwã²I!kp$ôò ­»@JN™\‰Ø׈€E¹…7*Ý ž§’fmŽ#ûû¨Tü«ÏþÜD›iå6xÐ_îóâÞÝÐý«‚%­ÐîZXWlF?¨£q =xƒ­ÁgýMCØn­äØ 4?>”ãìÉ$@}–Ê­¶IénÍ<+#¶ÏF©Ô¦ê<ü*Ú‘¨Ý6£ð…ó¥WYTÉÖÍ@Nlûp¹ÍÇ,”¡'ʨ +z[穪kq†§%Bkôét!~ß¾ûr…^3 mä#:åC«&\õ)´œ¤ÒÅ4'3JÛã@µÃï5™õ’{Ç_œQð5 Ò&«³•Q¢^§æ’(ŽÖ&nÕèiGmå¥2Ì é£»Ô·«;4¸˜kF¸Ðh€hu嶄t€3’¶‰­«ëðmyDqËÇîþ'ŸãåÚ_ŽÅÂÃ'!¤ \>ÈeÖ¸]Á݈íÃõÝ= +øüÕ訧ùvŒJt·ˆ´[ûËáX=ªêi~€^u%“¾òû2¨êÖ‘’É>XÏü×ÓÅž~¾î@h¾>ÿÁ¸´¿½~î¿MàåÁúíO^ÙŘiŠXP4¥þÇ@ ›Ûü¯˜•5þ×ÿøãß~ÿÀþïÿBÙØ¿ÿÇ6ë× F=é3;îf5~ü_8Ù£Ö!Þãú—üÌ\g8ïÛyÎè橬%¸ùéyÞûyÞ³½-°Éûú§çy§ó¼ú9Øbò¾þéyÞù4o)ÁÏndÁûæ§çy—Ó¼×ùþÇÕù~†Sœ¤Å¦»¾ ½Ü¨ÏÛó Ÿã$ŸJ¤ýî ]ÿô<çv’óá Å씜o~zžs?ÉYZÊ­8ñ™ççú§ç9Ÿ—T†^–„Î@inðÍOOñNçe•y“æ§_ ¾Ëä}ýÓs¼Ï˪à 2¦D¾lñ¾úé9Þçe•y7 1añ¾þé9Þçe•y$9JrûÛÉûú§çx¿&«LwRƒµ]öûú§çx×yãüÒÙ;×·zûÓs¼×x“/jrÅð)&ï럞ãÝ^ä]~Íñ +û…÷ÕOÏñî¯ñÎÕyiθx_ÿôïååy]þ+‘úÉûú§§xçåѵÖ*õÇ‹÷õOÏñ~Q®íîX³Åûê§çx¿(×6"¬\Öüú§çx¿(×poÃ™× ï«Ÿžãýš\sOÕQê,ñ/îY{õÓs¼_“kÎímæ½x_ýôï×äI]Z÷;ÿ0y_ÿôï×äšûø“.?öËš_ÿôï×äq'fVW=y_ÿôï×äA»Ê¼±®Øõ/Oq.¯I5‚šÛ´X_ýôïפš‡‚È—Å‘]¼¯zŽ÷kRÍÜ×°_–üú§çx¿&Õˆô·ÃhèÅúê—ç8¿(Ó §ÞÜüüÂúê§çx¿(Ó6 +ùšö¶-»áæ§çx¿&ÓHÚ¦£¹®e9¼×?=Çû5™øbêpÚ²n~zŽ÷k2 Â&Eé°ôâ}õÓs¼_“ià;³­vóÓS¼ëkR , ®Ü¶hñ¾úé9Þ¯I50=Ôc;08y_ÿôïפð¥F¡©Åûê§çx¿&Õ@jµ&vÔ2/ÞW?=Çû5¹f âš<2y_ÿôï×äšG:¼y±o~zŽ÷‹r-Ŭðœ/ªäæ§çx¿(×.ÃÓѬz6Žö ]ÑÊçøŒøxÆEwEÇÅäþüå)¾Çöß¿}o¶[^éÛxïgå瞧áéˆõéwŽÿEƒp’}ϸÛO²ø.<ý¦ßE¦ßÂô» ô[˜~žN;õ c¶f~ï۟ÞÁôK"á>·ð¦_r÷i…w0½¿ƒàÈÆsܳøÛÜê[8~“S} Ïor©oáùMõ-<¿¨?Ïó{yúó<¿Ë¿…ç·"üçyÞæ£ßÁáNGìnM!ïÏ÷`{øÆ;XÞƒ4¾à6ÞÁôñ°ñ¦÷°Œ/Hw0ýN뿃é·ZÿL¿ O¾€QÞÁô;SãL?ÝÊø__X0í¯€v»'eºùæñAÏ@ŠóûÞAÓþ‰‰GÞµ¯X¸´ÿ5Öî‹G¨Èô›'7€Îÿqÿ²kK²dçÁýóë¸+Â/îÁ‰*ì :=‚-%6²„ÞÐø†™ÏÛž•¹c=U„þ¿N¦åšáán÷a£Ó–¿xx¦:z„É_5^~‰Ã:C»ü©—ðç6®-À2öŸ/p|—ö?i§¼²Ä÷vé +ßÜ%m àÿÎRÿ=K|s—~}…_Ý¥TVØoÔÇdÀK…8õübÚ“ Bÿé`§8¹4™õv´þÛŸ\__áôÜS`Ã?¯0~Ë +&Ã\ðæ¶þ-+@Á˜è7ïPþL‰üú + f;Móó;üžïæ(fz|j—<ð ìâÏzþŽ¬a ñÏáO´à¯ÿ>Óaƒ9ðçÚïXæÆQo>Á¿üŽäL ʾyƒ?Q¿¾vŒÎ»-:~Çã4FÿxwˆÊ/vÚ+ô;“½ßh|þÆ3{†ìwçÀ_+K]*%\ ›_‹k~¤Šðð‘ÊyOÿέü¹ó´Ô'¶òMæiÍd<¼bE:¿ûTþÔ þ°Öµ¦ð+‹¾6?.z©üÒ¢/ÝßO‹^i¿²èkÛ÷㢗ú¿¯,úÚïý¸è¥ÆïK‹¾4z?-z¥ãûÒ¢/ÞO‹^iõ¾²èkk÷㢗z¼/-úÒÓý´è•æî+‹¾6s?.z©«ûÊ¢¯]Ü‹^jç¾²èkûö㢗ú¸/-úÒ·ý´è•î+‹¾6l?.z©sûÒ¢/ÚO‹^iÙ¾äp½´h?,z­WûÒ¢/½ÙO‹^iÒþ\˧5?ãZþÔþ¸æ¥†ð+‹¾6€?.z©üÊ¢¯ß‹^j¿²èKË÷ãšWz¿/-ùÒëý´æ•¦ï+‹¾6y?.z©ÛûÒ¢/ÝÝO‹^ió¾²èK[÷ãšWú»/-ùÒÏý´æ•Æî+‹¾6r?.z©£ûJ ûÚÁý°èµVî+‹¾¶n?.z©‡ûÒ¢/=ÛO‹^iÞ¾²èk³ö㢗º¶/-úÒ¥ý´è•víK“—öìÇE/õi_Zô¥/ûiÑ+ ÚÿHnèiÑ%4þc}mÿ~\ôRø•E_û¾½Ô~eÑ׆ïÇE/u~£7çq­Ïä}á¡ ZùߟR|Ƀ=­õ‘<Ø›aÏ‹~"öf +ÂË¢ȃ½ð¼è'ò`oæi&š›GŒ¬‡6hcÀ$ ¦2JƒçƒÕ5ÖÓó̶þÎ$#ù… Ð=ÛÈùæ¾M€›eS®Ô„r¦FAHR[¯›iˆQàA6™†NSS2AT=Í$YÍ‘<“×í<Ü +ÕÖ’‘9ûà„ +”‹ÈŽEa!£ïûiúë cÚj͉ö +cñ”ëØjP5AæÒ“ã™=¦˜º¡:ÕŽŒõgHh•J-Ú½8mêˆ%¹²‘l +ÈúB‹†rÉœ@¦#é½Â Ö`« òäÕ´ :Ádnât·‘ý%~r«©û4ƒIûZšù ô¡~˜>­Á©•ÑìUGλbµn6ȯcà9 a? O,ÝÌÄ}ƒ6XhŸñw0ó;IÌs)¦Ýì'O(M˜u¹Zñz‡."$RÒëóë¼O“ÜYî¢ïÞx_ SòZö:<+F9ýê$ aÇ™`7Ïj“ikßBÖ ¬;t”Íó¡ûGºúX8t%#g?Oø5L¶üÅ Á yžæÂÒR0›!ûÒuQFqòÙ€±¡œbh-Îà^÷¾<IÍ·"=/õêõ|§Ðü²Ÿ;GU¯·ÙQê0t•¤eC=isÑñwh_ýï^ƒ™²ì^a¿;>tÕÕ0=(€Rö‚æ¼£noGi@#z”2ã(Aë_܃åÎêc‹=ƒ2« ÍjõíÚø=¾‘Nùvè,í¨N}Þô‡\ú¿/¸%¶9`—ðc¶¸s Í€Ê73hz«m× u²Àìx.¨XÆÎ/f9Øú¡³cÚƒ“¬¯n$ø\f9`ñYmlí˜&pMF¦j„?ÒåP™©G?)õ´¬“78a½7'yE[øɃ®îÏÞ”Oeeö=þÌ”B‡ùbÍÆ~'9 ”:`l«P?û?”¦óí;ô3uNØ÷àQ:óïvX¸Ì×YM Lñ‡ÕáÓ·ÜLIm¢Æ2%¬Òw•I-‡íµ¶äˆ¿ê÷=ÞLŸ +¶ðnY íŠ>†_ÂÏ$s·?``0ãº6]×åÀŒ[&ó¢ý—-Õ7€¬Ñ²õɋᡇžü í‹lÿaÒ(ÞnNÍC^èïS Ê[Gš²™€4~rF¶¹ÄŸ™¹‡ˆ¼¬Ž{£CتCuÆQá+àVÍc\Ùgí‹ÍåA·>p9ˆˆx=ý™nøë=:½-U:p;â1õ™uLÏ}›n¨™†‘Ul¦>D=¼Õå4¯ÿB!óŽoA.g(È÷™7y: ‡ÐOﶕ[ÖðY‚³*Ãyçþ;`O’Ïʼn4etg÷Fän{¹l6áñ!;Í#erW(M· íe|"’š®‚ÜŸ2ÝÉ1° Ï!®‰—Ó;Jkø'› gŠÉ]¡UÜ «³‰u–;S `¯¡ð’hðhÄ5 +‘)ÝBç×Õ_ªü‡þ³9´Y_ÐëÁO¤ûë kP~v+ Ù,Y³¿)Õïûƒ˹Õ÷H*Yþøj{ßã@@\݃]Rž+šÒLŠ>Hr‘¢¬û¾ùÑ8›Põ$ý%l‘ý—JŒs«ï3âŒI«Áá|˜QoƒKÏXb¹Î‘;LóãGÙíǵ_¦ïºãoð +Ps–`€’éøQ·™Û¡l07…Å8`}­k²£Ü¬åi‘T6 C_°*ÐÅ•3~“l"æ£æÒ÷JF0ýgX/í;zìäÀAÜ[ Q´\`s…ÂåÚÆêRöú3õJKÅa_Î,Ž’Py§7ÀùƒôKÖÈÏijת+[9dÒ·Gx÷–AŽ{OŒ¦d@¡S² ¢'WÇ8€24: Þ—ƒøN‹É´™Þ¦¶·ø;«~¹•…»Ÿ%|‰¶zÒŒ *’ëÍ{¦÷™¶B6õu?YážlÁפ{öcÄ°…TI{lÙ°e‹ëŒéÜoVO:×=ÍI7•g/æÍ:ào…êš‚8i;ü ø]-Ó ÁÆCW甞n¬â0ÿ&ü­Zî´Úá7µ{ÁZ®S‰¯“7ÝÜ–³—à‰D6Áê–¥ÑÀ‡–;Aé;þ¼8l[ºÈñgò¦fD/qÈ`Í[ü†t×ù춇wºQ}P4¥×öúl:…±Íçxü<dU:(m¤ŒóeF5HeõÁå¸Æv‘6>¸zͪ +¾M)"?ä B<¡JCÃA*½ÛLvÀm¹É¾·ÝS?a";‹ÈLÄ“}UÓPËܱ°Ž51T0{Á¯¬+y¾jŒÈ»DÆj궙ä™ÞUjEñÂéd¡4Žü1{Úy½«¾ÁQÃ&T}|}ø;}ckÆqz›¡˜•F()ÃÉo².qˆ¶¸?¸! +#¬¹Ð+0Ö›ê @À¡—¶¹Ç+Æ(ñKÌ• ‡­K’Aá¦xfK™.9öŽí‘Åÿ e0‡v'‚SÓM/—ëL>DË8TŠXL.—‹ª‹ëU:BåÀÓ¨¥tnb[&‡¶V3.©(KÚ/TÀ¬MóëɆ+ #¤ +œÃú$„÷䟑Œà–i…Ì÷4Í!D†Šwab®)KQÑ9 +ƒLaÌ. ‹± <ò>Ò8¾­?asèª@²ÄNO¼F…bÇWƾâ|¤L/N•®ÊëðXN²¨P¸;§¡”´l'z-¦„GO~â̯ŽL±—ÎÝnôv:ˆŠ?ƒýMÑHç+tXoœ¯§})|>‚q|þQÖ¶œp¾.--ùŽÃ©·H™ž±ìÁW'Øl0ôè0XêA %èÒ:¡!¤`~Ä?lÁl W¢ÕEÈLƸeT­H'âdä†ô`Ût–mãîm±ž‰†«í=yH/! +L™.³œ‘Rý,ú ‹BRŠC:n‡p2˜ãéÇ +%}¶Òp¾“§Ùl{pg7ʼnÐÛ™Ÿ‡’-“¯¸Üÿ€LRî³Ùƒ©Àµ;‘6²ƲÅÉ=¡lvd©/s'5•û€ã>ÿN ÿ,ÞûNú生ï{‚H]•g¶ŠBò,–™HvYÄ©øqG¼ÜW§Øc?±+]žî9R¦Gª‘ëÂçÒ÷ȸKÊì_L%‚ßVZèDÏY6 >a—þ‚8ýí`ˆi'-Yë©Ž3þLnH+A yêN2ËÉè] +R_PÊ_Ñè¤/²séTnºEñí ŸÕ>†ò€êrÎPÚ!“º=Ý4F8*…eîQËÊý¨À) #5"weÏp.Pp÷y0%‹“­×‹“„Ï[o™î¨vKA]è<ÖÈ žBGw°…p}¨Ø/zí.”žZP&!ßAÞdçèìé ,Þqd㦈Éz)Š‘¹Š§<™íÍY?(­EJñdÛåM62:hS%Ü;Dg¨­hîÖ˜ñ˜“Œ€,‚n¹2Xí¥¢;§ÈåpJê4û+®ùq8Ç°ë“ÊïõŸUT“Ž°“’»×„ìHîè/h;õXúö3þÎV€üUè>­I&²¦lÜÔ·Üy+_zr?‹Ë©Ý²3NJÈÈž[ÃðæðwëÿwöY×]j~ó aªLBþ$o4EÜÇYîÍ#ˆN¼ØÖÂ…­;Jü¢¼ ÝÎ* ƒØ´çI1%«­Ý2ò÷YâÍ b_‰ø“]ö”É«vÜM8#›(d›æpGÖïZ¿Ñ(@~ ÖÓËêatBõݨÄCvº¯{ü]$­ãï¸2-],IÃ`÷x÷FgÔ~ê—vËôétãËB‘*‹`Šf'«Zèò”É+$29 #ù”ÏæĉD'§vBjk‘tN]C ãOâÈ.2©îMþñiM+…Btí×kÐ÷îz'ý¥r›’Ú™laC}þ;oµ‚ØpzZü ”¾PÜ<²ÖûyVd¤2z: ´–Ë ÈP¾ÿ)±/٩Ǭ(.dpÄk»ãÕÏPÇúâ»GIþÕí7O<=h™ÔNx\28€õÕÉ&B —l\!ÌØtèT-ãl.s.UÒ–‘A&_Ãôä! +Ò_]®“H-Í¢Dþøs=GÕ&ì0§ˆƒC&ÉÀk‰ü݉ú …ÉsÀø»­õi(2Ýé]g-ÉNTÇm.°Ñš¶‡Ó±ps§ÚÞŽwºéú;=H*®:|DdÇÊùppäH)‡î6b +§PÞDJºxM–I±Û1÷ÛDXç,)–™I.–tÓ‘A×LV¿ çz·,¥LÊ'è†-“áPm¸Y‰tDÍ:Ÿ2}_E8>BT)"-b™´ƒÓ¤5þ®“v‰”4²>¶`ïF6ñáZ9!7>£´Ba’z¢ý§õ›E;]ép™Tá–é.Éä`ow šl~æÝ2ŠRúñwTœ6è´‹eR"3­DduŸ©*’®xæñgå>K ™ìg-g|;4¨ô™+š-ºå¥bâíРqC¦«qRóDƒ6H¤·Xo’OË“)Ù”>ƒü‹šlå[EdxTªŒ.cB™»SR˜)»dRÕUf!~³SA…#ºº.@à$ãÞS6dHòYèÜëØöx<1ŸÛK£·/[O™…yà-; ?ã¾D`R…´‹á´ëèÉjÖ3eG¾"Ng[HƒîT£§?CÅSÅš)“fÒåàŒ xÒ÷E¶®‹J6”Ÿ” +8Òà¡@[¼{„´×x»“qveBþÕg£ûÖ#ÃñŸ¥#£ö->S&¿NÇ”œFÆá$!CÊÓ·‹`}yz!%Yí)&Æ°°ÐU'.¼¼L½†ë¦—+v™)#+7¨WG W¦jÆ•EQ—¸BkŽæÜÍ‘²ÃÚ‰/«m'û3ó2H­IhËÌì”G&Ý%KL醚ͫ3GÈðwI…# }½…Å;Ór–ßi“;©/¤l,ÃLeqÆ#Þá±ùPÇRéx$ªÚÜ {¢tÈbµ?ŠhvwL†±Ô0˧Cp‚àæ*m'{ÜF¼ø  –Â/Wòöâ”ã 9Œâ‚1¹¹þJFL|6Kän+Ê>âHÍ´£›3ÙgT +Cv7¼N× çÐ%JU¶œŠ·î™.ýH™°s¸–QÉÐ ø ¸MC¦‰Ü52 +êËW!‡Ùº¿)_/S2ȨG‡jä1u“ä½[síov~RÿÓÃl³¦LJþI>§”IÛø;NŸž¶[¦#¬g&C”2)ì¸ÛÈØÙ=&Ý$ŠQű›4Uœq$S#×`×£aG4e#ìråJ¥Å.–ë¨8X^q¨dú›L\üÝÊ„!S¸´E8ž…ªåÖ–¬“bœ=e»¾e3e²wSëéoZàÐN7¬þ.±-'…ÈÞ²ë5*àœ?Y¿=Ÿ„¨×©ÜXMO¨¨²-™ì+iÌXMêGžlMÑ”½ M6Zþ™}cd”‡¥Ìá‘?“–R8ÐS¦ ¤ +2—jó&“ÚÚö‘—DÞœüß8·’õ,_x=E +J"¨GqI5º˜áõvľ+GU²a_™Ž‹{ç42ýmdw‘éЭ“·] +‡Œ:`¾útÒ1ýŽ‘‡V()›#KOñ“Ò´#t×^gÚe#?Ê&ß":IÁ770y=^î%­”g v ™ÞLED¨y%ÕJs8Äm‹Ædòlå¨ÖK‰IQÕls;É@ÖcZë$^ë†HŽÔú”ßÀ[-á±L·»oQÍg§KæYþxž½ì/[\;^²[y‰7'Z‰l†×¦èeô”vJC&›*mÒâÏô‹{Ré}êòØ!9¸Y GÖ +%ÓjíÔV‰£‰.—}ôl×ý—韜T.ôêD©³¢Æ¶d¦PUý±‰FSÞl·¬ÒtYoýãrs´ :µŠ¬íð#ËV±Ý9TŒ†7z¸{F›9|Æôœò«ös_2}å‘ÍG5™§@ó!èÆøx::¸Ž/‘•Ë©CÔm¢kKQO1Žƒ´÷i29ಠ¾•´Üòƒ´ì¦+5³QH>Éy†¥Dvd;„eøˆ·W ÀSq–|0õ¸GT´‘ n(ÀXvTIjÛS&#«pÀ—rb¾§ÂÛxJê ÕÊ#,vwKç’iÓ'?ë·«{¾jÈ‘ê Îxs9m¥Eõyl¤mØ¢SZ7£FDZjY_Ïx]¡2ù¡è”MËÊ´Œ~d_ffrÄÜ –²ãæSqatI$[†û Gº“§ì»ž§í5eõÖÉŽmQUIÙ­ ÄëmÔåfüæ|¼Ë +Lô¡äÏö”µ›¿ÅÙ×ÑÏJ2éIN_àÅ´í('#à4¦_}DÒ>e}u"«´ GªÈ¤'qêâÏj´˜YDšIoDèîåê ¤¸d]þb×[X¦‹¾1ˆ5e3jñ›¸§{wä8œâÎP;eÛ[KÕ‰MkÄŸq{Ë\6—£†ŒœL:ƒiíe’¼,î}“Ï!M•ÇMÅsÿ—ÿNê:šWôšn†ä¦úN»ÙŽP’I +FÛâÕ1Ó +Ü×ß+$ôד/¡ÍõWß;Éäî°™€/XÊH,G³ šK—¡öÜjÒ{‘Ôˆv,>ÞA7-D=ZûˆQj/)kËÅãïp4pÇS&o_gâÜãïnåA@Ž“‚ï;¦Ï?£›Ùí #¶š­”9ËHú™“ëíÈgÃ#²B\Ô>‘5òÐD‡~L7 íK†÷L³dÈèÔ Û5vßWã+H{ N™|ìmD79!éªY×ß1Œ`£Ì¿yÐ@ÏR¸6.ÖÅûé ²Œ¨Å»§h%\CÆi¬Ú·8·VË%þŽlÑúéåô_Ö^SÔ–Óè§ìn¤j)Ó—ÓžÍ#{61'ñæÅ~é–=›”Âçʶ!kî;ªñv3JGÊ´6qP|ôl<Š7¯ä¤ºËÈz¸#euczD[•y*ù¤ßf8·Èdë¹o!³5ÙÜÈ…l§³=ïBñ¢‰üÌw×WOƒÈ$âìÎöy—–”›ç3Mmc§Ùy¶Td‘[L™”˜<Œ™ßN«„ž¦îÑñZ¬&-¹JöÈ4$†ã¼»—ã ™ÛUÂEöPEvl‘:‹ '¨¤lºÊçí7ulã<œ<ÙN2¥R¸û‘29/G=)Y¸u›  y7,·0¤úzì’eT·dÃÃyÇ%Ê&x§ÓÐûlåH™þqwu#ô-Irõ:ïu¬ë%cSÃ-)\/¹=Ï;Ú—’²ÍB àac†¬n‡ ÅykrîÛÍÚ€ÿnd®"dÙBV]ööHXS@{¾+Jj=­´Èú»Sæ ú¾þ +nñƒvUW€»þç5ÄÅI—R×.%§&y=÷Â…,¨¿þðH$Û‚ Љ™x§aͬ[Âôßh>qΔ7çõ‘) +б™ÞGš±H.†‚1£9N_O"€ÂËða%ã¨3˜EgdÅɬþ(-êæÈáú×Äu´ŒT¨ Ûñ +÷Qxìg<Šôá*õ’v;èCåW³áêQÈ5(êñæXqªÐ–¹å¬¡3œCž=ƒË¿s²3yàÌTšþþðá ™.¥¬%a t¹ž±œLV ˆEÈH¨øŽ±Ý“ïDå•‚í. 3@F‹mH¡;,c%§õ¶¸Ñ–éd’²œùz£¹õHÙ€°‚¤e2TÙPï8þHU`ÜI¹E+ŽèhºØòý潆G’ðÕjÉÎjÈä˜[I´¥$~nÉ&…ºˆ-[ed†I¶g Ä +m z]ï ð oÃI`ÉFË-¨‰‚onZ×oÄÜ;Àü¿ø£‚J*±ïXš9#O”32òÈ{Í—«ãpƒ‰e;Å0ÊÉ-`5rÕœØE¦˜Ê@‚’Ù¤)ï+v¡åËq³²“4¥î ù$—Lû¾»»@“h2žH5 x(¯„«oÜD´ÖÇßÑÞQ¢Ý·o\ÄhÛ ™>b6‡„ë3¾qó~Î؇¤ãÝ=2h/„=eî¸uÆÙØÆW˜ˆJݾjÈ ùÖ`ôÝä2Ðâ§SÈœ,ŒùG¾…RW¼»O»K‹ˆ-6ÑsˆˆV¤ì¸>]s¶‰Ü÷ ´HÔî¶ÂÌ„’ÎRÄ;"æL"}ªO4âÆ}T‰Ü‚‡Öú±å5Èx—”MêBGÀ—ófo£ãFÞ!C\z·G‹º“]¾€DUêÕNQ§…ä¸e£‰©¨ö”@g‘ÜÚ>E~ÝA–QxÖ…Ú·xlÿA2N{0tC÷ê´û.ƒø:Ú->®$ì†vXD£Õî®u'Ww€Ñ¡Á»»Aö,¾;Ö¶Ö3žàÞ>\¡vêXçw ðR±n:­'#SÝܳn]·l 0=F~×iÝ›Ì*Û­ +Ÿ97®Ó¥+@#YzéŠ3ã$œë¹>]uIWG G–·Ý±znÜØÚ9³ºít (­‚DwDNù–#GFŠow“B$ÙÏl-àBµ?`X\G¨-^€ÂÁ‹îÒezoÜÛ”M= +­–ÉÚéùž!–›á5N¥ù?sŸH§Ë’Ÿ¨h4ÝÞt€ÇµU¡FFSa¦;}ÅõÂȲéFZ@çè€ÊšѨ¬Sà$Š½þˆ&!š¼,£áy·oíìȾk/ÂynEY1«¤!åÉDM£·Ftå}zõtçh;ÿ +0ž¼…(õeêg’_J;ŠQ$Ä于hPïnk 2ØÃCÖ/V¢Ì¯Dñ‘Jp“nŸ{µZæü'-#dÍcWPv´Ž:ÇKX>2NÖ¿ºãz 6•‚á4¦LŠ®¡_#)ñ`_ ¼¸î¶Ku¿z7–¡&"Øeî胒åì['íé]éc)‹Ëi¤6[ÊäÓhîršKL ƒ¥ +r™­Ÿñ=À:ˆ&g™¸bƒêG<&½A{qÕc$}Hú@Ä’s:°)…vä3.þA†xp7d´È`#“¦-.%a¤¥ØãQŽ UkÌÛ&@1³~:¬2µz) ÛÔ¼.‘4F EA Ù{‹¾žæ·‰{¸Rª½®Ã8= ›-úrÁ=ê}¸yÚ–âªíMíSW—¾qÚÕDàãrd`"©É¸oÀ!ÚQãïtm$ö¹4R Ú•8ð\Ç­HºªšøYŽ/ÿĈf­ÍhÞk_‡óÄydyÒëíà$£#ù lôI•Í”Î4Ø7¯ÇoR®;Á“6…[oEMIZ¡·OmužÎ!ƒEnz×!×ÂØý+ç’ÑÛkTæ´1:+\Ip›R¶”Zš¿ùæ¯ê€ܦ”-fæô“ñvw¹eää·H%pÈlÎ3± '€4ú¸°§½–0…ÄNDÓZlŒù‹D‚ÛÄÁCrG>9 ÃnÒGã öp9èñЃÔp3»N"„\)ãÖëp—ÝH‘¿ò QyâžP®q͉œŽ-+܉{6:~T{'ïÀ=EõY˜QC×ÛÀ4¶è÷º5j¶”†«Ãnæa¤Z广[ŠžŠ6L·ä­º "múˆÆ-îÙ}r@70~Ñ£ ú‡ôù¾/HêátÖ©SlMUÔFâÊ*mGCnvÝuœ¨6/ÌÅl·ÓG䤊´¼ïä«?ºW´wâ.YêûÑÓmÝu¼ìebý¶xDdÒ¡ºŽÓ%':!åü¦ú +”«v(«š´¶¬ÿæJr³Ÿi  ×1ΔM§º©vȽÒaqþü+ °r¼À»;½§X¢‡7LEÍzªE#¶Ü˜yF‡ ðX=º; ¬8¢põèX÷ËÙÏ$`Øñ~íÀ„NÒ=‡§žzÀc8/¸…CW]©Âc7Τ®‹ö[ sp1À|[ˬjGuÓ—Øz c0º@:³ê‹ÛŽ€,9(GœÁÅ!ÓÙ d¬L¢`{Š ºÜ «?2LŠmVE§o5:‡´½°áÝ 5 Õ]nÑ5 *X(cbBy£·$š‡A÷#44 Ó3 +Â^ŽHÌ©ómú1ȬHiWœ†^ª–Ý2\* Ê·hÕ(­¸¥9 RcÙÔc™n >»‡[R8,{ð4ÁG',jØÕ[f d‰ã·ÖÝŸ•ðÏ3³Ïéc«ëÜRéT²O“^·â¤£è>ɯ€f7’=õ¾žd•3Àf€2î`OŒ7hûznøüˆ9)‹š:]»‘0¢«,‘Ûz·ÿ.¸‡+ðÈmÝÈé* eGD)_Ü®n)¢+ +$õ™¶8Ûr{ÆMLL X¨îÜ•x‡N;p# ºqY4GÁ©U²)ñw§é-݃ݢî|SÆD€ý£<.ø%à “Š¢–)3:`ÝÛêÁæÓö{®-!ßî+«ÎáSDŠSFè©#(êAjŸeÄO²>`æåQJüJ3<ùJf¾‘Ý%N(ÏÍ0¿”†¼*ÎÑë¥$¦Ô]ó¤ ê4ÅÙG²—{\©JбĔ:f>cÄ”rÉ{€<©qˆ)£™/4\â>CFØq§$ÛØRÔÔñ´7ì¡@Ó«“Ëô5Æn<Ž= €­‰ž0(=\!;1ÒÕí5ÐöAR&HUÎ嶊ÅÇxZº¨Ô[eüA]>ü}ZÌô¯Z€—Sp±º$œz|bXφH½_óc} +þÖ“`(8ƒÖê\2iäè‡0œë™–y<4 €?ï•[`ð=* ‰ŸÚŠžðùŽ½ˆr;áYÔ¬u46zŸÎ2ció ƒŸ%:©Ëë©G"ÝO\BÕÀwÇÆrÄ´“¹0‡¢'5çmàìEþ˜©,EÊ"fdƒtׇc„ÐÑýˆ2@ Ý7BϼÁ„ëÕõ)kÊx·èO•™–?YéËü +¼ÌE ú À%–:#• ÒÝ`ûçÍùüIoÁW Ýe.H3{J¸Æ÷HwŒv5h®hF m‰ÈG[Ì̓m£Ëíi‘i4Ô]ÏB˜äؾ ÖÐm¡úîFét¦“:%ÔÝÓÝŒò?öG<äáŽÁ~¾¾ξƒM +@ÃÆÕh%*)ÈLiíŽúD[œ\àìúl-ô¯ ZjÈ +†gî†Ô¹|zogÞüŸFöÊ?jÙ>½Ñþ«Ý¬ûž…Cùç3@Ö …7j”<¾ì4Ù·žÀZZ;c\è^¨d‰zàyþ0fýàhyD¨äšÜ?ŒYÏôAÄ^íÞž.Ý®ýsÂÎÑîû2Fìö¬t  JØÙPR"yùËäÀtZÂgæ9uĶšò¶Êá3G—a5ZiÁžßÚ̘b ëtd‚ìyŽ<©F)“$lÑ5 +À\–óŒ¢i#¾qáxɘºè°ÈÒ$g)ñ“$”dgŒògZm( "?@ŸÎ/{¾ÁÒ]`.oD§‘D~¯®2ç`{Ì©2Úeî¡ÓQ–)éû Ž®àB‚˜S^©Q`ƒ ±³õ½Ð0ã±-îBLÙñ†¹íkµÓ{:Žç¹¼¼ñˆæP¾:3kFppyÇn™;´G³)1ð‘”ÔᜠõÀYÓ8t-ЛòPt;]·´L‡Ñq hL3±ÁélÎÆæèC¾;G##¸Z"ÿì¦'ât"Šó`Žç…É?ŒùîQn1Š€x3Û^v3sx8Å1\Ð<\°»Ä=‚sÝnÀÛz ~+š+J*ho1v9fñï÷!4Ȧ«¢(N XºÍQÄ»M›×ÐS¬×Çþ|v'¡}ôTãyFʶ‘x·È¬:Hk½«"p:*päÆÊ1 `÷ù#zYŒn¤‡,eì^ÀOÒWz¿¹€Öú–H¢˜éˆ#† ‚¥–\SvÒ^–Æi®Y,È-ãwî0·Æ †ŠVã,µÙá͆LÚ6'ñÆj®©¢à¥¥mF>›Ã¦ëÕòvK(HQb@…k̦°,1«ñw ×¢ +­éi<ºƒ#aÃÚvM„„B‹A ¨gIÀ$±‚ŽãÜ€YÚv?ö#…”°uÃâïPècAõ5И”À牶ÝͨBÒÝñp¬{5DÇsùB$]«›íŽ +BÚÓãC,ÛѵÑ‹,úmãÉd¬Ižx6îˆ1¶,žLƒw)½ædMÃL7õ¸_ÐÅr•DÓy¸Ûht’íÎæAdÚ:œ\‹ÖŠ KÀæ+šSm©/˜%àèÈ´ Ãõ‡a¾Ò¶aep—ds³y,/óõÊ–ý"“ÿ9¶%Ó•™ÆÌ»obõýa,¯.ÖBêÑ&¼ÝLÉÁØ”sºÄ .M•Øm•R[‰Ö‚¾õÕW¸6|·Ïa2¯€v#Ú±¿IIH*Ž)f)Óq Ö>;2°‡‰6k´»v—ªì¸d%ÇÌê'{àX×"?_¤d#Wc´D¶äŠso¸@6oö‰eÚ€äÎч¹ÍÄÀÝÊ­€Võ7»^}½˜8@¼¶æ2¸‘/F˜$´Üyžqíd2bÄáF—n¡îâ(ë%ÄU¸²´ µ¨ Äbí‡íµG©),ùƒD{`á‘=à„§é†N#Â)âg~ÙPP“¹µøds8ÏÞsIMÝX‘ÕÓwržcŒÕh1]˜ÎÛ,Zd:@§…(ã¤Ç¡á"dúßkSˆŸH¡ŽCr’MÚ²‚="kÜãQdHi)KY@í·¨Ë»Ýâ<Èò´F6çý4 §q ¿¹®üaÐcµNv:#ÏùñÓ¸dݽÍ-ãœØ—¿ @ ”(Ãâæ„ÏnËÁBȦ)‡Â¸ .Í »e2ÿ0ÔP&Yÿ_ïšÕõÀs—ð\dÚä#° ¥/ûpò¶5tkÈäû؉7)X¤(Lîž1yYTvü$“žu4p3‘BÒ¼f€§3ºˆiV }0ù€âÉzË–Ó¡ÎÌ&iï6]Jôd'×Ó¤ð@ú*n·† ú´Ç\–@ Ò~zz6W@‹±á_Ž£÷:0,’k T€Üd4cµÿÎóˆÈdÛ×plêëØ)°1)Óu Ø2f¥ÍÀXVCÑz6,íxØá-ÈÚ@IÕV·f ;îÃYA–µ„»[FóÀˆa``Äh?v:Ì=žßãY9˜Høn°KôÒ§lÍû¡ÃOVw¶žëŒKÅ2Y™FÎî+@[½žžE6f ª®-¹Õ§ç£;œHðÕyÆÄFd=AË)cfqa1œ]¦9`1àƒÈ‚Óó¾S¼ }ã{’HGrȆ;°¥Œ£5"3ì`©(Ú˜RGë +òÍÐ$­’Í2E`k9² 3‰'t[n0¢6UËbtZ_x éÚÍYèn8Ë-C4\NÅš¥ÌÛ4®ÇƒLh!®wPÌ>ïIGdº¯ÙY€Hºv‹Áânzl‘ç ,tmÄf1ʾiÃEÉ +Rì8—Ñ´sï²Ür»¢4D–Ð#¹ð¤Or‡eËæ‡hVàà0þ^û<³„Nýˆ,}-º‘Ѩ‘5Ê-–:ˆ-AsDNzÏ€D6™…iY£?ö#Æ­ÐYñ»¢U4†¶D€Î±ÒÒÅH¤†´º‡š"ÓÄн@\H¹ÈíJµf»J 'šç{´2'åÕ#Ð8‰î _çz=Ò¨ÿô/tAó7Çùõ÷ýÛÿvžt¥Vwl ••ÞŠÉxvŠúS_íÿþ·¿ý׿ÿm÷øŸø?Å)s|®¿ÿÛ×ÿøÏÒ¾ûùúŸ_ÿïûç¿ßârüc ¡ÅÁç—¿#«o –×ÛoXÓIWöþó‚åÍþã[Y9Ö˜Ò7[Züî +žx#]àŸhŸØB’EÖÏßl~£7©¿ke¸X¨®°Îø–,ÀþŸQƒAÿëýí_ÿü'ÿéÿø¿te¾þŸÿ÷oL5-‹èE_à^&(/\/P½xÈn ×’—øáßüã‹W.×W6¦<É;réÇõëk×ËkÏoˆc¬ýô¯~}ív}íÚî<¹öã¿úõµûåµw™ÒûØ°Ø87õéßýòÚçvuí’Çíøø~}µë:ʇå•Ñ¼]%2÷â×ÕT,þÂlÞ®š{ñëz*f8oW‰Í½øuE‹¿0·«ç^üšÊ‹¿0ž·«Dç^ü›Šê•ù¼]%<÷âçwf@oW‰Ï½øøæâ/Lèí*ºŸß]ü™½]%Bgñ±}sñfôv•Ý‹Wý0¤·«Äè^ü»î…)½]%H÷âßÕp/Œéí*Qºÿ®†{aNoW Ó½øw5Ü ƒz»JœîÅ¿©á^™ÔÛUu/þM ÷ʨޮ©{ñoj¸Wšóv•ÝÜ‹Sýҷ«,ç,>¿©á^iÏÛU¶s/þM ÷BÞ.²ž{éoê·Wôv•ýÜ‹S¿½Ò¡·«,è^ü›ú핽]eC÷âßÔo/ôèí"+º—þ®v{¡IoWÙѽøwµÛ ]z»Ê’îÅ¿©Ý^iÓÛU¶t/þMíöJŸÞ®²¦kñº}S»½Ò¨·«ìé^ü›Úí•N½]eQ÷âßÔo¯´êí*›ºÿ¦~{¥WoWYÕ½ø7õÛ+Íz»Ê®îÅ¿©ß^™ÏÛUÂs/þM ÷Ê€Þ®Ÿ{ñoj¸W&ôv•Ý‹Wý0¢·«Dè^ü»îæAüjÒ«î—Sl÷TéÊeþÚBûwò– bË¿ÿ›_[¸|gáøúü*¡ý»:Ëïûé8¿žÓ¾üÔñ¿€0Qü•pü—ø«öGýëÜõg–}“¶þÈB÷#Š‰9sºyè#ß-ÖzþWŸXôçúÂO5‡,{¯0ÜË ŸXèõ¾Ñø0ÍuûÕþ´Úú‘ÿ¢Êú‰5ÿªºú‘5ÿ¢ªú‘5ÿRyþþ5Ew~`Õ¿¬fÕw +ûë¼Ô¥?rŸmBNtžÑùû•K.õôo>±äkÃÆO=Xô§NŸš7>±èk‹ÆO]ŸXô¯¬ü'ý+ÿ‘ejCù¹5å#˾q.>²Ð=tÌÿùÓ"Ñ¡öïõÜ•heÀo_ºÖóNëöÒ¢öŸèœö×ú¹)®ìÿ~×Ý…%ÞµH–?ùei½aL¾øçO0Í{寺0¿¿Dh íò§^ 0êôÒu?ÌÂ8¾¿KûŸ4V^Yâ{»ta…oîR̶þ¥‹ðgg©ÿž%¾¹K¿¾Â¯îRªóÝÿ¬>@.ðY@~1w€æ}ƒÑz#„ë´õÓ&¸¼ÞŽÖû“Wúõ È,ØýÍ +ã·¬p0< óÍ;lÿü[Vè´Ú3èçÊŸ}ø__¡š hïýÍ;üžï 5¢ú©]2¡Õ)ÿóç=Ç ¹{?ß}„?Ó‚¿üûYXÔ7 ´ß±LÊ*Œ7Ÿà_~ǽ0Äq›ï¶èÏTà//p2ýœ™¼o8~Ç öàMxwˆÊ/vÜ+ô;“¹ßj~þÆSŸ÷¼ØïNs¿– –ºT/¸2¿ÖüH¥àñ3í ²l2Ê2Ö¿u3ß]žûÄv¾+¸<¯úáÒËhäq¥¿ûhþÔ~_êZ—ø•5_›ÂÖ¼Ô~iÍ—^ðÇ5¯ô„_YóµüaÍK­àWÖ|íü~XóRø¥5_¾×¼Òø}iÍ—>ïÇ5¯ô{_Yóµ½ûaÍKmÞ—Ö|éê~\óJw÷•5_›¹Ö¼ÔÔ}eÍ×î‡5/õr_YóµuûaÍK-Ü—Ö|éØ~\óJçö•5_µÖ¼Ô°}iÍ—þìÇ5¯ôi_r³^Ú²ïk^kϾ´æK7öãšWº²ÿwòqÉÏx“?µ}?,y©ýûÊš¯ÝÞk^êú¾²æk“÷Ú—š½¯¬ùÒÛý°ä•ïK+¾´t?.y¥µûÊš¯Ük^êè¾´æK÷ãšW¹¯¬ùÒ·ý°ä•þíK+¾´k?.y¥mûÊš¯]Úk^êÖ¾Ѿ6gß×¼Ö¤}eÍמì‡5/õf_Zó¥ûqÍ+-ÙWÖ|íÀ~XóR'ö¥5_¯×¼Ò€})+òÒoý°æ¥¾ëKk¾´Y?®y¥ÝúÉþ<®ù¡\ÅÈš¯Ük^jè¾²ækÿöÚ—ú¸¯¬ùÚ¶ý°æ¥öío4Ý<,õ¡¬î_¶ ýöláK‚ëi±d¸ÞÍ=x^õ9®w^Vý@–ëݤƒçU?‘çz7âàyÕOdºÞÍ6xYõ¹®wC ^Vý@¶ëÝ4ƒçU?‘ïz7ÆàeÕd¼ÞÍ/x^õ9¯wƒ žWýDÖëÝÄ‚çU?‘÷z7ªàeÕd¾ÞÍ(x^õ¹¯wà ^Vý@öëÝT‚§U?’ÿz7ŽàeÕdÀÞ×ýP ð% ö¼è'²`ï†<¯ú‰<Ø»iÏ«~"öfÌÁó¢È…½›oð²è²aï<¯ú‰|Ø»‰/«~ #öf”Áó¢ȉ½›að²è²bï†<¯ú‰¼Ø»©O«~$3ön\ÁóªŸÈ½›Sð²ê²cï<¯ú‰üØ»É/«~ Cön$ÁóªŸÈ‘½›Eð²ê²dÿNSÏ㪟j’úZõ9Uö¼ê'reï†<¯ú‰lÙ»)Ï«~"_öˆQyZì×üx‘e‹ ‚Ögÿ –ÂÑ :;Ìpæ[gPþdï¥ÿU°Ozôw“ç/ÿ°uO܇G­E©)LLÅãñë]¶Â„ÈälI«Æ¤þdörxd¦œlZì§þáF¾:ú`¨PÛ2 ~[̈’A¶¹ n¸øîÁ8®ƒ ž F›ó#Ô̖IǶ5{>=yéÍÉDW¾:› OÝcŒÿŒOÿ=T‡"y/I“QÆXt8¯ú‰K럄Féö(ð+Þ99Æ)FsH€:t'sî-<\Z½ËKVĽÈÚ~Ûê9eÙÏœgoaiÁçØu+ÀÉôbVð ¥1_ûˆÁôú–Áü*7Õd`Á` Å‚NYý!gnVhÃL±ÿxFB¯Q¡2No NWXñ†þ_ofZ˜ +]ï´);£üçqšdfB´·Mm}ï6GÒL"bd>TÀfÐѶÏ$ÓF¯Ôv=Ø|ŽEíˆl3T†yý`¡Òßm¦sœð×i÷µ‰ÝœJgSDíó>w³ñäNZ2c‘µ&Dƒ=V}ïCWÏ/÷ˆ„4!Ö$VO·m0o@Àò¹› ¾ÚvÐ3(fõ) +ÛmÙ@$åœé¼û¢—%Õ³” H’ºƒêïgÁªHáê™S{¿Eá" •iFêj&Wí^qêxBõ»×2Z3BK[ì©ÊNO6°ï™•w@Þ»Åm8 ̓#P28<Ï8ñðM»ö¶âÇmÐúÀ c¬.y8e  < ¹D6 ç2G5‰¶îí¦0&dPÅÉ\­& ZiS-û!m'Q³u>ƒ“DÁÈÖ踵 ¶ñkC?§ÿW:´ÎО• ± Z¡ÕyH½[ASõP€pÅiûe +ˆ=à©.ÛùÎélÐHów:ïÕ,Usn÷ Å>ëì(P-ƒ=O´Ùµ·qÔÍáŸÖ1ªñê5õSšºG¿ˆNbÎ23ôn{?‚bµáXÈ`ÿ1»^1 ý9ŠÔN˜!8\+'ªMv¹Í b4.ž¸Ë °ezBó‘K±qÓ[PÖšRy:.‡XXnŒËg!þE®jñ’º—-¶H(¢­Ÿäé¥;ÖÑ•°ÃüTƒ+–ëmÂÔ-×<à•­&}­Òmr"·=ˆ†$$=¡Ï=dµrÓ{>6!o‹ÙOåoF•K2SÒó¾Ê\󡻎=ÀN˯1×qÅ‹›zöϺ˨ÓJÉ·Â7p8ŠÊxéø¡Çtà ¸ž@>K+ºÞšÄ‘°\Z‚õMB|®ûcJÏ s !êIJ¨ïÙ€’T‰!ÔóíÇÊm~V6éì¹$PÒ¥œ~ݯûÆBè¤õåtßÙBø¶r &\c²ßuD ÅQÐí›2q×(Þçè §„;ÞÔÐÍ—•Ü\0kaá2Ù_zÅS|Hbë: ëÍ6ÜM!ij]ÑÃË×5ëÛˆW‘e9¥íâæA36óö†ðÀ®Á,Ù¬ðO’KB(¡³Y1le3ßlå@ÍÍ|ΊÀNø¨µ½„:Š%])}”±(L÷Í„°U7ºv?Œ{0C†P˜œt»û~Ï¢O[Gü,á¥\8.½·²'¶æ!”+±n5 + 6MéÖ\ÓÆA§¿tg•ä¬Ê‰„²õ»¾/ fX•¢‡•¥¬K舉Yæ( ý„HµÆÆË][ ^Plœâ6ÙµÜ!ÔûíÎs§â¢¦PÛGtNn=µ þ:…²l­ïæ§2ë¹^d¬cÒ Ùƒó¯ÿR³BçB|xtQB*c ŽQ(è¿å5ë-Û¹„”âÀÝoį2uû'¡Uóˆ›Ç›#ÓôüÒW!kð>:Øñ›HØ“]Bû¦NÕ ÓEzd€…ð-ÊÈšl˜"šœÛh χ/ àÝÛ´p&Éfû<á!$?`Ö9hÚ¬`Ñ ¡er—‘™‘Iêc¤*éht]rùèK©›Ñ#~”l'ˆê¦tÃÞKKšu:„xLòoa‚Á>K ܵ SÙžSÿÆÚ´§ßBY»’n_¨6ýÙzKÓ3v8d2üÒú~¡MÇi£ Ú g §¹<ÐòD´!ù<Jº»CÆäãRz•üU@…C¦äˆÓY•û4øD†R¿¡¿çÌœÿ3WAšSªõ8–0LÚn7Q¯­Ðo‹%áÉ®Ò&——Í’-÷·ÄH Âœ¸›‚Ü´‘ÚÚ} i½ +Hd{<ôgj>®®}PKï\Ý÷™›g&í}r!´“Ä¡yxƒ´°A‘G pæ13|gg/Ìx5³]Ž“ñuóàÍn™dÁ«Æ¯_¦輎99«=T@ì-tv(˜k €õx¤üK2UÎ|ôÐ%ØI—ð\zus_>&„¸ÚÖÐ3fßldíê*’9ÝÒæŸhéH%D"pJeéœHØЈrMhqHá[ëx¼*°V/-muQ¸ éCN­½3a/ê¢À•º–$fA3‘ÇhÁ­Û—PQÒAzÉšDZ†= +™¾æ8ážQt–ÅÅZÂqÓà¨]Ƭ]J¨¯Éä‚âru¿sïZx2X«D]¡dý&Œ!Ëëì™Üè\È%—A9œä‘«‰¸.Ù¢¤Ewé«,JMÉà6ÞÂláZµbwÓßRvæ‡î‘©±†êï +ïÂÐ9 Œ#g""XÉH7'Û(²Î~gº…RõR_V—Ò:`ú¿3„…¸ŸÝê*–—Í ]*/‘TŒˆã´’.¾—%’=œàk—ÒpçH¹öd–“I¬ Ÿ4ôÂófÜ'¬g‹Œ½„žVÉâTÑwãX²ÜÁݲ‘Š!„ÖgæI®[㺔žKžl–ž;_·œÐ:iä-—RíÚ¸æ §d˜æ-ØàåwpvöïêY°ŠÕÂC?ªã¿j¨»o–d%ܯ5-„#¹ÝÂSú¥îù&;I†eL:¡ÊÙPK˜ñHµó>gÄÔúºx½¢M é¨9G<·xëná8üeç¢7IœKXñ‡J–ºˆKH¤šèäH­ ËÊ,Y.Á@j…Ø>\¢3iêa¨ÇžáÍG +äô¿ãcmíÄåXÏ£ÀKÞ³B8íëMË ì%Ùññ~¤Š \#GOæ#^äqŠÂõº„]Ÿù¤Fᄾ¼Š6rÛ ÑÛ„ï·ÙãÃssøJMÔÍîˆSŽOx¼.ŠmÝ5©i¶¸w*ŸŠ°zô¡‡¹Ê-”Ip4À{RÈîÒ +i*lÀEdÍJØ<“Á[B:1Ãmµð–¨KaÖ®º ¸³GšBÉíDKò¼ »sQvæšî›\íù&Ò$Îñ’º“§ÇAÓ Ky!ïå¥[žc‡ºYg¤Lc`¥ÏRÏ%ëGßãj87=­Cºs„ºtçM¨éøߟj5A× K»ŸQê™p[Bi#G¿NNv×i‡÷ùf2åýs¿tvûr^ôjÃ(…'P†K8ãÚFyJÿݹå©ÿç ez­¶ı#±2XÊr–•,• ut9…ð$c0òKV£6çRÄóYpPꈭ4u4…þºP7ኧ9±Óqyñ6´†O3 ¿f"ñº„çÍÖ*¢P¨$g¤å¦Ûukî‡CÈ+n[ªY e!Òó¦–P#h¡\l¬ðá»Ï,´…‡‚µÁÉ"Ñ#©<ŒmYbªŒú4Yþ±,\rtš„ò òY)´h¯ç¡›§`C>α·9—P—܉`6á?ÆúÌd'ýúÌÃ!ªÓµ’<ºÙi¢ë²d£èÅ-Rf%3²ç)h/:ðÅêØs[Ym—ú ’Å;L•ß¨×ï¾@~T²ÜÄ)KxÜL¸¶®GZ<ÞC.¼î(ýð¨ÕV%oþNAié²QIÖÿ/§)Ä©>‹Ñw\Îð0„$UŠîéߙ౵%£.ÑGàÆ[tcÅ™¤"CñÁ»#B¨ 3–'3L§Üªc‘¶‹>×SŠ‡n +«|ù~}OÇ©9-0Ü(€F‹tç–›.v3ýÒ/º¡5yã-Ô]Ÿ$¹­¤Ñå¥òÁ‘’»³Õ¼ë]Ûx.gMž”¾QŒOäÖjmyŽiÉžEdCœY¿—pRáÖ×Í»§ÍØÉø/¡|Yì•:ù®³!t_J¸d¾{½¸JU—P±H&öXçäö‡3K'ê „·p'o2ÂÛ ç+ß‹ZèJ¡à E‰ŸÌŽŽS.ɹ”ŠQèíûE&ûHcÚ ˆ]¾Þ-“Óí?sI§×­ºý«“‚üÑƶåO[ûªÓY6¶Wß„NËAÛž¥v9`5¯ í¬k "»w Û9éU8ÚŒXgÇ;“¥Ý|MÊèíã&»ËÈvÅHs¬½ë?ÜóRÏná9å‚õ°òÔœ;ÃI¨ÀGÁf:×d;‚†‘éV„ž¾ƒ»³¨‡P>€"Þc e eˆ·øK-.&u%žÛ)fÅŽ°”8úÊ`:¤=´Ù íÐ\BJ¥Öån±Ë»IbR[- " Ù;Ò3Âu»y)äAèÑéI¨Ã‡}Xv_ÆøKúô£LX-ÔÖϦ¹P–å‡KxϬ *>á †°’<«5> 5•º: ,ì7G©@¹»`–B9Ïòü猧-· +²„„Gš(rA:,·×¤g‡²7*xðžØñÐiüŸèmÐ!T—CU—°{%9‡Ú¶yû“URãÇvâ=o2Þܹ[¿Z¨%ö?—ðpŽ®Åžm·•Ê]]^5öéôãX¶\"²UÒÒ·?”úd¦çÚ2:ó¼IM˵äÝG¤åË®¬¾Úúø´RH%œRlá‡.CµëB7|¥¿$áó×—ZVЀûI™|O„†‡sKÕÂÞ‰®%”ª®»úgÉ ìQ†BÈ lñÉ1ÌÛŠ·ws¦Èɵ’’>–PÿÝŒ³:IœèiGº6jOœ°P@S¤‹vrË[T,Œºa¾'®à™MþÙ)ÓU—°RúJ_‹†“FŽ4û'áI–ø¼¦<”±ü§¥]/‘LOÿâv—q›UXu¯Qr/yö$ì«Û¡‚Nsºø +½ùa“t€NZz²cR+EÜ\wÔ[ý™4Yšn'ófÛW¨+¡<”TlNžš…$lö0MÓ­ +ÄjmÉä>†C8åc´º¾NÈæ{â%õ‘·³.#Hà ›”Úäë®DÓÉi:¢q¡M=w—!Ë”¡Ü”‡{>ù—mK{G«ÞòßJéR¸¨K(g€6Áf¡âŸ[zsÇÆéËn6xäïò\B\›|„{hû%ÔaÞb{cÈÏ=—¤ææÝ»KGp ý»ÉÑB4ŠOK +g”øÙA¿RצÄk:c¿¢}Ò’# çê»oî Bøä7㸻{†°|Ê'“JÉ,®¾Ày’oí1¡™Bš{sÛBùºr£Þ{H΀y·%T‚Ø x”n²v\Âs¹…u ¤¶óÈJí’¸=è¼Ýpôÿ—Kéq½BÅm‹À³FŽ…j‡æ®ØQק´>!2Bm‘¼…yÊÚDU§Óy&…ëiâ)”¸Óbc¡¼N²V¹yn%ésøgQÆu¤‘°ÕèÓ´°J½É •%<Ï,ó³ãßÒ^ Ì—C‰ÆY©Š} Û*ÇÈa§(×úòlPÉúOº¤‘l!µÌwÈ•S÷õRžÞZFÉ.h¬þjòÁòþõµ%<—·É_R3Ô¹Ì=Њ:e÷ÃÊøËAÊ¢MèþÙÊ=Y±ŠþŒpÁPÜFÓOÏ¿œ° ¶¨¦!¬Ò‰}Ï”Ùd’TÅîCBo¢Soc OØ´&û/u‰ÉÇ«H±†÷;f¬©7ÖmkKØÂG‹¹xÚ½se‹èUkÕ€d„h´}ä!AA.?¡¾ŽÌGžöÉìyÙûØw'*µhz¸îT˜á8#,h*—5³Ÿ”mh6¡Y§€0Ò9B)gƒ²ÛÂåQ¬vd‘Ùj§…º—ûžêP2RoÓ?J%ïæâSïYî-‰'4Âj§ÈÞÅÌ:†ÙèèD!ÀÙ©MGùˆÌÞ ó GÙmó覔J'mñèv¸ðÂá 2xÚûõHŒ(†ô#[R‹íËp~@"|d„ÛÑ@3ܦÕ9Š³xdC²ÃùWË9Pút‰‡ƒx‰†1*qÞaP¡šî™ñ+²c›‚ÅÓe+Qiè4Ö躹QÈe’¥‡DNTGôD Æ7ékÉ„þ`Ës„è#í,„ÅÈ$Tm;¢äÇ"­ß‹ ø±~»ƒ²D. ¢ŸýàL’%Md”d4*È+<æ’Ññh½Ôa'Òפ•Ã²Ž™Š .h'àlíìÔõÍÃbФ£u÷à*bI£g0}TÖË,%²ÃY½B Z'™®7¥ïæ+ R›k8X¶Jn FžÒR¦ÿW\›B’yÞúHÙ>™9EÍÐ*Ë Õ„eÑÅœ l“q‹óLàU0rø§:0ìŸj¢ÈB†Å©1cM™üÖÝ@®Ž+³Š°kÙÞ¶é1;8šYYt£ëI #¥ÅÜâdYЂùf8¹Œì$M׊Ëõðô†pâű(%:‘ µËöó=e>ÜV»$°{dø¾fÓW}¤ëE£ÛŸ'CÏO‰$ÝjdÎJF#Q''[mÓ½e»ý©NÂÔUº€ÒÑA£ á½ãî²Ã;È÷¬¬X3Ùr M{…B΂¼³bß™û/£•…3$ÿÇ+ðkÉe=ËÈS)c'ë¯wÞ›:…5wöå³P¤·Q]#mpâíÆÅ}ŒØ0en ƒÏ×39”GFŸÌùX« ú5g (Ý$aæLèÅnÐ;Ÿ&7ÑÝÂ6Òñö” ——­/÷‘ö JwèYZϧßû¥Ç¤Ólx+"­@gAÈ(=í@¢Š-“ÎÈétw ðh§¯Ë.¬âg©ºm¡óf~ª]jÚ AFǬÌØV2ªØ›!_ÜÓ-Ô"=b9Nsææ†ÝýŒV:^Ž=`TêÓ 8¹&Žfõ$D½Æ‹l.@ƒS,+,o#Ú ¦›Qv²(çÒÅ ©©âl- +… k,ŒâjL$÷3 ’¤¼#„ô™‹¾±¡DÈdš¤÷@uPö¬$Z w¡¥ßÖ" +¢Þ¿yÐ=)×äˆ,Úûí¤c:¥Hé±lÆR€Ûæ²jDá ¦ÅjÄÐ@§õ{7ðáÆÀ©(§Ï¼AŠ­÷%+#ê\·ÙHõé? ¥²ê^‹©ø¦-<#-·²ƒ#p‰:*G„ \çJÓ^Á7Œ{Ôqwwp›®.”hbï)Ó†k3FTÒ¨píÑÂ>Ý’±òÒ»Ò˜nküJˆ$õÒBu%zTŽ¦ˆt¢ +{NÅÿ =M‹$Ént&FkŸwÐ¥'¹Ž”I; š®YÑYé#Ó.ÝàöW½Ý&²Õ@Heìká"üAAs`¥{¦¤†]##ó]ÎUé!”-@ÕââZÃHü“d >Èò<À-;áÀqH|ð+éz@{SÑ´¬£l˘Kª’³ƒëü +Œ'¸¨‹x*2œ‘³ãYr,J³#¤ÓqŒ‰ö©lÅ¢Ó](;Ÿ`är][cZ[ä5â7ÇßÍ{›Ý4›tƒ?$xÌ ev†î9›{²Öcu"Ë«œ”°[]®ÕV×Àxê]–ã +¦t£ßbÑüt¼ÞÏ…7ä†] è›#ÎøWàM¥lwÂWNµ›[:ѳv´môθÃkK¤J`Q¥m³ŸªÙMº© +ò[d?Üo¦}<²É‚ ¡‚ =¢Œý0¬îØÙ€L¾D!ç°JÛnGÓÝvò$´bàM7´­óîá#³™Åð­Ò¶›Ï­þ»žÚÖ"Â~¸¡ð–÷A4Z‚ÞhDŒ²Ý20p{Ài`Ô‹zƒ¿Ë?ì#[&e}‹2:ôŒÙ> A£¥vþ˜"4Åè{$q³-ÏÙ¤UxÚ*ŸÆØ{K¤xÍ"3ZB™c‘ ˆÀl{t]F+i#{9óA÷{#$£½F·pÆoÒp…¢·èÈÌî +Ü-Ñfîƒ×Ûì-ÑÎÄM‡s=Ñ.kÀ\¢À‰›¤ƒ¤¥èov:]GE'¼o@FQ›Îª{$z€îÒpp3üf£:òïhåØèøÚ×"庵%’¦Ñp&Êظ2 œôGxûÆ£‘B +4ðI+¸ÛSÜe,C‹CGŸ¹´ Ä¹bRd4ëlçÀÙ4”E ”-uu¹µä>›SJíf'‰œРjÔÅ-c8a†¨6:IuI¢kÒ¦ûh¨.¨ú|{ üÀ+&ˆziužC +f ­Iܤ'Ùº[ÅÙ¡ðmS6Wט“šöé+ðÅò¼*›A¥+ Î­5RTí4 ´ÞË`¹ºÆ€á*3Qæ+°ÇºúS©M¬d,÷è ˜„NR@î¿gÔT¨[ÑS¦Ö½e5¢5&Ì2¶ÃÈ4=Xä6cbÿ)­ÉøšÕ½‚àc΀ 3š%SFá8*Z_•Æ=VÖÉÀ3ÃÌɤˆ¯ª»p«‡LfF:ÖI¤ï°~e Õå4èéZÓ>=-öo–à½bn1J9|¥¯@Vô±<¤ùLþPÀs&¡šn]o +зÍø ®÷èl> ¤Žž:eÓ‘<ÓÈ3²wᩪÉþ9Yú´Ð ž-áÚê»:¢L¥ˆì[^­ ÞÝÁoY‘jßhu(F` OûØå’¬ªƒ~½O³vÊ¢˜´1â½£ óû +0· gÅçó™:§3ÀëNwPKªƒ¢Q­ÔÌ]£%ì @ܸ›{W‹·˜ÂÝ#ßÃ@‚”é¿‹¶þJVSñY‹Ô pG½Úð rù +¸ô{‰–©…Ù´Ã{ϸ¦7°àÆE¼Õ±{Ê‹Ë»Rr\¼¬ûßZÎ +,SGÝ8eÒï±6ƒ6>î­eä¿dkBŽ@ÂA÷£ƒŠúˆþ¿øÍŽ~_@JLJÀ%Y~ü°—z!ÎЊñ¹žæö‹/ÜuÃ)|²ü¤«0†äÒVEä²üf°6ƹÞÒ° Ëõª´ÿ쟿³ŒÁžÜz¾ÞYÃØeN<*Äã F˜@=¨FìIÔß¹˜ÒðQkMá] dyõG¾‚ñï2)wœ£T^¦5 ¨Ör}#$´VPŸ¦ÃpjZ…3:6ü]ÿ¨+u [¡1é¼ uë£? åƒR{C”hNñ3Pãxs9€ÑØxðwåcÔ8øñ²þÒ!YDÌI’ŽÈ1/Û51|V%›QÎ o¾Ýgø/ï,ŒÊ}M¤ú*ÞYhÙd …{½ƒÎë¿s/R@ÕQ{ b“€cu¼C=PD U'ÎÕxÄA5ø–P¶07(ÈÀ×lýW/M‰w>™üŠ[÷.¸zÈGi¹·>2Û“LdªÛÍuÉj¿ëo˜_,e¥—¸æW!tÔýrpZ»[yû Ó¨{>wL3¨ñ,#vô0t8]œ§'$RŒ„,•ÇKèRêA7:NB(ëœ-„¿•^­Ec_ùùZ­zÈF£‚P¥`’ø«BŽEOI îÿ‡çl·–柳1!#T:s4º÷6³û±#E8"KŽ!H5ÒL8þÑš+;!”G ½ë¬5óI"fÔæaûžî>—»°!ÁスÃ×Óê€$sà‚ô`Ï!V6¶2¼Œ;´ yµÁÔérÛ¤Ÿ?„ ×%úèhÉŽL"Ðó8{Î:-i‰ÎóØÕ×fПôN6‡! @`'Ÿâ<¶5/ˆC¤[´Äý‘8ÿRžAÄI%;ŒwWB®&1¸„i„ª‰6%P1aÅqïöJ¡S`Æ»m”ÝvO,¡›šAøŠ¤×ò¦+/%H®Ê–í6  íÑqf‡ª“S÷¥FÛg8pùÑCHG±7ˆ@p÷·;°wsFíó7 1Œ‡ïžz½Äç3–¹2+“9ñœz©x‹Õ)^ÉLdóðü\sG7:áy¤•lŽ$«»OÐäRh>×K(åW>g†][™Vó<²Òî"÷ÐÔÇ90Q/³P2ã[ÝfÏY6}ŒqcÞ‰Ôeiì𵊜ýd DØÎ,U9ÜÓ9ÙÎŒpBu\ƒSÔWα-8^r9éÝK@´.oÔ©y¼ÎèŒÉÑ„ëÝŽ{D´‡'y­! dzrÖ>é©Çˤ{ BŽõ#‚–Ž«I‚‰8Å9‹ÃƒÈAäè‚Sz‰ñ ŸÍC-¤¥Ë•`g³ ÂÁЃ’½;䨹—ldèqzF ÓQväGaÒÔšû@ÆÂÝÞë¹ëy"¡n{2opcBw;@t92N*˜©‡!¬¨›È®‘wÙ¤¥Ï5‡‚àÝÞé!@Ã÷@Ôs ìC{^…¢eÂRE‰rDúèîÒÇЃ Ï(NHÑ!:ÁKüø›=d *ù–ƒ† 7Zz„Û!pMdפljÔ:i4JG{ú4DðT¦}DÕâô‰YHßWK&gô>ÌS úýUNÃÊB Oš±°#ã§Zýd©&㬓=çúQ™šâ8ë$ÝZã6·ÇkËàÈųF÷[C”­Ç‰„{E9‘ñ¶üÚ8&g½¯ñÒ*WϘ¼>ZÎıŒ)xáž Fïâ±µT¤ƒ‘„î»NE Ê>ÇÍq ¼€Ã€!XîÄfžžûA¸uHr…$t#ÍOEË’Û®150„tsŽ#óîn¼ÄßË¿l¼µ”Zp—ܦ„ŠÛ΀ß*Sÿ;g%yvÒpjÃӥݲ½À2ÀÐa“–ìvÝœ³ÑsH> œív ùÓL] ³æ\ó˜8¼j(U¢gi˜">GŽ‡iôìoä‘nˆ}ýrü;yî$PY°O[@˦Ý3 Vq£ÓC§)Í—aù«4ê"Éjoµfá ¥''nzÍœ‘žæìð¨Ó¶·¹(“½YS7.§Ê“Œ1DMH;v9ª‡TòTÛ\£ßÌ€A÷a¡ÆÏÊÞÚ§ê¬h8Äá,°qçPÖX–朰á{ôRËâ”rDzldj<j%ÿé_¤i¿Šg ýý_ÿö¿Ý] a4¨ …(R>4dè3ºÑšìðýûßvÿ‡ÿ‰ÿC=(àµÿ·¯ÿñŸµó_¾þç×ßÿûßþùï·…äÃÿƒ Ä€™mòÐZØüZ°¼.Ø~Â@ȱÜß,Ø~~Ã|+Ç\)À¾ÙÒú¸àw`”µÞHêòç~z£ß±…ŒäÒÞláÓ!ù?ÿöÿ—-d +endstream +endobj +315 0 obj +83143 +endobj +316 0 obj +[314 0 R] +endobj +317 0 obj +<< + /Resources 318 0 R + /Type /Page + /MediaBox [0 0 450 262] + /CropBox [0 0 450 262] + /BleedBox [0 0 450 262] + /TrimBox [0 0 450 262] + /Parent 319 0 R + /Contents 316 0 R +>> +endobj +320 0 obj +<< + /Type /FontDescriptor + /FontName /EAAAAA+mwa_cmr10 + /FontBBox [-43 -250 1008 750] + /Flags 33 + /CapHeight 683 + /Ascent 750 + /Descent -250 + /ItalicAngle 0 + /StemV 0 + /MissingWidth 500 + /FontFile2 321 0 R + /CIDSet 322 0 R +>> +endobj +321 0 obj +<< + /Length1 8660 + /Length 323 0 R + /Filter /FlateDecode +>> +stream +xœ…Z T\çu¾ÿ[çÍ 0û0 ËìÌÂ2 #–aØFB› Ð6Ú-Ù–,y‰¥,Ž“ºª«*Žì(c5mT×UíXŠã$>±L×ÇIœœ¦iÕ8Iããö8–yê}o¬6I3G?ï_Þûß½ÿ]¾ï>¨á8Ð[·¡¬R¿AWPðYœíݶo­«dÝ£Øÿ>¶ŸlŸŸ¡´ß Ïaûçñéäöë›_û€qXæ&ƆG·ÿ2!âóïãýÕ8‘µ… â:¸&föøóÓªÂqÇ_žžÝ6 äWÿ @ßã 3ÃæˆnàúÏqlÛ9<3öëÕE uznv~ÏÝ£`°?,­Ïí›ûMï¹£

w¦Èp¼ ,ÖÝ—Šmí—ÞðãR³¶Å­€€?ðß øS†Ò¤}Ø®a\alP1ôÜØ^ÄØÂyv §Á6Š cƒŸPàXñ#cAx@iÖÂö!€ê;Ô?È: } g€F ×µ-Øp]‡{èñ]zŒ_ÃFÜÏ$5\3ãý¹åØ0î-£@>C²=˜%x>O ¬î*ÏÌüªòyŽýQÝUšÂ.‡öù}å¡°-¬åœáÊH¨ÒdÔìÆëv<}çxŸE ÑÄ„B‰“*þN{“”`Pîλ ôÜ?làŒåçzy5œà)¦Gm¶'ŸŽrà *ÀWÎ:(m•®:TYH ç­¬Ö…«(ÓÁḢàÎß4½|åÔsö¦ë_ß=——‡)i.OU> F +®’Úwï¿õ›“)ñõ·ÃÿAò/¶¦­oüÙáÁ¯Î4íŠí]¿mÿ™7ÍöŸëÜÿ­¢ˆCüUlªá‘zw®=ÜÞp´‹DýCcEð‹Ý#O ¬:³¥ußfûêðs[fÿv´÷/§Ö?¸æì¼wm£áªcâUr¡òÑþÖùXù–ØV´Ã’Þ~Ìh±Ø +3És ynA2±“jKiPœ’YhÆL:K* Û‘¥®Ž4âzG-káè–´$#©pÚJ¨çtxÂUÕQ"kÅås $ý½• ԧʚ ‡AÁ±Ë›\Gÿ뙶dkMiqmm±*oK¨a²{E‘Âuÿ†ÁÏO×L}ëк­•idlÃTEˆk{àÔÛï'Ÿ&m? ¯,­©-)®u;«‡f=¼¹{jÕÉgz¼s¼)±?Ù·ç⑹g×Y³i†îûÆaÔ»~õ6Êbž\B™ˆC¡T¢‹[X­`&”N£¤x¢#²Qm*`‰Uvõ`-&¨U¥Q2:SÈhWV׌¥*Égš_{íÀºÅï¯; zÉ¿’®Rš?Ù”x­ÔœH˜K_KPo¥c ŽùãEöȇ"¨ˆ; +ÀY5Yt!”èlE|QaA~.¢‹F¨È&pvù¬%)Bl²f‚ž$ÉPOh;ÍÉa'þÍRr…³æY9ò²~ªsñæåY1gˆ^á$/ÿ,‘dþÅdúø_}¦D"¢$1ñ#>;T‘ 4”D*0þëÑ™ ‚FhÕå¨(­šŠ× ÌV¦L(”J +HÌuØ )'Z2XZe䉒P*2eÝ$KÛˆ?YÞê°V²zØ-û‚9Ú¥#ÄU) ÿÈD}Û€½¡‰””üÅ–÷KJžÚ¼éXl°Uôµ Ôì{r -ÝÛÿÅÖ„ÉG•E*T Ówúæ^êÝQwh“h5ùÈ/Æ^OŠÓK£Ñû2#Ùaqž  Î€†X•‚”Ú%Q‘Rw¶R­È%vIРU%ð=:Lxò¡”dÐÂpTYF[)ø—¤Ïèº÷^YZ +ý¥àøpÛ@g')[ñ¹îä·f’·Ž|n|°õ‚ëøšö™UÎh²wÃÙq¾=·”~wE~Ât¬¡éä[ûÿðXR|²4·ê^¹eÍñGâ]ÿx²g%Ú­Éf äÅt˜·d!k`‰.#ßÿ2…,PcúlËåÃcBòá}üÉÒ¹àžDd0Wçƒ;–Ÿ—£Çô@ÉÌ9”F ôRÚ¿pIÿ¥x–ö'U÷ä|Yýñv4‰O´ø ª °[d›­s%L‹€oenZ +« ü--²/zïÞ¦žaÞ+DbA!9hšHáJ+r\9-óJ²Ã¨#¬W82ÈCG¤cÍÑ:%‰ñŒvI )\Ci‹xn]~ðh”ØÅ÷jVµ5Dˆâ‡ûo*þøœx*±øƒžã§:’GbG:Ïgââîmf úˆ*cÅ…˜ÕžAÇ&_0)ye>1’2hÒYY +†£ÜK1 ‰±tæéÜïÐȆeq~,¢Ú¼ºkç G} ãP¼å9Ýuþk’²a§:ûý×ö’éô¨¢/毭ÝzD²U ÊEûç#ŽÕÇBfRlT¤Ø«P2Š<Äæ± ¸“+èÔ¹³.¢&ƒ:‹™íñ3·åŸº0&ó x™Ì¿'¨[V ¢ Rén"&¿3›|ãÈê+ì(vþ¿>'þܹ·µçQgîÊÁÐÔ‰*­ùä~ëhã +rY–þN@–þ¾ú–ך;G:È/ížä‹ã]%]jîÞ¦»èÏ#C(†PÌW˜OåG¡E±#8ƒ+KYd¨Ð¡`í¤[Ëh8ªô8Z‚_„§]ÊŒ• $Ò@¤ìéÔž@"¹µæ•›Ï‹_èKSë²)¯3¼$&É‚otýžcæ“ï<ðÏ4Î=1h5]þpÅh ¯ÊÛó9ʹö©ÉwÒ¾ñ”’C¶˜¥ˆBúE, +ôNšg‰†%B†ÎèшÜo[Äê¨ë£‹]Òó"ÐgqÐÇTYÜ +%bÑf’>rŠ‘-R@ˆJóõÆ¥3/®P[µ¹b Gñ«Î2é­²ä¦cg}›Ý¼¦4f7“ÏËÁ©•¿Y‚A“¥x®ÌÄ"´ØÒ¶Gha%ÈÛ#Ƭ@¤xä!ÇÎGÔ-±@·}ºLyˆÌ3C5ä…µ{-b…7f–•Òk˜f™;¿¤¬ÐV‰šØI’' i[>#N>#"ŸK¨qîž3ÂxÅ×j¯¾J,"tñC]Éç¼±û ÄîJh‰Eƒ%¹t–OÐi¨,‡MÍ(*0ø M¥˜"… +RY¤×¹µ’R M'Œ„横e¢ +K§J/eãj‰ÁfÈK•IÝTŽìïÕ‘½! ‰¾Páý(²ƒMMÁò¦Ú™‡Öîýƒ× ÿýæã¯p¹–ºÚ怭;Î<ÖÙýÅ¡©ª¡¢¬©9°öÔäŠm“ì¿pòRþ{,›÷—âyÔi‰‡­†ÎX»›Xt-@©hJ(ʧ,n?ê&.Šp´³^öy–29„U5°aÒQab¸ü W;Š מhB"º6£_iyd‰hRh»zRŠTJ\SBV^v¦em— Ÿ¾8åZNݯ”?½iÿ¨±rcãinWb‹hsÇ£¥ Ç‚ØŽ¯t7œ™k_û`gÿ…áÃßÛúò¡–=RÔVñT[Ë÷î«Ý3Z§×i„é/µÖ øc1߉fwëtkï¹yÚÑ/ìúæøÊsÛC-E+l•-x.ˆ@¼ý×¹ßg·ªh}¡`rÔ +„6“ó®Î«R2V‡Ð«·;鲘WÒÝ'ÑŽÆR ‹0Ñ¢#UšÑ•C’Wk 2¿k¥ òi˜XX '- +r\WXÈÉ……ÅçD…`ÉÄìdK¦„ùN’9eN4ÝùRS+šg>þ…ÙÌ*ï\H&0Wua®úsU%4 cjPS•”c½LÔÀù‹¨jO2š)v¸ÀF‰Ÿ ZYšË&!b U€l:–C µªª]¡´[òŸZ©z™4Ý‹bÞ¥ªBNqõ³r×K$+Y5=Ýî Õ—ÔÞØ·á™)‡Ëa¯+__V·‘õ|¶»ã c—v$âÓ±M¯í໣³íõQoImmÉôdûý}b¨¸¹Å{òdpCŦØÚÁà¶u‰‘øîÆ·êOHqˆXCý uŽÁšX¼¼Ì•“Í1|‰ɳiZr¦(V +OŒ8yÊhy™ïQù{5V¥ÂœƒX=æÇ2‹Š§ÝURÑFbµ:Ùi=eDª)d¾‘æ¥êý8í¿˜Ñ‹ˆì«ˆC^^ZhÑYÔLÍ»Ã'··=ÔŠNúDßdGT™Ã)5Ýþ©¡SÃMgÛ’í¡ÁÃ-ÇW«Ô:Žth4âÛ}CñMZkNÃxËÀ|hEˆUqâ‡zýÔ‰– 5+5yš5{V®šI8z׳¨wÁé¶Ì‚1ŠÕ”Õ›ƒÚ¦)Q^®ŽÖ9Ó,x“5²Ä-Wˆ/5"èäˆá4sÛn¬ßözª½ê “þWï!µý³‰¨;R퉘\]/¦¤ŠZæë2/)†p̧BP·eDÊ•™ºd’A]-ÎÐsÒó RþavnúÓ4üÑÇþ(í>ýð§”û’Æô›è3pIu¿Õ#H!âJ×ýÝYX÷wÛ¥ö,×ý2†/åa,%§ðJ¼ƒã%æ!Ž‡Þ<Ø|äÒðÑ8xëàÅ&·¹}]ilÞã1'ÍGÞ<¼ùÊCkxïè¡…#u¿¾6~*âYk«kÏnÿæaéì^EÜ~1ɦXNQ–UC鶚YÄ]éãƒaáP‰Rä‘êŒ ølŠ2jˆd? íþ«Éªª©K³J=§dFXï"CœŠÕ+Efà6QÛãç‰(ÿ}#£âf䧋âoÏ/î¯à=Yiùæ9Dc•VÂa¥A8‡BM)”Äar ­a +@¤o/d˜;òó8ÖIÖG§+SÊ2¹Nï Ò>"û””$$EÛúˆôe¦qa™¬‰f— |áþ¿w—ä=>9âŽFÝ#“óÚXSBôÝ÷¹WP¸ø[œ^|oXümÚÏ,(§ž‡boߧÓ2òˆ5WM •R©¨ô8i÷r*óûJ¥XgJ[œ+#|º¶µtœ)áWÏZrÙZÆ]~î'»Äk ïÓ®‡›Î?{½&í)C©½»Ÿë•M êŦ‡æ¾r2<–êƘ²J1• J +cÊ€d…dbJ)<Z I#ª4›òP +%áxÎù +ºY¼¤PñzŽ9c°bêân†A'0¤—:K%]¬šW1{Äoˆ§o<.þ›ø›`ÒÜy”Ä Û 9mi:‹lVd>º‚-ç×SYÞ2´+ãŒÈ4Êã¢Ö‡xÂ6‘(PV5á7c^L,¹g¤ +eŽô±Šâ¥d­•äE˜È<ÜàL×õ÷VùÖ”ÉîW÷Ç>;Ǫô[Z[·5”sf6'‹çÎ|é‰G8^Í´-ìêêm™Ú°ë¯·&ß88öÕáº@ ¾>Àën×D~q±}8˜.]Ñ@aAû«ŠÇ•œ^¹iÂ,‰”¸5sèÍémÁÚhÀ_OK>!Î3QÄ+ø *æ×"­pºMˆ,É÷(dOÞŠ¼Ýf4Ѓ&Džâ,t—€&Í:ʉœðe-¨¥ò/JWñrÅ'„œw·· ”ŸëzjoÓ[ÉŸõ¯¬h]¼9ø˜ÃxÿPÛΕ®Úòw r(Ö±æij}ß>:Òõ;ó¥¹íä¹ä™ù̪߉u½ü`šKȵ^)”ÇŠ‹]†lÆT(˜\R­W˜A‡bÔ¥C¥Õ²=yBø¿Ìû”#E<éº4]¦ÊI»€`Å'þîžùï>p³¦¤¤&èh?>r +énÜ’'>•¿z:¶zW•'¯ÄìSE¯ùr|¶}ÛJO•¹Øj¯Jã {s†jceŽ¬"à“'èd>mÑK|ÚiÕ +L¶Z($ëMÙk#ëÕȸ—9õ=™CâÒöåÞ«–ó¢ 5¶@ -P£o¾¹øå…Å‹ 锑h³ÉÒ5M¤)ßâ[il‘¾É†ñ\‹äj?‹âÍ‚‘ðž%Aï5»A è&£>;KͱBM!½üAT‚©¶‰¤½Ó©·Ë±ÉËæÇ’?Dwš9ªîÚÆ]+íQ3uEÈb_¹Ñ¿¿Ô[ ˆ:ÍG+LõS›IW–RÍ)>ù©Ô{ÿ°˜„ÿý#Ìvò`±ó$Ù ¤¯ÌÓ°ÒaJV±ðÿüb`‡£ìEq°ê¥Ò¾”Ù7ÝÖ:^³%§î¿ Hñ{ß½$‚BÇI]>L–žÃýÚp*r÷ÒÝGºå—~^ê}hÁÔx['¶ÞLÃÂâÜe¨gvA˜Š@£Ôh+xq,͵Ð@ Î}€÷ÎsÒ>`»ô<ß ¼vÑ^¼ÏaùÜŸ•Å}˜X¤}Yi+ÌËÏEä=[ðêÅý¥ýei½°HWãÁ˜°w†2ògÕe¶ÀKËz ¤*Ó§0ú:2}çwdú€ät¦ÏBYÚ‡Ãù7ðNÂ8º.?%õ èˆ-Ó§ ›4dú4Î÷fú ö÷dú,ä‘s™>‡ó/B3ÌÂ$a7LÂ8LÀùËU3”൵­*ðc?Ã0÷Lc5ñïZœ™–ÿ óŒÁ>y® g¤;º–w›—GcxÃwìÿ£xg9î])ï¹ß/ídCô›…™'$©¤Æ`ÎLÊ+’kä7áJŸ4ÏÎ%wOŽOì±7—Ø*jjªü¶øðüä´muжvx:9?1¶/hkšž¶uI·ÍÛºÆæÇvï –WTƇWÏ®¶µÍîÄ…æÙéé±m{&gwúmkÆöMâø‚ØÒmA9fPþ +”föoÙ6³»»’fã°åÆUèß;=¼ûO=õÿ¯V ^˜§¥ +@꾯’ "XQVQè˜Ý¨©úSûЙ<$ý? ° y/íP)rï¦ì,~‡zßîw®b7mòe…á‘ktÝ>ßÿïýÃî +endstream +endobj +323 0 obj +6334 +endobj +322 0 obj +<< /Length 324 0 R /Filter /FlateDecode >> +stream +xœk0¨_ °P¡U^ø¿Ý +endstream +endobj +324 0 obj +20 +endobj +325 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAA+mwa_cmr10 + /Encoding /Identity-H + /ToUnicode 326 0 R + /DescendantFonts [327 0 R] +>> +endobj +327 0 obj +<< /Type /Font +/BaseFont /EAAAAA+mwa_cmr10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 320 0 R +/DW 0 +/W [ 0 [365 500 500 500 500 500 750 833 555 276 276 388 555 555 443 276 500 750 276 500 500 916 500 394 391 555 500 388 651 526 555 680 388 500 526 443 526 750 443 ] ] +>> +endobj +326 0 obj +<< /Length 328 0 R /Filter /FlateDecode >> +stream +xœ]“ÉjÃ0†ïy +ÓC°%o „@I)äÐ…¦}[§†Z²sðÛWÖ?M ‚,Ÿ4Ë?šQr<=l7‰äÝúL“h;k<ÃÕk ]:»’J˜NOLñ[÷µ[%Áù<õ'Û"ƒ•¹:¶"ùÆÉÏbýh††„¡vÙó†|g/býu<ßvÏWç~¨';‰4î‘5ñ79¾ÔîµîI$1Îæd‚Q7Í›à~·øœ YBƒ ®Öäk{¡Õ> ë öÏa–èÿÎ3vkZý]û›yÖ!’ ”¦™)P +Ê@[P*A(•‘rŽRE* h©â˜;œiP ÚÚHEI¦‘tJè,]Bg Zr&h)¡EBK•X‹5È€ú¤FÎ``Ég„˜ìÇ:Q‘b¨Añ} 謠Eá>KhQ¸ÏŠý¸äS¨¡ªcK¹wù_'ïG)”WÜ (OY26%RKî!×^Hnq2„_Fiy·9ÕWïÈÆgs™ÊÎÒíi¹Á-^ñó Kçù +endstream +endobj +328 0 obj +400 +endobj +329 0 obj +<< + /Type /FontDescriptor + /FontName /EAAAAB+mwb_cmsy10 + /FontBBox [11 -215 942 727] + /Flags 33 + /CapHeight 0 + /Ascent 727 + /Descent -215 + /ItalicAngle 0 + /StemV 0 + /MissingWidth 500 + /FontFile2 330 0 R + /CIDSet 331 0 R +>> +endobj +330 0 obj +<< + /Length1 1968 + /Length 332 0 R + /Filter /FlateDecode +>> +stream +xœU]hWþîüìÆd³Éj~VélÆT“ÙdcÔ.J³™I5Æê%[„d’dv3Ûl\“–þ@ñ%V°ÔR°P|’"E&yh¥±¥b +E¤h+BKŸ„>¶ (¦g&£”Z[ïìûsîùιwî=  €wÀ#ùÊ¡®žðOÁf€HÚ#“•9iodp€ð÷Ô?›*M¹Ð7Àæ©ßš.,Lý|+üÍ?Jös9ÓÈNý¸§FHÞž#EíVô“üÉ›rŹùÀvd›äª‚5I\ø…ü8YùÛŽÉ~‰diÆ(š[fÊwH¾pgJVynå-4þ‚c/Íš%KíØF²Ãß=„± =+€•¯à6¶™q¿â*>ÅyœÅx'°€2ŠÇQ¤±»¡a'؆HUÐ_ö¯÷½íëóuø‚âïâmñš8"¦ÅÂoBY°øGüþ¿žûƒÝa×Ø1ÖÎÄþ>Ç2.RŒOˆÿ]¼éF˜À«q#쥩Ç1’M ëÖ†ê낵šê5U~Ÿ(ðƒ²LßB—'emꈪ,wúȼèhs"ã»ÜÁ®îÌØL¯ÿ‡JU¢ô³¹NUY}± ²¶ÄøvMJI9#kóí4J¶ Ë†”]J&GF#Ô–iÍu€Ð.¥r¶¿}аqp4Òb‹úK™#›94*wÉ÷[ºä»;úlv#ûÌ™b»Öw÷)ç¾û®*´¶9¡*_Ó²Áhœ$m^7òã㚪 J6/kËŒõŠ.ë‹2lAÖÂv³Vb æí¤!¹yÛý-„h§ZìÝ™Œ-ÊQ0YËÛœ¬ÙΰªHƒ¹Uù!ˆ+W4Jb9$Â%i‰ã5Ùf†–¢ KŽŒÚÉñŒOUȤ‡tJ7U‰©ÊUUé³:ÕÕ‡}ÔÏ€s.—HÝ.?Ú’-2GGTIðsÂažL‡ý >nM#Ú EB›©3ˆ<ÔD<@D¸ü@s1.°›â)®µhNÖ·úâÕùz¨©)$|TßØXÏnn¨«Ûàtü½1_ ;í¤Çβ×\…;r70Å­¥±FÄ´$$œÏßKS&;ýÝ=ÞÕ¾ñÛÉïÆêvý‰ªžön~”òŸ¯;uœçIoâ{ÙQ9Íò ããFûGûµ\ ‡¬¦Èѽ÷¡‰(ØãÍ Ò]|ì?†+ObTSaž—Ÿô0OzËÃáÓQ˾ð°ô·i&ÖtÙõr0C“<Ì!Èú=Ì“>ãaðë±}ìaé¯B‡…Õ‹Yä1æho·¶ƒÆ8UŒz¡Ö`PMÉ£@x1z“¦àVšLT\]?iœé'leW2i4)F…ÞYšÙMÜ=.çÅw˜$ªPf<'+‡ÉÄ$iò®ÅÉbŸÉ$‹JÞ1ªPVia6?›“¶èR<‘èU$Í(ç ÒPL6 + åœY‰Iý…‚”v¦•¥´Y6g+f6ÖïÑŒ!kØRÖ t«P0'çòÖŒ"í3+fAÕ(@Ç©’ŽQEÊlòî&åñ‰±Éby!NØYÜ4ŽQJ-isúXÁ˜}Çÿ§ÆÑån•JeÜ¢¥«îA<ïŠ÷¨û­Ššè}*~õ0®¼áü‡ýË… +‹mbk°™oÔŠéšá¶$?<¼©ö N]âwØ~p® +endstream +endobj +332 0 obj +1292 +endobj +331 0 obj +<< /Length 333 0 R /Filter /FlateDecode >> +stream +xœk…… +endstream +endobj +333 0 obj +9 +endobj +334 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAB+mwb_cmsy10 + /Encoding /Identity-H + /ToUnicode 335 0 R + /DescendantFonts [336 0 R] +>> +endobj +336 0 obj +<< /Type /Font +/BaseFont /EAAAAB+mwb_cmsy10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 329 0 R +/DW 0 +/W [ 0 [750 776 ] ] +>> +endobj +335 0 obj +<< /Length 337 0 R /Filter /FlateDecode >> +stream +xœ]PËjÃ0¼û+ö˜‚l÷ Á¡àCÔíÈÒÊÔ’XËÿ}¥µq zÌîÌ0¬h»[çlñE^õÁX§ g¿Bp´®¨jÐVÅñ­& +‘Äý:Gœ:g<¼n,½„ ¾ÓgŽ´Âéªý€/ Ñäþ'i$ëF8ý¶ýÑí—þpB¡ä:ͯhßeø‚`Ÿs§ÉÆõœäÆÏjÆÕ–Ays +Iº‹K™ªË[ª&»?ÍëM5u—t°Mª†Q•PYÖkwVvÉÛ8"ª…(¥ãep¬È:<¶|È*>ÿŒÙ} +endstream +endobj +337 0 obj +234 +endobj +338 0 obj +<< + /Type /FontDescriptor + /FontName /EAAAAC+mwa_cmmi10 + /FontBBox [-34 -250 1047 750] + /Flags 33 + /CapHeight 683 + /Ascent 750 + /Descent -250 + /ItalicAngle 0 + /StemV 0 + /MissingWidth 500 + /FontFile2 339 0 R + /CIDSet 340 0 R +>> +endobj +339 0 obj +<< + /Length1 2824 + /Length 341 0 R + /Filter /FlateDecode +>> +stream +xœV}L[×?÷}ÙÛàO Í3æËØÏÆÆ@ŒÍWøÈMR“Fƒ vf°ƒ ²e‰(j‹’•ôCY4M[´EÚ2=ДFie‹¢­Óªªê¤­Ú¦®Û¤)ûgë¤tkÍÎ{8‘º®[¯}ßýsï9÷wî=÷ÝÔphì}Öã3ôêÓŠÔ›á§K!þ±Œ§'&)ÝÏ"ˆÿ‚õ·Éùñ3{€þ5Öt<‰NìíÉ¢ý´iˆ£BsŸyeì‡òøäÌIÃyåÇ(“©1ô•wmo£l™ŒœLÃC¸ T£ÌOE&cï² €º”Nef6Oƒ@uOêOOÇÒ‡Rö ÊD¹8P‚¶ƒÃÙ#ÙÌæ{èù½ÂαWI!aàCxîÂ5ø6\Ëð*¬Â7á<,Á×aÆ! +G`ö@/ô@Z¡¡êÀÛ•*ÅGŠbî=îw…}Ì>bþ˾ÃÞ`žeO±'Ø}¬–ù3óæ3Bgéè‡ôÛô]z…>FSs”‡ª"wÉ*i&¥°,>@oÁÏáÜG>·áÜ„°?†!»ïÃUøNŽãë2Ë ÈrÎÁ‹ÈuÎÂ×àÌà ÈÀq™ù #ó}ÐÌ» Ù·=åocu³ÉhÐë + ´u¾*O©àX†¦¸ÖqßCüòè²=8~Hp­×„œÁ.j’›¹U5C" þ‡Jp9ñ/R5‚këAFE°×]ä»øx$*ÒØò"²GøèZ °| lò¶mCûÂ`*ø®¸¨¨èŒˆ°?l³ŠlhÇ5z6l÷Ø?¶zì8·ó‹½G¢_8’­¶m|θícY¥Ó5 ®ŸbØ@p$’Ë"Š$F:F‚‚«“i{pPlh6d-Û±CdìA‹˜/ÅŠÞ, 1áeÞb»±Å.«Ø34$²ö º ö`B¤ìAQ]c\|g¼CpÝ°›÷‚Hb]Ç‚ÔòüE/í"‰»pÁÂb`dHšOpaWHBº^\nÁõ@pµ‰Æ¶JÏb?žB¬#˜ñQ 0€Š²ñT+À½FÀÓ²®`ÿê[ãØß·¬ÓBX£%5+©×ÜÊ'-+â:MWaÓÙ:(>[N^ÏÆÙƒÿüaó6ÎDÁžÍ ¦Š='¬ žJ;ÕXš§"…ŠQºˆ›8Hi5ä•((ƬöWZ-: §·ÒÀ’öÚéls:kÙ²Êz¿¾¡Îg.244úíeõ»¨º +Ÿ‰p&c¯¡±¡™øÌ&-±—UVqU’¢ÞàF‰Sp”Éh&ѳ¯¼ôp©%bÍ(©%Q䫈±8û¾¶9*bÔÅJUùÁ‘Îcš{W|TZ=ØÑ9ç¨ÞÝZti‘”¼ÚAÞ²mV¶Dk.ù×xY ü½¯¨µÜ…ëûC—R}Gî÷Ä fÿ´·û¸óáÍ ú8}ß4j·—P¦¼‡RJGYp& 4SH*õy¥äL~e![F&ôL!Gy¤ ½ Gí&¹°MF-qJÑšåpeBKˆoŽ"E|etu`õ“‹áÅÛ.p¶‡>ìæT*Ó—ÍnÎýòjM¨ü¹•ÃEã×G^&äòóg3Ö…çž_NqE*%“˜§læ¡áʦg†_“2„@& ô +P†@¾†ëUîˆÉyÁí®5øÉ.‚Öq”ŽL=F–ôI‹‚KÒèßEpsýòÖ:IYë i1hyq±ßðDG6=()=ä$y¿¼Ýbö'ŠEg{)¾;¦Ë ”™w¶/ŽQ4YUøJ‹+¨KÚæ`ûVz˜á`û„ÞóÕÎÙo|:=ÐWÛúƒ [¸3Ò[YS|mêX}Çðw• +jÐZÅ—¨™O×[«¶Ò$|z¼»µ¥ç,|¦æ rX— æLöÈV˼ã”S(Ÿ…ÿQ˜Y§Ù«Ù#€µµ_9¿[Õrg:ZÐò¼‡>g¼y+ ÊQN‚J4&OìÐ_¤ÂþEåèSO +K=‚Æ{è›p˜È0«x[H£X÷È™¯FBfD·ñvÙ*Z¼£žø: +÷žÎ§" 9L‚ìÏaõ©f_Ìa4äæPÿ;I˜<”îÊV&`$|S %í9L£~(‡Ä 9ÌB ùVs¨!HAïÉiHÀÄax¨F­[/4áÏ.ÄAˆàMš€$â>pãs5I´Ì U fe];j¤ƒO½ed)†m ç˜ÅgGÖ¢oŸì³ç—<ñx'§`*g!±’<ÅpgЗÔ#±è—gŠa€Ön¼‰SéùéÄD|†¯9xoS“ßÅ#™D’ïsó‘ä|&›uóíÉ$?( Ëðƒ±Llz6u×z}ÁH_j Âw¥¦°#”J&cc3‰Ô”‹ïÍÆ’B'˜„9dwyLâ/¼kQ99:69™ð"–‚›ÀÏŒ$›F16q"™þ†ÿw¾u°zä¥ð“+…¡ ò†€×íõx}žԬÐäÿ®èÜ98%}þ—õMá ËY[á6ÆÖj +^ÔMåÇëÂL8,hêáüMºe©Ôéø7nØ> +endstream +endobj +341 0 obj +2035 +endobj +340 0 obj +<< /Length 342 0 R /Filter /FlateDecode >> +stream +xœk```df #† +endstream +endobj +342 0 obj +17 +endobj +343 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAC+mwa_cmmi10 + /Encoding /Identity-H + /ToUnicode 344 0 R + /DescendantFonts [345 0 R] +>> +endobj +345 0 obj +<< /Type /Font +/BaseFont /EAAAAC+mwa_cmmi10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 338 0 R +/DW 0 +/W [ 0 [365 520 464 500 571 ] ] +>> +endobj +344 0 obj +<< /Length 346 0 R /Filter /FlateDecode >> +stream +xœ]QËnÄ ¼ç+|Ü=¬ÈcÛ^V‘VYUÊ¡5í0)RˆCþ¾à¤Y©–°3c°aM{kÀÞ½PÚH“½@èqÐ&+JZ„ ‘#w‹ân™Ž­Qª•%g·1ØGÜLÁ/p¸JÛã$ª”ó½6¾šnÏv³s?8¢ S¤Èšî^ùˆÀ¨Î©•‘¤ÃrŠò;ãsq%áb}ƒ°'ÇznÌ.y´.ÏÑêTýßyµªz%¾¹ßÙ*ZM¨Š(z¹¢3¡§ª´iŠ¿ +÷ ¢å%…ÇóÆ^ÏÓÒ(÷þÄì}l&I=¥n´ÁýKœuIEëÎ2C +endstream +endobj +346 0 obj +258 +endobj +319 0 obj +<< /Type /Pages +/Count 1 +/Kids [317 0 R ] >> +endobj +347 0 obj +<< + /Type /Catalog + /Pages 319 0 R + /Lang (x-unknown) +>> +endobj +318 0 obj +<< + /Font << + /F404 325 0 R + /F406 334 0 R + /F407 343 0 R +>> + /ProcSet [/PDF /ImageB /ImageC /Text] + /ExtGState << + /GS1 2 0 R + /GS2 3 0 R + /GS3 4 0 R + /GS4 5 0 R + /GS5 6 0 R + /GS6 7 0 R + /GS7 8 0 R + /GS8 9 0 R + /GS9 10 0 R + /GS10 11 0 R + /GS11 12 0 R + /GS12 13 0 R + /GS13 14 0 R + /GS14 15 0 R + /GS15 16 0 R + /GS16 17 0 R + /GS17 18 0 R + /GS18 19 0 R + /GS19 20 0 R + /GS20 21 0 R + /GS21 22 0 R + /GS22 23 0 R + /GS23 24 0 R + /GS24 25 0 R + /GS25 26 0 R + /GS26 27 0 R + /GS27 28 0 R + /GS28 29 0 R + /GS29 30 0 R + /GS30 31 0 R + /GS31 32 0 R + /GS32 33 0 R + /GS33 34 0 R + /GS34 35 0 R + /GS35 36 0 R + /GS36 37 0 R + /GS37 38 0 R + /GS38 39 0 R + /GS39 40 0 R + /GS40 41 0 R + /GS41 42 0 R + /GS42 43 0 R + /GS43 44 0 R + /GS44 45 0 R + /GS45 46 0 R + /GS46 47 0 R + /GS47 48 0 R + /GS48 49 0 R + /GS49 50 0 R + /GS50 51 0 R + /GS51 52 0 R + /GS52 53 0 R + /GS53 54 0 R + /GS54 55 0 R + /GS55 56 0 R + /GS56 57 0 R + /GS57 58 0 R + /GS58 59 0 R + /GS59 60 0 R + /GS60 61 0 R + /GS61 62 0 R + /GS62 63 0 R + /GS63 64 0 R + /GS64 65 0 R + /GS65 66 0 R + /GS66 67 0 R + /GS67 68 0 R + /GS68 69 0 R + /GS69 70 0 R + /GS70 71 0 R + /GS71 72 0 R + /GS72 73 0 R + /GS73 74 0 R + /GS74 75 0 R + /GS75 76 0 R + /GS76 77 0 R + /GS77 78 0 R + /GS78 79 0 R + /GS79 80 0 R + /GS80 81 0 R + /GS81 82 0 R + /GS82 83 0 R + /GS83 84 0 R + /GS84 85 0 R + /GS85 86 0 R + /GS86 87 0 R + /GS87 88 0 R + /GS88 89 0 R + /GS89 90 0 R + /GS90 91 0 R + /GS91 92 0 R + /GS92 93 0 R + /GS93 94 0 R + /GS94 95 0 R + /GS95 96 0 R + /GS96 97 0 R + /GS97 98 0 R + /GS98 99 0 R + /GS99 100 0 R + /GS100 101 0 R + /GS101 102 0 R + /GS102 103 0 R + /GS103 104 0 R + /GS104 105 0 R + /GS105 106 0 R + /GS106 107 0 R + /GS107 108 0 R + /GS108 109 0 R + /GS109 110 0 R + /GS110 111 0 R + /GS111 112 0 R + /GS112 113 0 R + /GS113 114 0 R + /GS114 115 0 R + /GS115 116 0 R + /GS116 117 0 R + /GS117 118 0 R + /GS118 119 0 R + /GS119 120 0 R + /GS120 121 0 R + /GS121 122 0 R + /GS122 123 0 R + /GS123 124 0 R + /GS124 125 0 R + /GS125 126 0 R + /GS126 127 0 R + /GS127 128 0 R + /GS128 129 0 R + /GS129 130 0 R + /GS130 131 0 R + /GS131 132 0 R + /GS132 133 0 R + /GS133 134 0 R + /GS134 135 0 R + /GS135 136 0 R + /GS136 137 0 R + /GS137 138 0 R + /GS138 139 0 R + /GS139 140 0 R + /GS140 141 0 R + /GS141 142 0 R + /GS142 143 0 R + /GS143 144 0 R + /GS144 145 0 R + /GS145 146 0 R + /GS146 147 0 R + /GS147 148 0 R + /GS148 149 0 R + /GS149 150 0 R + /GS150 151 0 R + /GS151 152 0 R + /GS152 153 0 R + /GS153 154 0 R + /GS154 155 0 R + /GS155 156 0 R + /GS156 157 0 R + /GS157 158 0 R + /GS158 159 0 R + /GS159 160 0 R + /GS160 161 0 R + /GS161 162 0 R + /GS162 163 0 R + /GS163 164 0 R + /GS164 165 0 R + /GS165 166 0 R + /GS166 167 0 R + /GS167 168 0 R + /GS168 169 0 R + /GS169 170 0 R + /GS170 171 0 R + /GS171 172 0 R + /GS172 173 0 R + /GS173 174 0 R + /GS174 175 0 R + /GS175 176 0 R + /GS176 177 0 R + /GS177 178 0 R + /GS178 179 0 R + /GS179 180 0 R + /GS180 181 0 R + /GS181 182 0 R + /GS182 183 0 R + /GS183 184 0 R + /GS184 185 0 R + /GS185 186 0 R + /GS186 187 0 R + /GS187 188 0 R + /GS188 189 0 R + /GS189 190 0 R + /GS190 191 0 R + /GS191 192 0 R + /GS192 193 0 R + /GS193 194 0 R + /GS194 195 0 R + /GS195 196 0 R + /GS196 197 0 R + /GS197 198 0 R + /GS198 199 0 R + /GS199 200 0 R + /GS200 201 0 R + /GS201 202 0 R + /GS202 203 0 R + /GS203 204 0 R + /GS204 205 0 R + /GS205 206 0 R + /GS206 207 0 R + /GS207 208 0 R + /GS208 209 0 R + /GS209 210 0 R + /GS210 211 0 R + /GS211 212 0 R + /GS212 213 0 R + /GS213 214 0 R + /GS214 215 0 R + /GS215 216 0 R + /GS216 217 0 R + /GS217 218 0 R + /GS218 219 0 R + /GS219 220 0 R + /GS220 221 0 R + /GS221 222 0 R + /GS222 223 0 R + /GS223 224 0 R + /GS224 225 0 R + /GS225 226 0 R + /GS226 227 0 R + /GS227 228 0 R + /GS228 229 0 R + /GS229 230 0 R + /GS230 231 0 R + /GS231 232 0 R + /GS232 233 0 R + /GS233 234 0 R + /GS234 235 0 R + /GS235 236 0 R + /GS236 237 0 R + /GS237 238 0 R + /GS238 239 0 R + /GS239 240 0 R + /GS240 241 0 R + /GS241 242 0 R + /GS242 243 0 R + /GS243 244 0 R + /GS244 245 0 R + /GS245 246 0 R + /GS246 247 0 R + /GS247 248 0 R + /GS248 249 0 R + /GS249 250 0 R + /GS250 251 0 R + /GS251 252 0 R + /GS252 253 0 R + /GS253 254 0 R + /GS254 255 0 R + /GS255 256 0 R + /GS256 257 0 R + /GS257 258 0 R + /GS258 259 0 R + /GS259 260 0 R + /GS260 261 0 R + /GS261 262 0 R + /GS262 263 0 R + /GS263 264 0 R + /GS264 265 0 R + /GS265 266 0 R + /GS266 267 0 R + /GS267 268 0 R + /GS268 269 0 R + /GS269 270 0 R + /GS270 271 0 R + /GS271 272 0 R + /GS272 273 0 R + /GS273 274 0 R + /GS274 275 0 R + /GS275 276 0 R + /GS276 277 0 R + /GS277 278 0 R + /GS278 279 0 R + /GS279 280 0 R + /GS280 281 0 R + /GS281 282 0 R + /GS282 283 0 R + /GS283 284 0 R + /GS284 285 0 R + /GS285 286 0 R + /GS286 287 0 R + /GS287 288 0 R + /GS288 289 0 R + /GS289 290 0 R + /GS290 291 0 R + /GS291 292 0 R + /GS292 293 0 R + /GS293 294 0 R + /GS294 295 0 R + /GS295 296 0 R + /GS296 297 0 R + /GS297 298 0 R + /GS298 299 0 R + /GS299 300 0 R + /GS300 301 0 R + /GS301 302 0 R + /GS302 303 0 R + /GS303 304 0 R + /GS304 305 0 R + /GS305 306 0 R + /GS306 307 0 R + /GS307 308 0 R + /GS308 309 0 R + /GS309 310 0 R + /GS310 311 0 R + /GS311 312 0 R + /GS312 313 0 R +>> +>> +endobj +xref +0 348 +0000000000 65535 f +0000000015 00000 n +0000000145 00000 n +0000000197 00000 n +0000000249 00000 n +0000000301 00000 n +0000000353 00000 n +0000000405 00000 n +0000000457 00000 n +0000000509 00000 n +0000000561 00000 n +0000000614 00000 n +0000000668 00000 n +0000000721 00000 n +0000000774 00000 n +0000000827 00000 n +0000000880 00000 n +0000000933 00000 n +0000000986 00000 n +0000001039 00000 n +0000001092 00000 n +0000001145 00000 n +0000001198 00000 n +0000001251 00000 n +0000001304 00000 n +0000001357 00000 n +0000001410 00000 n +0000001463 00000 n +0000001516 00000 n +0000001569 00000 n +0000001622 00000 n +0000001675 00000 n +0000001728 00000 n +0000001781 00000 n +0000001834 00000 n +0000001887 00000 n +0000001940 00000 n +0000001993 00000 n +0000002046 00000 n +0000002099 00000 n +0000002152 00000 n +0000002205 00000 n +0000002258 00000 n +0000002311 00000 n +0000002364 00000 n +0000002417 00000 n +0000002470 00000 n +0000002523 00000 n +0000002576 00000 n +0000002629 00000 n +0000002682 00000 n +0000002735 00000 n +0000002789 00000 n +0000002843 00000 n +0000002897 00000 n +0000002950 00000 n +0000003003 00000 n +0000003056 00000 n +0000003109 00000 n +0000003162 00000 n +0000003215 00000 n +0000003268 00000 n +0000003321 00000 n +0000003374 00000 n +0000003428 00000 n +0000003481 00000 n +0000003534 00000 n +0000003587 00000 n +0000003640 00000 n +0000003693 00000 n +0000003746 00000 n +0000003799 00000 n +0000003852 00000 n +0000003905 00000 n +0000003958 00000 n +0000004011 00000 n +0000004064 00000 n +0000004117 00000 n +0000004170 00000 n +0000004223 00000 n +0000004276 00000 n +0000004329 00000 n +0000004382 00000 n +0000004435 00000 n +0000004488 00000 n +0000004541 00000 n +0000004594 00000 n +0000004647 00000 n +0000004700 00000 n +0000004753 00000 n +0000004806 00000 n +0000004859 00000 n +0000004912 00000 n +0000004965 00000 n +0000005018 00000 n +0000005071 00000 n +0000005124 00000 n +0000005177 00000 n +0000005230 00000 n +0000005283 00000 n +0000005336 00000 n +0000005390 00000 n +0000005444 00000 n +0000005498 00000 n +0000005553 00000 n +0000005608 00000 n +0000005663 00000 n +0000005717 00000 n +0000005771 00000 n +0000005825 00000 n +0000005879 00000 n +0000005933 00000 n +0000005987 00000 n +0000006041 00000 n +0000006095 00000 n +0000006149 00000 n +0000006204 00000 n +0000006258 00000 n +0000006312 00000 n +0000006366 00000 n +0000006420 00000 n +0000006474 00000 n +0000006528 00000 n +0000006582 00000 n +0000006636 00000 n +0000006690 00000 n +0000006744 00000 n +0000006798 00000 n +0000006852 00000 n +0000006906 00000 n +0000006960 00000 n +0000007014 00000 n +0000007068 00000 n +0000007122 00000 n +0000007176 00000 n +0000007230 00000 n +0000007284 00000 n +0000007338 00000 n +0000007392 00000 n +0000007446 00000 n +0000007500 00000 n +0000007554 00000 n +0000007608 00000 n +0000007662 00000 n +0000007716 00000 n +0000007770 00000 n +0000007824 00000 n +0000007878 00000 n +0000007932 00000 n +0000007986 00000 n +0000008040 00000 n +0000008094 00000 n +0000008148 00000 n +0000008202 00000 n +0000008256 00000 n +0000008310 00000 n +0000008365 00000 n +0000008420 00000 n +0000008475 00000 n +0000008529 00000 n +0000008583 00000 n +0000008637 00000 n +0000008691 00000 n +0000008745 00000 n +0000008799 00000 n +0000008854 00000 n +0000008909 00000 n +0000008964 00000 n +0000009019 00000 n +0000009073 00000 n +0000009127 00000 n +0000009181 00000 n +0000009235 00000 n +0000009289 00000 n +0000009343 00000 n +0000009397 00000 n +0000009451 00000 n +0000009505 00000 n +0000009559 00000 n +0000009613 00000 n +0000009667 00000 n +0000009721 00000 n +0000009775 00000 n +0000009829 00000 n +0000009883 00000 n +0000009937 00000 n +0000009991 00000 n +0000010045 00000 n +0000010099 00000 n +0000010153 00000 n +0000010207 00000 n +0000010261 00000 n +0000010315 00000 n +0000010369 00000 n +0000010423 00000 n +0000010477 00000 n +0000010531 00000 n +0000010585 00000 n +0000010639 00000 n +0000010693 00000 n +0000010747 00000 n +0000010801 00000 n +0000010855 00000 n +0000010909 00000 n +0000010963 00000 n +0000011017 00000 n +0000011071 00000 n +0000011125 00000 n +0000011180 00000 n +0000011235 00000 n +0000011290 00000 n +0000011344 00000 n +0000011398 00000 n +0000011452 00000 n +0000011506 00000 n +0000011560 00000 n +0000011614 00000 n +0000011669 00000 n +0000011724 00000 n +0000011779 00000 n +0000011834 00000 n +0000011888 00000 n +0000011942 00000 n +0000011996 00000 n +0000012050 00000 n +0000012104 00000 n +0000012158 00000 n +0000012212 00000 n +0000012266 00000 n +0000012320 00000 n +0000012374 00000 n +0000012428 00000 n +0000012482 00000 n +0000012536 00000 n +0000012590 00000 n +0000012644 00000 n +0000012698 00000 n +0000012752 00000 n +0000012806 00000 n +0000012860 00000 n +0000012914 00000 n +0000012968 00000 n +0000013022 00000 n +0000013076 00000 n +0000013130 00000 n +0000013184 00000 n +0000013238 00000 n +0000013292 00000 n +0000013346 00000 n +0000013400 00000 n +0000013454 00000 n +0000013508 00000 n +0000013562 00000 n +0000013616 00000 n +0000013670 00000 n +0000013724 00000 n +0000013778 00000 n +0000013832 00000 n +0000013886 00000 n +0000013940 00000 n +0000013995 00000 n +0000014050 00000 n +0000014105 00000 n +0000014159 00000 n +0000014213 00000 n +0000014267 00000 n +0000014321 00000 n +0000014375 00000 n +0000014429 00000 n +0000014484 00000 n +0000014539 00000 n +0000014594 00000 n +0000014649 00000 n +0000014703 00000 n +0000014757 00000 n +0000014811 00000 n +0000014865 00000 n +0000014919 00000 n +0000014973 00000 n +0000015027 00000 n +0000015081 00000 n +0000015135 00000 n +0000015189 00000 n +0000015243 00000 n +0000015297 00000 n +0000015351 00000 n +0000015405 00000 n +0000015459 00000 n +0000015513 00000 n +0000015567 00000 n +0000015621 00000 n +0000015675 00000 n +0000015729 00000 n +0000015783 00000 n +0000015837 00000 n +0000015891 00000 n +0000015945 00000 n +0000015999 00000 n +0000016053 00000 n +0000016107 00000 n +0000016161 00000 n +0000016215 00000 n +0000016269 00000 n +0000016323 00000 n +0000016377 00000 n +0000016431 00000 n +0000016485 00000 n +0000016539 00000 n +0000016593 00000 n +0000016647 00000 n +0000016701 00000 n +0000016755 00000 n +0000016810 00000 n +0000016865 00000 n +0000016920 00000 n +0000100141 00000 n +0000100164 00000 n +0000100191 00000 n +0000114171 00000 n +0000114032 00000 n +0000100389 00000 n +0000100644 00000 n +0000107098 00000 n +0000107076 00000 n +0000107196 00000 n +0000107216 00000 n +0000107753 00000 n +0000107375 00000 n +0000108231 00000 n +0000108252 00000 n +0000108504 00000 n +0000109916 00000 n +0000109894 00000 n +0000110003 00000 n +0000110022 00000 n +0000110413 00000 n +0000110182 00000 n +0000110725 00000 n +0000110746 00000 n +0000111002 00000 n +0000113157 00000 n +0000113135 00000 n +0000113252 00000 n +0000113272 00000 n +0000113675 00000 n +0000113432 00000 n +0000114011 00000 n +0000114094 00000 n +trailer +<< + /Root 347 0 R + /Info 1 0 R + /ID [<6DE29649CDC648C286356C637C30190C> <6DE29649CDC648C286356C637C30190C>] + /Size 348 +>> +startxref +119405 +%%EOF diff --git a/figs/test_nhexa_comp_simscape_de_all_flex.png b/figs/test_nhexa_comp_simscape_de_all_flex.png new file mode 100644 index 0000000..64eb84b Binary files /dev/null and b/figs/test_nhexa_comp_simscape_de_all_flex.png differ diff --git a/figs/test_nhexa_comp_simscape_de_all_high_mass.pdf b/figs/test_nhexa_comp_simscape_de_all_high_mass.pdf new file mode 100644 index 0000000..fba0367 --- /dev/null +++ b/figs/test_nhexa_comp_simscape_de_all_high_mass.pdf @@ -0,0 +1,3400 @@ +%PDF-1.4 +%ª«¬­ +1 0 obj +<< +/Producer (Apache FOP Version 2.4.0-SNAPSHOT: PDFDocumentGraphics2D) +/CreationDate (D:20241029115127+01'00') +>> +endobj +2 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +3 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +4 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +5 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +6 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +7 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +8 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +9 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +10 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +11 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +12 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +13 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +14 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +15 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +16 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +17 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +18 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +19 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +20 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +21 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +22 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +23 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +24 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +25 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +26 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +27 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +28 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +29 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +30 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +31 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +32 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +33 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +34 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +35 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +36 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +37 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +38 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +39 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +40 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +41 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +42 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +43 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +44 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +45 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +46 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +47 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +48 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +49 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +50 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +51 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +52 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +53 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +54 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +55 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +56 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +57 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +58 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +59 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +60 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +61 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +62 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +63 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +64 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +65 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +66 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +67 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +68 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +69 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +70 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +71 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +72 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +73 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +74 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +75 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +76 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +77 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +78 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +79 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +80 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +81 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +82 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +83 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +84 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +85 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +86 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +87 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +88 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +89 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +90 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +91 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +92 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +93 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +94 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +95 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +96 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +97 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +98 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +99 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +100 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +101 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +102 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +103 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +104 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +105 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +106 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +107 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +108 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +109 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +110 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +111 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +112 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +113 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +114 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +115 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +116 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +117 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +118 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +119 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +120 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +121 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +122 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +123 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +124 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +125 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +126 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +127 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +128 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +129 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +130 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +131 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +132 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +133 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +134 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +135 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +136 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +137 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +138 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +139 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +140 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +141 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +142 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +143 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +144 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +145 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +146 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +147 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +148 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +149 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +150 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +151 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +152 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +153 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +154 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +155 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +156 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +157 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +158 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +159 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +160 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +161 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +162 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +163 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +164 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +165 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +166 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +167 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +168 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +169 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +170 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +171 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +172 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +173 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +174 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +175 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +176 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +177 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +178 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +179 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +180 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +181 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +182 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +183 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +184 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +185 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +186 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +187 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +188 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +189 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +190 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +191 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +192 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +193 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +194 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +195 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +196 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +197 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +198 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +199 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +200 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +201 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +202 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +203 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +204 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +205 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +206 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +207 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +208 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +209 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +210 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +211 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +212 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +213 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +214 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +215 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +216 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +217 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +218 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +219 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +220 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +221 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +222 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +223 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +224 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +225 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +226 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +227 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +228 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +229 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +230 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +231 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +232 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +233 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +234 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +235 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +236 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +237 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +238 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +239 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +240 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +241 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +242 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +243 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +244 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +245 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +246 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +247 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +248 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +249 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +250 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +251 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +252 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +253 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +254 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +255 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +256 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +257 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +258 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +259 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +260 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +261 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +262 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +263 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +264 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +265 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +266 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +267 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +268 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +269 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +270 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +271 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +272 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +273 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +274 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +275 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +276 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +277 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +278 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +279 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +280 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +281 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +282 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +283 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +284 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +285 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +286 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +287 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +288 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +289 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +290 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +291 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +292 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +293 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +294 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +295 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +296 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +297 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +298 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +299 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +300 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +301 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +302 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +303 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +304 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +305 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +306 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +307 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +308 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +309 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +310 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +311 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +312 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +313 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +314 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +315 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +316 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +317 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +318 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +319 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +320 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +321 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +322 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +323 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +324 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +325 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +326 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +327 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +328 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +329 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +330 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +331 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +332 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +333 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +334 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +335 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +336 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +337 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +338 0 obj +<< /Length 339 0 R /Filter /FlateDecode >> +stream +xœ¼½ÉŽ$[r¦¹§ð ñÌP( ÙM P‹næŽàª +d¡¹ jѯßÿ'"j®fá}ÃÔ3ŒI€7ÂþP=“™å?~ä¤ÿûþSFùøïù‘n¹tûõóOúù?~Tûcýø›u›£Î¾Gv(üûôñ?r5•¿ühzú³ý)é¿`ü÷þø·ÿ÷½ìoÿñŸõ¾ÿÍgèÿ¨ÿûÉõ_ÿýíŸ~”ÿõ#ߪýïãÿõÿö#}Ks¶ºjOxø ÊÿüKºå2Ý’úmÏ^g©9è>üôÝzn-·ÜÛšcÞéžzn»N·—[¹¬ÕŽy~øé5ºý:]³—Uú®ÝóO¯Ñ×é®zK+Ͷû}žÏ?½Fw^§»ûM Zkªå {þé5ºë2ÝÊæí\ǹÍGúœïÓ//¾Î•œp¾íµÆœ{Ý)Ÿ~zI®øg‚t›·±Fê©Ý}þé%ÒßàMFºŠé¯­ÓtßdçŸ^"ý=îTZºI„i)Nøù§—H_—¨Œt·Y“¶Tº“>ÿôéëB•‘Î놤:{»­óO/‘þ&/K:Hc”½?IŸz‰ô÷xYÞ’áêè#¥c›=üôéïñ²¼Ëm¥Ur)ëNúôÓK¤¿ÇËòÒž±Õ>G}þé%ÒßãfYÂkËc´|çà?½¤­|›å¹Åº¶6ó¸Oøù§—H›å9n-•$±ý>áçŸ^"ý=n&ì–sË+÷ƒ‡?üôéïq³ÜÊmnÍo*÷QŸz‰ô÷¸Y®í†:$¿¤Ï?½Dú{ÜLŠ(2àÒ¶¾úüÓK¤¿ÉÍŠNR“d áNúôÓK¤¿ÉÍò–ä<%Ô;éóO/‘þ&7“ÐÝJʵ÷;åÏ_^"üM^–Ë-W©ÿ©ʧŸ^²€|“—%ÍíÎs¥´ÒçŸ^"ý=^¶ömµ6g©ÇÉ:ÿòáïq2éã½Ì¶Öÿòáïq±Ñneì–v>.¬ó//þëÚJ+éàêW'|þå%Âßã`º™Öœ«å}œ¨ó//þÿ’F•{’ ï#>ýòáïq/éSkÔ¼ö º§^"û=ÞÕÚm—Rw=vÖ釗,¨ßÔ(ûMꄤë4ïºìç//þ¦¦ƒÓWšÒï¢Èç//þ×7 óµ—ûåtúá%²ßãYé’í«_µ}}ZñSÛKdú7ÈäY1ïç=î7Ýé——ÈŽoý«Hz¤S~i¦ütWý¾7§×m¬—¿×Nî^-SJåýE¿2ª¾…è1[6¾[ï{ïùŠµå;cJÏ#zÁÇuª)‰åhÊrùìþηý•³ó=Dáé|Ñ_¸9ßCô>Î÷ý…ƒó=DáÝ| Ñ_¹6ßCôüô=DÿЙú’¿r¤¾‡è/œ¨ï!úà@}s?݇ù†E!ÍÝï\éùâøýôžâažîŒ7Ð{Œƒyº.Þ@ï1þåé¦x½Ç¸—§Kâ ôã]žî‡7Ð{Œsyº~?½§ø–§[á ôþP}½‡@šÇ»à÷S{ +ŸyºÞ@ï1jæéx½PîM5þý¼ùjàÌ·.­÷h¤;©þ¢Aâ‰gĉÔ%cÄ’Oö‡Å7"NËÓOúõïœÆŸM9¤Þ1?™q(¾Õž“Ӽͩ[sýöÝøSì׉ֵ °+DŸ£¾ÎD/…]!úïu&z)ðë +ѧH¯3Í+!_—H>Åx=мìu…èst×™è¥0¯KDŸâºˆ^ ðºDô)¢ëè•Ð®+DŸc¹ÎD/u]!úÅu&z)œë +Ñçø­3ÑK\W®äçÈ­Ñk!\—ˆ>Ål=½¼u…ès´Ö™è¥°­KDŸâ´ˆ^ غ$f=Eh‰^ +ÕºDô)6ëè• ­¿B | ùò§@°3ÍKaWˆ>‡€‰^Š»Bô9øëLôRØ¢Ïa_g¢—â¿.} +øz z%òë +ÑçP¯3ÑK1_—ˆ>y=мíu‰äSx×Í+q^Wˆ>v‰^Šðº@ô9¤ëDóRl×’ÏÁ\'’—¢º®| +ã:“¼Ïuäs׉ä¥H® $ŸC·N$/Åp]!ù´u&y%zë +ɧp­3É+q[W 2Z'ŠW"¶¾o:|éâ?às4؃Ö{!,ì’@òö \»Â#ÀÎ<àB(Øe×݉Î{ì¸'Çãï6>Y¸h½ÅÂõE^ã#ÑwX¸¾Èh|$ú ×ϹŒ4ß`áú"‹ñ‰æ,\_ä/>}‡…ë‹ÌÅ'¢o°p}‘³øDô ®/²‰¾ÃÂõEžâ#ÑwX¸¾ÈP|$ú ×¹‰Dßbáú"+ñ‰è,\_ä#>}‡…ë‹LÄ'¢o°p}‘ƒøHô®/²Ÿˆ¾ÁÂõ…¯ï‘æ{|}O®Gšï°p}‘äøHô®/Ò‰¾ÃÂõEbã#ÑwX¸¾Hi|"ú ×ÉŒDßaáú9ñ‰æï·p}‘ÀøDó ®/R‰¾ÃÂõsÒâÍwX¸~NW| ù ×ωŠ$ß`áú9Eñä;,\?''>|‡…ëç´ÄG’o°pýœøHò ®ŸR(¾ÁÂõspÎÁ÷Ä8ý§|´p=i½¿ßÂõs¦ã“<òû-\?å8>ò€ßoáú €<Ñ9,\û-µ2ncÌ?ý›Èñƃd™óVê(m¥ò±%ðŠêßýéG6øoòÇßèd­ž·Øò¸Õ½%·}üé/ÿò_ ò_?þõãOÿôãïÿd£¸ôÚ*~ŸW×éùéµåüZ¾×û7¿^;JT´‹Eñ¦]ÊÿÏçû,}›NNzpðìÏtêÏt^Z^’©î[§á «òG¯Ãêü¹w¬ÒÑû£Õjß\­CÇXR1Þ°Zôú7¬Ö‘{Çjý½?Z­þÅjm¸ã'½¿I·dÿË|0\öôÃÆâ™°`·^nš»¾VÊ?BÎ7ÌYš>>§”µ­Ž?¯áï *)\4×—$ç{H[ÚÚòW4×{h¶u[kíýå8÷›h¦Ûlii#}AóÿxÍZn}—ÑÖW4ÿî=4K¶£šúW4ÿÏ7Í-Ë)nôÉÿë-$u8[’î8¿"ù÷o!)v%6TÖ—èÞB²•[©õ/Gù~0ÆM yϯF™Ó[H.­åÊc}µ}ò—åïØ>©BsÖ¯NI.4ÿ@TO·ÖHokÉåãÿù²¬FûtJ“Ð6{Ÿc}ìzëiW]×G%ûeÍÔÍ`™¥¥ ið3UƒšîqA˜-$é‹­ä^µÿr[[ï.méá½·] .ª:5N *‘&ï¦!ÒÔðî•10a •R«_Ä‘7ÆÚ’j2ãÞ}›3§–uÔ$jnnLÉeÍ=ª#mç,eÐÖìŠTn ¨)o¬†æ©ÏÂ&꼤h!µD]ßž9&v²šõÏ& c›c¥p"ÿŽ¤µkª¹Û~/}Üt¤µü )\ ^4DWŸ°5 ¹ZÅttýbmš¦Cø¡¤ý<µ +6KCBFˆ)^먿¯eç  ±a³—ÍZ=̱¦3Òuä È}Öbo°¤Ð= ¼Q ´KÙœ˜¦­ÔÚºMÖnÕèwµ³ú˜r4Fý>-„X­8 çxÁîµ<ÍæPË'¶ªÏÌÎ[GF–°7â”ÛEÜiuÎXZ—`ã/Ä8&å²²yužz—49m‡j‰é¯Ýv¨Îp‚i¤éÕülm +öšþ˜!úø݆ÞSÙP¢hË´¸Xpövm }»N‰Dtû@˜Ú3×½¡¹0Óæ;ãœÞñgŠ»-3tëM$²¾WÓÖú­ d»NØlS›FÇSlqìj£7ïÔ1ýCûXÛL/©¶i45ú“6¬fm`Ç×›þ)©W#ÉØu3®¥M´¹j›»v+¼O|>¤a‰ e1×–±Òë§n×Õàf×Üh íÞ¤ñfªÁÕÛÅr§´ÎÙêyœÂy +¼Z§X,yj×d¼gšŸÉâκ³9(÷æALãÔ1Ñ~`æ9“ÝY^ŒZl×æ‰?éõ|;u)´ š7«¥Ë¤í=mŠHÒÒL-ÒÛYã©Í`ß^¹†æ=[x‰F¬–?¥¿&ßÖ,WÎK›×.o.u]ÛÂ4µóÄZú4è”Jß»¹€KjþÔ„ÒÉJŠß‹jfü3&O-Ôpæ]¼$kñ Ñ%¤ó¿¹âlê`i7´õ“ðžõ1³Ž`Ÿœ%!´$Þì)QïCg©‹šLP¹·ô¦^`Ç0š9ö¶àŠšu.´#ç(Æß›(K¬°1e±L‰O}h³r(ºdŠdRå¶Óö³ÜzŠÅMâœë!É_;\Ó ÍÆ8˜ »ÃröOÙ¨ýÒˆ,›OWd˜ÞüHãÖÌC3LòrsÙ HÌL7ê¬&fwi¶c;ÃDp§×Æ&g‹qU˜ô`)C}¦‹W«ãÇUv€N#й–X û2µÀ`Y‡‡aÄÍ|‹I¯+Òö ¸…°-¡^;s¦¹•æ%ùB,ߺ„goÃÖDriöø±‚žÛ\\涻0=&%Ö7„ôÉ›ZÙl$Oó´Ú.?ø+Háð+r T$'žCgmâ‡{¦}"¦aÉ@[sùgN˜ÚÄâ ¬!3èd[¬¯î SWå&#ÁŽ‡ý(0 Sâ4’âÁ’õ*þNä ½G¢¦0ñÝC|`]÷y3™Q˜nLÝŒ~ËHßÑ&FJæ¹yã,ÃÁã9MK7ŒXG‰A¶DÒD¯ÂÈ é%8±Í’cÚÓ”—Š +%þ‹^þ‘HdË<ž*°1 \A ©MǸ?'.¯0 Ê‚šÏ³…CŠ%„Aº¤4ùn&U^º¢eé¢õ‰SÓ´K¯Õ{4'bMZ_MõHÇI:ÚpH2µFÇ—`º„IF‘äÉäâ•~¯uV`ÊÚD.[¢êiàúœb˜Ie‹¦7HµwŠ¥m¼Ñ°É͢˃+A˜XžØˆttDÉÁ¤eÒù“bv5mC‹Þ”¢•r°ýs©Ž3Mëïò*ª¥„cý >D#å|Ô˜¯ÍšJ¨gåÄ퉗`?Û˜gLRI)‘ÁÙÑIµG®"0m­¤5/qz Â(ØD0ÑÆ4L²–EÀO>SûR ¹ú(IÜû¶¸Udý‹l–„ºŠ9¦Ìb˜f¬ø)'÷EG~`*Êc’ý*Zp—\\ªcâÃú"Ÿg♥÷êhƒ™t..ãGK˜¦³¶ Ó7¥ ê3B`£2_Ǽ'Yuûš sÙN‚w&C×Ïl~ùJÁȺÄR>˜ôj‰$Áˆ­êm,pÓ×\zw’Üì×ÌàxjÏ.gÄ x5Œ†iZ%µ¹ ƒ¾.N\QúÅ2Ä]u¥}f2!â˜Ôf‰-Ò{`ˆ’ø‘ ³NˆÇ†ivuÇŒj`µ7&«ÀÄ„u-°êb¯ºî2ö¼À$ äKaca[¡`!ÀœÓlZ0íJDI±D:ø•+E@c@ù‘lfß"õJ÷Ò¶z…$I±RPu¬#† †£/ñ»™x1–\ÓPêð½‰ÁX©#âæÍ?ƒDÑ„•éƒë„cdPæ´& ÃØ+M¿£ÎšÎÍt¬aêÇsºf³ŠYº;ô:ií.,K ,´¤çe˜– +“ô S£Î¾?‡\#6éô[c\Ò0qxeŒw SÜu!]nÛž“Î`NÀvÒQ,Å¿dk=&Ig¦a˜Í\ZäVjLߦñð…ø¥«­¯˜¸Ÿïc0©n+ø­ôË[A+ªñNÍ&“˜tüi‚·*B㎠!A´"ÁÌâµÝ&fbXl‰˜šüf ¨o˜-']˜ŽïÀz˜¾² B!í9nÇ4}ä˜dzõ[&‚¯`d`È–øIüÒ*Sl?iÃSÈѦSÓ)Ñ XÆ‘[tø1ëal·7rO¶½ŽçÄ$D"réâL—=ñ@›K¼J\ ¡ +kp»nüL’lä%l˜«s`ÚO\‚^>Hƒ‘+¢rRóVE‡×Ô<0m¬Õèmlz>¼Œ»Q§À?E ¢I7{XÁÌ3¤ —Ü.éß™Úg˜æ .ÞC˜hfœXæÄ›í>t$†¦âÕ‘ÒÒ@»,IÃÜ,ƒX¿6›&dž´µÍÙƒ7™gÕ1RŠÅÁ6&z—þÁt¼6V:Lc\¸òîI{rAg›!yÙ=È@b†þÕ`ºzõ)Ë_©Ó%¶2lèܸøCJ[},Å—ýy›€á³3ݯ¬NždQsZ¶<°Š»mO¯ÜXxÅ)"B]7Ý +rÕåYǦäÈbR‚ÈmÜ®:ŠM˜gI@õô¿MÊlíIf”¨bC`Sí‚4wáicòFý?'¦“L¼ØÕ\Î|šA:y¸g7V “°ä NEÂî(Hâ¥Äs.îÀpU˜%šÇô‰bàÓ©I!XèÉh&›£ ¡ÑÁ$“´Ž ¦S' 7×À$¸M”aaìM •.؃‰1º£Ëüß—šiP ‹¸Ø;‘ *Ìq&±>±-ƒS?ëÔ§˜V‡ÏVh8]³ËWˆÈ&,ïÆZt£˜jP50ŒÓâ¢õ£p«ŠEW÷:i)¥òw¯‰†èFb0îÍ¡˜•[ìÊMÁ:v+Š¡ëRCì'¨uDŠ=(î†ón¶}0ͬ×iæNÛ= j~(^)N61ÚÎ6A©Ù[çIŠXs6P̺,y­6Çš3¤E/0Þؤ +é¶ò§°yâYh|¤®[µf`Ú©K<È©á6“tx<7¥rW©‰öÎþk ŽQƒË¸Û+Å +|:0‰ƃ„é8-1÷µ¬„’Ló:¶Î‚‰Ö$=Oú’k§ê rWZ†q8rj`•‰ô‘odHL%;0,óR¨–aÚ¶ˆ†á[½½³²ÈkûVDÖ›žÑÌ4§ß9ñÑéò´YÙòVÜp ¦gàaÚÚølV`Ú%˜‘ÁŠÅiú;NJ¬¼„hˆ–èP#$Q²)ˆ:1›Øq×0ÁÞ†NLuw‰wª} +F‡\º ¦jÚ%‚Öÿ‚7bÿÕñ+NâÕþe`ð ݇ “ÞðȃÕgv‘²àˆS¼>XÕ,<€‰e[ÐD`¥± Ƕ.ê” é¢wËf×ÖwŽ$äf6eîܼí[ô'5n¦{Ø–¬†ä܃óŽP{'6ê½w.É ÒðÀ&®¹Ç P’ö“mõ¦ÝÆ£º„$LkžÌÂL@ o.g•X©½Ì'\ð}4.Ìú&^Ûk†U]Ú¸Ò «¸S +SúAüøJØ°z~N—°‡ƒ^õ“c¤fe#œÂ,˜¼Ó϶Ë3µ1¾i· ®>) ÅN ã $Üw_ÈÖ-0¬’0ÀsR×r§-˜fó­–¨pýëã±ÊpGsf9g`úæEhAD»³:#¨(àŸŸÂ2tL­;°…Ḇ@`‚mñ]m†xroƶ!h¢ÅsK@R¾u·n=Ær!²„¨wM"ŸÏŽþç̽VÏ,˜¥!…›ËÉ“œ uÌØ+MÒ±ÜTëBaï‘ŽéÂO'”½.6Uç^LB¶jò/!R!»JSm£Nd2/©¡#S=L U»µ–‰/!úAW]p–Š%@×Ìd‹ië‹ôû;å@D$Oûmh}qœô_MÒˆaREÊ¡ +áJpùYixÆP·q‹kxv‚B[¨\ñˆ¢ë„¢”˜2"º36¢¯2âûtµ¬%¹Ï;&e†d·Jó µâI°Ëu-bÀ|÷‘-–‚#SÏÙðRN®{“ʯ1t¼ï¶t.vxè–þ ¨f½t¿˜c„ïg| + O,Þ¶7P!ž}H°{KÚîöÊ?`„˜KÙÁbœšK…„$X¸›í\&¦Æ•À@!#È„Üc + Lbvü´±í¹ûô96»î]BÃÁÊ&À2ÎäÀF¨›^e‰o„›ùsóæ›ÏVt6vi û5!#ÔI£ô´K‰[Î4¹rD2°BÚˆ˜Žk^øŠì•œå†ñ”úö¨†UªÄEÙ1¥÷c“5‹°¸&¶Åg™ƒça50œ.æ®F½]Dê§}Гʕ-F­`‘$C¾ïØ–‚ÊdßÂC®q )¨ XUYׂ0·];"Z†ãºªNÊÆnfôç†Æ&-çxçdûãƒA1Ô­±ºîÞñ‡K¯ˆ2 JnAbÄø™}ÿYˆ´u¿Ïy#ÓÂxL’Y)- Ø)^¥¤v}vlZüí^ö)’ý’vLR ½— `)¥ÅY>b‚*Ø*™ˆcýq´@t9% B#Öj¯4]-Öb¶©=v<Ë,¨Û­M’Éqx¸L|VòIaÙv÷E°ÒtfM?àN\d¼±ÌSI÷ÿU)¢L?‘]ÿ!Cã—)Vãc73Û¥%û‡ì1±€ÉãÅƲ hA0H̵[ %•Ä)6ˆmêþ] ‰K¤†C:”ÝÙA¦ÍÞý©Œ÷Ø ´^2Kì3´<«º×”øSä\FnÐ\&Dx7וAƒ(m“° ?­¨:|‰p·£Ä€'Z(Ñ<ÙÔBSõt#8Ô µk@°…(„õÏó6YÅéµZuˆ—{d[¶-%–)áÈ Íß(ž¥¦=*†Ðr‡’´ +7ÑÍbz†A‰¢;žbJuUëÃJf† +ˆ˜]â ZD²5 +KxBQrHã•æÛVf(žÒ¬Û€¬Ùâ>½‰`“ã"Yn%‹ƒÂ3YbÅ´‘C8ê@$uO„[Lw§Cz!ÌJ>I>½ û£Ë @°S‚= Jfy°mƒÙžh#í)ÂÄ5OZçÑg•øX +90 ñÂk-?p[4›‘Ò…À¶&œÄÏ% Mˆ'ÙN@%o)Ú*é@ G­]7@Z|qëlˆÆ^bu““›B¨H‰üGAÙŸÑ +Í^ýêpo«ADQ¸P¤)ê %ãÞ¸#ý}DçðrŠh‘9ú-ÎwOŒ§‡YÄnêZ8ŸÚ%õDbÚ +hê–®DAINTjñº“,ÅådQc»á)qÛ¡ÂùwNS¬ìö—ÏíÂáa6iNÜë÷&ôK’¾[y‰Ö¥Ú™Ù˜ÄÒqÜ$â©@x»²§yé*ƒ;,žÒ>M.æ ’QR<%–œÜýJ/œ Ó´A©¸ŸH›B7|qˆØøáœ[¬ô©^â)ââFíu²¨–?%Í·z†˜E÷ GþÐаŠÛ€º&>f!/µš­Dò6i!>ƒ|ÝrGPqZŒWs$}Ï“a+'¦àŠq¨âÊIŠ9.v \oÕ™.JG€f "¾=‰_qL§&kƒ8½ä{Æí;Ú‚þTŸ¤Ñy†*¿ÕúŠ§¸XÝþ$ypZþ¸`¤šîKþ¬¸6ö¬îY¸Ûb§t&œ b:D@èþLâÿÆÀçíbÂ4C<¡9܈ó­Ía;»›Tk!À”—Ö¢„\döyyÅ=Ær“=Ë# û¾"²t7‡°•²·Êì$_D´ôL<~³³ƒal_)L^ÚG¹m‡ÌŽ\bb—¸eŠ§pãø-"]›ÜËÜi„À´ÐÀ^—ã!b›s LL$šÅ€I?N=ž"¤,ÓdÒ ¢ŠWÉœ&……=ƒ&ɹ=ŽN°â!Ý(®Œº›#õ¤µ\ݤmO/'bÆeDïx&¡GømÕ0zIáMþ”Ô Îæ°ÅÜS±+Þ-¸²O¢{±hOƒÈðtQ MPv? zwN{<¯øÃŒ§¨YKh²ðý)ô‰üã{"æxX:8y«~Ÿ +sÕinž²ÞÅ­Ý&KX®ö3"¾C¸ôvËáSë=žÊxõ9v|®Äƒ2QÔè8Uk@‹ƒˆëhFâ‹…Ö¾±Æd‡:C¶˜K É]ÙÌ°ž9_(tlÍSn‘.â… ˆÍÍC´*¾¸œOD®…i8IÀ!{4 <£Ã†ŒKÒå¨þÂa®©ÇS†mÎ4 1‡+WVž˜}ë¢,:¦NîþñÉ$¥¤_%]è8é™Èf° Ú"V@X=é ¶ŸÍ(81d;¤»5rÓ uéÒ'j,‹®éÐM²Ü Òîîº"úU I†’UµYŒi@ZÄ ‡ØR±E-.#£?eûiù*rKLô§:¥Æ]‹Âr"RU,[.(«1ùçn„HÓ¡Äù,ÞØ +\Wüöbcx¬–OSó³{@8ÎRõiBÚs ¦„ªâU¡89)3W° ÓXó%ÓÔ棕´2Ä%’?ã‰f²BÕÑ”ee$êVüaìkÑìp„™ºÆX‹ŸFŸrŒHâ?1Z-:!%% ¶$Rƒ2b{HSC²Ê°à ‡´óª„ò äýCŒÛÆ‹;uƒ½Âð¨‹Ê!w%ÛÖ¤BAŽ"Ç@voG…Z¨—̘æ¶> ²KHæ6¨ÖËç–Dmý2 êD[»—hã4\þ”„'lB†AøƒO–ëí+M™) +/}†¸0‰Ù1ëëV#ïؽ‘ÝN2¢¤ÁöxFçÓˆ¹ño“·] ‡© hQu`ø3U +ßð€¢(Å°3‘/@ÒÈ™Éé0KCC&T‚$™|ÔÁŠ×c´ä‡w°°ÐËi52 ÊðÓàW„I2ÂíOeŠ›¹0¿`¢ˆ ÃÊ”ˆjÑ\ZÜó^ÂÑ ‘ÉžiDt)A“$vf"÷¢^ ¢¶ÕpfAq.1!‚Î×ÉH ¥8Y*å\}„±n“¦ÄÆÚ®åQ ßò§0ŸzááæGG$»çé + E$êÞØþÐ á-”A¦¬’ã„8Pœ%¬e "^öÆ*8è0ÖP¯Ù}Ì@‰ü´uÔlÁ6FÎ3Ù‡šå¶š¿HÓ›¢ªÌ²$ìM^«UzéÔ–öš-X¼Ä0ª?„¸'æ]"¤DKá.Ðé^V |”ÊÜbÄ,&€.X1b©G¸UmÄv†í#¶¾g¸ÉIˆ“ú)íÆ"XLŠè†Á b¶i¬IÂÖr(I@Iª/ª×{&)<>½Y”——½@î×"xD2Ñ{Ôùi ˆØPOô"Š€ Z«zCZñp¥œôt·s‚ùÕ‡Ë{„û{„ƒ!”Ø›1I8ê%|¨y +(ÈaÞ!ydï#׌8@\·†T*»öÈ€â:§îŽTߌdS¼|§£µâž_l1‡ºDÇò§2 Šnr#¬ ÉîV@÷‰æ?„§×„È|Y¸Ï¼B A…^¡ÄA:ž‚‹»ä‚®7˜ZKþE›¼ð†¬Y{ø3ƒ’4%{5!Äà$Q—O'5,o¢ª …R>ìé4¸& ´9ÐËŸjzûp>R,GèjòH=^ØÌS¿¶?U˜Ì(åBb ÍYÑ£;­¨|ó"±¨3íuwõ“0vúSEêdæ€Ö̤;4ê2P’‚Xpƒ&ytxT ZC÷V”dIdã­ ‚'Ú°T¯Q“H‘¦œÅ2ÅI{ð€`|„›!¥N¯ÖCð::Jõ‡8¤€dxÖçÇÓ=‰ Ó9IJÙFL/§Ö.3ÔJˆOdúÛûˆÚC>ÉþP&˜Ú% ±-PÁ éñÙÑûdó'+ã´©ÞØí¶h>«Iħ“b,©Ô+àHÈVPAò,¼œ.Ýw§9e¨‘æOuwÍÛ&ÌXzÓ2G) i€‡—§±@ðêá„΂î^2shHz\6àçä ä€Äå¬BÕ *ÄFÓÂc@ÒxÏþTÂŒ\ã…Ãd…ê¤Û‹xL?$x ÜBëE>4[c{U La}® ˜Ò7ÒVÝ`íW=E°>#ƒ8ø½ý)13±¯˜\Â'&)Ry0H¬#)BAahºxñÄ— ¦®A)¡íî}/‘•¬HÒB9ZæÞG,9ÊqÝUEÒuH¶GošÇ®§(ÖÈÇ =瀴›1ÐÄÕíÖQ YÔ%ת?TH#ëó€&)‡ËÒj{)Ý ¯l¦¸ +†FoŠ=lÀ3IÄöj\VX‘±‚ •Ý2‹Üð‡(N°ýB5"ÌoHI[ŒÚ3 Ì‰,¡ËÒfe¦¨¿åµ® +^Ïi°"cžŽ7Úžo6™ÅKnú{t—°,Ô¼˜÷I9™aÁT«Øù&CÒ E(sAM·BX¤!çøxrd$ý0bK–>‚e(uFº Æ *×,pOÒÏm½ˆT î…Ÿo‚ð‰ñ‘Q‹ªÞ²lH„¢¹ËQm8©Kµ‘‰Ý¨o ZÊS°"ªÞŸÚÇ*3•tBvrZ(¹fn5ˆÀ´²¼‚Sµš‚úAÛdY>ö`ÊúanoTñAz.îýÂZeš-™É¬œ§öXåÂåOa9Œàh‹{!í”HÁÉ}‹ÛÀOA¤ÚC"-‚È!Ë5€…fË€'žº-#^ç9ݶ;§Y>ðº‚\Eù>J-¿7m›U+±Ô‘R$”éVjÇZQR-y¡3²Þ¬ â#0³S›¼ô\çŽ6½ÇªÒI ˜ˆŒst^ƒ6÷(Þg{ +÷tJ1”ÔÝcãµK±ûðZv9® &Á¨ú¥O/4ÄÊåQ§ xX½Zy•¶J•¦›ò’”§¨ ¨d‹M º\•ûðâx$2l1þ­N,c³”³f*§UsæÄøSdõhgÙˆãh`~Fˆ–2!~T¶‰/6â†Ó­yºÞÌf’è1ñ‚ü!ÝSss¦úçÈk$:¸Tz@ |0”Ò†Lá×i%Œl9æ4Æ0rÔ÷¥¼©­ñ²<Ä>cÀØq²]ï‘Í( L’Áß&›ñ1G–¨fU}ñ7Yšd©„SBƒZ °E‡HE+eÉcî‘«ìÐÝ¢Z­Æ¨„/¥Ee—£<’Õãµp±Ãk 4îãePƒˆß‰Ró¤ðPèÇDª—nñŽÄv$+åé/¤à_³gÄýŒñ!ª&%¬`t ÐôiLçÑÔ5†…ž®uP¸%1¬X&#QÐ3¡¸ù)Û¨ø:ØpŽpZ² +nÅöÎè–žQÜiE5dâ&mï 7IU‰¶Þ@ó¨v@¥Su=ª¨”Dh™:°‘¦"”ÐRd&ö;Ï60È’{«-2Š11«QÐ3QlZ3ÉqXV”=&5HÛ!S܇b‘îð•Bôú |¼ÔÏ_þBªH3„Íí‡!Cq"ôqÿRƃ%¨Ëì:"µœ·µ÷­±×(p;(‹£§p°^VúQ²™ö”ì49oÞŠÐäF9k3¤¡÷‰­zeÂeÇ´E¶~Ò›†W„rf‹l^Oñ¨]H#L¶È\cUö²ô‘ð“fæë%/êjÕr§Ë¹å ¥÷–ÛVÚ-Ãœ Y$Æ5n®á>žžï¬§åAU²Å4P]cDÏÌa1T‘cLMiÂES„™žSIãÈØÿ,$aSrÒÏ$90æþòxéÀ– ‡7[|O<¬úÄS©k”…-~¯ÜdÖf !°â·-Êd²†¥˜0`*‚Q×ÜoÑji,kÛãLÔCôMC +yƒèuR¶óÆÞœZ11{[zK£€Aõ²Þc£|‹•Xì…8„mž›œžÒÖÔ+·5Þf¸‘äêGRŸNJªW½nÔGekbØkŽQ#*rÌÀ¨Ä8¦=Ç ëŸ/aH Õ+¦% Mkæ0u ë‡-s6–j¹—ŽQqR´Û»%°«*‚q€Ñ0jꨞ\È]¶Èàjú•N^$‰×j‡¤{°}Þæ#·,9êcúâlëF¾|äØ4¬äÜQ‚{Gí +Á]‘ šŠ²F‘%:A«°|6k²7ð|/Ï-­%Š¾QªAk_|äÈ%ÅÊ¡Fýžî#·:â õ¨ÁM2ÿö‘ãö¥{jÕçÖÁ°Ž°`D ̨—Kí +èY)ÐÌ¢çCí[hS9{Íï®}¼ µ»5{ .¦±’µ–¢L¿ ˉÀhÇ:¾úïĹ6dIˆÞ ï+°ÈĬ^œì{/ÆC]ïB˜¨=ÛŽàfÙQÐÉW†©.÷¢Pó›½Ó¬‚­UqÒyR§£Û K°ZñFR”$_ËÕ}ì(ÚÒ¥ØÀy0¢/7~÷”â9Rb©wœÓ+¸kF`–Ïçc' +Íò«¼µå9¥eº'N©§^ºŠwL ¹]c‹eßtB(VÁÔ1·|ٽԆ阆a#ã'®<ʃ„Ó¬F–ÈÁ\C½7 ã²LNõ2£Zf³2}ËW½X©êØ5È«ó²‘G5ôy”<§+ÍÈ–AFM¬é‰ªTŠ0Ä:l×bAÄa1ׂWíßH† §ê[ u’¥V¼!82e³±Þ{æÅÉ‘š¬yŒÒ|£^Fµ:TUí^AJV)ʪvÊ鱉“cR³ëŒÖ>p#oöêê[šoÒ•uÊ|¹ñRþ;¤EŠbñ²W×G̨QFEsÂqx{áuLœQUžôáB¨¿?¶³[³ "6ÚË„xMv{[@G'+ÉŽ]k:7%›—œ6g ¸_º¿®îU6åÚ×Q$€bç^æ žÛÉ.œ˜îÓî%;ÑŸ÷ŒÏ^œZ/ä>Ê~YSÙ`yDFr¿WÛ—ݱF5 ”§:a°÷*ï:QGZ$•l½«î-°ß óÈ5_oª±TËË=0o¨”¼Ê».˜B—Ã(–ÐÌüçàÉGéQ§žô¹)¶Ï‘×¢`¬eh"‹=»A]øtl2èC'úr‘üfPÆe^šœ¦(Zÿî,AGÆKòêð峬‚ÕO×æ•ã±WM/â`õÓ)‡Zí9Âtn‡\;ñ%·ÂñcF…!0ÏÅGnœ”Ê7^³ÜrÝ@DÂ¥Úkº—O'L‹~0†!d,¯9Jt|±èø£¶×XpŒ¨íXtâ}I¬ñC>(#G,:׆8CÛGmuO÷±*öÛj<‡kˆúéä$:?š¸xîaá7^)ÈrQt›ïæR0NµY¼)' GO‰1Pµ¹  FQc:I§³RwY‹©¹)­^(ÆÚ½}Ƥ¢&f˜›âoæÛØÍÛÁš¹-Uì£&O`{8Ëñ*ö”@sK"¥Õ±kL'–É’Îò@Û#ÙFTªß^LéÏV?½‘èé#G¨¡þ:ê®S.ÊW< +z‚Ôñýùª»•¸…í<èþb˜7.ðríVùÚt%ƒÄ9ˆ¶ëáÍB®ð÷4lŠ#KuõìÕ #³@äW`q²Äs“Ó¨aOzÝd†ù1²¹×V? +žš‹c{ŸÃægf¶»m“·´#e(§(oÏÖGu +œÇšs¨Ú0B6&ÐÇ jlÏå¤Jz¦r²×·7_SÖl°ý|àë³IËŸ­JºGŽ%GO¤É——q^É4ïXómêsŠzà>¬æ×5Œ + «Ü««S¹øÐMN¯¶B•tÓzqXÑüb•Vf@„EøŠ[³9K4¨Þ‚–Côj\9ʵ“o6ºW|4N’Év›änLjt>à,댰¬°ØæKÜœ†3Ð +ÂXêŽä³é•Q)’NM_s«µƒ$¾“„»=½2ªµú”Dã!V$]Wñ"†ÁjíK,ˆt+’® ­ä-îâ©5¿‰Ð›˜A©¸ÃásðEïf(K-‚#u%u;;IøïFLÝö±k‘ŽÎvVÝݬQ¦¿}²1ŒYkxž<€žªß5y9[K“ª”1Ïd-Æ|ä$8ô£Ç¦•—pjÈ`ä+¥¨Þݨ†1|Ñq käÛ«Ü[ÕoJúÈ-ûáÈгj¥>òaû¬FÕŸ½²7.ÀÏM +Á{0Ø if A‰Œ(gøg+ÃMDo¬9Ã{cD°£ §%`é­}¯Ð«WBG ªV8:<ÂÖ1iPOP¬e¶µj,·þÙDtò^XLh?äƒædi¶ÝÊC¹l8v,7lKZÃŽºÃXL0¢6o 0 +U)¢P3Yz^AÝx»ÉˆÖv yRÝ ôÇC–½Â̓¯‘¥~ÔÃ&E™ðIÞè¦ÓÑ +dSÀ–1ú%Pÿl5­ #¡s…AtVèîn³z×Ö³©9fU9Ä6n,縤ã9ö¶wOÛG€ÂŸ­æs±Æ¼-Ük-qU/¶ÛJ£æM!cO'ÞGM­;ÉîQ²³çù5Þ>€®HQ?*>ƒ¶jͱNKl~,!ÍZµ:F$õö ³BŸ=VÜZÙÚâV#iÞ ®¿4ï˜FIº·¾ÒÔš^0‹ )‹ÉN±¤tÔE/¤îY+O‡ˆ6žžÎfó|äèú¸,ý¼añ „|Ÿ›íX½dÓ}ä$¶$jĵ”)6=g¶˜o'ÊÚÓͧYÒâQL™ŒìfC·¶£äßI +=›cx‘ü’³úÅ‹{<†¤Ûæ8 +7’í1b ö*oV,ŽNwÛ1óÄÑ¢*… +lèx‚6f”˜&3‰ºØ,Ë +µ^1`®ÄE6ÇZT` +ŒP{R^ ö»)ð[¢ žu TaGá\Ú^¤ê‹¾ªu)‰ +õÒ]rìxlñØï…½xh<·;݃æQÄ—BC͇Þ,¿vDAëDç]þ ë¸%ƒ«`‡ Jƒ¦ÒÙ+1:6¬:‹=‡ž~÷hP—‚«Ë‡N4+¢¨¢jI:ÔñÜŒ‚†‘ja‹{ÕÀ6yëÛ†@®X6'“atP©–¤gXÓpŽ¥mž"œS £šUó¶¾VµØR7kuÀ%ܼý¹>ÍÖ!Ë1*L¬¹ïÕMwC€w 3ÕgMÔy”U$7KýÎë¨6J» _uK’ß9&là÷Ý ³ÚQ}‘0\Z­“­@Þ¢äGñÀ|T ¥÷ÎðSIÄC² £ƒ·?4 ‡xÞQ=w}æ:[ÚÅÞ¤Ž§Žé§NX¯ÉÛô€ñPòö‡õ$£æfñ^†Q˲y° ñV’Î:2PA ÚnuÙV,ºU´–š4îE0G˜Ÿ,‘ÒãrŽª”Ôíô–v¦œPÄ6Jš%Ÿ%Å».`ûÌ.myUÊ‹NqíEݪknÌsl#“Gu~JôÒ›ÉÇN¥jìOQÛFÖ#¹&žÝÊl¶¹@}ì(È„sEÕMÒ£o”eiŠ^MéÀ$”X÷e9?+Šª£²"xŽ¦£oé8‰³±£ÅR{½D#øíÀÈÎQ¹¶Ó'¨Dwùm--îEÎMõ´húfXä +·Ày°u'ÇS܉©?J–#hÚò?£´p`“3e¥ÅÑ¢¨”ã.êøaÀ‹`]%ˆØ(Íù1õÿª¹ £:yönVÉÔÆF爱òEdpùðÔQ}Iu&ñP~/aƒäÞ5‰“h¥¿ý+†Ë^™ú·ÿaáHG&t ‘ï™5À•øßÿòãïþô#Û?ûþS¬’Õàÿô—ù/d³ÿ×ýøÓ?ýøû?ÝÉð†¿†L¦º—¥¼¿Æ'¹òL®ýÕäpšQt"Aî‹Ñýµ“ˆÔ C@O‡Ÿ&³žÉ}ïõ”"8ª~ñúöû'o˜2EÖå/&ïâå²è¦üA¨<%œÿòƒ0/æÌŸ¹ã¿ÿóÇ¿ýñËþöÿY§óßÿ÷šz—ˆ»Óë>CïÊÇÿúAÐ&ÿ#ïã¿ýèÈ,T—'k׿á᧢þ ¼®vÍËÛ³áóO/Þ— cJͳòðÃO¯é:aê =‚ðù§ çë„M.•&‰B„Ï?½H¸\'l½e“7e ÂçŸ^$\¯ÆAÉ÷A÷ôË‹dÛu²là,A÷üÓ‹„ûe“ôÑ*×éžy‘ì¸NýîèatÏ?½Hø:×ZÄ{ý%‚sžz‘ðu®uðç¿Üùó d%¡òËhè3 ‚¢?¯ƒƒùÿšÈL‰ŒeŽÿiå÷b¯žz‘ìunÄÄYZ=F+òa>üôéëüÈHŠLˆ=œ‚ôù§—H_çHFšêƒl+Ýl¤Ï?½Dú:W2ÒÝ,ò#}Î÷é——_çJN8ZóʧŸ^"}3iXà²8ãû Ï?½Dú¼ÉHc0³èŽû&;ÿôéïq'Ë}§ +fþœðóO/‘¾.Uiò¼úôù§WH¯ër•‘&¤|E™ }þé%Òßäe‰ÜfÊ€’>ÿôéïñ2³` ‚ÛI?üôéïñ2+Þ•ûº“>ýôéïñ2,¤˜H(*s>ÿôéïq3ëêKFg¾sð‡Ÿ^"ý=nfžê'´qŸðóO/‘þ7³ª‰©xØÒAúôÓK¤¿Ç͈6ÉÙ²çþðÓK¤¿Ç͈L#ïg§rõù§WHïïq3"/ɼµº—AúüÓK¤¿ÇÍØõŠcwñè᧗H“›‘ÈJOl\éÓO/‘þ&7£Ûd›Þu;HŸz‰ô7¹ÙZQ—é üùËK„¿É˨¨FkdʧŸ^"ýM^fùyRäç }þé%ÒßãeV’ZRõ8Yç_^"ü=N6—6\ÄC:áó//þ#€wÓžnúüË+„súœÔÒÎÇuþå5ÊßãbäÊ.J6êW§|þå5Êßcb4›”1ÛÇ¡:ÿòåïñ0Ò?z²VÉåÓ/¯Qþ #|xxt·>ýðÝïq0²ŠJ±\ ûùÃkt¿©XÒ÷ #:ï*íç/¯Qþ¦$f±Ô[­w‘äó—×(}¸´è˜ulëÓ¯Ñý÷J—¬`9_5ƒ}ô«Ûktò7èXÔÛ úå~ë~ynùݿꜤG:å—6ËOÖï{szÝàzù{íüâ¤oqñ»HüÊÂú¢ÇlÙøpÚï=_1½|gLéyDo ø¸NÔ‰Rò¿oƒýÊú¢¿p¾…è¯\Ÿï!ú ·ç{ˆþÂåù¢¿pw¾‡èº:ßCònÎ÷ý7} Ñ?ö«¾‡ä/|ªo!ú+ê{ˆ>øRßBâ|ZtÊ~ÃÅ‘ž¯7Ð{Œyº1~?½§°˜§Ëâ ô£ažî‰7Ð{ ‚yº"Þ@ï1öåévx½‡˜—Ç‹á Ô#]žî„7ÐûCQô÷Ó{Œ¨y¼ Þ@í1ŽæéøýôžÂgžøÿè…nozñoûåšo]YïÑFW(Q}üv5úÙq"uÉqä“íáDñ FˆÓòðuèÖ¿s¶ã‡‰^Š»Bô9ðëLôRØ¢O!_gšWb¿.‘| +öz y%êë +Ñç0¯3ÑKñ^—ˆ>x=½éu‰èSh×Ñ+1^Wˆ>u‰^ŠîºBô9œëLôR\×¢Ï\g¢—"º®\ÉÏ!\'¢×b¹.} +Þz z%Šë +Ñç°­3ÑKñ[—ˆ>l=½¹uIÌz +Õ:½³u‰èSÖÑ+ÑZ…@ù@ó=åOagš—Bî}Ž;½v…èsØ™è¥p°+DŸã¿ÎD/‚]"úùõ@ôJØ¢Ï1_g¢—‚¿.}Œöz y!ìëɧ8¯šW¾®}Žð:½êuèsl×‰æ¥ ¯ $Ÿ£ºN$/…w]!ùÏu&y%°ëÉç@®ÉK]H>GpH^ +åºBò)tëLòJ ×’O1[g’W‚·®dƒµN¯Dm}ßt&øÓÅ:Áçx°­÷B`Ø%ä1ìA¹v… Y¸h½ÅÂõE‚ã#ÑwX¸¾Hm|$ú ×ÏI4ß`áú"ñ‰æ,\_$2>}‡…ë‹Æ'¢o°p}‘¼øDô ®/Ò‰¾ÃÂõEÂâ#ÑwX¸¾HU|$ú ×IŠDßbáú"=ñ‰è,\_$&>}‡…ë‹”Ä'¢o°p}‘ŒøHô®/ÒŸˆ¾ÁÂõ•¯ïæ{|}O®Gšï°p}‘íøHô®/ò‰¾ÃÂõE†ã#ÑwX¸¾Èm|"ú ×YDßaáú9Ÿñ‰æï·p}‘ÉøDó ®/r‰¾ÃÂõsöâÍwX¸~Î[| ù ×Ï‹$ß`áú9Uñä;,\?ç(>|‡…ëçäÄG’o°pýœ•øHò ®ŸÒ(¾ÁÂõEpΙà{bœþÓ >Z¸ž´Þßoáú9ÕñIùý®ŸryÀï·pÝ Ït^²p%k£ÿX‚_4Xn„k•Ý»÷¡Û Eßj‹fÝ["·eņ뤫C³ÐlŒJÊ[rg)Þñc¢+n¯†KwRšCîê;jõ’°Âz껦3…co_V€¼gë'¥·Ä+{‘ ïN;åý' ÿ²7É4¶ªV­¾Kb²ŠÎuMov2hß݆a‹êÌÖÇ0úuo9ßé‰èøCÑokÉF[S§÷»ßÑÖÒ¶ÚõÂ$ë u÷ä^ôô=̆ÑC›±R¼»ÓKƒÆ2fwÒ¬Kp¦8EÔ»O¦Ó±½“>:ƒÞ«µ[£ž½’UÒ7Ì 4^7(õÚéoD[Úej ›ÅI·a ¬[o«è*Ú4&éÙºtša ÃSÏ—FJ}ÕÃ~Ói !á¾Ó]ÆMÌe²Þ*–:ô7ô¯œ´­—J»­oS¿•<©amÏQH¿QŸÈýF_¥]¦ÓîVi>:hÓRlŽBx›*±Ó”vRà¿%«¸O•eÃh®Võ×mMØÛÁ{wö&]X-`*  +[ì±Ýni¤¢wZ—¼¥‰M^ [»^{e撣џnE ‰Î–¦¾@oU86=SÝc p5î­¥ØHì±¼½á&iØ·M‰: +úº‚×hŸ©s‰mÐd[{¯Ù£ãò¢'ç4H²õö'5†išJûÔb5•GÈÚ™ñÍd-íVN˜ÞOt×£‹L¥Ccs¬Ó¹ºS¦†ÄU½/ݾ‡7úÙô7)y 3•èßè;–ʬ4¸ÞÞXØž:§jÐÔ¤ÑpÍÊ‹Në¨ô¾³;_p^ é´*ð$•¾0ä^Xû¿¡YÇX:ñ•þ’MlÂJ„NøÑ3†§/†é£Ò‚¬y5ì™6ŦŸ!ÐuWô芭ƒaM¥ ¢yœ¾)-USüœö•†4k–„ýdkéèä…F7o{ݪõnúœé«|Î"ÙœäÑhi^gÒ–µmÞÚÌÙÙä ,ÅÎ+ýG)ª=µ Šñ˜á\é¾Ø­ÿ2Ì´yqó-Ö[`ÇšV¹šy`Ð[•¾åŒ™wvZÑ6_Kø–µ#(›OÉÔõ÷HWûÝÆè݆&ÖÖ§ïíFCZºiGQÏ~ñ?»¬N¬šÝ@Ǻa4Ÿøs’‹TéÖI1JÝÇ*ú>+N‡=“]ìQsJù £’ÚHNªÓ¸±‹µÌMh£Œ¾3Î!Þœ«53)‰úéyŠFAÛ{i5kâ]²7º%ÄCuî »jâܘ |”–±kòû¨øWX*k¦¢o§’vç¢6D'Ô`4sÉ=Ò{¼ï3GœUû¥EêïZâ²­¹}¥·¦µ€ô`ÒL6&§¹Äi¡…d±ž@ƒÒÿÑn ĺTÝN¥jëâé–G[AÃ*újíeµÔ-‡èó{‚‰ên)ÞmpEŒ¸Ø´ãÒ`W8›™…澶©YDݯ)ºPh-éô¸é#ΧïìžA§ä ¥©àZ®ÎÒè £õÞâdÁØ«s’I‹—´à$$Ï‹ÉŽæKÈ]d½ÞêònââˆÚ >,ú«NË{qÓ†.ùc›ÃÚIÃaÄYlv¹Âô:I}nº@Ø)Þk,n- f¦”Šf͵½Yt?w»Ø M\Ø2ËßYiš¼¸_¡-ÛöoyH_*“. t£¶E³N­dx¬Ç­7W0Œ&x‰3ämgÅ6 £…–sNïô*‘1Çí°tÓ¤†±þª4¹iÞ¤ lOëW^íª•@">ÏahC´¬ZZÇÏ [Z)Ý9>+4ÛÓTzÌ,ZùICp lÑ<8ÁqtåH]¢ÇO‹²‰®á4§¥n‹çPÚÈTã˜vG¯§z`ô7,4í£ùMsµz"ÉKdE1ç©ta&ßî´rï´¾²ž+˜Ö<¶ ´BKƒŽLÖ÷Jb¬–µ$IvË{bi9uE8³¥Z˜" £mîÁP+};%†¥ìÏ¡r#þFÿ*m[= (:i´tuпÚ0±ÁÄ*¦E¡ááÎÞK—˜í}‡4?Ö¿Ê;ii΋K–ëÑ|§²abq:DÖÈhšÖëúPAx˾ÿª-‰YñFZ#ß–NzÁÚQPœœuà<0qAú;ilµ}ۢ㔕7é£%µ{%01ŸêZ®°­ßÞQoÒê¬ê°yk«¢5–|²[ LÏa ™†Ñ¡ÏzÏ +£ º¤mrì9o>„PëWhm¶š4¸ì‹€V%FÃõ³Y*ýÿ¸Òès®9¬á1M¶h;}U›õpöU¥–öyr€&6`iÃSeö§pæì1m¨Ó¥Üèð5Ž–W¶ðË:„;&ùÃzéz-®û)§ÍÙlGW+Z—GÇAÇV´ÄµèHæð•CñÓ°7GÁ´eÄÒýÚ²>gÚTÛÚªu:’K6³À¤Ï™ô):Ûx×.iwZÙ˜n¾î è|fâŽYþŠ„nì†hDG/±A—Ø=O^ãÊþJlnÉ%좗6„ïº"¹À.^ÉPúóý$Ó\\7ó0QesIõë5Ç©’䟣¹<˜ö¤dŒ’ £S¯Ùi„I­nÉFŽžÓ„Œ!Q½¤ÙÊ{;9 êXD¬Õ-cïÑ%\êg—¹ïL›ÌâQç -hs%•–qâh\xYw_u_Wí¢åm3'Š1OõÖoº6Ò¶vÚ`T“¨èÁ`ìHèIò›¦áY{7 µyëòIçí_F›X)E#°>¤»Ò°4:A#þØ Š7’¶}»Ä"š‹ƒø±¦Å6ûaã9 qÓLÓŽIÌãŒ1ÅoÇæíä’ú<°N'Zt0°¢yñÀA 1ftäèB'jâ°><,/ºYú2hHËHËå;Zhçì¶4ÛšHmølŠã-®œæMè`¨:&%°F‡õb êhÁ‹…ÖY£0I?Û._k^‡r·š4›¼]Œ3L;Lÿ.×À$ /¼öº@%ހĚºÉM~J°:»•BTfçðS"ý±ÑÖ9°A wz£&î§jû}l“tûˆç轜ñët›¬ ¢®‹¥v`o'ΰ‚ÑÕéXzᢹ ôxMÞ𓇿¢ÚXwAÚ:úß“p’:˜ä©aÖ{0mw¯âÏí+žôçåÜ•b˜ÄÝ +ëÀ|íš/ЭŠ¿“6 æñ! fâ¬;¸Ç¤åiX4|Z´ +%¾…î¹bèœ`ý~ÝÞ &ëVÇP\ê5mp›‘Ð0úáæ¤óÑ·T·B±ù9º;Ö½ÕvsLrÉ +Ž„®X¢ë.˜¶¾T_uÚ_KW“øëÏéøhIz@R—¤ìÙþÓòi'GsO0q_ñ¨á¯LØàS÷i{·-V 2‡av=ö×æ(+ÓùôÑVÚ1}eÁ¬k˜¤Í’ 6-˜OaèóËkbÕÁ(Û¿rcy›.£b/Ì!°Ø+Ř$üù§,:§ŠyYXlG-^#9¯"æE‚º¶a\¾®ÔdrjšJ—Hho­ÉëÎð¢HŒÏ~]˜ÚíÊ®aº6JXÁ°0h¸iMïòÝ­E¸dcíº:`M!ÐÝ:ë^I1—;…ÉÇ1²Œlí䤣ææ·“°ñ)8áßÍ£†ECý‚÷°ÛP³¢©ÔýâïÔ¹ÓÍ„Â{¥ãa}Ä,d˜¦@,ÇÏ+aÐ:xھǒ$½îFõ)ÕZ’K±ñöœÖGg`uºµÒ§óè ¢{IÚöÚÄž‹û“\“h.Œcb5˜Îd‹–í<7ôý«Ä— ¨¹ÝˆINŸ9­êq)O:ÑJÌwqk[qëŠèâK§¡·~ƒU³‘™ð@bü¾~\·å5¤àBXC€mÌæuøsƒ¬û¦&]¯õ»5öwJ¥®–`mÏn¬±O©8Ì|Ü‚¦VgÛ¾¤©ðÐ3~ÈѹÅlñ]¦(ÕÙ6z_X­œæg6*+U[lÚð/9†'ÆŒ–öÊxXHÌ…¨»Ï5äá‰/·潿»o°\Ǧ4õѧ¿Ròo=ti|9;7b2‹V––¡uO…À…(…¶¦£j–P¹&u¸šƒ'¡pµæ{HÜx&W‰7úÄÄV™“0zäCo\‘nßâ´ÉO+ÌFÇWŠ±i—ŽãØ›Íyå#€¥8ã@}FÿÓ?SG·™ã×1MÃÒjú)×úKe¨Çs"ßÍeØÄQô¬W6æãÜA«œ]ºÃã!-ÒšµÛÂJ’Õæß5\}œ Ãtb$q­Àð:„D kR…,G’%×òM†V2½ù7XÑùš³8¦­ß‘AëXJk‰¤訕ÀÒ꘱9õ‘9,/ÖG[ó{p#mýÃÈM팦Çgêê¡\ “OĨå§ráAõ0"°E÷ùy3Ù¶´Ð{Y`y臦MŒ[?–ȃpv`8^ÍaàŒX—P±€™e-¶KÓå]ƒñ›¿Ç1"*$¬äX¾‰oiš­w™r­‡0Óú;gMÓ.°ªxl "45#0 <ú¶åãë¸3·ÓjUòLj‹ËÕócâ»âÌcv"gŒ £¦; » +5©ë©ùèêÍBÀJ0w¼̒äX_.%Ç ‹xï¹w`šMoíœ,g›ZÇVøÙ|²Å=&}!¯Z^[pGwÎXÕ-3Šf=˜‚C]LÓ¶œcªG_é*–p>œëè…©xù…À*&gváóÊ¡1ƒiIzhVëFÜÆ„À +Ìi`C×…¤|&.`âcC0ðêß‚œ¨©Ö‹bC´VÜOVŽcc+K(Ên#0QJ!Uùi8ž›’–$ÝÆm_.çmÑBWð鬄Ÿß-×MÕ¾‹‹H7OiýÀô')ͱË:ÄTF`c ?qPð‚Œ«™%âÇÅÍŀϰuË.º;ÏÅçÒ=6ŒK(x<¦Å«¥¦ ràJ>ø‡ÉVI‚Ì!m"ÝV÷á{B|ÇL²9 R¿bwß1·‡ë5oÔ‰ìñK]£Ã¦ïk0i6g\“¶ã6)9¡¡·uAE\ÀØ…c)xL¸ŽSŠÔB0¼6fV·E×…«ÏœÝ €šHÙ4#~Í‚mmÊ{L `¹f¿pŠ¢N¦ÝbùÍö=òŽ91Í0Ft’eÚ6úôƒ-ó Â_ÑnÃ߉·ÎµÓ5Ðr`â:³+Ô.-ª„ÑãLŽºÇ0WÊHlŸ ‘z‰ˆ:Ì&Èm¬§+¬MS»OB7 Ü$J0=r,^ØNÔh lÀ+[LYÅ ,Ÿoi¹ÏÚ‡¸ZÊÕ§ZÌJôG)±Åг†_ ÄHôC +˜&&°kH<‡5Œ˜qï:/ 6ª[±æg-0Ä"M°k£I4Ç;¥Òàùrá·qø=# 6*~vW‰&¬¥‰¿i?ïi~¨6L,ÿ^_·F ½MÖF ;ûCMÛ"ts ¾×eÎÓ÷·.57ƒ!sŸ«<OJ }¸øDl%’º|ŽçÙ¦i†#<VL™ ‘X©Ìºk`M×Șa³@íÔy,‰T¶F›cqk-ÖL:…ééÜ[r¨Ùg #jw~j3ð±Øé O€Øe ¢ê‚÷ W0mW“Wââ‚ìØ´;QI·ÒhŽç$ôÖ}è,½1¿!ÍÌp~©5"œÊ:0íÐæÜ¿Z†¹¬c‚™­í–ÍI„S– Æ.›r`[Çl›’— =Õåk6 E¢g²@]ƒˆÜ²¦MàQNÎ)v·èÄëÖ L$_õ°¿Â‰×Ö.ÝO!<$$Œ¼jyRˆôpC IL·@;¦×‹‹Ù^ÙæÛ~™ ÒŽKHòö%ø' /@ˆp;³T5çÂÀ¹±+°–ça>ÙÃw_óxNóŠ'ûÓäy`Èí:À.¬ …©M÷œ¾Å¢>lNªûAÑ•®Sšø×®ÙwI‘ÚBÒ´r¨£Eˆ5˜îÒÓû«[÷ÁtU›kØ.»l!Ý5,óÇ„º©ý¼üÚ*ø¬ù@HiC§#†1œYhdarŒàîzHð¸@`ºZ¡âch›^æLZi ?ÁØÒ}k,‚XGºÆ©÷ÕáÑ`•P‡â›VZ£¸\9ÓÅÕ“cžlÁÄ%ÄsWm€~↠‰u%ã‘a›z³{§îb1™˜TO-`œ×Ô%F”Ø·=ÂýB‹ÖÄÝ`bpÄ`cÐ|÷Ó9Ö%Pc ËyL‹Ø­Dó:¶/Ž T]Ž¦«öØeüEWNÈ?TK–ÎÇ‹Ûø‹K`ªÈe÷7ꣾäÀÄVrvƒ.Žø®ãïÄAñÒB£D„ë Ât¿e³ïÚvÁŒâõ#À´®ç›úb¼ôÅÆ +C÷"‘;‰_ÔäÝI»ÉQO;n(t‰e3ÈZ’Û] Z„õK-ì¯Ð} >ªJ¶”C£$¢ÞÅSa¯Ðƒ¡ Ëó°ÀMîšïÄÞíAÇ«¢{fµHq¿|`…Ȳýž)ƒgÂZ„Ù»ÐNè´·ƒ r²ê!ù¢æjc%y"„ilÒào K ê¦û°ôÓ OMÞ¡€r©¶ùRõ‚L?ð´ëº&ôyý:«[ð!6ÐÍÚÒ°»M÷8 ˜@âÛ\ä† © +Ë´X +#éÚHŽ¡l»Ú¶ñ¶çWÁð /âõ´Ý±´67Ž#"Àà•æ01ŒD©ô0ÀJÂ\Çs8)v--mÛÜ|“¸[¿ô…Úe5 ãš%h‘Óâxƒ$Ìa‚€t‚[D¿ÒÜÄÈÄ'z zî +°lê} Z‡,M#g¸ƒÖ­™g1Cf^ê‘Å›V%¦y¸>ö…} I0,î¤ÊÙMD!ñ¨Í‹Xèàd†¾R³§_fS3L±”¿«-ŽëÚqñ£ÐpT‹S L“7rZ ‚.1Vq.ç°”›û‚cTš?»{ÈÀD™ÅLJtkÙJ5ˑɉŸb½òoAs"‚Ä°…7×¹XÆ­3cý$næHê1 [ `ºðàF¢H®þ-L/)üñ\ÂÀáf0,ˆã»˜N¥Ç1kaÍ£iXq+h`H´vc*Œñ-ò IuüÌCL®‚­-u©ÏeœrÙßYðRxh ˜Œ cï`‹$‘ÖãÞóDÝFhåKöñ…‡Ë€á–ˆu_˜úvv܈KÒr|‹öqLÒMn#Æ0¥›I÷tM¢¾æã9R–ç]‚š±kßÂñ¸`ëŽéCHçÞuEƒÈ˜¾Í0#k½Ê1ôNNÎôc´1çDŠˆElOSõý9)5Ògwç´')li³hâ9mE;b¤3‰Qb|t¬›•¦fIv– +–=úƒLUXøÄeè˜D2iGö‘¸÷e'¾™Í°Œ"ØîËž?ù÷e×–Ou›DÓ‰"9â¾ #¢­š«ŒOnÇØ£ºmL:ú^ÇØ……¦ ¤ ñºìc—ô1)ñÑz`bïî`3ŒHÏv”|ÓÄÚ–}²s%ø¥˜¥>–xŒÊà¬$÷‡¥µŽ`üÿ¸wÙ‘mÉÑ3çç)â*jÙÝ tuW  '­œ  ( “Aƒ~ýæ÷“¶üž{»G†—ª¹Ïb,ç²;üùs)Y*…Ìn–ÃÔ?A` SÙ¬@Ph’‘›j†y¦ü!’¤ïÞr@{pAˆÌfO2à JKJBÈÍ£g =Ðny¶]Ê٠ʾ›Îh–¼[loc(wÓËÂýÖC4°¬vË ;ed±Êå¨È2ر©ý +Ù0wì–Ÿ˜Z²¡í6)ËQ’Dñˆlh€è‡Ck$#GÛ))÷B‚¶»á4;…2ë¶ëìv3ÝÜ™êܲ3•¶e$E4nÜv Ðf!™†AFökŒ;rFL¶Nãv¼j˜r܆ÙMWHúU‹¿Å%PXKd§T?vË3¦‡'Ÿ ëD%vËÍè° ƒoµù*å ¹[Ù3o‘Ù—¹'>Ñ•‘| PËu“™æÀÀ#k¶§´ïÙrµi­[‚ÐŨ[7Ô“í¦éb6úHd&óFˆ6îWf(Æ øR +sYÛióˆe̬­)|¤n‘nßå±²Y Ò]Yõ’Ù¤²£ÊO‹ AÊe·Üz(…‡¼‘XÊÄ¿%™]@!É! H£¿w€m?Š¿W>KŠøÃ/mMiûûÎBZExcÙ—õº—:ÎŒ8ß½ y¿â"Â1'="Pdk¯t²2…í ‘MÓ’¼á¤’š…S¥m°bÈÁçeGaºl©ïA£q4?›ŠC>bÈ {[N%Dƒ8ÁŒ×ìPLù(®W‚¬ÑnÛ`L—O°‚EÇUmb• ×É'ÃÒÑáž7ºÊEvK¶ƒ=ÞåÌm°-´~Ä€+KÉnʾÀ½ ì Å{ `A‡IÌ8•ðŒŸ]Í Ywx’¬lH”“jÊ{Ìx/¡½ðmœ×5Pà‡” `Êdg©¾Düv*ø¶Ï“/f»ï¦dœ‚‰<â5íûl6™íã3ܾØ3w’•¦ÿO€d¶ïZ¯yÓÅëJ¼g{°Yp>èÍzi§Ó:|ÖCFôÄG|W›"r6#ËŸ~G§éÁ\ hÈÀêø°7n‘¤ú!Ú„>ÊžÖüÒ¼<ÁY÷8˜¿—ÃôáÄ-©eßw=qº”–|Ô¡ÏY«í- )×.8È hÔd]¹nñ^÷ –ÿ&Øò Î;S‚NfºÉ “ȇÛM ‹Xê&³Smãp‘Ùî±pÒŽm\• -÷‰K½áª3£ËO´¯îI›ˆÌXÉD«CfM[>êd2ÛNwA4:¾ïŒÝ† o—#wC"[gf;i½q˜èS4éú”Ë‹Ìi› ™-5dvÚÕupôuŽœBx +22p²'j7í 5’ñiNLÃ4êˆ÷¬Ï“PÀ.£3cÔçXì ü3gžoï~$åvîÖiÆÕ¾qr^hŒ µÿqÓ³L +qÞãöðüäÈ°sZ!ë…G3ÖYiÂ-ÔŽÔD·dHê…lCÈÈ*JG¼Ç•ß6ï³kLjqW4d'‹ ;cb'…÷Ðýp%¥dÌMqD^ï±&^!%'Á›íˆœ?áéDÖàIϾ0q­ÈqBf«Í÷~2 +œã¡J +T“¾ËÁGÓw6œ2¨NœÜG$1ÞîL†ºmÕ¾œMvþÈàD9ÂDØÜ þ^Þ A.»Ðµéup ô-»*±­yŠ„Ævf&Š7œÃÆ.4ž Šì Ëb±ðy;È!.%ÆœCã°]/¾Û³­êmWðrd_&ÐŒLù.ª‘ø›Ž- b$ ÿ^äiÚÖjÝ._¾¿GÝt‘9áãwÁó|Éb0ˆ‰KÊ× £‘4ÞÆtz*reZЀãOpJÓilcãSBÆÑé£^1‰Î‰ æ¾’zª/?¥%³BÁ„:„W¶Í8ŸÄUÙ> «áœªš²Ç&µÂKícn²ë‰ xÞlóÒã=Ð÷ÇðÓ’,òApH´”PÃaÚå½6ÿSlq¥=ò–õLÅ{ðÙ$PGÏB~ôÀÅ'ÙA–Ož[fFŠXàÓ ­)ìå©l ÷>‹Ñv ?i@³“šÙâµã`³ RIñ>æî³nŽ±e`b̹E,>ïipéfRƘ£{öˆÇ"#í!ÆP¯]YÆùÞ‚/Û›xÆæ¢gA7ðå Ïf¼8ÑVP™c±ÔÍŒìv³KŽXm¤ƒ']‰œ„}äp26œÏžÀžEI¶²rä]¶Nv(Dxóš¯IÐà`*{¼e vš+ ¾[$ÄšõŒ)˜n +‘üG 9,`¸}Ü`Yvtí ¾ØàolŠåMrfgjö!“ÔÄAîLf䯱̹ìL(— (h7׆#G¨ã*Òc™¥‡1qZȸêŠÁ.)³ÐùOQªé’¯†C™dK·”¢Í– +«Ì¼â_{û3È’döþP"ŠËz‹ä&dë«»ñêÙ6so»5f¼Fvb4‘A¼¼E2ÃËC~c{!D9!²ÑólAdœÐËé‚ ~;†Û<ðÅqg+á»[òkk›’ \Csp[•= ª3XxìÀ Ã]ù½±@3Gz +4|ÎvÜÄ€CFS…g ™5±ÆÓœâ¬ÙÞä ·M êÖ©=zºÚ"”ק;±ë‘,üT’³}É9lÈ´k¦œ@u!@Ù¶h._«ÎMÞ·uïÎdXÜ%£l⮌¹M& Añ«d+OñŒ/*1Ž9dg‡O'¸¿é©í>â°gô€ê¹L1ó©÷lþBÞä6oW ¡5½ÇØ-°ù#dµÜVR÷¬«§åË`'½åID +¹Í2û·¯ñ|Àa݉É$7•&x59ˆK_-dPGù§%2­æ"¨þ8“Zž”m@’ˆº z +š)ìÄXÀqÀ¶©á`ÝJfŸí!s‚E½‡£MwN˜ŽâøÜ„—¤m7@‘Ù|ª>ä©èh8‰Ö]Z +`h³¬“á/È!³%âX|³'?u.¥øMëv»e9; ØÓ +B'áC…^ã[„‚‚šqî÷–ÿ>æy9šœ¬N`Æœ}ȉ€K>Ù,îœàè²&ñl|8"8ùCMwhwÕ2ð‹>æ‡ôL¿Vu:—ôk5]Á“s +¬ ê资1&³3'p¶‹-M€\Š€Ë8††|í°Î:š¿5‰ž›‰d¶=»gžtÔMâ¡´›ð!ãèôƒ`ìuç8úÜ”ÀèFµ—¦@È$I“Î(¾Â'ÙôËΩÑC4lŸÓhCÕfû¨u‘S;’ƒl2Ò' ÑÉ4s{’Düeõå1is€BˆºÍ3Ü£0ÆÒ†Fè‰Fš˜3Çù!êP)/VGˆ&›ív.gîš6d—‡(ÇíƒÛ‰›‡#Ž!¦´Ìå*,üLnÜwïDò.?X¤–dÆK¯¢€_ãÖç&"Ýk0N.æ¶ßäŠN 2VR:EmÓåâÆ…(8墥2ÏÙ5ÝñâÇܨûªÔí +œ-DËÙ“¬Éx³íææµ Ì>%VîkšŽ‚)¶N=œ”Ó¡CYk·òM¸ U¬FY1·p +¹ˆlOqäq³Ó}F»8çFm{”ÍøžÅcˆ¬kY DˆØˆ¬I”?uÇ¡ÉcøœœN(Šžìð~ö¹)+‹ŠO% òÄ/`³ÚíVD\U‰IS«|%OS„÷“С¥#&—‹^@ZLFæ6Dí’8¬äÉcþ >ó8\¦ç\þ)&QVÂ4öàÈõ)_‡_Ê›³È—WIO¢è[œ=]KHìæ06€ $­±™Iíd®JÅ‚Dç€mÔ™3MÔ¨"êdl9ÿ$”=@êÑ_KÑí@vu-?jwž.M'{ºðöV•iÔƒ¾_ýHTÂ(Á7kV'ˆ'Rò¦çÛ¸Ä6kÇäm¨‹ÓQ¤4ë¥ \Þn"N5#@C,JÀ®ó;Dv±óuÌ2QC|Æœ-Ð>ž¢•‹/c>ÝΤ:œÄ‹Ï¡”1o0Ùb›ÚµW‚¤ºÉ¤Q£Áxv’gÑ-NG’áüÜ®ØDÅI–»ñ8òîV[µN¶Ëo#ÑEäû“Ý1ªŠç!‚Þ+5‰É~%á1»ýP¡Æmo?G?b‡·Û1Ð1²;¦¼^]ìã.›sPÓQE[%Ñ"þHbz®ÿFÚ%š< 0°±VCÔkûö".A=ês©9_ˆx$¼½Îc‰œÜTL´D ßEÖ‡à{Tl¡Â¾4ƒw:±4ÂøD + %$6å¥*Ü >S—@Ý!‡8XrrWàh!jÊwÄêüL;X[´ž$‰ó3ðH!j‘æ u¹P­úK¶1›A£ÑÕ­rWÍ!Šl„òQ…¹†J`³â²cktí­¬DÍàæå#`kë¯`_Aâ¦ÓrdˆJJu´7Lºµ _¿ØC£(†¢µSÔÙÒºüË'[¥ÆçC!#yL·h†Ú@W%Úë£+ +_¾âk'ólm$è¢ÊÀ!jKÝ.üêsqâˆ;}€Âœ]§hŠmÏÞÂM·œÿioŽäçQ¡ƒI9$u"ö……‘59Ÿo>ù«‡§Ä㜠©N^¼[œ±O‚|Á¼Š¤Áà=¡HdÊ¢?2X g¾DU©²‚<'Ö&‡>"‚‚JÃ;€ ’!ä-!keÑx{í(`EBÔ«çfA«â|¥þ}  "¡Ð ~á<7á0ö(ãKøÓ.+¦³À%kh|ð/"­+‡—·ÆÎ’*71§ 2Sjÿ:N–âæ)æ nãåd¤ÝÁz‘ã Y+ñåà0óÒðB蟠C¯!Ù.æ +(üöA|\hÛ@p(ô¶Ep +Ãnó!}.ü>[`ÙÄK§±So.ÿ™zŠá5à C½Ùç +v{Lâ\F°ê:)ŒHñ}Aaà±Pˆ’Í(SÜ…][DóÎhhÂbHs9<좚© ‡²­É<Èss€Keù^?HJÎ#ºœñ’‰Îã&Ê-n7lßFfDz/`nLùFA4y‹¢gzOX(åY‡ll2.o%ž15³Ù¦‡è5¹N(ÃR!ìF¢B¿©BpÞp€tNª{+¼äo„¬³#U½ŽÞ,\/"§s +’u]¯m—ágdX¼lnó ÛÊiEà{v¦áî^†ÊƤ„ŒDHÑVÈéˆÊº%n'œ ©¯gœ-pŒ‡ŒNUÛID\Üò¢F!ÕAÇÁŠÝ:C†_!©íâ{&ÔåLá„âQÛU´ÀfßòµAÁ¿%üi“Šæp÷!2§Qå[0pgxN2ü(âe¨îbiæõáSñqÈ¡â3ÔÁV‚ç,é=¡ a,!ó»¦ÞS¹1 a.ë—ä+\ 0I¤~Ê(Eäã^ «ËœsÙ¸¤„$UåÃÝ–MRiÕv %ú¾{%cÔtxáëÅn›p8”“OãËŠ;,VÒf+‘sÞSGÐu“’Æ•¦{0ôpõ,Jx°áÿöa¯ÌUÛ“&ÆzTÕ™©m>nýå¶:™ +šj8`QlÈ®Ö%üP˜ò;%ZqªrBè‘p·j€Y!|âû%üp,ªé <ÖÀ¢î.¾â!F.†%ø³«r }Ð1; et„2EôÕò&ªÀ-þ™MÐDñµ)|Üœ£>d\ç|Ð1#6ÁÏŸâäÆ…3¼éKF,Ї.ðAldÒ]ÑðuêØ+È,èîö·¡¶CSMó1¹’E—1•MTÐÒ])ÙTÍGuÎxÓ•ÃѶT]GùÀŽ`²ï váæG¯q} ’M—ÙL=ØmžUÄŨš®ðm¤Ë¹Œ$ <»ƒùÅùÇÄü`¿ìM§«›rCf·æXë  ûY$~ðHýá½¥Š°-ˆBðÃwstOÌ¢3Í›;ˆº ¸hCaz8^$}>ì´Ùb¯½;<7¹Y²dšÓž>‡,ÒA‹h²«#³7¯8¾¥¡¶¢½ú®C6©W@6¨¬Xœ¤Kܸ?õ^ÅÄíø–C&’_µ}0Wm÷*'9áå³!ID曼ÛÊðaWlTêßIZ®SôˆEÛvíÃ/jˆšÍZöqe†Žü+û÷iõà8¢ǘ·| +<8ƒ°‰DOqm€ÂçfRu” ²–5ObÃÆ°Œ¬.ÈʵdÕrŽº’OR&<¸v¸ø¨“c“‰¸;_ÉàõQŸ`KóN†‡äܬN3>{ÐaÛ‰o)…¾ø˜ËïdxŠâœ")È°‰YÍ ´Mâèj>äÜ7ó¡ d0ãRµ“†“D³)Ô]†ãÚ‡ÜÎ$H#þór"Æ ¼Æ æIUÈ I'®ÎT öÎü7V:žEF( ú\4äD*Éçk1>$&'Ô‚HÚìûÙ6áú ¢DïÙ9¦9€ívm“Ž…‘´‹mât§uU ”Û­‘w´r‚¯Ø¢ ä-²m.;4Ò ¨šÝþ=õë|áZ<³r‘3V6?2ì\0$ƒùÁæ~ +öã¨sâ’NìEí^º3™æqB™ ÐÆ»tq.#jî‡wšU› m3 À­ûˆ/yë(‘ÔB³Ž8®@Î}ݺ]ª–¸Ò`òܤäòŠ¿KTØp&(i^&*öž³7ª¨S·h3v ±¾É+>’{³ƒ Ä÷ + úð³wè¶í`Ñ˵6Eû²ÞéÞnV?ØN_þY©É±ÄÉYZ¬-¢ÏSŸ¿T0m“]gN6–*VÕøI²÷v^÷¬‚0›¡ýŠ½'®ói…lºUEÞfÒYáÐAÚ ª*‡OÏÁNŸÇLD]*]NÞw»b$ͳqÏ‚R.ò¢4ç5]4¢ÈÛ«ûò>Äî9ÁPo^÷²§¹BÒÉQäLÁ™ÎQS\ïȺ2Àƒ¶‚Œ…àh¡Ý6óR¼áGçF2øº‚3Û·BÕþ›ö§6âœ0JXµ!ųeÝ㌛EçÌBrÙDfXm(=³œtŽÂ-ׄEdï{PDÌî°­9•HRs£ ¸êëf›‚§– <ƒÚ]ì¿RM¾5kÈšªl7ÏÏNÔìq ¢¨Ýš¿'æm_èB`¤`pquѹÈøsÚô +£•èsMŽ>(Ñؼvˆ<®Ô6»;ic>èäÖ@x³ÕÉËè™Èê°cw“×ÃîNÊ\¼g†–¥ïÃ*VY¼'˜;05ü½+=9P°ß°n>v¯kzÄ…{ý%›*ÈÃ>.|—u¸‚½éxÙì*SBÀÖÙzAæåÅ2'¡n¯›%¢v[>ìâÜaf +YÒ,’Í#ˆ\ÿ»¡ÞöJ)¸¬˜.ƒ/× Y8T‡vÙMÔ^¼¢c•laÂ…ù*°q‹ÕÑEq$¡d$ð)FZ%cØ÷˜z‰94› >ؼë5p…z$U¢Êƹ?yÅn2»qnf"hÕñeÆ°ãÀâÞê³S”ëêé&Y“åì¦þåcŽr SÀ>¶xÝ2{,vdð1|¾¥ª’A²P=L´ê- +Jf ;SŒPþž€®ätfÉ*è2²ZÒ& Ì*!™†ãÝà@?<õËÞ£Ô +Å™˜•>¤$Ñ"Ü=è[•eëAšdáˆéI»ÚÎQ¾H‡qÆ|…f¢Ðc–ÏÊ,Ê´ùÑ›¿àS”Û‡#[«Åb'üë¹ÎðNq⽫”‘ w5÷@J²›è<ªfdÉ ½û7çÑ4IG… y2G‚,Mö1¢  +5v‡šáDr¦i~Z`þwd“Pº·]î]?õGR}ŠA™¬2ìƒØ>4;šs¼FŠbuÌãê]ø» +QI•rB4¸%{ËñfõÒƒVQxëkØ'1H4+ÆŽªÇ˜ö#êžNÞqeÃ¥X<&¿K¨Àá˜1æÚqH¥¨Å¯!—.Ô!#EPÄl…Txëå–7GxóñÖÇY¾Ù® ŠR¾µµ‘.k[P‰×ì3Òæ8"QUÕ¦ŒÒ¶öâ~H½ÕÝå€ì†­œ¾ôÇX"‡¸ú%Âk’¼´TV nzuV—Aô%p,2òçÉÆD6• £_A´ˆ:· #>>½-äe Wm^Î80LvòµwU ÉøEŽ– +Á‡¿Æ]äpt2[X*™±^ÀÛ xþTUJo6Aý.[9nbáWÆ;®ç“CæD ÈevC:ow½¤2ÿ)¢lÕ Q»›Ò•ëâ"ªäzÆ©ò§È°K #áë*Ù—yÊ¢x»Ùy(­œ6§µíÙÇ›3Œl¡ *ï”0™N¶Ž9D%ÑÃÍ)zåã­õ™C Loªéˆ †áshB`fÛïáÉ;âÆO*#z(Ù‚iÇ;“”#;q¼å°Ô²ÊÚ2¢A>â2ÏÍw\‘råpæa9e.ù¿ÁôOj—ýü6Ϲä‹+0ÞóÈŠµ” N ûw1+ø{ªÑ¤¨’1ø³úΰTµù“öE"…w&8‡Fí½Fºaž“ö¹mæd„ŠŽ ù­„Å …ç$‚N»úͨÈѣ܂ÂJ&ÞŒÐKh½–Uf2%’5y}ÈÉ#:Yƒ‹X‘ˆ-y«‰ê Ç…k‚µ€ØUŽpŸòÀ#³Ãdqì.A¥§yS{vF ²9£4#²Ò¨?Ûxi½"™d¶ çH[4ɵò¦ã¥ŠËÇ€¤¶\|Ì›ŠÊö(‹…1)%^ƒS§º ºáÌsÆkܳ§÷²üw&S1Ë(Ãk°—¹Tú%¿Çe¶Ùôr0¶êJÚô¿9ÏXåÌ A±7Ý°ÉŒ1— ÜŸÎ ¼T ¸IFð1õ±ëZ4ùÏ<åëOòÚVë¼)Ûƒ[.$ƒ®˜œ­Ê¼ y½$±–§S‘'ÎêS­1ÜŸü=J°Û2Û›b± âˆã Í^õC² ÈÝdàebØñ_ö“Œ8‹$.ˆÀ >y¾ì +ÙÙ\dÀÆr­›T¯jëeg ;‚ªYÛõ‘]±ÔI&ˆGk;U_/þea®‹ôªƒrÈÈÏ3Þ3[lE[Ù«»õ2X5P(éØ´•6è±ÚÉ-Üu2®ÅþÙ#QèO\‘'&‰H6u’ø ½è`‘ŒTZjý…lš9íãŽñI|j› ±8I8m 8—h.fȬ¨÷X~ÀË&S,Š¦Å{WµðD˜xÌXîä+B›‘£ ø/z“¹5Pø× "‰ÜPùÀz²óÁ|8© >Ø|Ä{d³ºI\„e6vnIH¶Í7è„zü´î§®ËÚ›%ƒÂ ¤ÐÇ= ¬ºTØæéÿñ_Ⱦƒ/ÄLÆ¿üÛÿS\›¨:I¡ÀÈ(vú©² +ÜOþÛ_ÿø§¿ü‘ôwÿÀÿirvú¿üõã¿ü˜GÿãÇýøËúãŸÿrêáþ.=ì]C÷e†²ð‹¾|¯¯þýúØP¯:}Õ—Ê×öýÝýˆVÎõ ?oô}ó÷«ŽgÑ´ùýú†þ#7zÓú`¼Òm{þ&%e2ÅÇÇ¿þ•=Öª=±=èà Wýó`¢›”ÿýüÛ¯îÿõ?ÃGúßÿתnóì–Ö÷‚Ëüñÿþ!Ò!\ÐÿŸ}ÁÿýÇÂzqÂúgÜ<:>~Ë­)ÍõuÍ\Kw‚uh¾~ô¬æöºæ×…`ã§æëGÏjî¯kÐ;be¡ùúѳšÇËšÓ!3•zu«¾}ö¬îù Ýò«¡Ÿº¯Ÿ=«{}C·öpoÕWžÔœohf6oÀêV}ýìYÝéuݤª„¡ûæÙ³ºó7tƒ²ß%K·îëgÏê~}7K€iÎZ[÷õ³gu¿¾Ÿ»÷_/»÷3šöþefÔCFâk5_΋}6<£¥¿¨%ŒXÏ1Ÿ£xóìYÍßØ«è¾ §BÑÝnëÍ£ç”c³’rùôIÓ+}+¿~ôœòoìVRÞ• éAÝʯ=¥¼|cÃ’ò¦Ã¿—^¿zòœêoìW®:É8( µu_=zNù76,)¯ªVD8åløõ£ç”cÇråâ{õËÍV~õè9åßܲˆŠtéÒíמSþºæÊ‹UpòŸÊ¯=§üuCÌ•ƒX˜¥É­ʯ=§ü»û¶d3ë¢üúÑsÊ¿¹¿%q`ô¦"N®üæÑsÊ¿¹¿, ™áoåWžR^¿¹¿ô„®þ­üúÑsÊ¿¹Ã”­à Ò¹³ß¸ú&µ¿‹«¾Ií¯CªoRú»hê›Ôþng}ÚßÆoߤöw¡Û7©ý]Ôö=jï¶oQr}F +«{8Wë“ãþ(yƒ¾[€ÎÝ)ò}·°œ»ä únÁ8wgÇÏë»GàÜïÐx‹»¹?1Þ¡ñnswX¼Cß-Ææþœx‡Æ_ªoÐx‡å¹?Þ¡ñÁs0¼Cã-nçþLxƒÆí ðkôÿþËÈodï¹»Ž¸nµþã·î{Å•ª—\/¨¼óU\i|ƒÓâz€`žá&®„®ŸìȾŸ[eïèʯ~Ÿ[oõM(4TÕ±üø”ü?»¨z †öŠÎ{ÔٕΗÐg¯è¼›]é| töŠÎ;ŒÙ•ÊW°f/i¼ƒ–]«|böŠÎ{DٕΗe/é¼’]ë|Pö’Î;üصÎWpd¯è¼‡]é| >öŠÎ{´Ø•Î—Pc¯è¼‰]é| ,öÊa| »è| #ö’Î;HصÎW a¯è¼G‚]é| ö’Î;صÎW€`/Ww¸¯+/á¿^Òy÷ºÖù +ìëï0"¯U¾Ç†ü‚+»Rù¾ì÷p²+/ÁÊ^Ñy"»Òùšì÷à±+/È^Òy‡»Öù +vì÷P±+/AÆ^Òy‹»VùRì%wÀ°k•¯Ä^Ñy»Òù.ì÷0°‹Ê—à`/h¼G]4¾„{EãèëJã+à¯4Þc½._Â|½ ñâuÑøÔëwÈ®+¯ ¼^ÑxèºÒø +°ëŸË-Žë¢ð<×÷}¬Gi‘·ZßáÅz”y§õ ~¬G‰wZßàÉz”y«õ¾¬G©·ZßáÍz”óx«õþ¬GÉŽ7ZßâÑz”åx§õ >­Gé·ZßáÕz”×x§õ ~­G ·ZßáÙz”Éx§õ ¾­Çq½k¥o +ëݹ·n•¾Ã¿õ(_òVë;<\%oµ¾ÃÇõ(CòVë;¼\R#ï´¾ÁÏõ('òVë;<]’!ï”þ¼¯ëQäÒ7x»¥?Þj}‡¿ëAÞãÒwx¼$<Þè|‡ÏëA¦ã­Î7x½¤8Þè|‡ßëAnãÎwx¾$5Þê|ƒïëA6ã­Î7x¿¾¦1Þ¨|ƒÿë!0çJã›@Nÿþo`w×âŸ÷‚=È‘¼3Q~Þö59òv3øyOØ y­è)_Ø¡ò6ö?*7ðÿ<̬—ù(XD™Ç²J­_J¨–S«ýˆr)ú> YžS&~Ϊ·%Rb˜·—Ó Ë&^)JD"³6T«WÚGç äðØzý媊˜ý°Ý<9sí<>½vDÎQIsˆ¬V2 +ì¦ÞQUç¤(vNÌKU=ºÎ!åH¢BÁ„Z>ªõ¨âçAò¢”Ú±¨!=T)Ô†d^$ðÙßU‘âßüæJp²(-BÕÒZÚrVýOµ-U Öi¡òƒ×N[fvÙDµÿ¯Ãë§Ú}© ÙÖË ÁÞ©Ô\šê®&¯ÔÐ$£vBǹJ¹¦rä$îÝE©™Vv|~.ÊcNñùÚ'PrBQVÖ jéS +թ̲‡v89]}‰2nvÎ}bò7ëQ]<Õ†ñ·ù­|Rf~x‘°U¡¯7í«5UâõúB¢Ì¶!5ëĦ Ì÷¥‚@¯¢†^̲…Á) +œ¼Àœºr~jX•Vc]2­[?£äEé>êjt*Öt}&“Óiç=NŸl7S•q[pªwûïä–&NW‰¥"³Ö’œAk.¯´˜Ó^l¤©ôQùu±ñßfIPtÏÌMf¿ḏ¨RäÕ¬m¥,×gk’ÊuR_”âMAc.Y§ã½| U·1اÕ_*o:ío¯òMq-ªý"c â•U¨žùäszfdÕæuÙA¥¥AÉ+—ÙÙ_Žfý;Týœ[’ÏÖ^ítFù 4Äaÿ‘›‹æg·ýð` v;ÅM¼¼ÖM.Ç€Ž{²]h|X°½X)ŠU› *m²(f± "ùnEåNI(Ôú½5:“}϶mJ•Sôɺˆ¿—è:†á±ifŸíM€[zØR¤¼%ì¨àèe£MV¨Ú¢"UÅW¦mþ)¹²Èظ=‘ý:¼Ërÿ¤zImNâÈiÖ˜ßB7™vÅdmOb¶ÎäMÀ;ЫùƒJ–áëÑrèÖmP›MÚÛ38°ì óe{ö:0Þ[*TÅvYþô¶µyUd'{È.;T±8+/;]vþx;'¨È>Žì­+”m±Í“ +bÚÅÔbó±S=Ì(ybg%Vk‘3ÉdªuP¨nüÁF=(øV¼Sʤˆ×ßTÑ&›lk…:j¥X—±}Ùß©F¢tI‡ˆü¼¶;[Ë©yøLQ[J zmrNk +§<Ê1Á;¿ìzGUeŠY{¡ãÛ´"Êèt +ŒÇœf › +$79>q»Úùâ}V)Ys,¨ûµïÙ¦j›Åô¡åØ*L;kq¢ $Å4—Ó‚ÛýKGj›äNQæ°Ø‹+–tÅ +9(e7}û¶íd¦Ø èHûÉÆlNÌÌ•½CÝêÈ`†Ù •cÚV{øØsr*.Q=ñv1dRÉ*6£¤ÃØÑy“E¬Hþ‡Ã»GekN²¸rõìæ’„öõ`%øv·¶'o“½k“}ȈÀ¬;Re-5<»,ª;õÑç®]ÀKhÚTû• +2CÇ(£xR=öç¬Km ¬@;qÓª.ã`¯ªÿµÏ3îÐhS¾ì(#gµµ]Þu,³¨ª8UèÊŒ•IP(ôÓ¤E¥ËÎfÓ°S¦bÞfRÂyïB›/¶ïP%‡úÚ-1b*cMxa/”½ÌÊÏ^éÄ„’Îf‰bêN 7Û©èsz¤ªLfö*Ô™I5oáôzBÍ‹FÛ%oxa0N +ªØž}L/ñl;@Z5~ÖN²nv³>hQ …pbñÅŒ cgY]ÒÉ-ÄýØ¢©s÷h^$™ê²sxC̼ïEk"©þðáµK½ï(º7T‡»†°ÙàÄ„¥<½ú¨*ßëEÞŽº…¶<´f½H/Å©½¤Å9ì¦iKä '¤­î1â£â6(Ó‡r»ÝFÙfZ;»¢Ù~ËÖvKÕáÙ‘lpž"d;¡¬³ ©!l§=Ó€rµª~åìmyØ÷¸Ål·ÜÇN›^t™W¥-*ž=Äl;P™UîÕl÷4K'ǽ\‡ +°Âœµm¡,G;£¢"*{@¬›§f•dJ³x™U³ŽsŽ½ÒÌÀ4©U;²ê—»]äqœBûY;Ñæt“’¬1*”ž÷Š6S•]Q´Çzª|sØ«›öA`>I¬KÊ™M/«I%ûÑb5$ +°yíLöJ¸º°_Nɬ}YŽ¹‡]Ê a–AÔ‚4¥3N ·zT€”2˜#ŽóÉÞ4Ÿ#E>b›±SPežM¤6Oo¸”y7™¶#{.¯88ÜhÞB›k;/ÂŽtL‹ߊ5\z”?ä4®£Î½øåUìa¯D¥]Ú†¬ûöš°9‡tÚ>žÍ&a¾*ÈJéÇ…tB8±F±ÐiÇJ]-ÅUðÇ7JÀû›vhp¹"Q¶? —Ùù3‰l™Ý eóë{lãÜMØ(EIM8’Œi—bÛÇ„/faé•#G™/!·Pïwz¤nõLa!³[\ YŠGŠ˜ÿu—Z¶¯µHm{,n‰ðð$Ï×áP¶=´oakö9êôUêõèë’¨ëeõ81Z>…fÙS}(yÕ@Û29ëÊü  Üá…îì\²3£Ÿ²±k®¡Ò:ÐNíBê¼»Došk+C\ 'ŸÇa«rŠ˜P¥… +_x‹{¤Ù[eø †Ð.ôúZ}l¦yi!$^Ì­"I¥9*·evãW•/U§ÃUÔÃÀ1 ‡K†ZÒ÷PyÔS¶f.¢š¤Ù16BfË+ —eU´ÛÓì9¾†‚0*O—Ô=”/>ÂÞBh÷G•šó +‚N×^ìG3$g¢á*Hé);óÚD/ºhó&ÔLÞåB꺫¼Lò²‹&«7m Êþúâ#΃'Dç6M¡LV +¡}m·‰Ð¼ö"÷3?¦gÅ6ëòÚ‹v°­§Ð ÷Ù¼á†[öÓu–ŠûBñºà&¤dÝL²¨©LH%J3KÆz%¬ìµûp¯4·àˆÙc»?P IV™ˆ5ZÀAæO³TÚ4À9âýMm¸qVý³-ŠBÓ9Õ-œQLXƒa{̘1U¹}RÂÜWçs#š^¶Ð¶93ªé˜NqQ3C7¶ˆ ÚàOݦ¼èáÊvÒ¤-´#­);ž.0C¶Ø-¡@®þ)u¹­³…g&?}€ °‡' ÷òÒU $y_ /Œ•h=P×îXÕ¸vo©ª Ú^jûWhœ¬9›ÊÓ¿õútFHt¢l¢†¡Ùz6qZüìÂUg÷Jv,ŒOœÁîz”ÐŽ—Cã2—5yù‹ÖÜøѯÚ~H-ζ…}×QÓ2϶±äx‘"r]…þ¼Bå¢jì*[hvB•—A¿jÛîV“­03¼{ˆÖØ’¸Ûû«x÷¸Ÿ(m¡ÅgˆYètÅ-Í`^q‘sPQÈ:å¹/ª`¦6µãsìD«GLbèf).?µÚ‰Q©­7­…^`2„ª)KÏØ¥µ5Úpmhj#ëvèľÁuð 8zT ¶›Ð:r¬åÜ/ ƨ±+Ý4cm¡·6U^+SßÒ¨Ø3׈¨,‡¡iûqiá0I80JmþfRÍz¹¶Ðº-¦U–'Ì&gœ-Ùf=î=›þ:˜í*¡mòZj¶â£4ûpm¡MˆÌEF+ä œÜÞy2uV«îÇÔ½Kx’ÃêC¦zÉfcª0c÷#Â'$•×µEØàeª<Û×a¯ma9¢ätáRû>~:\bªÒ§^åNÕ_]˜)²Éµ(c‡Ù=´„»!Åt³5ÍÚNYa[Â^•7á"öbÎ6ýìFø饃£» žmHênl?/?Ú¶ÐÖÑo>ã»ãþD uºÙ¡ìE<Ô6‹Ã¡‰¬qÛ£¨n‘b‡ò¶LØm±px{R,Vþ·ò GÛ§6mB>ïcÕV• cV&uw‹Úˆ[HUÙìïn­Ïæå1´á˜ª +YÌb“?=Ŷ_X¼QS”18¸Í0§pN.‰ÜØìºÄî±Ý m•«VãÛ›7/–ä×æ©Þ²G‘h郒Õþ‘¦;«r.³šº–¶ŵG–ÝX)nÝ$´+¦íja÷šPõ¾1ZªS9~ í7ëï¿³í ŽS8-¿´fõ9¦ui·*êq{ *;3V;3wàÎ!pví£<3/rí°ûvß2ûC.Èoo\Æ€SŒäk۸Š÷ÞÛ¦L9Ý9Yê{ëŽm7\¼ÅÍ äyÁËvGK˜ƒaTŠ7/€üî¦a|i=X’܆ò.ym·p.<õÙãŽ8í8öG‡?…ÜÈíŠOëƧN¹&¼" v\ öü´<ÎÓj§d¯²l_¥Nó¥[lÓV Îæºl¶Ä=G5µîÙßÝgħ¼€óƒ>Ã;;ãj§È2óÍ$Õ?­Kuö¸…§'ÅuozÚ–öŠ€UŠ3¿RpÙ'ÚÛ›ÇÝ¡Ù__›gÛ)«\æË­qÆutÐ,EîgÚ>Ì”JûF\m[ó +ÎUB°uïT•moþw=³ÉjÇõh§â×ý£µd‰°•¸'™Ð.&àéÛ?ÒTێЂfòî#ù.ù3|ë°‹­CQþt¡˜6Fï?ï¸ð§Ã†ø~þk5Ú¥kª +Ñ7H¸/‡ïþHy¡xð‘&\ºÄW}¤]CmÞ?˜LhFqZØçñ²nÇjNNõÖ4ß|øÚ€{ÆÓ•„„ñ¤”ýdã]ÿ9Íþ”ëðëG‚Àà §x‹Ù?²rÙj­u7½íìWbÇor”Ù•úíG<žÏt²w h6}åèðôº?]ØÏ)Æ §ä˻ڴæýýƒç¨º}mAÇsx¸™Hœ‚{Ä(ñ‘ìÔqæ¾ÿ#í.Ÿ3÷Ú¯9X€~:š|9ðþtaÄÊÞ?@xM??úH€(‡œ‰ÄÃî9å•æø—1˜ÌÄK½…o¦Ö mK狽¹?ôí­#ƒÁãfZ·¾ÙUø(º$ÛÞa6ÜþÈEf¡™µ¸:°øæ´áqÔ BÛIu?}w òå@·|in?á1RlÛ}âõÓ7Ê%xx4öýß(_6ï×oLʼµû`Ö®ÌF¶›{~„`ÌŽhz÷GR¾'x`éÁ§h¦‚ëÛ§BWÔos÷ùö‡t·7¸·=žG» à€ÿúõ@º.‡\1¸–÷í 2ÙŠˆ‹ÎL ºUü`ïœÄj44íÓLƒ.9@ eÌÞ‰MÜ~fc9²Y+]žð·7»}Îå¶áƒfÛÕÄšy(B€; ÷RÊá[(À‰rÚ +u½õ±…f6:"Þ˜Š !ÀŽ5°t¦Ý6‘rÂG +sÇWléC©Ë—¬³Sþºœi†+Û„¶•®åŠR-Çêq¡¬q„³ˆ¯í6b€Å\TñØn*?»|} “ML‡•½y0¸·€sMýÁ`ÌO¹2’>’ a€rYû#ÇÃ[Ö[>2‚ÎöK¼K¸Î’û‹Í°±m=v|`/fÅè *Ënyk `ŠÂŽƒÃ²i 9@=fàm×q·…«çñïá“6ùþÎöW–6ãÛ´¶ÓÌ® Ž€½Ú§ë¸Y€ö%iBXÈx¼ww½¡f0ÀûÚ‚„Ëq–ûœÎ(ŸdºjÁd9™í•¶h6 ÈNY¶¯°È =³¾ÞÞ¶üé(¦üht¸͵€Uq_„z¶›h€µ©¶­Wü G[#„éB&ãŠø:¹äÛ·ÂÛ¾}á™*ëÕ6ë_]hÇ|ÅÑ«óµ`½çð{²Ú-©ï…WÝe1·°Ã’´¶8,+„F¦N9Û¡}þª_þ YP¦f§C\U†;à9qÉy¬#lWaöɾB;µ™âùtÒBÆfu¢%à +QN¡CÀ¿y¤9@Šð:rÚv¹„bøˆp[MíÀ­¥±eöo(³÷"´}«na·-YÀ -P[fÇÍhN >Ý—ˆ ǧ_ò§GžìDþd ‹ý»nþcÜìÂÍ„°çŒ©Ù¯³]D‘ß-´?Lò2Ø®÷™È/aŒ rnÌÜ3ÉÏÚ ¬ÛäîD%µVÀ”ïŽÅ5•H“zÖe»TÚ¢A‡xĺ4ÅGBÛðÙª2ú´’SÀž”©TÈ'Áe= wäضÜuÇ©)îHÂƵláIx`“ÅŽ·uþìÊiãcçª þA@õp1 D |~éuN¤­Cd®ÛcäR БDŠ=/¦, ›¼…fÀ£4õ&°íºì Veº·˜‘NöE6~i óVÃÙ¢¨e“ÌÜkuòÎ} ÚYæ÷½Ùìt8B›Ý]¡B¶Ð&Jf€Åîð,cGåA"ÿBsâC&¤eÏ awÜ”ÎBì¼ï¦ôÄó>IÓÀœaÕqf×0XÍη±Tbˆ~sŒÒ$qoõSX'x§ää:¶‰å®-ìºù ³AümâŽ-\Ö,ÿÚjf¥]ÇÈøq!{Çn'¼‡9ü,l‘0?žg\ðã0BÛó–ƒSAžÛ2ªg'°í‘Æ.yÛi;$Ú 6ŽŒ»ßÆköÊš£*þ˜}÷:wãZ˸r‘±ÕÀbm¡Ít÷q hlµ¯-œŽuT]ÛóPÂ~Þ®ä!ØçôÁdÁIÊ”ù¾"#a Z@IþØiÛ'§CŠP~@Ömý§Ü·ÐñPfp¼vä†ÎOviwh”OÁï-´SÀ¡Ä¤nÙ~‹¿qËZÙ1Yâò6CF0G²úN* iFdNŸoÚyUPQ2 }`Í>Áƒ`ZíCç—0nÒvE‘Ë™ÅJX‘IƒÐŒ·® a^ /pslÑ “Ü.¾•qI§Â vŒßûT"Þ1̈ÖVÓ=ßOa±†8ŽØ>Õ¶"eŸláö-ó«vµÃyÎ"$ç™/ês3Φ( Hûa{ˆ²g;Ùl»Ž7èÉ(–¢%ÒÎS­ÖaÑç$3+l1•-ëPFù·rb{¨r I?‹V‚ø³“¡î_%à)0Z•f¤‚¯Wí^‘©ÅE»”-4«Å}ﬠNÊõâdMJÝr! síï1ÛÕ¶]ïørní´¡Y¹  ×J˜àLÌd³á«’³¬×SXu_ÏPYÍ‹ŒTÛê PÛ%–RN…óˆ4ºn*¹.¬Åœ_ i·³o>fä–e[@m@;Y•-óLž@U™É$‹o m« ^H.›œéˆ­gá–ëÕfG!\ç¶]„9Ëì©.´9áÙX¬PÖ¬žæ–ŽL¼­$—RÂüÔl'Ef²´HUÍ‘u£DŠæ 8­­ÃÌ=;y˺—»§MæŒeØãäÇAQpîû¤žŽ¹…f¸ºï‡7qa™A¾iêš;Lu™u­óM›½q7`¼¸Vô6¶Ðf™ug‰Õì+²YHû°Å%¸«ÞLk¬§Ghìžy˜X½lˆeFl¿ó•78÷}½„¬÷¸1·f·Õ´ØtÛŽz»»7ÉÚÙe׶ÐH¦‹0´šÍvÞ’d‘¶, Ží òĆ m»Ì·}è)œd¢là*ž3øÌBõ%KÆ_Ÿqu2a3ªÞvNÙ Ž-8ÛϵãöF¶ÈMN1-‹XÛlmu ‹m8•ƒ¬-îäGúK b3ÍØY´˜!û`7¡m)fF0¨6™z%Âw ( ;“K`{HðzÈÐðÞ³b!½ u¬ û_YßÀzö,° ~OJÕ;d?o¡@…e¥ØÒÚù*Í$¤Y¶¿Cè¬~¶8?_<ûÝ•t+»IÍßÓ8•@-Öv!íKxY²~£Èì”Ϥ¢#±s;Œq˜HkdPºÌ«c3¦ð‡<}e¶Ë?ØñäcÆk™¬çk!›0äýžÝF9í%3ÛcL\QHÌÒ:Jí#$BÚò‘Ùùs$mGf¬}:ŒGŽùQã¹µ¸(AöM2pÃrœHRIÝÉ°=G¶¬d ×=}’Ÿ8EmÆßEò§›8ÈF3«¦‹;Ádv÷IÕ_³³(3^³Ãj¥”Bƾš]2íÐ[l"³©ªÉȬ_À놬c‰ë¹mîîÍžä+X·5^î‹è!cŒd$§×eȵ+Êhû¥Ô6Y‡ug7¸Û¾^ƒð‚ઠyÝ ¶½Ç¾£”‘Ev‹;N©ìÃÖx[õr7Úú!Í*dˆÝf垥æ Ê÷Ò%R23—‚¸ÿÙví«zõc™ :\f+ÝÎ2ÿ–ÉŸú5K²ä¹‹.²%8αƧÐü¾8¹•š©{Žu©Aƒ#»fç`;¦8B®ø5kF”!ãr7¹5v’k\IäÄHßM·ojͳôYû9æv’Õ`ײXó±Û¬ÿ[÷åÔ¹AæyŽù`QÉD[k›S¼à#Ï";Ò9ä6Þ$ûOV5§9¯öÁÍ}ËÆvgIffŽ5Æ¿¿Ú#ç9Þ;ÈYðUÚ9ÖÝéã'}Ôî “¸ìiÞn–:‰ò©…ÌŽ·Cnª‰‚,ÁÅbvf¬odöÅk®Ù$ÎåدÙü-Ý¿’ÈPÚ«{Bc‹ÝYZøOx)vËÍF`‡ó–Ó·#õÝr<‡ÁGÖìùØ-o-’"a…!‡ßŽ¯ÝòfŸ8dÍÔÕïÙãEæ£df¹çÈ‘̦ßX²•‘™Ùè!döãf¨¶²…«i7£;Îù‰jÛ’•°M™öÔÝv¨"«pâ1ƒ#l·°iòCÙb†ï¶ÛD²^ÓQ #N1—͸2¥Úî¶öÉ –'œaº¬š‘2ÛŽîm—+ÁºÔ7èì8Œa×EõÀ ²é~ôx. w M|‡°mn&ë †Ð‡QvdÖˆäÇýtÓÈ1î(xÒ2[èöz¼GòëÝž ©¿Ö#Ÿ"d¶mƒ§÷×X$Ó7ÓnºõI¸4²îÛ{vYæÔöýc’¯”tÏîŸ6ξ÷Oà2m/ö%Mkœ^Bí¦¨±}gË÷æ|’¡ÜW~™ö÷rwÐ^È"žëïåd}=}#˜ +m²ì¶sµm»„¬…Yì²c‘½åß‚k¼:÷ŒÂ8Db!“àˆìÉüF—C¶puzÏ®U8'ï.N +%Ÿux®,²µÁü’ahy~©Íh¢Ð%†f'3Ý L ÇÞvR²åÐt8Ž'wÆ{Ý‘á)dö­{¹C”íºí#ó]g›·”ؽYã©Ø®,mgå«‘.¢fð÷ê%‘mºGa¶ÝöÒSŠì–‰Ï`…GL뵨 .ù¼Ûž1M«nþÓyqDß#Y‚CÉ}‡S0 á‘ÌÖ¯*Nru•í…Œˆ’]’GÈF +èBë¶?eç(˜ŠšU!{%JÀ|Ée"=ô׬5ç®Ë­Ö övÐaBå‘ÌÃÎfkȉn¦âu¯vý¡“h¹¬o¿þÝ‘àð: ±šñž½bKÜm…¥>Z‰÷ˆ¾ã“l2Ë÷r‡ÃK¾¼-ÓÁM7KÇYn'·ªlMÛ Ï€Ú="Œ¬mÊ)Bl¸/Âwü‹ŒãÌLXq90!M1R‰/ŒÈäÌÎŒuÀàe*¼Ý€:lf¶à'ˆg·ÌïÍ¢f„ly¦µ¿g¶Ó6wà5+›fJ í¾N£D2°Í rîl€ÃE­½ÒÅfa q8ýz+Ì +‘øšý5Â~k/tܶUgŽ2™]}ì–-È\< ÒVõ'5wËí*i—ÉÞB6”æï¶%ÚÝÀßë—اd¬DG ٨ʣY"ÁÖ%ÌðáŒnä”ùˆ+\°èƒ;DwX}\>£ë˜¸G‡9¬C‘Hí¢ =ž‚36ª®U +؆1>\é¸È:àœï•æ©¢È’`a%†¼\¶—uÏaL’á?\1U¸_ÛwÃÙͣݰÕõ‹<­™Õ¹5ÄHšÃÛ…‚ +ó ´b>â¾(cü# ¦pjG¼Ö{\~]¦½Çn¿Ñ´+·9”7Þ«¤V§éï’ f…$[ÞiEB¶êðS\à¬bÇ{ññIZò%F\g±²gCfÍؼ€8UmRu_©–` úLÌvŠîAdöÊú–Œ“—–d°ÂŠAOÚ$‡_|—ø;Ê^çt{ {ÍOE›S¼Wá»Ñ>Bæ^çvù±{‘Òµ4І߃~ÈÌÀ³Ÿ­9d¶S º¨´lþùÊË`ÂÂÇ. Á8Ç® ;YcÙT±öø$Ë šGßê‘ Ò=‚ŽÌþ³Ç¸Ð}Ú©ú¦ó´î¤c\\Î;—™"#DFjBjñ›6=·Íß³ùg{›3 +’Ð[UˆÌŽ5%cJ{8ù™p›våqŒ¢~ÀQ'²#h$×!O2RTK¬t° y¶ý% oúðQçÊ;Å'¢Ê]¡Vuð¥N<4BÖèÀï1WZŠ¯´“Kî»xï¨rÑlZÇê¢.îF;’¬ÏF™µlù¨7Œä¾ \ë °ôNS#<®]dÀJ„l]xž¸ ëÐøNb˶Àg¼‡2JÚ2Û–ªºràYp¾oË)<Ç‘Ãld›~Ò®(Îf!v(ˆ“œ%Ù¬\b±¬9C<àŒ&£3}ÐEG†¿Ô›^líç0Ù“²¸‡P‰!3»;Ç Ö«ÕoX‹äד´Éë½9')¦å-ïʸ3³ËÕ‰.±ÖñÇ°»÷t’“Ä’‰MåÛÔ&;H.Ô:S*苨<© ­8ï¦Y@¤gxÃͪÂ6rþ*d̤×dåwuã‚wFVÉ(ˆÝú6;a›srp¶kmös”+õï]Á‘©ZO™^@s‚:¨ñ›6UöÌënöBp†È¶ÍDÌC"p)û T­Ñc^ Ua¥nZQyx¼év¬Iq«^åà bY笢W$‡Êi€{|úƺf#-…Õœý½|‰©!â»-Â@ÌÄïš|‚UHq䔪’u’Rvã +‡ÄªÞp™XÃQå úÑ9{Œ¸í„¨‚Ÿèú€Í(dØ!>â&³³íp™õƒ3&ÉÌ”LÍÓ«‘îÈ(.=WþYbðô‰8»ÄôhãRú”³ðHŽôðËÓ‚Úg;"ÉlÜŒ.²=qø˜k@ˆúyG7ÀÅ)–yÕZfµ‹ˆÊøW¨*…©wY#«œŠiKÄ¿%du¯²Úœa'd‹24%ÞKžÛíïuÙ¥Ù[^ñ’Ã45Bf;K,sÍoë¯Í¼Kð ’Ë)Ñ‘@kÎ-ZízËÅÒé1¨?EØ»IU•9|a…FD=­sÖ$f£ç·Í3JUë¹ä¨4D‘ª™$#żű%;£u.Ú¤Y›-bkÒ§v aOoxzD†d0±Ì‰¿n†lìKŹUªáÁ*­Â!e¯÷^‘XÏ¡;‰L+n—ŠŒ˜ddqEìÉ(vÚgnQt 9 Àlz§vÖm©Çg¿ô$×½ xl8ùðŸâ7NûPAf›Þ¹q·Ø̓÷< [ã'q6 Ím$ ÄÞîÌÅÁ´Äd‰3¾:¾Æd{«i¸K;Â%‚b4 ‘÷!Ld`3¨Aà"ÛÉœ¢¶1úpVØb‰šdD«KòÑÆL ´üîJ c¶XàŽñPÈöf‹mÃŽïeJM´ˆ.•$¦èå¡NDÐÓ4o7×{‘<«uƒ½Z7¢XNN²FÍå+U2¢§f)¸ |œó³ˆr…ðÝôENØ)àÁÿHþnh+\•¦wf²Þ*iËìv-›ùê‚”+:eˆ†)ùx›é7¿²þfê=ÝáOóíqÛ’Ìnàb ™mˆ¾À3üP6v‡_›ÀÁb)xË¡XTš8©®ÿE”KV*?¢¥ MpþÕ BÖS`uüÓÞr"—vïò¨ Ù¶Ù礖Sî&Y¿{ÔYçVª–§© =»3º ºèIEgÖf2sã ó„bCV¯àt>JÂSecg&L ™}sõA§`Aæ–ëdÝ6«¬ ÅΑuÛ×C’Cψ:u€ÂÅr È¥:)Ì`ÓfÖpZhdþÚðJ4žÕp˜l­‹üÓ4 -WÁ!söAÇWW Ó![½Æ2?À›@ì»Û„ZÒ%½Ç –•^2QG¨é‡ÞÙ¡­ ìaò,«¸í:üh+> ÓkØ”díDOwb懀\ ­!¿M8úi9‰û,Xg­©ÄKm>ì`5_wSëiiÈ:ÿufdÈÍ Ø.Œ˜ƒêBäT{KžgÆiùgètšC(Ñ;aºåæå„+º7·õMÆE=\ì­,_ã ýbÝÐ7¾i.…Š¶™W}ãhŽ[1ëœÕùÉõ9|£Ð›CXƒc˜nh±§Â¨ïÈ{D}³„(Â9¹Wû[@Û¡qV†%Ü|>Ä[µÃ¿®;;0+I*Aó¬Q†´Èª‡“–h$í(ÎÛÎ')ÔE}CõõØ);{ìP·WtÙ\ÅùŸ°&¡Òì €›Ûë³n Q /\§¤„x­D§‰…£Ø–sÍþ H?<&(õ8,"3(6Ð Ë6»Ô–“»c˜ŽµújnžÁ€/2DÖ#žÖD™NÎp U©ÑíòÇé."NÚƒöÊmÌVUƒkL¹§~pžBë7ɬ[“\% J~’Q|d9W>¹5Aá³eÖ…ò"šis‚šAIC!”Þ2ë¬/Üïb¥e–µ¬F +] +‰FB2û3_Ê$ôpKVAtj¼î€ƒ„Õd"ÉÕ`+B³ù#aà?óŒØ\YS›ÓŸC®øj& 7ñë•þABCw`ébItj³ó3oívGÓUÏw8¤dã®% g§!¹@[Ö7¿±¨ôí¢ê¡[1þÛÅX¨RUXàF¯ª ÝPõžM6êI„ 1;u/2Š¹´T·¬m² úÓóTF › +è‰àb2k{“ Â7yŽwr‰>]’EèJïÙ t¬t©>`×yú„†ºtì¡-[\ÕôŒ¡a3 ì¡œ´]j©éI¸Ó>‚ú[U Š/p±¿WÂyñ)LÈ`UâH –ˆ-Ã;¦a΂8r°WÃ79’ð¾Ì2ÅyŽ#mÙlE6³Üb¼9•¬IQ¾‚°ñìÚ·l::¢°í2†çÞø•M>/…¿¯YomX³FÄ0¬œÍª‹±”ðƒÔ,Øû)›eI—$ûµ³î‚Ý;I4ýÀ? Še’@tØ6Fà …ظšÅóa4Šò s~—uötˆ·L•:™“¡-«†¯tª¿(;$’8ôi87l(ƒB›uXirn[™Û]¬¼ H:xé°ý(”Û9Ë`Ј[c "M)&4&¤²y±PIÚI=Å Ú.O8WŽ3q:Yà–‰ffxá1ðØÓRÙˆn`Ú |rÐ{!ký*Š¿C!lÚØÇÓAš *ÎßÀØ#S4Œ+P L¢Ì1g3E à½&Gq¤Ýv‘$û2*i³3ƒ€½úåÓ/°Ü¸ì'Wœ?¸ íøQB +7X®\¹ìR'úà‡J"’Nþ-Áõ¡ºrèJ ®HÝ_êr$’8Ïò)à®E&‰‚ÀåiRê«Eœ!Çá%v¶°3cÕ„’.^ÕV±u…W`6N ±…$pª]Rкo’÷ÚFN=PtâSyé#Ò/q„ c2ù¢O*`³ÀÃœ%[îI0®-’$Ì—ä"9n«˜KóÖµ|á‹–N{Gì]&´»¯|œä…œ­¶+ÁÀ¨U}é{ô_œ;ìÆXê…8@õÐIÌf9®Ê½…_éúµ¶{\‹?… ƒÔNKbIfJÆ%€`Ö¾þ‡pvœ"ÄÎ6©¨‚ÑÀmêГσ®ú¶|w1@sÍ÷:21¾]ò†o˜¾ ßœd&/I(øé¹%êXQÅÙ¬.p¨¦™» ‘sßœâª$áä§=py®é6äQ}åø çGVušÌöyv‡ÇÒ³Ï%Õ‹'1Šº`ŒD¶7î“ ZÈ ¹©ßIå.eml€eyv÷õ¶…j‡ú·W‚ì2š €dg§‘Û<“JÙ®F}ÀEêh¹î¢HÂãĹ¯œß!îÿ¶…ááÈ*FˆòòAŠ@Æ~€ãwç6ÀD?sÄ~0E¶ÞŽmöjKqþ+tpFíŸíËùºò2 ͨÒdÑQõE•vl(gÙ;bw×'H@üoy÷µ? p Œ '‘ÏØG ‹j•-´ âð‰°0 +»(3]ÈJŽì)e³Yw•m´wÕߊ O`‹´¢bTa +(Í‹±]ò…*=%ø"”t…g¢o!;hŽ a µô0ŠñJoBm¥#HÌ—>Î{'¶KŠQn¡2]Èk?dÚ؆¹EE“ç'›PTÈõ\ÖŒU‹z‚«‘Xâso7ÞÅ ä?°£/ÅN‚kúp¨ª É–"4´kATœ„ßöM›µ—¤m„ªžÑ¤|ôépTéEa”ªÉ…¤IgÑ î% –êááDÁ<1GÏ>àÞÖÂN°‡<éà#.h™ Àu…¬É½%b†Yµ(‚[×"M­ùf@ê­°£»`ƒ›ÕH£_a”Á‰ŽHOÏJ_!«~naóÂôÄ\Rf´„DéÑb7(Ìn³F:…­EIÕ•:t+ˆŸ¥«Ã< ?Ý+!EÑMr“/¹·àÿlç8ßqÚc7ÁQ'[hKÕwƒ’•fˆÿzËNæ]íñ°¹ .)jŒŒÜ"ù²Ø–J‰ŸÜ"mÍ\vaWŸ*¸4½Àk×Öò„­c·+qa,DeTÒ„AŽ²kNa“"Òv†>7ÿy–TºXNЭ-&:Ežý%Œ©ªI%…m€ÐVW«=΋E"b¤¿)ùØ–âÚDªèˆ§¸yf{Çݳ³Y)g”D]P™…U%\HÑÊ° vŠ+– ã8ÈF´SS}‡;3d³|P7…k +!¥·' ¡—)nQ,Üæ’‘–Ø}3€0hÛæ¢8pÚN:“€+H[\Èyæu´½hˆýäòH„ÝC¨ÓSu0kÄ×{lBr€PMgÅ%SY…pF’JbD;Qú ÕàzRĪz©¸¤Ô8uÄ`X•Å›WDjêl²“aè†ØUUÔeL 3pnpþm×APTrsUøqn2ãƒÅ{nˆI\HNó¶ ªx—ò7°þ«ž„SŽÉ• •ðAm Æì{GWÃy!N›ƒm:ë.Q +ÖgÊœÚn½k<‘_¢2[S½kÕ<ë.EUb/.fv'~¢²…3î.â»Á¦(ÇÚÑ—Rl&Û̳&Óˆ‚]*scXÚe\ˆ<ƒUVˆUù,ôîu—TI¨yÁ¦«|㨻”c3àÂH^Ã(—ºKY#–½–QöãÌ…8”6Uœ¢÷º")ž²K›} +>„–ÎêI" ØŮ̦tY=<¨è—›œ„€aæѽ Æ…­=„=+"Z½€ÔNs—)Sb/PiŒªµegõd ­ò®ô Ï "6 > íSș¤ÓÅ"QaÆ›ASlxgþI¨ ê£Ûæ'¥´ÒÚv8l³Ûl׊ZFW©¬*Àv|…‹¡2…Õ Ð7˜„EÌp> D«Z–h«C¸¶ã6 íTkØj*Ÿ´‰Þ‘u¼!)¶Q•cV¶h…•²ƒwE€L㈭€4‰ŽËznÙìÛ, acjŒ÷:«bªLxV ºx€.„ d|x‘¬|Ö¡H’Š«,2á®6©"IœdÞ8ï/uË2ˆiŒ#¢ò/¤’[FI5Ÿätm“NÂuU¢QIkÔñ‰@eRlÊÊózlâ+çJEêÂà +Ì[Øç.(IÊ¥àH»NÉŒ+v6Ýù㵉6*,+›×V̱«+åKÁô,TÕA)û¼…Ja.£ ]}ÎêCQ.ѹܢ¾æUù¡èѦá0¯Þb' Û7Š¥„ìLŠGïÖ ‡Þ½³XÀTnâÛB?uÕ*P‹¹Ìí™)[.ùµ§v5ð¹ÕÖ*`â‚“ â\ˆ$I· !š3…IFìè<­ƒÝJ*¾§¨H4ëªOBÛ{fL* {9°$ö‚)°'°ò¼…g¬¡IDr#K +p Å«@¼%å±ö-ôS_=€É=¹dǯŒ"!ÛqÀè[HÜËgUg²ó¤I¶®È ñ*€›±¢Ï6›\éØœÌä@ŽØ pÊÚ-ºïÚy”™WF½8sŧCÀ:¸¸=»Á‚7¢ŽÍ™EÔxD=*dÖŸÍ8&àÕÉè@u„ÂJœAd1Ö`ÔÈŠþp¼†°ðÍ` Þk›cô9¡Ç6 T©™Hq°£ÌÐlª=êÙ‰¯3ZY¾Ø –JpÙPÆN¬m³€ÔïÚWpa»ª3#®´lmÊñ†jªzq +2ˆ#ƒÔÉÓe«¸`^‘Ÿ*¹¿Æf è^/çJ€Ù ‡Y€—ÃÖ]ÊËB«$•'Å@s’œÛ­ÌKM"ôßófzŸš¦> äíNkEQl1ƈK¤z…ªÜ”Çz’z«*¨jÓœ“0mиª¤êŠyÐ/œ®!Zó`(5 8¨ ™3vòÎ7ùVÇ.‡Žð†'Ý UUöNP:M9KB›°³@|«œ›"º(”ËE`fCØë6 üª;ívB¸ ô’¸n·8í¶Ð““õAÊž¬g+lÙ"ÕkEÚÔ‹ÝB±Œ¤(<ÐlDlCgÇ€mg}Àe§KÚkƒ@'Zõºaöec¤ÍEN¢äò A…Í€î›/’Cÿë@Ç!uNa_Q>þö?þ ””ÄžûøøË¿ýñ?E%¶ÙÇ(ýFîWüÈHu†Ùsÿí¯üÓ_þHú»à²2¾ˆýå¯ÿå?˜]œþãÇýøËúãŸÿrêáþ.=I4Ðøĸâ,˜N}ù^_ýûõ G•ŠÈïô¥úµ}w?’¦YÁ“¯ýY®õ}ó÷á§I\Ó_~ÿK{~ ÿtM¦vøƒñJ·íù›ŒwÉÿúG©Þ<ĬÎ?7+Ôõ¿Lüçÿã;›ô–M°ó„b")ü :`°“öëÜn$ü²“í¡o¿Š§¯‰ýŸõýïÿü¿fÄL·ñõ÷Sÿ‰ß‡Ù€¼ÿýñ¿w3Á¨÷µþÏŸø}²â9Ã_¿þÄïwQÀEðžñ‚˜˜y÷õ÷¤ÿep@Bö¦ïÇñÎ!k«óˬQØØNØô`ýÓ(€JÁ.Íå÷Kৠ+NˆBŽ›W Öd»1“*žlW«ŠàÇPø^Ë6«è/š ùPóœöÝñ»{LÿÇOü>ô v4üÿ×Oü~…·Ã.x×ùÅï“y]©gþõ÷Ÿ_¿ø}ò]¹¿Ý@ÒóËã¿?TAÀ.²_ÿW¶ÌÓ¿O):!4ýòûÏ¿ø}.º´¯¿ÿ#óGQÀ†íM €ˆŽ]ÕkÐC?2Cq¢Rz¦=8ãž·1~¥  ¯KâK þåGP %ûƒSôgZ Wœœ%÷ +òñìñ:çóÍ1!ì§êx•/Çĵì‰êH_Ô¦V&6Vö©½…¡~±Î¯LöÓÇRÿÆÓø?HlXö“àt=•Èêñ/7ýñƒÿø¯ÿ9õõñßÿ×ä$çÝ ;-.mÊwm¢Ð:€–róȵÿ¦1èÇ˺ã­íîvÝ7ž×^×MÀ‹T’>NÝמ×_×-ºáˆ<…îëGÏë.¯ëV±»C‰e[÷õ£çu××uã„äŒ2P¡ûúÑóºÛ˺ «áîê»Ïo=¯»¿¬»¦¦J×0îÅ~ýèyÝãuÝ=_í/Ïkš¡©®¯[cz°5^ö±ËžõŒžõ¢°/•L5ÒÉc]?zZó<^Ô\2(FûÜ+çæÑóšÓ«š…áW Š­øêÉózó‹z+ô9».ZL¢ëGÏk~}Ÿb¶6°ÀxÏ'ÖÍ£çt¿¾OI÷‹ž†îëGÏé~}ŸrÝd¹ÕCE¢·î«GÏéþÆ>…n °RT8t_?zN÷÷ö©Fþ­²Gçܺ¯=§{~Sw%à¨äS÷Õ£çt¿n¹nò¸ÀZíÔ}õè)ÝëuûKºI¦RåØ~öùõ£çt¿n¹n^ÁðËÍ㺯=§ûuûKºÉ¯íhs]?zN÷7÷5`ûó胒T¡ûúÑsº¿¹¯á;£°…îëGÏéþæ¾Ë1üpÛmÝWžÓýÍ} §ì"cœ}~ýè9ÝßÜ× f9œ®õÔ}õè9ÝßÛתHÔkS}×}óè9ÝßÛ×ê"×y¬Ã,•S÷Õ£gtSHê[ºU@:*è…îëGÏéþÞ¾Va1ÈõèdÚ…îëGÏéþÞ¾VŽgÈäçžk7žÓý½}­‚‚Sý˜½Ä®Ÿ<§ù{»f)IÇHóT}õè9ÝßÛÕjé€GêÇ9ÚמÓý½]­‚¾-A¼u_=zN÷÷vµ +†Ù®]ð(„ê«'Ïiþæž–U4"ÿs_¹~ôœîoîiø¶ëÈB°„îëGOéNßÛÓÊû €Jû¢}ýè9ÝßÛÓ +©…ªè±í†›GÏéþÞžVà=„£j [÷Õ£çtoO+C” U´Ð}ýè9ÝßÛÕ +±`;u_=zN÷÷vµ¢Úfª˜·wµ›GÏéþÞ®V¨sD ¡­ûêÑsº¿·«X{Ò)Ÿº¯=§û{ûZ†œšëL˜Ð}ýè9ÝßÛ× +ŒId÷ÓN¼yô”îüÍ}-؇åxò¥÷; tÞë9;õY ¿Á ¼CçïpoÑù|À[tþvƒÎß`Þ¢ó7„·èü öà:‡9x‹ÎßžÉoÐù›#ùç5þQñ¿µÞ ó½ñ–ýüÖÌPiA;”œUâ GFèº}ô¥_€d_°eïPz û*{‡ÒßYqoQzWûa{‡Ò{ ÚìÚ;”Þ#Ô¾€ÖÞ ô 4í ZíJg™¿Eé¯-ów¨ü‚½ûÇ{‡Òß]Þ¢ôtpù¿¾¨ˆT¿‘ÝY(lz®G!rŠ†Äö/ Cÿ=UáÅoòe¿«áQ"nþÛ?<ª8Ÿà +®ßÿôü‹O^ËŸNaÏÙrÍuË~ùéPP‘àš_ëõ4¨6)“ãMMÐïS8ì¥ßcÓ‰Êqünfþ¢~•­óŠŠïuÒ ¾ÙK`O‚i•¿c&ý"'îßì¥ç5<ÛK±é­ÇùÓS¼CTõ‚ày©ršX¾4nŠÙij@¥Ü5íŸÈBz^Á°Íq ù@Á/2yŸWÐá=Ë°ë~Qð«L¿ç4ø[ïZ1èÏ+ Ok¨¬ý×ü"Wîy0ç Šó½«‹LÉë|ã_$C>ýû¶xHÅ{4¿Øýžþù©y6æÁï×ø}غ¨q6tÿ/òäžþ}(¢H;}Ô?¿Ø÷žþ}8ý9hõÏ/Òðžþ}8ÊHýÑôÉÏfá}Ç·ü“ñ±oä¨|ã›×ÅÝþÓaÃû ë•ª—¢¯¯ølîã­W:ßx½$˜Pw¸ë'»òküúFÕ;ºòAèúFç›cØdJŸW²Ÿž•_Òg®t½–GóŠÒû¼™k¥/%м¤ô.aæFé+™3¯(½Ï”¹VúRÊÌ+JïSd®•¾”+ó’һܘ¥¯$ɼ¤ô.)æFé+Ù1¯(½Ï†¹VúRZÌKJïÒ`n”¾’óŠÒûü—k¥/%¼¢ô>ñåZéK0¯(½Ïx¹VúRêËKJïR]n”¾’óòŠÒû—k¥/%»¼¤ô.¹åFé+Y./\wY-WJ_KoyIé]:ËÒWòZþÓòFç{LË/©3×:_Ê¡yEé}Î̵җ’g^QzŸ,s­ô¥¬™W”ÞeÉ\ë|%]æ%•wé17:_É“yEé}^̵җd^Rz—s£ô•Ì˜W”ÞeÂ\ë|%%æ%•w)07:_É…yEé}î˵җ’`^¹èÞ'½\)}-ûå¥÷Ù.×J_J{yIé]šËÒWò]^QzŸßr­ô¥D——”Þ%¶Ü(}%Ãå%É]F˵җR[^Rz—Êr£ô•œ–¿Ç7t£ôMÿ=Jï3f®•¾”:óŠÒûT™k¥/å̼¢ô>GæZéKÉ2߆]ëz“ß—ºD­óÏ&u< ‘¹Ñõ?Øþ˜[¥ïðƒ= Ž¹Sú?ØƘ[¥ïðƒ= Š¹Uú?ØŽ˜;¥oðƒ= ‡¹Sú?ØV˜[¥ïðƒ= ƒ¹Sú?ؘ[¥ïðƒ= €¹Uú?Øæ—[¥ïðƒ= |¹Sú?Ø®—[¥ïðƒ= y¹Sú?Øv—¥oñƒ= u¹Sú?؃¸à­Î÷Äïü`·:ßá{Às«ô~°¤1·JßáûÊs«ó ~°41w:ßà{Às«ô~°Ä0wJßàûÊs«ó ~°T0w:ßà{Às«ô~°ä/7Jßâ{Àúr«ô~°t/wJßà{Àór«ô~°/wJßà{Àìr«ô~°”.wJßà{ì¹Uú&ŒÔÿ¥·~°[¥ïðƒ= Œ¹Uú?Ø®˜[¥ïðƒ]çÐ\ëJÏåÐxUÛž+Å!Ólã+F:Qa auŸÎáøýï–ùIqe3¡¾üî8|ÿÛÑ~«'«Ú +l5ÿP>íÏsþ øMéµß*²ëbd|UTüŸ‘Ê6kwüøCóKï£_*|Ë`ýRã¯FíAe¾çFí˜S—’VÊ{Ô/¼cÔ~©ð-£öK¿µöûdšðt"ïöì¾WÖøìS•iR=šM‹:¶ó’ݱ³uo×÷4Õ÷üU›Ñ:JçCÊÏýˆÎ(XUÓ#¥2}~DiTÇ^ëaK¤žüŒRªÁÓfÓ¥jCýˆR³EÚ¢”ô#¥*‚ýˆÒœ´fíBö@éƒÔ¤Ÿé^†”Ò¥t>(íõ:m‘Ú·ÎñHçƒ ©ŸÐYˆ*Q“ù‘ÎiA?¡³fêÅ×ö°oÚ¨¾ìÚù¨éxΙTÜn>šCéÁùù#sèPE½Q-–ò˜^ª8™D¨0ZÈsù´¾6']8Èïl©yÙíúÙíj1JªÙÈ$·‚4‰rÊ+Ù­¹’Zy@ñlÝ·’Ó´T~™pskvôvE”ìrÿÙÓªÖ‚yÖòÃ^ë^LÌ&Ü\c•b;t«D-̦‰ªö¶w‘ŽJ¥F²uR=p½×lqÌðîµl÷ù<øn}K[ÖϦ/Q»0ã4õÅK¶S{þXÔ}´÷Òø,mÒVñ¾¦k±¶™,¯£yÛG±æŽš­‰í ²{órèÈÆç°gv$bý)ŠüôÖ}Ÿxq&E¡ P–œFHÖôŸƒúxuõÏšl”»ÔÙùlŸ1KdÙ-³Ënfj‰röe­|Ô „õþð&دXØ,´×ìç3\†‹ž–Åà›,}Z'd¥|þùG>…#ÏUl um¬Y$»â“©dúÙׇ"ÝÙ:ÂWû= ¬KÊ1:×þl[æ´Ï7+ Ÿ¾Í›*c)ò–™e¶™ÖÜÁ½6¢ç¢¥Ì¥·š˜ev-5»ÌÆnª§³¸íÖÝ+.{;Úm†Ù”’ÙììÖ>ût“QýÖŒ*ï霩Uk³8‡«ßæ­u„>3›,6˘œk¡ÖC5‘Ù¤¶ŽÏ©[—UÌ—dm]ú”kƼêöÊÁÀKÆ$cÆø¡EgdsU×u³L­'ê´‰»ä£¶ëÄêC#›Íä6YGò%Ãfmn’™M1í,¨xç*.€n}’½«YD6ù‚©6‰¨í iƒË*²šm.™¬Pö°Ø¦ o©rÛñMûŽaúV³áTûX|µÛ‚K YÝ$¨ýf;(œk#;l+\,è”ltÕÕ7¤<þ…sóð~aÑv[9,ÌBg[Ù¶pý7»­Ó£*˶؇u›K¹ ö@k{ eßeSÊúÚÒÖºM%ëeS×)è›2qOdàì§ji|ŠÍ2›)ö¥zO>*“ÔA¯3l—›Íß#6ÝìÃ3D[6ºôùJ±ÉjÃe3wáf­{dãÓ¶›R›mQe‰ö ¦äCtCgt›Àò)ça=؆û,v[Š‡- ÛLÔvé´íéÿ'îmv,I–í¼ùyŠzÃÃÿA $šHg&hJ B ÷´¾eæ{ïÌ*veÖé/È{»sulw7·ßezÓBfjý>פ÷£—ˆ­ú|úJÚñ:¦}4Œ/­ªŽÂæ°ÄÒ:"¾Ù”¨Cêi×Ö½ øàŲ#Ëôᶬm]5°âDùf5%…†DŠ·’ævu„¥0òn´Éô:µ0xm %> XAŽË$Óc7”K;ÒÐ ±‘nµï½îµÂ¬“.RºSyê&3B÷RL¢³é¥u%xÙ«w}9˜vµ®`} +-[U‡ïL]â²TíbD®Ä»d§žZ+~S2W´nîÏ­B‰e`“kÁ´µ%º£¢BBlMOòŠ3®m¦çdo\5~Y­INÚO7zQk„+¤…ç9w;I@[ ¾æ+õ’ö—dàÕéVjL«§ƒ.ù5ãð-íÚsxlrbEPÓý>b’À:B}u;Ý›ÔÍ=Ó—x¿èïYu?s$˜@½P3ö­ß>–KšŽ”„i _Ý}ô›T†ï[»C2¬»I"†‹o–ÍHZ@ LÇæŠ o10×ÖÁðÍ uúŽ2бشúßõÂÚHNqzË ¥ §­®í°ã7‡0LZV; O®Ìï9ynaçW-ˆ~±ÑD÷—f¥ùEšõ¡mI<]Ù–%XM[±Zi‘ü”8Ô¯®/½±”ݸ1®½;Å6o~®½*bêÆ×yûpéË–9¬(T§I9>;ÀrZ£Ì@jÚ_PEµ2¤÷Hiè3Þä…¹Šý%I¯Ã[b4i:‰ &•¨\èŠÕ»¡x áîçñ‹4^Ãbî–B?8Œíïz)Ô®æ“\hŒ»î’˜‘Ïš0.NzË»ýùBÛ(Õ}qGÿZ0è¡ú”¼Ô¼u©JšJ©±à¨\éz?‰»¨yJ£3›Az¶8Š£ÏŒwázÔØZ éà3â¥Í˜þSúê6„J¥^XÚõØêe]ƒùAº¨“<7†ËNZ$µ$Š\¹òU µ»‘þ§®ÏRPŠâ'Q¦´>xÒ›ù$*nM.øÖ‹~Í£á¦ÒQ® -]QúÁnŃEÕÿõÄõý$?'Î)’ò((ž\-’ ºUü"z)mPk½–^©í+Ôœ¸bë “9ÝtœPs$ ò62ÆN “AšÓÅå'¨èÉ Ôç²Pì=ws¥[2úlÖµ®š¥$&¹¤ëˆ+¦k¥K!ón@;Šë%N¿_ÉúÛñœn•% ™VðtÞµË[V ûðkjgj€R®•˜FîÍפ”ƪcšš$>’¶²4c >ŠnK'Ds(¨Ë˜”c)‘¾ÀVšß"b¢]ÔãS£ JóLöúž‡ËÛÝ1µÎËI0ú5)K;1©ËÖ +ŠïÔ3}åx2?¤¥ëoc›XW$È ] ) í0m3šž~Ro¡Jë(KK‰§ôuY÷˜Á;PƒÇ#1Å÷®vc#åS +c‹Ä"¤iJ…X-1ì# ±Éϗǽ…Ú.U×A`Z+ý§6íÑ@¬Rë` +Û¯™`:öƒ[fq§ItϘÔýriwpß-þEò=Uaƒ1$˜ ~$ \ÂÕ²€$0˜†ñ”¦uÇyåJT8‡L_áJ ©rÖŽæÒ"cãnu'$)…Î&:ÖÙíß4&©&5ƒ”aX·îÚØ}œµ­Ã†&&£F²pi«Ä¢ËòhD %   Óa¨ mÝ«²ÌocHè#Àu uæЧâ9Ù_쀚˜¾$1N*µÔÝe•LgY—yAÖÛ• ËN{5~saOh»sJÙšÍi$Ö%Ò´¸ÕXƒÖ¬ŒÀ´˜²ôÍš1]*ýHTa]ÂËXØæ—4«OçWÂ%šç¦Î“–¹…¾‚ñ¤çl^û]dˆb +ŒÇ5Wì)‘ Ñ·0½g×%˜ŽÏ¥Ïi1ËͱŒ=^`ýJj6r2uWºà 1aßïÒìt3Kú­Ð•±Õ¤¤éSLc’»¥ +ÄÉ×NпG¹3ÖõbÃËŽÃ&¶+͘öGí¡v`ãé='â '‘þ§f<'‰1Y„$i*qœ˜,ÓêýÏ»È\™sæxðÐI;k\²(ËRÚFêÂôß k³¤À–qüU•˜%ÆP=»80M»c”·Í]¥Û}Å9™2Ǥ̠Fã3kî-±C +$µ¦ã«0„kDOM{ǺÖ|ê¿‹=&Lë*]Ÿµ;¯ØÆÕc…Åv”Äæ°³{‚˸Ÿ[œÉGÐ i£È<Šï¾ˆWH+„‚Ôoc’‘µvúeÀøì5R{õ›º— ZØíh˜}(<'}Nßl´Ä†þÃÁ=ÇxzÉ O¡±Š )²|b¸Øôn+±†«¬ú»àÒ—i«'†»¥¯>6ÃJ ZÒ·áøÄ⓹Ôê>Xèx5Xd±H‡”X/uRsëÝiˆ(ùW‹çpÖp$`Ÿ]:¾k<‚­Øb“²¥Ãm ÑÜ°ÁZbRnƒ" Lwö:~Y;DIŠñF×xWì‰5í3ªá„Å!x‡=€G1GµóeíÜRˆ…›»Aë®/‚SO¦Í}'† Qêa·C¸kŸI&ÄsŠ<~SÚ¯ôݦ-®{ƒ@ë nžï©ó]ðLÖâ×ä–ÓçÛ iB[«S(2F‰Ï‰XÐOêÃo×k`dú4[ªþÒóùÞ éB×g‰·ÔqÓÏ{v:ùºüõáKÌ\š$BhH…¢åÓoy85)I±;ñwè\6.0}þÍ« ±pkÖö¤1…Á¨¡Û “¨¼¥o ¿‹.Õž—~’Q/Z^ó&$LÈ·jùÖÂ|Ñiýc?[w¬³0K»÷b p¯Häi«4?'ÑrÙ²ñËt¥<‡Zl?L`¿ä彂é-µ´åx8Õ–ïäøš÷¸ð“²V=Á ZXïéð¢ÖØG’üR¢ïÄ´Ž“Uò»h ´ÝB?†Õ$-jÇoʦ(©x!2´Uì‘â¹± 0]YšÒ*ñ]8Ûa m¶´¬Õ¿xß©[AÒiU„I¸Ï¥Ž÷H+L^®‹]tªË•pÍçžÀHþI|•ëöe &ypÙ)äŸÔ*ûlrýk|ýfÁ³DÉÙm¬ .û°ý›ÒòZ'ƒJʱäU¬äÊ–uÕ›Z9ô¿¦Æ°¿Ê˜v;µ‘d3ƒM­–¤êJ¬ùع–§àR©¹ÿÀ–ž“©¯Rp:>¯B-)P^Ì}¾J GñylJ­¿­$Ü ¥ÛQF|hÉ*¼ªwu3WØ–`ÒË ¥.+´¤æè +,‰‡îdñ¡‹ œ%`Hm+¤êuio;!=]üÔx•ñˆëƒIãÕfÉEg9ÖSàÉÚ%^S& žÝÀôÖ:³wÄü-nOl¬žR^ÞEZñ8’L˜¤ù¬„c}ÀìH»Jb;Õ:a“;ü(HøÓqQ¡EÇŽ ¨¯Û“b±ý›ˆJᑘVvá÷ëál$SÉbsü‹ç¤Ð-íù~~ßâÌáN]bƒëîñ]¤MIÙˆ]&LsЇ`—ÙŸ.c¢Åv¹ „ªýyº7#$çBKóÓ5Îõ9›éßâ³ìFÊñ…´mt7”Ĥè®ÇQwºNܪ'¦©â¾+!­ôãG’ГÂÜ=;-P–céPhÀ§y>åß;_*) úÜj½ÛôÃؘ¶ZMÜÛ:¿±á:]®ËøÌÚQ\K‰U>ä™9K“Ö˜Nˆc—Æô’Ë(0ÜÏ8í=äy|h ŒØVw|h‰ìLqqhV&õþ*èxºÃG$vÿUÃÕB‘ÍZKKL»gòðxùñ.‹@æ l”"íðuB²_¥YÏNâMK: ñ#ý\(ö•(ôÒ¦î±x8‘2Ú«½¸KFbpÉàõxRÞ×zbó ÆÃ× ìõ`Ƚv,ÑCë¦áeݧRy;•©Úÿ˜ŽÛã ³–˜n9¼d#2”|ÓÄü„¡`È^¾=?ÍgT¥UôÛlÞë`5r +bV»RlzñŸ R”IíYá)£S…or¾µlŸ’·,!<¬%WOŸe=#j]ö3ƒ-t-àNLVÒrÐØK;ïâ8j`„*f;ÃIå;ÑÂxRDn>iN¤ˆ{%VŸÏ#°æÓc¼;Ÿ¡¹8a¤µ!0ª6—Ž›Ô”¢¥¶ïî^‚_‡ñt«ï´€Á$†Ôûî­¤3RHÚºâœHƒÝ-RÈÀV#Ëמ)qJ¼ NÔøðñ– zóظUDGï®~‘ëõCK|ÌÙíÓä1ý³ûã1Iz]t#&àô¸+'.ñ!!GÜË t“7œPV/©Š²^|d%ì8¤;1©j#>X%·5B¢‰é_öb‚ÉJˆˆ*EA·L™ÎÈkÈðí,ÄÀt©jé +ó»};I!0Ýx5ܤšCÑï‘÷”˜~¢õŽ[À˜D~ŠU’ +4jY¼ç$Í2”êK'ï"m@÷»6ãH¬9äëM6ѽO L¶ +öëô{’ÄBºCb²r$lZlN»{¨ÔuÛbŽÍ"¹ƒÑ“N©¶Ð>*"øã<Ïé½QåŸôÃJ‚™4§zÅoâï¹RmlÉ`.bØÚ³é’رbæ{£nÄ–¤»lßÛZ!é=wplé¾ØÛó.ßoÝéevU¸þÙÊ5m*dȇf?T“”¹ r…bå´·ÔCxŽ—Õç9?ùhûÄp:âk·8]•ÏŠðŽê+ÇÏ 'ØN¯Î¨j;e€³“µS%cýM´aÁ& ?ÁŠdÑ»G¦H`ë0 +ø3K‘ÑyŽñÜI #ÜæXÓ +ë‹xý¼ufWŒgOFn×F’Ÿ%bÈ5i¨2\V«\R%>Î/ê#ŒI– Ë#M£Í”TÄqu${|1„Ù§„ZOŒ´ÔÐnÙøUG7ÎÍ#´kôý‚ï¸Û%6Ò¼¥ ZäHHJ#µ#L/¦óe°ä•ù,ê¢06³¤¼æ=¢(‰‘Ø‘Ïap_›éÂÎá(–ó=±Þ;,4q?ë~ +ƒ†h³.éÙ[Ü2ºÂÆN ÝèìápKÌ[¢àX÷e_¨c^8©™:9d˜tÆËŸ’l]™-yg7âNƒ|€lâS‹óßÈÕ¼Ðù§'®‹½Ü–t>ñÒ‰§Í€³­G"Ø€Y†ä>Š¶6µSç9É]™dW®훸Iˆ‰;gÉg {MR$“%[˜ýu|PÉŒœ_c× +¥4°AÞK»bú®“ì±Äö¥—¼-Ù©IwÊɶ2Óšá~›="\ézÛxr3I‘oIЮ[[ñ7!J#–Ät«LBaÍu"N­Ilë`o[,œx¢0w8ã:WVq‰ñ´eçˆBT°:ÐKW|0Bú6“Ý9NúÍ/æÂ…˜˜Ôä‘ ý=ÓâJBä¿ß6ò˜”¶c_tKy‡3¿é~â'o6`bÚÁá‡b8XR$ãfbšAÇNñs¬…ñD‚.±â˜‚N…ÔØzLNúÓú“¶Q'­03‡»#hXMNõð9¦KXbŒÍÒQèöÉkNr”ÜmV'7ž’ã [Ò£–]ƒ^Ë‚XŒç$1wm8–HZT!aøJû gUÉ{9±†ä²¥á å"±Ás>ÎÎMÁ-6Y‡RÇf¬æ×ìt+L†Q¤€Héó¼Sé Bšl¡÷ _Zòf—z§ZÞVQZPÌÐÖ¤Úãëšrr À´Owëyái÷å¡ì0™ðÍß²8A'ÔïNLÞbXVÍY§„ îÄHiŒ˜ 4Ý™0=±®¥r¨Š7¹Hæ˜ù½:ªXçnŒWñÚyNÒ¼à@÷"%¬¶8z}pyÈÒ¿bß²iŽ%×±*%} ætýK#K9Ñ`ø/5«í=&áse"2M®LØÅÞÔ¥*ñÎaŒ§M+6ŽL †˜ÉXl?¯^ק˜î„¤{QWÅš_Ü´:è¾ú¹AŠ‹FdHÎ3„/&sÀö¼®ãM£Q–ãEÈúL3¶ˆ»;Úó«ÖHjB‘é“›Œ”ÄÌ%r^òÕǹ9&«€t]uœpþÒpCØ…ÍUœ®ÆÓ`kÇ/:/ž¼ºæ ˜Æ/ÏÁ&ç(’‹9wó™³F°EX©{±ìq;ØOcœ„*\KL»´V‡a¸ê* _WBÁÆ!ÑNÔ`1ÜÀçZrûqïS¥•Î`Hšˆ x§üy–q !OÉ¥·ô9‹ûœìbØШðé–Ê:#-.!Rg4 _¶0i¨Å™e¤Ês%†“•uQÒõt9Qª£±iÏèj9XË]›ïž§¢L+ww"¬øœ6IJb98úµä2î}<&ƒìϤÿIË©m¼‰Ó r7¥×…½û;zN¿Ax%eA›\Ÿå·]Ñ5$ü65a‡½öö²Í1WýVáš'­Fê‰UfOë‡Ouôµjñ„cˆ÷µƒÉ²Ò¥Œ:.¶©-Òé¸ÏotðšØ"½7êÇt¯¦£œæMdl0A®6¡Îa%Føro¬¾}J.ô)µÕtó4¼P·”T’câÓ)_~•š'‚Âj~UY+{Ú&x_ÓÄe°aÌMm(ÄjH¥R¨9¢–m„=)IŽ¦Ó²QÍLû©#ÖÒîƒG]IèÛ;DfÞ¹½ÁæMŸ#„…À·BÉïîÊ™ …î)Í\Ž'ÝŽ€¤0> Y§5Þ…»‰º¤àòN:ñÚâ“Þ’d'­šëÀel }›mÏ·^ºq¶=Ð51‰ ÉîÅÕùfaÕ‚‘ð­·ævZ²ÑÛsׄˆ˜áçäxVK*5É?ÝiÒ[pÑuçH¶Æ†çuZoÞÎw‹ +'0âh8b7Î…~’¾À: ÔRê#ÁÎy0K2p—0"­Î‰*E\‰š81ÇATQ¿gw1ˆ%þºùm8\;Ñý£î1¢¾ ~øë­´ç€&G‚»á7Nmø+N>nkÒV¯òv¬Z‘¶³ðzµà ¾vYaðø »]¿Tî–Õ/•„¨á¨6ÔŽ2C¼^¨"” J”“u$½ÔÊ)Ÿ:ö-¾¿¶]êÚô{%T°Ž5åá_)¢, +dØ ÒøN– o]ª«¼:r÷ãj#“ÝU!æ~©ö”1‰ªö/™Ew–u6¨^¹üÕS͵3`XØÄI +J )¡kœíLŠ=ä”pêæ3±à“eˉÓ*¤æŠƒõHq(>åW„züš”6 ™8Õϵט>ì…6%Å™^Š'vU`±#Á•9ã¦káT꬀'>ìÁ¶Ç 1t”å‰GFõÑb Õ‰+9|êËsrrñMÖ ÔC‹-XšijúJhcÞ©‡ƒí°Žº¯ÄM–áQþ+Û§PŒäë)ýÙ§4x…Î×C“+VúcøÑd-3õÎô\½PÒ¼`ø:D`3jš°öÉë›VñtðWºž‹½»úÚêP¤çP’¬ÚøkàÔf*]KŒ[ émc‡ª&¨P&CcfÊLwO— °›ÄÕ=íîtþ§(vª9+" =bdé8ÓÛGÍ•÷PX=9Leí/¬´0wd§—;$˜°±¤]- YY>Ü…Þ*dÍŠ·¯Yâ…¾ 4ðîÙµä +¼G6@Á0¢zÍSǧ¢Ú£² lní©Û»c‹ÃÕ8(Ï% ®‰}Í;1bÿT +ÙÜ©™™`L'†”3h49]@£Þ9óáÐe³_^-§ ¤`9Ü‘B¦P¸CîĈûÞŽýêÓFÂñyl?ÊıØd‰k>§ô\F‘SEÃÅ*Û.3"Á6‰ðn‡b©ƒ3FTÚ1’jE×ÍN 1~F‹RÃCYMÁt míÀ4Ó“a +¶dIP¸žà)¦Æ(øÑ|ˆJ§³$ +¾Ãá¯=X‘ø!/ÂÕ ã*>úZ‘±Øâ´;u$¤ÇNrÁðßxtJ@Zœ;‹õÙý‹ÈηúHsû[ëhÒõ¼gfó6[öt«0{ŒFaø¶™ÞøV]³Ð#o_é©óÓ M:¼ç}Û«ñPT8öHÓ‹çÊ=S +–ª®‘9Z`„®G¤€éÏ·Éûœ + […Ô5cë;‰×ÚI°Þ$g&6à ¹wìt ôŒ¯B9-ê)_Œ@°ö¨uŒÀt&õ¦|1âÉRð‚-¬5½ÚˆXe:†ÑÝ’mè`ЈØa¾RÇì~®’…Ê7;XÇ)UJ`¨€5R‰À6‚cø92“µ GÈœA±7y¥G&Ç<Å@|X²˜#þ~›w;«ßIR«e‚Ä3ƒìq €é ûŠ8ä äÀFºn„=F&öq•[//.ä•ô ±…2"²Gæ„‹`ÛZÇŠEkÚYlDtUËái*ÐɽËi“.ÓÓ.ö“˜CØSF÷ð¼IºÉ:рȟ¿j ¨°t5”ëͨ“?z$ˆis¨êÃ!Å)’²ÈsM퇲'i%™Ý•¢Ô‡¶%l^(%0Y!x,ýœì¡âúÖíÌ)q-™rÈY·“‹,ŠÕ‚z_ªÒ3Ý©c(TW˜8pESËt×GFÝIŸ’"å¸1‹È ŒÚ¯–Ø ¨ÖÀ¨ Î:¬ÔíÞ1s'˜O„dbXb=fNŽaѸCgsnøöÌɽk§ HO2#3Y/ÉÄ™Oá#¤Íti™Ò­=ãæu!I 0vÜ2`Lµ’ùNÚ©Þò¡R¥ÝŒ×ZôèqÈ!\%F¹üî©sáY‡SD_ ?R›õÍ„IŒêzÒ‘†Ó2Áˆ‹ê‹¦Ÿ¼ûÎñðîº6º¹æToŒ5SÃͶG ¬î¬ô#‚vÛ®c]Ï] u ©OÆpêeè wJñÔ‘ÙGö‚5ø^{`•Âù ê#·`í+ªt¥Ã$N¨ ά3H$Ęà oõuEåïIJÞ5Þe< KÀHd!‰ ±ž‘¬B–Zïí ³–ž,+0rÌ…é+F­&”’73¡”¬FçÓ5´}|ÃÅA®¼«¥ „d&ÊMî=R]I'iQ¡|;ñFÕn3óIär‘^ß( ¼¢éë~X°ùà`™¤ßÞÇ7·• f}?G2_ѹ‹©ÃçIh~ôÀn’nª}š7iò,‹ËÄQÏnŠ¢GO,?R5†¹¦«!ž«¤ÄººÎUðè›Ø `ä©S™‹Ml7Öù(ÖfêÃÌ;®‹ H_$’T(Õ_0¤\=sΊþµ&;QFDl²Ö{fÁÀÜ%¥ôä%ÜÔw£¬4HòŠMtydª¢‚s‘ã<5ùL-€ºOÆîØ1÷ ÆNL«Û©ß­Ümæ²cSPråßÂH>92G¹™=wÒš A…v`ÉëÉTL멹ƒ‘j2ÂgC•DíÆ7x҈ܞ˜ô}ž#ÿ)Š3ƒž"Kþ9£'{`èÐfI0ݱ¦®|Í°TnÜrP7Ó…éž½ë(’øƒØ'|•–4ÏÛ–†ëgª ×=¢þŒFƒ^qfe»»š31é©û ýjí*çrJÖÞiw`ýÊ£ÉK–C?öÃÄ”ÃßÙUJÉëüÃвÁjËåQø†S1vXw¥jðÊý0=t;¼T&`|ÖׂA^d¿›iíþN*g<€Ù8õNR³&©SçHÿg +Ü_öméÑçbsr¹58Y&+ÓhÁd*Øb„ ²ÑX' à¶Ã5­Žlc˜îç¨#­¤áØ ¶.8p6•P#  n¦Ë|O³èݱŶ„ +Ó7FÈo¯Øb:×}EfV`ó0NX5šÔîi•Ùšzܨ8pÖ¦ÏÌ%ÌÝDÖÎN7u“.hªX½ê\/Äçþë¡;±6?A\ÆqyS b2Ã˶óÞ!ÁL&fç ^@ÿ&²æþb2{^B¼rx³)¸1ƒx¾Î(û„6; T趱À‰âÝÁ®J©‚°åN¦O˜%Õ2¥A£jƒ¿?[€‘Àjç{ЭP3czÍî)¯ºqÇcŸ„Û!íæU7‘ .Óð×€mí8¯:þŒ†k´vqÅ€óULÆÝg”-%ö¨Ð1™Ç'À$ÞáOÖÜz ìXç~ŽlZi[=ç7]žæ ¬ï™é„‹’˜þÕŒMöIþ¼ÿjÖ˜+XhÝZxGaYb\sÐË…Ï …;š|Bÿ-¹±bÙ]‚Ï\‘ªs-“ðd‹dG|‚V›äár‘`oߘ´´‘4`ö›—>µ¾œä”ÛÐkŽÈõÇC„n¾ƒá˜ˆu‡Sû)‰µo|Æs±§×/w|j¾®®¸¿ãàj‡m<ó–»±µÜêä`Cª‰Ù\=Oy]ÔíÂD^òðÛ}):SÇxÿ3GÉu¶°¡îrÌZ’‡\ŠÅiÕcæ˜%¬ºÄ[[á(—È ^;;gï b†K&DÈI/Ÿà¢ÔZ^ÉCæÒ®’  WŸu›Õ“\cðÀ:c»Ú¿LGÖ½TÓ{$¥%>kÂsËF¬;—ÝÚ§ˆêó–TpV•e±4RÛIQb»šºÝê>´èí63X8äaá£2œëÁØÔ4¯à·$å09-ÃÉÿ|ܸô‰©“*´³\À +¤ô÷3'ÏêA>`çˆ6N¥5”+VaÂW0tê–CS¶ºôôŽT‚ÀfœsM S/QždÌ펜x— lÉ{`ðyè¢L×G&eV—0Û!u;ƒ +TZ +ËrÙëÐRÖ¹?LÃ~ÓùÉ3ÇMæœë`ÐnÅ¢;RÔíe56I Å1L+r÷&w•˜ú0AC¹@”E¯èL< £ªçº.îXónÕ­nRJ0 ÄÔÉÞsƒ ksÅeLÝý0¨Hš5sGèê0±9Ý‚¬óá‹ü»_ú•át üSÜ¿sŒ’€XtT’Ùߥº:ÓÎ×G’ò"ˆ–í5"† Íf‹°P }Êt¹Ù1uÊwr¾“ +{Í â ŠhÃ6³dê° Óše8‹g4 5÷è¸ßz²k´¥Ï\Èî+W|Ù\ÊVg°Ù#Mºæ68wð[†ðÚ™$ócϼ?]D»·“ò!¤·LØ"³ÒS_ÎSÁmyØì ™- l<›ô=XVƒÿÚ5)Ýoü°AB¤rŸkÐý&jè4ÑNJSijMtOª¦§NìåYFìÜáZ3Ý—»:þ‡Ùì£Ö4ñT @t“òÍô0ôó16NºäÓÙ^‰UÇ_}xt‡ [Öÿyq%¤ Ý +Ï™qÚu=H„ ÅZ´1"{ Ïmø ±0©ó¸bæ°vÊ!\8tN¤Ê•§KÝ$øÀ±èø²lÊÜü“sìì»öhAeü #œNÚ{äI¦Ï‰8`³û ±9\º:4ε€µÚ4®aãÑàbõš‹¾à;zèÓM[,s"ñÐ\¦IX_ž´IÍý¯t{'¹<ÙPVéšO*÷*£'?ò…lá.ðÔ1}Ÿ™{8p¸ÁbÑÍZwö:Mñ¤ÚöÈÕ|rx«©i=›..o‡ Úå4¢׃[Á$ø%'Œ=ó€&ºä8RÇ‚f² ÃiªÝúnçÇí¨5Ómæ´3có!+–ºr þ «Q VHûŒQù8{¬:^´—6-°ào— +vgèB pl.IŒÁu´"ˆÄ¬  ¶`Løå8Y;ö¿¹¹‡çŽïÁÒè¶Zñ2Ñ® i ~ÊD|d'_ä"×ÐUÜmL;+æn&ÁžÉÞ8UtìÝ8ÅÒêtÃV.ûzÓªû.°ÞµÐ‘¿¦³ÝgÌÝÄÕäf”ÄöÎú'mK]Ї ‘QÌéÉÞ݆;1<µ61MY»×Á¡³§ëª×¬Bmv¨õ)~ÜÁT$ë뒙ξ ­_™°~·³Ùìwêf@NŸf¬¯¬e÷pó÷Ã)Eé5.h!¾Tè}•] ¢F«µà_£rØìL…w>Ï°éùcý唀üëÔàŒü,¬eëÚéÿz˜z>°}}Ïä™e/ªíæK Df5V#ØŒèÅo’š™,²’\DAKO#Ý«fÃÌè'Þ²;èèj™+š +¯˜¹‰Sý¹¢W…DtPb|×£­ù §sØòYêg̼®Ýü³æ‰×ß3G o.ºîi]ç’Âs'雋>͵·ÂUüòA‚b Ã*[ûᢿ¢S@ öH<9òRî˜; ¼êq1Ûxzg‚áa«%4Õm§õ··ë]Nº^@tÛ1uŒwÉvn{Ù¥Rï|lSº©ú扗hž+.1å†1ûÚ7|¤‚GrN®ÉÇM¥OyTôã˜|ÐXÕˆS6xI¡NocA^y6ø:3öꪣæ;¥$¶HÂòÔéçë²ýäñ¦R‡Ûs‡Õ!Ró[bëNÚaW@ÉÐÊt|â²ôd sˆÈã +¶”hΙômÅ”ãBwÄ–j”íÐø±Ï':Uýú,1s 4)®ÁÖ +=;•W>6_¨MØâeékwèóÁâ` +ö úŒ¢÷’ô¢2ÝäJ†¨d¾“‘õr ¨k^Ìp–ÚÐé²ÚÝW0—ø‡ÑKMÂz\Ûë܇n-*[ð:|áŠ7Ä©5j.7<$PDÜ®tºøĬ©™Û'ßÇðEåzÌzù7Éd±²!ªE5ŸT¬±»í}B#=gøäÒïžó¶úý A\ÞãISÍA|:ÈcŠã&º+û ‹  }ºÏ¦IËŸ…u¸§ÉhqL,J£b?±h°Õ›ÝýžÃx{2Œ›¶¦›LŠÄK}»pAï{îó` +äù'vy;škêd*7ïÔÒH›«IoR¡—I}qLVì3sJ|‡'%Ék ´¹ib°„0™‹Þ Î+(´~øÎþ(J½Ú!±b™$¬´˜ÙU®×aûÖ/ÌXjê\u˜5ëQˆ%åsc>¼ðn³ºÃ4ÆI+A\3=Œ4Ü¤æ§¾í® +^a,õ[ÿm>>ÿö`ßnîضÈNº˜–Lø¹â…NÔˆ’0¶$­p–qÿmÚÆšú:çjâÆ–íܯ˜:´(Ùˆë‡y­IWÍ7—ï!Ó¿#ü‘ë=_s-My}§am–EX’VÓË»ÑJöÒ÷h`të3Ÿ#‰7 (´Y²4CIª4f¤íÜbê0?דè$ÔYñÛÝóŽå +lS߾ͤH4µ2X +q7F 3F»Î§6iÝÅÒ ò9Zye¡™¦2»@™í–úªÈÙs:nC#ÛA_¥çšÅ7A)êÍqÆèu’F(…—¸ˆÞ£ð1ˆ–ŒI2ëÉî ½V,;%ôóI™ZMëä–Aµ&eOŒî+W̽:(ÿ`»%$ùéÌeM9?Ò›Ó\2¶ƒY:Øu›K&J̽l‰MؘY;eò€(Øç(û Ê4Ÿ[‹x÷J(ú‰'Qi9Âõ‡I‡éç‚8“˜•%°A¼#¦ŽƒÇgÐâCH¼¢ˆ?H9#È{‰ê¯yú“£¬š\šÎ!ÍH'¼£Ý}.»yªÂ¼üñÈ\O–,ý>¢@DD ·‚y>†±^i>-„Ä +T͇±—×+¦NI×z¼f#wmÔS oÎéFÁJ³›êÞÙÆèät>RÊ&zô£2E…‹9’‘¾¢KyB¾%Ê]3“Bvh!ˆïTœ2îùBú¹y´ãDSwlûØöÍ8í8ÜÙÖ$/ñEá3Ü¡&¨-%ŠàÍZ_Æ£a;M—w`í…ƾ¡¸ŒËaJüsŒç–¸qyˆì±à-2/l3f`íI%fîWȧ.ˆ(Úýd¥lÂms§(ýÁ>B̨ìhXüsÏ~¼fc[2°WEŒR“îk20<é§w^’ícîí5çÍü¨Ñn:¨+[ô±9d¦Îä`³e{ø&½hWswxóÁQëì+·~ ¬Â$Sž¤¤Ò½Ý y¯Ÿ¼Ãió{ÀØ…÷bˆÖ\w'DGCQ{_¹îœïu™Ëˆè£µò9' •üÍæ_»%Ièõ£‡¶s;Ž¹“x`gí!àlçî5¢„n22SU( ÷cÖeËQmáʤýWLü1J"®ƒSŸ1õõ=š-ÆåµdXŸ·©x"q½îÊÕà—ÛÕæ”ø,œ~W_…O¶?$”2Á®\vøs{¶«4eäa´6MíÓÿàb4¨eøîàÖqi»o1Ž:O½»ÇáÌœ>5J‡ŠU'jq²yãâ ÆfKêsZ$ö€e~r`ód+ÿxG“hÇ;kþIvúÿw¢ÛlÏoÿü¯ÿøÍt ð£ë‹ÂƒS¾m8#H¯Ó‚“ õ?ýóÅÿÝàÿ„Î +…Ñ?ÿõíÿø(úÿ¿ýŸßþù¿üã?ýó1%%ÿÖ8´»™–áîµ°éè|Æ»ß×þýñn;s(øûy¼þóüþíïhv<‘¿øžõu¼?ü}4í¨Ÿ¿}Á÷®Üá^ýùû•·óùo&Ý |}û/ÿ kŸ´ƒýC†Ø·H@àŸ’ª™œ~ÿÓÿýÿú×?øÿËÿNÿŒÿëÿû–âý-3øôKÏ$¾ûÛÿó2Cùrù¾ý¯ÿ° +!áƒ]–/òæO1úo2=öøüØDö(§N9Ç~ýÓÇÇžŸ{˜ñ#«ïcì7úøØëóc[eÔu +ÕRŽýú§½??6wð²ª÷ûõO»^Ÿ›(^Ò|åÐ/ùøÈåó#³­zfšäЯúøØ÷§ÇžäŸîl1ö›?}|ìúé±Lù׋LùÈH-GjûÛ/3_‡!!ø)Åžë#ãôOŽ3pKÑ'Žê‡\Ç×?}|äñÙ‘Y²6ÌùõOy~räIIxÖÉçöyùËÇÇ]Ÿw¹k:gs½þéã#^J±[ûÆû–]Pcc½ùÓ‡ÆnŸ—RÛå¯qÆ~ýÓÇÆþ¼œŠ±qç¶H8?c¿üécc^NyìIMFºbsì×?}lì?“SÝE1-¸drì×?}lìö‡c›üÐÍDc¿üécc^ûŠ±Q;J11ÞûåOûóÚ—ÇÆ„<ý,sì×?}lìÏk_16Vv’Qž±_þô±±?¯}ylˆã +.öûõOûåAŠò!Bͱ_ÿô¡±ûÊ52‡;*Ç~ýÓÇÆþC¹F©tFT_þô±±ÿP®üß$´ÌÇ7ýÓÇÆþC¹FÌùÚö=Æ~ùÓÇÆþ3¹Ö²îî²ûÍŸ>6öŸÉ5ö•énͱ_þô±±ÿL®9éoüQ9öëŸ>6öŸÉ5:q9öëŸ>6öŸÉ5¼¨4òtÄûõOûÏäšYˆ¨RÞ爽þåC#?“jî9ز›óúåOûϤš«tzæRæدúØØ&ÕˆºA¤ã¤€3öËŸ>6öŸIµ(¾*÷.öò—ü‡2R²zA`÷+¯úØØ(Óœ‰ë6öŸÉ4óƒÀÂOûÞûõOûÏdšs>ûˆžjgì—?}lì?“i®!_I“c¿þéCcÏ?“j¤?ä´yŒýò§ýgR¬óMöG}ØCoþô±±ÿLª‘—/š ÿŒýò§ýgR͵ 0¬}Æ~ùÓÇÆþ3¹æJ,²oïò8c¯úØØ&×(4¼OþFŽýú§ý‡r NH*ëã*yó§ý‡rí¡0|Ø›5?íG{ø`—ôcãì?‡Jˆµ\ÃóP¹Ÿùиëúƒqÿíss½ëþ­Ÿù-ûû~9vÇ=åŸ~çø'·>º>fnpˆß¹Å¿fÐßxÄ¿dпv†É¿óƒÉ Ïíò°|ï}SÞ÷‘F°ib¬·ú’AßÇLÞ‡Q¾bÐ÷ñ’w”¯ò§HÉûàÉW ú^ÒÔ´?¦§~p„ße |ɘ¿ÉøŠ1—ð%cþVˆÁ˜¿ÉDø’1“ð%cþeæÁ—Œø›Œƒ/ó·7òß?æï.ä/ñ7ù_1æïu€/óMîÆWŒðNÉpõ‘®¤5ÿ>å÷§\²ŸÒ˾bÐ÷Id?å•}Á ?eý”PöƒþN‡û’Aßçªý”¾öƒ¾ORû)oí+}—žö>aí+†|Ÿ–öS¦ÚW ú;­ü+ýVþ%C¾Ï»û)ï ý­)ð%ƒ>œ[ñO? ©Ðÿ­ÔnŠ¢i½}7ša•E“6˜âà x— ýJõسý.[þ‡øUþý¿¼`Õ§¿0U_üò÷_½üLJøäËÓ™úYگ߼ü}k÷ç¾üg†`ÐééË&á¨êûÜ4z¹àw„ é¿Rù‹êƒÏ ñ‡_éã#üáW¢Â·–y¹,çÏ÷Rÿ{†øïôñ>ú•RömŽþ/dߦî©ÂS8¿QX +Lt…y?#Èp¬=ßÌÀ鿳µþÓ_Hó®?/Â_HÁÿ>¬½Û´1?ÐþŽܬ¬À/ýóüç¿cøNé?ñ«Oô"ðãÀ/Æ¥ó«O4þŽ sªtþÅ&º?X˜öG¾æ¿3^ö5+ðÎëé~ÿ»Ãˆïƒ°/C}*û/Îûøë˘_ˆ}Y$h6Nøëïü”?Ç³ß õŸò¡ì7c~qLÛÔ£ÇLû»wåOå4/c}®®æ3ƒ¾¯£yôS5Ÿô]Í›A?SIó™AßWμú©šÏ ú¾dæuÐOÕÎ|jÐwµ2oýLŅ̃}W$ófÐÏTË|fÐ÷Õ1¯ƒ~ªLæSƒ¾+‹y3ègêc>3èûz˜×A?Uó™Aß¼ú©Š˜Ï ú¾æuÐO•Â|jÐw¥/oýL Ìg}_óò:觊_>5è»b—7ƒ~¦êåS +×»*——A?Wîò©Aß•·¼ô3u.ÿ†jùf̯Q-*¥yóS55Ÿô} Íë Ÿ*¦ùÌ ï‹g^ýTÍg}W5ó:ægÊg>5ä»r™7c~¦næ3ƒ¾¯“yôS3Ÿô]Ì›A?S)ó™AßUƼŽù™™O ù®$æ͘Ÿ©ùÌ ïka^ýTQÌg Ý÷E0/ƒ~®æ3ƒ¾¯~yôSe0Ÿô]ÙË›A?Sÿò™Aß×»¼ú©Â—O ú®ÐåÍ Ÿ©xù”Çä]…Ëë Ÿ*uùÔ ïJ[Þ ú™—Ç7ôfÐ/rhü÷ô}Íë Ÿ*¥ùÌ ïKg^ýT Íg}_3ó:觊gþ Uìu¬¯ñûÞnŒûäßïR|ç{3Ö—øÁ~Á'óvЯðƒý‚HæÝ _àûƒÌÛA¿Âö ꘷ƒ~…ìœ1ïý?Ø/ÈbÞ ú~°_°Ä¼ô+ü`¿ ‡y7èøÁ~Á óvЯðƒý‚æí _áûÌÛA¿Âö +˜wƒ~ìÜ/oý +?Ø/H_Þ ú~°_°½¼ôKü`¿ yy7èøÁ~|3æ×ÄßùÁÞŽù~°_pɼô+ü`¿ ‘y;èWøÁ~fy;æøÁ~AónÌ/ðƒý‚/æí _áûQÌ»A¿Àö3CÌÛ1¿Àö j˜wc~ìœ0oý +?Ø/È`Þ ú%~°_°À¼ô+ü`¿ y7èøÁ~ÁûòvЯðƒý‚ðåÝ _àûÓËÛA¿Âö Š—wƒ~ì—‰=oý¢©ÿ>ƒ¾õƒ½ô+ü`¿ y;èWøÁ~ÁóvЯðƒ½ÔÕ¼ëcZÂåÆŸú?³iÉÿ·7#z•öt¹Qöåþ\Ý|“ÙeÑügWúkpw>Ödi9gÅ[Æ”¬šh³±ËwZ¨Þú+Èô+×kíתÆhµWh^ýÜKóZ³Ý+õ °%mÀ½eÁÖ÷–Lc¼‹ÖWñ.•‰{ ýP`U#T›ÅoJJã=‹û‡µû»Þ§êWó=¯{Ó|Å +×57F‘›ë©Û}zhbµÒiƒ4hxÙLÄý0¨Úµ¦LwJcK{ôÀ²dY€F¡YâªWþ‹eÅW‘Ô£® Û„¹×ŠîÐ}зwÐm½¸eq¡üaúøêk®›Níßb•5³fWÌ›’Wú÷+:ÉÓvêtÓÌÞÃú‹~¤`K£7_pÅ=„˺Èß¿Uš7j9ÇŠ>Á§K;Ø /ks[]Ìͺµ;§;uWmÄRF;ܶà Øyé¡Á››‘Ò\KPK`íû5ôß–éþ¦·®¿^M˜¡S¥2Ë]úr?Kz<Ó7ݘ6}ÚBÛµ«Ø»ú¦$×ËZ΂±ÃJôscý9ZÙ§Zª”¾­¾ÊÕmoš“°¡W“/­»ù)ÝGõ^-†£íÜ¢ÔtGð^isç;|p€èyŒ³Y:â÷}ëvïö<·„aú¤ŒV5ncEVg³ê7»šÞWóÁ£JüÑlŠVacÊP‹Îaúß‡ì¶ r4´áR´”½Ö ÓüRû’Ž‚žçuÔJáý‚õuÝïrÐíO¹›$ÍÁµg¯¥ÏdŒNhÑ&õÍÏ_<ƒc~z€¢ÃÑðò +Ñ1hÆG‡nw†.4=¼dtÚw;èj7…hÌo4KŒ6Ž6Íê²Aýë\«Äw®ôb–8ºu²ø>’6yX‡ .m6I»V±:þ?Þ–4S«8Gßõ*ñ"û{ïSÇpñ›4z¿9]~,GMXª°dJ¡ºT¯¿c§Ð'l§(drc¡/·ÀhÛÙ÷U‘µ4 ½)w° ôÑ’6§êtë£xn|s·¶ +½‘%)înáó£w£·6éÞñštו ¦9cuWo ±k€ì“è”­[²ãcp#Ü·5׋m3t°ÝíNgSŸ]’˜‚ûÝ“8Œk´¶¬ôû¦#üA·¶…ƒ^O{X¢AV’ž»ØùE!ž›tr£•Tñ»Ð3kLË,ù±ËÚV—~P¢>ÞS+¤Ï6)°íôƒ_÷ß‹vTZÓNÙi¥eÒ»QÜ@BG³ÌjíW;\׉»BA¯64˜FXZ;_ á^ˆ?ÞV…OÂ`Þú["ØGv–¥%úæ•kl¿AgËíFÝ.}®[ŸtÏM7¥s»¿VÜhc¸œlÙ;‚çeÝ\\1ܦթn£¾ü-µeé蟜4“ÔðÈ°ª…”x–+,¼ÎzŽ†Ê—¤iü&²éŠíîée×À´k¥MxW±Ö² ñ×|­[w›ÞªÙ^‰éÃëNÑy‹“·¨£ë!41°¤I qhÔ)uy¯©{ËËUÉàÑW_­H²{«Lô×µÉcºÜ~ÐEƒ`’Ã:ó³poµ©Ï®Å*!©¸ïô{’mZÆi¥%½ca uÕû¾t¤.”§K‚kRd-€€tŽk¹Üàž¼ÛåÞ£þ´¯£k¸Éke}c#éŒÌ«îÞðmVŽøÔwA“‰ßÔý»â»DâÛÛÌiº6­=\46×RÒæ¹&]Ûn_çæºâë˜$Ìp76ZØwšB‡¾®¥ÙÑA©9Üü¤6]éÈFŠ÷p_aw óÇ•ºÄpÔËmÈ[§¹[FÁøÍ›ì§ue“²„¢á¯2i<>Ý?»EC>–Á˜ô½Òt›°Ëµ#pûÒZš¹ön‰Î£®Â­ñ*Ö­Ñ#›ž²z}é=~r|§m»Îéí›ú½™ÑX©Eè…ZZ÷ d“5©:=¡©‰6îJÞ$Ž…5<}žïºZ%G‰¶±ZÉlµ­S®ИðžnžÚ×Ë´^úïÜšÞ¢ÝZ”ÓKHk¯ÌÎ}a£Wäd‡ç¿û'µ£µ`–:`h…»®l +Á»}¢¤f̘yH'/4< ®í¸)˜T„FÛõÄô›KF‹.­ô‡ˆ1ÍVg»ooŒ´ÄX¼âŽ¹ˆ8&4°£ålbÚ'ûbh$¬Ó,u)£ {tqŽFÂË’é1…ù¼õܸx…阘¾Êº¤&»i³¤¤ŒH·÷ž¨`(žww?`)(3ôeÛâøbúÿ¾áIíìb馸ÒÀîÛ²qÞšlé\„Õ¿©m½Æ_óF†ËòApc_-¤Ä\`t·Ùè ¡}¹-R'ÝÊõù$¶ý‹ÚùHí;¡ás0§·X±}dêD%–„v‡r FxK?²ZÕù17?I‡U­A½£­/á¸Ýc׺ƒ¸l·U£µ-P6“زæíd/oéøM‰‹.£¥Ä.­t ýlb„ù,ÓÖ÷¦‡{N&ëZT7G¶}~|§ƒ¡"s¹Å"„¾ã-v¿ÄfÊ[z§vGü¦KóifŽ\Ñ>šim&Ѧ{–†ïu½¶ž¨üÑÜ~gCj}ŠbËLºÜ²°ç˜tz¿îØ›4À¾Mx£5f~ÌCA&¨Sj|(uÁê'ã©qdÇE4B¾ÂüLl^íŒ6Jjn`4-Ön¹’2£+®´„t©èH±Û¥XkÈK§#†Ó¢Ó瞦©Öó40.ÚѽzÍ¥«Ýé%ÑæÅDB­ +a+¥mÔXž +ë@Ø,ÌmߺM{ÈL¦ªËÜ}ÝèØ=èãF ýtÉï4 ­q#øTÐ5ûŽÆ¼8hì7ÓÁ¾WñÏXÉ4˜w¾åz^á¾IžÍì'ý­«åÓÌ/HMá‡ýDìr[0ÒÚ{<ÄCÃ=°ªÕ怹DùÄ°ê6¿Yr»CiµÝí}"qÖBלþפŒðw¾rC†ù«ª½æ^ÓîM>1Ö´c¯Ð7 ãò†u7_žÃ¾¼fãC`ìr¬cÐèÑ»C`ä]ÑÜlUnÊüMÞhýšõŽG“bÆ èð¬ 4?wô-Uve—\ÙØyÛ¹µµÙv+íñ¼Át)Ë€¡©P s\_`Ò-º)‘¼Õ¯;ŒÁ¦h*¶øJ|®B©5wb‡¾Éßòj¨Øñ:¾$Ja£Ã¸”¡èÎ ¦E•¶ßBýѯý<'…𡪘¬§Û«¶9YÚ¶+¦ ×ˆ“˜öä­Ë·„›GÖ´tP1<;ƒ»xƒ-Ì,Ú;1M_¦~‰NázéÜqîØߘà÷¬Ù ½ÐÁü`2ó9Žk$æç®×žQvü–Ì·Ð +¬a2µšGr¢¦xèl9Ý2…Ø{Sg]1ž]v˜AÙI[n‡" Ú]=½Ã äï¢BÚ¥.Î]½¥WHúµƒ 2™V`’ɸS€lîæ-à å¸%&+µÕnlò©+N”Ä–ÖÂ\N¸(Y-” +“·S[:„·½ `Ò&£½oQv@íñÉlº³|ʱiŸ@bÙº¾ú9]¢Ûêq`åúNi®Í¶ŽçoâI }<']B&Ä=CË&9W|¨º¬r ?ÄQ¼§tMœmXhvbC_¡U “€k^"|o:ºk­ñ¡ðݧŒ$¥­p¼é_Æôù¥|q·Ê*•í>e4øk‘@"“›¸ãÖé´Z®l]‘R:%Ê4±µ2ms’fxÛãTýA.ŒÀ`SÓÐp[vÆFtÌö$ª¾D…>W`º“õ}¯}…Õ!»öt+Ã/rÓ7ÅÝÑŸ-É'>;îåcÎízÖM˜ììîíKYGIÛ+¤¾0ýwÓns7x×ÿj¹F„.úÓ°g%(.,ÏÄô‘e¥r+wôŠ*T`Ò…–ŽHˆý°ãháÒ* u"Å´us8¾D קÎZ_ý1 ‡bôP+â®’˜nÁ©EÊ’aÝáøª“¢µã¦çr’öqÌ6ðQ‹ÍªI¸.¹°Î"(‰IFöÐÑè¾®›I'!~SêÜ’#ìIéxmæ¯J¿Ó`\â=õÛá|C_Ôé´å®—–1¹qI&&«éÖr¦®µe¥­'&@HsÐÁÕ=ÏákYÒeADnª¾iM{y’󬬋¹+½peƒM­ÝeýgŽ–¿Œ¸´5|2íÛ0ÖÓ-§=vßñÜ ¥ËÇúi<™2ºJÔ™vÛ9r³|P´^ãØcÇH?^‹›»y ÏnÎãAa+i¯ò¦Æd–È×ÝÞ8{ëùMÙK:FvÒà ÑEy¶.<}Kœ”ŽH—¥$ž +éþZêÎ+YÂÅT÷fõÐy¤~®|“†ó£´é¯yÃ0%CûŽ¯¢ã­‘}ûó&Ò%â=±¾­_êU&áÉd4›ÀvâIûq/{ÛbõÈx‰7c$+®1Y ˆâas;‹ŽÿµÙÀ‰ÍòPÎÀЫô_ZÏÑù•pÜ÷¼‰EvÏV+ ñØüA:¥¡@àÛ^$aÌ;±ÛžÇd/öÏÕï©?´ÚE=7îâµw¨UÚd\PÖ=ÚW ™õ‡Îc¼Ýl%*'tt¹¯îÄĤ^uø»vèc o³¶­%„Î ÷ãš± +]_zMG•pk’`‰.2fú ׉³M)ë·õö»Q!§—î!œÞ–©?ÒÐÁ §tqt(*"®ŒŸ$6šjÛÑÛç$ò¡µádó…6€3[ÝÇ2b0¡ô ÃáÙðv_™¡&Ñn3À_噤5É•à÷KºfuájO…ðXD ³‚L"æ!ú…i±d¹bcÌþšT¶¥ KFÕØ+ú…ŒL"U’Ñv²xK/w§·`aüF@'²£ý+17Ò’œÛ™/6–×vw#mték’X]\(¨ ÒP%vb2®#Š{åzHag}!¥±H®Ä—Þ…Sª‰ã øÜuÑå¾ÅÇ_ÒA¤×Ä%}§ ¹‰¼Ì9ö1…(–Ž Ãvféqƒðgb˜óA]³dŒ~MlÔtk±„ݲ²,óUnë·b%ÃÅ*“ÛÖ‡&¨Ö¤­EFûO“{|1}¤š2wѱxø5‰DÝ¿Žn9Ò?ŸDpEH:SñÜmê\µ$Ç÷¶¬"•{;!”VR.<m‡¸#À\ŸÐÉeøF:D÷;C°l¤ýLÙèËÒZMlà­òk¢"I:† Á^r› ÙÞÖá:bK ›v³Ç{.‚QJbøÑ‘`dª‰îñpÅm 6íM{À&–ÏX#c¬ÛØ71¼ntû˜ß$pŠ§€Í‰pLßb`mR|¢€NâÝ?¡™²2/ü+nx0üUºÉ ¼pËjà^¦Ó”×—•Èy ÞRKáMn;Àî„t Œð£\^VSã£lRTzÈ#í1­¥#1)!Töa{IçZ-ïBmÓ.ñ ¤’e¯Iß iXL´XÕ;Êô-glØ•íý¥“¹Òð“Ø-Ó[w×ò:ÂAßQ [Bá/ +LG­Ù¯`™ù´±'Òk‹3¿°#Þ!ü,å›ãÅ`x#Ÿöm¸KDPÉfG ïYÛ>³ÀEuÛEÍÅ,aa¿cbõùœ6ØQ{ï²WPæÀLLÇ3œ¥zÍ[V¾þµªßдÿ¦]%‚ö@ÈyMºÛ¯<>`úšA/kõá²—ø<·tk©eOÇAƒìWšæ²VM3_íN¬fÑÛùÊÈx@ÚŽֺžîÅcâ‚­ûŠZšXY¡U-*›$àÆÙXݵ%V/Yva\écJ¤b& <ƒF|$³ŽÄtþÉ!Ë ¦ÑT6¥|Çš)ºè,9piÉj‰Éª½bä Õãz¸j½§¥ÕõÀ¤¶ée®¸¹È+ì'0}ˆ‰µð¤.)«q‘*¦CZ‰HU"“Éé1I<7‡˜ú­3Ô#D¦Äé×”qsQ°­Ý`©ï'éÕySêJù^ByÛñጠŒû'„;IÜ2ZÚ%1iëƒÐµ0ÒVîô&€-iŒ¡l¢ôÀçx>µdŽŽó´BÉwØÇÏ +TKFY:‘I¦QKB(RyŸko>Å0˜ÎÚ†\Õk¾2\öÃTõ2ÒÃðsÈ2öCa)I$8ì%çCOŒŒ=áŒÄô÷Ì@ÖÈÑ:0 »jñ§TU´‹0,&åµ£–X¢¯§L“Ƈ¶ã;ÏztF°Çö{9é„oˆHEMŸH{ѶÜ*DÈíN.çyîÆœ¯v;t;\®çga)õÇÑó‹Õ¸š™M?©½âÄÎÀ¶îÍiŸîxùÁÈçubC<×Ï’¦GÎ +-)jë¸QÀ$¤—¦‘®Ëè<§©¾(õÙ8P1u\ÃuÚkcÛfÐ:˜Œæé¼-ÞV¥=ݸָ"¦}'†iã0uÔg:*Ø>Ú¯ ü¹1jÙÏMmþ’Ÿ¥sè‹ÍIFÅn 0‡BÈî‘5j;1]-w\3 Q^ÛŒ›$^l#f}ÏüÁñ=2`ìÃ{¡sÏĤî7›´^»¡K/l0sâ{ t‰é;=±uÌkEŸnç–ž/ÎM2(¥Ií=KbTªq>®Àš®ç8¢oõ“˜†*ήô7O,h_éJ?w=y’«H•™æ š­#u%¦»B2³V²9Ø9WI¬g4[E@y¬iá|±–jYzãÀ´Q뛥³Ý¥åçi&!ÑθâéqÁZµ LÆõN—ÀÀõ­- ©8]­O'xȘwb’A’”|2ô1¯^‰í°FjèW?¹Núêh¬N'–ç²|DôÁt§FòÇàláPJìá.@ýŸÃH—q¤ ¢4^¥:‡ˆknL'‡¹ëä"1‘Xøβ‘ jÄ)!"R„›ß„쎇ë&ÆM"#2`£+e¦X`:Vn"¸1Qc¿“8QHBÄpÄirRIÓu4¤Œ–¯ |,çh¤ð]à M¿P­OªuÙÚç-~O÷' Úº&$óë“„Æ›³™±¥n9 +˜”(YNÑêì+ç…qšÑ‘Ÿæ…Dw–ùJªÎ.ô|C)»õ ôÕÃçåÃwU¿üåµùf%íô/Ol2r¿|'§z¶pÑ€‘GqD´¡Ô›“$oÕš’3P†˜”Òú8®ý²lw„PqÕŸx1X'›“Dà C‘ mN¾LB…[N;„@Áíü¹„´s"’Ä©ˆ”ű£R®n\ç ;z †ÍÕˆ¨‘7èóXó`cëÊsö’s$[‡ÀôR·¬…?´ÙƒuZèŽbKª‡µØ,'ÄÙ‡-ÂyIœ•.1”gB0Wþ&<0EqîãJÝÁ¢œ€“Ã}Ž…–Ú<Ùºg,d¨À¸+80ÉÖn—¼v’ù–§Iº–ÈD÷¼ëʈû"§Lÿì@:ßånýø2Áî<¹šÃý=r¿¯ƒÑ BTÐLÉ|¬?ö¸VÏ4˜L/“îTJŠ€%ñòÞ‚Mݵ‹HÂ͘n$§=8%t"Ú¥5„F—ípJd(uÙ3ª ámp–—ÝÛ=›%¢×ÞœúæOµCnäWz…U\2 H!ÀôyQ¬+É£º¬œ™†§lÖ“QÖ²"kÎR/‰ ÒPêŽ+B÷ÁL _±f­×„½±bF7çó(ª×ÇÞ¶;ß8’'„Ȇùá— oÃïËç¨ÍÒµ{SD–|kÜ™ä?'T¥d…Ñ¥Aí}"º¸/ë0ð]5òÖµ‰­;}ûÍ*ÆÕ}%kR—Ý^šN pž“ò“µ`Kב#HIMX‰¹x¥‘ØŠTÃÀ¤ûêNË ôÂÿ» ±Ñê™td?0çu&Ý;ÎME"Ìf*hÔj•µ9”SFÌ™¤ÌHo’~ê©ÓtÞý™Ú †By?æÌ©B—FOuÎÿÁº£õ‰álÙ9“”ÒªOQÐr‘Ibci3îv°MNVLN†×¤Šá<7-©ïÄXk‰ÜƒÝø¶cz˜½Ú +ÌQÍ–Ø ßµ¸&L3¾fLøµ´³ÇÔgÇD;Ø#`˜4³¶ã“¡å»´ì`™±˜Ã¹KA¦tÓ˜dc&~%¶Ç˜„mÔ^%&è‰é_HuNì ^Qۥܹ˘–,ˆfÀ´¤ <ž»eØEÁâKI§±áôòÀ$Ò+5#; 3Ö“V˜ëáZb’Aª“ƒ•Ì¶ŠBÇëöçM,’¥sí9÷Œˆ^ïÏu×o’K—˜KÍ^æ¾W¾&‰,×\/S—Äk 9.ò2ó“ÄÔ¶ûâéz|>–Á= 5»¨Î"ì^bn¸ ‹>ócÞº#åL§&ŠtÞ¯«®j"N»?ž“"°GOL;E‹ðxîºvÜÍT‹pŸqžÓÚD4 +ÈÕQÅ;^UJ_Òò=°’ª`d@?—|ÚfŒ\¼»=—Û4ÊÁz‹B£sô6™WÆd¨Üy¢»HÐHL¯eGyœKF_ÁôO²†«;Ç# V†ÑsêRfÏ +“`@ã;N«k¤K®õœûEYÁ÷ä}Ÿç†‹2Nv#%rç"9ª%–©Y“´Š-!Ešz<»ùŽÄu:Eb’á +L—GŠiiµ•ä›ëñœvÀ}µÄVq.ÞÁtÃí¨¦ÆשÓõ\÷ñ¨!ëÎ!Ó-÷˜{,Qü&¹”óž¹KoÀ˜Ml¢Y=æÞé f÷ãÝÛcîËH8Ó-Qæcî=«L¢rÂÊò˜;:sg0l¼þ˜{òcR~ô)ÖcîÐ3KTbç1u)•çMdEJ`xð€ fi31]ç×sÕ›+PýUpÁEVÎyÎéû%1éÑ÷sÕÛƒÑAêùwj¿¢ØúJh‹‰añý.V÷` þj¢Ðä Ê£ölE½M>Vft93;D”b6twÆ™ çÉz®º ¸¼ò)|»3Ë$±»gÖ<Ø<Ò90²åBîD%¶KÆ‹xÒHìYømlBÈà©cu-80=”Ï¥Œç¢» +äŽáðgµ§.‡ 8%„ ­Ç~®9mÍZ>6ðÏÇš—ýuƒ ™5§6¥D|¢SéyNT`:zÓ†˜lÍ°Á##cÅoRä|•Ç¢Ó"®Ei'X—`éõñÜ¥1zŒG¾—U÷˜•zÔc'¦ODÙ]BÎÂ6„…%ƒû±è”6j +#±ž,5[Ù íåðD¾É²ÞÌj,³ $V QyóXrí¾}_ •2 Z€y“v¸" ÒU4‘åyž{$çQ*S÷~t”:}õ•˜”™‡K¹k‹@$5PÒ­ŸçïiFQÀVZ¹É"mÖñ¨ò!|L\¢]²ãNLSu±wbÁª`l<ÍöÀ5p`3K9{òF’õ~®r0ÃØvRUÏ­Ñ®›Ô$É6z,9z3I5à…±¶Vbs)V·Ë'KNnAºÂMJ,’Ç ±I=—ü-6ª bÏMí1•†çúó9Ê gb#²ôÏÌ¥óyÅEûc\/ó†o£$öj±‘æPâ² T¡gØç¬@–‚¹^û±àEºlÜæ®ðyL{fÚp`ºÌ×Ë‚ËJYã<·í{<×k~j¡ô{Ï>/›‘ÁOƒÏï‚Í û-Ø]dÐÖçrK›#u21:‡…,’.ŒAÅéçˆÏ”Ð`z—<=¤FÍŸ\¤(ìçzø)$`”H<×Û¤:%jpâf2H +Ìp¶ô{õ¾/ד ÍEÒ¼Is"ÊNL‡¸s·“ÛG¡Ç™9¹‡3´r†õ)]GgˆìÃ+6y’íº NAMÆtiI |,¸–´&‘ØÒ¾x,8_¯¥ÝHŒýÉ65`c‰DþÀØãÌ\÷Š¤~l>r…²´1°¾¬é%Fqq=SïÈ•ÈÍp\¸d²Xäàå—v]ôý|NF–NH?®:æE'7¼­’ÐÐ]å<¶ìºU€d_EŸl•Ô(½ÐÝÚÍÿöL›tXd åsÓ:ïÁúɪ s(8姈ݜ;Wè´„‘Yfì3þ0OÕuʵÁˆæf=«ãÉ÷|žsjK‚9 ¬8—?Ÿ#Á±èÉ¥ƒ­>œ@NËzP_I'Ž%»Ïñ˜4ŽcÄQq0 Q,Ì^ßYÀÚ̶qïd7ÑÖ)T0öâ [êN®9†u9©]ö€…U<'•Öº±1°EvS‡í FŸcå´U?S' N!cä9ï±ÏÔ·Ú{s’O|Ÿ£n±Çq^ÔògÒ£]™:¯ý¡Îå’“­µ»âtQF µ¼Ž|LŠñ @9‚2"kÓ˜ŒŸ(âs1 ¥†Á×(´]­'6$êsÕɼYЖÁ à W<7ˆû¥L_/• +æ¸[º¹fìˆE t¤ïy=…h@’%3}ñ$ŒuÓ䢓¨™¹\‘‘‹ŽÊÌ#ÆȦç¤o‚wÔÈ%sPðÑIƒ—¥ÖÏcš-íçÌ(”3'LÇs°$‘bžä{±è¤¥¯²MFè-âV&”`–ep ÌîÇ$E\±xûÉÞµU=²2¡'‰^¬ùFŽÔ‡ÒÎ=Šm€ðSsž>ÐKnNÜŽ!Üõ¯õd6ØÑŒûnÆŽŽüõ;–œp—VŠ"vcP\yÐ Q‡KILß \îüs×Çl!à`¶i#Ïù¦xŒ° Õß][•ý0ùä?±àx§É—+É~G.U3«‰)}&þ‰ó&¬=ò”㜆|.·,!éž•^öN_iZþ0¡~òXðí¢Ä+“4Á‚)ÇÏYÛ"‘&^“êÜyÇ‚´ÜE~|B5ƹ{Î"B¬§z,8ù“R%\…dbKe +ÆÖ‹X$ݧ€'¾É¨ÞM-¡~_qÆíJÖG›Q]@ ¦N/8îⶃT'±&ß n—0öURí]TO/lìmrB1›þß‚I°õˆ/á½ÅуÉHÅבDfö›‹ä…à +tÞ|0ŽàK å{'´v²|á÷”¼:¥üP>jIgÔ[`x$´Æaì)¸ÊIÙ'_fÇ(í£«Ã]O2¯s daÁ ‰SzÜøÍ ð‚ã’’þteÔl’fD‚5Ž-G,X8í½âöAè0;µ2°9¢¢÷^Oê'vÉ"õÌ;Uš.fIÈI±%÷³QeÉú˜A¤Þ?Ò$™˜Äv mA3B¿.Ùô½cŠHÝ +$ðC±‰Œ"cÔ©éì‰Í^ó°»sÐ0኱þ,³6‘*ž|ŽÅfåi/†iù¸€ åÞ|BZ¸ï×ÓUì~'l’ó‚QË£C¿ò9IÀkG‰ÇënìIÈ6|ó8o ç.Åô58¡¥ +ª¦˜ÂÃnûaîYx“œºÓ{$Ó™—vîHÓ>ò'¡)&Øëç§vÊLùÐᙌ²Y¸/Ê*Ð#éQ±äI2Ëà`Ö>ØY"0L’°¯\nt¾(Ý7†“ðÎrcêö]òئ“³6ï°%»ö"fÝÙŽí¬ý¯Õìù&i1´PmnJáâ+JßyB:oå'®ç’™¡%ηö:ô"Y ¾‰H ‚Öâ;y˜tÈ”èì81Ëc^p? +½ß«³jæ;ëÊa_“Ô°Ðà…X×á'†¸9‚f¡Ã^>—ÝÍD’ µÆ‘ïâ±úÈGšÏv:@zåÛøfC¾ƒ¥æ‡i ‹vàåyóØG‰Hwъ˧ý¹Èzv¡’ãZxnaúpq²9Od-0—kµ¢Ýî(ÁBÙõRã\}щ(Ö_{ÆR›bšL× +oaèù´&yÃo z ^ÓJ\æœÇÀˆ€Åb[x¹±ýý:¨•{™bïØ#x™uêb­I禇o‰í$ +ƒ‹:9‚7úz’ò±E¤˜ 8èƒ7Új1´òE iYÐ[·Ãu8Åy΂ L6Tœë=žÔ?Ì|-ñíPg¹Y[¨tÁÄÓ¼ØÜoRé]Lg M»EÚ <ïWèÖ-±ÕFlx套É&ž‡1ûÑÈ Ù”ªõ$÷?ª/…Ù±ã|ÿ¿¸wÙ±diÒ²çû*êº:üî.! n$$Àž!FH BÕÄ€ÛÇž×ÌbEfeïÊ•_-õô÷·ó­Xás;¾& "NÏ|yG5eÙìùéîYé²úŒÝR{±8]-·]éó›]”vÇN•ŽC–y7X8ArÚ›Ð<èÛÅ%¹ÎäqfsïàÎíÄK»W]vê‹”ý`Œ†1üãf%’<Çv™BŽJÛ< +±÷UE¸]õ[áOWHWÁÞqñSuµN?á²@Ë•© 6”´®ç–²²L¬ûxÒPUq:é7Ü8èiáÅ4èˆ6ø«K°p7Sùªãø/J„I"qZe¨&ëÛD ™a®µÁ,#®\ÞEŽøÕá5‰zâJî÷¦}`8p|Õ‰ŽÈñS/òêâÚýÅì07ky÷'ÊÖökΣƒ~Òq–` Ì„ÊòUß87dþ›T¦“ëJ… ¥6'Y3+IÍM%.ÊF•÷Í,Kb:ÂÖ£ò eŒ”ⶂ8Íi&¾Ã«y½8bÈÚ›‘KæØÌloRå–ºø)¢]Ë0Msê9¹æ³í˜iC|}—·ìL?걡׼H²KFìá™òì+"Á½šàx¾JÑ1„Ê‘y †‰´ûéTº§Sú'‰:„–$ ú_&˜>/¥Ò(û!u +<µì׉ê5O³35λB»Y—þCë¶XA–7ÔÉò}0¼Zvõ›.wäë8Ä€ë[+›kl"±‘„Œ™æ;n=º˜z’3ÏÁ u÷ŽÙÎÛ¾ì ¿H”g` +‹¾ œ T~ˆ¶½£xéÛO•‰Ð9°¤'NrvÆÍÿC”îö?»/û Ou%íØöhkuŽ‚¾¦»ì}ÕÑ7c>ƒ°†§‡'4g¢fã†ý°>-MeKNÍ«†ÍW,;l^g Ÿ,LðQeäoD qìd‰7i²”VJ*ÍX{„é +K<éðÚJÜQJ_Ky}Ù}› >,ñ‘R¿yr‘Wâ¸Ml§ð°DÅ òø°TŠàÌ«êŒÒ³©q%FäØÜN±~(u§uçI&Tôà¸5LŒ°úò¶•aŸëWEÄ?EØJ–x „¦/9¼¤;â›?Ä;GG +Øï]‡&¡a;ÖW¼áÙÈ¢7«?:Euôàð§OIY¾âä®)%Àùâ ^¿ÅcÐ7/›pϸ›j3à‡Æ-zÝ{PÒë¸úwC.¿M¬ïH$ùº ³&ÏÀ õ‡JZ,ÉÎn §Áp¦A vg«o³ 3ù3‚º©À h·úcžgâ´oE¼h^{"̹rüM 2wÊ=Ç2GÕ1ê¡z~yR€ÿÇ}Ë´4ŒXgÌUפ¤îÔpA\ñCø ¾òÃïD¸œMäìüð²Òø„ÿ¾Úä9‡EAz7¾m¾3>ÜWÑéüÔcÇ!W¢C©9uo|–5hÒËþ^¯ŠÎ&Â%ª4{`Ⱥ#¿|)\TïÇ÷°¦ý9ï˜Ó³wìN ÀScºQ|Éñq9Ñe@g–ú®uËì‡xó‰ÿ•à¸w‰#¡ánÿ‚‘í‡xóé ´Â‚B´FúM¬8¥si:A©d 2õ¤°ÿßîNûMÑp2Íxzç•Óàtût¨ˆç¼›oÌJ•àºùˆl„€öô¼o1Tïs"FÖâ+Ž}% m±áè±áæÅK?D¶¯Ð”8ô-QOé˜É¥Ã)ƒðí)¦_±LV–6ykz ~‚43ϸÝåbV˜ªGMÆ ²P#ã.°åJ•N»ØðMÛh‡6‚÷_îB§–ŒäP·?hm'¨¨ÀÌ—.j;K¡;ˆ¤Ÿ‰Õ—Cô~xÏŸÎÑ߃¨X<ör{ÕĦ¢EñØ;‹F¶VO ±nøªÒ ‰X¸—ÊídÑÞÁ^¥ù‡ËÍýøMj“¨ûÌ{jÉÛÏ # ÚÙMÔS¡{#&¥Òêš=’¦ÿb´«Þ°qÑD)ÍÖ™š„‘ÉTƒ½£‹æÛ]ËŽ‘1æÄ{ÊÁ½4Î…ˆ—5\WÐé©Ábð¯báõǨ ”1øÛµkN=w¤8¤¦þårT^;“w®8æ€gEü?. e+Iá¨áàwl·ÈÂâ®ÙüšþN·ùIécV·M5O wX½qUw5*âÛså£&¿ÿ:£µ”£ Nø!š~zÐÅ¢S¡)Zý¤ð÷^:ÃùÎ1دσ‚FÃî¼Ò»$»ØD—¬ñÜâ¾~øS¤‹Ž’±wvÜ`&L³ˆEçÔGuê`ñ'×6žƒ¬¹ÌËZã9{ÓI‚rŸbÁ™'kƹ–;·:69ë´=ß“®WËŽ‚`Ó[OÔÀl_ù^•~º‡hï…Q,¸˜ ¢QÞu‘¯ Ó:~»P›/;­³e‰c¦øÇa˜ì5‰ù¯Ó9¬œz@râ7倗±ç/nçì®ôÙú}4j—¨›S×'}:N׈ÉF¾/;”þ².ØøÍ6wÍFiÒ-s³€l]{ô›l(m%'È»zõ DDP\8FS'~Ä™}^y[bã7™î«÷w¯i8Šß›«ºåqUüã¾²OýÓ —i§‚ÙD™×éáÿ!V}[÷܉‡\)ÎGbW(2¯kW¢ªµ‚Š¿vaWûÇæ>œl]4 ÐÙ×ìØ Û¦ÍúæÄSU¦>á¼ÓÅÁgg3V*$¿ˆ ¡êÏ]ý?DZoJUp¼µ uÆkÇÎ<7`~IZ_høVô Dn®ÊYÚ«Í(m“¼‹‰0(gúXþé8Ȧ +·#œËŽÝ_k*&bÞÝ~•$þ †tÒz)ZÍ©Æ’îØçíý½&JäKîØ[”}kO ]…‡+;’&n‚$s’Á†·8©ÂZ>8F_öó¸§@O1Λ-Wã9êv’øôöÇ;y £O?‡[ÿb“£EUøb»1|{8Qþ|Tã–àsºDÇLÁíKÎúqÑÊNRtÂJ3ÏùÊ`ª"óo§§«™PÛ)ggQßåDŽ"¢ ºVÖLKöe'–rDSâb|o‡ßbp»Ýn°mÑH YáŽË“,.øÊ£ àôn?5 ²­}Í KŒ&æ¿N÷®"äî|jŠ)Dk®I©à\±äÄØEøéŸM.¡79v¿Ö Ö¬Vœ ü³—üëﳨÝðc…¯`ê*Ù@É]Kifþôüq®Î+ W¾Zs±Ù΋Þõc«9 G„å3a‘”ÓóMC¹ Åk‰þap­™Ú–C Xï&bîÜ{îɇNjŸ¯·i2vä Š{RNŸYâö ÉYƒ—‚üp¦t»ŸÅ-Cš~½µYT +Î>‚ãÕÎéê!HÍéÁ ¾Æc¦¾L_q}œ\üqÈ ¼xÿã$<·xG_r¯4¸zz{q?â:‚åêHFzµÝ ¾äSí!BÇL}Xj22ÒLöîRÃúqùát`§ŠÎ»“š7¼¤3˜•ëƒÂ}èè.z“&G·÷£ç ÜM»’´æ!ûgŠâÉ–˜*˜äÓ*ûîNÿdoÕ†w‘Ÿ¶‰r: +[7œÙf2Ūã°;½õ—cÞI[Ïágˆ&7?DpÝ•ëÏA»=ëUä×${®î,€,H*"¸¶måߎÕoôòØò›ÄA'Tõ¨ëQµæxÎ,û‹´Î¶Ù†“8Itû¢•¦¬ú§‹zåœÉ .þ8éD’í{Žh‰é[«Þ[F¤KIéØ*6iútr3L•^Š–zÁh÷ä¤Ó'ÅìÍ`t.´G¿<›½©)ŸùO½Úý€Í¤3»¹²`^ön¾ý‡?ˆäBso1£[ÿó‡ÿOwûÿú_üÓ_ÿäßÿ‡ÿŠ¹ý?ÿïj.ô-(5m¬šõÛÿþCDGä/ü?{‹ÿôÇ>¼¤Z¬âþ*oþä£ÿ‚ÒSc×çÇ&Ï;k»cìûŸ>?v{~lÈÝ­Ùûþ§ÏÝŸ›f¬tmŸp0äú¿ùÛçG_Ëxy#ðkôûß>?úù…Ñ%Üqžƒßþôù±çÆfweZi~ÿÛçG_Ï^ðïg@ŒþæoŸ}??zÊ—¾Ë—OŒµˬåizï‰5ü’iéõ™qÊ“ãl¨JÏâ•q‚ïúüÈõÉ‘ËÁªµôæ>ºÿíóc·gÇ.ô (‘÷•»èþ·ÏÝŸ{îG·—ûþ·Ïý¹Å¶Eé›Î^Uc‡½ùÓçÿ‚ØÒàN7áUË1øýOŸü rËÇT'Ÿöh×à·?}nð/ˆ- Ž+³º5™ƒßÿô¹Á¿(µÄp£R“º1øýOŸ¼ÇWï$;ÛN~ûÓç^/‹Á)A„™Ï¬ýüö§Ï þ¼bæƒóÍfš1øýOŸüyÍ,'bÕº Ëüö§Ï þÕLƒ“ðá-q‚üþ§Ï þU GóŒuxç‰üþ§Ï þU W”;à.‰üþ§Ï þU §âß ÌÁ;#ägÿª„;Ôž“,€kÚïúÜà_•p‡òaä_º¿ýéSƒ—/J8Ê8Loby÷ÁßüésƒQ‰ ÇTÒô¯ÁoúÜà_”pФ§É¦2ñæOŸü‹®“NÙ³)n9øýOŸü‹vŒ«Œ(¿ÿésƒQÂÁ±AŸßµó¤Ýÿò¹¡¿(ß:Õ°²®±oúÜà_”o½y|…’žüþ§Ï þEùÖ|2Áž˜ƒßþô¹Á¿(ß:®àS¥ì9öí/Ÿº~Uºá-7ˆPû5öíOŸü«Ò }aŒÁïúÜà_”n*€Íbç0ÆïúÜà_”nÐЇ Ô™ŠÄ›?}nð/J·¦êÍÓ‹úrðÛŸ>7ø¥¥Ý;“SbðûŸ>7øåìg°Ó\ƒßþô¹Á¿(ß`RØKwR¾½ùÓçÿ¢|k0¹у ¿ýésƒQ¾QcO¹©èZsðÛŸ>5xû¢„kííhƒßÿô¹Á¿(áå™þƒßÿô¹Á¿*áÔƒÐc“9øýOŸü«îÒ >ëô"5éI‡ÛÃi›^ÕÏ 4¾2Ø:I¾L÷¿|nàó+ÿÍÇçx;Xý¥gúmû}?í;âóÞõ§ßÚÿ\|‘)ò»†ø•+ý%ƒþÚ‹þšaé@Ñ°¿ò¿dØǾtéHÅ Æ'DóW6õöO¯ôçpËO!˜— ûS¤å§èËk†}dù)ðòŠaßKjföç”ØÏî_d¼dÌ_d¼dÌ_d¼dÌ_ +õß?æ¯3^3ê¯2^3ê_g2¼fÌ_e0¼fÔ_ßÔ/õõ+FýU–ÆkFýµvð‚Qß儼bŒw +|Êd:%Ö .‘P@Þþ郾OTû)w탾ÏPû)iíƒþJ¿{Å ?§Ãýœ"÷’aßçÁýœ÷’aßeÀý”÷’Aßg¾ýœ ÷’a©¹¿dØ_kî¯ö}‚ßÏI/ö—ÃK†}8Æâþ4ˆgaÿKyåUQ ”m£tá»ÄÇI’wiØGIý³ÿ*YÿËC|TPÿâ—7äõ(L~ýåë_½üç‡xòå[£nÐC¦Ž_¼<1ÂçèÓ|qŠ†ø¥æ1èTôõ4~Ï_œ¤ÏðÙY +ÁGÁoûYðÁ\„T¢bÿ}Œa¡qb±÷_DÙ¢CÂ7ºpx›èÜXÿðŸôù Ð^pa}0Âú-#ˆH¼Ò⧎ßó ƒ®:ìŸF¨µðŸ¡Á_ÓË|ÿÿ-#TU>/öÖ‹f‰^¢<°Ðûw @çCHk?X„¿’Ÿþýâý-ŽöÁýw л~Êü` þñw 0 m…-êƒ/ø+øé “àÊùhŠÎß1ÔÎfžm¢úÉz¸/9¤gíKå1_xëùðÒÿîðãûðím¨§â¸Ï8vÞnoc¾$‚{_¦BUt?œ ãwNæÁ𷃽b:? +„¿õÅ!ñ9áòî)¿{kþTµóê¹êgÆ|_¬s󩢧Æ|W£só™ZgÆ|_šsó©gÆ|_‘só©Êœ§Æ|Wˆsó™‚œ§Æ|Wsó™:œgÆ|_vsó©ò›§Æ|Wms󙪛gÆ|_dsó©b›gÆ|_[só©›gÆ|_Rsó©Òš§Æ|WIs󙊚gÆ|_@só©Bš§Æ|W7só™ú™§Ô¬wå21Ÿ+›yjÌwU2÷1Ÿ©–ùÔÉû¯Ñ&*ǹ ùTYÎ3c¾¯Â¹ùT5Î3c¾/¾¹ùTÎ3c¾«¹¹ ùLíÍS#¾+µ¹ùLÉÍ3c¾¯°¹ùT¥ÍSc¾+¬¹ùLÍ3c¾«§¹ ùL]ÍS#¾+£¹ùL9Í3c¾¯ž¹ùTÍ3íû¢™Ç˜ÏÏ<3æûZ™Û˜OÕÌ<5æ»™û˜Ï”Ê<3æûʘۘOUÈ<5滂˜û˜ÏÆ<åyWsó©z˜§Æ|Wþró™2˜¿ÅûsóE¾Š•1ßØÜÆ|ªÐæ™1ß×ÕÜÆ|ª¾æ™1ß—ÓÜÆ|ª¬æ ©a·¡^äÕ-°FrÛo÷¾sp½ì%®øhÞŽú +×GD4ïF}—ë#š·£¾ÂÏõõÌÛQ_áéúˆsæݨ/ðu}D6ónÔx»>b™y;ê+ü]Ñ˼õ¯xeÞŽú +Ÿ×G„2oG}…×ë#&™·£¾Âïõ…Ì»Q_àùúˆ;æí¨¯ð}}DónÔx¿>b‹y3êKü_Ñļõ°c€÷A_|ç{;è+¼`‘Ѽõ~°XhÞŽú +OØô3o}/ì#Þ™wƒ¾ÀöáÌÛQ_áûˆiæݨ/ðˆ}@1óvÐøÄ>â–y7è ¼b‘ʼõ~±ØdÞŒúÏØG42oG}…oì#þ˜w£¾À;öqÌÛQ_áûˆ1æݨ/ð}DóvÔWøÈ>âˆy7ê ¼dÿBRÏ}ÔW%Iý+úÖUövÔWøÊ>"¡y;ê+¼e±Ï¼õþ²{uÍ›Á>§7êBjÿ‡fÜßþË›!“ž¥?|sÔE[ÙNó°¶Z;¬y“ÖDtCõîQ¦­³õƒ–!^›^“êQ¶LÞ µ}ët¤z4´\ôà›fqÓG«›hÇ>¢/˜Yþßϲ1þm¼¥öÉÓôA5±Ÿñµ +³؇÷[]K-Qè"Ãx´ñUï65¡ÕÍ +ýŒ®*{zCzESUÃh¾j¯¾ÕWeõ{·ÿ}ÎÍsç÷Ãwõ~}Sk +6¢µX)߇ÝÅö«¼' +¯^Λ>B#šC‚MÊ ¼·Ù¦pÊn›bÆ£ÛaíѾv×öý<7YC˜ýÙ´G5ÓÙôYf!¼ÊV«§å½ÅÄ ííâŸRä:í0ó¤muûäТ ¤ñ/ͨØo|— i7FuЛ&Ò‡ÑÄÉwÚ'ŽC¾©ÍÞ߃†ÝÚ’Ì✥B$Ió÷AŒÒ }+6dαãIÛ㶇$lëÛ"ì jxÚ;¨µI›gÛí;— lâexHò %«]Š§I]tø¶£TíWí¦°y­£Çƒô¼¶Y£,•_ån ¿l9ÞÞÊ“/ÙßGvˆh&‰²Ä]1m”Ã7ɽŒœË¢Ø>(’´†ÑMضM tŠ]d5vW£õfô‡´¹1»Ò¾d¬¹æ¢qe£ãn1Ùxú‡4õ«“°”2u‚¸èÇjÖ¢Éͦ“zžç -/mörm¨—¤·¡ä®QÜÁüÐ÷tÚ&‰•î4’&xΡ•6yvŒ;¯Û†n&%¶é#Í,›‹ù¦à«È†¯ÞåÐÀn zrúÖ›åêAÌ{ñ䦛Ÿx[ÉÞV¼-ÍÇí-ªí6ùÓlrïÊ-ook{í¥Cd—ƒI¼Xên‹djCI.o“?‹DR¯>rrlùª᣹x&žè ŠÊVé±Zg¸ +¦[Þ²®7ÚûMà EÅÑÉ<ÔͽùËÞKóí¸ÐÑø8z‚ô¶ïµHŸj41<›‡x»‘=ÈÏ-kº%¤S¢÷i”̦|1³¶/l'z/^ûõïËÖœ{%hrË–IOÚ¾ô¦Šñ«4[5a7¼¼yöj-ë õï¦ÒÚ=` š'eKñ$z€íp5‚5A`jŽ)óôâÌ––ݦ’¶¢¦Êø®=±0Pª®Cš“ÒmÜ1ü]®h3YC1 ÐTÅeŸNR`ÿíPcÈN´ñ´ÃʉëC½Š³¯¥Àåýa‡¼¾¦Ù™H‰[á¤Q®é÷›Ú¯ŸËfÙ·ivÒínä…è•NãÚ=ügQyšIÔ-=£ÑkX-„\Þ(˜1;ñ¾m`ñˆÚYµ#ÕÓ>zÛ6£?»ƒwÝZ¤qÒÎÈqúÛN;q¶tŽ4jÓRU \íö³+¾zçz.²£Ê¦5,ZÑäìåh±¦mhÙ›D°w[¦5*:¦çížzSäÎÃ=õ§ò® —ñfו³‡½TìPjàs9¢­¶Àe_í³;MªíNxÌ:'úÈH¯îŠZ/´±·½W<öšCmÝŸ\¨ÞÑ93¬Úñ¥iÒP®ÓÙÝîk“Kþ³ÞØûøvµy¶QsjiŒqg¿-;–ºsHÝùè2iÄgŠé ÏŽïØL^“ç˜ñBjŒ iQåL¯ .¿Ÿe^ÚÞ¦SœŠê´[Îè¿éàù¸7;méJzÆC“­v8í–ej+`Ç?AuÏ´›a³ Ô–&T6ºÚ¢…h“ØWÙz©[¬ƒvUnoî-û³Ð¹¹¬xÓÏéºißæFíæV=V‚vÝ…ùfOnûÉë†CnÑ?Óµx‡X?E[ñ…êSß|Ó­h Þi÷  T:Ÿ=o +MG?ë=™çLp5%@L™¯¶ylŽâ&7MÌ>z˜âÑd£ö«@SÛïÐŽ½bf¯-IÌ,Â×”• Ь¶êˆ!íËN¤Ãk vh¥Fã75lÌ嶯mîŠxpÎò>ñþ³¶ñh¾› }¤)îÛkûè­o8)Á£%øp³Ù $Ø•„±Ãnf‡ÆI áéðÀ:V³ÉôŽ´»ðp NàÕ†8@3¡i(ëö¶Ý¦—¸4(v5 lÚ^ün€]`ÌT«©Œ î†mwºªWhýsÅ ”Σû–I6dž~ìšh‘îO¢¦O¹7š‰ª·¸v¢ Šô%0ú>c$fÊ’Ú6ËÀž›G‹—¥eoG_+T®[½$¸W˜K¬#4G½ŠÏ1«×bØ'ØîÝñ¦´÷ŒûЄÏ4Ý´›Y­Ãš‚Š…òK²S Û =œ*m—7Ùåí:23@ÛM½B“V¶§·¼ ðö$ï´mïj²íÆlRdîÛ…eJÎNÐÞö<¸ÔMé<#ºeWM§MhØÜœáŠHpÈqb‚õ¤ùoþU{Ñšƒ&>Ï#)4Û.Ò¬M¡k*éЛWžDZ”‰WÒAÓ…ªýŠ$ON4ÓÓ¯ÀmïiºHˆ ’Egf÷uÂ^÷\h–šhŒ ä?Lz1©˜§v9ê š1Á?í š˜3Ýz;hÞþg Ðîvû6YXC;×d@îV Ûƒ>ìÇhªƒ¼¢éê_J÷hi8þxÇ0e:‘ [ÓòÚÏ!ö{;ÒÌx»y +v[dl„ÊM24ÁT¬ÖÚû˜ÎÐcÞ·«ª‡6¿º%û]Ö.é®ñ²§Ýœ¶ÙcöL3E¸!|õ²8J³&h‡Ç›\ÛÞ-®úäUvèhríð>v­˜ÁUJ‚gvÇ>ˆŠÚ+S}ÁO5oׯš•aê|íîèrD ÛjÕnŒ–[ÙÀª†Àžÿ!Ðd–_¼,ÃÖ=ŽlUôÃôFÍúB9•Mî Þ»ËçÔƒäЈ_"°o±Éve™x·×q›Î¶²Ý€‡ßMCÙöé-ASÅm£¾$f_U;o%ASŠ4o«`kVßõ¦m΋]â«— ´ªj†Ž¯°rXv˪4¼iEOž¾•k‚öÒÇî±V6 ýnlí‹á{¨Úì3âMëi}Ä“ì²É1( Ú´ÅÆâ…|ubLfOôp å{­ðÙv›ª­@¯xNÞ¦š1ÍäY; ÓÎXy’ãìÎ"u÷{4°÷m ˜G³.3cä€ç]M©èŠïÔt™zçÎÐA3i‡LŸÓjμîJÛ{ÎæBÓúÐGâ =åºÛ—€ +¡vNïcwe]5Þg@C&ÂL݉ +W—–¿|úÜÓ‡V(’—ÿâT?FHç†Cu²PôB›|¹q~±´¥šz·Ÿ²quúVäI|ÔÝ“^ÿÍ“0Üg¾­…âH?k’K_`§]C¨pÚ—ÍiÆñ3°ëd"¸–]P#Î9-§Ö˦Ø<Ïx²à53Jë‰$R…4}CÎ 0Clfš˜ä"–BNµYã™Æa2I7]g„düêÏ'+"ÙÈò¤f¾ÇÙÄ hó*{ŽŸÅ j'À§¶ÛIA:`¶ò³v)7SWj‚¶ L—BìW¼c¦ÿ…³Ð.é•ß`4íÃf ÁþÝfYÎ=i*»ßb’ÙŒúwrÑÊ R¥ëÂínße +~|Ê ñÅW“—5s·óÂueØDÛ¿v Ì“‡]¾g› Ú‰E×/þ¤IÍU€ç¥‘¡*Ùôìðnšh¢¢ƒ17!î6ó^ÄO~4Yî1³ _ÅNשK}ôżï4Ó[Ìþ]9Sç"¤õ8ÏfíŽÌó<¸Ï:\_CC6Ü ×a:ÛiC"󳦠û²H¨ò%):0;hmÅËÚ¡í.b´(6§âçfr‚¾ò(˜§%±…ÿ[¼ y†s_Jí®=ò²áæHÐTy›”#öˆY)û<¥Ÿ Ÿ¼qúwÄ|US#*kVÙwo[3ÃÒ\>•X1ö‰qj¦F¨'þÇç™7¶»cÎOlò‰Sµúx۴缿 ?d~ L›0N9ɉBuvë.Kpc,tmõp +”³Ö×x¬ƒ Ÿü»É«i·o3-í†Y%A"•„Ú+1ËxñÝ4A4ÐpSq‰Ì˜æpž(S¤ž™h'äzW!0jKiïzÈ ˜½ðS2`ÆÅíàùˆ“ÂLjö³íÍüUdÀðx!`ÙáïÐvíéÆÈÀÃQãgqlÉQ]”Ã2‡Oe‚€ÿ’e}?æ€4c¬DW›Ì2"r¢¦û“‹ ñ\¤Ô„žŠ½d“Pã´Ötß ÙEV¹mõlæóAÛXLf‚&ÍLIÓU×!7ƒƒèͨñ¼l#kã~LBØ?¾>Ó4o8=[‚ +Fá3íJ›$ú$HÖÕ{Òî—z¶0ωy¹¡ímIfQ’[€óV•dz²]ëŒ+ØÀóðAýI[w,²mJH¨é>C&Ì0Ž,DŠ\ëžöØÖÊB'¸ž´ƒß›2I¼içÔn˜Œ`UhÔ¨•#>Y!ú1ÝÓ„uW]/MÐÖN/¯mnÕ×mf.—4¨6"´ íÒÓqÇ“™ l˜Üvîæ;šÍê‰9@3àÖ©y=dw!_ 3ä-Ï ûŽ3% ASKe†ºÕÂ~vŒó<Ò^WejcOІǛX¼´eÅÕM(ñÂ0Gp`…H7ÌÄ =6¥Iß½âW™ÊA¨øì~Ú´ñëK®— ЮIÓÿY[ÈÓÞèLУ«¨ZJÀ²9ŽCkØUgÎMl=üó$0¥¼LÍ]|rb]V–V²bùâV84­b¹&aÓ³Ý˜Û š™Ã)¿p$TnÇxrb€. DH­täN²‰‰ˆGlÞ3Ð’JHX]/DÆ š ÝjÅuØFÂâzl­E8PZ®ücÕÄìh³~¾Ñ!ÐN½†ô%ŽV—¢K~¨ë7åÖ–c´IçÁo +«ôòë +ÐT¬¥pv€6zë©Ÿ5#¾¯MЖß3+´a»'¿$xÑü³ì>lvw•¦1%ÒŽÔ¯ +cÉÊYxifHÎXhíó ļڌ+1&@Y.º§©ízÒTÒgcßu÷];HtÒm-t7åòR6 4ÛÅŽôòƒiû¹0ìéYaÌæaÍ DÙ‹ýƒÄ}·ô"lq˜ŒÃ=\÷[·+!l“ #§Ï~ÁÓÝl©ah·Û•i’ûLðt+î÷»/€àwEªL? +63Â2™Ö[¸²¹L„“­˜`˜ìÅop““=b…€=½¥.b¢”¯{!a¼ìf“šdŸVÅ"j‚Í>E+€o”±µŽ ´Ël¦6O¢ÀÑ<ëÒîTÛÍ cRئwÁ9•ù&LjP(F›0ýŽH Ö“Œ°z=Ù)àÌ.ËŽ¿!±Ó$rñW]äÓoJÉqùòV+Ã$yO»Ôœ7Ïà+ ÚEÛ#霌‹Níò™`OW…ïðhד¦s“D XÞ¤N>ìòŽ‰àM8z†Œž³¾#7¨šÆ ­–ͺ{&¨0Ð=™ÅOL(:RYír"ÀáÛÎ4 S“zbëˆlh]AvÅÌ4Ëw#9ëë&ml_ÏkÈ-¡VügHÎtû\ÊFÕŽ¦nbf4È@]mø’]:­Ì%ë× Õ ˜-e•dÖM!÷`g€vYE ˆPKø%E­·Ÿk1œ!üíWåvdö~ƒ8Á$…ÉxS~Yq×=#°¹lôB»GÐA˜É~Ûe¬˜É’õ…L7ý…óè™ûŽÙB{º-ÐcR *³ ,¤Æc”êD±’VŽpaj?IzHÿ‰•Í@ˆ¨Ì9Y8بÿ¶dæ b›a±©@Ïn®ÓÕì‹=âÅ{âþ{¤§lDº{ܶM"“\·‘OÙjöS7Šéx¨kJjpÌÔî5diƒÍ°t#Ná…a¶~g‘ýïÏuª—$"Ø´ƒP± ©9B*U6¿¹xt_2ÒìW|³0epëïÔIåÈo¶=†pٱʱÌ=|!ì•Ñf~ó û}'d¢ô¸–Ù~ {Α‰ˆïÄ{~ñðÜÙéj×*¸k…¡‡b/ A5ãýO àq­39Wø3„MòŽ=Êvr³—I÷u-õÉRã &îǺM‹×¤¤d—k±1Ñ™³38¯Åö¢«Ã??¥iÍùéɦշÀÈ¡º{Réäž,êWoµŸè×'öabkÛÍŸŽªÔ+„Q¼gŠ°±½®Ì1ûÆóZr›MUGÃB6'¿Ý;%ùv8Ñ–êºgTijÉQ$Š×¶Ú’œòÿÍe—P~»É{;~ÓßÓN&IW^÷ªè¥¢¹Ù¢ôkÙmd\èŽ ¢ ”_ÆsA§D,˜éçµì›lûâÛoöQGœøy9wbfàîkÝ·ÜH¯¡VXr"¿)ë`gˆ…‘±u¯Û[|/‘Þâ‰û˜©r2k~òÜöö5"iÁî4ÿv\r&t« D<Ãö÷Yó9Ì<¸&úÚcÝ ;ÉŠ”¡f" Û-ž[GÆì:úŽ Žu‡6* ‘€ìx7åŸ+¿Ûl›o™‘¿cÕ1ð\. +3]:ÕaÃM„ÀL¢×‘_5–Y¸úòI†Ö‘‡}%J#˜Íë¨ùå•Ãç1*¶M/ÌÃN8Ò¬ßÕ£Laç—Sn@À_Ø N/O;þÍB‘Ø Ì¾æ8óÓÉ‘îâXó¤q¶üv¼kíðMe9~ùí¶®Ó>•ñu\«nS¶Í2èÙmvÊ?%,­U0Ÿêµê·¬0{ç%°­©v§|yu\«Þm“˜ û¢:aUîvý­kÙm“•0ÁNñÕ±‡æhÝ–3ŒCa&Œ#‰LÙŽùíö?l{žþ\5{Ü.éüöAŽÉŽ F™ùµî1»ü5M¡Û*$Ì2&­:°ºùc¦…eÚö½¿Ë5eaÊÈ®‰P>SîŒÇQTÀ׿üœWÏj0®U7±2#(fCyµ5ØTbLw>´ÇZ®U·kïPUc;3Ó„©b$ž# k¶kÕ'‡¹ž3°(•óOÇõEª0ÒÈ£ºJX dzcx¥¯U·Í0C;¥a;u½ù7`ßÍ+´-°f4Ü‘‘²óÛM;4éïÂÅý +ëZõMQžR-<‘☩ñ¥&DþP¬ú)÷ƒýK½¦×l«¸Ü±î9œ=JÄÁæ‚DV"Êùœý«s]Ø,Jƒ¬Âldy…¡åv¼rQyq”Еþ*Œ,two,ìZ¤±ê9̘pçØÙåq÷W©ý¡zQ¯`wÝÌO¯fÓ^¢ F´aå§ã­Ú %~¼#Ï:Âk¤›lÌðÙ#ÉcøMD™ÉyÖO2Ì饯KF™ÇPzx6QD`—ŸNM…é[‰Ü òì3 S÷™_>uc›jƒ3r(„¦®–vøµègø€Šlâ6ã1ÛezÖ9XdoÆcJh7"3Ø¿µ,²çÁL˜Í\óÙ=;]iB^kÙ Ò¼¸t«bÀ \ ÍCºfeâ٘גãÇÇláÎ/ùáQGæ?ÉÍc3˜NÉÁZ°©üÜ|Îl•á¥tû€6먱ä㯒J03ZÈ?ÝŽ‘'ä …1|ÉU@©á Ènq…3£Øtþš¸éK>¡‚8Üwò`oŠ’ma[¸XñÉ—ÚŒ+°³…‡ LŠ¢g¤nØ6+ÊH°Ó“åýÃ;åóî$‡1å0eãÈ'ËN5]Á¦rî8æ¤ X^N¦B,Æô”üðAnBp©±Ä ïOÙ! äÅÃ!GŽ?eíÚ d~ï½J~8GsÏ|l{0Ç3å˛޺Šø°€¯s Æ}¤Â›®ëA@Éc{´] ŽÔµ3¹³¯HÖ²x†Rÿ…!¼F]wØî’Þ`öª1rÌ íR°IBÀŽ5—¯ÝI [vñÇš/ô*•U [J¬¹<ýÓvÕ L>ƒÏõ¦à¿'éE$Â0:I·lúëÏ]‰0Ú˜ù>ÂÏvƆŒ‚™™ß>=KFPyð ÊüLÇLœ#?â¿p8íªœ(/ ó£ï1ÃN¨ñ܆É0/XHyÊ`7ê9;3ûõâëi£Äª¸¸hÆ6I„”¶«.xiŠZÐ{‚¦>ĪÛÅoß`ö¥fš”O%&Æ«˜D;ƒmÌ)zâUÈsè:7SKÑÖXõ-wÚr‡5´Ljç.g±ó +¹ÿ.ž#ˆNO`}+_ÌŸ#Èoë7³oÛ¾ê„Lp¯Q5ñn/¦\00~Ø©ìdØœƒ(Ü&⩺N(rõ²ÕQ²•ÊLiS5–°u1~E}¦W#8„eîk^°N=B)l“îèÕ2¦Ù™"ïž(‡¢æÅk±ìHš”s¥nÓÄ1¸Um¥ÚvynÏ,¯¾äõ:£ÐÜì8|f~Ò)‡±é:Ã%6#Øâ&C±[¤ämf¸ +å3y±ªJ6öøÊ<°s¸Ia>än m”dl»}ÅMöÒÍU²ÿÅs8ñåÉvè„`Hå"v›bÛ«x9 »-¸¡¶Z|l4ÓÓ·3 Ó¦jÁñÄÇ1H©h¦CÇå*7Ýä<"㻑‘¦’{Â<Èxd`/([*Ú¸Ÿ è³Éñ3…«×áI5Òˆ#Nö¾YS+ÌÞù\ÛQg7UÀ>h—Šq”õLlpˆŠè¡ï†»Í®‘óéì¼á²‰Î*ªó*­ùJƒé\ð^Áb¹ ß¡å¼#KrèŒúDaâí¥õF”ºÞź2uwwº’M¨iÓaOÕþ­7פMH ß:ØGËt:A‡…mjm‘µâ®‡6g»rÌD¢“úa”qø·‚©º/+rW£}ì,%cõÝæÌ¥¶ §ë[Ë{ò N:cëF‘c§YþZrhnÚ£T&G;-^³‡=JìÁÄ‘©/çsìüÕ¸˜&„†PoNç²åQ®w`dÄhÍa%!cqÊL|ÏG š-ÛS:G‹0S»v%*cJrò9í#TgÁV9³3rjÕa‚²[:.g‡4¾u¯Ï ÆIxg`þï‚øDˆ”•˜XôíT.ÙœàVz$©`zŽ‚c/VÌ$‹Ÿs˜¹Lîá¡òw!n«jˆ)º/»Ú2ʦ*R}{G»4á0|äÚwSEìc&ülûûvÁY»U§¸D[f–Ü)ÚƒbÍ4¡p(³ ¾31yÊò–꘾å÷.O¾ûµ’NŽ-d¹¾âjÜ#aSc¶PSd^Õ_[¶r²‘˜N¦ÜŠu߸:ý°w‰æ2[æb”¡ÂKwB0PŠÓmR-µý¬wjY)zÝ®Âaj],K¸² >g½>2{~ùýꎸ CQ*žûöC„¡³|ÕE iFålI&ªY×—8†ì˜TÿòM’5e¾J{S Ü.“à¶-ÁÃ׆Å3¾B@»‚øö¦¸2ì^¾z¢3ŠÂx ñ¤R!#ŒÐ`äó5J•l«˜ºY&IV »¾7êm4r[>­zëb!+ªõtlP8Å·Ã0i߸NHÂ^¬§\I5,ÉΈšÙÿ¼fu&ÝÄ‚~ˆý¾³ýr:¡íì~Ø›‡&©Ç™ڥʀ˜²rÕ,m±ÝD-vÛ7²Ç–m¥—± +õqNDÀŠÕ²7¥øiÞ ´yöjg˜bÍtEš:uú3†/ðP;coñdú/œÞ B´à;€^Yú‡ù¤ÿ$4å0EÎgb3)8íP-™Iïƒ?ÛmÃÀ·-o·{I NG­M´Y2;¨éʾèÚEõq*aýr“7ýÁ vÀ€”ÿ݈{Õã™ ¡·Ê ^ ‹Aöî <ƒ^ .¹LŽX€B¦PZS-®³Ï'h{PR ‘Ù²›— DâªÀ^VÌy̸h©xÀµÁû`9¶È2¦}µ¦àD& ²Í{‚°úàœ=RÚ¡·¶Ÿ 1€á`³9FÒ[Sn3n­Éñ¨8‚ûúHæÔ¦h„gù'H‚½ïyŸMYŠ|À½Fȼ(NxêØ~ô¡F’Á:=³TàƒÝzV•ûy_j÷¤Ï‚ÃÛ®Œ¤³]]:\ +@aºÃ¿'Ì4)¯ó-_h$% tŽPí:n¶yñ ÂÃm/R-–•éÇ™àêgHM̓;±Ôn~¨…GIÊ?° ±~ƒTQ9Ö‰W;Õ‡zc9³uOÐăKn4"ÆgÞK]Ügn=I +‰À&ù“Å誯4ÜJnïóÁPÔ¡Ìà š™;ÔÆeµ9¬àE™îçcÿêÂvÚN‰ Å}6K€K/Ú@¤ÿ¦b”éÝ¢€eô¥1vÝÕ‹küTYNO^]\ڇꭚ¬=B54Î8ŽïAÆÒÕ`ÍP1yƒR©åŸÝà ‚ÂA¨kŠ ‚.R4j^ §›2î>TÒÁú¨q‚‰üŽfÿå‚s×k˜êõ Ù].h|GŽ,mglØ.0¢©KoÙœap­Lç•61sª9ù¹§§vñ›_Äö^Ä‹Øí3¨@Š4Øω÷]÷ó ÄtI€7`ú¹óóÆÆÊå!“tÐ.5 \—Yl(¢°á¢ SŠc`l/î@±~1ÝãÀ¤~;H€8]šhÓ»óõ\ ÜÜš+¦°·Ôn£Ó¥¾’Ú[TªãŒÏÁþ® E c†•j›JS³Iåô`p€vú›÷̙ٽ±4£ä\tì¸PK¨¿p¥œAý#§OVÅ „óJi×E å×uj >D“0”í±VÔæD•~¦‘îÞÏã0”HÖJÐÀòîBL! +“G&æk‚áS©rmäe_ IÇ3$‘ÎBÍ¢Ní‰0Èc&RL÷äê…fhê¿I¶0KMªÊ"xOUèµ<ÁKß L´íÝs„{ÒU¥„D ¿ýXWàî!»øeƹ£èjù^C5èšK/BOð"G$3‘RS·.Qß §ê7ÖIc„'†|3(}†ÄÁº ѸæŒ$ô"jùJFÖShLó`Є0A»³C"ø„ˆÆA]\!PôÉѨ!ü'¤¤‡ØêÀP¤{ i×vÈ¿äzj3Ñ;’¾áÀ'ßè) ³·½O¶ë/›£à?Ó 9Ža¥R@[=›Ã1B2oÌu¿¡ƒrß;¼ªw€‚Lš̯£fÓ/5@ò W\Í^âIBƒ©Pm›å¢ˆÅÓÄnž½3G憨?@-áÁëþ:2Jà™Æ¢³¥œÚÍ@¡†Ý¶ò‘Mà +Uܵ{®Ôr2káât~ %Šx“Èr5¸1Ž“ø@IÒÙ‹Ô08«Z؉¸¸!6Ôwœ1WÑ“wHJ@Hð¯ÅÄSR\U¸¢Õg‚{‡V jù‚Wå¸:¨»­OElf1%9Y5gïW£Î‰û›íú6PÀËƬåj!°ÓŸ xöêÕ!¦Mæ©"J$»ƒ²ß -*TuNvJéw2iÀ^:gÈ5«ˆk0ÀŽÑ‘îu‹2ÍÖˆ‹@Ú{¬d06ßý/Õyéïô[0˜áN#W­$1K€¦d†<€«|(àê ºýéìÌ}gúèÁþÍN´—-Éncö#áøÑI6k † v6rÛù¸Ñ/]ò<ÄwÓ6öîI¢#·ó^sÁÇewBl„ªïG#Àà;èÊ»SŸ‚ä[UU¨Nd~U5ÔÍlä1„0ê)£¿#|Úhœ×~q q@|踉ˆòHµvŽU,†áÝET²½“óV±ÛgÛ3qóg+UÀó¦­ÒÕ÷6ÿ‘/Ð4´0 ¿aõ?ÕþÑ÷:nšù—/ÐïGBBMg¨~ýèñâ4ÌäÕ®äÑmóNcN`8È¥â‘^I3Ë!rr£—Úugnwæ!ˆv²ûœh†317À«¯Ø”mvD1÷QRå‘+Ù‚µ"A;%ö_A&{Þ)Lp¦C߬)à²ÙW÷;0%ZøÌw¿ZÉ-qPÅÉ|Ù‘€&êßRüÄÉ­&0R²ºøF\êM¯ q/´‰ì–´pxÓ#ÄÞÄ£'x®TˆwÝ”(zN…ƒÔ(8÷¼@OwÉyŸßýöïNáv¨ûH½hÎýë…ðÚFû‰ù6 "yëmÍùƒ•’Ú3oŸØ].lx3$'–÷ Y÷Û¬õº¦OèæŽÄ +÷q5¢%ùNÕ@ônóŠÅz§7¦ ã—ˆê)cRâÐo÷hÏàPÿÏîoÕ ÇÏ’éªäoSO-1»ÍBhÜ7ÒSõ]^ OT=Î59¢ó¾ÅƒÇëÁõ=R5èr9yÿãÑXQDZ¦°d§>qv—íDÓ¢¼:•9 º7±æ ="õ*yÆç +óhí.ÊÌP `€zäò;·vRÊ‹Lì¡ïÞݢ%3iæ6O#Û^À]‚‰S)èÙÝS e‡3dÂø´í0Àé•A] ý¼ïä>¾{¿Øîœh5Œµ9ˆ± Ä weKÀ*]ë +YàýCPâÏ'O'Säsëåôn® € Ñ3ÆŽ¢Ã YЕëýƲz+d‡LåÿNðì©t +ÏþJ¨š½5 ¦€xW¸…ôâh½Lfs\Þxœ¥Šh +ˆU8IG‚ê—éS° ¯ëº ™ìÅM¬U¤”ù™èfõM0Ž·ZÌÄg¸CP^dÿòL2YÜèI| è™ôÉ8<Eö«áÌÒ2'Á—¨äÄÊî脤€6Gæ7‰«¸µÔ&yïÝ•à.©(†«8UÐo’"­Me8û¾¨ŠWvd¦ÞÂuýd…Í5Ê‚»º%”‹pøÑf=é»w´§ë2T6y *Áå|] ÝWY¢í<½Q$¶œQÊ!ÐÍ3ÍJ©iJqɽ½Éñð&"D(/&ީÑ ì¨oqb\»±ÐI—Ó3è±5§ˆÒ£¿o †²Š°7¤DÁM±Ô¤¾K8¥Àq@¸9Ø ´Ýâ€;²Yè挱5U¨¿FTõx:½Q¸bQ?`ˆ.Ðukë¤úæ° m{HÁñHÝ@]Dnôx³9çJ„hgí;j‹}@@ +¹š˜È}ö[w´+U»^l.À'%™]Ø•»Xðq¶{[º ‹Úéî§bu—Û ¿²J"5"ÇVÔC1¢üÊÓÉ9¹³ÇMƵ¬9²¨mѵ١õt~úªb§¹P^tzõ–#] )ÈWzíÖT (;ÕãâØ4a´—¦ ©Õ胇v‰#È0)±ûtg;ø.g a@LÝ>äêGç! PìôÑÏ#AÛ¥.dgWµ¿ÓKÖˆpÅÛ磵 ÞtWá«@|ù”¶Š’ ò Ù*ÿFÈ¿ÿGÓl¾ÉÈ›ßþü§?þ(“%’N`Tã Ý߶G‹<ûÿãŸÿøwþQôÿŽÿSÅ|EçŸÿüí¿ý›ÃL½ûí¿ûó?þñ^áŒûÛ"YØY”«heÖù°¾°ÿ†•˜ZÈÅýyÀþóþíSÙTòdSùÁ”¶û€_Õƾh¶øé‹~ÇrR%·>˜Â7›ä?ÿñÿ„)ô +endstream +endobj +339 0 obj +105757 +endobj +340 0 obj +[338 0 R] +endobj +341 0 obj +<< + /Resources 342 0 R + /Type /Page + /MediaBox [0 0 450 262] + /CropBox [0 0 450 262] + /BleedBox [0 0 450 262] + /TrimBox [0 0 450 262] + /Parent 343 0 R + /Contents 340 0 R +>> +endobj +344 0 obj +<< + /Type /FontDescriptor + /FontName /EAAAAA+mwa_cmr10 + /FontBBox [-43 -250 1008 750] + /Flags 33 + /CapHeight 683 + /Ascent 750 + /Descent -250 + /ItalicAngle 0 + /StemV 0 + /MissingWidth 500 + /FontFile2 345 0 R + /CIDSet 346 0 R +>> +endobj +345 0 obj +<< + /Length1 8476 + /Length 347 0 R + /Filter /FlateDecode +>> +stream +xœ…Z xSו>÷mÒÓbk—mY¶Kò"É‹, [^$¯b3ÆãÅÆÛØ`6±B š–,“aRšRB©Â¤-“I™,ÐlÍ×7Mó¥m’¯mZ¦™všIçKCü˜óždC'M«ëwï}÷Ýwιçüç?/*Ø4D–,+.Ó/ÓY²Ž³k·m±µ,9ŽýaûåºÉõã”ö…~rÛÏÖÅ×}ãÉŸàZ& ãÒðPÿàºßÇk9®¯Æ õj.€ã1ç oÙñÏßP~€ãûqüèØÄÚ~ vÐwâøôxÿŽI¢ƒ+9^Û6ö}Íre!ŽPG&'¦¶ÜÜ ¼õñþäæ¡É?vžÀî'8ÎäV(‚z¡G˜º9;OѧÙíìò:|ïÂ[€³ðœSpî…}0`VA'´C+,€ÔC „!A@1Øe‚ììGì‹l‚=ÍîbÛY9ó#§ú:I}N}BýŠ:GS=”‡Ê%×ÉóäÙGƉ þ€o|ßù¾õÇp^„çá2<—ài¸$)‡ÓðUxîƒcp¥Ùq˜‚ ”iåe £vhdµ“Ñ ×i5éij•RÁËeËÐïE<¿ÛÑ£Îúu>ïÅB€†Ž (ê2WvK—jé’Pv'HƒæÿMù¼Eø/Aú¼É?d Îú§íª·5Û†û´ ¯¶Óàì· >‰íè²ãï)°gw·u‰ÆekNÈ\Mý XÚe·$؆yÝ–þÁîe]Îbç_,ÅÎëøî¢/ß½ðKW²®úºë_x¸î/Ò”Vg®ôyŸGµ D!6%è†þ‘5kê}Þ&[‚vÖ_$Û°­ÁÙpÔ‰7Œ³>#¡uÅÝ2šF‘~›$w"jÁ¾ØM4[±îîë¬Ç-ˆ³~$A9ëªÂ Ÿ×Ö4Üèó>Z`o>WB\Ô² ^m¶§(úh½3Aúë›Ñ`‘Ž®DdM·ø>Ÿo5hPÜRðyý>ïUŸ·.a(ôAò×…íÆU }=‚ž;Û³[8Ï¢ÿslƒØ~ ›ãXŽ±Çßƒí … [Æ‚òe ê÷ÔGÒv¤oÐȱá}m#6¼¯ý@÷(€Çz\kÀ÷±™p_¾×¼cc-ãßc^þÎæɬ,„¤É,eɨü±^$UïÞyíÂëoÿ“dŸ~˜0Ó?fÞüêÛ'Q:Qž³(Oø¡"U%ÅE…zš 9ùK‰²9I¶¢B*æÍn`õd]z€áh².,Ópƒ¹èL­h¸¨D_^òøI°¼– ÔÄhH#2sòêtøIȃóÁr?ñ¸Ò(½¹–ˆ}§# —t>¾oQs×ú'û{¿5ÝÙºtíö+ã®îšè>Ѷý…ÜCø¯Èhí½Ÿvn\¼»¥vo; íúA]©ÿ¡ŽÇz]Ý´m•}aðüê‰ï v~}té]‹ŽMy×.:†P§ËŽw7MEJVGÖà9ÌêíED‹Dæ™IVŸåâÅà vRáÎSä>§x,4c&me„mUë«&ux¿µŠÍäèÆ䉇䧂ÉSB%8§Ã,¯I+Æ(Ùõ÷”ÕR·”58ƒ‚}çVæíýóÙæxSea~UU¾2ku v¤c^®<ïÎe½_«}a×’5>¥i`hÙh)EHÞ:ßá·?Š?Nš\?¿°²ª ¿Êå¬è›8¾{UÇ肃g;w¼³?ÛïÚrfÏä“K,i4Cw=½õ®ÄC¿Šz› Š#î B™ˆC®P ‹g²ZÞL(FAɈŽd’*“•%ÉÕý~<Ù A­ÊŒÚ€Ñi4˜F{°¬¢†`,URqYZŽù•Wv,™ùÑ’‚‡ü†´Çè„ÂüùÊØ+…æXÌ\øJŒz+õˆϲÏ@6äBi$ß‘c΢QÓé„8€W ³åÊrs¬Ù˜]4|iÁ€³K¶¥`°Ir˜ z’(C ¡í4'I„úï’ œ%Ë‘çõ£m3WÏMé}Tÿ<'yþƒXœù•ÉôÙoŠL±XHA"§²´@iŒÒP"©Àø¯Ag>Dß uЩNWRZ"nA‘&'L1ŸÃ+À[I.éÍpX?)!ZÒ[XnäꈂPJÒf•¤­ÃŸ$oEP+žzÐ%ù‚9ÚYâ]1 ¿d¢¦¹Ç^%ÿ²ú£‚‚ÇV­ÜémŠš{ªz¶=ÜÓœìm¨§)f*¢ŠC¥Ê˜éå®Éç:7TïZ)DEMEäÃõ{/Ç…±ÙÑà©‘tAaŠñ¡ÎVðAm¤\N +í¼‚(I¡+M¡’g»ÛÄkðTxÈ–ë¬hyžP +Ò›ÉZ9ª8¥­ü³Ò§t{¤ +-†þlp²`sO[)ž÷`Gü…ñøµ=®ïm:·QËøg8Þ¹ìX0Õ’QH¿;/;fÚW=øÖöÝ?Ý.Ìh¡:æ¯^´ÿÞúöÿ8¸|>ž[*’ÆÞ ÈŠè·xx}JÖÀ]J¾¿: +I º¤mK$ã1ÉxŸ}>kÜ“lbu6¸"ÙYéz„ˆ`N§4<¡ûâþ9³úϾÀ=»?)¿ ðe5=ÄÓN5z­9˜°¥3[’3;•¹îkÌ©°z%_ôܼNe> „"~!éx*4Õ–§çeJ°,S FaUx‡#½2Ps”5+x!­S”3žÑ. +$†k y"îkçîÚ&vá½Ê͵áâ¾ú]÷ý/ ~vB8›ùñòý‡[ã{"{ÚN¦ââæufúˆÊ"ù9*·•×É“Í›2E61+é5iŒ¬$ÃQ®ÙصyûoÙ $Î/ă¨0/lßxÀQ%A +×ÜGÚO~ûrE:˜™Ñ¶n省d,9*­À‹ùÛ‹×ìϪå ãùgc«‰Ì$ßÆ+I¾G®`äYˆÍ‰âRL¯Se`ÌæéÕešÙå^ÓmÉ-F0O%/“ù ‚º$BZ?•Äpù$þòDü= ï*µ£ØÅøGx-xBøµskÓòãÎŒù½ÑåZóÁŸîØýÖÞºyäœ$ý Ÿ$ý5¯4´ ´’ßûZÜñg×·ïu©¼yn§¿Š !‘¢œl*ÝÀ»ÝrÈóéÀò’yIMúrrÖN:´Œ†£ +oKG³éÓŽÓ."cY- Õ½NíÉ$žkÛÇ_ܱêXß8ó»©]’F)e:£õ9!N¦‹—nÙg>øîÎ?;T7yª×b:÷ɼÁJ™2k˃”sñc#ï$}ãc(‡$l‘Ì\ +é ä²2£wÒÔz–hX§èŒ=щùãc’ñà +Xµz¦]ÜcJúî‘úˆRÍÍS`Ž Úè#§éD¬„ˆ¡4EQ/3µÎ<3OeÑf%ûžJmÒË?]™‘Œiömv;òšÂˆÝHLz´—ƒS)0~ÕVÞ Q«xWlb1µØ’g©…SvÐnt1fy‚$Å- 9ኈƒº&Xuë–Ps„»ÉÓWIžY¼5S(Ó™eEx Ò,sã÷ô/äÚ2,V¹0‰òø Ís6â$ÉF,¡Ö£p·Ùã_«õ½ôÉ ]Ö×þ©dçu˜»Oaî.ƒÆHØ_A«‹x†R;l*F^ŠPdi*ÅÞÈ—’²?½$çY )ÔÐtÌHhŽ*Ÿ#j hUz+D›"/µT +º©tÉß+BzCjc=]Ú]+º[åiþhÔ_­¿{ñÖW·µî¼œó»«¼ÈedVW…Ö´n8z_[ÇC}£Ë©ÚÒâhƒoñá‘yk¿ï>}ð‰ì÷X6ëëÂIÔi–‡-„¶H‹‹dêRÒŸ›Meº¼¨Wä锄£5’Ïë´”ÉÁ/¨ä€ ’ÖRÃe§½Ð‘O¸–X‰èâ”~…%¡Y¢IáÙÕò@¨Läšbf•IÎ4§íA“%/N)€æ ûÅ’ÇWn4–­¨;¢ÓmŠ­öö­j=^ÈpŒ¿¶Öï‹løfGíÑÉ–ÅwµuŸîßýêäšçw5ì¡ÜæÒÇš_»£jË`µ^§áÇiØ®&$âóF"Þ® ®¦±¦Î²´ƒölúþúù'ÖsçÙÊÑ.˜d*ô_b‘Ý¢¤õ9¼™OWÉ1µ™4ˆ»:W†RÁX|§ÞìˆCD1¨{‘H;ê +Å\„@‹ŽTfFWˆ^­5Hü"¨ƒÈCÄalzšÌ”“Ëä²<“œžž9?-ÈùÌ,^H›F¶ä‹ÆÌ7âÌas,zã‘h +š³Ÿ}h6³Š§ã1ĪvĪ«Ê S­’ð Ï»ÍU"Æz˜°óæRîbd4SÀop9€ /éµ°4—FÄ@V(Ùt$†bÖ*¯È $ÝRvë”*æHÓíYÌ3[UHWC•ÛŸ#êxù@øH‹'P•_PueÛ²³£Ž<‡½ºdiqõ +Öý•ŽÖ¯ =±!V?YùâþWv>Tמh© { +ªª +ÆFZîìù žƒýËJWF÷ú×.‰ Ôo®{«æ€‡˜k¨Pç,ŠÔ—祧qŒ¬@Žä9iš9S«¹»RÊ8YŠpIq&®Qzy{5T®DÌÁ\=äÅ2‹ªOº«¨6f‘Õê$§u±¦øbHœ«Kôã¤ÿ"¢çÉW1ydâF]¦Š©|·ÿàºæ»›ÐIOu´†éœB“©Û>Úw¸?z¬9ÞèÝݸ¿w¡R¥ãH«F#¼ÝÕW¿RkI¯]ßØ3˜`•œð‰^?z qYå|M–fÑ–ù ÆcŽÎ¥,êÄät]âþˆ[IŒ*ÊâIGm“”(+CGëœI¼ÒÆYâ’*‡¿Eç5$¥QуI*æ²ï\Q³&èqWxTËF¼/ÝFj»'baW¨Â2︸THˆµÄ×%^’ÁH‘“º-%R†ÄÔÅ#éÕY l~Šžç!=OeÊ¿ÍÎMÿ˜†¿ïKi÷‘{nQîÛHv2§_EŸÑ@žX÷[ܼ"yɺ¿Cu‡] a÷\Ý/åðYÆÒQt +È;8™È<ÄÂq×›;ö<Ñ¿÷Ç;v^Ûyf£ÉenYR™r»ùqóž7w¯ºp÷âCïíÝ5½§ú—Ö9–ªŠªck¦¾¿[´ÝK˜·ÏbN²)’ž«¶h(Ý3‹yWüøP„iÓ¡¥È")4ÈÒ(ʨ!âù‰ q×æoŒ”—>1¡Ðs +fðÐÒ<ÒÇ)Y½B`z®9±=p’؈âw+¥ŒgÞŸþtrf«pר“ÜÁLvQAòÐ`Žh2)¬¾¡ +ÁÎ¥C»ÑLå]ûö%¿û°guxâ…‘¼<Â9ä*Jn–JG¹Hˆ±‚]¤¶»L/Ú³P‚ÄÛÀ0‡è¤°qL¨REHJ ?)¡ÃØ8=MýÏ=¿;ÓÝó­ßN•U¼6òƒÚ¨×­yvô5WAâßP4õ&ÜuàÏW7ßí5ö.í|ë¾ßïZ±’³æ$uºùetC8Rf!VO)1Äar Uc¬Àóâ÷$7²æ ÙYë$KŒœ£ò“Õöí"ë~:)VÄ8‘”‹òŠ_›ê¦§™‘ÊpZqÏ×îüw”ï‘W8ìy€pIY…¢;\î@Ùfþ„Ó3ïà‚™?E%ŸD[2Êi”X}anJÈ<³ Ç/šÒH,:~ +SŒ‰,Õ1$ÉëSß¾nÙTBc»Ç´=™eoÙóÉ÷8ñËMÂ¥éwˆiÓ=Ñ“O^˜³d_bëæóÝ‚"£žÞ=ùÍI#J|ê@ß´ˆ¾™ + +}Ó€IŸXS¾©G( VC’ßZÊ̦,”BA8ç<„‚®ž+ezŽ9y¥·tôÌf†@Ç3¤“:F#í¬J¦d¶O G®< üVøão{˜$ÇB>"r¬fhˆ„kV3¼Í‚ Bg-Ðr^=¥öcIÁ8CqçQK2ÂFI(‹Žöš_b³L<”CR+~ô¡d"èiEy1]…$>kp&ëãÛ«åûH¡äEãŠí‘¯L²Jýꦦµµ%œ™MW˸£œº—“©˜æéMí£Ë6ýëšø;‡¾Õ_íóÕÔødºëÕ¡Ï´ôûbc…ój), ϳÊúz§W¬6 {BÅ®ïzs÷pb­¿*ìóÖТOSLñÔEPñj1=;]&DT–d»åÒgYÿÚŒº×„hº<_îâÓ$³w ‘€SÒ‚š-£Bd5,UN’!$üZ×ÜSr¢­ï±­Ñ×â+¾â_ÑÓ4sµ÷>‡ñξæóóªvHõ?Ùi]tàÉ®oïhúÆVÿä|¼ Ü¿`÷ý‘öçïJæd©f*„’H~~ž!1åð¦<±fÊI¡l>êÒªÔjÙåY"2x¿X.Ýâ!w²¾K–{øY VNÂîW·L½¶{ÇÕÊ‚‚J¿£eÿÀŽ’ðÁµýG25™œ"÷’ùŽ·ãñ_Z5šççe¾Ï­ZûoñíkTJO}cò}Œ†ž‚bÌ£y”Ç)äsÚ,…RaÉ4¨XV—†¸ ¤ÃçÖ³¤4™E¥pè5ud®H1˜-Dú:[¤ˆlÀ}‹¸Þë)¾£½Yx]ß%6Q¿~³YHGÝê,á±ì…c‘…›ÊÝYf¯È}ñ<õßnc,V*gfÞ Ÿjô™.C,VUùù£õ-kç»ËÍù{yÛØˈN¨Š;Ô¹"^gaM-òÒL½ÈK-Ϥ©ø²Ô”F±6²T%›kŽ›Þ†"'µÏõfÙ©„#ˆlÔÐ4Õ7M ¾ùæÌ£Ó3g¦“‹ +iäcñš$¤TÑÌ[I. ~Û ¢]s¥ªYMÉ̼‘ÈÜé +‚ÞkvOÐ ¬&£>M­âX¾2‡žû°(â­X#„’ÞéÔۥؔIÇ¥s€n3sTõ¥›æÛÃfê¯ff^¼Ò½½Ðc•‡fœ£å¦šÑU¤]­PqòÏÿb*ôÜÙ/ÄᯄYGî;“MBOòÊ<ë(B²’…¿ó‹€ö²g„Ì’ª’/¥öM¶½­÷8V§Wÿrå_xøæXnë8±+LJÉìs¸_3N…n>qó¸\7·ãìÏC}±µaëL5,À ž;5Ì&R!¨mŽÅ¹Fú^¨Ä¹qí'îö׉ÏË: †×vÚƒë씞Á=ñù—¨s`æ,ÐÈâ~¬¸¦¤çBÒžxõà~uâþ’´X $¿,«Ð0XnÃèKÉŸætZ ÏÍéÍ“òTŸÂèkMõiœßêc$GR}ÔdvçßÀ•„áqtYzJìÐ[ªOA©MõiœïLõìoIõYÈ"'R}矅˜€IˆÃfõ0 [¤/@ P€×RÔ¶ÊÁ‹ýzè‡)\3†ý…àÇ¿‹qfLú/µÃ0Û¤¹(Έ+Úçv›’FCxÂwlÿƒ¸²÷.“ö\ˆïw²aö›€©'D©Ä†`-ÎŒHwD)IoÂ;>|ÚÐ01ß<²~x‹-¿¡ÀVZYYîµÕ÷OŒÙúm‹ûÇâSÃCÛü¶èؘ­]\6ekšÚ¼mhÐ_RZVß¿pbq¿­yb#Þh˜Z»edb£×¶hhÛИ¯_0ÛQºÕ(Ç8Ê_Š’ÃøöþÕkÇ7—bWÔl=lEyúñ.´­ß:Ö¿ù=õ÷ï–¢^¥ˆÓ¢…|ЊºoëxPê/-.-óµNlóU–ÿ£}èT îÿ_¿Ø92íPæÊÓÏÊ4µlƒj¥l9»Ô¹€]¹²H„{/ÑÕ‡¬EEÿŽ¥ +endstream +endobj +347 0 obj +6194 +endobj +346 0 obj +<< /Length 348 0 R /Filter /FlateDecode >> +stream +xœk0¬_ ´P¡U\ø¿¸j +endstream +endobj +348 0 obj +20 +endobj +349 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAA+mwa_cmr10 + /Encoding /Identity-H + /ToUnicode 350 0 R + /DescendantFonts [351 0 R] +>> +endobj +351 0 obj +<< /Type /Font +/BaseFont /EAAAAA+mwa_cmr10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 344 0 R +/DW 0 +/W [ 0 [365 500 500 500 500 500 750 833 555 276 276 388 555 555 443 276 500 750 276 500 500 916 500 394 391 555 500 388 333 763 651 680 388 500 526 443 526 750 443 ] ] +>> +endobj +350 0 obj +<< /Length 352 0 R /Filter /FlateDecode >> +stream +xœ]“ËjÃ0E÷ù +-ÓE°%¿’RÈ¢šöliœjYÈÎÂ_Ywš@vräyÜÑŒ’ãééd»I$ï~ÐgšDÛYãi®^“hèÒÙ•TÂtzbŠoÝ×n•çó¿=ñè +endstream +endobj +352 0 obj +400 +endobj +353 0 obj +<< + /Type /FontDescriptor + /FontName /EAAAAB+mwb_cmsy10 + /FontBBox [11 -215 942 727] + /Flags 33 + /CapHeight 0 + /Ascent 727 + /Descent -215 + /ItalicAngle 0 + /StemV 0 + /MissingWidth 500 + /FontFile2 354 0 R + /CIDSet 355 0 R +>> +endobj +354 0 obj +<< + /Length1 1968 + /Length 356 0 R + /Filter /FlateDecode +>> +stream +xœU]hWþîüìÆd³Éj~VélÆT“ÙdcÔ.J³™I5Æê%[„d’dv3Ûl\“–þ@ñ%V°ÔR°P|’"E&yh¥±¥b +E¤h+BKŸ„>¶ (¦g&£”Z[ïìûsîùιwî=  €wÀ#ùÊ¡®žðOÁf€HÚ#“•9iodp€ð÷Ô?›*M¹Ð7Àæ©ßš.,Lý|+üÍ?Jös9ÓÈNý¸§FHÞž#EíVô“üÉ›rŹùÀvd›äª‚5I\ø…ü8YùÛŽÉ~‰diÆ(š[fÊwH¾pgJVynå-4þ‚c/Íš%KíØF²Ãß=„± =+€•¯à6¶™q¿â*>ÅyœÅx'°€2ŠÇQ¤±»¡a'؆HUÐ_ö¯÷½íëóuø‚âïâmñš8"¦ÅÂoBY°øGüþ¿žûƒÝa×Ø1ÖÎÄþ>Ç2.RŒOˆÿ]¼éF˜À«q#쥩Ç1’M ëÖ†ê낵šê5U~Ÿ(ðƒ²LßB—'emꈪ,wúȼèhs"ã»ÜÁ®îÌØL¯ÿ‡JU¢ô³¹NUY}± ²¶ÄøvMJI9#kóí4J¶ Ë†”]J&GF#Ô–iÍu€Ð.¥r¶¿}аqp4Òb‹úK™#›94*wÉ÷[ºä»;úlv#ûÌ™b»Öw÷)ç¾û®*´¶9¡*_Ó²Áhœ$m^7òã㚪 J6/kËŒõŠ.ë‹2lAÖÂv³Vb æí¤!¹yÛý-„h§ZìÝ™Œ-ÊQ0YËÛœ¬ÙΰªHƒ¹Uù!ˆ+W4Jb9$Â%i‰ã5Ùf†–¢ KŽŒÚÉñŒOUȤ‡tJ7U‰©ÊUUé³:ÕÕ‡}ÔÏ€s.—HÝ.?Ú’-2GGTIðsÂažL‡ý >nM#Ú EB›©3ˆ<ÔD<@D¸ü@s1.°›â)®µhNÖ·úâÕùz¨©)$|TßØXÏnn¨«Ûàtü½1_ ;í¤Çβ×\…;r70Å­¥±FÄ´$$œÏßKS&;ýÝ=ÞÕ¾ñÛÉïÆêvý‰ªžön~”òŸ¯;uœçIoâ{ÙQ9Íò ããFûGûµ\ ‡¬¦Èѽ÷¡‰(ØãÍ Ò]|ì?†+ObTSaž—Ÿô0OzËÃáÓQ˾ð°ô·i&ÖtÙõr0C“<Ì!Èú=Ì“>ãaðë±}ìaé¯B‡…Õ‹Yä1æho·¶ƒÆ8UŒz¡Ö`PMÉ£@x1z“¦àVšLT\]?iœé'leW2i4)F…ÞYšÙMÜ=.çÅw˜$ªPf<'+‡ÉÄ$iò®ÅÉbŸÉ$‹JÞ1ªPVia6?›“¶èR<‘èU$Í(ç ÒPL6 + åœY‰Iý…‚”v¦•¥´Y6g+f6ÖïÑŒ!kØRÖ t«P0'çòÖŒ"í3+fAÕ(@Ç©’ŽQEÊlòî&åñ‰±Éby!NØYÜ4ŽQJ-isúXÁ˜}Çÿ§ÆÑån•JeÜ¢¥«îA<ïŠ÷¨û­Ššè}*~õ0®¼áü‡ýË… +‹mbk°™oÔŠéšá¶$?<¼©ö N]âwØ~p® +endstream +endobj +356 0 obj +1292 +endobj +355 0 obj +<< /Length 357 0 R /Filter /FlateDecode >> +stream +xœk…… +endstream +endobj +357 0 obj +9 +endobj +358 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAB+mwb_cmsy10 + /Encoding /Identity-H + /ToUnicode 359 0 R + /DescendantFonts [360 0 R] +>> +endobj +360 0 obj +<< /Type /Font +/BaseFont /EAAAAB+mwb_cmsy10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 353 0 R +/DW 0 +/W [ 0 [750 776 ] ] +>> +endobj +359 0 obj +<< /Length 361 0 R /Filter /FlateDecode >> +stream +xœ]PËjÃ0¼û+ö˜‚l÷ Á¡àCÔíÈÒÊÔ’XËÿ}¥µq zÌîÌ0¬h»[çlñE^õÁX§ g¿Bp´®¨jÐVÅñ­& +‘Äý:Gœ:g<¼n,½„ ¾ÓgŽ´Âéªý€/ Ñäþ'i$ëF8ý¶ýÑí—þpB¡ä:ͯhßeø‚`Ÿs§ÉÆõœäÆÏjÆÕ–Ays +Iº‹K™ªË[ª&»?ÍëM5u—t°Mª†Q•PYÖkwVvÉÛ8"ª…(¥ãep¬È:<¶|È*>ÿŒÙ} +endstream +endobj +361 0 obj +234 +endobj +362 0 obj +<< + /Type /FontDescriptor + /FontName /EAAAAC+mwa_cmmi10 + /FontBBox [-34 -250 1047 750] + /Flags 33 + /CapHeight 683 + /Ascent 750 + /Descent -250 + /ItalicAngle 0 + /StemV 0 + /MissingWidth 500 + /FontFile2 363 0 R + /CIDSet 364 0 R +>> +endobj +363 0 obj +<< + /Length1 2824 + /Length 365 0 R + /Filter /FlateDecode +>> +stream +xœV}L[×?÷}ÙÛàO Í3æËØÏÆÆ@ŒÍWøÈMR“Fƒ vf°ƒ ²e‰(j‹’•ôCY4M[´EÚ2=ДFie‹¢­Óªªê¤­Ú¦®Û¤)ûgë¤tkÍÎ{8‘º®[¯}ßýsï9÷wî=÷ÝÔphì}Öã3ôêÓŠÔ›á§K!þ±Œ§'&)ÝÏ"ˆÿ‚õ·Éùñ3{€þ5Öt<‰NìíÉ¢ý´iˆ£BsŸyeì‡òøäÌIÃyåÇ(“©1ô•wmo£l™ŒœLÃC¸ T£ÌOE&cï² €º”Nef6Oƒ@uOêOOÇÒ‡Rö ÊD¹8P‚¶ƒÃÙ#ÙÌæ{èù½ÂαWI!aàCxîÂ5ø6\Ëð*¬Â7á<,Á×aÆ! +G`ö@/ô@Z¡¡êÀÛ•*ÅGŠbî=îw…}Ì>bþ˾ÃÞ`žeO±'Ø}¬–ù3óæ3Bgéè‡ôÛô]z…>FSs”‡ª"wÉ*i&¥°,>@oÁÏáÜG>·áÜ„°?†!»ïÃUøNŽãë2Ë ÈrÎÁ‹ÈuÎÂ×àÌà ÈÀq™ù #ó}ÐÌ» Ù·=åocu³ÉhÐë + ´u¾*O©àX†¦¸ÖqßCüòè²=8~Hp­×„œÁ.j’›¹U5C" þ‡Jp9ñ/R5‚këAFE°×]ä»øx$*ÒØò"²GøèZ °| lò¶mCûÂ`*ø®¸¨¨èŒˆ°?l³ŠlhÇ5z6l÷Ø?¶zì8·ó‹½G¢_8’­¶m|θícY¥Ó5 ®ŸbØ@p$’Ë"Š$F:F‚‚«“i{pPlh6d-Û±CdìA‹˜/ÅŠÞ, 1áeÞb»±Å.«Ø34$²ö º ö`B¤ìAQ]c\|g¼CpÝ°›÷‚Hb]Ç‚ÔòüE/í"‰»pÁÂb`dHšOpaWHBº^\nÁõ@pµ‰Æ¶JÏb?žB¬#˜ñQ 0€Š²ñT+À½FÀÓ²®`ÿê[ãØß·¬ÓBX£%5+©×ÜÊ'-+â:MWaÓÙ:(>[N^ÏÆÙƒÿüaó6ÎDÁžÍ ¦Š='¬ žJ;ÕXš§"…ŠQºˆ›8Hi5ä•((ƬöWZ-: §·ÒÀ’öÚéls:kÙ²Êz¿¾¡Îg.244úíeõ»¨º +Ÿ‰p&c¯¡±¡™øÌ&-±—UVqU’¢ÞàF‰Sp”Éh&ѳ¯¼ôp©%bÍ(©%Q䫈±8û¾¶9*bÔÅJUùÁ‘Îcš{W|TZ=ØÑ9ç¨ÞÝZti‘”¼ÚAÞ²mV¶Dk.ù×xY ü½¯¨µÜ…ëûC—R}Gî÷Ä fÿ´·û¸óáÍ ú8}ß4j·—P¦¼‡RJGYp& 4SH*õy¥äL~e![F&ôL!Gy¤ ½ Gí&¹°MF-qJÑšåpeBKˆoŽ"E|etu`õ“‹áÅÛ.p¶‡>ìæT*Ó—ÍnÎýòjM¨ü¹•ÃEã×G^&äòóg3Ö…çž_NqE*%“˜§læ¡áʦg†_“2„@& ô +P†@¾†ëUîˆÉyÁí®5øÉ.‚Öq”ŽL=F–ôI‹‚KÒèßEpsýòÖ:IYë i1hyq±ßðDG6=()=ä$y¿¼Ýbö'ŠEg{)¾;¦Ë ”™w¶/ŽQ4YUøJ‹+¨KÚæ`ûVz˜á`û„ÞóÕÎÙo|:=ÐWÛúƒ [¸3Ò[YS|mêX}Çðw• +jÐZÅ—¨™O×[«¶Ò$|z¼»µ¥ç,|¦æ rX— æLöÈV˼ã”S(Ÿ…ÿQ˜Y§Ù«Ù#€µµ_9¿[Õrg:ZÐò¼‡>g¼y+ ÊQN‚J4&OìÐ_¤ÂþEåèSO +K=‚Æ{è›p˜È0«x[H£X÷È™¯FBfD·ñvÙ*Z¼£žø: +÷žÎ§" 9L‚ìÏaõ©f_Ìa4äæPÿ;I˜<”îÊV&`$|S %í9L£~(‡Ä 9ÌB ùVs¨!HAïÉiHÀÄax¨F­[/4áÏ.ÄAˆàMš€$â>pãs5I´Ì U fe];j¤ƒO½ed)†m ç˜ÅgGÖ¢oŸì³ç—<ñx'§`*g!±’<ÅpgЗÔ#±è—gŠa€Ön¼‰SéùéÄD|†¯9xoS“ßÅ#™D’ïsó‘ä|&›uóíÉ$?( Ëðƒ±Llz6u×z}ÁH_j Âw¥¦°#”J&cc3‰Ô”‹ïÍÆ’B'˜„9dwyLâ/¼kQ99:69™ð"–‚›ÀÏŒ$›F16q"™þ†ÿw¾u°zä¥ð“+…¡ ò†€×íõx}žԬÐäÿ®èÜ98%}þ—õMá ËY[á6ÆÖj +^ÔMåÇëÂL8,hêáüMºe©Ôéø7nØ> +endstream +endobj +365 0 obj +2035 +endobj +364 0 obj +<< /Length 366 0 R /Filter /FlateDecode >> +stream +xœk```df #† +endstream +endobj +366 0 obj +17 +endobj +367 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAC+mwa_cmmi10 + /Encoding /Identity-H + /ToUnicode 368 0 R + /DescendantFonts [369 0 R] +>> +endobj +369 0 obj +<< /Type /Font +/BaseFont /EAAAAC+mwa_cmmi10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 362 0 R +/DW 0 +/W [ 0 [365 520 464 500 571 ] ] +>> +endobj +368 0 obj +<< /Length 370 0 R /Filter /FlateDecode >> +stream +xœ]QËnÄ ¼ç+|Ü=¬ÈcÛ^V‘VYUÊ¡5í0)RˆCþ¾à¤Y©–°3c°aM{kÀÞ½PÚH“½@èqÐ&+JZ„ ‘#w‹ân™Ž­Qª•%g·1ØGÜLÁ/p¸JÛã$ª”ó½6¾šnÏv³s?8¢ S¤Èšî^ùˆÀ¨Î©•‘¤ÃrŠò;ãsq%áb}ƒ°'ÇznÌ.y´.ÏÑêTýßyµªz%¾¹ßÙ*ZM¨Š(z¹¢3¡§ª´iŠ¿ +÷ ¢å%…ÇóÆ^ÏÓÒ(÷þÄì}l&I=¥n´ÁýKœuIEëÎ2C +endstream +endobj +370 0 obj +258 +endobj +343 0 obj +<< /Type /Pages +/Count 1 +/Kids [341 0 R ] >> +endobj +371 0 obj +<< + /Type /Catalog + /Pages 343 0 R + /Lang (x-unknown) +>> +endobj +342 0 obj +<< + /Font << + /F404 349 0 R + /F406 358 0 R + /F407 367 0 R +>> + /ProcSet [/PDF /ImageB /ImageC /Text] + /ExtGState << + /GS1 2 0 R + /GS2 3 0 R + /GS3 4 0 R + /GS4 5 0 R + /GS5 6 0 R + /GS6 7 0 R + /GS7 8 0 R + /GS8 9 0 R + /GS9 10 0 R + /GS10 11 0 R + /GS11 12 0 R + /GS12 13 0 R + /GS13 14 0 R + /GS14 15 0 R + /GS15 16 0 R + /GS16 17 0 R + /GS17 18 0 R + /GS18 19 0 R + /GS19 20 0 R + /GS20 21 0 R + /GS21 22 0 R + /GS22 23 0 R + /GS23 24 0 R + /GS24 25 0 R + /GS25 26 0 R + /GS26 27 0 R + /GS27 28 0 R + /GS28 29 0 R + /GS29 30 0 R + /GS30 31 0 R + /GS31 32 0 R + /GS32 33 0 R + /GS33 34 0 R + /GS34 35 0 R + /GS35 36 0 R + /GS36 37 0 R + /GS37 38 0 R + /GS38 39 0 R + /GS39 40 0 R + /GS40 41 0 R + /GS41 42 0 R + /GS42 43 0 R + /GS43 44 0 R + /GS44 45 0 R + /GS45 46 0 R + /GS46 47 0 R + /GS47 48 0 R + /GS48 49 0 R + /GS49 50 0 R + /GS50 51 0 R + /GS51 52 0 R + /GS52 53 0 R + /GS53 54 0 R + /GS54 55 0 R + /GS55 56 0 R + /GS56 57 0 R + /GS57 58 0 R + /GS58 59 0 R + /GS59 60 0 R + /GS60 61 0 R + /GS61 62 0 R + /GS62 63 0 R + /GS63 64 0 R + /GS64 65 0 R + /GS65 66 0 R + /GS66 67 0 R + /GS67 68 0 R + /GS68 69 0 R + /GS69 70 0 R + /GS70 71 0 R + /GS71 72 0 R + /GS72 73 0 R + /GS73 74 0 R + /GS74 75 0 R + /GS75 76 0 R + /GS76 77 0 R + /GS77 78 0 R + /GS78 79 0 R + /GS79 80 0 R + /GS80 81 0 R + /GS81 82 0 R + /GS82 83 0 R + /GS83 84 0 R + /GS84 85 0 R + /GS85 86 0 R + /GS86 87 0 R + /GS87 88 0 R + /GS88 89 0 R + /GS89 90 0 R + /GS90 91 0 R + /GS91 92 0 R + /GS92 93 0 R + /GS93 94 0 R + /GS94 95 0 R + /GS95 96 0 R + /GS96 97 0 R + /GS97 98 0 R + /GS98 99 0 R + /GS99 100 0 R + /GS100 101 0 R + /GS101 102 0 R + /GS102 103 0 R + /GS103 104 0 R + /GS104 105 0 R + /GS105 106 0 R + /GS106 107 0 R + /GS107 108 0 R + /GS108 109 0 R + /GS109 110 0 R + /GS110 111 0 R + /GS111 112 0 R + /GS112 113 0 R + /GS113 114 0 R + /GS114 115 0 R + /GS115 116 0 R + /GS116 117 0 R + /GS117 118 0 R + /GS118 119 0 R + /GS119 120 0 R + /GS120 121 0 R + /GS121 122 0 R + /GS122 123 0 R + /GS123 124 0 R + /GS124 125 0 R + /GS125 126 0 R + /GS126 127 0 R + /GS127 128 0 R + /GS128 129 0 R + /GS129 130 0 R + /GS130 131 0 R + /GS131 132 0 R + /GS132 133 0 R + /GS133 134 0 R + /GS134 135 0 R + /GS135 136 0 R + /GS136 137 0 R + /GS137 138 0 R + /GS138 139 0 R + /GS139 140 0 R + /GS140 141 0 R + /GS141 142 0 R + /GS142 143 0 R + /GS143 144 0 R + /GS144 145 0 R + /GS145 146 0 R + /GS146 147 0 R + /GS147 148 0 R + /GS148 149 0 R + /GS149 150 0 R + /GS150 151 0 R + /GS151 152 0 R + /GS152 153 0 R + /GS153 154 0 R + /GS154 155 0 R + /GS155 156 0 R + /GS156 157 0 R + /GS157 158 0 R + /GS158 159 0 R + /GS159 160 0 R + /GS160 161 0 R + /GS161 162 0 R + /GS162 163 0 R + /GS163 164 0 R + /GS164 165 0 R + /GS165 166 0 R + /GS166 167 0 R + /GS167 168 0 R + /GS168 169 0 R + /GS169 170 0 R + /GS170 171 0 R + /GS171 172 0 R + /GS172 173 0 R + /GS173 174 0 R + /GS174 175 0 R + /GS175 176 0 R + /GS176 177 0 R + /GS177 178 0 R + /GS178 179 0 R + /GS179 180 0 R + /GS180 181 0 R + /GS181 182 0 R + /GS182 183 0 R + /GS183 184 0 R + /GS184 185 0 R + /GS185 186 0 R + /GS186 187 0 R + /GS187 188 0 R + /GS188 189 0 R + /GS189 190 0 R + /GS190 191 0 R + /GS191 192 0 R + /GS192 193 0 R + /GS193 194 0 R + /GS194 195 0 R + /GS195 196 0 R + /GS196 197 0 R + /GS197 198 0 R + /GS198 199 0 R + /GS199 200 0 R + /GS200 201 0 R + /GS201 202 0 R + /GS202 203 0 R + /GS203 204 0 R + /GS204 205 0 R + /GS205 206 0 R + /GS206 207 0 R + /GS207 208 0 R + /GS208 209 0 R + /GS209 210 0 R + /GS210 211 0 R + /GS211 212 0 R + /GS212 213 0 R + /GS213 214 0 R + /GS214 215 0 R + /GS215 216 0 R + /GS216 217 0 R + /GS217 218 0 R + /GS218 219 0 R + /GS219 220 0 R + /GS220 221 0 R + /GS221 222 0 R + /GS222 223 0 R + /GS223 224 0 R + /GS224 225 0 R + /GS225 226 0 R + /GS226 227 0 R + /GS227 228 0 R + /GS228 229 0 R + /GS229 230 0 R + /GS230 231 0 R + /GS231 232 0 R + /GS232 233 0 R + /GS233 234 0 R + /GS234 235 0 R + /GS235 236 0 R + /GS236 237 0 R + /GS237 238 0 R + /GS238 239 0 R + /GS239 240 0 R + /GS240 241 0 R + /GS241 242 0 R + /GS242 243 0 R + /GS243 244 0 R + /GS244 245 0 R + /GS245 246 0 R + /GS246 247 0 R + /GS247 248 0 R + /GS248 249 0 R + /GS249 250 0 R + /GS250 251 0 R + /GS251 252 0 R + /GS252 253 0 R + /GS253 254 0 R + /GS254 255 0 R + /GS255 256 0 R + /GS256 257 0 R + /GS257 258 0 R + /GS258 259 0 R + /GS259 260 0 R + /GS260 261 0 R + /GS261 262 0 R + /GS262 263 0 R + /GS263 264 0 R + /GS264 265 0 R + /GS265 266 0 R + /GS266 267 0 R + /GS267 268 0 R + /GS268 269 0 R + /GS269 270 0 R + /GS270 271 0 R + /GS271 272 0 R + /GS272 273 0 R + /GS273 274 0 R + /GS274 275 0 R + /GS275 276 0 R + /GS276 277 0 R + /GS277 278 0 R + /GS278 279 0 R + /GS279 280 0 R + /GS280 281 0 R + /GS281 282 0 R + /GS282 283 0 R + /GS283 284 0 R + /GS284 285 0 R + /GS285 286 0 R + /GS286 287 0 R + /GS287 288 0 R + /GS288 289 0 R + /GS289 290 0 R + /GS290 291 0 R + /GS291 292 0 R + /GS292 293 0 R + /GS293 294 0 R + /GS294 295 0 R + /GS295 296 0 R + /GS296 297 0 R + /GS297 298 0 R + /GS298 299 0 R + /GS299 300 0 R + /GS300 301 0 R + /GS301 302 0 R + /GS302 303 0 R + /GS303 304 0 R + /GS304 305 0 R + /GS305 306 0 R + /GS306 307 0 R + /GS307 308 0 R + /GS308 309 0 R + /GS309 310 0 R + /GS310 311 0 R + /GS311 312 0 R + /GS312 313 0 R + /GS313 314 0 R + /GS314 315 0 R + /GS315 316 0 R + /GS316 317 0 R + /GS317 318 0 R + /GS318 319 0 R + /GS319 320 0 R + /GS320 321 0 R + /GS321 322 0 R + /GS322 323 0 R + /GS323 324 0 R + /GS324 325 0 R + /GS325 326 0 R + /GS326 327 0 R + /GS327 328 0 R + /GS328 329 0 R + /GS329 330 0 R + /GS330 331 0 R + /GS331 332 0 R + /GS332 333 0 R + /GS333 334 0 R + /GS334 335 0 R + /GS335 336 0 R + /GS336 337 0 R +>> +>> +endobj +xref +0 372 +0000000000 65535 f +0000000015 00000 n +0000000145 00000 n +0000000197 00000 n +0000000249 00000 n +0000000301 00000 n +0000000353 00000 n +0000000405 00000 n +0000000457 00000 n +0000000509 00000 n +0000000561 00000 n +0000000614 00000 n +0000000667 00000 n +0000000720 00000 n +0000000773 00000 n +0000000827 00000 n +0000000881 00000 n +0000000934 00000 n +0000000987 00000 n +0000001040 00000 n +0000001093 00000 n +0000001146 00000 n +0000001199 00000 n +0000001252 00000 n +0000001305 00000 n +0000001358 00000 n +0000001411 00000 n +0000001464 00000 n +0000001517 00000 n +0000001570 00000 n +0000001623 00000 n +0000001676 00000 n +0000001729 00000 n +0000001782 00000 n +0000001835 00000 n +0000001888 00000 n +0000001941 00000 n +0000001994 00000 n +0000002047 00000 n +0000002100 00000 n +0000002153 00000 n +0000002206 00000 n +0000002259 00000 n +0000002312 00000 n +0000002365 00000 n +0000002418 00000 n +0000002471 00000 n +0000002524 00000 n +0000002577 00000 n +0000002630 00000 n +0000002683 00000 n +0000002736 00000 n +0000002789 00000 n +0000002842 00000 n +0000002895 00000 n +0000002948 00000 n +0000003002 00000 n +0000003056 00000 n +0000003110 00000 n +0000003163 00000 n +0000003216 00000 n +0000003269 00000 n +0000003322 00000 n +0000003375 00000 n +0000003428 00000 n +0000003481 00000 n +0000003534 00000 n +0000003587 00000 n +0000003640 00000 n +0000003693 00000 n +0000003746 00000 n +0000003800 00000 n +0000003854 00000 n +0000003907 00000 n +0000003960 00000 n +0000004013 00000 n +0000004066 00000 n +0000004119 00000 n +0000004172 00000 n +0000004225 00000 n +0000004278 00000 n +0000004331 00000 n +0000004384 00000 n +0000004437 00000 n +0000004490 00000 n +0000004543 00000 n +0000004596 00000 n +0000004649 00000 n +0000004702 00000 n +0000004755 00000 n +0000004808 00000 n +0000004861 00000 n +0000004914 00000 n +0000004967 00000 n +0000005020 00000 n +0000005073 00000 n +0000005126 00000 n +0000005179 00000 n +0000005232 00000 n +0000005285 00000 n +0000005338 00000 n +0000005392 00000 n +0000005446 00000 n +0000005500 00000 n +0000005554 00000 n +0000005608 00000 n +0000005662 00000 n +0000005716 00000 n +0000005770 00000 n +0000005824 00000 n +0000005878 00000 n +0000005932 00000 n +0000005987 00000 n +0000006042 00000 n +0000006097 00000 n +0000006151 00000 n +0000006205 00000 n +0000006259 00000 n +0000006313 00000 n +0000006367 00000 n +0000006421 00000 n +0000006475 00000 n +0000006529 00000 n +0000006583 00000 n +0000006637 00000 n +0000006691 00000 n +0000006745 00000 n +0000006800 00000 n +0000006855 00000 n +0000006909 00000 n +0000006963 00000 n +0000007017 00000 n +0000007071 00000 n +0000007125 00000 n +0000007179 00000 n +0000007233 00000 n +0000007287 00000 n +0000007341 00000 n +0000007395 00000 n +0000007449 00000 n +0000007503 00000 n +0000007557 00000 n +0000007611 00000 n +0000007665 00000 n +0000007719 00000 n +0000007773 00000 n +0000007827 00000 n +0000007881 00000 n +0000007935 00000 n +0000007989 00000 n +0000008043 00000 n +0000008097 00000 n +0000008151 00000 n +0000008205 00000 n +0000008259 00000 n +0000008313 00000 n +0000008367 00000 n +0000008421 00000 n +0000008475 00000 n +0000008529 00000 n +0000008583 00000 n +0000008637 00000 n +0000008691 00000 n +0000008745 00000 n +0000008799 00000 n +0000008853 00000 n +0000008907 00000 n +0000008961 00000 n +0000009016 00000 n +0000009071 00000 n +0000009126 00000 n +0000009180 00000 n +0000009234 00000 n +0000009288 00000 n +0000009342 00000 n +0000009396 00000 n +0000009450 00000 n +0000009504 00000 n +0000009558 00000 n +0000009612 00000 n +0000009667 00000 n +0000009722 00000 n +0000009777 00000 n +0000009832 00000 n +0000009887 00000 n +0000009941 00000 n +0000009995 00000 n +0000010049 00000 n +0000010103 00000 n +0000010157 00000 n +0000010211 00000 n +0000010265 00000 n +0000010319 00000 n +0000010373 00000 n +0000010427 00000 n +0000010481 00000 n +0000010535 00000 n +0000010589 00000 n +0000010643 00000 n +0000010697 00000 n +0000010751 00000 n +0000010805 00000 n +0000010859 00000 n +0000010913 00000 n +0000010967 00000 n +0000011021 00000 n +0000011075 00000 n +0000011129 00000 n +0000011183 00000 n +0000011237 00000 n +0000011291 00000 n +0000011345 00000 n +0000011399 00000 n +0000011453 00000 n +0000011507 00000 n +0000011561 00000 n +0000011615 00000 n +0000011669 00000 n +0000011723 00000 n +0000011777 00000 n +0000011831 00000 n +0000011885 00000 n +0000011939 00000 n +0000011993 00000 n +0000012048 00000 n +0000012103 00000 n +0000012158 00000 n +0000012212 00000 n +0000012266 00000 n +0000012320 00000 n +0000012374 00000 n +0000012428 00000 n +0000012482 00000 n +0000012536 00000 n +0000012590 00000 n +0000012644 00000 n +0000012699 00000 n +0000012754 00000 n +0000012809 00000 n +0000012864 00000 n +0000012919 00000 n +0000012973 00000 n +0000013027 00000 n +0000013081 00000 n +0000013135 00000 n +0000013189 00000 n +0000013243 00000 n +0000013297 00000 n +0000013351 00000 n +0000013405 00000 n +0000013459 00000 n +0000013513 00000 n +0000013567 00000 n +0000013621 00000 n +0000013675 00000 n +0000013729 00000 n +0000013783 00000 n +0000013837 00000 n +0000013891 00000 n +0000013945 00000 n +0000013999 00000 n +0000014053 00000 n +0000014107 00000 n +0000014161 00000 n +0000014215 00000 n +0000014269 00000 n +0000014323 00000 n +0000014377 00000 n +0000014431 00000 n +0000014485 00000 n +0000014539 00000 n +0000014593 00000 n +0000014647 00000 n +0000014701 00000 n +0000014755 00000 n +0000014809 00000 n +0000014863 00000 n +0000014917 00000 n +0000014971 00000 n +0000015025 00000 n +0000015080 00000 n +0000015135 00000 n +0000015190 00000 n +0000015244 00000 n +0000015298 00000 n +0000015352 00000 n +0000015406 00000 n +0000015460 00000 n +0000015514 00000 n +0000015568 00000 n +0000015622 00000 n +0000015676 00000 n +0000015731 00000 n +0000015786 00000 n +0000015841 00000 n +0000015896 00000 n +0000015951 00000 n +0000016005 00000 n +0000016059 00000 n +0000016113 00000 n +0000016167 00000 n +0000016221 00000 n +0000016275 00000 n +0000016329 00000 n +0000016383 00000 n +0000016437 00000 n +0000016491 00000 n +0000016545 00000 n +0000016599 00000 n +0000016653 00000 n +0000016707 00000 n +0000016761 00000 n +0000016815 00000 n +0000016869 00000 n +0000016923 00000 n +0000016977 00000 n +0000017031 00000 n +0000017085 00000 n +0000017139 00000 n +0000017193 00000 n +0000017247 00000 n +0000017301 00000 n +0000017355 00000 n +0000017409 00000 n +0000017463 00000 n +0000017517 00000 n +0000017571 00000 n +0000017625 00000 n +0000017679 00000 n +0000017733 00000 n +0000017787 00000 n +0000017841 00000 n +0000017895 00000 n +0000017949 00000 n +0000018003 00000 n +0000018057 00000 n +0000018112 00000 n +0000018167 00000 n +0000018222 00000 n +0000124057 00000 n +0000124081 00000 n +0000124108 00000 n +0000137948 00000 n +0000137809 00000 n +0000124306 00000 n +0000124561 00000 n +0000130875 00000 n +0000130853 00000 n +0000130973 00000 n +0000130993 00000 n +0000131530 00000 n +0000131152 00000 n +0000132008 00000 n +0000132029 00000 n +0000132281 00000 n +0000133693 00000 n +0000133671 00000 n +0000133780 00000 n +0000133799 00000 n +0000134190 00000 n +0000133959 00000 n +0000134502 00000 n +0000134523 00000 n +0000134779 00000 n +0000136934 00000 n +0000136912 00000 n +0000137029 00000 n +0000137049 00000 n +0000137452 00000 n +0000137209 00000 n +0000137788 00000 n +0000137871 00000 n +trailer +<< + /Root 371 0 R + /Info 1 0 R + /ID [ ] + /Size 372 +>> +startxref +143590 +%%EOF diff --git a/figs/test_nhexa_comp_simscape_de_all_high_mass.png b/figs/test_nhexa_comp_simscape_de_all_high_mass.png new file mode 100644 index 0000000..6a2d23e Binary files /dev/null and b/figs/test_nhexa_comp_simscape_de_all_high_mass.png differ diff --git a/figs/test_nhexa_comp_simscape_de_diag.pdf b/figs/test_nhexa_comp_simscape_de_diag.pdf new file mode 100644 index 0000000..d9b7bb6 Binary files /dev/null and b/figs/test_nhexa_comp_simscape_de_diag.pdf differ diff --git a/figs/test_nhexa_comp_simscape_de_diag.png b/figs/test_nhexa_comp_simscape_de_diag.png new file mode 100644 index 0000000..018338c Binary files /dev/null and b/figs/test_nhexa_comp_simscape_de_diag.png differ diff --git a/figs/test_nhexa_comp_simscape_de_diag_masses.pdf b/figs/test_nhexa_comp_simscape_de_diag_masses.pdf new file mode 100644 index 0000000..8a7e594 Binary files /dev/null and b/figs/test_nhexa_comp_simscape_de_diag_masses.pdf differ diff --git a/figs/test_nhexa_comp_simscape_de_diag_masses.png b/figs/test_nhexa_comp_simscape_de_diag_masses.png new file mode 100644 index 0000000..bfc4157 Binary files /dev/null and b/figs/test_nhexa_comp_simscape_de_diag_masses.png differ diff --git a/figs/test_nhexa_compliance_table.pdf b/figs/test_nhexa_compliance_table.pdf deleted file mode 100644 index 96b0a48..0000000 Binary files a/figs/test_nhexa_compliance_table.pdf and /dev/null differ diff --git a/figs/test_nhexa_compliance_table.png b/figs/test_nhexa_compliance_table.png deleted file mode 100644 index 301a449..0000000 Binary files a/figs/test_nhexa_compliance_table.png and /dev/null differ diff --git a/figs/test_nhexa_hammer_excitation_compliance_meas.jpg b/figs/test_nhexa_hammer_excitation_compliance_meas.jpg deleted file mode 100644 index 1fd5449..0000000 Binary files a/figs/test_nhexa_hammer_excitation_compliance_meas.jpg and /dev/null differ diff --git a/figs/test_nhexa_hexa_flexible_mode_1.jpg b/figs/test_nhexa_hexa_flexible_mode_1.jpg new file mode 100644 index 0000000..b515aeb Binary files /dev/null and b/figs/test_nhexa_hexa_flexible_mode_1.jpg differ diff --git a/figs/test_nhexa_hexa_flexible_mode_2.jpg b/figs/test_nhexa_hexa_flexible_mode_2.jpg new file mode 100644 index 0000000..f984298 Binary files /dev/null and b/figs/test_nhexa_hexa_flexible_mode_2.jpg differ diff --git a/figs/test_nhexa_hexa_simscape.pdf b/figs/test_nhexa_hexa_simscape.pdf new file mode 100644 index 0000000..e555474 Binary files /dev/null and b/figs/test_nhexa_hexa_simscape.pdf differ diff --git a/figs/test_nhexa_hexa_simscape.png b/figs/test_nhexa_hexa_simscape.png new file mode 100644 index 0000000..1983db8 Binary files /dev/null and b/figs/test_nhexa_hexa_simscape.png differ diff --git a/figs/test_nhexa_hexa_suspended_table.jpg b/figs/test_nhexa_hexa_suspended_table.jpg new file mode 100644 index 0000000..4c98b4d Binary files /dev/null and b/figs/test_nhexa_hexa_suspended_table.jpg differ diff --git a/figs/test_nhexa_identified_frf_Vs.pdf b/figs/test_nhexa_identified_frf_Vs.pdf new file mode 100644 index 0000000..13e5c2e Binary files /dev/null and b/figs/test_nhexa_identified_frf_Vs.pdf differ diff --git a/figs/test_nhexa_identified_frf_Vs.png b/figs/test_nhexa_identified_frf_Vs.png new file mode 100644 index 0000000..cb95354 Binary files /dev/null and b/figs/test_nhexa_identified_frf_Vs.png differ diff --git a/figs/test_nhexa_identified_frf_Vs_masses.pdf b/figs/test_nhexa_identified_frf_Vs_masses.pdf new file mode 100644 index 0000000..75dd621 Binary files /dev/null and b/figs/test_nhexa_identified_frf_Vs_masses.pdf differ diff --git a/figs/test_nhexa_identified_frf_Vs_masses.png b/figs/test_nhexa_identified_frf_Vs_masses.png new file mode 100644 index 0000000..86c4ea2 Binary files /dev/null and b/figs/test_nhexa_identified_frf_Vs_masses.png differ diff --git a/figs/test_nhexa_identified_frf_de.pdf b/figs/test_nhexa_identified_frf_de.pdf new file mode 100644 index 0000000..ca5f43a Binary files /dev/null and b/figs/test_nhexa_identified_frf_de.pdf differ diff --git a/figs/test_nhexa_identified_frf_de.png b/figs/test_nhexa_identified_frf_de.png new file mode 100644 index 0000000..f0ebca3 Binary files /dev/null and b/figs/test_nhexa_identified_frf_de.png differ diff --git a/figs/test_nhexa_identified_frf_de_masses.pdf b/figs/test_nhexa_identified_frf_de_masses.pdf new file mode 100644 index 0000000..b9675e6 Binary files /dev/null and b/figs/test_nhexa_identified_frf_de_masses.pdf differ diff --git a/figs/test_nhexa_identified_frf_de_masses.png b/figs/test_nhexa_identified_frf_de_masses.png new file mode 100644 index 0000000..cc06861 Binary files /dev/null and b/figs/test_nhexa_identified_frf_de_masses.png differ diff --git a/figs/test_nhexa_modal_analysis.jpg b/figs/test_nhexa_modal_analysis.jpg new file mode 100644 index 0000000..9cc22bf Binary files /dev/null and b/figs/test_nhexa_modal_analysis.jpg differ diff --git a/figs/test_nhexa_mode_shapes_annotated.gif b/figs/test_nhexa_mode_shapes_annotated.gif deleted file mode 100644 index ed53a0d..0000000 Binary files a/figs/test_nhexa_mode_shapes_annotated.gif and /dev/null differ diff --git a/figs/test_nhexa_mode_shapes_annotated.png b/figs/test_nhexa_mode_shapes_annotated.png deleted file mode 100644 index 5cef492..0000000 Binary files a/figs/test_nhexa_mode_shapes_annotated.png and /dev/null differ diff --git a/figs/test_nhexa_mode_shapes_rigid_table.gif b/figs/test_nhexa_mode_shapes_rigid_table.gif deleted file mode 100644 index 222817f..0000000 Binary files a/figs/test_nhexa_mode_shapes_rigid_table.gif and /dev/null differ diff --git a/figs/test_nhexa_mode_shapes_rigid_table.png b/figs/test_nhexa_mode_shapes_rigid_table.png deleted file mode 100644 index ebdc857..0000000 Binary files a/figs/test_nhexa_mode_shapes_rigid_table.png and /dev/null differ diff --git a/figs/test_nhexa_mounting_tool_hexapod_top_view.jpg b/figs/test_nhexa_mounting_tool_hexapod_top_view.jpg deleted file mode 100644 index 0f4e974..0000000 Binary files a/figs/test_nhexa_mounting_tool_hexapod_top_view.jpg and /dev/null differ diff --git a/figs/test_nhexa_nano_hexapod_signals.pdf b/figs/test_nhexa_nano_hexapod_signals.pdf new file mode 100644 index 0000000..3ea6af3 Binary files /dev/null and b/figs/test_nhexa_nano_hexapod_signals.pdf differ diff --git a/figs/test_nhexa_nano_hexapod_signals.png b/figs/test_nhexa_nano_hexapod_signals.png new file mode 100644 index 0000000..33655f9 Binary files /dev/null and b/figs/test_nhexa_nano_hexapod_signals.png differ diff --git a/figs/test_nhexa_nano_hexapod_signals.svg b/figs/test_nhexa_nano_hexapod_signals.svg new file mode 100644 index 0000000..0ef0131 --- /dev/null +++ b/figs/test_nhexa_nano_hexapod_signals.svg @@ -0,0 +1,447 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/figs/test_nhexa_picture_added_3_masses.jpg b/figs/test_nhexa_picture_added_3_masses.jpg deleted file mode 100644 index ed4bb5d..0000000 Binary files a/figs/test_nhexa_picture_added_3_masses.jpg and /dev/null differ diff --git a/figs/test_nhexa_picture_unbalanced_payload.jpg b/figs/test_nhexa_picture_unbalanced_payload.jpg deleted file mode 100644 index 4d1a54e..0000000 Binary files a/figs/test_nhexa_picture_unbalanced_payload.jpg and /dev/null differ diff --git a/figs/test_nhexa_suspended_table_simscape.pdf b/figs/test_nhexa_suspended_table_simscape.pdf index 23319d1..2a016e2 100644 Binary files a/figs/test_nhexa_suspended_table_simscape.pdf and b/figs/test_nhexa_suspended_table_simscape.pdf differ diff --git a/figs/test_nhexa_table_mass_3.jpg b/figs/test_nhexa_table_mass_3.jpg new file mode 100644 index 0000000..3906e02 Binary files /dev/null and b/figs/test_nhexa_table_mass_3.jpg differ diff --git a/figs/test_nhexa_table_springs.jpg b/figs/test_nhexa_table_springs.jpg deleted file mode 100644 index 530235f..0000000 Binary files a/figs/test_nhexa_table_springs.jpg and /dev/null differ diff --git a/matlab/mat/APA300ML_b_mat_K.CSV b/matlab/mat/APA300ML_b_mat_K.CSV new file mode 100644 index 0000000..a5739ff --- /dev/null +++ b/matlab/mat/APA300ML_b_mat_K.CSV @@ -0,0 +1,30 @@ +1.8982429289926147e+08,-8.0863283624947071e+03,2.0558283134675026e+05,-1.4804115382884629e+02,-2.7937836518154144e+06,-2.8409341957616853e+03,8.4183959705634378e+06,-1.0180180382335238e+03,-9.9818266775526281e+03,1.5560409394237922e+01,1.2488911535035714e+05,2.0340306485664655e+01,-9.9298773112150744e+07,-4.0246778054059396e+04,-1.6869340065284532e+07,3.0387248660887371e+02,-6.3550531795914797e+05,-4.1162449493280633e+01,-9.8943915757804498e+07,4.9351124625310273e+04,1.6673739060576141e+07,-3.6930443432436323e+02,-6.3450058980317565e+05,-1.8457235209690884e+02,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-8.0863283624947071e+03,3.4500836829437256e+07,3.4954622066766024e+02,6.5866361388930678e+05,1.1955143886047881e+02,1.7411574541248381e+04,-1.3933983416708943e+03,1.2416863008746956e+06,4.2464211906467244e+02,-2.1348995829773539e+04,-2.0462693407791448e+01,7.2229830234593828e+02,4.6867001852725516e+03,-1.7573928289909534e+07,2.2067645593398629e+02,1.4496749430249495e+05,4.4737013811254656e+00,-1.7093439941606176e+05,4.7930267165168552e+03,-1.8168594840207912e+07,-9.9486476000570110e+02,1.4897410618982083e+05,4.2511195236557199e+01,1.7301918928302603e+05,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +2.0558283134675026e+05,3.4954622066766024e+02,7.7405436837463379e+06,4.8106851334450766e+00,-3.4305357574615628e+03,4.6117283622734249e+01,9.9539443182624236e+03,-2.9061068147390756e+01,-3.3642053337497293e+05,7.5315660147344943e-01,1.5219581443959169e+02,-1.6759186073184651e-01,-2.0775738712548163e+07,1.0143851006568730e+03,-3.7122858874496934e+06,-6.4728623809559735e+00,-1.2848793750813493e+05,8.2834173078014928e+00,2.0560201936857492e+07,-1.3348702096073248e+03,-3.6918372631667429e+06,1.1510023828392150e+01,1.2698392181735151e+05,2.5641571928068515e+01,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-1.4804115382884629e+02,6.5866361388930678e+05,4.8106851334450766e+00,1.2920179990630597e+04,2.1886439006266301e+00,3.2102297259487386e+02,-2.2478760496804853e+01,2.1348169860262762e+04,6.3049696023863646e+00,-3.6581687700099320e+02,-3.3048975197133856e-01,1.2614041440034050e+01,8.6483460776254105e+01,-3.3453053316134360e+05,5.8568453238170832e+00,2.6087074321724808e+03,1.7205055129338120e-01,-2.6035715519075061e+03,8.4036456335302319e+01,-3.4548125058850175e+05,-1.6972499923514079e+01,2.6817619590430190e+03,7.0934461519345327e-01,2.6422589303900727e+03,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-2.7937836518154144e+06,1.1955143886047881e+02,-3.4305357574615628e+03,2.1886439006266301e+00,4.1423165226462297e+04,4.2946258868199948e+01,-1.2489803721761038e+05,1.4770102854353581e+01,1.5249990593732173e+02,-2.2568857135592069e-01,-1.8528457850132643e+03,-2.9172106298859291e-01,1.4624350496168528e+06,6.1029635697854201e+02,2.4237250218413968e+05,-4.6043544457253489e+00,9.4038794297117674e+03,6.5918974694794308e-01,1.4562466394128657e+06,-7.4461790153873494e+02,-2.3909446633215298e+05,5.5752765717314219e+00,9.3847217094956195e+03,2.7533572366421666e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-2.8409341957616853e+03,1.7411574541248381e+04,4.6117283622734249e+01,3.2102297259487386e+02,4.2946258868199948e+01,2.1285981503966264e+04,-1.2168526177248532e+02,7.2635033414220015e+02,-2.9767458637198558e+00,-1.2678386453106008e+01,-1.7989834217629230e+00,1.3847285992194514e+02,1.3356818306988100e+03,3.2100170881002455e+05,2.0674290212389627e+02,-2.2214159249874865e+03,8.8369184532026281e+00,4.3793148751819507e+02,1.6269376272892739e+03,-3.3913963368519495e+05,-2.4988343948438524e+02,2.3802576185133235e+03,1.0629480951131566e+01,5.8241979344293497e+02,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +8.4183959705634378e+06,-1.3933983416708943e+03,9.9539443182624236e+03,-2.2478760496804853e+01,-1.2489803721761038e+05,-1.2168526177248532e+02,1.8941491874710083e+08,-9.5711167071759701e+02,-2.1687006285095215e+05,-1.2443612686824054e+01,2.7875306943683624e+06,6.6786245478875935e+02,-9.9123837212502152e+07,1.5975286331434358e+04,1.6841874932809789e+07,1.6051384489982718e+02,6.3423572083034425e+05,3.1840540645442684e+02,-9.8709477505714744e+07,-1.3624776327107684e+04,-1.6634958814260501e+07,-1.3780749897868418e+02,6.3282193283039611e+05,1.4181952992388602e+02,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-1.0180180382335238e+03,1.2416863008746956e+06,-2.9061068147390756e+01,2.1348169860262762e+04,1.4770102854353581e+01,7.2635033414220015e+02,-9.5711167071759701e+02,3.4498805096817017e+07,1.8118228419795632e+03,-6.5863378170880675e+05,-1.9394109605113044e+01,1.7265214294634759e+04,6.3706812987510284e+03,-1.7576885733925842e+07,-7.6429205372881188e+02,-1.4499354416874101e+05,-4.1081151721266409e+01,-1.7096783328251052e+05,-4.3955515898160520e+03,-1.8163605663651712e+07,-1.0184697856051962e+03,-1.4892017402362853e+05,3.8768486820818225e+01,1.7292474626467336e+05,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-9.9818266775526281e+03,4.2464211906467244e+02,-3.3642053337497293e+05,6.3049696023863646e+00,1.5249990593732173e+02,-2.9767458637198558e+00,-2.1687006285095215e+05,1.8118228419795632e+03,7.7398588302078247e+06,-2.3328349818475544e+01,-3.6012625188939273e+03,5.0219676866894588e+01,2.0779601241926014e+07,-9.3903215112981479e+02,-3.7128832851275974e+06,-9.9536374596761625e+00,-1.2851561592575529e+05,-6.1468094952027862e+01,-2.0552749352403454e+07,-1.2974328740039200e+03,-3.6905550115922214e+06,-1.1864044192241863e+01,1.2693066920154131e+05,2.6410792171231975e+01,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +1.5560409394237922e+01,-2.1348995829773539e+04,7.5315660147344943e-01,-3.6581687700099320e+02,-2.2568857135592069e-01,-1.2678386453106008e+01,-1.2443612686824054e+01,-6.5863378170880675e+05,-2.3328349818475544e+01,1.2919723979905248e+04,-6.0818877478595823e-02,-3.1814944433996425e+02,-7.4877319501514165e+01,3.3458742094007332e+05,5.9453635377846528e+00,2.6091527845727978e+03,4.7464997559123001e-01,2.6041342119480801e+03,7.1760522204392714e+01,3.4539535659836041e+05,1.6629830039025208e+01,2.6809141891570657e+03,-6.0898320750152823e-01,-2.6407761935663261e+03,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +1.2488911535035714e+05,-2.0462693407791448e+01,1.5219581443959169e+02,-3.3048975197133856e-01,-1.8528457850132643e+03,-1.7989834217629230e+00,2.7875306943683624e+06,-1.9394109605113044e+01,-3.6012625188939273e+03,-6.0818877478595823e-02,4.1327635751030408e+04,1.0368562664796627e+01,-1.4597541975363377e+06,2.4620039782074480e+02,2.4195326389446083e+05,2.4322544072155097e+00,9.3844786854562099e+03,4.7177197449522179e+00,-1.4526656121789366e+06,-2.0634360173046025e+02,-2.3850419719094792e+05,-2.0708662539847360e+00,9.3591421849366998e+03,2.0991969789505553e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +2.0340306485664655e+01,7.2229830234593828e+02,-1.6759186073184651e-01,1.2614041440034050e+01,-2.9172106298859291e-01,1.3847285992194514e+02,6.6786245478875935e+02,1.7265214294634759e+04,5.0219676866894588e+01,-3.1814944433996425e+02,1.0368562664796627e+01,2.1231970005541109e+04,-2.1207674354249019e+02,3.2024644552878808e+05,2.3417832421905835e+01,2.2158466024761701e+03,1.4949497477257405e+00,4.3712344251679019e+02,-4.7612601816759093e+02,-3.3823395812521852e+05,-7.3469913700376878e+01,-2.3735128492462541e+03,3.2646455142719395e+00,5.8076741626984233e+02,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-9.9298773112150744e+07,4.6867001852725516e+03,-2.0775738712548163e+07,8.6483460776254105e+01,1.4624350496168528e+06,1.3356818306988100e+03,-9.9123837212502152e+07,6.3706812987510284e+03,2.0779601241926014e+07,-7.4877319501514165e+01,-1.4597541975363377e+06,-2.1207674354249019e+02,2.1357025695009613e+08,6.4807805286049843e+03,1.2145909285102040e+04,-2.4329232786915964e+02,5.6469534240663052e+02,-3.2995484675627085e+02,-1.5147646625435816e+07,-1.7538161997469491e+04,-1.6008438697928214e+04,1.8453471545236425e+02,6.9540995478372497e+02,2.2993805653662037e+01,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-4.0246778054059396e+04,-1.7573928289909534e+07,1.0143851006568730e+03,-3.3453053316134360e+05,6.1029635697854201e+02,3.2100170881002455e+05,1.5975286331434358e+04,-1.7576885733925842e+07,-9.3903215112981479e+02,3.3458742094007332e+05,2.4620039782074480e+02,3.2024644552878808e+05,6.4807805286049843e+03,3.1946308491336823e+07,4.5419626905769110e+03,-6.7129768512211740e+01,2.0677674385737191e+02,3.3755237722025975e+05,1.7790711208578286e+04,3.2045055325396564e+06,-4.6173156370762008e+03,9.3050423241843419e+01,1.9952884759966491e+02,-1.5792309616018035e+03,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-1.6869340065284532e+07,2.2067645593398629e+02,-3.7122858874496934e+06,5.8568453238170832e+00,2.4237250218413968e+05,2.0674290212389627e+02,1.6841874932809789e+07,-7.6429205372881188e+02,-3.7128832851275974e+06,5.9453635377846528e+00,2.4195326389446083e+05,2.3417832421905835e+01,1.2145909285102040e+04,4.5419626905769110e+03,7.1110885623054504e+06,-3.8526668966514990e+00,2.4199741920971574e+05,5.7537667892233003e+01,1.5319223156867258e+04,-3.9983470971251518e+03,3.1408061037423764e+05,1.9629576813767130e+01,-1.3507431895940394e+04,2.6721298546068226e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +3.0387248660887371e+02,1.4496749430249495e+05,-6.4728623809559735e+00,2.6087074321724808e+03,-4.6043544457253489e+00,-2.2214159249874865e+03,1.6051384489982718e+02,-1.4499354416874101e+05,-9.9536374596761625e+00,2.6091527845727978e+03,2.4322544072155097e+00,2.2158466024761701e+03,-2.4329232786915964e+02,-6.7129768512211740e+01,-3.8526668966514990e+00,2.7291441419307375e+03,-1.8472726568586495e-01,2.2532768045901719e-01,-2.2109400298525793e+02,9.3179635429993141e+01,2.0279167147407804e+01,1.7190475127658780e+02,-8.3673231200484910e-01,-1.0652491749164028e-01,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-6.3550531795914797e+05,4.4737013811254656e+00,-1.2848793750813493e+05,1.7205055129338120e-01,9.4038794297117674e+03,8.8369184532026281e+00,6.3423572083034425e+05,-4.1081151721266409e+01,-1.2851561592575529e+05,4.7464997559123001e-01,9.3844786854562099e+03,1.4949497477257405e+00,5.6469534240663052e+02,2.0677674385737191e+02,2.4199741920971574e+05,-1.8472726568586495e-01,9.6939624431757256e+03,2.3895949545694748e+00,7.0490178654738429e+02,-1.7016929338711725e+02,1.5006134224147536e+04,8.1356262735481977e-01,-6.4727501829140942e+02,9.4702110566029507e-02,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-4.1162449493280633e+01,-1.7093439941606176e+05,8.2834173078014928e+00,-2.6035715519075061e+03,6.5918974694794308e-01,4.3793148751819507e+02,3.1840540645442684e+02,-1.7096783328251052e+05,-6.1468094952027862e+01,2.6041342119480801e+03,4.7177197449522179e+00,4.3712344251679019e+02,-3.2995484675627085e+02,3.3755237722025975e+05,5.7537667892233003e+01,2.2532768045901719e-01,2.3895949545694748e+00,1.0444519422951271e+04,5.2711889884731647e+01,4.3498554780476543e+03,-4.3529906273411143e+00,1.4816054914218491e-01,1.9711315736368862e-01,9.3113862533255549e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-9.8943915757804498e+07,4.7930267165168552e+03,2.0560201936857492e+07,8.4036456335302319e+01,1.4562466394128657e+06,1.6269376272892739e+03,-9.8709477505714744e+07,-4.3955515898160520e+03,-2.0552749352403454e+07,7.1760522204392714e+01,-1.4526656121789366e+06,-4.7612601816759093e+02,-1.5147646625435816e+07,1.7790711208578286e+04,1.5319223156867258e+04,-2.2109400298525793e+02,7.0490178654738429e+02,5.2711889884731647e+01,2.1280103988925171e+08,-1.8188186344698071e+04,-2.2771807648107409e+04,3.2257721739441331e+02,9.8324701811606064e+02,1.9759016387164593e+01,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +4.9351124625310273e+04,-1.8168594840207912e+07,-1.3348702096073248e+03,-3.4548125058850175e+05,-7.4461790153873494e+02,-3.3913963368519495e+05,-1.3624776327107684e+04,-1.8163605663651712e+07,-1.2974328740039200e+03,3.4539535659836041e+05,-2.0634360173046025e+02,-3.3823395812521852e+05,-1.7538161997469491e+04,3.2045055325396564e+06,-3.9983470971251518e+03,9.3179635429993141e+01,-1.7016929338711725e+02,4.3498554780476543e+03,-1.8188186344698071e+04,3.3127694971321106e+07,6.6306501731723547e+03,-1.4698258980480023e+02,-2.8080852923766361e+02,-3.4436470458608563e+05,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +1.6673739060576141e+07,-9.9486476000570110e+02,-3.6918372631667429e+06,-1.6972499923514079e+01,-2.3909446633215298e+05,-2.4988343948438524e+02,-1.6634958814260501e+07,-1.0184697856051962e+03,-3.6905550115922214e+06,1.6629830039025208e+01,-2.3850419719094792e+05,-7.3469913700376878e+01,-1.6008438697928214e+04,-4.6173156370762008e+03,3.1408061037423764e+05,2.0279167147407804e+01,1.5006134224147536e+04,-4.3529906273411143e+00,-2.2771807648107409e+04,6.6306501731723547e+03,7.0683116644859314e+06,-1.9275556811364368e+01,-2.4040715912298491e+05,-5.4724493886562414e+01,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-3.6930443432436323e+02,1.4897410618982083e+05,1.1510023828392150e+01,2.6817619590430190e+03,5.5752765717314219e+00,2.3802576185133235e+03,-1.3780749897868418e+02,-1.4892017402362853e+05,-1.1864044192241863e+01,2.6809141891570657e+03,-2.0708662539847360e+00,-2.3735128492462541e+03,1.8453471545236425e+02,9.3050423241843419e+01,1.9629576813767130e+01,1.7190475127658780e+02,8.1356262735481977e-01,1.4816054914218491e-01,3.2257721739441331e+02,-1.4698258980480023e+02,-1.9275556811364368e+01,2.8064589801623370e+03,8.4116673982271095e-01,1.2681926200593807e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-6.3450058980317565e+05,4.2511195236557199e+01,1.2698392181735151e+05,7.0934461519345327e-01,9.3847217094956195e+03,1.0629480951131566e+01,6.3282193283039611e+05,3.8768486820818225e+01,1.2693066920154131e+05,-6.0898320750152823e-01,9.3591421849366998e+03,3.2646455142719395e+00,6.9540995478372497e+02,1.9952884759966491e+02,-1.3507431895940394e+04,-8.3673231200484910e-01,-6.4727501829140942e+02,1.9711315736368862e-01,9.8324701811606064e+02,-2.8080852923766361e+02,-2.4040715912298491e+05,8.4116673982271095e-01,9.6738511750602629e+03,2.2402311984969856e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-1.8457235209690884e+02,1.7301918928302603e+05,2.5641571928068515e+01,2.6422589303900727e+03,2.7533572366421666e+00,5.8241979344293497e+02,1.4181952992388602e+02,1.7292474626467336e+05,2.6410792171231975e+01,-2.6407761935663261e+03,2.0991969789505553e+00,5.8076741626984233e+02,2.2993805653662037e+01,-1.5792309616018035e+03,2.6721298546068226e+00,-1.0652491749164028e-01,9.4702110566029507e-02,9.3113862533255549e+00,1.9759016387164593e+01,-3.4436470458608563e+05,-5.4724493886562414e+01,1.2681926200593807e+00,2.2402311984969856e+00,1.0482207507265615e+04,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,1.4729730921749227e+09,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,1.4745103945912840e+09,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,1.6337636097738802e+09,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,1.6341789166407700e+09,0.0000000000000000e+00,0.0000000000000000e+00 +0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,3.3418320797124281e+09,0.0000000000000000e+00 +0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,3.3593285890188370e+09 diff --git a/matlab/mat/APA300ML_b_mat_M.CSV b/matlab/mat/APA300ML_b_mat_M.CSV new file mode 100644 index 0000000..ede2f0b --- /dev/null +++ b/matlab/mat/APA300ML_b_mat_M.CSV @@ -0,0 +1,30 @@ +1.8804136911789143e-02,-2.5273291957022577e-07,7.0745506541796516e-04,-1.4855285726372427e-08,-2.0371699072830736e-04,-2.1745392833826402e-07,-3.8411353377645912e-04,7.3138691689394234e-08,-3.1932913354539853e-05,-1.6291624566999286e-09,-6.8417772679783104e-06,-3.8388998111583414e-09,1.6277724686264985e-03,-1.0034492266511058e-06,-6.3126611914287982e-04,3.1928905163962491e-09,1.4313229820365255e-05,2.7835778708660203e-09,1.3197024986538694e-03,8.6679879291014174e-07,9.4745079134483001e-04,1.0757689148744709e-09,1.3590091113189615e-05,1.4963933796399008e-09,-7.8368585089446264e-03,-2.6691741010441878e-02,-1.0427386470714088e-02,1.5327500527647591e-02,2.7731070326294815e-05,2.5221371319129078e-05 +-2.5273291957022577e-07,1.9211445473492312e-02,-4.4602092218660975e-07,2.0847420748021692e-04,1.6673922315234365e-09,2.3321087279772923e-05,2.9787550707813828e-08,-1.0263467862489810e-04,-3.1689495485744817e-08,1.6211520072552721e-06,-4.4216105429561921e-11,-3.7803793314072381e-08,2.6589619862763388e-07,1.0931170994695402e-03,-2.1020044507387730e-07,-8.1282615595639272e-06,9.9008938313856144e-10,4.0446244313812347e-06,2.4164353834472431e-07,1.0225076942876371e-03,-1.3928803451409319e-07,-7.5585411061789378e-06,6.0482751295174991e-10,-3.7207431730918421e-06,-9.7450161098053282e-07,-6.9674125063883316e-07,1.9363345520680989e-06,-2.4098996553326181e-06,-2.2938029563877305e-03,-2.8539223445684485e-03 +7.0745506541796516e-04,-4.4602092218660975e-07,1.8500933238457008e-02,-1.0703604831706744e-08,-3.2117269161997518e-05,4.0227037214727572e-08,3.1357232264381168e-05,3.6156180343396144e-08,1.3792882641993729e-05,-6.5901225271129960e-10,4.7102412913508216e-07,3.7517397524386865e-10,7.8210812044199015e-04,7.4823251352092058e-07,8.1399178114214079e-04,-4.8131475877416951e-09,2.1871737790360525e-06,1.5886594278765330e-09,-1.4880933008743265e-03,-3.8327613020965237e-07,9.2757564000560725e-04,3.8221124148822056e-09,-6.8745359794530019e-06,7.6535988220594326e-10,3.5080195060233350e-03,1.4877924065196259e-02,-2.1382430604509124e-02,3.1074279374707817e-02,2.3175445277283731e-06,2.6094945571870645e-06 +-1.4855285726372427e-08,2.0847420748021692e-04,-1.0703604831706744e-08,3.6301015377558860e-06,2.0587064984584790e-10,1.3391110324094624e-07,-1.5836210111893560e-10,-1.6213862542735465e-06,-3.6324314208537155e-10,2.4992290780492576e-08,-9.8600361582237281e-12,-8.1380500810644834e-10,9.7322106506002676e-09,1.7625379220815372e-05,-1.9934307760184012e-09,-9.5310940836458449e-08,4.5362711505625478e-11,4.0782896626726310e-08,7.9371572391907361e-09,1.7327440296864877e-05,-3.8682870726350083e-09,-9.2653911707813300e-08,3.3849465985781987e-11,-3.6579826156812293e-08,-9.0534918685676973e-09,1.1311882648234729e-08,5.8933340674253114e-08,-7.7634106731750022e-08,-1.4292354704284731e-04,-1.5658481720818199e-04 +-2.0371699072830736e-04,1.6673922315234365e-09,-3.2117269161997518e-05,2.0587064984584790e-10,3.4552285411925002e-06,5.3971411841053827e-09,6.8240588190787650e-06,-9.2424068051922275e-10,4.7928666595930285e-07,2.1973209408390766e-11,1.1809643885855493e-07,7.1489665528404756e-11,-2.5531130291525775e-05,4.8381081077140949e-08,2.1103568300205978e-05,-2.9337756459214897e-10,-2.6797591419335909e-07,1.3399594779051818e-11,-2.2084740069625680e-05,-4.4684545426033561e-08,-2.5658110211821661e-05,1.9810324568146908e-10,-2.6325304770016137e-07,-1.5242383565828687e-12,2.4047179038042549e-04,9.2642899181507004e-04,2.7385512250621057e-04,-3.9964156024956154e-04,-4.2607777441442843e-07,-3.8565168949155090e-07 +-2.1745392833826402e-07,2.3321087279772923e-05,4.0227037214727572e-08,1.3391110324094624e-07,5.3971411841053827e-09,7.5277766095326578e-07,8.8646669428802092e-09,-3.7951879285763008e-08,1.0226785267385210e-09,8.1806577080346806e-10,1.5061018067429513e-10,-8.2232843690813518e-09,-1.1828236113200442e-08,-1.0731266550494226e-05,6.2697077978645651e-08,6.8425490988593457e-08,-3.3857021525737821e-10,-3.4427734484491376e-09,-1.7414734634783023e-08,1.1501926431063936e-05,-6.0952841206442293e-08,-8.5542667622825983e-08,-3.7279134675101884e-10,-1.1470471360021672e-08,6.3632327770373212e-07,2.6169654427495415e-06,5.3133258845425704e-07,-7.7033416935686729e-07,8.4549719379622244e-05,1.0103092517707942e-04 +-3.8411353377645912e-04,2.9787550707813828e-08,3.1357232264381168e-05,-1.5836210111893560e-10,6.8240588190787650e-06,8.8646669428802092e-09,1.8750210698473775e-02,5.2605860163120302e-07,-7.1955727612052294e-04,-2.4354396183705811e-08,2.0254063814235466e-04,4.2982732373152850e-08,1.6385296329863568e-03,3.2470614565074756e-07,6.1796986986486135e-04,-3.6018272682120402e-09,-1.4321363778190983e-05,3.8509086803468143e-10,1.3291357160285673e-03,-5.2022965302142613e-07,-9.3669641283778164e-04,-1.3007012857543090e-09,-1.3593986891789058e-05,2.3643525912572473e-10,2.6986035757751169e-02,-4.7536931782869839e-03,-1.5041053783048548e-02,-1.0539899603418380e-02,8.7284017470273844e-06,-1.8938021385798380e-06 +7.3138691689394234e-08,-1.0263467862489810e-04,3.6156180343396144e-08,-1.6213862542735465e-06,-9.2424068051922275e-10,-3.7951879285763008e-08,5.2605860163120302e-07,1.9210810094490226e-02,-1.4554894065830701e-06,-2.0846577155292590e-04,-3.5088438576853496e-09,2.3313868178992241e-05,-6.1510298163391910e-08,1.0932497241376410e-03,-4.8974848636588357e-07,8.1272984682079856e-06,3.6938113497197211e-09,4.0485273109107100e-06,-1.0555512931119558e-07,1.0226094026295645e-03,-4.3472087576348724e-08,7.5584544232743024e-06,1.3004655364674207e-10,-3.7216879554797839e-06,-1.0475098811573714e-05,3.2099899258691447e-06,-5.0828790146892040e-06,-2.6274257635043645e-06,2.3010553947759816e-03,-2.8224572995272485e-03 +-3.1932913354539853e-05,-3.1689495485744817e-08,1.3792882641993729e-05,-3.6324314208537155e-10,4.7928666595930285e-07,1.0226785267385210e-09,-7.1955727612052294e-04,-1.4554894065830701e-06,1.8500680585171864e-02,2.9651330646565552e-08,-3.2308451005118596e-05,6.6964762731386892e-08,-7.7653201252517873e-04,1.6177026519025475e-06,8.1289018390646648e-04,1.0914340968801451e-08,2.1513894996636448e-06,4.3218760601227906e-09,1.4948168001170080e-03,-4.3207128711837506e-07,9.2863281394679417e-04,-2.8084006507255753e-09,-6.9168244237829259e-06,-8.3166707579859840e-10,1.4815074388361563e-02,-3.4431229792968401e-03,3.1029076941670258e-02,2.1500078111474159e-02,-4.5308885812505270e-06,3.5503611386558879e-06 +-1.6291624566999286e-09,1.6211520072552721e-06,-6.5901225271129960e-10,2.4992290780492576e-08,2.1973209408390766e-11,8.1806577080346806e-10,-2.4354396183705811e-08,-2.0846577155292590e-04,2.9651330646565552e-08,3.6300308429067821e-06,-1.3224245708382725e-10,-1.3355273985170506e-07,1.1919564185419764e-08,-1.7622675801844818e-05,7.5974471425170971e-09,-9.5250404047935082e-08,-1.3459526205199561e-10,-4.0810144457506839e-08,7.2040182809950229e-09,-1.7331658644641598e-05,9.5045176244506208e-10,-9.2678256399238610e-08,-4.1090109679646173e-11,3.6586482606985394e-08,1.5267738339093641e-07,-4.7256199419127589e-08,7.4848277785221044e-08,3.6822640676370892e-08,-1.4334890147197054e-04,1.5469671657942377e-04 +-6.8417772679783104e-06,-4.4216105429561921e-11,4.7102412913508216e-07,-9.8600361582237281e-12,1.1809643885855493e-07,1.5061018067429513e-10,2.0254063814235466e-04,-3.5088438576853496e-09,-3.2308451005118596e-05,-1.3224245708382725e-10,3.4318807467887414e-06,1.7080365762476007e-09,2.5866368058626846e-05,2.6278001562175075e-08,2.0876081856622234e-05,9.3505853228806687e-11,-2.6922318766943660e-07,4.2350282748122511e-11,2.2426870486275633e-05,-1.8450243821782357e-08,-2.5464492326032117e-05,-9.5306237982905632e-11,-2.6459283381123206e-07,-4.0763279599020582e-12,9.3120519511358810e-04,-1.9473401058760291e-04,-3.9461713482364172e-04,-2.7455870283132184e-04,6.2156503452954828e-08,3.7770520946776815e-08 +-3.8388998111583414e-09,-3.7803793314072381e-08,3.7517397524386865e-10,-8.1380500810644834e-10,7.1489665528404756e-11,-8.2232843690813518e-09,4.2982732373152850e-08,2.3313868178992241e-05,6.6964762731386892e-08,-1.3355273985170506e-07,1.7080365762476007e-09,7.5143276157053636e-07,3.3366161207082545e-09,-1.0705471261800232e-05,3.5502313872098743e-08,-6.8069505869524165e-08,-1.7868833429445421e-10,-3.3375385510527639e-09,1.6368400729117385e-08,1.1476899025139944e-05,-2.0565875284709919e-08,8.5181080433892891e-08,-2.1672347729229982e-10,-1.1358514173639934e-08,1.2913453140722295e-06,-2.8092123481064990e-07,-1.5357525597872957e-07,-1.1178408030701035e-07,-8.5923268713794567e-05,1.0094987357770084e-04 +1.6277724686264985e-03,2.6589619862763388e-07,7.8210812044199015e-04,9.7322106506002676e-09,-2.5531130291525775e-05,-1.1828236113200442e-08,1.6385296329863568e-03,-6.1510298163391910e-08,-7.7653201252517873e-04,1.1919564185419764e-08,2.5866368058626846e-05,3.3366161207082545e-09,1.2886672807685670e-02,-1.9360111494663364e-06,4.7205080478775262e-06,2.8932108854426280e-09,-4.6868173361840907e-08,-3.3306060871738000e-08,-2.7178876970907737e-04,1.0230794125523200e-06,-3.9320359554182241e-06,-1.7081958484948157e-08,-5.2378334678209369e-08,-2.4397983655689769e-09,-8.5654308645429517e-03,1.4178346691946590e-02,-2.3661256130655259e-02,4.2673299622673425e-03,-2.4684051675566254e-05,-1.1205678472390380e-05 +-1.0034492266511058e-06,1.0931170994695402e-03,7.4823251352092058e-07,1.7625379220815372e-05,4.8381081077140949e-08,-1.0731266550494226e-05,3.2470614565074756e-07,1.0932497241376410e-03,1.6177026519025475e-06,-1.7622675801844818e-05,2.6278001562175075e-08,-1.0705471261800232e-05,-1.9360111494663364e-06,1.4291591380573638e-02,1.9384376587522461e-06,1.3684028511289494e-08,-1.2696482312759008e-08,-2.1614028574371046e-05,-8.7906144095018850e-07,-2.6564514179128217e-04,-9.0782965348417961e-07,-1.0782768144772890e-08,-2.2003585987316592e-08,5.3640807704353118e-07,3.9397010399357789e-05,3.7978965591001709e-05,7.8256140429005282e-06,-1.2679150965871501e-05,-5.3242764183186087e-05,1.0765247556630357e-02 +-6.3126611914287982e-04,-2.1020044507387730e-07,8.1399178114214079e-04,-1.9934307760184012e-09,2.1103568300205978e-05,6.2697077978645651e-08,6.1796986986486135e-04,-4.8974848636588357e-07,8.1289018390646648e-04,7.5974471425170971e-09,2.0876081856622234e-05,3.5502313872098743e-08,4.7205080478775262e-06,1.9384376587522461e-06,1.5042497397507021e-02,-1.7418871911740445e-09,2.8907351863976703e-05,1.3153327396045632e-08,6.0382774207451070e-06,-9.7674329594195266e-07,2.5534244212013703e-04,3.4360706999119015e-09,-6.9501793669048047e-06,-7.4615851574839863e-10,4.2255211743104835e-02,2.6290635097006458e-02,4.5893706783715028e-03,2.4720490694272620e-02,-1.0881112921593950e-05,5.4436626454446008e-06 +3.1928905163962491e-09,-8.1282615595639272e-06,-4.8131475877416951e-09,-9.5310940836458449e-08,-2.9337756459214897e-10,6.8425490988593457e-08,-3.6018272682120402e-09,8.1272984682079856e-06,1.0914340968801451e-08,-9.5250404047935082e-08,9.3505853228806687e-11,-6.8069505869524165e-08,2.8932108854426280e-09,1.3684028511289494e-08,-1.7418871911740445e-09,8.5464973452363580e-07,6.7442425336644724e-11,1.0996589430279572e-10,2.5143805657963200e-08,-1.0238743211809228e-08,2.8731870662045240e-09,-2.8168801215230207e-08,8.0298695366742105e-11,1.7870083871845097e-11,5.5746502142499671e-08,-3.8437567332673447e-07,-9.0889126615002546e-08,6.9900650851137456e-08,-4.0602030015827588e-04,-1.5641291518437534e-06 +1.4313229820365255e-05,9.9008938313856144e-10,2.1871737790360525e-06,4.5362711505625478e-11,-2.6797591419335909e-07,-3.3857021525737821e-10,-1.4321363778190983e-05,3.6938113497197211e-09,2.1513894996636448e-06,-1.3459526205199561e-10,-2.6922318766943660e-07,-1.7868833429445421e-10,-4.6868173361840907e-08,-1.2696482312759008e-08,2.8907351863976703e-05,6.7442425336644724e-11,2.7984510510818298e-07,6.9524463388120750e-11,-6.1419246862805542e-08,1.6470096053092844e-08,3.9217366938157216e-06,-8.1588699300135691e-11,3.1957860413565765e-08,-2.7174943491167994e-11,-4.4239485804719126e-05,-2.6019431990559389e-05,1.5811473476354649e-05,8.5042080391325748e-05,-1.9643990516257122e-08,-1.5854567996781013e-07 +2.7835778708660203e-09,4.0446244313812347e-06,1.5886594278765330e-09,4.0782896626726310e-08,1.3399594779051818e-11,-3.4427734484491376e-09,3.8509086803468143e-10,4.0485273109107100e-06,4.3218760601227906e-09,-4.0810144457506839e-08,4.2350282748122511e-11,-3.3375385510527639e-09,-3.3306060871738000e-08,-2.1614028574371046e-05,1.3153327396045632e-08,1.0996589430279572e-10,6.9524463388120750e-11,3.5369369183140893e-07,-1.2122616095158942e-09,-9.4287993762330324e-07,-4.2336001202932914e-10,-2.6568064594903397e-11,-5.2959088148189155e-11,1.2070141377110959e-09,6.3985104041112299e-08,4.8715958722368958e-08,4.7388487095991299e-08,-2.2553881719432628e-08,-7.3800083697808571e-07,1.9346850933749053e-04 +1.3197024986538694e-03,2.4164353834472431e-07,-1.4880933008743265e-03,7.9371572391907361e-09,-2.2084740069625680e-05,-1.7414734634783023e-08,1.3291357160285673e-03,-1.0555512931119558e-07,1.4948168001170080e-03,7.2040182809950229e-09,2.2426870486275633e-05,1.6368400729117385e-08,-2.7178876970907737e-04,-8.7906144095018850e-07,6.0382774207451070e-06,2.5143805657963200e-08,-6.1419246862805542e-08,-1.2122616095158942e-09,1.3652404114787952e-02,1.4074408761158427e-06,-3.9065940847867082e-06,-1.0247982769432766e-08,-6.9746869753699972e-08,-2.1484025092958240e-09,5.6028256921109602e-03,-8.7266512276299724e-03,3.8957018025184406e-02,-7.1677852748950211e-03,-2.6680593678480893e-05,-8.0336326972615841e-06 +8.6679879291014174e-07,1.0225076942876371e-03,-3.8327613020965237e-07,1.7327440296864877e-05,-4.4684545426033561e-08,1.1501926431063936e-05,-5.2022965302142613e-07,1.0226094026295645e-03,-4.3207128711837506e-07,-1.7331658644641598e-05,-1.8450243821782357e-08,1.1476899025139944e-05,1.0230794125523200e-06,-2.6564514179128217e-04,-9.7674329594195266e-07,-1.0238743211809228e-08,1.6470096053092844e-08,-9.4287993762330324e-07,1.4074408761158427e-06,1.4171645409631829e-02,1.1753002412201929e-06,1.2880934720066798e-08,1.7021508653153982e-08,2.2322934039328044e-05,-2.3449625632406611e-05,-3.9563812987916788e-05,-5.1592053467100967e-06,1.7946971791096955e-05,4.4398458778421283e-05,-6.3001032188530846e-03 +9.4745079134483001e-04,-1.3928803451409319e-07,9.2757564000560725e-04,-3.8682870726350083e-09,-2.5658110211821661e-05,-6.0952841206442293e-08,-9.3669641283778164e-04,-4.3472087576348724e-08,9.2863281394679417e-04,9.5045176244506208e-10,-2.5464492326032117e-05,-2.0565875284709919e-08,-3.9320359554182241e-06,-9.0782965348417961e-07,2.5534244212013703e-04,2.8731870662045240e-09,3.9217366938157216e-06,-4.2336001202932914e-10,-3.9065940847867082e-06,1.1753002412201929e-06,1.5063337849675567e-02,-8.0635439362928443e-10,-3.1437597982632070e-05,-6.6450212532355487e-09,-1.6601470294411710e-02,-1.0272652773091639e-02,9.6000877586945223e-03,5.2598839264177438e-02,3.3572354783171943e-06,7.5019634297186665e-06 +1.0757689148744709e-09,-7.5585411061789378e-06,3.8221124148822056e-09,-9.2653911707813300e-08,1.9810324568146908e-10,-8.5542667622825983e-08,-1.3007012857543090e-09,7.5584544232743024e-06,-2.8084006507255753e-09,-9.2678256399238610e-08,-9.5306237982905632e-11,8.5181080433892891e-08,-1.7081958484948157e-08,-1.0782768144772890e-08,3.4360706999119015e-09,-2.8168801215230207e-08,-8.1588699300135691e-11,-2.6568064594903397e-11,-1.0247982769432766e-08,1.2880934720066798e-08,-8.0635439362928443e-10,8.3904217093085926e-07,-1.1727184988645526e-10,-4.1787555045162080e-11,-2.8147546014428653e-08,3.3506919589840966e-07,1.4303033724950140e-07,-4.7871251860358552e-08,1.2919853796261694e-04,-2.8016158683213398e-07 +1.3590091113189615e-05,6.0482751295174991e-10,-6.8745359794530019e-06,3.3849465985781987e-11,-2.6325304770016137e-07,-3.7279134675101884e-10,-1.3593986891789058e-05,1.3004655364674207e-10,-6.9168244237829259e-06,-4.1090109679646173e-11,-2.6459283381123206e-07,-2.1672347729229982e-10,-5.2378334678209369e-08,-2.2003585987316592e-08,-6.9501793669048047e-06,8.0298695366742105e-11,3.1957860413565765e-08,-5.2959088148189155e-11,-6.9746869753699972e-08,1.7021508653153982e-08,-3.1437597982632070e-05,-1.1727184988645526e-10,2.9884457388566476e-07,7.1151996660764950e-11,-1.1703100914871405e-04,-7.1242566024660810e-05,-1.8670750304816238e-05,-1.0280848888887342e-04,-5.6490399135560115e-08,-1.4816214664678975e-07 +1.4963933796399008e-09,-3.7207431730918421e-06,7.6535988220594326e-10,-3.6579826156812293e-08,-1.5242383565828687e-12,-1.1470471360021672e-08,2.3643525912572473e-10,-3.7216879554797839e-06,-8.3166707579859840e-10,3.6586482606985394e-08,-4.0763279599020582e-12,-1.1358514173639934e-08,-2.4397983655689769e-09,5.3640807704353118e-07,-7.4615851574839863e-10,1.7870083871845097e-11,-2.7174943491167994e-11,1.2070141377110959e-09,-2.1484025092958240e-09,2.2322934039328044e-05,-6.6450212532355487e-09,-4.1787555045162080e-11,7.1151996660764950e-11,3.5090649004345431e-07,1.3257296427331251e-09,4.1037725763543876e-08,-1.6361580646079214e-08,-4.7104229030722546e-08,-4.8188932956956045e-07,4.9404401651482639e-05 +-7.8368585089446264e-03,-9.7450161098053282e-07,3.5080195060233350e-03,-9.0534918685676973e-09,2.4047179038042549e-04,6.3632327770373212e-07,2.6986035757751169e-02,-1.0475098811573714e-05,1.4815074388361563e-02,1.5267738339093641e-07,9.3120519511358810e-04,1.2913453140722295e-06,-8.5654308645429517e-03,3.9397010399357789e-05,4.2255211743104835e-02,5.5746502142499671e-08,-4.4239485804719126e-05,6.3985104041112299e-08,5.6028256921109602e-03,-2.3449625632406611e-05,-1.6601470294411710e-02,-2.8147546014428653e-08,-1.1703100914871405e-04,1.3257296427331251e-09,1.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-2.6691741010441878e-02,-6.9674125063883316e-07,1.4877924065196259e-02,1.1311882648234729e-08,9.2642899181507004e-04,2.6169654427495415e-06,-4.7536931782869839e-03,3.2099899258691447e-06,-3.4431229792968401e-03,-4.7256199419127589e-08,-1.9473401058760291e-04,-2.8092123481064990e-07,1.4178346691946590e-02,3.7978965591001709e-05,2.6290635097006458e-02,-3.8437567332673447e-07,-2.6019431990559389e-05,4.8715958722368958e-08,-8.7266512276299724e-03,-3.9563812987916788e-05,-1.0272652773091639e-02,3.3506919589840966e-07,-7.1242566024660810e-05,4.1037725763543876e-08,0.0000000000000000e+00,1.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-1.0427386470714088e-02,1.9363345520680989e-06,-2.1382430604509124e-02,5.8933340674253114e-08,2.7385512250621057e-04,5.3133258845425704e-07,-1.5041053783048548e-02,-5.0828790146892040e-06,3.1029076941670258e-02,7.4848277785221044e-08,-3.9461713482364172e-04,-1.5357525597872957e-07,-2.3661256130655259e-02,7.8256140429005282e-06,4.5893706783715028e-03,-9.0889126615002546e-08,1.5811473476354649e-05,4.7388487095991299e-08,3.8957018025184406e-02,-5.1592053467100967e-06,9.6000877586945223e-03,1.4303033724950140e-07,-1.8670750304816238e-05,-1.6361580646079214e-08,0.0000000000000000e+00,0.0000000000000000e+00,1.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +1.5327500527647591e-02,-2.4098996553326181e-06,3.1074279374707817e-02,-7.7634106731750022e-08,-3.9964156024956154e-04,-7.7033416935686729e-07,-1.0539899603418380e-02,-2.6274257635043645e-06,2.1500078111474159e-02,3.6822640676370892e-08,-2.7455870283132184e-04,-1.1178408030701035e-07,4.2673299622673425e-03,-1.2679150965871501e-05,2.4720490694272620e-02,6.9900650851137456e-08,8.5042080391325748e-05,-2.2553881719432628e-08,-7.1677852748950211e-03,1.7946971791096955e-05,5.2598839264177438e-02,-4.7871251860358552e-08,-1.0280848888887342e-04,-4.7104229030722546e-08,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,1.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +2.7731070326294815e-05,-2.2938029563877305e-03,2.3175445277283731e-06,-1.4292354704284731e-04,-4.2607777441442843e-07,8.4549719379622244e-05,8.7284017470273844e-06,2.3010553947759816e-03,-4.5308885812505270e-06,-1.4334890147197054e-04,6.2156503452954828e-08,-8.5923268713794567e-05,-2.4684051675566254e-05,-5.3242764183186087e-05,-1.0881112921593950e-05,-4.0602030015827588e-04,-1.9643990516257122e-08,-7.3800083697808571e-07,-2.6680593678480893e-05,4.4398458778421283e-05,3.3572354783171943e-06,1.2919853796261694e-04,-5.6490399135560115e-08,-4.8188932956956045e-07,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,1.0000000000000000e+00,0.0000000000000000e+00 +2.5221371319129078e-05,-2.8539223445684485e-03,2.6094945571870645e-06,-1.5658481720818199e-04,-3.8565168949155090e-07,1.0103092517707942e-04,-1.8938021385798380e-06,-2.8224572995272485e-03,3.5503611386558879e-06,1.5469671657942377e-04,3.7770520946776815e-08,1.0094987357770084e-04,-1.1205678472390380e-05,1.0765247556630357e-02,5.4436626454446008e-06,-1.5641291518437534e-06,-1.5854567996781013e-07,1.9346850933749053e-04,-8.0336326972615841e-06,-6.3001032188530846e-03,7.5019634297186665e-06,-2.8016158683213398e-07,-1.4816214664678975e-07,4.9404401651482639e-05,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,1.0000000000000000e+00 diff --git a/matlab/mat/APA300ML_b_out_nodes_3D.txt b/matlab/mat/APA300ML_b_out_nodes_3D.txt new file mode 100644 index 0000000..3041b19 --- /dev/null +++ b/matlab/mat/APA300ML_b_out_nodes_3D.txt @@ -0,0 +1,54 @@ + + LIST ALL SELECTED NODES. DSYS= 0 + + *** ANSYS - ENGINEERING ANALYSIS SYSTEM RELEASE 2020 R2 20.2 *** + DISTRIBUTED ANSYS Mechanical Enterprise + + 00208316 VERSION=WINDOWS x64 11:07:02 MAR 25, 2021 CP= 2.062 + + Unknown + + + + NODE X Y Z THXY THYZ THZX + 840914 0.0000 0.0000 0.28000E-001 0.00 0.00 0.00 + 840915 0.0000 0.0000 -0.28000E-001 0.00 0.00 0.00 + 840916 -0.34000E-001 0.0000 0.0000 0.00 0.00 0.00 + 840917 0.34000E-001 0.0000 0.0000 0.00 0.00 0.00 + + LIST MASTERS ON ALL SELECTED NODES. + CURRENT DOF SET= UX UY UZ ROTX ROTY ROTZ + + *** ANSYS - ENGINEERING ANALYSIS SYSTEM RELEASE 2020 R2 20.2 *** + DISTRIBUTED ANSYS Mechanical Enterprise + + 00208316 VERSION=WINDOWS x64 11:07:02 MAR 25, 2021 CP= 2.188 + + Unknown + + + NODE LABEL SUPPORT + 840914 UX + 840914 UY + 840914 UZ + 840914 ROTX + 840914 ROTY + 840914 ROTZ + 840915 UX + 840915 UY + 840915 UZ + 840915 ROTX + 840915 ROTY + 840915 ROTZ + 840916 UX + 840916 UY + 840916 UZ + 840916 ROTX + 840916 ROTY + 840916 ROTZ + 840917 UX + 840917 UY + 840917 UZ + 840917 ROTX + 840917 ROTY + 840917 ROTZ diff --git a/matlab/mat/full_APA300ML_K.CSV b/matlab/mat/full_APA300ML_K.CSV new file mode 100644 index 0000000..5a09907 --- /dev/null +++ b/matlab/mat/full_APA300ML_K.CSV @@ -0,0 +1,36 @@ +1.7025906652166748e+08,-5.0847898776903749e+03,-1.7824821763551235e+05,-1.3466069715889171e+02,-2.5055546540293694e+06,-3.4394740807618946e+03,1.6611123384494107e+07,-2.0265744364734564e+03,2.3453712127264356e+04,4.2503680078144953e+01,2.4562537687728583e+05,-2.6047031936489020e+01,-9.3271694320415661e+07,-4.8050791696289554e+04,-1.4158079942445016e+07,3.2969659612063697e+02,-5.9350973070021451e+05,1.1040980022378790e+02,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,-9.3598495585884690e+07,5.5162155885093205e+04,1.4312874447986556e+07,-3.2316960961190051e+02,-5.9457478563968907e+05,2.5872288588175991e+02,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-5.0847898776903749e+03,3.3000521201255798e+07,-4.6625887869000435e+03,6.2813704113283753e+05,9.8897688304306939e+01,-1.6211858590666205e+04,-3.7328181189559400e+03,2.0452885612800443e+06,-2.6927212193122250e+02,-3.5249547860599487e+04,-5.5407845259685018e+01,-1.1589028298781486e+03,1.5739445750852115e+04,-1.7813529953522753e+07,2.1166006582895061e+03,1.3873194662253163e+05,1.0616004697843164e+02,-1.0802934700983943e+05,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,-6.9218378760760634e+03,-1.7232279808969740e+07,2.8152604645506885e+03,1.3512707751998931e+05,-9.0834888107377822e+01,1.0796260409338921e+05,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-1.7824821763551235e+05,-4.6625887869000435e+03,6.9466510183792114e+06,-9.0491115236654878e+01,2.9935294508822262e+03,-4.5264037723653018e+01,-2.3542868553834036e+04,3.7106963442063352e+02,-6.7077704072018107e+05,-7.1945905481356931e+00,-3.6055338420181943e+02,8.1156535669581444e+00,-1.9381469898353927e+07,9.6799457536824048e+02,-3.1306125947831445e+06,-1.0258494452622472e+01,-1.1824896021391597e+05,-2.8158813312093116e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,1.9583260984568525e+07,3.3235247861480475e+03,-3.1452613827058780e+06,-3.2998239573319822e+01,1.1950827030106378e+05,-3.0701641339988768e+01,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-1.3466069715889171e+02,6.2813704113283753e+05,-9.0491115236654878e+01,1.2287872421521693e+04,2.4815133320953464e+00,-2.9768581304418331e+02,-5.9801708979422983e+01,3.5262560071851534e+04,-3.8708226026650436e+00,-6.0188601063060833e+02,-8.8767102771797113e-01,-2.0162284029800531e+01,3.1968646322918357e+02,-3.3702578732469940e+05,4.4113325226706365e+01,2.4900424310874064e+03,2.2097922638899945e+00,-1.4252305956964549e+03,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,-1.2522405834563742e+02,-3.2637381388066086e+05,5.0248615148269451e+01,2.4244566947484113e+03,-1.5235242118520218e+00,1.4235194894431104e+03,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-2.5055546540293694e+06,9.8897688304306939e+01,2.9935294508822262e+03,2.4815133320953464e+00,3.7161761043426581e+04,5.2366505079909984e+01,-2.4564178405920847e+05,3.0992853197055183e+01,-3.5786829937546281e+02,-6.4524157566870244e-01,-3.6322681570599866e+03,3.9411283835644451e-01,1.3727513926213938e+06,7.2163097494532121e+02,2.0235330589570518e+05,-4.9453238270903057e+00,8.7536664065023506e+03,-1.6917724842787720e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,1.3784450454659571e+06,-8.5152151465541294e+02,-2.0498896704830742e+05,5.0103874290666832e+00,8.7741331332713198e+03,-3.8742707544350909e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-3.4394740807618946e+03,-1.6211858590666205e+04,-4.5264037723653018e+01,-2.9768581304418331e+02,5.2366505079909984e+01,1.9997054942304268e+04,-3.8236978668157462e+02,-1.1794838685545437e+03,6.2055264004134187e+00,2.0421366380802340e+01,-5.6513392744064959e+00,1.7929648338712792e+02,2.0553456617532138e+03,3.2507221408888244e+05,2.6843655548975676e+02,-2.1797734255538971e+03,1.2792351026492042e+01,-5.5658261123028251e+02,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,1.7664982058661433e+03,-3.0768087162978854e+05,-2.2937804486865491e+02,2.0361313783030594e+03,1.1156965742554387e+01,-6.3717624293345079e+02,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +1.6611123384494107e+07,-3.7328181189559400e+03,-2.3542868553834036e+04,-5.9801708979422983e+01,-2.4564178405920847e+05,-3.8236978668157462e+02,1.6996549791094971e+08,-5.0489899688214064e+03,1.9248716556513309e+05,1.0628453893103870e+02,2.5010658933376074e+06,6.1041730500757694e+02,-9.3087030151883289e+07,9.7765030273124084e+03,1.4127564165360071e+07,1.4791213598331390e+02,5.9206795672574569e+05,8.0715631976160523e+01,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,-9.3489591143607020e+07,-9.9469490208033312e+02,-1.4296508462275315e+07,-1.5754215382160368e+02,5.9370825923807942e+05,1.4372786302541769e+01,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-2.0265744364734564e+03,2.0452885612800443e+06,3.7106963442063352e+02,3.5262560071851534e+04,3.0992853197055183e+01,-1.1794838685545437e+03,-5.0489899688214064e+03,3.2966102000411987e+07,2.0634926947616041e+03,-6.2746484599816799e+05,-7.8304031046223827e+01,-1.6609391113463789e+04,7.9337503945138697e+03,-1.7798862772643398e+07,-1.4406953362980364e+03,-1.3859197836656496e+05,-6.3142917231971417e+01,-1.0777182706961897e+05,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,-8.5818598961646967e+02,-1.7212527789031286e+07,-9.9386701299186655e+02,-1.3498851549567757e+05,3.9231309383947938e+01,1.0797065254365717e+05,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +2.3453712127264356e+04,-2.6927212193122250e+02,-6.7077704072018107e+05,-3.8708226026650436e+00,-3.5786829937546281e+02,6.2055264004134187e+00,1.9248716556513309e+05,2.0634926947616041e+03,6.9434985789718628e+06,-3.6250569502823055e+01,3.2170988347418606e+03,-1.1041595019865781e+01,1.9366005346220493e+07,-1.1813533226154452e+03,-3.1280299608677011e+06,-1.0342695875792852e+01,-1.1812666660302464e+05,-1.6810206926531841e+01,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,-1.9581946223828707e+07,-6.1286727063225408e+02,-3.1446915775327585e+06,-1.4853329911141653e+01,1.1950052428133486e+05,4.5916946012839821e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +4.2503680078144953e+01,-3.5249547860599487e+04,-7.1945905481356931e+00,-6.0188601063060833e+02,-6.4524157566870244e-01,2.0421366380802340e+01,1.0628453893103870e+02,-6.2746484599816799e+05,-3.6250569502823055e+01,1.2274659215539228e+04,1.6512593089046277e+00,3.0589136407109618e+02,-1.5011021146964637e+02,3.3674860222162626e+05,2.6233135104656071e+01,2.4876057241309536e+03,1.1677252743417590e+00,1.4208683950402876e+03,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,1.3219922474057739e+00,3.2596579163732857e+05,1.7212022752649787e+01,2.4216494857525390e+03,-6.5851232482028477e-01,-1.4236968079694655e+03,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +2.4562537687728583e+05,-5.5407845259685018e+01,-3.6055338420181943e+02,-8.8767102771797113e-01,-3.6322681570599866e+03,-5.6513392744064959e+00,2.5010658933376074e+06,-7.8304031046223827e+01,3.2170988347418606e+03,1.6512593089046277e+00,3.7093043936732225e+04,9.1138924046717875e+00,-1.3699061939106337e+06,1.4774361372482107e+02,2.0188730839755369e+05,2.2020177914469263e+00,8.7316431010803844e+03,1.1867731976393239e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,-1.3767850763014846e+06,-1.4031737263792536e+01,-2.0474385384726617e+05,-2.3245128778272086e+00,8.7609809675618581e+03,2.0393417911566214e-01,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-2.6047031936489020e+01,-1.1589028298781486e+03,8.1156535669581444e+00,-2.0162284029800531e+01,3.9411283835644451e-01,1.7929648338712792e+02,6.1041730500757694e+02,-1.6609391113463789e+04,-1.1041595019865781e+01,3.0589136407109618e+02,9.1138924046717875e+00,1.9989800859937444e+04,-3.6125822717223366e+02,3.2511290745118458e+05,5.7469046449823885e+01,2.1806838256750889e+03,2.6670404146188469e+00,-5.5803183278930885e+02,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,-2.2311204612688221e+02,-3.0734461350761738e+05,-5.4543104321051004e+01,-2.0337992320273754e+03,2.2855913310116369e+00,-6.3733988177648257e+02,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-9.3271694320415661e+07,1.5739445750852115e+04,-1.9381469898353927e+07,3.1968646322918357e+02,1.3727513926213938e+06,2.0553456617532138e+03,-9.3087030151883289e+07,7.9337503945138697e+03,1.9366005346220493e+07,-1.5011021146964637e+02,-1.3699061939106337e+06,-3.6125822717223366e+02,3.2653317307847595e+08,1.3664833454787731e+04,2.2195694948650897e+04,-2.4215488532703603e+02,1.0462063770201057e+03,-1.3143843847302378e+02,-1.2592844028090753e+08,-1.3768377136834442e+02,2.8264040093985386e+01,-2.1005020846723710e-01,-4.7124722581702372e-01,3.4548874511400491e+00,-1.4246008325244695e+07,-3.7200345900375338e+04,-6.7594068641783670e+03,2.9134815475064715e+02,4.1129248464910415e+02,-3.8771663917003309e+01,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-4.8050791696289554e+04,-1.7813529953522753e+07,9.6799457536824048e+02,-3.3702578732469940e+05,7.2163097494532121e+02,3.2507221408888244e+05,9.7765030273124084e+03,-1.7798862772643398e+07,-1.1813533226154452e+03,3.3674860222162626e+05,1.4774361372482107e+02,3.2511290745118458e+05,1.3664833454787731e+04,3.9217765664362907e+07,5.1699728447189555e+03,-9.8344415942206979e+01,2.3403729702869896e+02,3.5932778186744149e+05,-1.3768377203355158e+02,-6.7156838913089959e+06,-7.0923934332007775e+01,-9.1385129181816183e-02,-1.6133831849190869e+00,1.3435871164860413e+05,2.4747138943955884e+04,3.1103109531188570e+06,-4.8856900854961714e+03,-3.5060161622472151e+01,2.1498662966066968e+02,6.5088651944340691e+03,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-1.4158079942445016e+07,2.1166006582895061e+03,-3.1306125947831445e+06,4.4113325226706365e+01,2.0235330589570518e+05,2.6843655548975676e+02,1.4127564165360071e+07,-1.4406953362980364e+03,-3.1280299608677011e+06,2.6233135104656071e+01,2.0188730839755369e+05,5.7469046449823885e+01,2.2195694948650897e+04,5.1699728447189555e+03,1.2750633750903606e+07,-5.1528166346251965e+00,9.1303203407119494e+04,9.3662843426363906e+00,2.8264039984438568e+01,-7.0923934307720629e+01,-6.7185430763565497e+06,-1.3274884386919439e-01,-1.3442922835287070e+05,1.6891145616016274e+00,8.2918181144081755e+03,-5.7749541459458778e+03,2.2655188104430289e+05,3.4543393848089636e+01,-1.2024437994397756e+04,-7.9039530925386785e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +3.2969659612063697e+02,1.3873194662253163e+05,-1.0258494452622472e+01,2.4900424310874064e+03,-4.9453238270903057e+00,-2.1797734255538971e+03,1.4791213598331390e+02,-1.3859197836656496e+05,-1.0342695875792852e+01,2.4876057241309536e+03,2.2020177914469263e+00,2.1806838256750889e+03,-2.4215488532703603e+02,-9.8344415942206979e+01,-5.1528166346251965e+00,3.3060434833522959e+03,-2.8973523282240876e-01,-2.5850833722611242e+00,-2.1005020779739425e-01,-9.1385127273667877e-02,-1.3274884497513995e-01,-6.7048789378194203e+02,-5.2906718379972517e-03,1.7751305023283592e-03,-2.3524379620762556e+02,-4.1532454443207826e+01,2.5886756223447037e+01,1.5186618624156316e+02,-1.1217732581587398e+00,-3.0536893475190396e-02,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-5.9350973070021451e+05,1.0616004697843164e+02,-1.1824896021391597e+05,2.2097922638899945e+00,8.7536664065023506e+03,1.2792351026492042e+01,5.9206795672574569e+05,-6.3142917231971417e+01,-1.1812666660302464e+05,1.1677252743417590e+00,8.7316431010803844e+03,2.6670404146188469e+00,1.0462063770201057e+03,2.3403729702869896e+02,9.1303203407119494e+04,-2.8973523282240876e-01,1.3568836696495229e+04,3.0439355361376386e-01,-1.6018088321770847e+00,1.2235743797251644e+00,1.3431249470137287e+05,1.9281881805000012e-05,1.6418458349179132e+03,-2.6214261458592958e-02,3.9716940617149885e+02,-2.7827800201026957e+02,1.0759928708644262e+04,1.6526814312394755e+00,-5.7298995105635686e+02,-3.8034747391322954e-01,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +1.1040980022378790e+02,-1.0802934700983943e+05,-2.8158813312093116e+00,-1.4252305956964549e+03,-1.6917724842787720e+00,-5.5658261123028251e+02,8.0715631976160523e+01,-1.0777182706961897e+05,-1.6810206926531841e+01,1.4208683950402876e+03,1.1867731976393239e+00,-5.5803183278930885e+02,-1.3143843847302378e+02,3.5932778186744149e+05,9.3662843426363906e+00,-2.5850833722611242e+00,3.0439355361376386e-01,1.1881858791756793e+04,-2.0524632067078699e+00,-1.3426864400377535e+05,-1.1478430021013537e+00,-1.8802745402259902e-03,-2.3185006366695404e-02,1.6407703176186919e+03,-5.7634531015922221e+01,-9.2579637837766822e+03,1.1407647738919763e+01,-2.6139405569571306e-01,-5.5788347415443695e-01,-7.7558557980834451e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,-1.2592844028090753e+08,-1.3768377203355158e+02,2.8264039984438568e+01,-2.1005020779739425e-01,-1.6018088321770847e+00,-2.0524632067078699e+00,3.8229699806751347e+08,-4.2871255339623895e+02,-4.4835699737351388e+02,1.3226522274683248e+00,9.6517108890411691e+00,-8.0140834241869925e+00,-2.5636855778661054e+08,5.6639630396474240e+02,4.2009295734576881e+02,-1.1126020260044243e+00,-7.7860452535060176e-01,-6.7687299029671522e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,-1.3768377136834442e+02,-6.7156838913089959e+06,-7.0923934307720629e+01,-9.1385127273667877e-02,1.2235743797251644e+00,-1.3426864400377535e+05,-4.2871255339623895e+02,4.3502248164357185e+07,7.2214138879302482e+01,-7.2952342913777102e-01,9.6721518714508647e-01,2.3373782020688383e+05,5.6639630429754470e+02,-3.6786564273042187e+07,-1.2901814964134246e+00,8.2090856077900298e-01,6.2036464767766120e-01,3.6763475360534718e+05,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,2.8264040093985386e+01,-7.0923934332007775e+01,-6.7185430763565497e+06,-1.3274884497513995e-01,1.3431249470137287e+05,-1.1478430021013537e+00,-4.4835699737351388e+02,7.2214138879302482e+01,4.3537821186278343e+07,-4.2250833160323964e-01,-2.3408698529634357e+05,-1.5415835546447454e+00,4.2009295731782913e+02,-1.2901814733922947e+00,-3.6819278109927163e+07,5.5525716221018229e-01,-3.6786934854931670e+05,-1.2172764450042450e-01,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,-2.1005020846723710e-01,-9.1385129181816183e-02,-1.3274884386919439e-01,-6.7048789378194203e+02,1.9281881805000012e-05,-1.8802745402259902e-03,1.3226522274683248e+00,-7.2952342913777102e-01,-4.2250833160323964e-01,2.0244550349436540e+03,1.4170592490408751e-02,-1.4852975622863362e-02,-1.1126020263400278e+00,8.2090856118202282e-01,5.5525716279953485e-01,-1.3539671411616607e+03,2.2252224827070677e-03,-3.3403259928128648e-03,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,-4.7124722581702372e-01,-1.6133831849190869e+00,-1.3442922835287070e+05,-5.2906718379972517e-03,1.6418458349179132e+03,-2.3185006366695404e-02,9.6517108890411691e+00,9.6721518714508647e-01,-2.3408698529634357e+05,1.4170592490408751e-02,9.5440737838923887e+03,-4.8009355072240023e-02,-9.1804636713959553e+00,6.4616825396478816e-01,3.6851621364921500e+05,-8.8799207717897843e-03,1.5615737882883211e+03,-6.2643347197663957e-03,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,3.4548874511400491e+00,1.3435871164860413e+05,1.6891145616016274e+00,1.7751305023283592e-03,-2.6214261458592958e-02,1.6407703176186919e+03,-8.0140834241869925e+00,2.3373782020688383e+05,-1.5415835546447454e+00,-1.4852975622863362e-02,-4.8009355072240023e-02,9.5371359597100600e+03,4.5591961783537158e+00,-3.6809653185550950e+05,-1.4753125090737740e-01,1.3077845200438531e-02,3.7084053440565867e-03,1.5583728257261700e+03,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-9.3598495585884690e+07,-6.9218378760760634e+03,1.9583260984568525e+07,-1.2522405834563742e+02,1.3784450454659571e+06,1.7664982058661433e+03,-9.3489591143607020e+07,-8.5818598961646967e+02,-1.9581946223828707e+07,1.3219922474057739e+00,-1.3767850763014846e+06,-2.2311204612688221e+02,-1.4246008325244695e+07,2.4747138943955884e+04,8.2918181144081755e+03,-2.3524379620762556e+02,3.9716940617149885e+02,-5.7634531015922221e+01,-2.5636855778661054e+08,5.6639630429754470e+02,4.2009295731782913e+02,-1.1126020263400278e+00,-9.1804636713959553e+00,4.5591961783537158e+00,4.5770265284134865e+08,-1.7533511432856903e+04,-1.0026671802727971e+04,1.9047621042148057e+02,4.5601252127503631e+02,-2.2755527824563251e+02,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +5.5162155885093205e+04,-1.7232279808969740e+07,3.3235247861480475e+03,-3.2637381388066086e+05,-8.5152151465541294e+02,-3.0768087162978854e+05,-9.9469490208033312e+02,-1.7212527789031286e+07,-6.1286727063225408e+02,3.2596579163732857e+05,-1.4031737263792536e+01,-3.0734461350761738e+05,-3.7200345900375338e+04,3.1103109531188570e+06,-5.7749541459458778e+03,-4.1532454443207826e+01,-2.7827800201026957e+02,-9.2579637837766822e+03,5.6639630396474240e+02,-3.6786564273042187e+07,-1.2901814733922947e+00,8.2090856118202282e-01,6.4616825396478816e-01,-3.6809653185550950e+05,-1.7533511432856903e+04,6.8121060917848587e+07,3.0655867085456848e+03,-1.0432277045148135e+02,-1.6400341496442923e+02,-5.9007687543661089e+05,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +1.4312874447986556e+07,2.8152604645506885e+03,-3.1452613827058780e+06,5.0248615148269451e+01,-2.0498896704830742e+05,-2.2937804486865491e+02,-1.4296508462275315e+07,-9.9386701299186655e+02,-3.1446915775327585e+06,1.7212022752649787e+01,-2.0474385384726617e+05,-5.4543104321051004e+01,-6.7594068641783670e+03,-4.8856900854961714e+03,2.2655188104430289e+05,2.5886756223447037e+01,1.0759928708644262e+04,1.1407647738919763e+01,4.2009295734576881e+02,-1.2901814964134246e+00,-3.6819278109927163e+07,5.5525716279953485e-01,3.6851621364921500e+05,-1.4753125090737740e-01,-1.0026671802727971e+04,3.0655867085456848e+03,4.2882679189051628e+07,1.2752918449696153e+01,1.4088499196085893e+05,3.4135627126539475e+01,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-3.2316960961190051e+02,1.3512707751998931e+05,-3.2998239573319822e+01,2.4244566947484113e+03,5.0103874290666832e+00,2.0361313783030594e+03,-1.5754215382160368e+02,-1.3498851549567757e+05,-1.4853329911141653e+01,2.4216494857525390e+03,-2.3245128778272086e+00,-2.0337992320273754e+03,2.9134815475064715e+02,-3.5060161622472151e+01,3.4543393848089636e+01,1.5186618624156316e+02,1.6526814312394755e+00,-2.6139405569571306e-01,-1.1126020260044243e+00,8.2090856077900298e-01,5.5525716221018229e-01,-1.3539671411616607e+03,-8.8799207717897843e-03,1.3077845200438531e-02,1.9047621042148057e+02,-1.0432277045148135e+02,1.2752918449696153e+01,3.9192314093739624e+03,-3.4026897070248197e-01,-1.4160863000824975e-02,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-5.9457478563968907e+05,-9.0834888107377822e+01,1.1950827030106378e+05,-1.5235242118520218e+00,8.7741331332713198e+03,1.1156965742554387e+01,5.9370825923807942e+05,3.9231309383947938e+01,1.1950052428133486e+05,-6.5851232482028477e-01,8.7609809675618581e+03,2.2855913310116369e+00,4.1129248464910415e+02,2.1498662966066968e+02,-1.2024437994397756e+04,-1.1217732581587398e+00,-5.7298995105635686e+02,-5.5788347415443695e-01,-7.7860452535060176e-01,6.2036464767766120e-01,-3.6786934854931670e+05,2.2252224827070677e-03,1.5615737882883211e+03,3.7084053440565867e-03,4.5601252127503631e+02,-1.6400341496442923e+02,1.4088499196085893e+05,-3.4026897070248197e-01,1.5656816865946283e+04,-1.5248842872024397e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +2.5872288588175991e+02,1.0796260409338921e+05,-3.0701641339988768e+01,1.4235194894431104e+03,-3.8742707544350909e+00,-6.3717624293345079e+02,1.4372786302541769e+01,1.0797065254365717e+05,4.5916946012839821e+00,-1.4236968079694655e+03,2.0393417911566214e-01,-6.3733988177648257e+02,-3.8771663917003309e+01,6.5088651944340691e+03,-7.9039530925386785e+00,-3.0536893475190396e-02,-3.8034747391322954e-01,-7.7558557980834451e+00,-6.7687299029671522e+00,3.6763475360534718e+05,-1.2172764450042450e-01,-3.3403259928128648e-03,-6.2643347197663957e-03,1.5583728257261700e+03,-2.2755527824563251e+02,-5.9007687543661089e+05,3.4135627126539475e+01,-1.4160863000824975e-02,-1.5248842872024397e+00,1.3945123837670268e+04,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,1.3974673037696464e+09,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,1.4005803161441824e+09,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,1.5467219899890506e+09,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,1.5519699693777258e+09,0.0000000000000000e+00,0.0000000000000000e+00 +0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,3.1577419286910529e+09,0.0000000000000000e+00 +0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,3.1947677687320404e+09 diff --git a/matlab/mat/full_APA300ML_M.CSV b/matlab/mat/full_APA300ML_M.CSV new file mode 100644 index 0000000..801979b --- /dev/null +++ b/matlab/mat/full_APA300ML_M.CSV @@ -0,0 +1,36 @@ +1.9180403993491284e-02,-3.5386817430971208e-06,-6.7297245558294700e-04,-5.9305032031174675e-08,-2.0917129701773958e-04,-3.1953279954968467e-07,-7.3703812971727509e-04,1.2159833297457929e-07,6.2664683414278804e-05,-1.7254537300219426e-09,-1.2034776837696835e-05,2.7759586988002370e-09,1.4522190859414183e-03,-3.6924847849543856e-07,-1.9291750485168107e-04,-1.3840108292319532e-08,1.4829401193142106e-05,3.4794567991193249e-09,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,1.7588310237202792e-03,4.0473919133306971e-06,-8.4558635740781293e-05,-9.2804884781376160e-10,1.6343982920173760e-05,1.7828026365384081e-08,1.2443642889233273e-02,2.3674999813816777e-02,-1.2665814760891294e-02,1.2392503509052711e-02,-1.5877997525629387e-05,-4.6812045940282448e-06 +-3.5386817430971208e-06,1.9245697421385901e-02,-4.4462619918322048e-06,2.0910984685882405e-04,1.0497073477235194e-07,-2.3288930059227873e-05,7.3775584654009794e-08,-1.9328024899023462e-04,1.0579960373506816e-07,2.9196346123969380e-06,1.0582870798545778e-09,9.1453950516632311e-08,1.3248643670910008e-06,1.0499997770173687e-03,1.0360811703473718e-06,-9.3814868656836301e-06,6.8923936630335974e-09,1.2568911794690208e-07,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,-1.5946142842221646e-07,1.1133585922969182e-03,-1.1903131302821071e-06,-9.9176308427033486e-06,-8.9790911190861651e-10,-2.4491820723842003e-07,-2.2643886423869724e-05,-4.6463671672752870e-05,1.4929863741048841e-06,-1.3743410251703281e-07,-1.4825615960744499e-03,-3.1025104691272919e-03 +-6.7297245558294700e-04,-4.4462619918322048e-06,1.8559711193814249e-02,-9.7647420117926748e-08,3.1581465599071445e-05,-9.4818531291554368e-08,-6.1303199905766602e-05,-2.4142111033987330e-07,6.4429146692036762e-05,4.1170926247766793e-09,-9.2044628310053792e-07,-1.3155578680369567e-09,1.5041115178310452e-03,7.7724324973885628e-07,1.0653062019777401e-03,-6.7295127217258424e-09,1.0450613926187926e-05,3.5455330096916955e-09,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,-8.0289711729186752e-04,2.9516953113228149e-06,9.6769358026596152e-04,-2.2030882961226875e-08,-5.8193109905064128e-06,4.8077311716313397e-10,7.3014689962518399e-03,1.3829548038409705e-02,2.8550602200522721e-02,-2.5513651731172409e-02,-1.3684696973552163e-05,-1.5377698713734422e-05 +-5.9305032031174675e-08,2.0910984685882405e-04,-9.7647420117926748e-08,3.6422848848281323e-06,2.0084950438439435e-09,-1.3335120575121601e-07,1.6037078381414454e-09,-2.9195410249562311e-06,2.1644885844376347e-09,4.2566094848208201e-08,2.3025623350555871e-11,1.7169742520458830e-09,3.1440300617591096e-08,1.8448928470584108e-05,2.1728011271818810e-08,-1.2576653717492951e-07,1.7568374821966115e-10,-2.9907460839393344e-08,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,-1.9662990459606614e-08,1.8604997224757686e-05,-2.4277560657754693e-08,-1.2794363402458843e-07,-1.2174372459054723e-10,2.6012824175730070e-08,-4.3414578938503394e-07,-8.8819978178299776e-07,2.5774124427060330e-08,-1.7688582760618006e-09,-1.2250482029118142e-04,-1.6353201310745618e-04 +-2.0917129701773958e-04,1.0497073477235194e-07,3.1581465599071445e-05,2.0084950438439435e-09,3.5343699396833916e-06,7.8543278208058049e-09,1.2005333520784251e-05,1.1642414309312913e-10,-9.3885370143720548e-07,-6.0789727752709912e-12,1.9441057248415325e-07,-1.4703661203299254e-11,-2.4036216506425352e-05,2.7607670325765945e-08,1.4565420285543838e-05,6.0887651445545538e-11,-2.3449247367903781e-07,-1.7823405635535703e-10,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,-2.7531349874821373e-05,-1.3215923073995517e-07,-1.0547021838479215e-05,4.8637277703907580e-10,-2.5164931481923190e-07,-3.5780709150316614e-10,-4.2555343598068418e-04,-8.3920678929678375e-04,3.4451743146389919e-04,-3.2518160080507547e-04,2.0333629489585635e-07,2.5623725204854869e-08 +-3.1953279954968467e-07,-2.3288930059227873e-05,-9.4818531291554368e-08,-1.3335120575121601e-07,7.8543278208058049e-09,7.6785383776932988e-07,2.0330185900233611e-08,9.2290079281005149e-08,-2.0509281271962773e-09,-1.7205906294329353e-09,3.2815275288705596e-10,-1.0920681892441675e-08,-2.1548996123798089e-08,-1.4724731406063522e-05,6.6759991310553265e-08,1.0972990545130489e-07,-2.6295387509679688e-10,5.1460228466660863e-08,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,-1.8601654381262720e-08,1.3894025678912365e-05,-7.9625845047835227e-08,-9.1808942751358736e-08,-2.3333252770135892e-10,5.6432011340062909e-08,-1.7218986433125755e-06,-3.4380302439433343e-06,8.9412622862594666e-07,-8.3345933502319242e-07,-6.7368153553254133e-05,-1.0685663395275263e-04 +-7.3703812971727509e-04,7.3775584654009794e-08,-6.1303199905766602e-05,1.6037078381414454e-09,1.2005333520784251e-05,2.0330185900233611e-08,1.9140593210326590e-02,-8.6246718740360451e-07,6.8464695573844066e-04,2.6835922707036862e-08,2.0827706840634839e-04,4.1504909460972788e-08,1.4649245839530242e-03,-4.5753640465918114e-08,1.8260265066020006e-04,4.0299903620547377e-09,-1.4872710931274880e-05,4.6137860029852969e-09,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,1.7667748075557634e-03,-5.4819133618285368e-07,9.4215092581346660e-05,7.1669501117728774e-09,-1.6373895730074586e-05,-1.3160457495372054e-10,-2.3889520659404521e-02,1.1176595390426626e-02,1.1517387162601905e-02,1.3339549888966882e-02,-6.9763994143242040e-06,7.6080554131145197e-06 +1.2159833297457929e-07,-1.9328024899023462e-04,-2.4142111033987330e-07,-2.9195410249562311e-06,1.1642414309312913e-10,9.2290079281005149e-08,-8.6246718740360451e-07,1.9236527617681361e-02,7.3292226479170124e-07,-2.0890431182484249e-04,-2.2195314622744124e-08,-2.3417298525557104e-05,2.7384251278942907e-07,1.0486963188593541e-03,-3.8285108988677245e-07,9.3935451038551473e-06,-2.1550955847546005e-09,1.4464397482521205e-07,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,-1.7703626949991876e-07,1.1168555280145966e-03,-2.8090478191373935e-09,9.9466907193319597e-06,-7.5798124308786279e-11,-2.5969121980411849e-07,6.7836178728686985e-06,-6.6783238233488808e-06,-7.0450284360939704e-07,1.6739977008106364e-07,1.7046317853673409e-03,-2.9982630133594734e-03 +6.2664683414278804e-05,1.0579960373506816e-07,6.4429146692036762e-05,2.1644885844376347e-09,-9.3885370143720548e-07,-2.0509281271962773e-09,6.8464695573844066e-04,7.3292226479170124e-07,1.8556422915840642e-02,-1.8255314287718399e-08,3.1800884379729219e-05,-3.5761210354286607e-09,-1.5150087047357604e-03,-2.5525484445683029e-07,1.0674438006863774e-03,-3.6268985549557349e-09,1.0514847510213745e-05,5.6811843090504947e-10,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,8.0073592354441240e-04,-2.4195740347652436e-07,9.6702570622137125e-04,-1.7264584136738321e-09,-5.8032587878764967e-06,7.8416166288207537e-10,1.4203654857645194e-02,-6.5940698325439176e-03,2.6324082796649471e-02,2.7809119115105248e-02,3.0822636920965325e-08,-6.8311288952693023e-07 +-1.7254537300219426e-09,2.9196346123969380e-06,4.1170926247766793e-09,4.2566094848208201e-08,-6.0789727752709912e-12,-1.7205906294329353e-09,2.6835922707036862e-08,-2.0890431182484249e-04,-1.8255314287718399e-08,3.6376297364109821e-06,6.0057261896472878e-10,1.3589887457611765e-07,-1.2010462498576637e-08,-1.8439729397549356e-05,7.6306507429295390e-09,-1.2604440667374669e-07,8.6846588475788689e-11,2.9560043607251709e-08,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,-4.4801316747056921e-10,-1.8684539128456464e-05,-1.7312066406894035e-09,-1.2858507492534756e-07,1.7891374247785721e-11,-2.5779443973740474e-08,-1.3285138021445834e-07,1.1923842887080725e-07,-1.8717415093643504e-08,-3.8359469805443676e-08,-1.3503500869595041e-04,1.5652172827044340e-04 +-1.2034776837696835e-05,1.0582870798545778e-09,-9.2044628310053792e-07,2.3025623350555871e-11,1.9441057248415325e-07,3.2815275288705596e-10,2.0827706840634839e-04,-2.2195314622744124e-08,3.1800884379729219e-05,6.0057261896472878e-10,3.5159954895798427e-06,8.4817073776560698e-10,2.4440827800707464e-05,7.5748829887754229e-09,1.4379949172805848e-05,1.1831788736570021e-10,-2.3650282933059881e-07,5.4059477890173564e-11,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,2.7746838303401700e-05,-7.6442767326631317e-09,-1.0387048457562033e-05,1.0746858886167557e-10,-2.5273735484222652e-07,-1.0073277922273370e-11,-8.4160580990647028e-04,4.0810143801751122e-04,3.1514819424967918e-04,3.5179661055869099e-04,-1.3154249441709622e-07,1.4050703116567984e-07 +2.7759586988002370e-09,9.1453950516632311e-08,-1.3155578680369567e-09,1.7169742520458830e-09,-1.4703661203299254e-11,-1.0920681892441675e-08,4.1504909460972788e-08,-2.3417298525557104e-05,-3.5761210354286607e-09,1.3589887457611765e-07,8.4817073776560698e-10,7.6734768162841015e-07,-3.4681457632350992e-09,-1.4715164334140992e-05,1.3079026957811009e-08,-1.0979462829277434e-07,-1.4708341189654716e-11,5.1396876004238176e-08,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,3.7669541453423736e-09,1.3894536402242100e-05,-4.0871573450819118e-09,9.1847805211491326e-08,-6.3748730241823205e-11,5.6366196180689756e-08,-2.5096760682066648e-07,8.3815465610236449e-08,2.1621817296699036e-07,2.2514785285960931e-07,7.4155141157064021e-05,-1.0149600219414910e-04 +1.4522190859414183e-03,1.3248643670910008e-06,1.5041115178310452e-03,3.1440300617591096e-08,-2.4036216506425352e-05,-2.1548996123798089e-08,1.4649245839530242e-03,2.7384251278942907e-07,-1.5150087047357604e-03,-1.2010462498576637e-08,2.4440827800707464e-05,-3.4681457632350992e-09,2.9784689969598672e-02,-1.1779634348095709e-06,7.2091341634949752e-06,1.7532579179120565e-08,-1.4680548888225959e-10,-9.0225338718335632e-09,5.0911316601190033e-03,-4.1437424205521909e-08,-6.8053992402115557e-08,-8.4361104130144485e-11,-4.6569645579044860e-10,2.4226386986399002e-10,-2.2280927891340011e-04,3.5228761620069934e-06,-6.4071842708615851e-06,-2.5636867082473507e-08,-2.7315354575856875e-08,1.1643532467258393e-08,-3.5216199283537994e-03,9.7467035325089785e-03,1.6906857532482836e-03,-3.9339196972392070e-02,1.3723632457380850e-06,-2.2532949574989803e-05 +-3.6924847849543856e-07,1.0499997770173687e-03,7.7724324973885628e-07,1.8448928470584108e-05,2.7607670325765945e-08,-1.4724731406063522e-05,-4.5753640465918114e-08,1.0486963188593541e-03,-2.5525484445683029e-07,-1.8439729397549356e-05,7.5748829887754229e-09,-1.4715164334140992e-05,-1.1779634348095709e-06,3.1977544335630631e-02,5.5044954464311146e-07,4.2199930654966855e-09,-2.4984700894225287e-08,-2.0206698455898684e-05,1.6534649376374411e-08,4.0544652148671954e-03,-2.0376056873049790e-08,-3.7870852109581315e-12,1.0614497120210831e-10,-4.1355618793143265e-05,-1.9897246566788684e-06,-3.3831914736732951e-04,-1.7973104305694709e-07,1.2132194952007389e-10,-1.8976108568854482e-08,-2.6744192499979445e-07,-2.2534462134192864e-05,-2.0578419948292292e-05,1.9265376581661267e-05,-1.0354996039260608e-05,2.1256445770437125e-04,-6.4121834046156857e-03 +-1.9291750485168107e-04,1.0360811703473718e-06,1.0653062019777401e-03,2.1728011271818810e-08,1.4565420285543838e-05,6.6759991310553265e-08,1.8260265066020006e-04,-3.8285108988677245e-07,1.0674438006863774e-03,7.6306507429295390e-09,1.4379949172805848e-05,1.3079026957811009e-08,7.2091341634949752e-06,5.5044954464311146e-07,3.2208260914758841e-02,6.6224233485887039e-09,2.4480819195440862e-05,4.6464326672529102e-09,7.5139014394059837e-08,-6.2761560056553804e-09,4.0533547295304286e-03,-7.8942277599231068e-11,4.1365899075929789e-05,-2.7764914499663005e-10,1.6738427761483978e-06,-1.1288307556597044e-06,1.9098974082736459e-04,6.9883018200074241e-09,-3.4365284155697740e-06,-8.9211460899106898e-10,-1.8241686655288705e-02,-6.1887544718480245e-03,5.3358689150398465e-02,2.2225778688082982e-03,-6.6920089040385829e-06,-3.5374676331005905e-06 +-1.3840108292319532e-08,-9.3814868656836301e-06,-6.7295127217258424e-09,-1.2576653717492951e-07,6.0887651445545538e-11,1.0972990545130489e-07,4.0299903620547377e-09,9.3935451038551473e-06,-3.6268985549557349e-09,-1.2604440667374669e-07,1.1831788736570021e-10,-1.0979462829277434e-07,1.7532579179120565e-08,4.2199930654966855e-09,6.6224233485887039e-09,1.1838818723415583e-06,2.5404890376725599e-10,-5.8728710637934867e-10,5.2167149611783209e-11,-1.7162339838086894e-11,6.2775453276522647e-14,8.5919276935128224e-08,5.6571746528584443e-13,1.8960235911998903e-14,2.6600611610123000e-08,5.1672913276929128e-09,-1.1857938513011843e-09,-2.9680455181253399e-08,1.2208865688358232e-10,2.8100830753871640e-11,1.4434270917625216e-08,2.1098552250521460e-07,-9.2523181038276382e-08,1.1829265269312945e-07,1.3338369972974633e-04,6.6709676252477444e-06 +1.4829401193142106e-05,6.8923936630335974e-09,1.0450613926187926e-05,1.7568374821966115e-10,-2.3449247367903781e-07,-2.6295387509679688e-10,-1.4872710931274880e-05,-2.1550955847546005e-09,1.0514847510213745e-05,8.6846588475788689e-11,-2.3650282933059881e-07,-1.4708341189654716e-11,-1.4680548888225959e-10,-2.4984700894225287e-08,2.4480819195440862e-05,2.5404890376725599e-10,1.1643251800594459e-06,1.9175072254843817e-10,-4.8213031934121397e-10,1.5030664459912337e-11,-4.1263734675535483e-05,7.7114261862789552e-13,-3.9153535737770948e-07,3.2305945952911957e-12,-2.6190556977141870e-08,2.6368390135037619e-08,6.1432046612156366e-06,-1.3443466396538433e-10,5.6025084077921977e-10,6.8744841896691323e-11,5.3628479941231250e-05,1.6568605125362163e-05,2.7846239084985009e-04,1.1305939844471519e-05,-1.0440932326420343e-07,-3.8462217010480574e-08 +3.4794567991193249e-09,1.2568911794690208e-07,3.5455330096916955e-09,-2.9907460839393344e-08,-1.7823405635535703e-10,5.1460228466660863e-08,4.6137860029852969e-09,1.4464397482521205e-07,5.6811843090504947e-10,2.9560043607251709e-08,5.4059477890173564e-11,5.1396876004238176e-08,-9.0225338718335632e-09,-2.0206698455898684e-05,4.6464326672529102e-09,-5.8728710637934867e-10,1.9175072254843817e-10,1.3838069370274971e-06,1.7242630570630055e-10,4.1283180666424899e-05,-1.3598435706217641e-10,3.3983769469905402e-14,1.6838959108669086e-12,-3.9148639119402698e-07,3.8899405831883296e-09,7.2747473427265298e-07,3.6780358620406335e-09,2.5763832486765300e-11,2.9628576318016861e-11,2.7627234437565930e-10,9.8683889189486147e-08,1.4100571342910795e-07,-4.1434277942299052e-08,3.3876137309898650e-08,2.5893198656537459e-07,-2.6782154632106800e-05 +0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,5.0911316601190033e-03,1.6534649376374411e-08,7.5139014394059837e-08,5.2167149611783209e-11,-4.8213031934121397e-10,1.7242630570630055e-10,1.5838140724835414e-02,4.6792987380017302e-08,5.0559806397704079e-08,1.9091449354176659e-10,1.1201180027165710e-09,-5.9706090517186022e-10,2.4775576487408605e-03,1.3055495124542592e-08,-1.5486603538505326e-08,9.0434715350633260e-12,-6.9046718060170632e-11,-7.3851264192454854e-12,4.9438528515937297e-15,1.3610321938035977e-15,-4.1357329724553186e-15,-7.6970165626223539e-15,-2.4258848831309949e-12,5.4339287700903742e-12 +0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,-4.1437424205521909e-08,4.0544652148671954e-03,-6.2761560056553804e-09,-1.7162339838086894e-11,1.5030664459912337e-11,4.1283180666424899e-05,4.6792987380017302e-08,1.7218187570649340e-02,4.8026797828336722e-08,-1.4666712775410590e-10,5.2649907409685185e-10,-4.9375767802099400e-05,9.0387718997323417e-09,2.1415008885718018e-03,-6.5479155755539340e-09,6.6832417733352129e-11,-3.5053911013654051e-11,-1.1936193963848113e-05,8.5337456866444873e-15,5.1074558077970226e-15,-9.0495997073290111e-15,-1.6844224714733814e-14,-2.1109127182877665e-12,4.4210887013055602e-12 +0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,-6.8053992402115557e-08,-2.0376056873049790e-08,4.0533547295304286e-03,6.2775453276522647e-14,-4.1263734675535483e-05,-1.3598435706217641e-10,5.0559806397704079e-08,4.8026797828336722e-08,1.7226062988559193e-02,1.1437809253970023e-11,4.9407519675482629e-05,-9.9396440298130193e-10,1.3699147297410155e-08,4.9699685811851590e-09,2.1399832958746813e-03,2.1093863558312420e-11,1.1928513482238625e-05,-5.5858578368626676e-12,-2.0386174888479484e-15,3.6536175488511800e-16,1.7237953511911040e-15,-2.4443150616442523e-15,1.0511624056904027e-12,-5.0324569727524429e-12 +0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,-8.4361104130144485e-11,-3.7870852109581315e-12,-7.8942277599231068e-11,8.5919276935128224e-08,7.7114261862789552e-13,3.3983769469905402e-14,1.9091449354176659e-10,-1.4666712775410590e-10,1.1437809253970023e-11,2.6169177981036018e-07,2.3406625199199758e-12,-2.3576555754302375e-12,-4.8210859079293268e-11,3.7022181812964561e-11,2.1377115976110194e-11,4.2663118169011185e-08,1.3615930920763346e-13,2.6830981552151709e-14,-2.3773042040314455e-17,-1.4506508102878551e-17,2.2928517333650290e-17,6.5520581181426056e-17,1.0055631250783132e-14,-8.2525429972158425e-15 +0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,-4.6569645579044860e-10,1.0614497120210831e-10,4.1365899075929789e-05,5.6571746528584443e-13,-3.9153535737770948e-07,1.6838959108669086e-12,1.1201180027165710e-09,5.2649907409685185e-10,4.9407519675482629e-05,2.3406625199199758e-12,5.8279728253066206e-07,-9.9015023481763857e-12,-1.8223239883418740e-11,-4.3179555216183687e-11,-1.1977394054433592e-05,9.5342702851480413e-14,-5.3683229492860376e-08,1.6602468379509925e-13,1.3647281594365435e-18,1.3847487421315232e-18,-2.4518395459434443e-18,1.7542881376587629e-18,1.1918708608799692e-15,-7.6662395153113809e-16 +0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,2.4226386986399002e-10,-4.1355618793143265e-05,-2.7764914499663005e-10,1.8960235911998903e-14,3.2305945952911957e-12,-3.9148639119402698e-07,-5.9706090517186022e-10,-4.9375767802099400e-05,-9.9396440298130193e-10,-2.3576555754302375e-12,-9.9015023481763857e-12,5.8193477585627729e-07,9.2213137191309433e-12,1.1973839422768796e-05,-2.7580916873239485e-11,-2.6428344165305951e-13,-1.6830176894599173e-13,-5.3653882225437740e-08,2.4728530947840425e-17,1.6751746635333189e-17,-2.6752289572637881e-17,-5.7499315552852813e-17,-6.8917232252527251e-15,7.6185318466825709e-15 +1.7588310237202792e-03,-1.5946142842221646e-07,-8.0289711729186752e-04,-1.9662990459606614e-08,-2.7531349874821373e-05,-1.8601654381262720e-08,1.7667748075557634e-03,-1.7703626949991876e-07,8.0073592354441240e-04,-4.4801316747056921e-10,2.7746838303401700e-05,3.7669541453423736e-09,-2.2280927891340011e-04,-1.9897246566788684e-06,1.6738427761483978e-06,2.6600611610123000e-08,-2.6190556977141870e-08,3.8899405831883296e-09,2.4775576487408605e-03,9.0387718997323417e-09,1.3699147297410155e-08,-4.8210859079293268e-11,-1.8223239883418740e-11,9.2213137191309433e-12,2.3844843740275984e-02,-5.3980517851666643e-07,-1.8508557580562050e-06,-2.8124976762155787e-08,-2.3613744949676837e-08,-3.9956704099087598e-08,5.1400833644824669e-03,-1.5558684622866895e-02,-9.6814722815906265e-04,2.3919535133556782e-02,3.0804109352445127e-05,2.3913388184361028e-05 +4.0473919133306971e-06,1.1133585922969182e-03,2.9516953113228149e-06,1.8604997224757686e-05,-1.3215923073995517e-07,1.3894025678912365e-05,-5.4819133618285368e-07,1.1168555280145966e-03,-2.4195740347652436e-07,-1.8684539128456464e-05,-7.6442767326631317e-09,1.3894536402242100e-05,3.5228761620069934e-06,-3.3831914736732951e-04,-1.1288307556597044e-06,5.1672913276929128e-09,2.6368390135037619e-08,7.2747473427265298e-07,1.3055495124542592e-08,2.1415008885718018e-03,4.9699685811851590e-09,3.7022181812964561e-11,-4.3179555216183687e-11,1.1973839422768796e-05,-5.3980517851666643e-07,2.6227343649495510e-02,1.8954425943683126e-06,9.0946404389049521e-09,1.6569734329975856e-09,6.9200247432634862e-05,4.3233606789047737e-05,9.0249102014144009e-05,-2.0760469627625316e-05,1.1528043443648827e-05,-3.4886283215487736e-04,1.0855537718400844e-02 +-8.4558635740781293e-05,-1.1903131302821071e-06,9.6769358026596152e-04,-2.4277560657754693e-08,-1.0547021838479215e-05,-7.9625845047835227e-08,9.4215092581346660e-05,-2.8090478191373935e-09,9.6702570622137125e-04,-1.7312066406894035e-09,-1.0387048457562033e-05,-4.0871573450819118e-09,-6.4071842708615851e-06,-1.7973104305694709e-07,1.9098974082736459e-04,-1.1857938513011843e-09,6.1432046612156366e-06,3.6780358620406335e-09,-1.5486603538505326e-08,-6.5479155755539340e-09,2.1399832958746813e-03,2.1377115976110194e-11,-1.1977394054433592e-05,-2.7580916873239485e-11,-1.8508557580562050e-06,1.8954425943683126e-06,2.6308944024227086e-02,-2.0813984774814473e-10,-7.1417682966145034e-05,1.5643254887016203e-08,4.7274882017703149e-02,1.5963605116052819e-02,2.4542545638085618e-02,1.0323207797784809e-03,7.1066892489960303e-06,2.5591847524782320e-06 +-9.2804884781376160e-10,-9.9176308427033486e-06,-2.2030882961226875e-08,-1.2794363402458843e-07,4.8637277703907580e-10,-9.1808942751358736e-08,7.1669501117728774e-09,9.9466907193319597e-06,-1.7264584136738321e-09,-1.2858507492534756e-07,1.0746858886167557e-10,9.1847805211491326e-08,-2.5636867082473507e-08,1.2132194952007389e-10,6.9883018200074241e-09,-2.9680455181253399e-08,-1.3443466396538433e-10,2.5763832486765300e-11,9.0434715350633260e-12,6.6832417733352129e-11,2.1093863558312420e-11,4.2663118169011185e-08,9.5342702851480413e-14,-2.6428344165305951e-13,-2.8124976762155787e-08,9.0946404389049521e-09,-2.0813984774814473e-10,1.1134104737899188e-06,-2.6770657790971538e-10,-9.1549075245360975e-11,-2.2746595471083301e-07,-5.5440105502280843e-07,1.0644559644311949e-07,-1.2727795977359786e-07,-4.0087268452467515e-04,-1.3726013554048109e-05 +1.6343982920173760e-05,-8.9790911190861651e-10,-5.8193109905064128e-06,-1.2174372459054723e-10,-2.5164931481923190e-07,-2.3333252770135892e-10,-1.6373895730074586e-05,-7.5798124308786279e-11,-5.8032587878764967e-06,1.7891374247785721e-11,-2.5273735484222652e-07,-6.3748730241823205e-11,-2.7315354575856875e-08,-1.8976108568854482e-08,-3.4365284155697740e-06,1.2208865688358232e-10,5.6025084077921977e-10,2.9628576318016861e-11,-6.9046718060170632e-11,-3.5053911013654051e-11,1.1928513482238625e-05,1.3615930920763346e-13,-5.3683229492860376e-08,-1.6830176894599173e-13,-2.3613744949676837e-08,1.6569734329975856e-09,-7.1417682966145034e-05,-2.6770657790971538e-10,7.0750152731787393e-07,-2.0276161487202595e-10,-1.2094497818069785e-04,-4.1545474024475742e-05,-1.6185862173618542e-04,-6.9731489837877039e-06,1.6791991440856165e-07,1.7732917063774981e-07 +1.7828026365384081e-08,-2.4491820723842003e-07,4.8077311716313397e-10,2.6012824175730070e-08,-3.5780709150316614e-10,5.6432011340062909e-08,-1.3160457495372054e-10,-2.5969121980411849e-07,7.8416166288207537e-10,-2.5779443973740474e-08,-1.0073277922273370e-11,5.6366196180689756e-08,1.1643532467258393e-08,-2.6744192499979445e-07,-8.9211460899106898e-10,2.8100830753871640e-11,6.8744841896691323e-11,2.7627234437565930e-10,-7.3851264192454854e-12,-1.1936193963848113e-05,-5.5858578368626676e-12,2.6830981552151709e-14,1.6602468379509925e-13,-5.3653882225437740e-08,-3.9956704099087598e-08,6.9200247432634862e-05,1.5643254887016203e-08,-9.1549075245360975e-11,-2.0276161487202595e-10,9.5752606365202938e-07,8.1652766316775640e-08,1.8338734344352090e-07,-2.3414727196993738e-08,2.9607839458613745e-09,5.8192164593301554e-06,-1.5917184658560470e-04 +1.2443642889233273e-02,-2.2643886423869724e-05,7.3014689962518399e-03,-4.3414578938503394e-07,-4.2555343598068418e-04,-1.7218986433125755e-06,-2.3889520659404521e-02,6.7836178728686985e-06,1.4203654857645194e-02,-1.3285138021445834e-07,-8.4160580990647028e-04,-2.5096760682066648e-07,-3.5216199283537994e-03,-2.2534462134192864e-05,-1.8241686655288705e-02,1.4434270917625216e-08,5.3628479941231250e-05,9.8683889189486147e-08,4.9438528515937297e-15,8.5337456866444873e-15,-2.0386174888479484e-15,-2.3773042040314455e-17,1.3647281594365435e-18,2.4728530947840425e-17,5.1400833644824669e-03,4.3233606789047737e-05,4.7274882017703149e-02,-2.2746595471083301e-07,-1.2094497818069785e-04,8.1652766316775640e-08,1.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +2.3674999813816777e-02,-4.6463671672752870e-05,1.3829548038409705e-02,-8.8819978178299776e-07,-8.3920678929678375e-04,-3.4380302439433343e-06,1.1176595390426626e-02,-6.6783238233488808e-06,-6.5940698325439176e-03,1.1923842887080725e-07,4.0810143801751122e-04,8.3815465610236449e-08,9.7467035325089785e-03,-2.0578419948292292e-05,-6.1887544718480245e-03,2.1098552250521460e-07,1.6568605125362163e-05,1.4100571342910795e-07,1.3610321938035977e-15,5.1074558077970226e-15,3.6536175488511800e-16,-1.4506508102878551e-17,1.3847487421315232e-18,1.6751746635333189e-17,-1.5558684622866895e-02,9.0249102014144009e-05,1.5963605116052819e-02,-5.5440105502280843e-07,-4.1545474024475742e-05,1.8338734344352090e-07,0.0000000000000000e+00,1.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-1.2665814760891294e-02,1.4929863741048841e-06,2.8550602200522721e-02,2.5774124427060330e-08,3.4451743146389919e-04,8.9412622862594666e-07,1.1517387162601905e-02,-7.0450284360939704e-07,2.6324082796649471e-02,-1.8717415093643504e-08,3.1514819424967918e-04,2.1621817296699036e-07,1.6906857532482836e-03,1.9265376581661267e-05,5.3358689150398465e-02,-9.2523181038276382e-08,2.7846239084985009e-04,-4.1434277942299052e-08,-4.1357329724553186e-15,-9.0495997073290111e-15,1.7237953511911040e-15,2.2928517333650290e-17,-2.4518395459434443e-18,-2.6752289572637881e-17,-9.6814722815906265e-04,-2.0760469627625316e-05,2.4542545638085618e-02,1.0644559644311949e-07,-1.6185862173618542e-04,-2.3414727196993738e-08,0.0000000000000000e+00,0.0000000000000000e+00,1.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +1.2392503509052711e-02,-1.3743410251703281e-07,-2.5513651731172409e-02,-1.7688582760618006e-09,-3.2518160080507547e-04,-8.3345933502319242e-07,1.3339549888966882e-02,1.6739977008106364e-07,2.7809119115105248e-02,-3.8359469805443676e-08,3.5179661055869099e-04,2.2514785285960931e-07,-3.9339196972392070e-02,-1.0354996039260608e-05,2.2225778688082982e-03,1.1829265269312945e-07,1.1305939844471519e-05,3.3876137309898650e-08,-7.6970165626223539e-15,-1.6844224714733814e-14,-2.4443150616442523e-15,6.5520581181426056e-17,1.7542881376587629e-18,-5.7499315552852813e-17,2.3919535133556782e-02,1.1528043443648827e-05,1.0323207797784809e-03,-1.2727795977359786e-07,-6.9731489837877039e-06,2.9607839458613745e-09,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,1.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00 +-1.5877997525629387e-05,-1.4825615960744499e-03,-1.3684696973552163e-05,-1.2250482029118142e-04,2.0333629489585635e-07,-6.7368153553254133e-05,-6.9763994143242040e-06,1.7046317853673409e-03,3.0822636920965325e-08,-1.3503500869595041e-04,-1.3154249441709622e-07,7.4155141157064021e-05,1.3723632457380850e-06,2.1256445770437125e-04,-6.6920089040385829e-06,1.3338369972974633e-04,-1.0440932326420343e-07,2.5893198656537459e-07,-2.4258848831309949e-12,-2.1109127182877665e-12,1.0511624056904027e-12,1.0055631250783132e-14,1.1918708608799692e-15,-6.8917232252527251e-15,3.0804109352445127e-05,-3.4886283215487736e-04,7.1066892489960303e-06,-4.0087268452467515e-04,1.6791991440856165e-07,5.8192164593301554e-06,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,1.0000000000000000e+00,0.0000000000000000e+00 +-4.6812045940282448e-06,-3.1025104691272919e-03,-1.5377698713734422e-05,-1.6353201310745618e-04,2.5623725204854869e-08,-1.0685663395275263e-04,7.6080554131145197e-06,-2.9982630133594734e-03,-6.8311288952693023e-07,1.5652172827044340e-04,1.4050703116567984e-07,-1.0149600219414910e-04,-2.2532949574989803e-05,-6.4121834046156857e-03,-3.5374676331005905e-06,6.6709676252477444e-06,-3.8462217010480574e-08,-2.6782154632106800e-05,5.4339287700903742e-12,4.4210887013055602e-12,-5.0324569727524429e-12,-8.2525429972158425e-15,-7.6662395153113809e-16,7.6185318466825709e-15,2.3913388184361028e-05,1.0855537718400844e-02,2.5591847524782320e-06,-1.3726013554048109e-05,1.7732917063774981e-07,-1.5917184658560470e-04,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,0.0000000000000000e+00,1.0000000000000000e+00 diff --git a/matlab/mat/full_APA300ML_out_nodes_3D.txt b/matlab/mat/full_APA300ML_out_nodes_3D.txt new file mode 100644 index 0000000..a5714bf --- /dev/null +++ b/matlab/mat/full_APA300ML_out_nodes_3D.txt @@ -0,0 +1,61 @@ + + LIST ALL SELECTED NODES. DSYS= 0 + + *** ANSYS - ENGINEERING ANALYSIS SYSTEM RELEASE 2020 R2 20.2 *** + DISTRIBUTED ANSYS Mechanical Enterprise + + 00208316 VERSION=WINDOWS x64 10:10:05 MAR 26, 2021 CP= 2.188 + + Unknown + + + + NODE X Y Z THXY THYZ THZX + 1 0.0000 0.0000 0.28000E-001 0.00 0.00 0.00 + 1228810 0.0000 0.0000 -0.28000E-001 0.00 0.00 0.00 + 1228811 -0.30000E-001 0.0000 0.0000 0.00 0.00 0.00 + 1228812 0.10000E-001 0.0000 0.0000 0.00 0.00 0.00 + 1228813 0.30000E-001 0.0000 0.0000 0.00 0.00 0.00 + + LIST MASTERS ON ALL SELECTED NODES. + CURRENT DOF SET= UX UY UZ ROTX ROTY ROTZ + + *** ANSYS - ENGINEERING ANALYSIS SYSTEM RELEASE 2020 R2 20.2 *** + DISTRIBUTED ANSYS Mechanical Enterprise + + 00208316 VERSION=WINDOWS x64 10:10:05 MAR 26, 2021 CP= 2.188 + + Unknown + + + NODE LABEL SUPPORT + 1 UX + 1 UY + 1 UZ + 1 ROTX + 1 ROTY + 1 ROTZ + 1228810 UX + 1228810 UY + 1228810 UZ + 1228810 ROTX + 1228810 ROTY + 1228810 ROTZ + 1228811 UX + 1228811 UY + 1228811 UZ + 1228811 ROTX + 1228811 ROTY + 1228811 ROTZ + 1228812 UX + 1228812 UY + 1228812 UZ + 1228812 ROTX + 1228812 ROTY + 1228812 ROTZ + 1228813 UX + 1228813 UY + 1228813 UZ + 1228813 ROTX + 1228813 ROTY + 1228813 ROTZ diff --git a/matlab/mat/test_nhexa_identification_data_mass_0.mat b/matlab/mat/test_nhexa_identification_data_mass_0.mat new file mode 100644 index 0000000..95d6a1d Binary files /dev/null and b/matlab/mat/test_nhexa_identification_data_mass_0.mat differ diff --git a/matlab/mat/test_nhexa_identification_data_mass_1.mat b/matlab/mat/test_nhexa_identification_data_mass_1.mat new file mode 100644 index 0000000..8281fe9 Binary files /dev/null and b/matlab/mat/test_nhexa_identification_data_mass_1.mat differ diff --git a/matlab/mat/test_nhexa_identification_data_mass_2.mat b/matlab/mat/test_nhexa_identification_data_mass_2.mat new file mode 100644 index 0000000..a4476a4 Binary files /dev/null and b/matlab/mat/test_nhexa_identification_data_mass_2.mat differ diff --git a/matlab/mat/test_nhexa_identification_data_mass_3.mat b/matlab/mat/test_nhexa_identification_data_mass_3.mat new file mode 100644 index 0000000..2e5da3a Binary files /dev/null and b/matlab/mat/test_nhexa_identification_data_mass_3.mat differ diff --git a/matlab/mat/test_nhexa_identified_frf_masses.mat b/matlab/mat/test_nhexa_identified_frf_masses.mat new file mode 100644 index 0000000..9079309 Binary files /dev/null and b/matlab/mat/test_nhexa_identified_frf_masses.mat differ diff --git a/matlab/mat/test_nhexa_simscape_flexible_masses.mat b/matlab/mat/test_nhexa_simscape_flexible_masses.mat new file mode 100644 index 0000000..dd0ed32 Binary files /dev/null and b/matlab/mat/test_nhexa_simscape_flexible_masses.mat differ diff --git a/matlab/mat/test_nhexa_simscape_masses.mat b/matlab/mat/test_nhexa_simscape_masses.mat new file mode 100644 index 0000000..5b8ff68 Binary files /dev/null and b/matlab/mat/test_nhexa_simscape_masses.mat differ diff --git a/matlab/src/initializeNanoHexapodFinal.m b/matlab/src/initializeNanoHexapodFinal.m index 9c596f7..6904c2e 100644 --- a/matlab/src/initializeNanoHexapodFinal.m +++ b/matlab/src/initializeNanoHexapodFinal.m @@ -41,9 +41,9 @@ arguments args.actuator_k (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*380000 args.actuator_ke (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*4952605 args.actuator_ka (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*2476302 - args.actuator_c (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*20 - args.actuator_ce (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*200 - args.actuator_ca (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*100 + args.actuator_c (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*5 + args.actuator_ce (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*100 + args.actuator_ca (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*50 args.actuator_Leq (6,1) double {mustBeNumeric} = ones(6,1)*0.056 % [m] % For Flexible Frame args.actuator_ks (6,1) double {mustBeNumeric} = ones(6,1)*235e6 % Stiffness of one stack [N/m] diff --git a/matlab/subsystems/nano_hexapod_left_strut.slx b/matlab/subsystems/nano_hexapod_left_strut.slx index fc133e3..a2e4359 100644 Binary files a/matlab/subsystems/nano_hexapod_left_strut.slx and b/matlab/subsystems/nano_hexapod_left_strut.slx differ diff --git a/matlab/subsystems/nano_hexapod_right_strut.slx b/matlab/subsystems/nano_hexapod_right_strut.slx index 2ff3acb..5440489 100644 Binary files a/matlab/subsystems/nano_hexapod_right_strut.slx and b/matlab/subsystems/nano_hexapod_right_strut.slx differ diff --git a/matlab/subsystems/nano_hexapod_subsystem.slx b/matlab/subsystems/nano_hexapod_subsystem.slx index 17a7650..74edc8c 100644 Binary files a/matlab/subsystems/nano_hexapod_subsystem.slx and b/matlab/subsystems/nano_hexapod_subsystem.slx differ diff --git a/matlab/test_bench_nano_hexapod.slx b/matlab/test_bench_nano_hexapod.slx index 5df33d1..862248f 100644 Binary files a/matlab/test_bench_nano_hexapod.slx and b/matlab/test_bench_nano_hexapod.slx differ diff --git a/matlab/test_nhexa_1_suspended_table.m b/matlab/test_nhexa_1_suspended_table.m new file mode 100644 index 0000000..cf189e0 --- /dev/null +++ b/matlab/test_nhexa_1_suspended_table.m @@ -0,0 +1,67 @@ +% Matlab Init :noexport:ignore: + +%% test_nhexa_table.m + +%% Clear Workspace and Close figures +clear; close all; clc; + +%% Intialize Laplace variable +s = zpk('s'); + +%% Path for functions, data and scripts +addpath('./mat/'); % Path for Data +addpath('./src/'); % Path for functions +addpath('./STEPS/'); % Path for STEPS +addpath('./subsystems/'); % Path for Subsystems Simulink files + +%% Initialize Parameters for Simscape model +table_type = 'Rigid'; % On top of vibration table +device_type = 'None'; % On top of vibration table +payload_num = 0; % No Payload + +% Simulink Model name +mdl = 'test_bench_nano_hexapod'; + +%% Colors for the figures +colors = colororder; + +%% Frequency Vector +freqs = logspace(log10(10), log10(2e3), 1000); + +% Simscape Model of the suspended table +% <> + +% The Simscape model of the suspended table simply consists of two solid bodies connected by 4 springs. +% The 4 springs are here modelled with "bushing joints" that have stiffness and damping properties in x, y and z directions. +% The 3D representation of the model is displayed in Figure ref:fig:test_nhexa_suspended_table_simscape where the 4 "bushing joints" are represented by the blue cylinders. + +% #+name: fig:test_nhexa_suspended_table_simscape +% #+caption: 3D representation of the simscape model +% #+attr_latex: :width 0.8\linewidth +% [[file:figs/test_nhexa_suspended_table_simscape.png]] + +% The model order is 12, and it represents the 6 suspension modes. +% The inertia properties of the parts are set from the geometry and material densities. +% The stiffness of the springs was initially set from the datasheet nominal value of $17.8\,N/mm$ and then reduced down to $14\,N/mm$ to better match the measured suspension modes. +% The stiffness of the springs in the horizontal plane is set at $0.5\,N/mm$. +% The obtained suspension modes of the simscape model are compared with the measured ones in Table ref:tab:test_nhexa_suspended_table_simscape_modes. + + +%% Configure Simscape Model +table_type = 'Suspended'; % On top of vibration table +device_type = 'None'; % No device on the vibration table +payload_num = 0; % No Payload + +%% Input/Output definition +clear io; io_i = 1; +io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; +io(io_i) = linio([mdl, '/F_v'], 1, 'openoutput'); io_i = io_i + 1; + +%% Run the linearization +G = linearize(mdl, io); +G.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; +G.OutputName = {'Vdx', 'Vdy', 'Vdz', 'Vrx', 'Vry', 'Vrz'}; + +%% Compute the resonance frequencies +ws = eig(G.A); +ws = ws(imag(ws) > 0); diff --git a/matlab/test_nhexa_2_dynamics.m b/matlab/test_nhexa_2_dynamics.m new file mode 100644 index 0000000..a011a8c --- /dev/null +++ b/matlab/test_nhexa_2_dynamics.m @@ -0,0 +1,332 @@ +% Matlab Init :noexport:ignore: + +%% test_nhexa_dynamics.m +% Identification of the nano-hexapod dynamics from u to dL and to Vs +% Encoders are fixed to the plates + +%% Clear Workspace and Close figures +clear; close all; clc; + +%% Intialize Laplace variable +s = zpk('s'); + +%% Path for functions, data and scripts +addpath('./mat/'); % Path for Data +addpath('./src/'); % Path for functions +addpath('./STEPS/'); % Path for STEPS +addpath('./subsystems/'); % Path for Subsystems Simulink files + +%% Colors for the figures +colors = colororder; + +%% Frequency Vector +freqs = logspace(log10(10), log10(2e3), 1000); + +% Identification of the dynamics +% <> + +% The dynamics of the nano-hexapod from the six command signals ($u_1$ to $u_6$) the six measured displacement by the encoders ($d_{e1}$ to $d_{e6}$) and to the six force sensors ($V_{s1}$ to $V_{s6}$) are identified by generating a low pass filtered white noise for each of the command signals, one by one. + +% The $6 \times 6$ FRF matrix from $\mathbf{u}$ ot $\mathbf{d}_e$ is shown in Figure ref:fig:test_nhexa_identified_frf_de. +% The diagonal terms are displayed using colorful lines, and all the 30 off-diagonal terms are displayed by grey lines. + +% All the six diagonal terms are well superimposed up to at least $1\,kHz$, indicating good manufacturing and mounting uniformity. +% Below the first suspension mode, good decoupling can be observed (the amplitude of the all of off-diagonal terms are $\approx 20$ times smaller than the diagonal terms). + +% From 10Hz up to 1kHz, around 10 resonance frequencies can be observed. +% The first 4 are suspension modes (at 122Hz, 143Hz, 165Hz and 191Hz) which correlate the modes measured during the modal analysis in Section ref:ssec:test_nhexa_enc_struts_modal_analysis. +% Then, three modes at 237Hz, 349Hz and 395Hz are attributed to the internal strut resonances (this will be checked in Section ref:ssec:test_nhexa_comp_model_coupling). +% Except the mode at 237Hz, their amplitude is rather low. +% Two modes at 665Hz and 695Hz are attributed to the flexible modes of the top platform. +% Other modes can be observed above 1kHz, which can be attributed to flexible modes of the encoder supports or to flexible modes of the top platform. + +% Up to at least 1kHz, an alternating pole/zero pattern is observed, which renders the control easier to tune. +% This would not have been the case if the encoders were fixed to the struts. + + +%% Load identification data +load('test_nhexa_identification_data_mass_0.mat', 'data'); + +%% Setup useful variables +Ts = 1e-4; % Sampling Time [s] +Nfft = floor(1/Ts); % Number of points for the FFT computation +win = hanning(Nfft); % Hanning window +Noverlap = floor(Nfft/2); % Overlap between frequency analysis + +% And we get the frequency vector +[~, f] = tfestimate(data{1}.u, data{1}.de, win, Noverlap, Nfft, 1/Ts); + +%% Transfer function from u to dLm +G_de = zeros(length(f), 6, 6); + +for i = 1:6 + G_de(:,:,i) = tfestimate(data{i}.u, data{i}.de, win, Noverlap, Nfft, 1/Ts); +end + +%% Transfer function from u to Vs +G_Vs = zeros(length(f), 6, 6); + +for i = 1:6 + G_Vs(:,:,i) = tfestimate(data{i}.u, data{i}.Vs, win, Noverlap, Nfft, 1/Ts); +end + +%% Bode plot for the transfer function from u to dLm +figure; +tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); + +ax1 = nexttile([2,1]); +hold on; +for i = 1:5 + for j = i+1:6 + plot(f, abs(G_de(:, i, j)), 'color', [0, 0, 0, 0.2], ... + 'HandleVisibility', 'off'); + end +end +for i =1:6 + set(gca,'ColorOrderIndex',i) + plot(f, abs(G_de(:,i, i)), ... + 'DisplayName', sprintf('$d_{e,%i}/u_%i$', i, i)); +end +plot(f, abs(G_de(:, 1, 2)), 'color', [0, 0, 0, 0.2], ... + 'DisplayName', '$d_{e,i}/u_j$'); +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]); +ylim([1e-8, 5e-4]); +leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 4); +leg.ItemTokenSize(1) = 15; + +ax2 = nexttile; +hold on; +for i =1:6 + set(gca,'ColorOrderIndex',i) + plot(f, 180/pi*angle(G_de(:,i, i))); +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); +hold off; +yticks(-360:90:360); + +linkaxes([ax1,ax2],'x'); +xlim([10, 2e3]); + + + +% #+name: fig:test_nhexa_identified_frf_de +% #+caption: Measured FRF for the transfer function from $\mathbf{u}$ to $\mathbf{d}_e$. The 6 diagonal terms are the colorfull lines (all superimposed), and the 30 off-diagonal terms are the shaded black lines. +% #+RESULTS: +% [[file:figs/test_nhexa_identified_frf_de.png]] + + +% Similarly, the $6 \times 6$ FRF matrix from $\mathbf{u}$ to $\mathbf{V}_s$ is shown in Figure ref:fig:test_nhexa_identified_frf_Vs. +% Alternating poles and zeros is observed up to at least 2kHz, which is a necessary characteristics in order to apply decentralized IFF. +% Similar to what was observed for the encoder outputs, all the "diagonal" terms are well superimposed, indicating that the same controller can be applied for all the struts. +% The first flexible mode of the struts as 235Hz is appearing, and therefore is should be possible to add some damping to this mode using IFF. + + +%% Bode plot of the IFF Plant (transfer function from u to Vs) +figure; +tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); + +ax1 = nexttile([2,1]); +hold on; +for i = 1:5 + for j = i+1:6 + plot(f, abs(G_Vs(:, i, j)), 'color', [0, 0, 0, 0.2], ... + 'HandleVisibility', 'off'); + end +end +for i =1:6 + set(gca,'ColorOrderIndex',i) + plot(f, abs(G_Vs(:,i , i)), ... + 'DisplayName', sprintf('$V_{s%i}/u_%i$', i, i)); +end +plot(f, abs(G_Vs(:, 1, 2)), 'color', [0, 0, 0, 0.2], ... + 'DisplayName', '$V_{si}/u_j$'); +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]); +leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 4); +leg.ItemTokenSize(1) = 15; +ylim([1e-3, 6e1]); + +ax2 = nexttile; +hold on; +for i =1:6 + set(gca,'ColorOrderIndex',i) + plot(f, 180/pi*angle(G_Vs(:,i, i))); +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); +hold off; +yticks(-360:90:360); + +linkaxes([ax1,ax2],'x'); +xlim([10, 2e3]); + +% Effect of payload mass on the dynamics +% <> + +% As one major challenge in the control of the NASS is the wanted robustness to change of payload mass, it is necessary to understand how the dynamics of the nano-hexapod changes with a change of payload mass. + +% In order to study this change of dynamics with the payload mass, up to three "cylindrical masses" of $13\,kg$ each can be added for a total of $\approx 40\,kg$. +% These three cylindrical masses on top of the nano-hexapod are shown in Figure ref:fig:test_nhexa_table_mass_3. + +% #+name: fig:test_nhexa_table_mass_3 +% #+caption: Picture of the nano-hexapod with the added three cylindrical masses for a total of $\approx 40\,kg$ +% #+attr_org: :width 800px +% #+attr_latex: :width 0.8\linewidth +% [[file:figs/test_nhexa_table_mass_3.jpg]] + + +%% Load identification Data +meas_added_mass = {... + load('test_nhexa_identification_data_mass_0.mat', 'data'), .... + load('test_nhexa_identification_data_mass_1.mat', 'data'), .... + load('test_nhexa_identification_data_mass_2.mat', 'data'), .... + load('test_nhexa_identification_data_mass_3.mat', 'data')}; + +%% Setup useful variables +Ts = 1e-4; % Sampling Time [s] +Nfft = floor(1/Ts); % Number of points for the FFT computation +win = hanning(Nfft); % Hanning window +Noverlap = floor(Nfft/2); % Overlap between frequency analysis + +% And we get the frequency vector +[~, f] = tfestimate(meas_added_mass{1}.data{1}.u, meas_added_mass{1}.data{1}.de, win, Noverlap, Nfft, 1/Ts); + +G_de = {}; + +for i_mass = [0:3] + G_de(i_mass+1) = {zeros(length(f), 6, 6)}; + for i_strut = 1:6 + G_de{i_mass+1}(:,:,i_strut) = tfestimate(meas_added_mass{i_mass+1}.data{i_strut}.u, meas_added_mass{i_mass+1}.data{i_strut}.de, win, Noverlap, Nfft, 1/Ts); + end +end + +%% IFF Plant (transfer function from u to Vs) +G_Vs = {}; + +for i_mass = [0:3] + G_Vs(i_mass+1) = {zeros(length(f), 6, 6)}; + for i_strut = 1:6 + G_Vs{i_mass+1}(:,:,i_strut) = tfestimate(meas_added_mass{i_mass+1}.data{i_strut}.u, meas_added_mass{i_mass+1}.data{i_strut}.Vs, win, Noverlap, Nfft, 1/Ts); + end +end + +save('./mat/test_nhexa_identified_frf_masses.mat', 'f', 'G_Vs', 'G_de') + +%% Load the identified transfer functions +frf_ol = load('test_nhexa_identified_frf_masses.mat', 'f', 'G_Vs', 'G_de'); + + + +% The obtained frequency response functions from actuator signal $u_i$ to the associated encoder $d_{ei}$ for the four payload conditions (no mass, 13kg, 26kg and 39kg) are shown in Figure ref:fig:test_nhexa_identified_frf_de_masses. +% As expected, the frequency of the suspension modes are decreasing with an increase of the payload mass. +% The low frequency gain does not change as it is linked to the stiffness property of the nano-hexapod, and not to its mass property. + +% The frequencies of the two flexible modes of the top plate are first decreased a lot when the first mass is added (from $\approx 700\,Hz$ to $\approx 400\,Hz$). +% This is due to the fact that the added mass is composed of two half cylinders which are not fixed together. +% It therefore adds a lot of mass to the top plate without adding stiffness in one direction. +% When more than one "mass layer" is added, the half cylinders are added with some angles such that rigidity are added in all directions (see how the three mass "layers" are positioned in Figure ref:fig:test_nhexa_table_mass_3). +% In that case, the frequency of these flexible modes are increased. +% In practice, the payload should be one solid body, and no decrease of the frequency of this flexible mode should be observed. +% The apparent amplitude of the flexible mode of the strut at 237Hz becomes smaller as the payload mass is increased. + +% The measured FRF from $u_i$ to $V_{si}$ are shown in Figure ref:fig:test_nhexa_identified_frf_Vs_masses. +% For all the tested payloads, the measured FRF always have alternating poles and zeros, indicating that IFF can be applied in a robust way. + + +%% Bode plot for the transfer function from u to dLm - Several payloads +masses = [0, 13, 26, 39]; +figure; +tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); + +ax1 = nexttile([2,1]); +hold on; +for i_mass = [0:3] + % Diagonal terms + plot(frf_ol.f, abs(frf_ol.G_de{i_mass+1}(:,1, 1)), 'color', [colors(i_mass+1,:), 0.5], ... + 'DisplayName', sprintf('$d_{ei}/u_i$ - %i kg', masses(i_mass+1))); + for i = 2:6 + plot(frf_ol.f, abs(frf_ol.G_de{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.5], ... + 'HandleVisibility', 'off'); + end + % % Off-Diagonal terms + % for i = 1:5 + % for j = i+1:6 + % plot(frf_ol.f, abs(frf_ol.G_de{i_mass+1}(:,i,j)), 'color', [colors(i_mass+1,:), 0.2], ... + % 'HandleVisibility', 'off'); + % end + % end +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]); +ylim([1e-8, 5e-4]); +leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); +leg.ItemTokenSize(1) = 15; + +ax2 = nexttile; +hold on; +for i_mass = [0:3] + for i =1:6 + plot(frf_ol.f, 180/pi*angle(frf_ol.G_de{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.5]); + end +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); +hold off; +yticks(-360:90:360); +ylim([-90, 180]) + +linkaxes([ax1,ax2],'x'); +xlim([10, 2e3]); + +%% Bode plot for the transfer function from u to dLm +figure; +tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); + +ax1 = nexttile([2,1]); +hold on; +for i_mass = [0:3] + % Diagonal terms + plot(frf_ol.f, abs(frf_ol.G_Vs{i_mass+1}(:,1, 1)), 'color', [colors(i_mass+1,:), 0.5], ... + 'DisplayName', sprintf('$V_{si}/u_i$ - %i kg', masses(i_mass+1))); + for i = 2:6 + plot(frf_ol.f, abs(frf_ol.G_Vs{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.5], ... + 'HandleVisibility', 'off'); + end + % % Off-Diagonal terms + % for i = 1:5 + % for j = i+1:6 + % plot(frf_ol.f, abs(frf_ol.G_Vs{i_mass+1}(:,i,j)), 'color', [colors(i_mass+1,:), 0.2], ... + % 'HandleVisibility', 'off'); + % end + % end +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]); +ylim([1e-2, 1e2]); +leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 2); +leg.ItemTokenSize(1) = 15; + +ax2 = nexttile; +hold on; +for i_mass = [0:3] + for i =1:6 + plot(frf_ol.f, 180/pi*angle(frf_ol.G_Vs{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.5]); + end +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); +hold off; +yticks(-360:90:360); + +linkaxes([ax1,ax2],'x'); +xlim([10, 2e3]); diff --git a/matlab/test_nhexa_3_model.m b/matlab/test_nhexa_3_model.m new file mode 100644 index 0000000..098b086 --- /dev/null +++ b/matlab/test_nhexa_3_model.m @@ -0,0 +1,549 @@ +% Matlab Init :noexport:ignore: + +%% test_nhexa_3_model.m +% Compare the measured dynamics from u to de and to Vs with the Simscape model + +%% Clear Workspace and Close figures +clear; close all; clc; + +%% Intialize Laplace variable +s = zpk('s'); + +%% Path for functions, data and scripts +addpath('./mat/'); % Path for Data +addpath('./src/'); % Path for functions +addpath('./STEPS/'); % Path for STEPS +addpath('./subsystems/'); % Path for Subsystems Simulink files + +%% Initialize Parameters for Simscape model +table_type = 'Rigid'; % On top of vibration table +device_type = 'None'; % On top of vibration table +payload_num = 0; % No Payload + +% Simulink Model name +mdl = 'test_bench_nano_hexapod'; + +%% Colors for the figures +colors = colororder; + +%% Frequency Vector +freqs = logspace(log10(10), log10(2e3), 1000); + +% Extract transfer function matrices from the Simscape Model :noexport: + +%% Extract the transfer function matrix from the Simscape model +% Initialization of the Simscape model +table_type = 'Suspended'; % On top of vibration table +device_type = 'Hexapod'; % Nano-Hexapod +payload_num = 0; % No Payload + +n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ... + 'flex_top_type', '4dof', ... + 'motion_sensor_type', 'plates', ... + 'actuator_type', '2dof'); + +% Identify the FRF matrix from u to [de,Vs] +clear io; io_i = 1; +io(io_i) = linio([mdl, '/u'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs +io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoders +io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Encoders + +G_de = {}; +G_Vs = {}; + +for i = [0:3] + payload_num = i; % Change the payload on the nano-hexapod + G = exp(-s*1e-4)*linearize(mdl, io, 0.0); + G.InputName = {'u1', 'u2', 'u3', 'u4', 'u5', 'u6'}; + G.OutputName = {'de1', 'de2', 'de3', 'de4', 'de5', 'de6', ... + 'Vs1', 'Vs2', 'Vs3', 'Vs4', 'Vs5', 'Vs6'}; + G_de(i+1) = {G({'de1', 'de2', 'de3', 'de4', 'de5', 'de6'},:)}; + G_Vs(i+1) = {G({'Vs1', 'Vs2', 'Vs3', 'Vs4', 'Vs5', 'Vs6'},:)}; +end + +% Save the identified plants +save('./mat/test_nhexa_simscape_masses.mat', 'G_Vs', 'G_de') + +%% The same identification is performed, but this time with +% "flexible" model of the APA +table_type = 'Suspended'; % On top of vibration table +device_type = 'Hexapod'; % Nano-Hexapod +payload_num = 0; % No Payload + +n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ... + 'flex_top_type', '4dof', ... + 'motion_sensor_type', 'plates', ... + 'actuator_type', 'flexible'); + +G_de = {}; +G_Vs = {}; + +for i = [0:3] + payload_num = i; % Change the payload on the nano-hexapod + G = exp(-s*1e-4)*linearize(mdl, io, 0.0); + G.InputName = {'u1', 'u2', 'u3', 'u4', 'u5', 'u6'}; + G.OutputName = {'de1', 'de2', 'de3', 'de4', 'de5', 'de6', ... + 'Vs1', 'Vs2', 'Vs3', 'Vs4', 'Vs5', 'Vs6'}; + G_de(i+1) = {G({'de1', 'de2', 'de3', 'de4', 'de5', 'de6'},:)}; + G_Vs(i+1) = {G({'Vs1', 'Vs2', 'Vs3', 'Vs4', 'Vs5', 'Vs6'},:)}; +end + +% Save the identified plants +save('./mat/test_nhexa_simscape_flexible_masses.mat', 'G_Vs', 'G_de') + +% Nano-Hexapod model dynamics +% <> + + +%% Load Simscape Model and measured FRF +sim_ol = load('test_nhexa_simscape_masses.mat', 'G_Vs', 'G_de'); +frf_ol = load('test_nhexa_identified_frf_masses.mat', 'f', 'G_Vs', 'G_de'); + + + +% The Simscape model of the nano-hexapod is first configured with 4-DoF flexible joints, 2-DoF APA and rigid top and bottom platforms. +% The stiffness of the flexible joints are chosen based on the values estimated using the test bench and based on FEM. +% The parameters of the APA model are the ones determined from the test bench of the APA. +% The $6 \times 6$ transfer function matrices from $\mathbf{u}$ to $\mathbf{d}_e$ and from $\mathbf{u}$ to $\mathbf{V}_s$ are extracted then from the Simscape model. + +% A first feature that should be checked is that the model well represents the "direct" terms of the measured FRF matrix. +% To do so, the diagonal terms of the extracted transfer function matrices are compared with the measured FRF in Figure ref:fig:test_nhexa_comp_simscape_diag. +% It can be seen that the 4 suspension modes of the nano-hexapod (at 122Hz, 143Hz, 165Hz and 191Hz) are well modelled. +% The three resonances that were attributed to "internal" flexible modes of the struts (at 237Hz, 349Hz and 395Hz) cannot be seen in the model, which is reasonable as the APA are here modelled as a simple uniaxial 2-DoF system. +% At higher frequencies, no resonances can be seen in the model, as the as the top plate and the encoder supports are modelled as rigid bodies. + + +%% Diagonal elements of the FRF matrix from u to de +figure; +tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); + +ax1 = nexttile([2,1]); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{1}(:,1, 1)), 'color', [colors(1,:),0.5], ... + 'DisplayName', '$d_{ei}/u_i$ - FRF') +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{1}(1,1), freqs, 'Hz'))), 'color', [colors(2,:),0.5], ... + 'DisplayName', '$d_{ei}/u_i$ - Model') +for i = 2:6 + plot(frf_ol.f, abs(frf_ol.G_de{1}(:,i, i)), 'color', [colors(1,:),0.5], ... + 'HandleVisibility', 'off'); + plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{1}(i,i), freqs, 'Hz'))), 'color', [colors(2,:),0.5], ... + 'HandleVisibility', 'off'); +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]); +ylim([1e-8, 5e-4]); +leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); +leg.ItemTokenSize(1) = 15; + +ax2 = nexttile; +hold on; +for i = 1:6 + plot(frf_ol.f, 180/pi*angle(frf_ol.G_de{1}(:,i, i)), 'color', [colors(1,:),0.5]); + plot(freqs, 180/pi*angle(squeeze(freqresp(sim_ol.G_de{1}(i,i), freqs, 'Hz'))), 'color', [colors(2,:),0.5]); +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); +ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); +ylim([-180, 180]); +yticks([-180, -90, 0, 90, 180]); + +linkaxes([ax1,ax2],'x'); +xlim([freqs(1), freqs(end)]); + +%% Diagonal elements of the FRF matrix from u to Vs +figure; +tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); + +ax1 = nexttile([2,1]); +hold on; +plot(frf_ol.f, abs(frf_ol.G_Vs{1}(:,1, 1)), 'color', [colors(1,:),0.5], ... + 'DisplayName', '$V_{si}/u_i$ - FRF') +plot(freqs, abs(squeeze(freqresp(sim_ol.G_Vs{1}(1,1), freqs, 'Hz'))), 'color', [colors(2,:), 0.5], ... + 'DisplayName', '$V_{si}/u_i$ - Model') +for i = 2:6 + plot(frf_ol.f, abs(frf_ol.G_Vs{1}(:,i, i)), 'color', [colors(1,:),0.5], ... + 'HandleVisibility', 'off'); + plot(freqs, abs(squeeze(freqresp(sim_ol.G_Vs{1}(i,i), freqs, 'Hz'))), 'color', [colors(2,:), 0.5], ... + 'HandleVisibility', 'off'); +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]); +legend('location', 'southeast'); + +ax2 = nexttile; +hold on; +for i = 1:6 + plot(frf_ol.f, 180/pi*angle(frf_ol.G_Vs{1}(:,i, i)), 'color', [colors(1,:),0.5]); + plot(freqs, 180/pi*angle(squeeze(freqresp(sim_ol.G_Vs{1}(i,i), freqs, 'Hz'))), 'color', [colors(2,:), 0.5]); +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); +ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); +ylim([-180, 180]); +yticks([-180, -90, 0, 90, 180]); + +linkaxes([ax1,ax2],'x'); +xlim([freqs(1), freqs(end)]); + +% Modelling dynamical coupling +% <> + +% Another wanted feature of the model is that it well represents the coupling in the system as this is often the limiting factor for the control of MIMO systems. +% Instead of comparing the full 36 elements of the $6 \times 6$ FFR matrix from $\mathbf{u}$ to $\mathbf{d}_e$, only the first "column" is compared (Figure ref:fig:test_nhexa_comp_simscape_de_all), which corresponds to the transfer function from the command $u_1$ to the six measured encoder displacements $d_{e1}$ to $d_{e6}$. +% It can be seen that the coupling in the model is well matching the measurements up to the first un-modelled flexible mode at 237Hz. +% Similar results are observed for all the other coupling terms, as well as for the transfer function from $\mathbf{u}$ to $\mathbf{V}_s$. + + +%% Comparison of the plants (encoder output) when tuning the misalignment +i_input = 1; + +figure; +tiledlayout(2, 3, 'TileSpacing', 'tight', 'Padding', 'tight'); + +ax1 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{1}(:, 1, i_input))); +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{1}(1, i_input), freqs, 'Hz')))); +text(54, 4e-4, '$d_{e1}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); ylabel('Amplitude [m/V]'); + +ax2 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{1}(:, 2, i_input))); +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{1}(2, i_input), freqs, 'Hz')))); +text(54, 4e-4, '$d_{e2}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); + +ax3 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{1}(:, 3, i_input)), ... + 'DisplayName', 'Measurements'); +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{1}(3, i_input), freqs, 'Hz'))), ... + 'DisplayName', 'Model (2-DoF APA)'); +text(54, 4e-4, '$d_{e3}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); +leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); +leg.ItemTokenSize(1) = 15; + +ax4 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{1}(:, 4, i_input))); +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{1}(4, i_input), freqs, 'Hz')))); +text(54, 4e-4, '$d_{e4}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); ylabel('Amplitude [m/V]'); +xticks([50, 100, 200, 400]) + +ax5 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{1}(:, 5, i_input))); +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{1}(5, i_input), freqs, 'Hz')))); +text(54, 4e-4, '$d_{e5}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xticks([50, 100, 200, 400]) + +ax6 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{1}(:, 6, i_input))); +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{1}(6, i_input), freqs, 'Hz')))); +text(54, 4e-4, '$d_{e6}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); +xticks([50, 100, 200, 400]) + +linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'xy'); +xlim([50, 5e2]); ylim([1e-8, 5e-4]); + + + +% #+name: fig:test_nhexa_comp_simscape_de_all +% #+caption: Comparison of the measured (in blue) and modelled (in red) frequency transfer functions from the first control signal $u_1$ to the six encoders $d_{e1}$ to $d_{e6}$ +% #+RESULTS: +% [[file:figs/test_nhexa_comp_simscape_de_all.png]] + +% The APA300ML are then modelled with a /super-element/ extracted from a FE-software. +% The obtained transfer functions from $u_1$ to the six measured encoder displacements $d_{e1}$ to $d_{e6}$ are compared with the measured FRF in Figure ref:fig:test_nhexa_comp_simscape_de_all_flex. +% While the damping of the suspension modes for the /super-element/ is underestimated (which could be solved by properly tuning the proportional damping coefficients), the flexible modes of the struts at 237Hz and 349Hz are well modelled. +% Even the mode 395Hz can be observed in the model. +% Therefore, if the modes of the struts are to be modelled, the /super-element/ of the APA300ML may be used, at the cost of obtaining a much higher order model. + + +%% Load the plant model with Flexible APA +flex_ol = load('test_nhexa_simscape_flexible_masses.mat', 'G_Vs', 'G_de'); + +%% Comparison of the plants (encoder output) when tuning the misalignment +i_input = 1; + +figure; +tiledlayout(2, 3, 'TileSpacing', 'tight', 'Padding', 'tight'); + +ax1 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{1}(:, 1, i_input))); +plot(freqs, abs(squeeze(freqresp(flex_ol.G_de{1}(1, i_input), freqs, 'Hz')))); +text(54, 4e-4, '$d_{e1}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); ylabel('Amplitude [m/V]'); + +ax2 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{1}(:, 2, i_input))); +plot(freqs, abs(squeeze(freqresp(flex_ol.G_de{1}(2, i_input), freqs, 'Hz')))); +text(54, 4e-4, '$d_{e2}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); + +ax3 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{1}(:, 3, i_input)), ... + 'DisplayName', 'Measurements'); +plot(freqs, abs(squeeze(freqresp(flex_ol.G_de{1}(3, i_input), freqs, 'Hz'))), ... + 'DisplayName', 'Model (Flexible APA)'); +text(54, 4e-4, '$d_{e3}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); +leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); +leg.ItemTokenSize(1) = 15; + +ax4 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{1}(:, 4, i_input))); +plot(freqs, abs(squeeze(freqresp(flex_ol.G_de{1}(4, i_input), freqs, 'Hz')))); +text(54, 4e-4, '$d_{e4}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); ylabel('Amplitude [m/V]'); +xticks([50, 100, 200, 400]) + +ax5 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{1}(:, 5, i_input))); +plot(freqs, abs(squeeze(freqresp(flex_ol.G_de{1}(5, i_input), freqs, 'Hz')))); +text(54, 4e-4, '$d_{e5}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xticks([50, 100, 200, 400]) + +ax6 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{1}(:, 6, i_input))); +plot(freqs, abs(squeeze(freqresp(flex_ol.G_de{1}(6, i_input), freqs, 'Hz')))); +text(54, 4e-4, '$d_{e6}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); +xticks([50, 100, 200, 400]) + +linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'xy'); +xlim([50, 5e2]); ylim([1e-8, 5e-4]); + +% Modelling the effect of payload mass +% <> + +% Another important characteristics of the model is that it should well represents the dynamics of the system for all considered payloads. +% The model dynamics is therefore compared with the measured dynamics for 4 payloads (no payload, 13kg, 26kg and 39kg) in Figure ref:fig:test_nhexa_comp_simscape_diag_masses. +% The observed shift to lower frequency of the suspension modes with an increased payload mass is well represented by the Simscape model. +% The complex conjugate zeros are also well matching with the experiments both for the encoder outputs (Figure ref:fig:test_nhexa_comp_simscape_de_diag_masses) and the force sensor outputs (Figure ref:fig:test_nhexa_comp_simscape_Vs_diag_masses). + +% Note that the model displays smaller damping that what is observed experimentally for high values of the payload mass. +% One option could be to tune the damping as a function of the mass (similar to what is done with the Rayleigh damping). +% However, as decentralized IFF will be applied, the damping will be brought actively, and the open-loop damping value should have very little impact on the obtained plant. + + +%% Bode plot for the transfer function from u to de +masses = [0, 13, 26, 39]; +figure; +tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); + +ax1 = nexttile([2,1]); +hold on; +for i_mass = [0:3] + plot(frf_ol.f, abs(frf_ol.G_de{i_mass+1}(:,1, 1)), 'color', [colors(i_mass+1,:), 0.2], ... + 'DisplayName', sprintf('Meas (%i kg)', masses(i_mass+1))); + for i = 2:6 + plot(frf_ol.f, abs(frf_ol.G_de{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.2], ... + 'HandleVisibility', 'off'); + end + set(gca, 'ColorOrderIndex', i_mass+1) + plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{i_mass+1}(1,1), freqs, 'Hz'))), '--', ... + 'DisplayName', 'Simscape'); +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +ylabel('Amplitude $d_e/u$ [m/V]'); set(gca, 'XTickLabel',[]); +ylim([5e-8, 1e-3]); +leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); +leg.ItemTokenSize(1) = 15; + +ax2 = nexttile; +hold on; +for i_mass = [0:3] + for i =1:6 + plot(frf_ol.f, 180/pi*angle(frf_ol.G_de{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.2]); + end + set(gca, 'ColorOrderIndex', i_mass+1) + plot(freqs, 180/pi*angle(squeeze(freqresp(sim_ol.G_de{i_mass+1}(1,1), freqs, 'Hz'))), '--'); +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); +hold off; +yticks(-360:45:360); +ylim([-45, 180]); + +linkaxes([ax1,ax2],'x'); +xlim([20, 2e2]); +xticks([20, 50, 100, 200]) + +%% Bode plot for the transfer function from u to Vs +masses = [0, 13, 26, 39]; +figure; +tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); + +ax1 = nexttile([2,1]); +hold on; +for i_mass = 0:3 + plot(frf_ol.f, abs(frf_ol.G_Vs{i_mass+1}(:,1, 1)), 'color', [colors(i_mass+1,:), 0.2], ... + 'DisplayName', sprintf('Meas (%i kg)', masses(i_mass+1))); + for i = 2:6 + plot(frf_ol.f, abs(frf_ol.G_Vs{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.2], ... + 'HandleVisibility', 'off'); + end + plot(freqs, abs(squeeze(freqresp(sim_ol.G_Vs{i_mass+1}(1,1), freqs, 'Hz'))), '--', 'color', colors(i_mass+1,:), ... + 'DisplayName', 'Simscape'); +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +ylabel('Amplitude $V_s/u$ [V/V]'); set(gca, 'XTickLabel',[]); +ylim([1e-3, 1e2]); +leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 2); +leg.ItemTokenSize(1) = 15; + +ax2 = nexttile; +hold on; +for i_mass = 0:3 + for i =1:6 + plot(frf_ol.f, 180/pi*angle(frf_ol.G_Vs{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.2]); + end + plot(freqs, 180/pi*angle(squeeze(freqresp(sim_ol.G_Vs{i_mass+1}(i,i), freqs, 'Hz'))), '--', 'color', colors(i_mass+1,:)); +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); +hold off; +yticks(-360:90:360); + +linkaxes([ax1,ax2],'x'); +xlim([20, 2e2]); +xticks([20, 50, 100, 200]) + + + +% #+name: fig:test_nhexa_comp_simscape_diag_masses +% #+caption: Comparison of the diagonal elements (i.e. "direct" terms) of the measured FRF matrix and the identified dynamics from the Simscape model. Both for the dynamics from $u$ to $d_e$ (\subref{fig:test_nhexa_comp_simscape_de_diag}) and from $u$ to $V_s$ (\subref{fig:test_nhexa_comp_simscape_Vs_diag}) +% #+attr_latex: :options [htbp] +% #+begin_figure +% #+attr_latex: :caption \subcaption{\label{fig:test_nhexa_comp_simscape_de_diag_masses}from $u$ to $d_e$} +% #+attr_latex: :options {0.49\textwidth} +% #+begin_subfigure +% #+attr_latex: :width 0.95\linewidth +% [[file:figs/test_nhexa_comp_simscape_de_diag_masses.png]] +% #+end_subfigure +% #+attr_latex: :caption \subcaption{\label{fig:test_nhexa_comp_simscape_Vs_diag_masses}from $u$ to $V_s$} +% #+attr_latex: :options {0.49\textwidth} +% #+begin_subfigure +% #+attr_latex: :width 0.95\linewidth +% [[file:figs/test_nhexa_comp_simscape_Vs_diag_masses.png]] +% #+end_subfigure +% #+end_figure + +% In order to also check if the model well represents the coupling when high payload masses are used, the transfer functions from $u_1$ to $d_{e1}$ to $d_{e6}$ are compared in the case of the 39kg payload in Figure ref:fig:test_nhexa_comp_simscape_de_all_high_mass. +% Excellent match between the experimental coupling and the model coupling is observed. +% The model therefore well represents the system dynamical coupling for different considered payloads. + + +%% Comparison of the plants (encoder output) when tuning the misalignment +i_input = 1; + +figure; +tiledlayout(2, 3, 'TileSpacing', 'tight', 'Padding', 'tight'); + +ax1 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{4}(:, 1, i_input))); +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{4}(1, i_input), freqs, 'Hz')))); +text(12, 4e-4, '$d_{e1}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); ylabel('Amplitude [m/V]'); + +ax2 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{4}(:, 2, i_input))); +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{4}(2, i_input), freqs, 'Hz')))); +text(12, 4e-4, '$d_{e2}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); + +ax3 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{4}(:, 3, i_input)), ... + 'DisplayName', 'Measurements'); +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{4}(3, i_input), freqs, 'Hz'))), ... + 'DisplayName', 'Model (2-DoF APA)'); +text(12, 4e-4, '$d_{e3}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); +leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); +leg.ItemTokenSize(1) = 15; + +ax4 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{4}(:, 4, i_input))); +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{4}(4, i_input), freqs, 'Hz')))); +text(12, 4e-4, '$d_{e4}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); ylabel('Amplitude [m/V]'); +xticks([10, 50, 100, 200, 400]) + +ax5 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{4}(:, 5, i_input))); +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{4}(5, i_input), freqs, 'Hz')))); +text(12, 4e-4, '$d_{e5}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xticks([10, 50, 100, 200, 400]) + +ax6 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{4}(:, 6, i_input))); +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{4}(6, i_input), freqs, 'Hz')))); +text(12, 4e-4, '$d_{e6}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); +xticks([10, 50, 100, 200, 400]) + +linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'xy'); +xlim([10, 5e2]); ylim([1e-8, 5e-4]); diff --git a/test-bench-nano-hexapod.org b/test-bench-nano-hexapod.org index 8d5851a..d5790cb 100644 --- a/test-bench-nano-hexapod.org +++ b/test-bench-nano-hexapod.org @@ -134,11 +134,23 @@ Maybe the rest is not so interesting here as it will be presented again in the n - High Authority Controller HAC - Decoupling Strategy +** TODO [#C] See if the FEM in Simscape can model the struts modes ** TODO [#C] Add nice pictures [[file:~/Cloud/pictures/work/nano-hexapod/vibration-table]] -** TODO [#B] Proper analysis of the identified dynamics +** TODO [#B] If possible, correlate the modal analysis with FEM + +This could just be used to show that experimental measure of the flexible mode of the top plate has been done: +- [X] *This test was made using encoder fixed to the struts, is it relevant to put it here?* +- [ ] Also compare with the FEM + - [[file:/home/thomas/Cloud/work-projects/ID31-NASS/nass-fem/Assembly 20201020/Modal t=0.50mm]] + - [[file:/home/thomas/Cloud/work-projects/ID31-NASS/nass-fem/GitLab_nass-fem/dynamic-modal/assy-hexapod-20201022/t_0.25mm]] + - [[file:/home/thomas/Cloud/work-projects/ID31-NASS/nass-fem/GitLab_nass-fem/dynamic-modal/assy-hexapod-20201022/t_0.5mm]] + - [[file:/home/thomas/Cloud/work-projects/ID31-NASS/nass-fem/GitLab_nass-fem/plateau-superelement]] + +** DONE [#B] Proper analysis of the identified dynamics +CLOSED: [2024-10-28 Mon 11:13] - [ ] Top plate flexible modes (2 modes) - [ ] Modes of the encoder supports @@ -146,14 +158,14 @@ Maybe the rest is not so interesting here as it will be presented again in the n ** TODO [#C] Remove un-used matlab scripts and src files -** TODO [#B] Make nice subfigures for identified modes -SCHEDULED: <2024-10-26 Sat> +** DONE [#B] Make nice subfigures for identified modes +CLOSED: [2024-10-27 Sun 15:58] SCHEDULED: <2024-10-26 Sat> Maybe try to do similar thing as for the micro station: [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A3-micro-station-modal-analysis/mode_shapes-gif-to-jpg/gen_mode_1.sh]] -- [ ] Table: 6 rigid body modes + 3 flexible modes +- [X] Table: 6 rigid body modes + 3 flexible modes [[file:figs/modal-analysis-table]] -- [ ] Nano hexapod: 6 rigid body modes + 2 flexible modes +- [X] Nano hexapod: 6 rigid body modes + 2 flexible modes [[file:figs/modal-analysis-hexapod]] ** DONE [#A] Update the default APA parameters to have good match @@ -212,3778 +224,6 @@ CLOSED: [2024-10-26 Sat 15:26] - git submodule? - Maybe just copy paste the directory as it will not change a lot now -** Analysis backup of HAC - Decoupling analysis -<> - -*** Introduction :ignore: - -In this section is studied the HAC-IFF architecture for the Nano-Hexapod. -More precisely: -- The LAC control is a decentralized integral force feedback as studied in Section ref:sec:test_nhexa_enc_plates_iff -- The HAC control is a decentralized controller working in the frame of the struts - -The corresponding control architecture is shown in Figure ref:fig:test_nhexa_control_architecture_hac_iff_struts with: -- $\bm{r}_{\mathcal{X}_n}$: the $6 \times 1$ reference signal in the cartesian frame -- $\bm{r}_{d\mathcal{L}}$: the $6 \times 1$ reference signal transformed in the frame of the struts thanks to the inverse kinematic -- $\bm{\epsilon}_{d\mathcal{L}}$: the $6 \times 1$ length error of the 6 struts -- $\bm{u}^\prime$: input of the damped plant -- $\bm{u}$: generated DAC voltages -- $\bm{\tau}_m$: measured force sensors -- $d\bm{\mathcal{L}}_m$: measured displacement of the struts by the encoders - -#+begin_src latex :file control_architecture_hac_iff_struts.pdf -\definecolor{instrumentation}{rgb}{0, 0.447, 0.741} -\definecolor{mechanics}{rgb}{0.8500, 0.325, 0.098} -\definecolor{control}{rgb}{0.4660, 0.6740, 0.1880} - -\begin{tikzpicture} - % Blocs - \node[block={3.0cm}{2.0cm}, fill=black!20!white] (P) {Plant}; - \coordinate[] (inputF) at ($(P.south west)!0.5!(P.north west)$); - \coordinate[] (outputF) at ($(P.south east)!0.2!(P.north east)$); - \coordinate[] (outputL) at ($(P.south east)!0.8!(P.north east)$); - - \node[block, below=0.4 of P, fill=control!20!white] (Kiff) {$\bm{K}_\text{IFF}$}; - \node[block, left=0.8 of inputF, fill=instrumentation!20!white] (pd200) {\tiny PD200}; - \node[addb, left=0.8 of pd200, fill=control!20!white] (addF) {}; - \node[block, left=0.8 of addF, fill=control!20!white] (K) {$\bm{K}_\mathcal{L}$}; - \node[addb={+}{}{-}{}{}, left=0.8 of K, fill=control!20!white] (subr) {}; - \node[block, align=center, left= of subr, fill=control!20!white] (J) {\tiny Inverse\\\tiny Kinematics}; - - % Connections and labels - \draw[->] (outputF) -- ++(1.0, 0) node[above left]{$\bm{\tau}_m$}; - \draw[->] ($(outputF) + (0.6, 0)$)node[branch]{} |- (Kiff.east); - \draw[->] (Kiff.west) -| (addF.south); - \draw[->] (addF.east) -- (pd200.west) node[above left]{$\bm{u}$}; - \draw[->] (pd200.east) -- (inputF) node[above left]{$\bm{u}_a$}; - - \draw[->] (outputL) -- ++(1.0, 0) node[below left]{$d\bm{\mathcal{L}_m}$}; - \draw[->] ($(outputL) + (0.6, 0)$)node[branch]{} -- ++(0, 1) -| (subr.north); - \draw[->] (subr.east) -- (K.west) node[above left]{$\bm{\epsilon}_{d\mathcal{L}}$}; - \draw[->] (K.east) -- (addF.west) node[above left]{$\bm{u}^\prime$}; - - \draw[->] (J.east) -- (subr.west) node[above left]{$\bm{r}_{d\mathcal{L}}$}; - \draw[<-] (J.west)node[above left]{$\bm{r}_{\mathcal{X}_n}$} -- ++(-1, 0); -\end{tikzpicture} -#+end_src - -#+name: fig:test_nhexa_control_architecture_hac_iff_struts -#+caption: HAC-LAC: IFF + Control in the frame of the legs -#+RESULTS: -[[file:figs/test_nhexa_control_architecture_hac_iff_struts.png]] - -This part is structured as follow: -- Section ref:sec:test_nhexa_hac_iff_struts_ref_track: some reference tracking tests are performed -- Section ref:sec:test_nhexa_hac_iff_struts_controller: the decentralized high authority controller is tuned using the Simscape model and is implemented and tested experimentally -- Section ref:sec:test_nhexa_interaction_analysis: an interaction analysis is performed, from which the best decoupling strategy can be determined -- Section ref:sec:test_nhexa_robust_hac_design: Robust High Authority Controller are designed - -*** Reference Tracking - Trajectories -:PROPERTIES: -:header-args:matlab+: :tangle matlab/scripts/reference_tracking_paths.m -:END: -<> -**** Introduction :ignore: -In this section, several trajectories representing the wanted pose (position and orientation) of the top platform with respect to the bottom platform are defined. - -These trajectories will be used to test the HAC-LAC architecture. - -In order to transform the wanted pose to the wanted displacement of the 6 struts, the inverse kinematic is required. -As a first approximation, the Jacobian matrix $\bm{J}$ can be used instead of using the full inverse kinematic equations. - -Therefore, the control architecture with the input trajectory $\bm{r}_{\mathcal{X}_n}$ is shown in Figure ref:fig:test_nhexa_control_architecture_hac_iff_L. - -#+begin_src latex :file control_architecture_hac_iff_struts_L.pdf -\definecolor{instrumentation}{rgb}{0, 0.447, 0.741} -\definecolor{mechanics}{rgb}{0.8500, 0.325, 0.098} -\definecolor{control}{rgb}{0.4660, 0.6740, 0.1880} - -\begin{tikzpicture} - % Blocs - \node[block={3.0cm}{2.0cm}, fill=black!20!white] (P) {Plant}; - \coordinate[] (inputF) at ($(P.south west)!0.5!(P.north west)$); - \coordinate[] (outputF) at ($(P.south east)!0.2!(P.north east)$); - \coordinate[] (outputL) at ($(P.south east)!0.8!(P.north east)$); - - \node[block, below=0.4 of P, fill=control!20!white] (Kiff) {$\bm{K}_\text{IFF}$}; - \node[block, left=0.8 of inputF, fill=instrumentation!20!white] (pd200) {\tiny PD200}; - \node[addb, left=0.8 of pd200, fill=control!20!white] (addF) {}; - \node[block, left=0.8 of addF, fill=control!20!white] (K) {$\bm{K}_\mathcal{L}$}; - \node[addb={+}{}{-}{}{}, left=0.8 of K, fill=control!20!white] (subr) {}; - \node[block, align=center, left= of subr, fill=control!20!white] (J) {$\bm{J}$}; - - % Connections and labels - \draw[->] (outputF) -- ++(1.0, 0) node[above left]{$\bm{\tau}_m$}; - \draw[->] ($(outputF) + (0.6, 0)$)node[branch]{} |- (Kiff.east); - \draw[->] (Kiff.west) -| (addF.south); - \draw[->] (addF.east) -- (pd200.west) node[above left]{$\bm{u}$}; - \draw[->] (pd200.east) -- (inputF) node[above left]{$\bm{u}_a$}; - - \draw[->] (outputL) -- ++(1.0, 0) node[below left]{$d\bm{\mathcal{L}_m}$}; - \draw[->] ($(outputL) + (0.6, 0)$)node[branch]{} -- ++(0, 1) -| (subr.north); - \draw[->] (subr.east) -- (K.west) node[above left]{$\bm{\epsilon}_{d\mathcal{L}}$}; - \draw[->] (K.east) -- (addF.west) node[above left]{$\bm{u}^\prime$}; - - \draw[->] (J.east) -- (subr.west) node[above left]{$\bm{r}_{d\mathcal{L}}$}; - \draw[<-] (J.west)node[above left]{$\bm{r}_{\mathcal{X}_n}$} -- ++(-1, 0); -\end{tikzpicture} -#+end_src - -#+name: fig:test_nhexa_control_architecture_hac_iff_L -#+caption: HAC-LAC: IFF + Control in the frame of the legs -#+RESULTS: -[[file:figs/test_nhexa_control_architecture_hac_iff_struts_L.png]] - -In the following sections, several reference trajectories are defined: -- Section ref:sec:test_nhexa_yz_scans: simple scans in the Y-Z plane -- Section ref:sec:test_nhexa_tilt_scans: scans in tilt are performed -- Section ref:sec:test_nhexa_nass_scans: scans with X-Y-Z translations in order to draw the word "NASS" - -**** Matlab Init :noexport:ignore: -#+begin_src matlab -%% reference_tracking_paths.m -% Computation of several reference paths -#+end_src - -#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) -<> -#+end_src - -#+begin_src matlab :exports none :results silent :noweb yes -<> -#+end_src - -#+begin_src matlab :tangle no :noweb yes -<> -#+end_src - -#+begin_src matlab :eval no :noweb yes -<> -#+end_src - -#+begin_src matlab :noweb yes -<> -#+end_src - -**** Y-Z Scans -<> -A function =generateYZScanTrajectory= has been developed in order to easily generate scans in the Y-Z plane. - -For instance, the following generated trajectory is represented in Figure ref:fig:test_nhexa_yz_scan_example_trajectory_yz_plane. -#+begin_src matlab -%% Generate the Y-Z trajectory scan -Rx_yz = generateYZScanTrajectory(... - 'y_tot', 4e-6, ... % Length of Y scans [m] - 'z_tot', 4e-6, ... % Total Z distance [m] - 'n', 5, ... % Number of Y scans - 'Ts', 1e-3, ... % Sampling Time [s] - 'ti', 1, ... % Time to go to initial position [s] - 'tw', 0, ... % Waiting time between each points [s] - 'ty', 0.6, ... % Time for a scan in Y [s] - 'tz', 0.2); % Time for a scan in Z [s] -#+end_src - -#+begin_src matlab :exports none -%% Plot the trajectory in the Y-Z plane -figure; -plot(Rx_yz(:,3), Rx_yz(:,4)); -xlabel('y [m]'); ylabel('z [m]'); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/yz_scan_example_trajectory_yz_plane.pdf', 'width', 'normal', 'height', 'normal'); -#+end_src - -#+name: fig:test_nhexa_yz_scan_example_trajectory_yz_plane -#+caption: Generated scan in the Y-Z plane -#+RESULTS: -[[file:figs/test_nhexa_yz_scan_example_trajectory_yz_plane.png]] - -The Y and Z positions as a function of time are shown in Figure ref:fig:test_nhexa_yz_scan_example_trajectory. - -#+begin_src matlab :exports none -%% Plot the Y-Z trajectory as a function of time -figure; -hold on; -plot(Rx_yz(:,1), Rx_yz(:,3), ... - 'DisplayName', 'Y motion') -plot(Rx_yz(:,1), Rx_yz(:,4), ... - 'DisplayName', 'Z motion') -hold off; -xlabel('Time [s]'); -ylabel('Displacement [m]'); -legend('location', 'northeast'); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/yz_scan_example_trajectory.pdf', 'width', 'wide', 'height', 'normal'); -#+end_src - -#+name: fig:test_nhexa_yz_scan_example_trajectory -#+caption: Y and Z trajectories as a function of time -#+RESULTS: -[[file:figs/test_nhexa_yz_scan_example_trajectory.png]] - -Using the Jacobian matrix, it is possible to compute the wanted struts lengths as a function of time: -\begin{equation} - \bm{r}_{d\mathcal{L}} = \bm{J} \bm{r}_{\mathcal{X}_n} -\end{equation} - -#+begin_src matlab :exports none -load('jacobian.mat', 'J'); -#+end_src - -#+begin_src matlab -%% Compute the reference in the frame of the legs -dL_ref = [J*Rx_yz(:, 2:7)']'; -#+end_src - -The reference signal for the strut length is shown in Figure ref:fig:test_nhexa_yz_scan_example_trajectory_struts. -#+begin_src matlab :exports none -%% Plot the reference in the frame of the legs -figure; -hold on; -for i=1:6 - plot(Rx_yz(:,1), dL_ref(:, i), ... - 'DisplayName', sprintf('$r_{d\\mathcal{L}_%i}$', i)) -end -xlabel('Time [s]'); ylabel('Strut Motion [m]'); -legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2); -yticks(1e-6*[-5:5]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/yz_scan_example_trajectory_struts.pdf', 'width', 'wide', 'height', 'normal'); -#+end_src - -#+name: fig:test_nhexa_yz_scan_example_trajectory_struts -#+caption: Trajectories for the 6 individual struts -#+RESULTS: -[[file:figs/test_nhexa_yz_scan_example_trajectory_struts.png]] - -**** Tilt Scans -<> - -A function =generalSpiralAngleTrajectory= has been developed in order to easily generate $R_x,R_y$ tilt scans. - -For instance, the following generated trajectory is represented in Figure ref:fig:test_nhexa_tilt_scan_example_trajectory. -#+begin_src matlab -%% Generate the "tilt-spiral" trajectory scan -R_tilt = generateSpiralAngleTrajectory(... - 'R_tot', 20e-6, ... % Total Tilt [ad] - 'n_turn', 5, ... % Number of scans - 'Ts', 1e-3, ... % Sampling Time [s] - 't_turn', 1, ... % Turn time [s] - 't_end', 1); % End time to go back to zero [s] -#+end_src - -#+begin_src matlab :exports none -%% Plot the trajectory -figure; -plot(1e6*R_tilt(:,5), 1e6*R_tilt(:,6)); -xlabel('$R_x$ [$\mu$rad]'); ylabel('$R_y$ [$\mu$rad]'); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/tilt_scan_example_trajectory.pdf', 'width', 'normal', 'height', 'normal'); -#+end_src - -#+name: fig:test_nhexa_tilt_scan_example_trajectory -#+caption: Generated "spiral" scan -#+RESULTS: -[[file:figs/test_nhexa_tilt_scan_example_trajectory.png]] - -#+begin_src matlab :exports none -%% Compute the reference in the frame of the legs -load('jacobian.mat', 'J'); -dL_ref = [J*R_tilt(:, 2:7)']'; -#+end_src - -The reference signal for the strut length is shown in Figure ref:fig:test_nhexa_tilt_scan_example_trajectory_struts. -#+begin_src matlab :exports none -%% Plot the reference in the frame of the legs -figure; -hold on; -for i=1:6 - plot(R_tilt(:,1), dL_ref(:, i), ... - 'DisplayName', sprintf('$r_{d\\mathcal{L}_%i}$', i)) -end -xlabel('Time [s]'); ylabel('Strut Motion [m]'); -legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); -yticks(1e-6*[-5:5]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/tilt_scan_example_trajectory_struts.pdf', 'width', 'wide', 'height', 'normal'); -#+end_src - -#+name: fig:test_nhexa_tilt_scan_example_trajectory_struts -#+caption: Trajectories for the 6 individual struts - Tilt scan -#+RESULTS: -[[file:figs/test_nhexa_tilt_scan_example_trajectory_struts.png]] - -**** "NASS" reference path -<> -In this section, a reference path that "draws" the work "NASS" is developed. - -First, a series of points representing each letter are defined. -Between each letter, a negative Z motion is performed. -#+begin_src matlab -%% List of points that draws "NASS" -ref_path = [ ... - 0, 0,0; % Initial Position - 0,0,1; 0,4,1; 3,0,1; 3,4,1; % N - 3,4,0; 4,0,0; % Transition - 4,0,1; 4,3,1; 5,4,1; 6,4,1; 7,3,1; 7,2,1; 4,2,1; 4,3,1; 5,4,1; 6,4,1; 7,3,1; 7,0,1; % A - 7,0,0; 8,0,0; % Transition - 8,0,1; 11,0,1; 11,2,1; 8,2,1; 8,4,1; 11,4,1; % S - 11,4,0; 12,0,0; % Transition - 12,0,1; 15,0,1; 15,2,1; 12,2,1; 12,4,1; 15,4,1; % S - 15,4,0; - ]; - -%% Center the trajectory arround zero -ref_path = ref_path - (max(ref_path) - min(ref_path))/2; - -%% Define the X-Y-Z cuboid dimensions containing the trajectory -X_max = 10e-6; -Y_max = 4e-6; -Z_max = 2e-6; - -ref_path = ([X_max, Y_max, Z_max]./max(ref_path)).*ref_path; % [m] -#+end_src - -Then, using the =generateXYZTrajectory= function, the $6 \times 1$ trajectory signal is computed. -#+begin_src matlab -%% Generating the trajectory -Rx_nass = generateXYZTrajectory('points', ref_path); -#+end_src - -The trajectory in the X-Y plane is shown in Figure ref:fig:test_nhexa_ref_track_test_nass (the transitions between the letters are removed). -#+begin_src matlab :exports none -%% "NASS" trajectory in the X-Y plane -figure; -plot(1e6*Rx_nass(Rx_nass(:,4)>0, 2), 1e6*Rx_nass(Rx_nass(:,4)>0, 3), 'k.') -xlabel('X [$\mu m$]'); -ylabel('Y [$\mu m$]'); -axis equal; -xlim(1e6*[min(Rx_nass(:,2)), max(Rx_nass(:,2))]); -ylim(1e6*[min(Rx_nass(:,3)), max(Rx_nass(:,3))]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/ref_track_test_nass.pdf', 'width', 'wide', 'height', 'normal'); -#+end_src - -#+name: fig:test_nhexa_ref_track_test_nass -#+caption: Reference path corresponding to the "NASS" acronym -#+RESULTS: -[[file:figs/test_nhexa_ref_track_test_nass.png]] - -It can also be better viewed in a 3D representation as in Figure ref:fig:test_nhexa_ref_track_test_nass_3d. - -#+begin_src matlab :exports none -figure; -plot3(1e6*Rx_nass(:,2), 1e6*Rx_nass(:,3), 1e6*Rx_nass(:,4), 'k-'); -xlabel('x [$\mu m$]'); ylabel('y [$\mu m$]'); zlabel('z [$\mu m$]'); -view(-13, 41) -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/ref_track_test_nass_3d.pdf', 'width', 'normal', 'height', 'normal'); -#+end_src - -#+name: fig:test_nhexa_ref_track_test_nass_3d -#+caption: Reference path that draws "NASS" - 3D view -#+RESULTS: -[[file:figs/test_nhexa_ref_track_test_nass_3d.png]] - -*** First Basic High Authority Controller -:PROPERTIES: -:header-args:matlab+: :tangle matlab/scripts/hac_lac_first_try.m -:END: -<> -**** Introduction :ignore: -In this section, a simple decentralized high authority controller $\bm{K}_{\mathcal{L}}$ is developed to work without any payload. - -The diagonal controller is tuned using classical Loop Shaping in Section ref:sec:test_nhexa_hac_iff_no_payload_tuning. -The stability is verified in Section ref:sec:test_nhexa_hac_iff_no_payload_stability using the Simscape model. - -**** Matlab Init :noexport:ignore: -#+begin_src matlab -%% hac_lac_first_try.m -% Development and analysis of a first basic High Authority Controller -#+end_src - -#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) -<> -#+end_src - -#+begin_src matlab :exports none :results silent :noweb yes -<> -#+end_src - -#+begin_src matlab :tangle no :noweb yes -<> -#+end_src - -#+begin_src matlab :eval no :noweb yes -<> -#+end_src - -#+begin_src matlab :noweb yes -<> -<> -#+end_src - -#+begin_src matlab -%% Load the identified FRF and Simscape model -frf_iff = load('frf_iff_vib_table_m.mat', 'f', 'Ts', 'G_dL'); -sim_iff = load('sim_iff_vib_table_m.mat', 'G_dL'); -#+end_src - -**** HAC Controller -<> - -Let's first try to design a first decentralized controller with: -- a bandwidth of 100Hz -- sufficient phase margin -- simple and understandable components - -After some very basic and manual loop shaping, A diagonal controller is developed. -Each diagonal terms are identical and are composed of: -- A lead around 100Hz -- A first order low pass filter starting at 200Hz to add some robustness to high frequency modes -- A notch at 700Hz to cancel the flexible modes of the top plate -- A pure integrator - -#+begin_src matlab -%% Lead to increase phase margin -a = 2; % Amount of phase lead / width of the phase lead / high frequency gain -wc = 2*pi*100; % Frequency with the maximum phase lead [rad/s] - -H_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a))); - -%% Low Pass filter to increase robustness -H_lpf = 1/(1 + s/2/pi/200); - -%% Notch at the top-plate resonance -gm = 0.02; -xi = 0.3; -wn = 2*pi*700; - -H_notch = (s^2 + 2*gm*xi*wn*s + wn^2)/(s^2 + 2*xi*wn*s + wn^2); - -%% Decentralized HAC -Khac_iff_struts = -(1/(2.87e-5)) * ... % Gain - H_lead * ... % Lead - H_notch * ... % Notch - (2*pi*100/s) * ... % Integrator - eye(6); % 6x6 Diagonal -#+end_src - -This controller is saved for further use. -#+begin_src matlab :exports none :tangle no -save('matlab/data_sim/Khac_iff_struts.mat', 'Khac_iff_struts') -#+end_src - -#+begin_src matlab :eval no -save('data_sim/Khac_iff_struts.mat', 'Khac_iff_struts') -#+end_src - -The experimental loop gain is computed and shown in Figure ref:fig:test_nhexa_loop_gain_hac_iff_struts. -#+begin_src matlab -L_hac_iff_struts = pagemtimes(permute(frf_iff.G_dL{1}, [2 3 1]), squeeze(freqresp(Khac_iff_struts, frf_iff.f, 'Hz'))); -#+end_src - -#+begin_src matlab :exports none -%% Bode plot of the Loop Gain -figure; -tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); - - -ax1 = nexttile([2,1]); -hold on; -% Diagonal Elements Model -plot(frf_iff.f, abs(squeeze(L_hac_iff_struts(1,1,:))), 'color', colors(1,:), ... - 'DisplayName', 'Diagonal'); -for i = 2:6 - plot(frf_iff.f, abs(squeeze(L_hac_iff_struts(i,i,:))), 'color', colors(1,:), ... - 'HandleVisibility', 'off'); -end -plot(frf_iff.f, abs(squeeze(L_hac_iff_struts(1,2,:))), 'color', [colors(2,:), 0.2], ... - 'DisplayName', 'Off-Diag'); -for i = 1:5 - for j = i+1:6 - plot(frf_iff.f, abs(squeeze(L_hac_iff_struts(i,j,:))), 'color', [colors(2,:), 0.2], ... - 'HandleVisibility', 'off'); - end -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -ylabel('Loop Gain [-]'); set(gca, 'XTickLabel',[]); -ylim([1e-3, 1e2]); -legend('location', 'northeast'); - -ax2 = nexttile; -hold on; -for i =1:6 - plot(frf_iff.f, 180/pi*angle(squeeze(L_hac_iff_struts(i,i,:))), 'color', colors(1,:)); -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); -hold off; -yticks(-360:90:360); -ylim([-180, 180]); - -linkaxes([ax1,ax2],'x'); -xlim([2, 2e3]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/loop_gain_hac_iff_struts.pdf', 'width', 'wide', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_loop_gain_hac_iff_struts -#+caption: Diagonal and off-diagonal elements of the Loop gain for "HAC-IFF-Struts" -#+RESULTS: -[[file:figs/test_nhexa_loop_gain_hac_iff_struts.png]] - -**** Verification of the Stability using the Simscape model -<> - -The HAC-IFF control strategy is implemented using Simscape. -#+begin_src matlab -%% Initialize the Simscape model in closed loop -n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ... - 'flex_top_type', '4dof', ... - 'motion_sensor_type', 'plates', ... - 'actuator_type', 'flexible', ... - 'controller_type', 'hac-iff-struts'); -#+end_src - -#+begin_src matlab :exports none -support.type = 1; % On top of vibration table -payload.type = 3; % Payload / 1 "mass layer" - -load('Kiff_opt.mat', 'Kiff'); -#+end_src - -#+begin_src matlab -%% Identify the (damped) transfer function from u to dLm -clear io; io_i = 1; -io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs -io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Plate Displacement (encoder) -#+end_src - -We identify the closed-loop system. -#+begin_src matlab -%% Identification -Gd_iff_hac_opt = linearize(mdl, io, 0.0, options); -#+end_src - -And verify that it is indeed stable. -#+begin_src matlab :results value replace :exports both -%% Verify the stability -isstable(Gd_iff_hac_opt) -#+end_src - -#+RESULTS: -: 1 - -**** Experimental Validation -Both the Integral Force Feedback controller (developed in Section ref:sec:test_nhexa_enc_plates_iff) and the high authority controller working in the frame of the struts (developed in Section ref:sec:test_nhexa_hac_iff_struts_controller) are implemented experimentally. - -Two reference tracking experiments are performed to evaluate the stability and performances of the implemented control. - -#+begin_src matlab -%% Load the experimental data -load('hac_iff_struts_yz_scans.mat', 't', 'de') -#+end_src - -#+begin_src matlab :exports none -%% Reset initial time -t = t - t(1); -#+end_src - -The position of the top-platform is estimated using the Jacobian matrix: -#+begin_src matlab -%% Pose of the top platform from the encoder values -load('jacobian.mat', 'J'); -Xe = [inv(J)*de']'; -#+end_src - -#+begin_src matlab -%% Generate the Y-Z trajectory scan -Rx_yz = generateYZScanTrajectory(... - 'y_tot', 4e-6, ... % Length of Y scans [m] - 'z_tot', 8e-6, ... % Total Z distance [m] - 'n', 5, ... % Number of Y scans - 'Ts', 1e-3, ... % Sampling Time [s] - 'ti', 1, ... % Time to go to initial position [s] - 'tw', 0, ... % Waiting time between each points [s] - 'ty', 0.6, ... % Time for a scan in Y [s] - 'tz', 0.2); % Time for a scan in Z [s] -#+end_src - -The reference path as well as the measured position are partially shown in the Y-Z plane in Figure ref:fig:test_nhexa_yz_scans_exp_results_first_K. -#+begin_src matlab :exports none -%% Position and reference signal in the Y-Z plane -figure; -tiledlayout(1, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile; -hold on; -plot(1e6*Xe(t>2,2), 1e6*Xe(t>2,3)); -plot(1e6*Rx_yz(:,3), 1e6*Rx_yz(:,4), '--'); -hold off; -xlabel('Y [$\mu m$]'); ylabel('Z [$\mu m$]'); -xlim([-2.05, 2.05]); ylim([-4.1, 4.1]); -axis equal; - -ax2 = nexttile([1,2]); -hold on; -plot(1e6*Xe(:,2), 1e6*Xe(:,3), ... - 'DisplayName', '$\mathcal{X}_n$'); -plot(1e6*Rx_yz(:,3), 1e6*Rx_yz(:,4), '--', ... - 'DisplayName', '$r_{\mathcal{X}_n}$'); -hold off; -legend('location', 'northwest'); -xlabel('Y [$\mu m$]'); ylabel('Z [$\mu m$]'); -axis equal; -xlim([1.6, 2.1]); ylim([-4.1, -3.6]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/yz_scans_exp_results_first_K.pdf', 'width', 'wide', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_yz_scans_exp_results_first_K -#+caption: Measured position $\bm{\mathcal{X}}_n$ and reference signal $\bm{r}_{\mathcal{X}_n}$ in the Y-Z plane - Zoom on a change of direction -#+RESULTS: -[[file:figs/test_nhexa_yz_scans_exp_results_first_K.png]] - -#+begin_important -It is clear from Figure ref:fig:test_nhexa_yz_scans_exp_results_first_K that the position of the nano-hexapod effectively tracks to reference signal. -However, oscillations with amplitudes as large as 50nm can be observe. - -It turns out that the frequency of these oscillations is 100Hz which is corresponding to the crossover frequency of the High Authority Control loop. -This clearly indicates poor stability margins. -In the next section, the controller is re-designed to improve the stability margins. -#+end_important - -**** Controller with increased stability margins -The High Authority Controller is re-designed in order to improve the stability margins. -#+begin_src matlab -%% Lead -a = 5; % Amount of phase lead / width of the phase lead / high frequency gain -wc = 2*pi*110; % Frequency with the maximum phase lead [rad/s] - -H_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a))); - -%% Low Pass Filter -H_lpf = 1/(1 + s/2/pi/300); - -%% Notch -gm = 0.02; -xi = 0.5; -wn = 2*pi*700; - -H_notch = (s^2 + 2*gm*xi*wn*s + wn^2)/(s^2 + 2*xi*wn*s + wn^2); - -%% HAC Controller -Khac_iff_struts = -2.2e4 * ... % Gain - H_lead * ... % Lead - H_lpf * ... % Lead - H_notch * ... % Notch - (2*pi*100/s) * ... % Integrator - eye(6); % 6x6 Diagonal -#+end_src - -#+begin_src matlab :exports none -%% Load the FRF of the transfer function from u to dL with IFF -frf_iff = load('frf_iff_vib_table_m.mat', 'f', 'Ts', 'G_dL'); -#+end_src - -#+begin_src matlab :exports none -%% Compute the Loop Gain -L_frf = pagemtimes(permute(frf_iff.G_dL{1}, [2 3 1]), squeeze(freqresp(Khac_iff_struts, frf_iff.f, 'Hz'))); -#+end_src - -The bode plot of the new loop gain is shown in Figure ref:fig:test_nhexa_hac_iff_plates_exp_loop_gain_redesigned_K. -#+begin_src matlab :exports none -%% Bode plot for the transfer function from u to dLm -freqs = 2*logspace(1, 3, 1000); - -figure; -tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile([2,1]); -hold on; -% Diagonal Elements FRF -plot(frf_iff.f, abs(squeeze(L_frf(1,1,:))), 'color', colors(1,:), ... - 'DisplayName', 'Diagonal'); -for i = 2:6 - plot(frf_iff.f, abs(squeeze(L_frf(i,i,:))), 'color', colors(1,:), ... - 'HandleVisibility', 'off'); -end -plot(frf_iff.f, abs(squeeze(L_frf(1,2,:))), 'color', [colors(2,:), 0.2], ... - 'DisplayName', 'Off-Diag'); -for i = 1:5 - for j = i+1:6 - plot(frf_iff.f, abs(squeeze(L_frf(i,j,:))), 'color', [colors(2,:), 0.2], ... - 'HandleVisibility', 'off'); - end -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -ylabel('Loop Gain [-]'); set(gca, 'XTickLabel',[]); -ylim([1e-3, 1e2]); -legend('location', 'northeast'); - -ax2 = nexttile; -hold on; -for i =1:6 - plot(frf_iff.f, 180/pi*angle(squeeze(L_frf(i,i,:))), 'color', colors(1,:)); -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); -hold off; -yticks(-360:90:360); -ylim([-180, 180]); - -linkaxes([ax1,ax2],'x'); -xlim([1, 2e3]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/hac_iff_plates_exp_loop_gain_redesigned_K.pdf', 'width', 'wide', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_hac_iff_plates_exp_loop_gain_redesigned_K -#+caption: Loop Gain for the updated decentralized HAC controller -#+RESULTS: -[[file:figs/test_nhexa_hac_iff_plates_exp_loop_gain_redesigned_K.png]] - -This new controller is implemented experimentally and several tracking tests are performed. -#+begin_src matlab -%% Load Measurements -load('hac_iff_more_lead_nass_scan.mat', 't', 'de') -#+end_src - -#+begin_src matlab :exports none -%% Reset Time -t = t - t(1); -#+end_src - -The pose of the top platform is estimated from the encoder position using the Jacobian matrix. -#+begin_src matlab -%% Compute the pose of the top platform -load('jacobian.mat', 'J'); -Xe = [inv(J)*de']'; -#+end_src - -#+begin_src matlab :exports none -%% Load the reference path -load('reference_path.mat', 'Rx_nass') -#+end_src - -The measured motion as well as the trajectory are shown in Figure ref:fig:test_nhexa_nass_scans_first_test_exp. -#+begin_src matlab :exports none -%% Plot the X-Y-Z "NASS" trajectory -figure; -hold on; -plot3(Xe(1:100:end,1), Xe(1:100:end,2), Xe(1:100:end,3)) -plot3(Rx_nass(1:100:end,2), Rx_nass(1:100:end,3), Rx_nass(1:100:end,4)) -hold off; -xlabel('x [$\mu m$]'); ylabel('y [$\mu m$]'); zlabel('z [$\mu m$]'); -view(-13, 41) -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/nass_scans_first_test_exp.pdf', 'width', 'wide', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_nass_scans_first_test_exp -#+caption: Measured position $\bm{\mathcal{X}}_n$ and reference signal $\bm{r}_{\mathcal{X}_n}$ for the "NASS" trajectory -#+RESULTS: -[[file:figs/test_nhexa_nass_scans_first_test_exp.png]] - -The trajectory and measured motion are also shown in the X-Y plane in Figure ref:fig:test_nhexa_ref_track_nass_exp_hac_iff_struts. -#+begin_src matlab :exports none -%% Estimate when the hexpod is on top position and drawing the letters -i_top = Xe(:,3) > 1.9e-6; -i_rx = Rx_nass(:,4) > 0; -#+end_src - -#+begin_src matlab :exports none -%% Plot the reference as well as the measurement in the X-Y plane -figure; -tiledlayout(1, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile([1,2]); -hold on; -scatter(1e6*Xe(i_top,1), 1e6*Xe(i_top,2),'.'); -plot(1e6*Rx_nass(i_rx,2), 1e6*Rx_nass(i_rx,3), '--'); -hold off; -xlabel('X [$\mu m$]'); ylabel('Y [$\mu m$]'); -axis equal; -xlim([-10.5, 10.5]); ylim([-4.5, 4.5]); - -ax2 = nexttile; -hold on; -scatter(1e6*Xe(i_top,1), 1e6*Xe(i_top,2),'.'); -plot(1e6*Rx_nass(i_rx,2), 1e6*Rx_nass(i_rx,3), '--'); -hold off; -xlabel('X [$\mu m$]'); ylabel('Y [$\mu m$]'); -axis equal; -xlim([4.5, 4.7]); ylim([-0.15, 0.05]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/ref_track_nass_exp_hac_iff_struts.pdf', 'width', 'full', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_ref_track_nass_exp_hac_iff_struts -#+caption: Reference path and measured motion in the X-Y plane -#+RESULTS: -[[file:figs/test_nhexa_ref_track_nass_exp_hac_iff_struts.png]] - -The orientation errors during all the scans are shown in Figure ref:fig:test_nhexa_nass_ref_rx_ry. -#+begin_src matlab :exports none -%% Orientation Errors -figure; -hold on; -plot(t(t>20&t<20.1), 1e6*Xe(t>20&t<20.1,4), '-', 'DisplayName', '$\epsilon_{\theta_x}$'); -plot(t(t>20&t<20.1), 1e6*Xe(t>20&t<20.1,5), '-', 'DisplayName', '$\epsilon_{\theta_y}$'); -plot(t(t>20&t<20.1), 1e6*Xe(t>20&t<20.1,6), '-', 'DisplayName', '$\epsilon_{\theta_z}$'); -hold off; -xlabel('Time [s]'); ylabel('Orientation Error [$\mu$ rad]'); -legend('location', 'northeast'); -#+end_src - -#+begin_src matlab :exports none -%% Orientation Errors -figure; -hold on; -plot(1e9*Xe(100000:100:end,4), 1e9*Xe(100000:100:end,5), '.'); -th = 0:pi/50:2*pi; -xunit = 90 * cos(th); -yunit = 90 * sin(th); -plot(xunit, yunit, '--'); -hold off; -xlabel('$R_x$ [nrad]'); ylabel('$R_y$ [nrad]'); -xlim([-100, 100]); -ylim([-100, 100]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/nass_ref_rx_ry.pdf', 'width', 500, 'height', 500); -#+end_src - -#+name: fig:test_nhexa_nass_ref_rx_ry -#+caption: Orientation errors during the scan -#+RESULTS: -[[file:figs/test_nhexa_nass_ref_rx_ry.png]] - -#+begin_important -Using the updated High Authority Controller, the nano-hexapod can follow trajectories with high accuracy (the position errors are in the order of 50nm peak to peak, and the orientation errors 300nrad peak to peak). -#+end_important - -*** Interaction Analysis and Decoupling -:PROPERTIES: -:header-args:matlab+: :tangle matlab/scripts/interaction_analysis_enc_plates.m -:END: -<> -**** Introduction :ignore: - -In this section, the interaction in the identified plant is estimated using the Relative Gain Array (RGA) [[cite:skogestad07_multiv_feedb_contr][Chap. 3.4]]. - -Then, several decoupling strategies are compared for the nano-hexapod. - -The RGA Matrix is defined as follow: -\begin{equation} - \text{RGA}(G(f)) = G(f) \times (G(f)^{-1})^T -\end{equation} - -Then, the RGA number is defined: -\begin{equation} -\text{RGA-num}(f) = \| \text{I - RGA(G(f))} \|_{\text{sum}} -\end{equation} - - -In this section, the plant with 2 added mass is studied. - -**** Matlab Init :noexport:ignore: -#+begin_src matlab -%% interaction_analysis_enc_plates.m -% Interaction analysis of several decoupling strategies -#+end_src - -#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) -<> -#+end_src - -#+begin_src matlab :exports none :results silent :noweb yes -<> -#+end_src - -#+begin_src matlab :tangle no :noweb yes -<> -#+end_src - -#+begin_src matlab :eval no :noweb yes -<> -#+end_src - -#+begin_src matlab :noweb yes -<> -#+end_src - -#+begin_src matlab -%% Load the identified FRF and Simscape model -frf_iff = load('frf_iff_vib_table_m.mat', 'f', 'Ts', 'G_dL'); -sim_iff = load('sim_iff_vib_table_m.mat', 'G_dL'); -#+end_src - -**** Parameters -#+begin_src matlab -wc = 100; % Wanted crossover frequency [Hz] -[~, i_wc] = min(abs(frf_iff.f - wc)); % Indice corresponding to wc -#+end_src - -#+begin_src matlab -%% Plant to be decoupled -frf_coupled = frf_iff.G_dL{2}; -G_coupled = sim_iff.G_dL{2}; -#+end_src - -**** No Decoupling (Decentralized) -<> - -#+begin_src latex :file decoupling_arch_decentralized.pdf -\begin{tikzpicture} - \node[block] (G) {$\bm{G}$}; - - % Connections and labels - \draw[<-] (G.west) -- ++(-1.8, 0) node[above right]{$\bm{\tau}$}; - \draw[->] (G.east) -- ++( 1.8, 0) node[above left]{$d\bm{\mathcal{L}}$}; - - \begin{scope}[on background layer] - \node[fit={(G.south west) (G.north east)}, fill=black!10!white, draw, dashed, inner sep=16pt] (Gdec) {}; - \node[below right] at (Gdec.north west) {$\bm{G}_{\text{dec}}$}; - \end{scope} -\end{tikzpicture} -#+end_src - -#+name: fig:test_nhexa_decoupling_arch_decentralized -#+caption: Block diagram representing the plant. -#+RESULTS: -[[file:figs/test_nhexa_decoupling_arch_decentralized.png]] - -#+begin_src matlab :exports none -%% Decentralized Plant -figure; -tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile([2,1]); -hold on; -for i = 1:5 - for j = i+1:6 - plot(frf_iff.f, abs(frf_coupled(:,i,j)), 'color', [0,0,0,0.2], ... - 'HandleVisibility', 'off'); - end -end -set(gca,'ColorOrderIndex',1) -for i = 1:6 - plot(frf_iff.f, abs(frf_coupled(:,i,i)), ... - 'DisplayName', sprintf('$y_%i/u_%i$', i, i)); -end -plot(frf_iff.f, abs(frf_coupled(:,1,2)), 'color', [0,0,0,0.2], ... - 'DisplayName', 'Coupling'); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -ylabel('Amplitude'); set(gca, 'XTickLabel',[]); -ylim([1e-9, 1e-4]); -legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 3); - -ax2 = nexttile; -hold on; -for i =1:6 - plot(frf_iff.f, 180/pi*angle(frf_coupled(:,i,i))); -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); -hold off; -yticks(-360:90:360); -ylim([-180, 180]); - -linkaxes([ax1,ax2],'x'); -xlim([10, 1e3]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/interaction_decentralized_plant.pdf', 'width', 'wide', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_interaction_decentralized_plant -#+caption: Bode Plot of the decentralized plant (diagonal and off-diagonal terms) -#+RESULTS: -[[file:figs/test_nhexa_interaction_decentralized_plant.png]] - -#+begin_src matlab :exports none -%% Decentralized RGA -RGA_dec = zeros(size(frf_coupled)); -for i = 1:length(frf_iff.f) - RGA_dec(i,:,:) = squeeze(frf_coupled(i,:,:)).*inv(squeeze(frf_coupled(i,:,:))).'; -end - -RGA_dec_sum = zeros(length(frf_iff), 1); -for i = 1:length(frf_iff.f) - RGA_dec_sum(i) = sum(sum(abs(eye(6) - squeeze(RGA_dec(i,:,:))))); -end -#+end_src - -#+begin_src matlab :exports none -%% RGA for Decentralized plant -figure; -plot(frf_iff.f, RGA_dec_sum, 'k-'); -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('RGA Number'); -xlim([10, 1e3]); ylim([1e-2, 1e2]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/interaction_rga_decentralized.pdf', 'width', 'wide', 'height', 'normal'); -#+end_src - -#+name: fig:test_nhexa_interaction_rga_decentralized -#+caption: RGA number for the decentralized plant -#+RESULTS: -[[file:figs/test_nhexa_interaction_rga_decentralized.png]] - -**** Static Decoupling -<> - -#+begin_src latex :file decoupling_arch_static.pdf -\begin{tikzpicture} - \node[block] (G) {$\bm{G}$}; - \node[block, left=0.8 of G] (Ginv) {$\bm{\hat{G}}(j0)^{-1}$}; - - % Connections and labels - \draw[<-] (Ginv.west) -- ++(-1.8, 0) node[above right]{$\bm{u}$}; - \draw[->] (Ginv.east) -- (G.west) node[above left]{$\bm{\tau}$}; - \draw[->] (G.east) -- ++( 1.8, 0) node[above left]{$d\bm{\mathcal{L}}$}; - - \begin{scope}[on background layer] - \node[fit={(Ginv.south west) (G.north east)}, fill=black!10!white, draw, dashed, inner sep=16pt] (Gx) {}; - \node[below right] at (Gx.north west) {$\bm{G}_{\text{static}}$}; - \end{scope} -\end{tikzpicture} -#+end_src - -#+name: fig:test_nhexa_decoupling_arch_static -#+caption: Decoupling using the inverse of the DC gain of the plant -#+RESULTS: -[[file:figs/test_nhexa_decoupling_arch_static.png]] - -The DC gain is evaluated from the model as be have bad low frequency identification. - -#+begin_src matlab :exports none -%% Compute the inverse of the DC gain -G_model = G_coupled; -G_model.outputdelay = 0; % necessary for further inversion -dc_inv = inv(dcgain(G_model)); - -%% Compute the inversed plant -G_dL_sta = zeros(size(frf_coupled)); -for i = 1:length(frf_iff.f) - G_dL_sta(i,:,:) = squeeze(frf_coupled(i,:,:))*dc_inv; -end -#+end_src - -#+begin_src matlab :exports results :results value table replace :tangle no -data2orgtable(dc_inv, {}, {}, ' %.1f '); -#+end_src - -#+RESULTS: -| -62011.5 | 3910.6 | 4299.3 | 660.7 | -4016.5 | -4373.6 | -| 3914.4 | -61991.2 | -4356.8 | -4019.2 | 640.2 | 4281.6 | -| -4020.0 | -4370.5 | -62004.5 | 3914.6 | 4295.8 | 653.8 | -| 660.9 | 4292.4 | 3903.3 | -62012.2 | -4366.5 | -4008.9 | -| 4302.8 | 655.6 | -4025.8 | -4377.8 | -62006.0 | 3919.7 | -| -4377.9 | -4013.2 | 668.6 | 4303.7 | 3906.8 | -62019.3 | - -#+begin_src matlab :exports none -%% Bode plot of the static decoupled plant -figure; -tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile([2,1]); -hold on; -for i = 1:5 - for j = i+1:6 - plot(frf_iff.f, abs(G_dL_sta(:,i,j)), 'color', [0,0,0,0.2], ... - 'HandleVisibility', 'off'); - end -end -set(gca,'ColorOrderIndex',1) -for i = 1:6 - plot(frf_iff.f, abs(G_dL_sta(:,i,i)), ... - 'DisplayName', sprintf('$y_%i/u_%i$', i, i)); -end -plot(frf_iff.f, abs(G_dL_sta(:,1,2)), 'color', [0,0,0,0.2], ... - 'DisplayName', 'Coupling'); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -ylabel('Amplitude'); set(gca, 'XTickLabel',[]); -ylim([1e-3, 1e1]); -legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2); - -ax2 = nexttile; -hold on; -for i =1:6 - plot(frf_iff.f, 180/pi*angle(G_dL_sta(:,i,i))); -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); -hold off; -yticks(-360:90:360); -ylim([-180, 180]); - -linkaxes([ax1,ax2],'x'); -xlim([10, 1e3]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/interaction_static_dec_plant.pdf', 'width', 'wide', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_interaction_static_dec_plant -#+caption: Bode Plot of the static decoupled plant -#+RESULTS: -[[file:figs/test_nhexa_interaction_static_dec_plant.png]] - -#+begin_src matlab :exports none -%% Compute RGA Matrix -RGA_sta = zeros(size(frf_coupled)); -for i = 1:length(frf_iff.f) - RGA_sta(i,:,:) = squeeze(G_dL_sta(i,:,:)).*inv(squeeze(G_dL_sta(i,:,:))).'; -end - -%% Compute RGA-number -RGA_sta_sum = zeros(length(frf_iff), 1); -for i = 1:size(RGA_sta, 1) - RGA_sta_sum(i) = sum(sum(abs(eye(6) - squeeze(RGA_sta(i,:,:))))); -end -#+end_src - -#+begin_src matlab :exports none -%% Plot the RGA-number for statically decoupled plant -figure; -plot(frf_iff.f, RGA_sta_sum, 'k-'); -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('RGA Number'); -xlim([10, 1e3]); ylim([1e-2, 1e2]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/interaction_rga_static_dec.pdf', 'width', 'wide', 'height', 'normal'); -#+end_src - -#+name: fig:test_nhexa_interaction_rga_static_dec -#+caption: RGA number for the statically decoupled plant -#+RESULTS: -[[file:figs/test_nhexa_interaction_rga_static_dec.png]] - -**** Decoupling at the Crossover -<> - -#+begin_src latex :file decoupling_arch_crossover.pdf -\begin{tikzpicture} - \node[block] (G) {$\bm{G}$}; - \node[block, left=0.8 of G] (Ginv) {$\bm{\hat{G}}(j\omega_c)^{-1}$}; - - % Connections and labels - \draw[<-] (Ginv.west) -- ++(-1.8, 0) node[above right]{$\bm{u}$}; - \draw[->] (Ginv.east) -- (G.west) node[above left]{$\bm{\tau}$}; - \draw[->] (G.east) -- ++( 1.8, 0) node[above left]{$d\bm{\mathcal{L}}$}; - - \begin{scope}[on background layer] - \node[fit={(Ginv.south west) (G.north east)}, fill=black!10!white, draw, dashed, inner sep=16pt] (Gx) {}; - \node[below right] at (Gx.north west) {$\bm{G}_{\omega_c}$}; - \end{scope} -\end{tikzpicture} -#+end_src - -#+name: fig:test_nhexa_decoupling_arch_crossover -#+caption: Decoupling using the inverse of a dynamical model $\bm{\hat{G}}$ of the plant dynamics $\bm{G}$ -#+RESULTS: -[[file:figs/test_nhexa_decoupling_arch_crossover.png]] - -#+begin_src matlab :exports none -%% Take complex matrix corresponding to the plant at 100Hz -V = squeeze(frf_coupled(i_wc,:,:)); - -%% Real approximation of inv(G(100Hz)) -D = pinv(real(V'*V)); -H1 = D*real(V'*diag(exp(1j*angle(diag(V*D*V.'))/2))); - -%% Compute the decoupled plant -G_dL_wc = zeros(size(frf_coupled)); -for i = 1:length(frf_iff.f) - G_dL_wc(i,:,:) = squeeze(frf_coupled(i,:,:))*H1; -end -#+end_src - -#+begin_src matlab :exports results :results value table replace :tangle no -data2orgtable(H1, {}, {}, ' %.1f '); -#+end_src - -#+RESULTS: -| 67229.8 | 3769.3 | -13704.6 | -23084.8 | -6318.2 | 23378.7 | -| 3486.2 | 67708.9 | 23220.0 | -6314.5 | -22699.8 | -14060.6 | -| -5731.7 | 22471.7 | 66701.4 | 3070.2 | -13205.6 | -21944.6 | -| -23305.5 | -14542.6 | 2743.2 | 70097.6 | 24846.8 | -5295.0 | -| -14882.9 | -22957.8 | -5344.4 | 25786.2 | 70484.6 | 2979.9 | -| 24353.3 | -5195.2 | -22449.0 | -14459.2 | 2203.6 | 69484.2 | - -#+begin_src matlab :exports none -%% Bode plot of the plant decoupled at the crossover -figure; -tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile([2,1]); -hold on; -for i = 1:5 - for j = i+1:6 - plot(frf_iff.f, abs(G_dL_wc(:,i,j)), 'color', [0,0,0,0.2], ... - 'HandleVisibility', 'off'); - end -end -for i = 1:6 - plot(frf_iff.f, abs(G_dL_wc(:,i,i)), ... - 'DisplayName', sprintf('$y_%i/u_%i$', i, i)); -end -plot(frf_iff.f, abs(G_dL_wc(:,1,2)), 'color', [0,0,0,0.2], ... - 'DisplayName', 'Coupling'); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -ylabel('Amplitude $d_L/V_a$ [m/V]'); set(gca, 'XTickLabel',[]); -ylim([1e-3, 1e1]); -legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); - -ax2 = nexttile; -hold on; -for i =1:6 - plot(frf_iff.f, 180/pi*angle(G_dL_wc(:,i,i))); -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); -hold off; -yticks(-360:90:360); -ylim([-180, 180]); - -linkaxes([ax1,ax2],'x'); -xlim([10, 1e3]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/interaction_wc_plant.pdf', 'width', 'wide', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_interaction_wc_plant -#+caption: Bode Plot of the plant decoupled at the crossover -#+RESULTS: -[[file:figs/test_nhexa_interaction_wc_plant.png]] - -#+begin_src matlab -%% Compute RGA Matrix -RGA_wc = zeros(size(frf_coupled)); -for i = 1:length(frf_iff.f) - RGA_wc(i,:,:) = squeeze(G_dL_wc(i,:,:)).*inv(squeeze(G_dL_wc(i,:,:))).'; -end - -%% Compute RGA-number -RGA_wc_sum = zeros(size(RGA_wc, 1), 1); -for i = 1:size(RGA_wc, 1) - RGA_wc_sum(i) = sum(sum(abs(eye(6) - squeeze(RGA_wc(i,:,:))))); -end -#+end_src - -#+begin_src matlab :exports none -%% Plot the RGA-Number for the plant decoupled at crossover -figure; -plot(frf_iff.f, RGA_wc_sum, 'k-'); -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('RGA Number'); -xlim([10, 1e3]); ylim([1e-2, 1e2]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/interaction_rga_wc.pdf', 'width', 'wide', 'height', 'normal'); -#+end_src - -#+name: fig:test_nhexa_interaction_rga_wc -#+caption: RGA number for the plant decoupled at the crossover -#+RESULTS: -[[file:figs/test_nhexa_interaction_rga_wc.png]] - -**** SVD Decoupling -<> - -#+begin_src latex :file decoupling_arch_svd.pdf -\begin{tikzpicture} - \node[block] (G) {$\bm{G}$}; - - \node[block, left=0.8 of G.west] (V) {$V^{-T}$}; - \node[block, right=0.8 of G.east] (U) {$U^{-1}$}; - - % Connections and labels - \draw[<-] (V.west) -- ++(-1.0, 0) node[above right]{$u$}; - \draw[->] (V.east) -- (G.west) node[above left]{$\bm{\tau}$}; - \draw[->] (G.east) -- (U.west) node[above left]{$d\bm{\mathcal{L}}$}; - \draw[->] (U.east) -- ++( 1.0, 0) node[above left]{$y$}; - - \begin{scope}[on background layer] - \node[fit={(V.south west) (G.north-|U.east)}, fill=black!10!white, draw, dashed, inner sep=14pt] (Gsvd) {}; - \node[below right] at (Gsvd.north west) {$\bm{G}_{SVD}$}; - \end{scope} -\end{tikzpicture} -#+end_src - -#+name: fig:test_nhexa_decoupling_arch_svd -#+caption: Decoupling using the Singular Value Decomposition -#+RESULTS: -[[file:figs/test_nhexa_decoupling_arch_svd.png]] - -#+begin_src matlab :exports none -%% Take complex matrix corresponding to the plant at 100Hz -V = squeeze(frf_coupled(i_wc,:,:)); - -%% Real approximation of G(100Hz) -D = pinv(real(V'*V)); -H1 = pinv(D*real(V'*diag(exp(1j*angle(diag(V*D*V.'))/2)))); - -%% Singular Value Decomposition -[U,S,V] = svd(H1); - -%% Compute the decoupled plant using SVD -G_dL_svd = zeros(size(frf_coupled)); -for i = 1:length(frf_iff.f) - G_dL_svd(i,:,:) = inv(U)*squeeze(frf_coupled(i,:,:))*inv(V'); -end -#+end_src - -#+begin_src matlab :exports none -%% Bode Plot of the SVD decoupled plant -figure; -tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile([2,1]); -hold on; -for i = 1:5 - for j = i+1:6 - plot(frf_iff.f, abs(G_dL_svd(:,i,j)), 'color', [0,0,0,0.2], ... - 'HandleVisibility', 'off'); - end -end -set(gca,'ColorOrderIndex',1) -for i = 1:6 - plot(frf_iff.f, abs(G_dL_svd(:,i,i)), ... - 'DisplayName', sprintf('$y_%i/u_%i$', i, i)); -end -plot(frf_iff.f, abs(G_dL_svd(:,1,2)), 'color', [0,0,0,0.2], ... - 'DisplayName', 'Coupling'); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -ylabel('Amplitude'); set(gca, 'XTickLabel',[]); -ylim([1e-9, 1e-4]); -legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 3); - -ax2 = nexttile; -hold on; -for i =1:6 - plot(frf_iff.f, 180/pi*angle(G_dL_svd(:,i,i))); -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); -hold off; -yticks(-360:90:360); -ylim([-180, 180]); - -linkaxes([ax1,ax2],'x'); -xlim([10, 1e3]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/interaction_svd_plant.pdf', 'width', 'wide', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_interaction_svd_plant -#+caption: Bode Plot of the plant decoupled using the Singular Value Decomposition -#+RESULTS: -[[file:figs/test_nhexa_interaction_svd_plant.png]] - -#+begin_src matlab -%% Compute the RGA matrix for the SVD decoupled plant -RGA_svd = zeros(size(frf_coupled)); -for i = 1:length(frf_iff.f) - RGA_svd(i,:,:) = squeeze(G_dL_svd(i,:,:)).*inv(squeeze(G_dL_svd(i,:,:))).'; -end - -%% Compute the RGA-number -RGA_svd_sum = zeros(size(RGA_svd, 1), 1); -for i = 1:length(frf_iff.f) - RGA_svd_sum(i) = sum(sum(abs(eye(6) - squeeze(RGA_svd(i,:,:))))); -end -#+end_src - -#+begin_src matlab -%% RGA Number for the SVD decoupled plant -figure; -plot(frf_iff.f, RGA_svd_sum, 'k-'); -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('RGA Number'); -xlim([10, 1e3]); ylim([1e-2, 1e2]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/interaction_rga_svd.pdf', 'width', 'wide', 'height', 'normal'); -#+end_src - -#+name: fig:test_nhexa_interaction_rga_svd -#+caption: RGA number for the plant decoupled using the SVD -#+RESULTS: -[[file:figs/test_nhexa_interaction_rga_svd.png]] - -**** Dynamic decoupling -<> - -#+begin_src latex :file decoupling_arch_dynamic.pdf -\begin{tikzpicture} - \node[block] (G) {$\bm{G}$}; - \node[block, left=0.8 of G] (Ginv) {$\bm{\hat{G}}^{-1}$}; - - % Connections and labels - \draw[<-] (Ginv.west) -- ++(-1.8, 0) node[above right]{$\bm{u}$}; - \draw[->] (Ginv.east) -- (G.west) node[above left]{$\bm{\tau}$}; - \draw[->] (G.east) -- ++( 1.8, 0) node[above left]{$d\bm{\mathcal{L}}$}; - - \begin{scope}[on background layer] - \node[fit={(Ginv.south west) (G.north east)}, fill=black!10!white, draw, dashed, inner sep=16pt] (Gx) {}; - \node[below right] at (Gx.north west) {$\bm{G}_{\text{inv}}$}; - \end{scope} -\end{tikzpicture} -#+end_src - -#+name: fig:test_nhexa_decoupling_arch_dynamic -#+caption: Decoupling using the inverse of a dynamical model $\bm{\hat{G}}$ of the plant dynamics $\bm{G}$ -#+RESULTS: -[[file:figs/test_nhexa_decoupling_arch_dynamic.png]] - -#+begin_src matlab :exports none -%% Compute the plant inverse from the model -G_model = G_coupled; -G_model.outputdelay = 0; % necessary for further inversion -G_inv = inv(G_model); - -%% Compute the decoupled plant -G_dL_inv = zeros(size(frf_coupled)); -for i = 1:length(frf_iff.f) - G_dL_inv(i,:,:) = squeeze(frf_coupled(i,:,:))*squeeze(evalfr(G_inv, 1j*2*pi*frf_iff.f(i))); -end -#+end_src - -#+begin_src matlab :exports none -%% Bode plot of the decoupled plant by full inversion -figure; -tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile([2,1]); -hold on; -for i = 1:5 - for j = i+1:6 - plot(frf_iff.f, abs(G_dL_inv(:,i,j)), 'color', [0,0,0,0.2], ... - 'HandleVisibility', 'off'); - end -end -set(gca,'ColorOrderIndex',1) -for i = 1:6 - plot(frf_iff.f, abs(G_dL_inv(:,i,i)), ... - 'DisplayName', sprintf('$y_%i/u_%i$', i, i)); -end -plot(frf_iff.f, abs(G_dL_inv(:,1,2)), 'color', [0,0,0,0.2], ... - 'DisplayName', 'Coupling'); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -ylabel('Amplitude'); set(gca, 'XTickLabel',[]); -ylim([1e-4, 1e1]); -legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); - -ax2 = nexttile; -hold on; -for i =1:6 - plot(frf_iff.f, 180/pi*angle(G_dL_inv(:,i,i))); -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); -hold off; -yticks(-360:90:360); -ylim([-180, 180]); - -linkaxes([ax1,ax2],'x'); -xlim([10, 1e3]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/interaction_dynamic_dec_plant.pdf', 'width', 'wide', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_interaction_dynamic_dec_plant -#+caption: Bode Plot of the dynamically decoupled plant -#+RESULTS: -[[file:figs/test_nhexa_interaction_dynamic_dec_plant.png]] - -#+begin_src matlab :exports none -%% Compute the RGA matrix for the inverse based decoupled plant -RGA_inv = zeros(size(frf_coupled)); -for i = 1:length(frf_iff.f) - RGA_inv(i,:,:) = squeeze(G_dL_inv(i,:,:)).*inv(squeeze(G_dL_inv(i,:,:))).'; -end - -%% Compute the RGA-number -RGA_inv_sum = zeros(size(RGA_inv, 1), 1); -for i = 1:size(RGA_inv, 1) - RGA_inv_sum(i) = sum(sum(abs(eye(6) - squeeze(RGA_inv(i,:,:))))); -end -#+end_src - -#+begin_src matlab :exports none -%% RGA Number for the decoupled plant using full inversion -figure; -plot(frf_iff.f, RGA_inv_sum, 'k-'); -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('RGA Number'); -xlim([10, 1e3]); ylim([1e-2, 1e2]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/interaction_rga_dynamic_dec.pdf', 'width', 'wide', 'height', 'normal'); -#+end_src - -#+name: fig:test_nhexa_interaction_rga_dynamic_dec -#+caption: RGA number for the dynamically decoupled plant -#+RESULTS: -[[file:figs/test_nhexa_interaction_rga_dynamic_dec.png]] - -**** Jacobian Decoupling - Center of Stiffness -<> - -#+begin_src latex :file decoupling_arch_jacobian_cok.pdf -\begin{tikzpicture} - \node[block] (G) {$\bm{G}$}; - \node[block, left=0.8 of G] (Jt) {$J_{s,\{K\}}^{-T}$}; - \node[block, right=0.8 of G] (Ja) {$J_{a,\{K\}}^{-1}$}; - - % Connections and labels - \draw[<-] (Jt.west) -- ++(-1.8, 0) node[above right]{$\bm{\mathcal{F}}_{\{K\}}$}; - \draw[->] (Jt.east) -- (G.west) node[above left]{$\bm{\tau}$}; - \draw[->] (G.east) -- (Ja.west) node[above left]{$d\bm{\mathcal{L}}$}; - \draw[->] (Ja.east) -- ++( 1.8, 0) node[above left]{$\bm{\mathcal{X}}_{\{K\}}$}; - - \begin{scope}[on background layer] - \node[fit={(Jt.south west) (Ja.north east)}, fill=black!10!white, draw, dashed, inner sep=16pt] (Gx) {}; - \node[below right] at (Gx.north west) {$\bm{G}_{\{K\}}$}; - \end{scope} -\end{tikzpicture} -#+end_src - -#+name: fig:test_nhexa_decoupling_arch_jacobian_cok -#+caption: Decoupling using Jacobian matrices evaluated at the Center of Stiffness -#+RESULTS: -[[file:figs/test_nhexa_decoupling_arch_jacobian_cok.png]] - -#+begin_src matlab :exports none -%% Initialize the Nano-Hexapod -n_hexapod = initializeNanoHexapodFinal('MO_B', -42e-3, ... - 'motion_sensor_type', 'plates'); - -%% Get the Jacobians -J_cok = n_hexapod.geometry.J; -Js_cok = n_hexapod.geometry.Js; - -%% Decouple plant using Jacobian (CoM) -G_dL_J_cok = zeros(size(frf_coupled)); -for i = 1:length(frf_iff.f) - G_dL_J_cok(i,:,:) = inv(Js_cok)*squeeze(frf_coupled(i,:,:))*inv(J_cok'); -end -#+end_src - -The obtained plant is shown in Figure ref:fig:test_nhexa_interaction_J_cok_plant_not_normalized. -We can see that the stiffness in the $x$, $y$ and $z$ directions are equal, which is due to the cubic architecture of the Stewart platform. - -#+begin_src matlab :exports none -%% Bode Plot of the SVD decoupled plant -figure; -tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile([2,1]); -hold on; -for i = 1:5 - for j = i+1:6 - plot(frf_iff.f, abs(G_dL_J_cok(:,i,j)), 'color', [0,0,0,0.2], ... - 'HandleVisibility', 'off'); - end -end -set(gca,'ColorOrderIndex',1) -plot(frf_iff.f, abs(G_dL_J_cok(:,1,1)), ... - 'DisplayName', '$D_x/\tilde{\mathcal{F}}_x$'); -plot(frf_iff.f, abs(G_dL_J_cok(:,2,2)), ... - 'DisplayName', '$D_y/\tilde{\mathcal{F}}_y$'); -plot(frf_iff.f, abs(G_dL_J_cok(:,3,3)), ... - 'DisplayName', '$D_z/\tilde{\mathcal{F}}_z$'); -plot(frf_iff.f, abs(G_dL_J_cok(:,4,4)), ... - 'DisplayName', '$R_x/\tilde{\mathcal{M}}_x$'); -plot(frf_iff.f, abs(G_dL_J_cok(:,5,5)), ... - 'DisplayName', '$R_y/\tilde{\mathcal{M}}_y$'); -plot(frf_iff.f, abs(G_dL_J_cok(:,6,6)), ... - 'DisplayName', '$R_z/\tilde{\mathcal{M}}_z$'); -plot(frf_iff.f, abs(G_dL_J_cok(:,1,2)), 'color', [0,0,0,0.2], ... - 'DisplayName', 'Coupling'); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -ylabel('Amplitude'); set(gca, 'XTickLabel',[]); -ylim([1e-8, 2e-2]); -legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 3); - -ax2 = nexttile; -hold on; -for i =1:6 - plot(frf_iff.f, 180/pi*angle(G_dL_J_cok(:,i,i))); -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); -hold off; -yticks(-360:90:360); -ylim([-180, 180]); - -linkaxes([ax1,ax2],'x'); -xlim([10, 1e3]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/interaction_J_cok_plant_not_normalized.pdf', 'width', 'wide', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_interaction_J_cok_plant_not_normalized -#+caption: Bode Plot of the plant decoupled using the Jacobian evaluated at the "center of stiffness" -#+RESULTS: -[[file:figs/test_nhexa_interaction_J_cok_plant_not_normalized.png]] - -Because the plant in translation and rotation has very different gains, we choose to normalize the plant inputs such that the gain of the diagonal term is equal to $1$ at 100Hz. - -The results is shown in Figure ref:fig:test_nhexa_interaction_J_cok_plant. -#+begin_src matlab :exports none -%% Normalize the plant input -[~, i_100] = min(abs(frf_iff.f - 100)); -input_normalize = diag(1./diag(abs(squeeze(G_dL_J_cok(i_100,:,:))))); - -for i = 1:length(frf_iff.f) - G_dL_J_cok(i,:,:) = squeeze(G_dL_J_cok(i,:,:))*input_normalize; -end -#+end_src - -#+begin_src matlab :exports none -%% Bode Plot of the SVD decoupled plant -figure; -tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile([2,1]); -hold on; -for i = 1:5 - for j = i+1:6 - plot(frf_iff.f, abs(G_dL_J_cok(:,i,j)), 'color', [0,0,0,0.2], ... - 'HandleVisibility', 'off'); - end -end -set(gca,'ColorOrderIndex',1) -plot(frf_iff.f, abs(G_dL_J_cok(:,1,1)), ... - 'DisplayName', '$D_x/\tilde{\mathcal{F}}_x$'); -plot(frf_iff.f, abs(G_dL_J_cok(:,2,2)), ... - 'DisplayName', '$D_y/\tilde{\mathcal{F}}_y$'); -plot(frf_iff.f, abs(G_dL_J_cok(:,3,3)), ... - 'DisplayName', '$D_z/\tilde{\mathcal{F}}_z$'); -plot(frf_iff.f, abs(G_dL_J_cok(:,4,4)), ... - 'DisplayName', '$R_x/\tilde{\mathcal{M}}_x$'); -plot(frf_iff.f, abs(G_dL_J_cok(:,5,5)), ... - 'DisplayName', '$R_y/\tilde{\mathcal{M}}_y$'); -plot(frf_iff.f, abs(G_dL_J_cok(:,6,6)), ... - 'DisplayName', '$R_z/\tilde{\mathcal{M}}_z$'); -plot(frf_iff.f, abs(G_dL_J_cok(:,1,2)), 'color', [0,0,0,0.2], ... - 'DisplayName', 'Coupling'); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -ylabel('Amplitude'); set(gca, 'XTickLabel',[]); -ylim([1e-4, 1e1]); -legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2); - -ax2 = nexttile; -hold on; -for i =1:6 - plot(frf_iff.f, 180/pi*angle(G_dL_J_cok(:,i,i))); -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); -hold off; -yticks(-360:90:360); -ylim([-180, 180]); - -linkaxes([ax1,ax2],'x'); -xlim([10, 1e3]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/interaction_J_cok_plant.pdf', 'width', 'wide', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_interaction_J_cok_plant -#+caption: Bode Plot of the plant decoupled using the Jacobian evaluated at the "center of stiffness" -#+RESULTS: -[[file:figs/test_nhexa_interaction_J_cok_plant.png]] - -#+begin_src matlab :exports none -%% Compute RGA Matrix -RGA_cok = zeros(size(frf_coupled)); -for i = 1:length(frf_iff.f) - RGA_cok(i,:,:) = squeeze(G_dL_J_cok(i,:,:)).*inv(squeeze(G_dL_J_cok(i,:,:))).'; -end - -%% Compute RGA-number -RGA_cok_sum = zeros(length(frf_iff.f), 1); -for i = 1:length(frf_iff.f) - RGA_cok_sum(i) = sum(sum(abs(eye(6) - squeeze(RGA_cok(i,:,:))))); -end -#+end_src - -#+begin_src matlab :exports none -%% Plot the RGA-Number for the Jacobian (CoK) decoupled plant -figure; -plot(frf_iff.f, RGA_cok_sum, 'k-'); -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('RGA Number'); -xlim([10, 1e3]); ylim([1e-2, 1e2]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/interaction_rga_J_cok.pdf', 'width', 'wide', 'height', 'normal'); -#+end_src - -#+name: fig:test_nhexa_interaction_rga_J_cok -#+caption: RGA number for the plant decoupled using the Jacobian evaluted at the Center of Stiffness -#+RESULTS: -[[file:figs/test_nhexa_interaction_rga_J_cok.png]] - -**** Jacobian Decoupling - Center of Mass -<> - -#+begin_src latex :file decoupling_arch_jacobian_com.pdf -\begin{tikzpicture} - \node[block] (G) {$\bm{G}$}; - \node[block, left=0.8 of G] (Jt) {$J_{s,\{M\}}^{-T}$}; - \node[block, right=0.8 of G] (Ja) {$J_{a,\{M\}}^{-1}$}; - - % Connections and labels - \draw[<-] (Jt.west) -- ++(-1.8, 0) node[above right]{$\bm{\mathcal{F}}_{\{M\}}$}; - \draw[->] (Jt.east) -- (G.west) node[above left]{$\bm{\tau}$}; - \draw[->] (G.east) -- (Ja.west) node[above left]{$d\bm{\mathcal{L}}$}; - \draw[->] (Ja.east) -- ++( 1.8, 0) node[above left]{$\bm{\mathcal{X}}_{\{M\}}$}; - - \begin{scope}[on background layer] - \node[fit={(Jt.south west) (Ja.north east)}, fill=black!10!white, draw, dashed, inner sep=16pt] (Gx) {}; - \node[below right] at (Gx.north west) {$\bm{G}_{\{M\}}$}; - \end{scope} -\end{tikzpicture} -#+end_src - -#+name: fig:test_nhexa_decoupling_arch_jacobian_com -#+caption: Decoupling using Jacobian matrices evaluated at the Center of Mass -#+RESULTS: -[[file:figs/test_nhexa_decoupling_arch_jacobian_com.png]] - -#+begin_src matlab :exports none -%% Initialize the Nano-Hexapod -n_hexapod = initializeNanoHexapodFinal('MO_B', 25e-3, ... - 'motion_sensor_type', 'plates'); - -%% Get the Jacobians -J_com = n_hexapod.geometry.J; -Js_com = n_hexapod.geometry.Js; - -%% Decouple plant using Jacobian (CoM) -G_dL_J_com = zeros(size(frf_coupled)); -for i = 1:length(frf_iff.f) - G_dL_J_com(i,:,:) = inv(Js_com)*squeeze(frf_coupled(i,:,:))*inv(J_com'); -end - -%% Normalize the plant input -[~, i_100] = min(abs(frf_iff.f - 100)); -input_normalize = diag(1./diag(abs(squeeze(G_dL_J_com(i_100,:,:))))); - -for i = 1:length(frf_iff.f) - G_dL_J_com(i,:,:) = squeeze(G_dL_J_com(i,:,:))*input_normalize; -end -#+end_src - -#+begin_src matlab :exports none -%% Bode Plot of the SVD decoupled plant -figure; -tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile([2,1]); -hold on; -for i = 1:5 - for j = i+1:6 - plot(frf_iff.f, abs(G_dL_J_com(:,i,j)), 'color', [0,0,0,0.2], ... - 'HandleVisibility', 'off'); - end -end -set(gca,'ColorOrderIndex',1) -plot(frf_iff.f, abs(G_dL_J_com(:,1,1)), ... - 'DisplayName', '$D_x/\tilde{\mathcal{F}}_x$'); -plot(frf_iff.f, abs(G_dL_J_com(:,2,2)), ... - 'DisplayName', '$D_y/\tilde{\mathcal{F}}_y$'); -plot(frf_iff.f, abs(G_dL_J_com(:,3,3)), ... - 'DisplayName', '$D_z/\tilde{\mathcal{F}}_z$'); -plot(frf_iff.f, abs(G_dL_J_com(:,4,4)), ... - 'DisplayName', '$R_x/\tilde{\mathcal{M}}_x$'); -plot(frf_iff.f, abs(G_dL_J_com(:,5,5)), ... - 'DisplayName', '$R_y/\tilde{\mathcal{M}}_y$'); -plot(frf_iff.f, abs(G_dL_J_com(:,6,6)), ... - 'DisplayName', '$R_z/\tilde{\mathcal{M}}_z$'); -plot(frf_iff.f, abs(G_dL_J_com(:,1,2)), 'color', [0,0,0,0.2], ... - 'DisplayName', 'Coupling'); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -ylabel('Amplitude'); set(gca, 'XTickLabel',[]); -ylim([1e-3, 1e1]); -legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2); - -ax2 = nexttile; -hold on; -for i =1:6 - plot(frf_iff.f, 180/pi*angle(G_dL_J_com(:,i,i))); -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); -hold off; -yticks(-360:90:360); -ylim([-180, 180]); - -linkaxes([ax1,ax2],'x'); -xlim([10, 1e3]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/interaction_J_com_plant.pdf', 'width', 'wide', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_interaction_J_com_plant -#+caption: Bode Plot of the plant decoupled using the Jacobian evaluated at the Center of Mass -#+RESULTS: -[[file:figs/test_nhexa_interaction_J_com_plant.png]] - -#+begin_src matlab :exports none -%% Compute RGA Matrix -RGA_com = zeros(size(frf_coupled)); -for i = 1:length(frf_iff.f) - RGA_com(i,:,:) = squeeze(G_dL_J_com(i,:,:)).*inv(squeeze(G_dL_J_com(i,:,:))).'; -end - -%% Compute RGA-number -RGA_com_sum = zeros(size(RGA_com, 1), 1); -for i = 1:size(RGA_com, 1) - RGA_com_sum(i) = sum(sum(abs(eye(6) - squeeze(RGA_com(i,:,:))))); -end -#+end_src - -#+begin_src matlab :exports none -%% Plot the RGA-Number for the Jacobian (CoM) decoupled plant -figure; -plot(frf_iff.f, RGA_com_sum, 'k-'); -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('RGA Number'); -xlim([10, 1e3]); ylim([1e-2, 1e2]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/interaction_rga_J_com.pdf', 'width', 'wide', 'height', 'normal'); -#+end_src - -#+name: fig:test_nhexa_interaction_rga_J_com -#+caption: RGA number for the plant decoupled using the Jacobian evaluted at the Center of Mass -#+RESULTS: -[[file:figs/test_nhexa_interaction_rga_J_com.png]] - -**** Decoupling Comparison -<> - -Let's now compare all of the decoupling methods (Figure ref:fig:test_nhexa_interaction_compare_rga_numbers). - -#+begin_important -From Figure ref:fig:test_nhexa_interaction_compare_rga_numbers, the following remarks are made: -- *Decentralized plant*: well decoupled below suspension modes -- *Static inversion*: similar to the decentralized plant as the decentralized plant has already a good decoupling at low frequency -- *Crossover inversion*: the decoupling is improved around the crossover frequency as compared to the decentralized plant. However, the decoupling is increased at lower frequency. -- *SVD decoupling*: Very good decoupling up to 235Hz. Especially between 100Hz and 200Hz. -- *Dynamic Inversion*: the plant is very well decoupled at frequencies where the model is accurate (below 235Hz where flexible modes are not modelled). -- *Jacobian - Stiffness*: good decoupling at low frequency. The decoupling increases at the frequency of the suspension modes, but is acceptable up to the strut flexible modes (235Hz). -- *Jacobian - Mass*: bad decoupling at low frequency. Better decoupling above the frequency of the suspension modes, and acceptable decoupling up to the strut flexible modes (235Hz). -#+end_important - -#+begin_src matlab :exports none -%% Comparison of the RGA-Numbers -figure; -hold on; -plot(frf_iff.f, RGA_dec_sum, 'DisplayName', 'Decentralized'); -plot(frf_iff.f, RGA_sta_sum, 'DisplayName', 'Static inv.'); -plot(frf_iff.f, RGA_wc_sum, 'DisplayName', 'Crossover inv.'); -plot(frf_iff.f, RGA_svd_sum, 'DisplayName', 'SVD'); -plot(frf_iff.f, RGA_inv_sum, 'DisplayName', 'Dynamic inv.'); -plot(frf_iff.f, RGA_cok_sum, 'DisplayName', 'Jacobian - CoK'); -plot(frf_iff.f, RGA_com_sum, 'DisplayName', 'Jacobian - CoM'); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('RGA Number'); -xlim([10, 1e3]); ylim([1e-2, 1e2]); -legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 2); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/interaction_compare_rga_numbers.pdf', 'width', 'wide', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_interaction_compare_rga_numbers -#+caption: Comparison of the obtained RGA-numbers for all the decoupling methods -#+RESULTS: -[[file:figs/test_nhexa_interaction_compare_rga_numbers.png]] - -**** Decoupling Robustness -<> - -Let's now see how the decoupling is changing when changing the payload's mass. -#+begin_src matlab -frf_new = frf_iff.G_dL{3}; -#+end_src - -#+begin_src matlab :exports none -%% Decentralized RGA -RGA_dec_b = zeros(size(frf_new)); -for i = 1:length(frf_iff.f) - RGA_dec_b(i,:,:) = squeeze(frf_new(i,:,:)).*inv(squeeze(frf_new(i,:,:))).'; -end - -RGA_dec_sum_b = zeros(length(frf_iff), 1); -for i = 1:length(frf_iff.f) - RGA_dec_sum_b(i) = sum(sum(abs(eye(6) - squeeze(RGA_dec_b(i,:,:))))); -end -#+end_src - -#+begin_src matlab :exports none -%% Static Decoupling -G_dL_sta_b = zeros(size(frf_new)); -for i = 1:length(frf_iff.f) - G_dL_sta_b(i,:,:) = squeeze(frf_new(i,:,:))*dc_inv; -end - -RGA_sta_b = zeros(size(frf_new)); -for i = 1:length(frf_iff.f) - RGA_sta_b(i,:,:) = squeeze(G_dL_sta_b(i,:,:)).*inv(squeeze(G_dL_sta_b(i,:,:))).'; -end - -RGA_sta_sum_b = zeros(size(RGA_sta_b, 1), 1); -for i = 1:size(RGA_sta_b, 1) - RGA_sta_sum_b(i) = sum(sum(abs(eye(6) - squeeze(RGA_sta_b(i,:,:))))); -end -#+end_src - -#+begin_src matlab :exports none -%% Crossover Decoupling -V = squeeze(frf_coupled(i_wc,:,:)); -D = pinv(real(V'*V)); -H1 = D*real(V'*diag(exp(1j*angle(diag(V*D*V.'))/2))); - -G_dL_wc_b = zeros(size(frf_new)); -for i = 1:length(frf_iff.f) - G_dL_wc_b(i,:,:) = squeeze(frf_new(i,:,:))*H1; -end - -RGA_wc_b = zeros(size(frf_new)); -for i = 1:length(frf_iff.f) - RGA_wc_b(i,:,:) = squeeze(G_dL_wc_b(i,:,:)).*inv(squeeze(G_dL_wc_b(i,:,:))).'; -end - -RGA_wc_sum_b = zeros(size(RGA_wc_b, 1), 1); -for i = 1:size(RGA_wc_b, 1) - RGA_wc_sum_b(i) = sum(sum(abs(eye(6) - squeeze(RGA_wc_b(i,:,:))))); -end -#+end_src - -#+begin_src matlab :exports none -%% SVD -V = squeeze(frf_coupled(i_wc,:,:)); -D = pinv(real(V'*V)); -H1 = pinv(D*real(V'*diag(exp(1j*angle(diag(V*D*V.'))/2)))); -[U,S,V] = svd(H1); - -G_dL_svd_b = zeros(size(frf_new)); -for i = 1:length(frf_iff.f) - G_dL_svd_b(i,:,:) = inv(U)*squeeze(frf_new(i,:,:))*inv(V'); -end - -RGA_svd_b = zeros(size(frf_new)); -for i = 1:length(frf_iff.f) - RGA_svd_b(i,:,:) = squeeze(G_dL_svd_b(i,:,:)).*inv(squeeze(G_dL_svd_b(i,:,:))).'; -end - -RGA_svd_sum_b = zeros(size(RGA_svd_b, 1), 1); -for i = 1:size(RGA_svd, 1) - RGA_svd_sum_b(i) = sum(sum(abs(eye(6) - squeeze(RGA_svd_b(i,:,:))))); -end -#+end_src - -#+begin_src matlab :exports none -%% Dynamic Decoupling -G_model = G_coupled; -G_model.outputdelay = 0; % necessary for further inversion -G_inv = inv(G_model); - -G_dL_inv_b = zeros(size(frf_new)); -for i = 1:length(frf_iff.f) - G_dL_inv_b(i,:,:) = squeeze(frf_new(i,:,:))*squeeze(evalfr(G_inv, 1j*2*pi*frf_iff.f(i))); -end - -RGA_inv_b = zeros(size(frf_new)); -for i = 1:length(frf_iff.f) - RGA_inv_b(i,:,:) = squeeze(G_dL_inv_b(i,:,:)).*inv(squeeze(G_dL_inv_b(i,:,:))).'; -end - -RGA_inv_sum_b = zeros(size(RGA_inv_b, 1), 1); -for i = 1:size(RGA_inv_b, 1) - RGA_inv_sum_b(i) = sum(sum(abs(eye(6) - squeeze(RGA_inv_b(i,:,:))))); -end -#+end_src - -#+begin_src matlab :exports none -%% Jacobian (CoK) -G_dL_J_cok_b = zeros(size(frf_new)); -for i = 1:length(frf_iff.f) - G_dL_J_cok_b(i,:,:) = inv(Js_cok)*squeeze(frf_new(i,:,:))*inv(J_cok'); -end - -RGA_cok_b = zeros(size(frf_new)); -for i = 1:length(frf_iff.f) - RGA_cok_b(i,:,:) = squeeze(G_dL_J_cok_b(i,:,:)).*inv(squeeze(G_dL_J_cok_b(i,:,:))).'; -end - -RGA_cok_sum_b = zeros(size(RGA_cok_b, 1), 1); -for i = 1:size(RGA_cok_b, 1) - RGA_cok_sum_b(i) = sum(sum(abs(eye(6) - squeeze(RGA_cok_b(i,:,:))))); -end -#+end_src - -#+begin_src matlab :exports none -%% Jacobian (CoM) -G_dL_J_com_b = zeros(size(frf_new)); -for i = 1:length(frf_iff.f) - G_dL_J_com_b(i,:,:) = inv(Js_com)*squeeze(frf_new(i,:,:))*inv(J_com'); -end - -RGA_com_b = zeros(size(frf_new)); -for i = 1:length(frf_iff.f) - RGA_com_b(i,:,:) = squeeze(G_dL_J_com_b(i,:,:)).*inv(squeeze(G_dL_J_com_b(i,:,:))).'; -end - -RGA_com_sum_b = zeros(size(RGA_com_b, 1), 1); -for i = 1:size(RGA_com_b, 1) - RGA_com_sum_b(i) = sum(sum(abs(eye(6) - squeeze(RGA_com_b(i,:,:))))); -end -#+end_src - -The obtained RGA-numbers are shown in Figure ref:fig:test_nhexa_interaction_compare_rga_numbers_rob. - -#+begin_important -From Figure ref:fig:test_nhexa_interaction_compare_rga_numbers_rob: -- The decoupling using the Jacobian evaluated at the "center of stiffness" seems to give the most robust results. -#+end_important - -#+begin_src matlab :exports none -%% Robustness of the Decoupling method -figure; -hold on; -plot(frf_iff.f, RGA_dec_sum, '-', 'DisplayName', 'Decentralized'); -plot(frf_iff.f, RGA_sta_sum, '-', 'DisplayName', 'Static inv.'); -plot(frf_iff.f, RGA_wc_sum, '-', 'DisplayName', 'Crossover inv.'); -plot(frf_iff.f, RGA_svd_sum, '-', 'DisplayName', 'SVD'); -plot(frf_iff.f, RGA_inv_sum, '-', 'DisplayName', 'Dynamic inv.'); -plot(frf_iff.f, RGA_cok_sum, '-', 'DisplayName', 'Jacobian - CoK'); -plot(frf_iff.f, RGA_com_sum, '-', 'DisplayName', 'Jacobian - CoM'); -set(gca,'ColorOrderIndex',1) -plot(frf_iff.f, RGA_dec_sum_b, '--', 'HandleVisibility', 'off'); -plot(frf_iff.f, RGA_sta_sum_b, '--', 'HandleVisibility', 'off'); -plot(frf_iff.f, RGA_wc_sum_b, '--', 'HandleVisibility', 'off'); -plot(frf_iff.f, RGA_svd_sum_b, '--', 'HandleVisibility', 'off'); -plot(frf_iff.f, RGA_inv_sum_b, '--', 'HandleVisibility', 'off'); -plot(frf_iff.f, RGA_cok_sum_b, '--', 'HandleVisibility', 'off'); -plot(frf_iff.f, RGA_com_sum_b, '--', 'HandleVisibility', 'off'); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('RGA Number'); -xlim([10, 1e3]); ylim([1e-2, 1e2]); -legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 2); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/interaction_compare_rga_numbers_rob.pdf', 'width', 'wide', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_interaction_compare_rga_numbers_rob -#+caption: Change of the RGA-number with a change of the payload. Indication of the robustness of the inversion method. -#+RESULTS: -[[file:figs/test_nhexa_interaction_compare_rga_numbers_rob.png]] - -**** Conclusion - -#+begin_important -Several decoupling methods can be used: -- SVD -- Inverse -- Jacobian (CoK) -#+end_important - -#+name: tab:interaction_analysis_conclusion -#+caption: Summary of the interaction analysis and different decoupling strategies -#+attr_latex: :environment tabularx :width \linewidth :align lccc -#+attr_latex: :center t :booktabs t -| *Method* | *RGA* | *Diag Plant* | *Robustness* | -|----------------+-------+--------------+--------------| -| Decentralized | -- | Equal | ++ | -| Static dec. | -- | Equal | ++ | -| Crossover dec. | - | Equal | 0 | -| SVD | ++ | Diff | + | -| Dynamic dec. | ++ | Unity, equal | - | -| Jacobian - CoK | + | Diff | ++ | -| Jacobian - CoM | 0 | Diff | + | - -*** Robust High Authority Controller -:PROPERTIES: -:header-args:matlab+: :tangle matlab/scripts/hac_lac_enc_plates_suspended_table.m -:END: -<> -**** Introduction :ignore: -In this section we wish to develop a robust High Authority Controller (HAC) that is working for all payloads. - -cite:indri20_mechat_robot - -**** Matlab Init :noexport:ignore: -#+begin_src matlab -%% hac_lac_enc_plates_suspended_table.m -% Development and analysis of a robust High Authority Controller -#+end_src - -#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) -<> -#+end_src - -#+begin_src matlab :exports none :results silent :noweb yes -<> -#+end_src - -#+begin_src matlab :tangle no :noweb yes -<> -#+end_src - -#+begin_src matlab :eval no :noweb yes -<> -#+end_src - -#+begin_src matlab :noweb yes -<> -#+end_src - -#+begin_src matlab -%% Load the identified FRF and Simscape model -frf_iff = load('frf_iff_vib_table_m.mat', 'f', 'Ts', 'G_dL'); -sim_iff = load('sim_iff_vib_table_m.mat', 'G_dL'); -#+end_src - -**** Using Jacobian evaluated at the center of stiffness -***** Decoupled Plant -#+begin_src matlab -G_nom = frf_iff.G_dL{2}; % Nominal Plant -#+end_src - -#+begin_src matlab :exports none -%% Initialize the Nano-Hexapod -n_hexapod = initializeNanoHexapodFinal('MO_B', -42e-3, ... - 'motion_sensor_type', 'plates'); - -%% Get the Jacobians -J_cok = n_hexapod.geometry.J; -Js_cok = n_hexapod.geometry.Js; - -%% Decouple plant using Jacobian (CoM) -G_dL_J_cok = zeros(size(G_nom)); -for i = 1:length(frf_iff.f) - G_dL_J_cok(i,:,:) = inv(Js_cok)*squeeze(G_nom(i,:,:))*inv(J_cok'); -end - -%% Normalize the plant input -[~, i_100] = min(abs(frf_iff.f - 10)); -input_normalize = diag(1./diag(abs(squeeze(G_dL_J_cok(i_100,:,:))))); - -for i = 1:length(frf_iff.f) - G_dL_J_cok(i,:,:) = squeeze(G_dL_J_cok(i,:,:))*input_normalize; -end -#+end_src - -#+begin_src matlab :exports none -%% Bode Plot of the decoupled plant -figure; -tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile([2,1]); -hold on; -for i = 1:5 - for j = i+1:6 - plot(frf_iff.f, abs(G_dL_J_cok(:,i,j)), 'color', [0,0,0,0.2], ... - 'HandleVisibility', 'off'); - end -end -set(gca,'ColorOrderIndex',1) -plot(frf_iff.f, abs(G_dL_J_cok(:,1,1)), ... - 'DisplayName', '$D_x/\tilde{\mathcal{F}}_x$'); -plot(frf_iff.f, abs(G_dL_J_cok(:,2,2)), ... - 'DisplayName', '$D_y/\tilde{\mathcal{F}}_y$'); -plot(frf_iff.f, abs(G_dL_J_cok(:,3,3)), ... - 'DisplayName', '$D_z/\tilde{\mathcal{F}}_z$'); -plot(frf_iff.f, abs(G_dL_J_cok(:,4,4)), ... - 'DisplayName', '$R_x/\tilde{\mathcal{M}}_x$'); -plot(frf_iff.f, abs(G_dL_J_cok(:,5,5)), ... - 'DisplayName', '$R_y/\tilde{\mathcal{M}}_y$'); -plot(frf_iff.f, abs(G_dL_J_cok(:,6,6)), ... - 'DisplayName', '$R_z/\tilde{\mathcal{M}}_z$'); -plot(frf_iff.f, abs(G_dL_J_cok(:,1,2)), 'color', [0,0,0,0.2], ... - 'DisplayName', 'Coupling'); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -ylabel('Amplitude'); set(gca, 'XTickLabel',[]); -ylim([1e-3, 1e1]); -legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); - -ax2 = nexttile; -hold on; -for i =1:6 - plot(frf_iff.f, 180/pi*angle(G_dL_J_cok(:,i,i))); -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); -hold off; -yticks(-360:90:360); -ylim([-180, 180]); - -linkaxes([ax1,ax2],'x'); -xlim([10, 1e3]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/bode_plot_hac_iff_plant_jacobian_cok.pdf', 'width', 'wide', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_bode_plot_hac_iff_plant_jacobian_cok -#+caption: Bode plot of the decoupled plant using the Jacobian evaluated at the Center of Stiffness -#+RESULTS: -[[file:figs/test_nhexa_bode_plot_hac_iff_plant_jacobian_cok.png]] - -***** SISO Controller Design -As the diagonal elements of the plant are not equal, several SISO controllers are designed and then combined to form a diagonal controller. -All the diagonal terms of the controller consists of: -- A double integrator to have high gain at low frequency -- A lead around the crossover frequency to increase stability margins -- Two second order low pass filters above the crossover frequency to increase the robustness to high frequency modes - -#+begin_src matlab :exports none -%% Controller Ry,Rz - -% Wanted crossover frequency -wc_Rxy = 2*pi*80; - -% Lead -a = 8.0; % Amount of phase lead / width of the phase lead / high frequency gain -wc = wc_Rxy; % Frequency with the maximum phase lead [rad/s] -Kd_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a)))/sqrt(a); - -% Integrator -w0_int = wc_Rxy/2; % [rad/s] -xi_int = 0.3; - -Kd_int = (1 + 2*xi_int/w0_int*s + s^2/w0_int^2)/(s^2/w0_int^2); - -% Low Pass Filter (High frequency robustness) -w0_lpf = wc_Rxy*2; % Cut-off frequency [rad/s] -xi_lpf = 0.6; % Damping Ratio - -Kd_lpf = 1/(1 + 2*xi_lpf/w0_lpf*s + s^2/w0_lpf^2); - -w0_lpf_b = wc_Rxy*4; % Cut-off frequency [rad/s] -xi_lpf_b = 0.7; % Damping Ratio - -Kd_lpf_b = 1/(1 + 2*xi_lpf_b/w0_lpf_b*s + s^2/w0_lpf_b^2); - -% Unity Gain frequency -[~, i_80] = min(abs(frf_iff.f - wc_Rxy/2/pi)); - -% Combination of all the elements -Kd_Rxy = ... - -1/abs(G_dL_J_cok(i_80,4,4)) * ... - Kd_lead/abs(evalfr(Kd_lead, 1j*wc_Rxy)) * ... % Lead (gain of 1 at wc) - Kd_int /abs(evalfr(Kd_int, 1j*wc_Rxy)) * ... - Kd_lpf_b/abs(evalfr(Kd_lpf_b, 1j*wc_Rxy)) * ... - Kd_lpf /abs(evalfr(Kd_lpf, 1j*wc_Rxy)); % Low Pass Filter -#+end_src - -#+begin_src matlab :exports none -%% Controller Dx,Dy,Rz - -% Wanted crossover frequency -wc_Dxy = 2*pi*100; - -% Lead -a = 8.0; % Amount of phase lead / width of the phase lead / high frequency gain -wc = wc_Dxy; % Frequency with the maximum phase lead [rad/s] -Kd_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a)))/sqrt(a); - -% Integrator -w0_int = wc_Dxy/2; % [rad/s] -xi_int = 0.3; - -Kd_int = (1 + 2*xi_int/w0_int*s + s^2/w0_int^2)/(s^2/w0_int^2); - -% Low Pass Filter (High frequency robustness) -w0_lpf = wc_Dxy*2; % Cut-off frequency [rad/s] -xi_lpf = 0.6; % Damping Ratio - -Kd_lpf = 1/(1 + 2*xi_lpf/w0_lpf*s + s^2/w0_lpf^2); - -w0_lpf_b = wc_Dxy*4; % Cut-off frequency [rad/s] -xi_lpf_b = 0.7; % Damping Ratio - -Kd_lpf_b = 1/(1 + 2*xi_lpf_b/w0_lpf_b*s + s^2/w0_lpf_b^2); - -% Unity Gain frequency -[~, i_100] = min(abs(frf_iff.f - wc_Dxy/2/pi)); - -% Combination of all the elements -Kd_Dyx_Rz = ... - -1/abs(G_dL_J_cok(i_100,1,1)) * ... - Kd_int /abs(evalfr(Kd_int, 1j*wc_Dxy)) * ... % Integrator - Kd_lead/abs(evalfr(Kd_lead, 1j*wc_Dxy)) * ... % Lead (gain of 1 at wc) - Kd_lpf_b/abs(evalfr(Kd_lpf_b, 1j*wc_Dxy)) * ... % Lead (gain of 1 at wc) - Kd_lpf /abs(evalfr(Kd_lpf, 1j*wc_Dxy)); % Low Pass Filter -#+end_src - -#+begin_src matlab :exports none -%% Controller Dz - -% Wanted crossover frequency -wc_Dz = 2*pi*100; - -% Lead -a = 8.0; % Amount of phase lead / width of the phase lead / high frequency gain -wc = wc_Dz; % Frequency with the maximum phase lead [rad/s] -Kd_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a)))/sqrt(a); - -% Integrator -w0_int = wc_Dz/2; % [rad/s] -xi_int = 0.3; - -Kd_int = (1 + 2*xi_int/w0_int*s + s^2/w0_int^2)/(s^2/w0_int^2); - -% Low Pass Filter (High frequency robustness) -w0_lpf = wc_Dz*2; % Cut-off frequency [rad/s] -xi_lpf = 0.6; % Damping Ratio - -Kd_lpf = 1/(1 + 2*xi_lpf/w0_lpf*s + s^2/w0_lpf^2); - -w0_lpf_b = wc_Dz*4; % Cut-off frequency [rad/s] -xi_lpf_b = 0.7; % Damping Ratio - -Kd_lpf_b = 1/(1 + 2*xi_lpf_b/w0_lpf_b*s + s^2/w0_lpf_b^2); - -% Unity Gain frequency -[~, i_100] = min(abs(frf_iff.f - wc_Dz/2/pi)); - -% Combination of all the elements -Kd_Dz = ... - -1/abs(G_dL_J_cok(i_100,3,3)) * ... - Kd_int /abs(evalfr(Kd_int, 1j*wc_Dz)) * ... % Integrator - Kd_lead/abs(evalfr(Kd_lead, 1j*wc_Dz)) * ... % Lead (gain of 1 at wc) - Kd_lpf_b/abs(evalfr(Kd_lpf_b, 1j*wc_Dz)) * ... % Lead (gain of 1 at wc) - Kd_lpf /abs(evalfr(Kd_lpf, 1j*wc_Dz)); % Low Pass Filter -#+end_src - -#+begin_src matlab :exports none -%% Diagonal Controller -Kd_diag = blkdiag(Kd_Dyx_Rz, Kd_Dyx_Rz, Kd_Dz, Kd_Rxy, Kd_Rxy, Kd_Dyx_Rz); -#+end_src - -***** Obtained Loop Gain -#+begin_src matlab :exports none -%% Experimental Loop Gain -Lmimo = permute(pagemtimes(permute(G_dL_J_cok, [2,3,1]), squeeze(freqresp(Kd_diag, frf_iff.f, 'Hz'))), [3,1,2]); -#+end_src - -#+begin_src matlab :exports none -%% Bode plot of the experimental Loop Gain -figure; -tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile([2,1]); -hold on; -for i = 1:6 - plot(frf_iff.f, abs(Lmimo(:,i,i)), '-'); -end -for i = 1:5 - for j = i+1:6 - plot(frf_iff.f, abs(squeeze(Lmimo(:,i,j))), 'color', [0,0,0,0.2]); - end -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -ylabel('Loop Gain'); set(gca, 'XTickLabel',[]); -ylim([1e-3, 1e+3]); - -ax2 = nexttile; -hold on; -for i = 1:6 - plot(frf_iff.f, 180/pi*angle(Lmimo(:,i,i)), '-'); -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); -hold off; -yticks(-360:45:360); -ylim([-180, 180]); - -linkaxes([ax1,ax2],'x'); -xlim([1, 2e3]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/bode_plot_hac_iff_loop_gain_jacobian_cok.pdf', 'width', 'wide', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_bode_plot_hac_iff_loop_gain_jacobian_cok -#+caption: Bode plot of the Loop Gain when using the Jacobian evaluated at the Center of Stiffness to decouple the system -#+RESULTS: -[[file:figs/test_nhexa_bode_plot_hac_iff_loop_gain_jacobian_cok.png]] - -#+begin_src matlab -%% Controller to be implemented -Kd = inv(J_cok')*input_normalize*ss(Kd_diag)*inv(Js_cok); -#+end_src - -***** Verification of the Stability -Now the stability of the feedback loop is verified using the generalized Nyquist criteria. - -#+begin_src matlab :exports none -%% Compute the Eigenvalues of the loop gain -Ldet = zeros(3, 6, length(frf_iff.f)); - -for i_mass = 1:3 - % Loop gain - Lmimo = pagemtimes(permute(frf_iff.G_dL{i_mass}, [2,3,1]),squeeze(freqresp(Kd, frf_iff.f, 'Hz'))); - for i_f = 2:length(frf_iff.f) - Ldet(i,:, i_f) = eig(squeeze(Lmimo(:,:,i_f))); - end -end -#+end_src - -#+begin_src matlab :exports none -%% Plot of the eigenvalues of L in the complex plane -figure; -hold on; -for i_mass = 2:3 - plot(real(squeeze(Ldet(i_mass, 1,:))), imag(squeeze(Ldet(i_mass, 1,:))), ... - '.', 'color', colors(i_mass+1, :), ... - 'DisplayName', sprintf('%i masses', i_mass)); - plot(real(squeeze(Ldet(i_mass, 1,:))), -imag(squeeze(Ldet(i_mass, 1,:))), ... - '.', 'color', colors(i_mass+1, :), ... - 'HandleVisibility', 'off'); - for i = 1:6 - plot(real(squeeze(Ldet(i_mass, i,:))), imag(squeeze(Ldet(i_mass, i,:))), ... - '.', 'color', colors(i_mass+1, :), ... - 'HandleVisibility', 'off'); - plot(real(squeeze(Ldet(i_mass, i,:))), -imag(squeeze(Ldet(i_mass, i,:))), ... - '.', 'color', colors(i_mass+1, :), ... - 'HandleVisibility', 'off'); - end -end -plot(-1, 0, 'kx', 'HandleVisibility', 'off'); -hold off; -set(gca, 'XScale', 'lin'); set(gca, 'YScale', 'lin'); -xlabel('Real'); ylabel('Imag'); -legend('location', 'southeast'); -xlim([-3, 1]); ylim([-2, 2]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/loci_hac_iff_loop_gain_jacobian_cok.pdf', 'width', 'wide', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_loci_hac_iff_loop_gain_jacobian_cok -#+caption: Loci of $L(j\omega)$ in the complex plane. -#+RESULTS: -[[file:figs/test_nhexa_loci_hac_iff_loop_gain_jacobian_cok.png]] - -***** Save for further analysis -#+begin_src matlab :exports none :tangle no -save('matlab/data_sim/Khac_iff_struts_jacobian_cok.mat', 'Kd') -#+end_src - -#+begin_src matlab :eval no -save('data_sim/Khac_iff_struts_jacobian_cok.mat', 'Kd') -#+end_src - -***** Sensitivity transfer function from the model -#+begin_src matlab :exports none -%% Open Simulink Model -mdl = 'nano_hexapod_simscape'; - -options = linearizeOptions; -options.SampleTime = 0; - -open(mdl) - -Rx = zeros(1, 7); - -colors = colororder; -#+end_src - -#+begin_src matlab :exports none -%% Initialize the Simscape model in closed loop -n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ... - 'flex_top_type', '4dof', ... - 'motion_sensor_type', 'plates', ... - 'actuator_type', '2dof', ... - 'controller_type', 'hac-iff-struts'); - -support.type = 1; % On top of vibration table -payload.type = 2; % Payload -#+end_src - -#+begin_src matlab :exports none -%% Load controllers -load('Kiff_opt.mat', 'Kiff'); -Kiff = c2d(Kiff, Ts, 'Tustin'); -load('Khac_iff_struts_jacobian_cok.mat', 'Kd') -Khac_iff_struts = c2d(Kd, Ts, 'Tustin'); -#+end_src - -#+begin_src matlab :exports none -%% Identify the (damped) transfer function from u to dLm -clear io; io_i = 1; -io(io_i) = linio([mdl, '/Rx'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs -io(io_i) = linio([mdl, '/dL'], 1, 'output'); io_i = io_i + 1; % Plate Displacement (encoder) -#+end_src - -#+begin_src matlab :exports none -%% Identification of the dynamics -Gcl = linearize(mdl, io, 0.0, options); -#+end_src - -#+begin_src matlab :exports none -%% Computation of the sensitivity transfer function -S = eye(6) - inv(n_hexapod.geometry.J)*Gcl; -#+end_src - -The results are shown in Figure ref:fig:test_nhexa_sensitivity_hac_jacobian_cok_3m_comp_model. - -#+begin_src matlab :exports none -%% Bode plot for the transfer function from u to dLm -freqs = logspace(0, 3, 1000); - -figure; -hold on; -for i =1:6 - set(gca,'ColorOrderIndex',i); - plot(freqs, abs(squeeze(freqresp(S(i,i), freqs, 'Hz'))), '--', ... - 'DisplayName', sprintf('$S_{%s}$ - Model', labels{i})); -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('Sensitivity [-]'); -ylim([1e-4, 1e1]); -legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3); -xlim([1, 1e3]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/sensitivity_hac_jacobian_cok_3m_comp_model.pdf', 'width', 'wide', 'height', 'normal'); -#+end_src - -#+name: fig:test_nhexa_sensitivity_hac_jacobian_cok_3m_comp_model -#+caption: Estimated sensitivity transfer functions for the HAC controller using the Jacobian estimated at the Center of Stiffness -#+RESULTS: -[[file:figs/test_nhexa_sensitivity_hac_jacobian_cok_3m_comp_model.png]] - -**** Using Singular Value Decomposition -***** Decoupled Plant -#+begin_src matlab -G_nom = frf_iff.G_dL{2}; % Nominal Plant -#+end_src - -#+begin_src matlab :exports none -%% Take complex matrix corresponding to the plant at 100Hz -wc = 100; % Wanted crossover frequency [Hz] -[~, i_wc] = min(abs(frf_iff.f - wc)); % Indice corresponding to wc - -V = squeeze(G_nom(i_wc,:,:)); - -%% Real approximation of G(100Hz) -D = pinv(real(V'*V)); -H1 = pinv(D*real(V'*diag(exp(1j*angle(diag(V*D*V.'))/2)))); - -%% Singular Value Decomposition -[U,S,V] = svd(H1); - -%% Compute the decoupled plant using SVD -G_dL_svd = zeros(size(G_nom)); -for i = 1:length(frf_iff.f) - G_dL_svd(i,:,:) = inv(U)*squeeze(G_nom(i,:,:))*inv(V'); -end -#+end_src - -#+begin_src matlab :exports none -%% Bode plot of the decoupled plant using SVD -figure; -tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile([2,1]); -hold on; -for i = 1:5 - for j = i+1:6 - plot(frf_iff.f, abs(G_dL_svd(:,i,j)), 'color', [0,0,0,0.2], ... - 'HandleVisibility', 'off'); - end -end -set(gca,'ColorOrderIndex',1); -for i = 1:6 - plot(frf_iff.f, abs(G_dL_svd(:,i,i)), ... - 'DisplayName', sprintf('$y_%i/u_%i$', i, i)); -end -plot(frf_iff.f, abs(G_dL_svd(:,1,2)), 'color', [0,0,0,0.2], ... - 'DisplayName', 'Coupling'); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -ylabel('Amplitude'); set(gca, 'XTickLabel',[]); -ylim([1e-9, 1e-4]); -legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); - -ax2 = nexttile; -hold on; -for i =1:6 - plot(frf_iff.f, 180/pi*angle(G_dL_svd(:,i,i))); -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); -hold off; -yticks(-360:90:360); -ylim([-180, 180]); - -linkaxes([ax1,ax2],'x'); -xlim([10, 1e3]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/bode_plot_hac_iff_plant_svd.pdf', 'width', 'wide', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_bode_plot_hac_iff_plant_svd -#+caption: Bode plot of the decoupled plant using the SVD -#+RESULTS: -[[file:figs/test_nhexa_bode_plot_hac_iff_plant_svd.png]] - -***** Controller Design -#+begin_src matlab :exports none -%% Lead -a = 6.0; % Amount of phase lead / width of the phase lead / high frequency gain -wc = 2*pi*100; % Frequency with the maximum phase lead [rad/s] -Kd_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a)))/sqrt(a); - -%% Integrator -Kd_int = ((2*pi*50 + s)/(2*pi*0.1 + s))^2; - -%% Low Pass Filter (High frequency robustness) -w0_lpf = 2*pi*200; % Cut-off frequency [rad/s] -xi_lpf = 0.3; % Damping Ratio - -Kd_lpf = 1/(1 + 2*xi_lpf/w0_lpf*s + s^2/w0_lpf^2); - -%% Normalize Gain -Kd_norm = diag(1./abs(diag(squeeze(G_dL_svd(i_wc,:,:))))); - -%% Diagonal Control -Kd_diag = ... - Kd_norm * ... % Normalize gain at 100Hz - Kd_int /abs(evalfr(Kd_int, 1j*2*pi*100)) * ... % Integrator - Kd_lead/abs(evalfr(Kd_lead, 1j*2*pi*100)) * ... % Lead (gain of 1 at wc) - Kd_lpf /abs(evalfr(Kd_lpf, 1j*2*pi*100)); % Low Pass Filter -#+end_src - -#+begin_src matlab :exports none -%% MIMO Controller -Kd = -inv(V') * ... % Output decoupling - ss(Kd_diag) * ... - inv(U); % Input decoupling -#+end_src - -***** Loop Gain -#+begin_src matlab :exports none -%% Experimental Loop Gain -Lmimo = permute(pagemtimes(permute(G_nom, [2,3,1]),squeeze(freqresp(Kd, frf_iff.f, 'Hz'))), [3,1,2]); -#+end_src - -#+begin_src matlab :exports none -%% Loop gain when using SVD -figure; -tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile([2,1]); -hold on; -for i = 1:6 - plot(frf_iff.f, abs(Lmimo(:,i,i)), '-'); -end -for i = 1:5 - for j = i+1:6 - plot(frf_iff.f, abs(squeeze(Lmimo(:,i,j))), 'color', [0,0,0,0.2]); - end -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -ylabel('Loop Gain'); set(gca, 'XTickLabel',[]); -ylim([1e-3, 1e+3]); - -ax2 = nexttile; -hold on; -for i = 1:6 - plot(frf_iff.f, 180/pi*angle(Lmimo(:,i,i)), '-'); -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); -hold off; -yticks(-360:30:360); -ylim([-180, 0]); - -linkaxes([ax1,ax2],'x'); -xlim([1, 2e3]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/bode_plot_hac_iff_loop_gain_svd.pdf', 'width', 'wide', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_bode_plot_hac_iff_loop_gain_svd -#+caption: Bode plot of Loop Gain when using the SVD -#+RESULTS: -[[file:figs/test_nhexa_bode_plot_hac_iff_loop_gain_svd.png]] - -***** Stability Verification -#+begin_src matlab -%% Compute the Eigenvalues of the loop gain -Ldet = zeros(3, 6, length(frf_iff.f)); - -for i = 1:3 - Lmimo = pagemtimes(permute(frf_iff.G_dL{i}, [2,3,1]),squeeze(freqresp(Kd, frf_iff.f, 'Hz'))); - for i_f = 2:length(frf_iff.f) - Ldet(i,:, i_f) = eig(squeeze(Lmimo(:,:,i_f))); - end -end -#+end_src - -#+begin_src matlab :exports none -%% Plot of the eigenvalues of L in the complex plane -figure; -hold on; -for i_mass = 2:3 - plot(real(squeeze(Ldet(i_mass, 1,:))), imag(squeeze(Ldet(i_mass, 1,:))), ... - '.', 'color', colors(i_mass+1, :), ... - 'DisplayName', sprintf('%i masses', i_mass)); - plot(real(squeeze(Ldet(i_mass, 1,:))), -imag(squeeze(Ldet(i_mass, 1,:))), ... - '.', 'color', colors(i_mass+1, :), ... - 'HandleVisibility', 'off'); - for i = 1:6 - plot(real(squeeze(Ldet(i_mass, i,:))), imag(squeeze(Ldet(i_mass, i,:))), ... - '.', 'color', colors(i_mass+1, :), ... - 'HandleVisibility', 'off'); - plot(real(squeeze(Ldet(i_mass, i,:))), -imag(squeeze(Ldet(i_mass, i,:))), ... - '.', 'color', colors(i_mass+1, :), ... - 'HandleVisibility', 'off'); - end -end -plot(-1, 0, 'kx', 'HandleVisibility', 'off'); -hold off; -set(gca, 'XScale', 'lin'); set(gca, 'YScale', 'lin'); -xlabel('Real'); ylabel('Imag'); -legend('location', 'southeast'); -xlim([-3, 1]); ylim([-2, 2]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/loci_hac_iff_loop_gain_svd.pdf', 'width', 'wide', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_loci_hac_iff_loop_gain_svd -#+caption: Locis of $L(j\omega)$ in the complex plane. -#+RESULTS: -[[file:figs/test_nhexa_loci_hac_iff_loop_gain_svd.png]] - -***** Save for further analysis -#+begin_src matlab :exports none :tangle no -save('matlab/data_sim/Khac_iff_struts_svd.mat', 'Kd') -#+end_src - -#+begin_src matlab :eval no -save('data_sim/Khac_iff_struts_svd.mat', 'Kd') -#+end_src - -***** Measured Sensitivity Transfer Function -The sensitivity transfer function is estimated by adding a reference signal $R_x$ consisting of a low pass filtered white noise, and measuring the position error $E_x$ at the same time. - -The transfer function from $R_x$ to $E_x$ is the sensitivity transfer function. - -In order to identify the sensitivity transfer function for all directions, six reference signals are used, one for each direction. - -#+begin_src matlab :exports none -%% Tested directions -labels = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}; -#+end_src - -#+begin_src matlab :exports none -%% Load Identification Data -meas_hac_svd_3m = {}; - -for i = 1:6 - meas_hac_svd_3m(i) = {load(sprintf('T_S_meas_%s_3m_hac_svd_iff.mat', labels{i}), 't', 'Va', 'Vs', 'de', 'Rx')}; -end -#+end_src - -#+begin_src matlab :exports none -%% Setup useful variables -% Sampling Time [s] -Ts = (meas_hac_svd_3m{1}.t(end) - (meas_hac_svd_3m{1}.t(1)))/(length(meas_hac_svd_3m{1}.t)-1); - -% Sampling Frequency [Hz] -Fs = 1/Ts; - -% Hannning Windows -win = hanning(ceil(5*Fs)); - -% And we get the frequency vector -[~, f] = tfestimate(meas_hac_svd_3m{1}.Va, meas_hac_svd_3m{1}.de, win, Noverlap, Nfft, 1/Ts); -#+end_src - -#+begin_src matlab :exports none -%% Load Jacobian matrix -load('jacobian.mat', 'J'); - -%% Compute position error -for i = 1:6 - meas_hac_svd_3m{i}.Xm = [inv(J)*meas_hac_svd_3m{i}.de']'; - meas_hac_svd_3m{i}.Ex = meas_hac_svd_3m{i}.Rx - meas_hac_svd_3m{i}.Xm; -end -#+end_src - -An example is shown in Figure ref:fig:test_nhexa_ref_track_hac_svd_3m where both the reference signal and the measured position are shown for translations in the $x$ direction. - -#+begin_src matlab :exports none -figure; -hold on; -plot(meas_hac_svd_3m{1}.t, meas_hac_svd_3m{1}.Xm(:,1), 'DisplayName', 'Pos.') -plot(meas_hac_svd_3m{1}.t, meas_hac_svd_3m{1}.Rx(:,1), 'DisplayName', 'Ref.') -hold off; -xlabel('Time [s]'); ylabel('Dx motion [m]'); -xlim([20, 22]); -legend('location', 'northeast'); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/ref_track_hac_svd_3m.pdf', 'width', 'wide', 'height', 'normal'); -#+end_src - -#+name: fig:test_nhexa_ref_track_hac_svd_3m -#+caption: Reference position and measured position -#+RESULTS: -[[file:figs/test_nhexa_ref_track_hac_svd_3m.png]] - -#+begin_src matlab :exports none -%% Transfer function estimate of S -S_hac_svd_3m = zeros(length(f), 6, 6); - -for i = 1:6 - S_hac_svd_3m(:,:,i) = tfestimate(meas_hac_svd_3m{i}.Rx, meas_hac_svd_3m{i}.Ex, win, Noverlap, Nfft, 1/Ts); -end -#+end_src - -The sensitivity transfer functions estimated for all directions are shown in Figure ref:fig:test_nhexa_sensitivity_hac_svd_3m. - -#+begin_src matlab :exports none -%% Bode plot for the transfer function from u to dLm -figure; -hold on; -for i =1:6 - plot(f, abs(S_hac_svd_3m(:,i,i)), ... - 'DisplayName', sprintf('$S_{%s}$', labels{i})); -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('Sensitivity [-]'); -ylim([1e-4, 1e1]); -legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3); -xlim([0.5, 1e3]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/sensitivity_hac_svd_3m.pdf', 'width', 'wide', 'height', 'normal'); -#+end_src - -#+name: fig:test_nhexa_sensitivity_hac_svd_3m -#+caption: Measured diagonal elements of the sensitivity transfer function matrix. -#+RESULTS: -[[file:figs/test_nhexa_sensitivity_hac_svd_3m.png]] - -#+begin_important -From Figure ref:fig:test_nhexa_sensitivity_hac_svd_3m: -- The sensitivity transfer functions are similar for all directions -- The disturbance attenuation at 1Hz is almost a factor 1000 as wanted -- The sensitivity transfer functions for $R_x$ and $R_y$ have high peak values which indicate poor stability margins. -#+end_important - -***** Sensitivity transfer function from the model -The sensitivity transfer function is now estimated using the model and compared with the one measured. - -#+begin_src matlab :exports none -%% Open Simulink Model -mdl = 'nano_hexapod_simscape'; - -options = linearizeOptions; -options.SampleTime = 0; - -open(mdl) - -Rx = zeros(1, 7); - -colors = colororder; -#+end_src - -#+begin_src matlab :exports none -%% Initialize the Simscape model in closed loop -n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ... - 'flex_top_type', '4dof', ... - 'motion_sensor_type', 'plates', ... - 'actuator_type', '2dof', ... - 'controller_type', 'hac-iff-struts'); - -support.type = 1; % On top of vibration table -payload.type = 2; % Payload -#+end_src - -#+begin_src matlab :exports none -%% Load controllers -load('Kiff_opt.mat', 'Kiff'); -Kiff = c2d(Kiff, Ts, 'Tustin'); -load('Khac_iff_struts_svd.mat', 'Kd') -Khac_iff_struts = c2d(Kd, Ts, 'Tustin'); -#+end_src - -#+begin_src matlab :exports none -%% Identify the (damped) transfer function from u to dLm -clear io; io_i = 1; -io(io_i) = linio([mdl, '/Rx'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs -io(io_i) = linio([mdl, '/dL'], 1, 'output'); io_i = io_i + 1; % Plate Displacement (encoder) -#+end_src - -#+begin_src matlab :exports none -%% Identification of the dynamics -Gcl = linearize(mdl, io, 0.0, options); -#+end_src - -#+begin_src matlab :exports none -%% Computation of the sensitivity transfer function -S = eye(6) - inv(n_hexapod.geometry.J)*Gcl; -#+end_src - -The results are shown in Figure ref:fig:test_nhexa_sensitivity_hac_svd_3m_comp_model. -The model is quite effective in estimating the sensitivity transfer functions except around 60Hz were there is a peak for the measurement. - -#+begin_src matlab :exports none -%% Bode plot for the transfer function from u to dLm -freqs = logspace(0,3,1000); - -figure; -hold on; -for i =1:6 - set(gca,'ColorOrderIndex',i); - plot(f, abs(S_hac_svd_3m(:,i,i)), ... - 'DisplayName', sprintf('$S_{%s}$', labels{i})); - set(gca,'ColorOrderIndex',i); - plot(freqs, abs(squeeze(freqresp(S(i,i), freqs, 'Hz'))), '--', ... - 'DisplayName', sprintf('$S_{%s}$ - Model', labels{i})); -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('Sensitivity [-]'); -ylim([1e-4, 1e1]); -legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3); -xlim([0.5, 1e3]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/sensitivity_hac_svd_3m_comp_model.pdf', 'width', 'wide', 'height', 'normal'); -#+end_src - -#+name: fig:test_nhexa_sensitivity_hac_svd_3m_comp_model -#+caption: Comparison of the measured sensitivity transfer functions with the model -#+RESULTS: -[[file:figs/test_nhexa_sensitivity_hac_svd_3m_comp_model.png]] - -**** Using (diagonal) Dynamical Inverse :noexport: -***** Decoupled Plant -#+begin_src matlab -G_nom = frf_iff.G_dL{2}; % Nominal Plant -G_model = sim_iff.G_dL{2}; % Model of the Plant -#+end_src - -#+begin_src matlab :exports none -%% Simplified model of the diagonal term -balred_opts = balredOptions('FreqIntervals', 2*pi*[0, 1000], 'StateElimMethod', 'Truncate'); - -G_red = balred(G_model(1,1), 8, balred_opts); -G_red.outputdelay = 0; % necessary for further inversion -#+end_src - -#+begin_src matlab -%% Inverse -G_inv = inv(G_red); -[G_z, G_p, G_g] = zpkdata(G_inv); -p_uns = real(G_p{1}) > 0; -G_p{1}(p_uns) = -G_p{1}(p_uns); -G_inv_stable = zpk(G_z, G_p, G_g); -#+end_src - -#+begin_src matlab :exports none -%% "Uncertainty" of inversed plant -freqs = logspace(0,3,1000); - -figure; -tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile([2,1]); -hold on; -for i_mass = i_masses - for i = 1 - plot(freqs, abs(squeeze(freqresp(G_inv_stable*sim_iff.G_dL{i_mass+1}(i,i), freqs, 'Hz'))), '-', 'color', colors(i_mass+1, :), ... - 'DisplayName', sprintf('$d\\mathcal{L}_i/u^\\prime_i$ - %i', i_mass)); - end -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -ylabel('Amplitude'); set(gca, 'XTickLabel',[]); -ylim([1e-1, 1e1]); -legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 4); - -ax2 = nexttile; -hold on; -for i_mass = i_masses - for i = 1 - plot(freqs, 180/pi*angle(squeeze(freqresp(G_inv_stable*sim_iff.G_dL{i_mass+1}(1,1), freqs, 'Hz'))), '-', 'color', colors(i_mass+1, :)); - end -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); -hold off; -yticks(-360:15:360); -ylim([-45, 45]); - -linkaxes([ax1,ax2],'x'); -xlim([freqs(1), freqs(end)]); -#+end_src - -***** Controller Design -#+begin_src matlab :exports none -% Wanted crossover frequency -wc = 2*pi*80; -[~, i_wc] = min(abs(frf_iff.f - wc/2/pi)); - -%% Lead -a = 20.0; % Amount of phase lead / width of the phase lead / high frequency gain -Kd_lead = (1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a)))/sqrt(a); - -%% Integrator -Kd_int = ((wc)/(2*pi*0.2 + s))^2; - -%% Low Pass Filter (High frequency robustness) -w0_lpf = 2*wc; % Cut-off frequency [rad/s] -xi_lpf = 0.3; % Damping Ratio - -Kd_lpf = 1/(1 + 2*xi_lpf/w0_lpf*s + s^2/w0_lpf^2); - -w0_lpf_b = wc*4; % Cut-off frequency [rad/s] -xi_lpf_b = 0.7; % Damping Ratio - -Kd_lpf_b = 1/(1 + 2*xi_lpf_b/w0_lpf_b*s + s^2/w0_lpf_b^2); - -%% Normalize Gain -Kd_norm = diag(1./abs(diag(squeeze(G_dL_svd(i_wc,:,:))))); - -%% Diagonal Control -Kd_diag = ... - G_inv_stable * ... % Normalize gain at 100Hz - Kd_int /abs(evalfr(Kd_int, 1j*wc)) * ... % Integrator - Kd_lead/abs(evalfr(Kd_lead, 1j*wc)) * ... % Lead (gain of 1 at wc) - Kd_lpf /abs(evalfr(Kd_lpf, 1j*wc)); % Low Pass Filter -#+end_src - -#+begin_src matlab :exports none -Kd = ss(Kd_diag)*eye(6); -#+end_src - -***** Loop Gain -#+begin_src matlab :exports none -%% Experimental Loop Gain -Lmimo = permute(pagemtimes(permute(G_nom, [2,3,1]),squeeze(freqresp(Kd, frf_iff.f, 'Hz'))), [3,1,2]); -#+end_src - -#+begin_src matlab :exports none -%% Loop gain when using SVD -figure; -tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile([2,1]); -hold on; -for i = 1:6 - plot(frf_iff.f, abs(Lmimo(:,i,i)), '-'); -end -for i = 1:5 - for j = i+1:6 - plot(frf_iff.f, abs(squeeze(Lmimo(:,i,j))), 'color', [0,0,0,0.2]); - end -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -ylabel('Loop Gain'); set(gca, 'XTickLabel',[]); -ylim([1e-3, 1e+3]); - -ax2 = nexttile; -hold on; -for i = 1:6 - plot(frf_iff.f, 180/pi*angle(Lmimo(:,i,i)), '-'); -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); -hold off; -yticks(-360:30:360); -ylim([-180, 0]); - -linkaxes([ax1,ax2],'x'); -xlim([1, 2e3]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/bode_plot_hac_iff_loop_gain_diag_inverse.pdf', 'width', 'wide', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_bode_plot_hac_iff_loop_gain_diag_inverse -#+caption: Bode plot of Loop Gain when using the Diagonal inversion -#+RESULTS: -[[file:figs/test_nhexa_bode_plot_hac_iff_loop_gain_diag_inverse.png]] - -***** Stability Verification -MIMO Nyquist with eigenvalues -#+begin_src matlab -%% Compute the Eigenvalues of the loop gain -Ldet = zeros(3, 6, length(frf_iff.f)); - -for i = 1:3 - Lmimo = pagemtimes(permute(frf_iff.G_dL{i}, [2,3,1]),squeeze(freqresp(Kd, frf_iff.f, 'Hz'))); - for i_f = 2:length(frf_iff.f) - Ldet(i,:, i_f) = eig(squeeze(Lmimo(:,:,i_f))); - end -end -#+end_src - -#+begin_src matlab :exports none -%% Plot of the eigenvalues of L in the complex plane -figure; -hold on; -for i_mass = 2:3 - plot(real(squeeze(Ldet(i_mass, 1,:))), imag(squeeze(Ldet(i_mass, 1,:))), ... - '.', 'color', colors(i_mass+1, :), ... - 'DisplayName', sprintf('%i masses', i_mass)); - plot(real(squeeze(Ldet(i_mass, 1,:))), -imag(squeeze(Ldet(i_mass, 1,:))), ... - '.', 'color', colors(i_mass+1, :), ... - 'HandleVisibility', 'off'); - for i = 1:6 - plot(real(squeeze(Ldet(i_mass, i,:))), imag(squeeze(Ldet(i_mass, i,:))), ... - '.', 'color', colors(i_mass+1, :), ... - 'HandleVisibility', 'off'); - plot(real(squeeze(Ldet(i_mass, i,:))), -imag(squeeze(Ldet(i_mass, i,:))), ... - '.', 'color', colors(i_mass+1, :), ... - 'HandleVisibility', 'off'); - end -end -plot(-1, 0, 'kx', 'HandleVisibility', 'off'); -hold off; -set(gca, 'XScale', 'lin'); set(gca, 'YScale', 'lin'); -xlabel('Real'); ylabel('Imag'); -legend('location', 'southeast'); -xlim([-3, 1]); ylim([-2, 2]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/loci_hac_iff_loop_gain_diag_inverse.pdf', 'width', 'wide', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_loci_hac_iff_loop_gain_diag_inverse -#+caption: Locis of $L(j\omega)$ in the complex plane. -#+RESULTS: -[[file:figs/test_nhexa_loci_hac_iff_loop_gain_diag_inverse.png]] - -#+begin_important -Even though the loop gain seems to be fine, the closed-loop system is unstable. -This might be due to the fact that there is large interaction in the plant. -We could look at the RGA-number to verify that. -#+end_important - -***** Save for further use -#+begin_src matlab :exports none :tangle no -save('matlab/data_sim/Khac_iff_struts_diag_inverse.mat', 'Kd') -#+end_src - -#+begin_src matlab :eval no -save('data_sim/Khac_iff_struts_diag_inverse.mat', 'Kd') -#+end_src - -**** Closed Loop Stability (Model) :noexport: -Verify stability using Simscape model -#+begin_src matlab -%% Initialize the Simscape model in closed loop -n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '2dof', ... - 'flex_top_type', '3dof', ... - 'motion_sensor_type', 'plates', ... - 'actuator_type', '2dof', ... - 'controller_type', 'hac-iff-struts'); -#+end_src - -#+begin_src matlab -%% IFF Controller -Kiff = -g_opt*Kiff_g1*eye(6); -Khac_iff_struts = Kd*eye(6); -#+end_src - -#+begin_src matlab -%% Identify the (damped) transfer function from u to dLm for different values of the IFF gain -clear io; io_i = 1; -io(io_i) = linio([mdl, '/du'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs -io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Plate Displacement (encoder) -#+end_src - -#+begin_src matlab -GG_cl = {}; - -for i = i_masses - payload.type = i; - GG_cl(i+1) = {exp(-s*Ts)*linearize(mdl, io, 0.0, options)}; -end -#+end_src - -#+begin_src matlab -for i = i_masses - isstable(GG_cl{i+1}) -end -#+end_src - -MIMO Nyquist -#+begin_src matlab -Kdm = Kd*eye(6); - -Ldet = zeros(3, length(fb(i_lim))); - -for i = 1:3 - Lmimo = pagemtimes(permute(G_damp_m{i}(i_lim,:,:), [2,3,1]),squeeze(freqresp(Kdm, fb(i_lim), 'Hz'))); - Ldet(i,:) = arrayfun(@(t) det(eye(6) + squeeze(Lmimo(:,:,t))), 1:size(Lmimo,3)); -end -#+end_src - -#+begin_src matlab :exports none -%% Bode plot for the transfer function from u to dLm -figure; -hold on; -for i_mass = 3 - for i = 1 - plot(real(Ldet(i_mass,:)), imag(Ldet(i_mass,:)), ... - '-', 'color', colors(i_mass+1, :)); - end -end -hold off; -set(gca, 'XScale', 'lin'); set(gca, 'YScale', 'lin'); -xlabel('Real'); ylabel('Imag'); -xlim([-10, 1]); ylim([-4, 4]); -#+end_src - -MIMO Nyquist with eigenvalues -#+begin_src matlab -Kdm = Kd*eye(6); - -Ldet = zeros(3, 6, length(fb(i_lim))); - -for i = 1:3 - Lmimo = pagemtimes(permute(G_damp_m{i}(i_lim,:,:), [2,3,1]),squeeze(freqresp(Kdm, fb(i_lim), 'Hz'))); - for i_f = 1:length(fb(i_lim)) - Ldet(i,:, i_f) = eig(squeeze(Lmimo(:,:,i_f))); - end -end -#+end_src - -#+begin_src matlab :exports none -%% Bode plot for the transfer function from u to dLm -figure; -hold on; -for i_mass = 1 - for i = 1:6 - plot(real(squeeze(Ldet(i_mass, i,:))), imag(squeeze(Ldet(i_mass, i,:))), ... - '-', 'color', colors(i_mass+1, :)); - end -end -hold off; -set(gca, 'XScale', 'lin'); set(gca, 'YScale', 'lin'); -xlabel('Real'); ylabel('Imag'); -xlim([-10, 1]); ylim([-4, 2]); -#+end_src -** Other Backups -*** Nano-Hexapod Compliance - Effect of IFF -<> - -In this section, we wish to estimate the effectiveness of the IFF strategy regarding the compliance. - -The top plate is excited vertically using the instrumented hammer two times: -1. no control loop is used -2. decentralized IFF is used - -The data are loaded. -#+begin_src matlab -frf_ol = load('Measurement_Z_axis.mat'); % Open-Loop -frf_iff = load('Measurement_Z_axis_damped.mat'); % IFF -#+end_src - -The mean vertical motion of the top platform is computed by averaging all 5 vertical accelerometers. -#+begin_src matlab -%% Multiply by 10 (gain in m/s^2/V) and divide by 5 (number of accelerometers) -d_frf_ol = 10/5*(frf_ol.FFT1_H1_4_1_RMS_Y_Mod + frf_ol.FFT1_H1_7_1_RMS_Y_Mod + frf_ol.FFT1_H1_10_1_RMS_Y_Mod + frf_ol.FFT1_H1_13_1_RMS_Y_Mod + frf_ol.FFT1_H1_16_1_RMS_Y_Mod)./(2*pi*frf_ol.FFT1_H1_16_1_RMS_X_Val).^2; -d_frf_iff = 10/5*(frf_iff.FFT1_H1_4_1_RMS_Y_Mod + frf_iff.FFT1_H1_7_1_RMS_Y_Mod + frf_iff.FFT1_H1_10_1_RMS_Y_Mod + frf_iff.FFT1_H1_13_1_RMS_Y_Mod + frf_iff.FFT1_H1_16_1_RMS_Y_Mod)./(2*pi*frf_iff.FFT1_H1_16_1_RMS_X_Val).^2; -#+end_src - -The vertical compliance (magnitude of the transfer function from a vertical force applied on the top plate to the vertical motion of the top plate) is shown in Figure ref:fig:test_nhexa_compliance_vertical_comp_iff. -#+begin_src matlab :exports none -%% Comparison of the vertical compliances (OL and IFF) -figure; -hold on; -plot(frf_ol.FFT1_H1_16_1_RMS_X_Val, d_frf_ol, 'DisplayName', 'OL'); -plot(frf_iff.FFT1_H1_16_1_RMS_X_Val, d_frf_iff, 'DisplayName', 'IFF'); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('Vertical Compliance [$m/N$]'); -xlim([20, 2e3]); ylim([2e-9, 2e-5]); -legend('location', 'northeast'); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/compliance_vertical_comp_iff.pdf', 'width', 'wide', 'height', 'normal'); -#+end_src - -#+name: fig:test_nhexa_compliance_vertical_comp_iff -#+caption: Measured vertical compliance with and without IFF -#+RESULTS: -[[file:figs/test_nhexa_compliance_vertical_comp_iff.png]] - -#+begin_important -From Figure ref:fig:test_nhexa_compliance_vertical_comp_iff, it is clear that the IFF control strategy is very effective in damping the suspensions modes of the nano-hexapod. -It also has the effect of (slightly) degrading the vertical compliance at low frequency. - -It also seems some damping can be added to the modes at around 205Hz which are flexible modes of the struts. -#+end_important - -*** Comparison with the Simscape Model -<> - -Let's initialize the Simscape model such that it corresponds to the experiment. -#+begin_src matlab -%% Nano-Hexapod is fixed on a rigid granite -support.type = 0; - -%% No Payload on top of the Nano-Hexapod -payload.type = 0; - -%% Initialize Nano-Hexapod in Open Loop -n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ... - 'flex_top_type', '4dof', ... - 'motion_sensor_type', 'struts', ... - 'actuator_type', '2dof'); - -#+end_src - -And let's compare the measured vertical compliance with the vertical compliance as estimated from the Simscape model. - -The transfer function from a vertical external force to the absolute motion of the top platform is identified (with and without IFF) using the Simscape model. -#+begin_src matlab :exports none -%% Identify the IFF Plant (transfer function from u to taum) -clear io; io_i = 1; -io(io_i) = linio([mdl, '/Fz_ext'], 1, 'openinput'); io_i = io_i + 1; % External - Vertical force -io(io_i) = linio([mdl, '/Z_top_plat'], 1, 'openoutput'); io_i = io_i + 1; % Absolute vertical motion of top platform -#+end_src - -#+begin_src matlab :exports none -%% Perform the identifications -G_compl_z_ol = linearize(mdl, io, 0.0, options); -#+end_src - -#+begin_src matlab :exports none -%% Initialize Nano-Hexapod with IFF -Kiff = 400*(1/(s + 2*pi*40))*... % Low pass filter (provides integral action above 40Hz) - (s/(s + 2*pi*30))*... % High pass filter to limit low frequency gain - (1/(1 + s/2/pi/500))*... % Low pass filter to be more robust to high frequency resonances - eye(6); % Diagonal 6x6 controller - -%% Initialize the Nano-Hexapod with IFF -n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ... - 'flex_top_type', '4dof', ... - 'motion_sensor_type', 'struts', ... - 'actuator_type', '2dof', ... - 'controller_type', 'iff'); - -%% Perform the identification -G_compl_z_iff = linearize(mdl, io, 0.0, options); -#+end_src - -The comparison is done in Figure ref:fig:test_nhexa_compliance_vertical_comp_model_iff. -Again, the model is quite accurate in predicting the (closed-loop) behavior of the system. - -#+begin_src matlab :exports none -%% Comparison of the measured compliance and the one obtained from the model -freqs = 2*logspace(1,3,1000); - -figure; -hold on; -plot(frf_ol.FFT1_H1_16_1_RMS_X_Val, d_frf_ol, '-', 'DisplayName', 'OL - Meas.'); -plot(frf_iff.FFT1_H1_16_1_RMS_X_Val, d_frf_iff, '-', 'DisplayName', 'IFF - Meas.'); -set(gca,'ColorOrderIndex',1) -plot(freqs, abs(squeeze(freqresp(G_compl_z_ol, freqs, 'Hz'))), '--', 'DisplayName', 'OL - Model') -plot(freqs, abs(squeeze(freqresp(G_compl_z_iff, freqs, 'Hz'))), '--', 'DisplayName', 'IFF - Model') -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('Vertical Compliance [$m/N$]'); -xlim([20, 2e3]); ylim([2e-9, 2e-5]); -legend('location', 'northeast', 'FontSize', 8); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/compliance_vertical_comp_model_iff.pdf', 'width', 'wide', 'height', 'normal'); -#+end_src - -#+name: fig:test_nhexa_compliance_vertical_comp_model_iff -#+caption: Measured vertical compliance with and without IFF -#+RESULTS: -[[file:figs/test_nhexa_compliance_vertical_comp_model_iff.png]] - -*** Computation of the transmissibility from accelerometer data -**** Introduction :ignore: - -The goal is to compute the $6 \times 6$ transfer function matrix corresponding to the transmissibility of the Nano-Hexapod. - -To do so, several accelerometers are located both on the vibration table and on the top of the nano-hexapod. - -The vibration table is then excited using a Shaker and all the accelerometers signals are recorded. - -Using transformation (jacobian) matrices, it is then possible to compute both the motion of the top and bottom platform of the nano-hexapod. - -Finally, it is possible to compute the $6 \times 6$ transmissibility matrix. - -Such procedure is explained in cite:marneffe04_stewar_platf_activ_vibrat_isolat. - -**** Jacobian matrices - -How to compute the Jacobian matrices is explained in Section ref:sec:meas_transformation. - -#+begin_src matlab -%% Bottom Accelerometers -Opb = [-0.1875, -0.1875, -0.245; - -0.1875, -0.1875, -0.245; - 0.1875, -0.1875, -0.245; - 0.1875, -0.1875, -0.245; - 0.1875, 0.1875, -0.245; - 0.1875, 0.1875, -0.245]'; - -Osb = [0, 1, 0; - 0, 0, 1; - 1, 0, 0; - 0, 0, 1; - 1, 0, 0; - 0, 0, 1;]'; - -Jb = zeros(length(Opb), 6); - -for i = 1:length(Opb) - Ri = [0, Opb(3,i), -Opb(2,i); - -Opb(3,i), 0, Opb(1,i); - Opb(2,i), -Opb(1,i), 0]; - Jb(i, 1:3) = Osb(:,i)'; - Jb(i, 4:6) = Osb(:,i)'*Ri; -end - -Jbinv = inv(Jb); -#+end_src - -#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) -data2orgtable(Jbinv, {'$\dot{x}_x$', '$\dot{x}_y$', '$\dot{x}_z$', '$\dot{\omega}_x$', '$\dot{\omega}_y$', '$\dot{\omega}_z$'}, {'$a_1$', '$a_2$', '$a_3$', '$a_4$', '$a_5$', '$a_6$'}, ' %.1f '); -#+end_src - -#+RESULTS: -| | $a_1$ | $a_2$ | $a_3$ | $a_4$ | $a_5$ | $a_6$ | -|------------------+-------+-------+-------+-------+-------+-------| -| $\dot{x}_x$ | 0.0 | 0.7 | 0.5 | -0.7 | 0.5 | 0.0 | -| $\dot{x}_y$ | 1.0 | 0.0 | 0.5 | 0.7 | -0.5 | -0.7 | -| $\dot{x}_z$ | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.5 | -| $\dot{\omega}_x$ | 0.0 | 0.0 | 0.0 | -2.7 | 0.0 | 2.7 | -| $\dot{\omega}_y$ | 0.0 | 2.7 | 0.0 | -2.7 | 0.0 | 0.0 | -| $\dot{\omega}_z$ | 0.0 | 0.0 | 2.7 | 0.0 | -2.7 | 0.0 | - -#+begin_src matlab -%% Top Accelerometers -Opt = [-0.1, 0, -0.150; - -0.1, 0, -0.150; - 0.05, 0.075, -0.150; - 0.05, 0.075, -0.150; - 0.05, -0.075, -0.150; - 0.05, -0.075, -0.150]'; - -Ost = [0, 1, 0; - 0, 0, 1; - 1, 0, 0; - 0, 0, 1; - 1, 0, 0; - 0, 0, 1;]'; - -Jt = zeros(length(Opt), 6); - -for i = 1:length(Opt) - Ri = [0, Opt(3,i), -Opt(2,i); - -Opt(3,i), 0, Opt(1,i); - Opt(2,i), -Opt(1,i), 0]; - Jt(i, 1:3) = Ost(:,i)'; - Jt(i, 4:6) = Ost(:,i)'*Ri; -end - -Jtinv = inv(Jt); -#+end_src - -#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) -data2orgtable(Jtinv, {'$\dot{x}_x$', '$\dot{x}_y$', '$\dot{x}_z$', '$\dot{\omega}_x$', '$\dot{\omega}_y$', '$\dot{\omega}_z$'}, {'$b_1$', '$b_2$', '$b_3$', '$b_4$', '$b_5$', '$b_6$'}, ' %.1f '); -#+end_src - -#+RESULTS: -| | $b_1$ | $b_2$ | $b_3$ | $b_4$ | $b_5$ | $b_6$ | -|------------------+-------+-------+-------+-------+-------+-------| -| $\dot{x}_x$ | 0.0 | 1.0 | 0.5 | -0.5 | 0.5 | -0.5 | -| $\dot{x}_y$ | 1.0 | 0.0 | -0.7 | -1.0 | 0.7 | 1.0 | -| $\dot{x}_z$ | 0.0 | 0.3 | 0.0 | 0.3 | 0.0 | 0.3 | -| $\dot{\omega}_x$ | 0.0 | 0.0 | 0.0 | 6.7 | 0.0 | -6.7 | -| $\dot{\omega}_y$ | 0.0 | 6.7 | 0.0 | -3.3 | 0.0 | -3.3 | -| $\dot{\omega}_z$ | 0.0 | 0.0 | -6.7 | 0.0 | 6.7 | 0.0 | - -**** Using =linearize= function - -#+begin_src matlab -acc_3d.type = 2; % 1: inertial mass, 2: perfect - -%% Name of the Simulink File -mdl = 'vibration_table'; - -%% Input/Output definition -clear io; io_i = 1; -io(io_i) = linio([mdl, '/F_shaker'], 1, 'openinput'); io_i = io_i + 1; -io(io_i) = linio([mdl, '/acc'], 1, 'openoutput'); io_i = io_i + 1; -io(io_i) = linio([mdl, '/acc_top'], 1, 'openoutput'); io_i = io_i + 1; - -%% Run the linearization -G = linearize(mdl, io); -G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; -G.OutputName = {'a1', 'a2', 'a3', 'a4', 'a5', 'a6', ... - 'b1', 'b2', 'b3', 'b4', 'b5', 'b6'}; -#+end_src - -#+begin_src matlab -Gb = Jbinv*G({'a1', 'a2', 'a3', 'a4', 'a5', 'a6'}, :); -Gt = Jtinv*G({'b1', 'b2', 'b3', 'b4', 'b5', 'b6'}, :); -#+end_src - -#+begin_src matlab -T = inv(Gb)*Gt; -T = minreal(T); -T = prescale(T, {2*pi*0.1, 2*pi*1e3}); -#+end_src - -#+begin_src matlab :exports none -freqs = logspace(0, 3, 1000); - -figure; -hold on; -for i = 1:6 - plot(freqs, abs(squeeze(freqresp(T(i, i), freqs, 'Hz')))); -end -for i = 1:5 - for j = i+1:6 - plot(freqs, abs(squeeze(freqresp(T(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); - end -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('Transmissibility'); -ylim([1e-4, 1e2]); -xlim([freqs(1), freqs(end)]); -#+end_src - -*** Comparison with "true" transmissibility - -#+begin_src matlab -%% Name of the Simulink File -mdl = 'test_transmissibility'; - -%% Input/Output definition -clear io; io_i = 1; -io(io_i) = linio([mdl, '/d'], 1, 'openinput'); io_i = io_i + 1; -io(io_i) = linio([mdl, '/acc'], 1, 'openoutput'); io_i = io_i + 1; - -%% Run the linearization -G = linearize(mdl, io); -G.InputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}; -G.OutputName = {'Ax', 'Ay', 'Az', 'Bx', 'By', 'Bz'}; -#+end_src - -#+begin_src matlab -Tp = G/s^2; -#+end_src - -#+begin_src matlab :exports none -freqs = logspace(0, 3, 1000); - -figure; -hold on; -for i = 1:6 - plot(freqs, abs(squeeze(freqresp(Tp(i, i), freqs, 'Hz')))); -end -for i = 1:5 - for j = i+1:6 - plot(freqs, abs(squeeze(freqresp(Tp(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]); - end -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('Transmissibility'); -ylim([1e-4, 1e2]); -xlim([freqs(1), freqs(end)]); -#+end_src - -*** Rigidification of the added payloads -- [ ] figure - -#+begin_src matlab -%% Load Identification Data -meas_added_mass = {}; - -for i_strut = 1:6 - meas_added_mass(i_strut) = {load(sprintf('frf_data_exc_strut_%i_spindle_1m_solid.mat', i_strut), 't', 'Va', 'Vs', 'de')}; -end -#+end_src - -Finally the $6 \times 6$ transfer function matrices from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ and from $\bm{u}$ to $\bm{\tau}_m$ are identified: -#+begin_src matlab -%% DVF Plant (transfer function from u to dLm) - -G_dL = zeros(length(f), 6, 6); -for i_strut = 1:6 - G_dL(:,:,i_strut) = tfestimate(meas_added_mass{i_strut}.Va, meas_added_mass{i_strut}.de, win, Noverlap, Nfft, 1/Ts); -end - -%% IFF Plant (transfer function from u to taum) -G_tau = zeros(length(f), 6, 6); -for i_strut = 1:6 - G_tau(:,:,i_strut) = tfestimate(meas_added_mass{i_strut}.Va, meas_added_mass{i_strut}.Vs, win, Noverlap, Nfft, 1/Ts); -end -#+end_src - -#+begin_src matlab :exports none -%% Bode plot for the transfer function from u to dLm - Several payloads -figure; -tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile([2,1]); -hold on; -% Diagonal terms -for i = 1:6 - plot(frf_ol.f, abs(frf_ol.G_dL{1}(:,i, i)), 'color', colors(1,:)); - plot(f, abs(G_dL(:,i, i)), 'color', colors(2,:)); -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('Amplitude [m/V]'); -ylim([1e-8, 1e-3]); -xlim([20, 2e3]); -#+end_src - -#+begin_src matlab :exports none -%% Bode plot for the transfer function from u to dLm -figure; -tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile([2,1]); -hold on; -for i = 1:6 - plot(frf_ol.f, abs(frf_ol.G_dL(:,i, i)), 'color', colors(1,:)); - plot(f, abs(G_dL(:,i, i)), 'color', colors(2,:)); -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('Amplitude [m/V]'); -ylim([1e-8, 1e-3]); -xlim([10, 1e3]); -#+end_src - - * Introduction :ignore: In the previous section, all the struts were mounted and individually characterized. @@ -4111,7 +351,7 @@ After all six struts are mounted, the mounting tool (Figure ref:fig:test_nhexa_c * Suspended Table :PROPERTIES: -:header-args:matlab+: :tangle matlab/scripts/test_nhexa_table.m +:header-args:matlab+: :tangle matlab/test_nhexa_1_suspended_table.m :END: <> ** Introduction @@ -4234,9 +474,6 @@ The next modes are flexible modes of the breadboard as shown in Figure ref:fig:t #+end_figure ** Simscape Model of the suspended table -:PROPERTIES: -:header-args:matlab+: :tangle matlab/simscape_model.m -:END: <> The Simscape model of the suspended table simply consists of two solid bodies connected by 4 springs. @@ -4284,15 +521,43 @@ ws = ws(imag(ws) > 0); | Experimental | 1.3 Hz | 2.0 Hz | 6.9 Hz | 9.5 Hz | | Simscape | 1.3 Hz | 1.8 Hz | 6.8 Hz | 9.5 Hz | -* Nano-Hexapod Dynamics +** Conclusion +:PROPERTIES: +:UNNUMBERED: t +:END: + +In this section, a suspended table with low frequency suspension modes and high frequency flexible modes was presented. +This suspended table will be used in Section ref:sec:test_nhexa_dynamics for dynamical identification of the Nano-Hexapod. +The objective is to be able to accurately identify the dynamics of the nano-hexapod, isolated from complex support dynamics. +The key point of this strategy is to be able to accurately model the suspended table. + +To do so, a modal analysis of the suspended table was performed in Section ref:ssec:test_nhexa_table_identification, validating the low frequency suspension modes and high frequency flexible modes. +Then, a multi-body model of this suspended table was tuned to match with the measurements (Section ref:ssec:test_nhexa_table_model). + +* Nano-Hexapod Measured Dynamics +:PROPERTIES: +:header-args:matlab+: :tangle matlab/test_nhexa_2_dynamics.m +:END: <> ** Introduction :ignore: -In Figure ref:fig:test_nhexa_nano_hexapod_signals is shown a block diagram of the experimental setup. -When possible, the notations are consistent with this diagram and summarized in Table ref:tab:list_signals. +The Nano-Hexapod is then mounted on top of the suspended table as shown in Figure ref:fig:test_nhexa_hexa_suspended_table. +All the instrumentation (Speedgoat with ADC, DAC, piezoelectric voltage amplifiers and digital interfaces for the encoder) are setup and connected to the nano-hexapod using many cables. -#+begin_src latex :file nano_hexapod_signals.pdf +#+name: fig:test_nhexa_hexa_suspended_table +#+caption: Mounted Nano-Hexapod on top of the suspended table +#+attr_latex: :width 0.7\linewidth +[[file:figs/test_nhexa_hexa_suspended_table.jpg]] + +A modal analysis of the nano-hexapod is first performed in Section ref:ssec:test_nhexa_enc_struts_modal_analysis. +It will be used to better understand the measured dynamics from actuators to sensors. + +A block diagram schematic of the (open-loop) system is shown in Figure ref:fig:test_nhexa_nano_hexapod_signals. +The transfer function from controlled signals $\mathbf{u}$ to the force sensors voltages $\mathbf{V}_s$ and to the encoders measured displacements $\mathbf{d}_e$ are identified in Section ref:ssec:test_nhexa_identification. +The effect of the payload mass on the dynamics is studied in Section ref:ssec:test_nhexa_added_mass. + +#+begin_src latex :file test_nhexa_nano_hexapod_signals.pdf \definecolor{instrumentation}{rgb}{0, 0.447, 0.741} \definecolor{mechanics}{rgb}{0.8500, 0.325, 0.098} @@ -4311,17 +576,17 @@ When possible, the notations are consistent with this diagram and summarized in \node[block, right=0.8 of outputL, fill=instrumentation!20!white] (encoder) {\tiny Encoder}; % Connections and labels - \draw[->] ($(F_DAC.west)+(-0.8,0)$) node[above right]{$\bm{u}$} node[below right]{$[V]$} -- node[sloped]{$/$} (F_DAC.west); - \draw[->] (F_DAC.east) -- node[midway, above]{$\tilde{\bm{u}}$}node[midway, below]{$[V]$} (PD200.west); - \draw[->] (PD200.east) -- node[midway, above]{$\bm{u}_a$}node[midway, below]{$[V]$} (F_stack.west); - \draw[->] (F_stack.east) -- (inputF) node[above left]{$\bm{\tau}$}node[below left]{$[N]$}; + \draw[->] ($(F_DAC.west)+(-0.8,0)$) node[above right]{$\mathbf{u}$} node[below right]{$[V]$} -- node[sloped]{$/$} (F_DAC.west); + \draw[->] (F_DAC.east) -- node[midway, above]{$\tilde{\mathbf{u}}$}node[midway, below]{$[V]$} (PD200.west); + \draw[->] (PD200.east) -- node[midway, above]{$\mathbf{u}_a$}node[midway, below]{$[V]$} (F_stack.west); + \draw[->] (F_stack.east) -- (inputF) node[above left]{$\mathbf{\tau}$}node[below left]{$[N]$}; - \draw[->] (outputF) -- (Fm_stack.west) node[above left]{$\bm{\epsilon}$} node[below left]{$[m]$}; - \draw[->] (Fm_stack.east) -- node[midway, above]{$\tilde{\bm{\tau}}_m$}node[midway, below]{$[V]$} (Fm_ADC.west); - \draw[->] (Fm_ADC.east) -- node[sloped]{$/$} ++(0.8, 0)coordinate(end) node[above left]{$\bm{\tau}_m$}node[below left]{$[V]$}; + \draw[->] (outputF) -- (Fm_stack.west) node[above left]{$\mathbf{\epsilon}$} node[below left]{$[m]$}; + \draw[->] (Fm_stack.east) -- node[midway, above]{$\tilde{\mathbf{V}}_s$}node[midway, below]{$[V]$} (Fm_ADC.west); + \draw[->] (Fm_ADC.east) -- node[sloped]{$/$} ++(0.8, 0)coordinate(end) node[above left]{$\mathbf{V}_s$}node[below left]{$[V]$}; - \draw[->] (outputL) -- (encoder.west) node[above left]{$d\bm{\mathcal{L}}$} node[below left]{$[m]$}; - \draw[->] (encoder.east) -- node[sloped]{$/$} (encoder-|end) node[above left]{$d\bm{\mathcal{L}}_m$}node[below left]{$[m]$}; + \draw[->] (outputL) -- (encoder.west) node[above left]{$\mathbf{d}_e$} node[below left]{$[m]$}; + \draw[->] (encoder.east) -- node[sloped]{$/$} (encoder-|end) node[above left]{$\mathbf{d}_{e}$}node[below left]{$[m]$}; % Nano-Hexapod \begin{scope}[on background layer] @@ -4332,121 +597,15 @@ When possible, the notations are consistent with this diagram and summarized in #+end_src #+name: fig:test_nhexa_nano_hexapod_signals -#+caption: Block diagram of the system with named signals +#+caption: Block diagram of the system. Command signal generated by the speedgoat is $\mathbf{u}$, the measured dignals are $\mathbf{d}_{e}$ and $\mathbf{V}_s$. Units are indicated in square brackets. #+attr_latex: :scale 1 +#+RESULTS: [[file:figs/test_nhexa_nano_hexapod_signals.png]] -#+name: tab:list_signals -#+caption: List of signals -#+attr_latex: :environment tabularx :width \linewidth :align Xllll -#+attr_latex: :center t :booktabs t -| | *Unit* | *Matlab* | *Vector* | *Elements* | -|------------------------------------+-----------+-----------+-----------------------+----------------------| -| Control Input (wanted DAC voltage) | =[V]= | =u= | $\bm{u}$ | $u_i$ | -| DAC Output Voltage | =[V]= | =u= | $\tilde{\bm{u}}$ | $\tilde{u}_i$ | -| PD200 Output Voltage | =[V]= | =ua= | $\bm{u}_a$ | $u_{a,i}$ | -| Actuator applied force | =[N]= | =tau= | $\bm{\tau}$ | $\tau_i$ | -|------------------------------------+-----------+-----------+-----------------------+----------------------| -| Strut motion | =[m]= | =dL= | $d\bm{\mathcal{L}}$ | $d\mathcal{L}_i$ | -| Encoder measured displacement | =[m]= | =dLm= | $d\bm{\mathcal{L}}_m$ | $d\mathcal{L}_{m,i}$ | -|------------------------------------+-----------+-----------+-----------------------+----------------------| -| Force Sensor strain | =[m]= | =epsilon= | $\bm{\epsilon}$ | $\epsilon_i$ | -| Force Sensor Generated Voltage | =[V]= | =taum= | $\tilde{\bm{\tau}}_m$ | $\tilde{\tau}_{m,i}$ | -| Measured Generated Voltage | =[V]= | =taum= | $\bm{\tau}_m$ | $\tau_{m,i}$ | -|------------------------------------+-----------+-----------+-----------------------+----------------------| -| Motion of the top platform | =[m,rad]= | =dX= | $d\bm{\mathcal{X}}$ | $d\mathcal{X}_i$ | -| Metrology measured displacement | =[m,rad]= | =dXm= | $d\bm{\mathcal{X}}_m$ | $d\mathcal{X}_{m,i}$ | - -#+name: fig:test_nhexa_enc_fixed_to_struts -#+caption: Nano-Hexapod with encoders fixed to the struts -#+attr_latex: :width \linewidth -[[file:figs/test_nhexa_IMG_20210625_083801.jpg]] - -It is structured as follow: -- Section ref:sec:test_nhexa_enc_plates_plant_id: The dynamics of the nano-hexapod is identified. -- Section ref:sec:test_nhexa_enc_plates_comp_simscape: The identified dynamics is compared with the Simscape model. - -** Modal Analysis :noexport: -<> - -This could just be used to show that experimental measure of the flexible mode of the top plate has been done: -- [ ] *This test was made using encoder fixed to the struts, is it relevant to put it here?* -- [ ] Also compare with the FEM - -*** Introduction :ignore: -Several 3-axis accelerometers are fixed on the top platform of the nano-hexapod as shown in Figure ref:fig:test_nhexa_compliance_vertical_comp_iff. - -#+name: fig:test_nhexa_accelerometers_nano_hexapod -#+caption: Location of the accelerometers on top of the nano-hexapod -#+attr_latex: :width \linewidth -[[file:figs/test_nhexa_accelerometers_nano_hexapod.jpg]] - -The top platform is then excited using an instrumented hammer as shown in Figure ref:fig:test_nhexa_hammer_excitation_compliance_meas. - -#+name: fig:test_nhexa_hammer_excitation_compliance_meas -#+caption: Example of an excitation using an instrumented hammer -#+attr_latex: :width \linewidth -[[file:figs/test_nhexa_hammer_excitation_compliance_meas.jpg]] - -From this experiment, the resonance frequencies and the associated mode shapes can be computed (Section ref:sec:test_nhexa_modal_analysis_mode_shapes). -Then, in Section ref:sec:test_nhexa_compliance_effect_iff, the vertical compliance of the nano-hexapod is experimentally estimated. -Finally, in Section ref:sec:test_nhexa_compliance_effect_iff_comp_model, the measured compliance is compare with the estimated one from the Simscape model. - -*** Obtained Mode Shapes -<> - -We can observe the mode shapes of the first 6 modes that are the suspension modes (the plate is behaving as a solid body) in Figure ref:fig:test_nhexa_mode_shapes_annotated. - -#+name: fig:test_nhexa_mode_shapes_annotated -#+caption: Measured mode shapes for the first six modes -#+attr_latex: :width \linewidth -[[file:figs/test_nhexa_mode_shapes_annotated.gif]] - -Then, there is a mode at 692Hz which corresponds to a flexible mode of the top plate (Figure ref:fig:test_nhexa_mode_shapes_flexible_annotated). - -#+name: fig:test_nhexa_mode_shapes_flexible_annotated -#+caption: First flexible mode at 692Hz -#+attr_latex: :width 0.3\linewidth -[[file:figs/test_nhexa_ModeShapeFlex1_crop.gif]] - -The obtained modes are summarized in Table ref:tab:description_modes. - -#+name: tab:description_modes -#+caption: Description of the identified modes -#+attr_latex: :environment tabularx :width 0.7\linewidth :align ccX -#+attr_latex: :center t :booktabs t -| *Mode* | *Freq. [Hz]* | *Description* | -|--------+--------------+----------------------------------------------| -| 1 | 105 | Suspension Mode: Y-translation | -| 2 | 107 | Suspension Mode: X-translation | -| 3 | 131 | Suspension Mode: Z-translation | -| 4 | 161 | Suspension Mode: Y-tilt | -| 5 | 162 | Suspension Mode: X-tilt | -| 6 | 180 | Suspension Mode: Z-rotation | -| 7 | 692 | (flexible) Membrane mode of the top platform | - -*** FEM - -- [[file:/home/thomas/Cloud/work-projects/ID31-NASS/nass-fem/Assembly 20201020/Modal t=0.50mm]] -- [[file:/home/thomas/Cloud/work-projects/ID31-NASS/nass-fem/GitLab_nass-fem/dynamic-modal/assy-hexapod-20201022/t_0.25mm]] -- [[file:/home/thomas/Cloud/work-projects/ID31-NASS/nass-fem/GitLab_nass-fem/dynamic-modal/assy-hexapod-20201022/t_0.5mm]] -- [[file:/home/thomas/Cloud/work-projects/ID31-NASS/nass-fem/GitLab_nass-fem/plateau-superelement]] - -** Identification of the dynamics -:PROPERTIES: -:header-args:matlab+: :tangle matlab/scripts/id_frf_enc_plates.m -:END: -<> -*** Introduction :ignore: -In this section, the dynamics of the nano-hexapod with the encoders fixed to the plates is identified. - -First, the measurement data are loaded in Section ref:sec:test_nhexa_enc_plates_plant_id_setup, then the transfer function matrix from the actuators to the encoders are estimated in Section ref:sec:test_nhexa_enc_plates_plant_id_dvf. -Finally, the transfer function matrix from the actuators to the force sensors is estimated in Section ref:sec:test_nhexa_enc_plates_plant_id_iff. - -*** Matlab Init :noexport:ignore: +** Matlab Init :noexport:ignore: #+begin_src matlab -%% id_frf_enc_plates.m -% Identification of the nano-hexapod dynamics from u to dL and to taum +%% test_nhexa_dynamics.m +% Identification of the nano-hexapod dynamics from u to dL and to Vs % Encoders are fixed to the plates #+end_src @@ -4470,21 +629,79 @@ Finally, the transfer function matrix from the actuators to the force sensors is <> #+end_src -*** Data Loading and Spectral Analysis Setup -<> +** Modal analysis +<> + +In order to ease the future analysis of the measured plant dynamics, a basic modal analysis of the nano-hexapod is performed. +Five 3-axis accelerometers are fixed on the top platform of the nano-hexapod (Figure ref:fig:test_nhexa_modal_analysis) and the top platform is excited using an instrumented hammer. + +#+name: fig:test_nhexa_modal_analysis +#+caption: Five accelerometers fixed on top of the nano-hexapod to perform a modal analysis +#+attr_latex: :width 0.7\linewidth +[[file:figs/test_nhexa_modal_analysis.jpg]] + +Between 100Hz and 200Hz, 6 suspension modes (i.e. rigid body modes of the top platform) are identified. +At around 700Hz, two flexible modes of the top plate are observed (see Figure ref:fig:test_nhexa_hexa_flexible_modes). +These modes are summarized in Table ref:tab:test_nhexa_hexa_modal_modes_list. + +#+name: tab:test_nhexa_hexa_modal_modes_list +#+caption: Description of the identified modes of the Nano-Hexapod +#+attr_latex: :environment tabularx :width 0.7\linewidth :align ccX +#+attr_latex: :center t :booktabs t +| *Mode* | *Frequency* | *Description* | +|--------+-------------+----------------------------------------------| +| 1 | 120 Hz | Suspension Mode: Y-translation | +| 2 | 120 Hz | Suspension Mode: X-translation | +| 3 | 145 Hz | Suspension Mode: Z-translation | +| 4 | 165 Hz | Suspension Mode: Y-rotation | +| 5 | 165 Hz | Suspension Mode: X-rotation | +| 6 | 190 Hz | Suspension Mode: Z-rotation | +| 7 | 692 Hz | (flexible) Membrane mode of the top platform | +| 8 | 709 Hz | Second flexible mode of the top platform | + +#+name: fig:test_nhexa_hexa_flexible_modes +#+caption: Two identified flexible modes of the top plate of the Nano-Hexapod +#+attr_latex: :options [htbp] +#+begin_figure +#+attr_latex: :caption \subcaption{\label{fig:test_nhexa_hexa_flexible_mode_1}Flexible mode at 692Hz} +#+attr_latex: :options {\textwidth} +#+begin_subfigure +#+attr_latex: :width \linewidth +[[file:figs/test_nhexa_hexa_flexible_mode_1.jpg]] +#+end_subfigure +#+attr_latex: :caption \subcaption{\label{fig:test_nhexa_hexa_flexible_mode_2}Flexible mode at 709Hz} +#+attr_latex: :options {\textwidth} +#+begin_subfigure +#+attr_latex: :width \linewidth +[[file:figs/test_nhexa_hexa_flexible_mode_2.jpg]] +#+end_subfigure +#+end_figure + +** Identification of the dynamics +<> + +The dynamics of the nano-hexapod from the six command signals ($u_1$ to $u_6$) the six measured displacement by the encoders ($d_{e1}$ to $d_{e6}$) and to the six force sensors ($V_{s1}$ to $V_{s6}$) are identified by generating a low pass filtered white noise for each of the command signals, one by one. + +The $6 \times 6$ FRF matrix from $\mathbf{u}$ ot $\mathbf{d}_e$ is shown in Figure ref:fig:test_nhexa_identified_frf_de. +The diagonal terms are displayed using colorful lines, and all the 30 off-diagonal terms are displayed by grey lines. + +All the six diagonal terms are well superimposed up to at least $1\,kHz$, indicating good manufacturing and mounting uniformity. +Below the first suspension mode, good decoupling can be observed (the amplitude of the all of off-diagonal terms are $\approx 20$ times smaller than the diagonal terms). + +From 10Hz up to 1kHz, around 10 resonance frequencies can be observed. +The first 4 are suspension modes (at 122Hz, 143Hz, 165Hz and 191Hz) which correlate the modes measured during the modal analysis in Section ref:ssec:test_nhexa_enc_struts_modal_analysis. +Then, three modes at 237Hz, 349Hz and 395Hz are attributed to the internal strut resonances (this will be checked in Section ref:ssec:test_nhexa_comp_model_coupling). +Except the mode at 237Hz, their amplitude is rather low. +Two modes at 665Hz and 695Hz are attributed to the flexible modes of the top platform. +Other modes can be observed above 1kHz, which can be attributed to flexible modes of the encoder supports or to flexible modes of the top platform. + +Up to at least 1kHz, an alternating pole/zero pattern is observed, which renders the control easier to tune. +This would not have been the case if the encoders were fixed to the struts. -The actuators are excited one by one using a low pass filtered white noise. -For each excitation, the 6 force sensors and 6 encoders are measured and saved. #+begin_src matlab -%% Load Identification Data -meas_data = {}; +%% Load identification data +load('test_nhexa_identification_data_mass_0.mat', 'data'); -for i = 1:6 - meas_data(i) = {load(sprintf('frf_data_exc_strut_%i_realigned_vib_table_0m.mat', i), 't', 'Va', 'Vs', 'de')}; -end -#+end_src - -#+begin_src matlab :exports none %% Setup useful variables Ts = 1e-4; % Sampling Time [s] Nfft = floor(1/Ts); % Number of points for the FFT computation @@ -4492,24 +709,23 @@ win = hanning(Nfft); % Hanning window Noverlap = floor(Nfft/2); % Overlap between frequency analysis % And we get the frequency vector -[~, f] = tfestimate(meas_data{1}.Va, meas_data{1}.de, win, Noverlap, Nfft, 1/Ts); -#+end_src +[~, f] = tfestimate(data{1}.u, data{1}.de, win, Noverlap, Nfft, 1/Ts); -*** Transfer function from Actuator to Encoder -<> - -The 6x6 transfer function matrix from the excitation voltage $\bm{u}$ and the displacement $d\bm{\mathcal{L}}_m$ as measured by the encoders is estimated. - -#+begin_src matlab %% Transfer function from u to dLm -G_dL = zeros(length(f), 6, 6); +G_de = zeros(length(f), 6, 6); for i = 1:6 - G_dL(:,:,i) = tfestimate(meas_data{i}.Va, meas_data{i}.de, win, Noverlap, Nfft, 1/Ts); + G_de(:,:,i) = tfestimate(data{i}.u, data{i}.de, win, Noverlap, Nfft, 1/Ts); +end + +%% Transfer function from u to Vs +G_Vs = zeros(length(f), 6, 6); + +for i = 1:6 + G_Vs(:,:,i) = tfestimate(data{i}.u, data{i}.Vs, win, Noverlap, Nfft, 1/Ts); end #+end_src -The diagonal and off-diagonal terms of this transfer function matrix are shown in Figure ref:fig:test_nhexa_enc_plates_dvf_frf. #+begin_src matlab :exports none %% Bode plot for the transfer function from u to dLm figure; @@ -4519,28 +735,29 @@ ax1 = nexttile([2,1]); hold on; for i = 1:5 for j = i+1:6 - plot(f, abs(G_dL(:, i, j)), 'color', [0, 0, 0, 0.2], ... + plot(f, abs(G_de(:, i, j)), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); end end for i =1:6 set(gca,'ColorOrderIndex',i) - plot(f, abs(G_dL(:,i, i)), ... - 'DisplayName', sprintf('$d\\mathcal{L}_%i/u_%i$', i, i)); + plot(f, abs(G_de(:,i, i)), ... + 'DisplayName', sprintf('$d_{e,%i}/u_%i$', i, i)); end -plot(f, abs(G_dL(:, 1, 2)), 'color', [0, 0, 0, 0.2], ... - 'DisplayName', '$d\mathcal{L}_i/u_j$'); +plot(f, abs(G_de(:, 1, 2)), 'color', [0, 0, 0, 0.2], ... + 'DisplayName', '$d_{e,i}/u_j$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]); -ylim([1e-9, 1e-3]); -legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3); +ylim([1e-8, 5e-4]); +leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 4); +leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i =1:6 set(gca,'ColorOrderIndex',i) - plot(f, 180/pi*angle(G_dL(:,i, i))); + plot(f, 180/pi*angle(G_de(:,i, i))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); @@ -4549,41 +766,26 @@ hold off; yticks(-360:90:360); linkaxes([ax1,ax2],'x'); -xlim([20, 2e3]); +xlim([10, 2e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/enc_plates_dvf_frf.pdf', 'width', 'wide', 'height', 'tall'); +exportFig('figs/test_nhexa_identified_frf_de.pdf', 'width', 'wide', 'height', 600); #+end_src -#+name: fig:test_nhexa_enc_plates_dvf_frf -#+caption: Measured FRF for the transfer function from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ +#+name: fig:test_nhexa_identified_frf_de +#+caption: Measured FRF for the transfer function from $\mathbf{u}$ to $\mathbf{d}_e$. The 6 diagonal terms are the colorfull lines (all superimposed), and the 30 off-diagonal terms are the shaded black lines. #+RESULTS: -[[file:figs/enc_plates_dvf_frf.png]] +[[file:figs/test_nhexa_identified_frf_de.png]] -#+begin_important -From Figure ref:fig:test_nhexa_enc_plates_dvf_frf, we can draw few conclusions on the transfer functions from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ when the encoders are fixed to the plates: -- the decoupling is rather good at low frequency (below the first suspension mode). - The low frequency gain is constant for the off diagonal terms, whereas when the encoders where fixed to the struts, the low frequency gain of the off-diagonal terms were going to zero (Figure ref:fig:test_nhexa_enc_struts_dvf_frf). -- the flexible modes of the struts at 226Hz and 337Hz are indeed shown in the transfer functions, but their amplitudes are rather low. -- the diagonal terms have alternating poles and zeros up to at least 600Hz: the flexible modes of the struts are not affecting the alternating pole/zero pattern. This what not the case when the encoders were fixed to the struts (Figure ref:fig:test_nhexa_enc_struts_dvf_frf). -#+end_important -*** Transfer function from Actuator to Force Sensor -<> -Then the 6x6 transfer function matrix from the excitation voltage $\bm{u}$ and the voltage $\bm{\tau}_m$ generated by the Force senors is estimated. -#+begin_src matlab -%% IFF Plant -G_tau = zeros(length(f), 6, 6); +Similarly, the $6 \times 6$ FRF matrix from $\mathbf{u}$ to $\mathbf{V}_s$ is shown in Figure ref:fig:test_nhexa_identified_frf_Vs. +Alternating poles and zeros is observed up to at least 2kHz, which is a necessary characteristics in order to apply decentralized IFF. +Similar to what was observed for the encoder outputs, all the "diagonal" terms are well superimposed, indicating that the same controller can be applied for all the struts. +The first flexible mode of the struts as 235Hz is appearing, and therefore is should be possible to add some damping to this mode using IFF. -for i = 1:6 - G_tau(:,:,i) = tfestimate(meas_data{i}.Va, meas_data{i}.Vs, win, Noverlap, Nfft, 1/Ts); -end -#+end_src - -The bode plot of the diagonal and off-diagonal terms are shown in Figure ref:fig:test_nhexa_enc_plates_iff_frf. #+begin_src matlab :exports none -%% Bode plot of the IFF Plant (transfer function from u to taum) +%% Bode plot of the IFF Plant (transfer function from u to Vs) figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); @@ -4591,28 +793,29 @@ ax1 = nexttile([2,1]); hold on; for i = 1:5 for j = i+1:6 - plot(f, abs(G_tau(:, i, j)), 'color', [0, 0, 0, 0.2], ... + plot(f, abs(G_Vs(:, i, j)), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); end end for i =1:6 set(gca,'ColorOrderIndex',i) - plot(f, abs(G_tau(:,i , i)), ... - 'DisplayName', sprintf('$\\tau_{m,%i}/u_%i$', i, i)); + plot(f, abs(G_Vs(:,i , i)), ... + 'DisplayName', sprintf('$V_{s%i}/u_%i$', i, i)); end -plot(f, abs(G_tau(:, 1, 2)), 'color', [0, 0, 0, 0.2], ... - 'DisplayName', '$\tau_{m,i}/u_j$'); +plot(f, abs(G_Vs(:, 1, 2)), 'color', [0, 0, 0, 0.2], ... + 'DisplayName', '$V_{si}/u_j$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]); -legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 3); -ylim([1e-3, 1e2]); +leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 4); +leg.ItemTokenSize(1) = 15; +ylim([1e-3, 6e1]); ax2 = nexttile; hold on; for i =1:6 set(gca,'ColorOrderIndex',i) - plot(f, 180/pi*angle(G_tau(:,i, i))); + plot(f, 180/pi*angle(G_Vs(:,i, i))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); @@ -4621,149 +824,40 @@ hold off; yticks(-360:90:360); linkaxes([ax1,ax2],'x'); -xlim([20, 2e3]); +xlim([10, 2e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/enc_plates_iff_frf.pdf', 'width', 'wide', 'height', 'tall'); +exportFig('figs/test_nhexa_identified_frf_Vs.pdf', 'width', 'wide', 'height', 600); #+end_src -#+name: fig:test_nhexa_enc_plates_iff_frf -#+caption: Measured FRF for the IFF plant +#+name: fig:test_nhexa_identified_frf_Vs +#+caption: Measured FRF for the transfer function from $\mathbf{u}$ to $\mathbf{V}_s$. The 6 diagonal terms are the colorfull lines (all superimposed), and the 30 off-diagonal terms are the shaded black lines. #+RESULTS: -[[file:figs/enc_plates_iff_frf.png]] +[[file:figs/test_nhexa_identified_frf_Vs.png]] -#+begin_important -It is shown in Figure ref:fig:test_nhexa_enc_plates_iff_comp_simscape_all that: -- The IFF plant has alternating poles and zeros -- The first flexible mode of the struts as 235Hz is appearing, and therefore is should be possible to add some damping to this mode using IFF -- The decoupling is quite good at low frequency (below the first model) as well as high frequency (above the last suspension mode, except near the flexible modes of the top plate) -#+end_important +** Effect of payload mass on the dynamics +<> -*** Save Identified Plants -The identified dynamics is saved for further use. -#+begin_src matlab :exports none :tangle no -save('matlab/mat/data_frf/identified_plants_enc_plates.mat', 'f', 'Ts', 'G_tau', 'G_dL') -#+end_src +As one major challenge in the control of the NASS is the wanted robustness to change of payload mass, it is necessary to understand how the dynamics of the nano-hexapod changes with a change of payload mass. -#+begin_src matlab :eval no -save('data_frf/mat/identified_plants_enc_plates.mat', 'f', 'Ts', 'G_tau', 'G_dL') -#+end_src +In order to study this change of dynamics with the payload mass, up to three "cylindrical masses" of $13\,kg$ each can be added for a total of $\approx 40\,kg$. +These three cylindrical masses on top of the nano-hexapod are shown in Figure ref:fig:test_nhexa_table_mass_3. -** Effect of Payload mass on the Dynamics -:PROPERTIES: -:header-args:matlab+: :tangle matlab/scripts/id_frf_enc_plates_effect_payload.m -:END: -<> -*** Introduction :ignore: -In this section, the encoders are fixed to the plates, and we identify the dynamics for several payloads. -The added payload are half cylinders, and three layers can be added for a total of around 40kg (Figure ref:fig:test_nhexa_picture_added_3_masses). +#+name: fig:test_nhexa_table_mass_3 +#+caption: Picture of the nano-hexapod with the added three cylindrical masses for a total of $\approx 40\,kg$ +#+attr_org: :width 800px +#+attr_latex: :width 0.8\linewidth +[[file:figs/test_nhexa_table_mass_3.jpg]] -#+name: fig:test_nhexa_picture_added_3_masses -#+caption: Picture of the nano-hexapod with added mass -#+attr_latex: :width \linewidth -[[file:figs/test_nhexa_picture_added_3_masses.jpg]] - -First the dynamics from $\bm{u}$ to $d\mathcal{L}_m$ and $\bm{\tau}_m$ is identified. -Then, the Integral Force Feedback controller is developed and applied as shown in Figure ref:fig:test_nhexa_nano_hexapod_signals_iff. -Finally, the dynamics from $\bm{u}^\prime$ to $d\mathcal{L}_m$ is identified and the added damping can be estimated. - -#+begin_src latex :file nano_hexapod_signals_iff.pdf -\definecolor{instrumentation}{rgb}{0, 0.447, 0.741} -\definecolor{mechanics}{rgb}{0.8500, 0.325, 0.098} -\definecolor{control}{rgb}{0.4660, 0.6740, 0.1880} - -\begin{tikzpicture} - % Blocs - \node[block={4.0cm}{3.0cm}, fill=mechanics!20!white] (nano_hexapod) {Mechanics}; - \coordinate[] (inputF) at (nano_hexapod.west); - \coordinate[] (outputL) at ($(nano_hexapod.south east)!0.8!(nano_hexapod.north east)$); - \coordinate[] (outputF) at ($(nano_hexapod.south east)!0.2!(nano_hexapod.north east)$); - - \node[block, left= 0.8 of inputF, fill=instrumentation!20!white, align=center] (F_stack) {\tiny Actuator \\ \tiny stacks}; - \node[block, left= 0.8 of F_stack, fill=instrumentation!20!white] (PD200) {PD200}; - \node[DAC, left= 0.8 of PD200, fill=instrumentation!20!white] (F_DAC) {DAC}; - \node[block, right=0.8 of outputF, fill=instrumentation!20!white, align=center] (Fm_stack){\tiny Sensor \\ \tiny stack}; - \node[ADC, right=0.8 of Fm_stack,fill=instrumentation!20!white] (Fm_ADC) {ADC}; - \node[block, right=0.8 of outputL, fill=instrumentation!20!white] (encoder) {\tiny Encoder}; - \node[addb, left= 0.8 of F_DAC, fill=control!20!white] (add_iff) {}; - \node[block, below=0.8 of add_iff, fill=control!20!white] (Kiff) {\tiny $K_{\text{IFF}}(s)$}; - - % Connections and labels - \draw[->] (add_iff.east) node[above right]{$\bm{u}$} node[below right]{$[V]$} -- node[sloped]{$/$} (F_DAC.west); - \draw[->] (F_DAC.east) -- node[midway, above]{$\tilde{\bm{u}}$}node[midway, below]{$[V]$} (PD200.west); - \draw[->] (PD200.east) -- node[midway, above]{$\bm{u}_a$}node[midway, below]{$[V]$} (F_stack.west); - \draw[->] (F_stack.east) -- (inputF) node[above left]{$\bm{\tau}$}node[below left]{$[N]$}; - - \draw[->] (outputF) -- (Fm_stack.west) node[above left]{$\bm{\epsilon}$} node[below left]{$[m]$}; - \draw[->] (Fm_stack.east) -- node[midway, above]{$\tilde{\bm{\tau}}_m$}node[midway, below]{$[V]$} (Fm_ADC.west); - \draw[->] (Fm_ADC.east) -- node[sloped]{$/$} ++(0.8, 0)coordinate(end) node[above left]{$\bm{\tau}_m$}node[below left]{$[V]$}; - - \draw[->] (outputL) -- (encoder.west) node[above left]{$d\bm{\mathcal{L}}$} node[below left]{$[m]$}; - \draw[->] (encoder.east) -- node[sloped]{$/$} (encoder-|end) node[above left]{$d\bm{\mathcal{L}}_m$}node[below left]{$[m]$}; - - \draw[->] ($(Fm_ADC.east)+(0.14,0)$) node[branch]{} -- node[sloped]{$/$} ++(0, -1.8) -| (Kiff.south); - \draw[->] (Kiff.north) -- node[sloped]{$/$} (add_iff.south); - \draw[->] ($(add_iff.west)+(-0.8,0)$) node[above right]{$\bm{u}^\prime$} node[below right]{$[V]$} -- node[sloped]{$/$} (add_iff.west); - - % Nano-Hexapod - \begin{scope}[on background layer] - \node[fit={(F_stack.west|-nano_hexapod.south) (Fm_stack.east|-nano_hexapod.north)}, fill=black!20!white, draw, inner sep=2pt] (system) {}; - \node[above] at (system.north) {Nano-Hexapod}; - \end{scope} -\end{tikzpicture} -#+end_src - -#+name: fig:test_nhexa_nano_hexapod_signals_iff -#+caption: Block Diagram of the experimental setup and model -#+RESULTS: -[[file:figs/test_nhexa_nano_hexapod_signals_iff.png]] - -*** Matlab Init :noexport:ignore: #+begin_src matlab -%% id_frf_enc_plates_effect_payload.m -% Identification of the nano-hexapod dynamics from u to dL and to taum for several payloads -% Encoders are fixed to the plates -#+end_src +%% Load identification Data +meas_added_mass = {... + load('test_nhexa_identification_data_mass_0.mat', 'data'), .... + load('test_nhexa_identification_data_mass_1.mat', 'data'), .... + load('test_nhexa_identification_data_mass_2.mat', 'data'), .... + load('test_nhexa_identification_data_mass_3.mat', 'data')}; -#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) -<> -#+end_src - -#+begin_src matlab :exports none :results silent :noweb yes -<> -#+end_src - -#+begin_src matlab :tangle no :noweb yes -<> -#+end_src - -#+begin_src matlab :eval no :noweb yes -<> -#+end_src - -#+begin_src matlab :noweb yes -<> -#+end_src - -*** Measured Frequency Response Functions -The following data are loaded: -- =Va=: the excitation voltage (corresponding to $u_i$) -- =Vs=: the generated voltage by the 6 force sensors (corresponding to $\bm{\tau}_m$) -- =de=: the measured motion by the 6 encoders (corresponding to $d\bm{\mathcal{L}}_m$) -#+begin_src matlab -%% Load Identification Data -meas_added_mass = {}; - -for i_mass = i_masses - for i_strut = 1:6 - meas_added_mass(i_strut, i_mass+1) = {load(sprintf('frf_data_exc_strut_%i_realigned_vib_table_%im.mat', i_strut, i_mass), 't', 'Va', 'Vs', 'de')}; - end -end -#+end_src - -The window =win= and the frequency vector =f= are defined. -#+begin_src matlab :exports none %% Setup useful variables Ts = 1e-4; % Sampling Time [s] Nfft = floor(1/Ts); % Number of points for the FFT computation @@ -4771,82 +865,93 @@ win = hanning(Nfft); % Hanning window Noverlap = floor(Nfft/2); % Overlap between frequency analysis % And we get the frequency vector -[~, f] = tfestimate(meas_added_mass{1,1}.Va, meas_added_mass{1,1}.de, win, Noverlap, Nfft, 1/Ts); -#+end_src +[~, f] = tfestimate(meas_added_mass{1}.data{1}.u, meas_added_mass{1}.data{1}.de, win, Noverlap, Nfft, 1/Ts); -Finally the $6 \times 6$ transfer function matrices from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ and from $\bm{u}$ to $\bm{\tau}_m$ are identified: -#+begin_src matlab -%% DVF Plant (transfer function from u to dLm) -G_dL = {}; +G_de = {}; -for i_mass = i_masses - G_dL(i_mass+1) = {zeros(length(f), 6, 6)}; +for i_mass = [0:3] + G_de(i_mass+1) = {zeros(length(f), 6, 6)}; for i_strut = 1:6 - G_dL{i_mass+1}(:,:,i_strut) = tfestimate(meas_added_mass{i_strut, i_mass+1}.Va, meas_added_mass{i_strut, i_mass+1}.de, win, Noverlap, Nfft, 1/Ts); + G_de{i_mass+1}(:,:,i_strut) = tfestimate(meas_added_mass{i_mass+1}.data{i_strut}.u, meas_added_mass{i_mass+1}.data{i_strut}.de, win, Noverlap, Nfft, 1/Ts); end end -%% IFF Plant (transfer function from u to taum) -G_tau = {}; +%% IFF Plant (transfer function from u to Vs) +G_Vs = {}; -for i_mass = i_masses - G_tau(i_mass+1) = {zeros(length(f), 6, 6)}; +for i_mass = [0:3] + G_Vs(i_mass+1) = {zeros(length(f), 6, 6)}; for i_strut = 1:6 - G_tau{i_mass+1}(:,:,i_strut) = tfestimate(meas_added_mass{i_strut, i_mass+1}.Va, meas_added_mass{i_strut, i_mass+1}.Vs, win, Noverlap, Nfft, 1/Ts); + G_Vs{i_mass+1}(:,:,i_strut) = tfestimate(meas_added_mass{i_mass+1}.data{i_strut}.u, meas_added_mass{i_mass+1}.data{i_strut}.Vs, win, Noverlap, Nfft, 1/Ts); end end #+end_src The identified dynamics are then saved for further use. #+begin_src matlab :exports none :tangle no -save('matlab/mat/data_frf/frf_vib_table_m.mat', 'f', 'Ts', 'G_tau', 'G_dL') +save('matlab/mat/test_nhexa_identified_frf_masses.mat', 'f', 'G_Vs', 'G_de') #+end_src #+begin_src matlab :eval no -save('data_frf/mat/frf_vib_table_m.mat', 'f', 'Ts', 'G_tau', 'G_dL') +save('./mat/test_nhexa_identified_frf_masses.mat', 'f', 'G_Vs', 'G_de') #+end_src #+begin_src matlab :exports none -frf_ol = load('frf_vib_table_m.mat', 'f', 'Ts', 'G_tau', 'G_dL'); +%% Load the identified transfer functions +frf_ol = load('test_nhexa_identified_frf_masses.mat', 'f', 'G_Vs', 'G_de'); #+end_src -*** Transfer function from Actuators to Encoders -The transfer functions from $\bm{u}$ to $d\bm{\mathcal{L}}_{m}$ are shown in Figure ref:fig:test_nhexa_comp_plant_payloads_dvf. +The obtained frequency response functions from actuator signal $u_i$ to the associated encoder $d_{ei}$ for the four payload conditions (no mass, 13kg, 26kg and 39kg) are shown in Figure ref:fig:test_nhexa_identified_frf_de_masses. +As expected, the frequency of the suspension modes are decreasing with an increase of the payload mass. +The low frequency gain does not change as it is linked to the stiffness property of the nano-hexapod, and not to its mass property. + +The frequencies of the two flexible modes of the top plate are first decreased a lot when the first mass is added (from $\approx 700\,Hz$ to $\approx 400\,Hz$). +This is due to the fact that the added mass is composed of two half cylinders which are not fixed together. +It therefore adds a lot of mass to the top plate without adding stiffness in one direction. +When more than one "mass layer" is added, the half cylinders are added with some angles such that rigidity are added in all directions (see how the three mass "layers" are positioned in Figure ref:fig:test_nhexa_table_mass_3). +In that case, the frequency of these flexible modes are increased. +In practice, the payload should be one solid body, and no decrease of the frequency of this flexible mode should be observed. +The apparent amplitude of the flexible mode of the strut at 237Hz becomes smaller as the payload mass is increased. + +The measured FRF from $u_i$ to $V_{si}$ are shown in Figure ref:fig:test_nhexa_identified_frf_Vs_masses. +For all the tested payloads, the measured FRF always have alternating poles and zeros, indicating that IFF can be applied in a robust way. #+begin_src matlab :exports none %% Bode plot for the transfer function from u to dLm - Several payloads +masses = [0, 13, 26, 39]; figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; -for i_mass = i_masses +for i_mass = [0:3] % Diagonal terms - plot(frf_ol.f, abs(frf_ol.G_dL{i_mass+1}(:,1, 1)), 'color', colors(i_mass+1,:), ... - 'DisplayName', sprintf('$d\\mathcal{L}_{m,i}/u_i$ - %i', i_mass)); + plot(frf_ol.f, abs(frf_ol.G_de{i_mass+1}(:,1, 1)), 'color', [colors(i_mass+1,:), 0.5], ... + 'DisplayName', sprintf('$d_{ei}/u_i$ - %i kg', masses(i_mass+1))); for i = 2:6 - plot(frf_ol.f, abs(frf_ol.G_dL{i_mass+1}(:,i, i)), 'color', colors(i_mass+1,:), ... + plot(frf_ol.f, abs(frf_ol.G_de{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.5], ... 'HandleVisibility', 'off'); end - % Off-Diagonal terms - for i = 1:5 - for j = i+1:6 - plot(frf_ol.f, abs(frf_ol.G_dL{i_mass+1}(:,i,j)), 'color', [colors(i_mass+1,:), 0.2], ... - 'HandleVisibility', 'off'); - end - end + % % Off-Diagonal terms + % for i = 1:5 + % for j = i+1:6 + % plot(frf_ol.f, abs(frf_ol.G_de{i_mass+1}(:,i,j)), 'color', [colors(i_mass+1,:), 0.2], ... + % 'HandleVisibility', 'off'); + % end + % end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]); -ylim([1e-8, 1e-3]); -legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); +ylim([1e-8, 5e-4]); +leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); +leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; -for i_mass = i_masses +for i_mass = [0:3] for i =1:6 - plot(frf_ol.f, 180/pi*angle(frf_ol.G_dL{i_mass+1}(:,i, i)), 'color', colors(i_mass+1,:)); + plot(frf_ol.f, 180/pi*angle(frf_ol.G_de{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.5]); end end hold off; @@ -4857,37 +962,13 @@ yticks(-360:90:360); ylim([-90, 180]) linkaxes([ax1,ax2],'x'); -xlim([20, 2e3]); +xlim([10, 2e3]); #+end_src -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/comp_plant_payloads_dvf.pdf', 'width', 'wide', 'height', 'tall'); +#+begin_src matlab :tangle no :exports results :results file none +exportFig('figs/test_nhexa_identified_frf_de_masses.pdf', 'width', 'half', 'height', 600); #+end_src -#+name: fig:test_nhexa_comp_plant_payloads_dvf -#+caption: Measured Frequency Response Functions from $u_i$ to $d\mathcal{L}_{m,i}$ for all 4 payload conditions. Diagonal terms are solid lines, and shaded lines are off-diagonal terms. -#+RESULTS: -[[file:figs/test_nhexa_comp_plant_payloads_dvf.png]] - - -#+begin_important -From Figure ref:fig:test_nhexa_comp_plant_payloads_dvf, we can observe few things: -- The obtained dynamics is changing a lot between the case without mass and when there is at least one added mass. -- Between 1, 2 and 3 added masses, the dynamics is not much different, and it would be easier to design a controller only for these cases. -- The flexible modes of the top plate is first decreased a lot when the first mass is added (from 700Hz to 400Hz). - This is due to the fact that the added mass is composed of two half cylinders which are not fixed together. - Therefore is adds a lot of mass to the top plate without adding a lot of rigidity in one direction. - When more than 1 mass layer is added, the half cylinders are added with some angles such that rigidity are added in all directions (see Figure ref:fig:test_nhexa_picture_added_3_masses). - In that case, the frequency of these flexible modes are increased. - In practice, the payload should be one solid body, and we should not see a massive decrease of the frequency of this flexible mode. -- Flexible modes of the top plate are becoming less problematic as masses are added. -- First flexible mode of the strut at 230Hz is not much decreased when mass is added. - However, its apparent amplitude is much decreased. -#+end_important - -*** Transfer function from Actuators to Force Sensors -The transfer functions from $\bm{u}$ to $\bm{\tau}_{m}$ are shown in Figure ref:fig:test_nhexa_comp_plant_payloads_iff. - #+begin_src matlab :exports none %% Bode plot for the transfer function from u to dLm figure; @@ -4895,33 +976,34 @@ tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; -for i_mass = i_masses +for i_mass = [0:3] % Diagonal terms - plot(frf_ol.f, abs(frf_ol.G_tau{i_mass+1}(:,1, 1)), 'color', colors(i_mass+1,:), ... - 'DisplayName', sprintf('$\\tau_{m,i}/u_i$ - %i', i_mass)); + plot(frf_ol.f, abs(frf_ol.G_Vs{i_mass+1}(:,1, 1)), 'color', [colors(i_mass+1,:), 0.5], ... + 'DisplayName', sprintf('$V_{si}/u_i$ - %i kg', masses(i_mass+1))); for i = 2:6 - plot(frf_ol.f, abs(frf_ol.G_tau{i_mass+1}(:,i, i)), 'color', colors(i_mass+1,:), ... + plot(frf_ol.f, abs(frf_ol.G_Vs{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.5], ... 'HandleVisibility', 'off'); end - % Off-Diagonal terms - for i = 1:5 - for j = i+1:6 - plot(frf_ol.f, abs(frf_ol.G_tau{i_mass+1}(:,i,j)), 'color', [colors(i_mass+1,:), 0.2], ... - 'HandleVisibility', 'off'); - end - end + % % Off-Diagonal terms + % for i = 1:5 + % for j = i+1:6 + % plot(frf_ol.f, abs(frf_ol.G_Vs{i_mass+1}(:,i,j)), 'color', [colors(i_mass+1,:), 0.2], ... + % 'HandleVisibility', 'off'); + % end + % end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]); ylim([1e-2, 1e2]); -legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 3); +leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 2); +leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; -for i_mass = i_masses +for i_mass = [0:3] for i =1:6 - plot(frf_ol.f, 180/pi*angle(frf_ol.G_tau{i_mass+1}(:,i, i)), 'color', colors(i_mass+1,:)); + plot(frf_ol.f, 180/pi*angle(frf_ol.G_Vs{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.5]); end end hold off; @@ -4931,100 +1013,75 @@ hold off; yticks(-360:90:360); linkaxes([ax1,ax2],'x'); -xlim([20, 2e3]); +xlim([10, 2e3]); #+end_src -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/comp_plant_payloads_iff.pdf', 'width', 'wide', 'height', 'tall'); +#+begin_src matlab :tangle no :exports results :results file none +exportFig('figs/test_nhexa_identified_frf_Vs_masses.pdf', 'width', 'half', 'height', 600); #+end_src -#+name: fig:test_nhexa_comp_plant_payloads_iff -#+caption: Measured Frequency Response Functions from $u_i$ to $\tau_{m,i}$ for all 4 payload conditions. Diagonal terms are solid lines, and shaded lines are off-diagonal terms. -#+RESULTS: -[[file:figs/test_nhexa_comp_plant_payloads_iff.png]] - -#+begin_important -From Figure ref:fig:test_nhexa_comp_plant_payloads_iff, we can see that for all added payloads, the transfer function from $\bm{u}$ to $\bm{\tau}_{m}$ always has alternating poles and zeros. -#+end_important - -*** Coupling of the transfer function from Actuator to Encoders -The RGA-number, which is a measure of the interaction in the system, is computed for the transfer function matrix from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ for all the payloads. -The obtained numbers are compared in Figure ref:fig:test_nhexa_rga_num_ol_masses. - -#+begin_src matlab :exports none -%% Decentralized RGA - Undamped Plant -RGA_num = zeros(length(frf_ol.f), length(i_masses)); -for i_mass = i_masses - for i = 1:length(frf_ol.f) - RGA_num(i, i_mass+1) = sum(sum(abs(eye(6) - squeeze(frf_ol.G_dL{i_mass+1}(i,:,:)).*inv(squeeze(frf_ol.G_dL{i_mass+1}(i,:,:))).'))); - end -end -#+end_src - -#+begin_src matlab :exports none -%% RGA for Decentralized plant -figure; -hold on; -for i_mass = i_masses - plot(frf_ol.f, RGA_num(:,i_mass+1), '-', 'color', colors(i_mass+1,:), ... - 'DisplayName', sprintf('RGA-num - %i mass', i_mass)); -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('RGA Number'); -xlim([10, 1e3]); ylim([1e-2, 1e2]); -legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 2); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/rga_num_ol_masses.pdf', 'width', 'wide', 'height', 'normal'); -#+end_src - -#+name: fig:test_nhexa_rga_num_ol_masses -#+caption: RGA-number for the open-loop transfer function from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ -#+RESULTS: -[[file:figs/test_nhexa_rga_num_ol_masses.png]] - -#+begin_important -From Figure ref:fig:test_nhexa_rga_num_ol_masses, it is clear that the coupling is quite large starting from the first suspension mode of the nano-hexapod. -Therefore, is the payload's mass is increase, the coupling in the system start to become unacceptably large at lower frequencies. -#+end_important +#+name: fig:test_struts_mounting +#+caption: Measured Frequency Response Functions from $u_i$ to $d_{ei}$ (\subref{fig:test_nhexa_identified_frf_de_masses}) and from $u_i$ to $V_{si}$ (\subref{fig:test_nhexa_identified_frf_Vs_masses}) for all 4 payload conditions. Only diagonal terms are shown. +#+attr_latex: :options [htbp] +#+begin_figure +#+attr_latex: :caption \subcaption{\label{fig:test_nhexa_identified_frf_de_masses}$u_i$ to $d_{ei}$} +#+attr_latex: :options {0.49\textwidth} +#+begin_subfigure +#+attr_latex: :width \linewidth +[[file:figs/test_nhexa_identified_frf_de_masses.png]] +#+end_subfigure +#+attr_latex: :caption \subcaption{\label{fig:test_nhexa_identified_frf_Vs_masses}$u_i$ to $V_{si}$} +#+attr_latex: :options {0.49\textwidth} +#+begin_subfigure +#+attr_latex: :width \linewidth +[[file:figs/test_nhexa_identified_frf_Vs_masses.png]] +#+end_subfigure +#+end_figure ** Conclusion -#+begin_important -In this section, the dynamics of the nano-hexapod with the encoders fixed to the plates is studied. - -It has been found that: -- The measured dynamics is in agreement with the dynamics of the simscape model, up to the flexible modes of the top plate. - See figures ref:fig:test_nhexa_enc_plates_iff_comp_simscape and ref:fig:test_nhexa_enc_plates_iff_comp_offdiag_simscape for the transfer function to the force sensors and Figures ref:fig:test_nhexa_enc_plates_dvf_comp_simscape and ref:fig:test_nhexa_enc_plates_dvf_comp_offdiag_simscape for the transfer functions to the encoders -- The Integral Force Feedback strategy is very effective in damping the suspension modes of the nano-hexapod (Figure ref:fig:test_nhexa_enc_plant_plates_effect_iff). -- The transfer function from $\bm{u}^\prime$ to $d\bm{\mathcal{L}}_m$ show nice dynamical properties and is a much better candidate for the high-authority-control than when the encoders were fixed to the struts. - At least up to the flexible modes of the top plate, the diagonal elements of the transfer function matrix have alternating poles and zeros, and the phase is moving smoothly. - Only the flexible modes of the top plates seems to be problematic for control. -#+end_important - -* Comparison with the Nano-Hexapod model? -<> -** Comparison with the Simscape Model :PROPERTIES: -:header-args:matlab+: :tangle matlab/scripts/frf_enc_plates_comp_simscape.m +:UNNUMBERED: t :END: -<> -*** Introduction :ignore: -In this section, the measured dynamics done in Section ref:sec:test_nhexa_enc_plates_plant_id is compared with the dynamics estimated from the Simscape model. -A configuration is added to be able to put the nano-hexapod on top of the vibration table as shown in Figure ref:fig:simscape_vibration_table. +After the Nano-Hexapod was fixed on top of the suspended table, its dynamics was identified. -#+name: fig:simscape_vibration_table -#+caption: 3D representation of the simscape model with the nano-hexapod +The frequency response functions from the six DAC voltages $\mathbf{u}$ to the six encoders measured displacements $\mathbf{d}_e$ displays alternating complex conjugate poles and complex conjugate zeros up to at least 1kHz. +At low frequency, the coupling is small, indicating correct assembly of all parts. +This should enables the design of a decentralized positioning controller based on the encoder for relative positioning purposes. +The suspension modes and flexible modes measured during the modal analysis (Section ref:ssec:test_nhexa_enc_struts_modal_analysis) are also observed in the dynamics. +Lot's of other modes are present above 700Hz, which will inevitably limit the achievable bandwidth. +The observed effect of the payload's mass on the dynamics is quite large, which also represent a complex control challenge. + +The frequency response functions from the six DAC voltages $\mathbf{u}$ to the six force sensors voltages $\mathbf{V}_s$ all have alternating complex conjugate poles and complex conjugate zeros. +This indicates that it should be possible to implement decentralized Integral Force Feedback in a robust way. +This alternating property holds for all the tested payloads. + +* Nano-Hexapod Model Dynamics +:PROPERTIES: +:header-args:matlab+: :tangle matlab/test_nhexa_3_model.m +:END: +<> + +** Introduction :ignore: + +In this section, the measured dynamics done in Section ref:sec:test_nhexa_dynamics is compared with the dynamics estimated from the Simscape model. +The nano-hexapod simscape model is therefore added on top of the vibration table Simscape model as shown in Figure ref:fig:test_nhexa_hexa_simscape. + +#+name: fig:test_nhexa_hexa_simscape +#+caption: 3D representation of the simscape model with the nano-hexapod on top of the suspended table. Three mass "layers" are here added #+attr_latex: :width 0.8\linewidth -[[file:figs/vibration_table_nano_hexapod_simscape.png]] +[[file:figs/test_nhexa_hexa_simscape.png]] -*** Matlab Init :noexport:ignore: +The model should exhibit certain characteristics that are verified in this section. +First, it should match the measured system dynamics from actuators to sensors that were presented in Section ref:sec:test_nhexa_dynamics. +Both the "direct" terms (Section ref:ssec:test_nhexa_comp_model) and "coupling" terms (Section ref:ssec:test_nhexa_comp_model_coupling) of the Simscape model are compared with the measured dynamics. +Second, it should also represents how the system dynamics changes when a payload is fixed to the top platform. +This is checked in Section ref:ssec:test_nhexa_comp_model_masses. + +** Matlab Init :noexport:ignore: #+begin_src matlab -%% frf_enc_plates_comp_simscape.m -% Compare the measured dynamics from u to dL and to taum with the Simscape model -% Encoders are fixed to the plates +%% test_nhexa_3_model.m +% Compare the measured dynamics from u to de and to Vs with the Simscape model #+end_src #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) @@ -5051,180 +1108,164 @@ A configuration is added to be able to put the nano-hexapod on top of the vibrat <> #+end_src +** Extract transfer function matrices from the Simscape Model :noexport: #+begin_src matlab -%% Load identification data -frf_ol = load('identified_plants_enc_plates.mat', 'f', 'Ts', 'G_tau', 'G_dL'); -#+end_src - -*** Identification with the Simscape Model -The nano-hexapod is initialized with the APA taken as 2dof models. -#+begin_src matlab -%% Initialize Simscape Model +%% Extract the transfer function matrix from the Simscape model +% Initialization of the Simscape model table_type = 'Suspended'; % On top of vibration table -device_type = 'Hexapod'; % On top of vibration table +device_type = 'Hexapod'; % Nano-Hexapod payload_num = 0; % No Payload n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ... 'flex_top_type', '4dof', ... 'motion_sensor_type', 'plates', ... 'actuator_type', '2dof'); -#+end_src -Now, the dynamics from the DAC voltage $\bm{u}$ to the encoders $d\bm{\mathcal{L}}_m$ is estimated using the Simscape model. -#+begin_src matlab -%% Identify the DVtransfer function from u to dLm +% Identify the FRF matrix from u to [de,Vs] clear io; io_i = 1; io(io_i) = linio([mdl, '/u'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs -io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Encoders +io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoders +io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Encoders -G_dL = exp(-s*frf_ol.Ts)*linearize(mdl, io, 0.0, options); +G_de = {}; +G_Vs = {}; + +for i = [0:3] + payload_num = i; % Change the payload on the nano-hexapod + G = exp(-s*1e-4)*linearize(mdl, io, 0.0); + G.InputName = {'u1', 'u2', 'u3', 'u4', 'u5', 'u6'}; + G.OutputName = {'de1', 'de2', 'de3', 'de4', 'de5', 'de6', ... + 'Vs1', 'Vs2', 'Vs3', 'Vs4', 'Vs5', 'Vs6'}; + G_de(i+1) = {G({'de1', 'de2', 'de3', 'de4', 'de5', 'de6'},:)}; + G_Vs(i+1) = {G({'Vs1', 'Vs2', 'Vs3', 'Vs4', 'Vs5', 'Vs6'},:)}; +end #+end_src -#+begin_src matlab :exports none -%% Comparison of the plants (encoder output) when tuning the misalignment -freqs = 2*logspace(1, 3, 1000); - -i_input = 1; - -figure; -hold on; -plot(frf_ol.f, abs(frf_ol.G_dL(:, 1, i_input))); -plot(freqs, abs(squeeze(freqresp(G_dL(1, i_input), freqs, 'Hz')))); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -set(gca, 'XTickLabel',[]); ylabel('Amplitude [m/V]'); -xlim([40, 4e2]); ylim([1e-8, 1e-2]); -#+end_src - -Then the transfer function from $\bm{u}$ to $\bm{\tau}_m$ is identified using the Simscape model. -#+begin_src matlab -%% Identify the transfer function from u to taum -clear io; io_i = 1; -io(io_i) = linio([mdl, '/u'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs -io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors - -G_tau = exp(-s*frf_ol.Ts)*linearize(mdl, io, 0.0, options); -#+end_src - -The identified dynamics is saved for further use. #+begin_src matlab :exports none :tangle no -%% Save Identified Plants -save('matlab/mat/data_frf/simscape_plants_enc_plates.mat', 'G_tau', 'G_dL'); +% Save the identified plants +save('matlab/mat/test_nhexa_simscape_masses.mat', 'G_Vs', 'G_de') #+end_src #+begin_src matlab :eval no -save('mat/data_frf/simscape_plants_enc_plates.mat', 'G_tau', 'G_dL'); +% Save the identified plants +save('./mat/test_nhexa_simscape_masses.mat', 'G_Vs', 'G_de') #+end_src +#+begin_src matlab +%% The same identification is performed, but this time with +% "flexible" model of the APA +table_type = 'Suspended'; % On top of vibration table +device_type = 'Hexapod'; % Nano-Hexapod +payload_num = 0; % No Payload + +n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ... + 'flex_top_type', '4dof', ... + 'motion_sensor_type', 'plates', ... + 'actuator_type', 'flexible'); + +G_de = {}; +G_Vs = {}; + +for i = [0:3] + payload_num = i; % Change the payload on the nano-hexapod + G = exp(-s*1e-4)*linearize(mdl, io, 0.0); + G.InputName = {'u1', 'u2', 'u3', 'u4', 'u5', 'u6'}; + G.OutputName = {'de1', 'de2', 'de3', 'de4', 'de5', 'de6', ... + 'Vs1', 'Vs2', 'Vs3', 'Vs4', 'Vs5', 'Vs6'}; + G_de(i+1) = {G({'de1', 'de2', 'de3', 'de4', 'de5', 'de6'},:)}; + G_Vs(i+1) = {G({'Vs1', 'Vs2', 'Vs3', 'Vs4', 'Vs5', 'Vs6'},:)}; +end +#+end_src + +#+begin_src matlab :exports none :tangle no +% Save the identified plants +save('matlab/mat/test_nhexa_simscape_flexible_masses.mat', 'G_Vs', 'G_de') +#+end_src + +#+begin_src matlab :eval no +% Save the identified plants +save('./mat/test_nhexa_simscape_flexible_masses.mat', 'G_Vs', 'G_de') +#+end_src + +** Nano-Hexapod model dynamics +<> + #+begin_src matlab :exports none -%% Load the Simscape model -sim_ol = load('simscape_plants_enc_plates.mat', 'G_tau', 'G_dL'); +%% Load Simscape Model and measured FRF +sim_ol = load('test_nhexa_simscape_masses.mat', 'G_Vs', 'G_de'); +frf_ol = load('test_nhexa_identified_frf_masses.mat', 'f', 'G_Vs', 'G_de'); #+end_src -*** Dynamics from Actuator to Force Sensors -The identified dynamics is compared with the measured FRF: -- Figure ref:fig:test_nhexa_enc_plates_iff_comp_simscape_all: the individual transfer function from $u_1$ (the DAC voltage for the first actuator) to the force sensors of all 6 struts are compared -- Figure ref:fig:test_nhexa_enc_plates_iff_comp_simscape: all the diagonal elements are compared -- Figure ref:fig:test_nhexa_enc_plates_iff_comp_offdiag_simscape: all the off-diagonal elements are compared +The Simscape model of the nano-hexapod is first configured with 4-DoF flexible joints, 2-DoF APA and rigid top and bottom platforms. +The stiffness of the flexible joints are chosen based on the values estimated using the test bench and based on FEM. +The parameters of the APA model are the ones determined from the test bench of the APA. +The $6 \times 6$ transfer function matrices from $\mathbf{u}$ to $\mathbf{d}_e$ and from $\mathbf{u}$ to $\mathbf{V}_s$ are extracted then from the Simscape model. + +A first feature that should be checked is that the model well represents the "direct" terms of the measured FRF matrix. +To do so, the diagonal terms of the extracted transfer function matrices are compared with the measured FRF in Figure ref:fig:test_nhexa_comp_simscape_diag. +It can be seen that the 4 suspension modes of the nano-hexapod (at 122Hz, 143Hz, 165Hz and 191Hz) are well modelled. +The three resonances that were attributed to "internal" flexible modes of the struts (at 237Hz, 349Hz and 395Hz) cannot be seen in the model, which is reasonable as the APA are here modelled as a simple uniaxial 2-DoF system. +At higher frequencies, no resonances can be seen in the model, as the as the top plate and the encoder supports are modelled as rigid bodies. #+begin_src matlab :exports none -%% Comparison of the plants (encoder output) when tuning the misalignment -freqs = 2*logspace(1, 3, 1000); - -i_input = 1; - -figure; -tiledlayout(2, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile(); -hold on; -plot(frf_ol.f, abs(frf_ol.G_tau(:, 1, i_input))); -plot(freqs, abs(squeeze(freqresp(sim_ol.G_tau(1, i_input), freqs, 'Hz')))); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -set(gca, 'XTickLabel',[]); ylabel('Amplitude [V/V]'); -title(sprintf('$d\\tau_{m1}/u_{%i}$', i_input)); - -ax2 = nexttile(); -hold on; -plot(frf_ol.f, abs(frf_ol.G_tau(:, 2, i_input))); -plot(freqs, abs(squeeze(freqresp(sim_ol.G_tau(2, i_input), freqs, 'Hz')))); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); -title(sprintf('$d\\tau_{m2}/u_{%i}$', i_input)); - -ax3 = nexttile(); -hold on; -plot(frf_ol.f, abs(frf_ol.G_tau(:, 3, i_input)), ... - 'DisplayName', 'Meas.'); -plot(freqs, abs(squeeze(freqresp(sim_ol.G_tau(3, i_input), freqs, 'Hz'))), ... - 'DisplayName', 'Model'); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); -legend('location', 'southeast', 'FontSize', 8); -title(sprintf('$d\\tau_{m3}/u_{%i}$', i_input)); - -ax4 = nexttile(); -hold on; -plot(frf_ol.f, abs(frf_ol.G_tau(:, 4, i_input))); -plot(freqs, abs(squeeze(freqresp(sim_ol.G_tau(4, i_input), freqs, 'Hz')))); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('Amplitude [V/V]'); -title(sprintf('$d\\tau_{m4}/u_{%i}$', i_input)); - -ax5 = nexttile(); -hold on; -plot(frf_ol.f, abs(frf_ol.G_tau(:, 5, i_input))); -plot(freqs, abs(squeeze(freqresp(sim_ol.G_tau(5, i_input), freqs, 'Hz')))); -hold off; -xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -title(sprintf('$d\\tau_{m5}/u_{%i}$', i_input)); - -ax6 = nexttile(); -hold on; -plot(frf_ol.f, abs(frf_ol.G_tau(:, 6, i_input))); -plot(freqs, abs(squeeze(freqresp(sim_ol.G_tau(6, i_input), freqs, 'Hz')))); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); -title(sprintf('$d\\tau_{m6}/u_{%i}$', i_input)); - -linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'xy'); -xlim([20, 2e3]); ylim([1e-2, 1e2]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/enc_plates_iff_comp_simscape_all.pdf', 'width', 'full', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_enc_plates_iff_comp_simscape_all -#+caption: IFF Plant for the first actuator input and all the force senosrs -#+RESULTS: -[[file:figs/test_nhexa_enc_plates_iff_comp_simscape_all.png]] - -#+begin_src matlab :exports none -%% Bode plot of the identified IFF Plant (Simscape) and measured FRF data -freqs = 2*logspace(1, 3, 1000); - +%% Diagonal elements of the FRF matrix from u to de figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; -plot(frf_ol.f, abs(frf_ol.G_tau(:,1, 1)), 'color', [colors(1,:),0.2], ... - 'DisplayName', '$\tau_{m,i}/u_i$ - FRF') +plot(frf_ol.f, abs(frf_ol.G_de{1}(:,1, 1)), 'color', [colors(1,:),0.5], ... + 'DisplayName', '$d_{ei}/u_i$ - FRF') +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{1}(1,1), freqs, 'Hz'))), 'color', [colors(2,:),0.5], ... + 'DisplayName', '$d_{ei}/u_i$ - Model') for i = 2:6 - plot(frf_ol.f, abs(frf_ol.G_tau(:,i, i)), 'color', [colors(1,:),0.2], ... + plot(frf_ol.f, abs(frf_ol.G_de{1}(:,i, i)), 'color', [colors(1,:),0.5], ... + 'HandleVisibility', 'off'); + plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{1}(i,i), freqs, 'Hz'))), 'color', [colors(2,:),0.5], ... 'HandleVisibility', 'off'); end -plot(freqs, abs(squeeze(freqresp(sim_ol.G_tau(1,1), freqs, 'Hz'))), 'color', [colors(2,:), 0.2], ... - 'DisplayName', '$\tau_{m,i}/u_i$ - Model') +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]); +ylim([1e-8, 5e-4]); +leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); +leg.ItemTokenSize(1) = 15; + +ax2 = nexttile; +hold on; +for i = 1:6 + plot(frf_ol.f, 180/pi*angle(frf_ol.G_de{1}(:,i, i)), 'color', [colors(1,:),0.5]); + plot(freqs, 180/pi*angle(squeeze(freqresp(sim_ol.G_de{1}(i,i), freqs, 'Hz'))), 'color', [colors(2,:),0.5]); +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); +ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); +ylim([-180, 180]); +yticks([-180, -90, 0, 90, 180]); + +linkaxes([ax1,ax2],'x'); +xlim([freqs(1), freqs(end)]); +#+end_src + +#+begin_src matlab :tangle no :exports results :results file none +exportFig('figs/test_nhexa_comp_simscape_de_diag.pdf', 'width', 'half', 'height', 600); +#+end_src + +#+begin_src matlab :exports none +%% Diagonal elements of the FRF matrix from u to Vs +figure; +tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); + +ax1 = nexttile([2,1]); +hold on; +plot(frf_ol.f, abs(frf_ol.G_Vs{1}(:,1, 1)), 'color', [colors(1,:),0.5], ... + 'DisplayName', '$V_{si}/u_i$ - FRF') +plot(freqs, abs(squeeze(freqresp(sim_ol.G_Vs{1}(1,1), freqs, 'Hz'))), 'color', [colors(2,:), 0.5], ... + 'DisplayName', '$V_{si}/u_i$ - Model') for i = 2:6 - plot(freqs, abs(squeeze(freqresp(sim_ol.G_tau(i,i), freqs, 'Hz'))), 'color', [colors(2,:), 0.2], ... + plot(frf_ol.f, abs(frf_ol.G_Vs{1}(:,i, i)), 'color', [colors(1,:),0.5], ... + 'HandleVisibility', 'off'); + plot(freqs, abs(squeeze(freqresp(sim_ol.G_Vs{1}(i,i), freqs, 'Hz'))), 'color', [colors(2,:), 0.5], ... 'HandleVisibility', 'off'); end hold off; @@ -5235,8 +1276,8 @@ legend('location', 'southeast'); ax2 = nexttile; hold on; for i = 1:6 - plot(frf_ol.f, 180/pi*angle(frf_ol.G_tau(:,i, i)), 'color', [colors(1,:),0.2]); - plot(freqs, 180/pi*angle(squeeze(freqresp(sim_ol.G_tau(i,i), freqs, 'Hz'))), 'color', [colors(2,:), 0.2]); + plot(frf_ol.f, 180/pi*angle(frf_ol.G_Vs{1}(:,i, i)), 'color', [colors(1,:),0.5]); + plot(freqs, 180/pi*angle(squeeze(freqresp(sim_ol.G_Vs{1}(i,i), freqs, 'Hz'))), 'color', [colors(2,:), 0.5]); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); @@ -5249,378 +1290,254 @@ xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/enc_plates_iff_comp_simscape.pdf', 'width', 'wide', 'height', 'tall'); +exportFig('figs/test_nhexa_comp_simscape_Vs_diag.pdf', 'width', 'half', 'height', 600); #+end_src -#+name: fig:test_nhexa_enc_plates_iff_comp_simscape -#+caption: Diagonal elements of the IFF Plant -#+RESULTS: -[[file:figs/test_nhexa_enc_plates_iff_comp_simscape.png]] +#+name: fig:test_nhexa_comp_simscape_diag +#+caption: Comparison of the diagonal elements (i.e. "direct" terms) of the measured FRF matrix and the identified dynamics from the Simscape model. Both for the dynamics from $u$ to $d_e$ (\subref{fig:test_nhexa_comp_simscape_de_diag}) and from $u$ to $V_s$ (\subref{fig:test_nhexa_comp_simscape_Vs_diag}) +#+attr_latex: :options [htbp] +#+begin_figure +#+attr_latex: :caption \subcaption{\label{fig:test_nhexa_comp_simscape_de_diag}from $u$ to $d_e$} +#+attr_latex: :options {0.49\textwidth} +#+begin_subfigure +#+attr_latex: :width 0.95\linewidth +[[file:figs/test_nhexa_comp_simscape_de_diag.png]] +#+end_subfigure +#+attr_latex: :caption \subcaption{\label{fig:test_nhexa_comp_simscape_Vs_diag}from $u$ to $V_s$} +#+attr_latex: :options {0.49\textwidth} +#+begin_subfigure +#+attr_latex: :width 0.95\linewidth +[[file:figs/test_nhexa_comp_simscape_Vs_diag.png]] +#+end_subfigure +#+end_figure -#+begin_src matlab :exports none -%% Bode plot of the identified IFF Plant (Simscape) and measured FRF data (off-diagonal elements) -freqs = 2*logspace(1, 3, 1000); +** Modelling dynamical coupling +<> -figure; -hold on; -% Off diagonal terms -plot(frf_ol.f, abs(frf_ol.G_tau(:, 1, 2)), 'color', [colors(1,:),0.2], ... - 'DisplayName', '$\tau_{m,i}/u_j$ - FRF') -for i = 1:5 - for j = i+1:6 - plot(frf_ol.f, abs(frf_ol.G_tau(:, i, j)), 'color', [colors(1,:),0.2], ... - 'HandleVisibility', 'off'); - end -end -set(gca,'ColorOrderIndex',2); -plot(freqs, abs(squeeze(freqresp(sim_ol.G_tau(1, 2), freqs, 'Hz'))), 'color', [colors(2,:),0.2], ... - 'DisplayName', '$\tau_{m,i}/u_j$ - Model') -for i = 1:5 - for j = i+1:6 - set(gca,'ColorOrderIndex',2); - plot(freqs, abs(squeeze(freqresp(sim_ol.G_tau(i, j), freqs, 'Hz'))), 'color', [colors(2,:),0.2], ... - 'HandleVisibility', 'off'); - end -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('Amplitude [V/V]'); -xlim([freqs(1), freqs(end)]); ylim([1e-3, 1e2]); -legend('location', 'northeast'); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/enc_plates_iff_comp_offdiag_simscape.pdf', 'width', 'wide', 'height', 'normal'); -#+end_src - -#+name: fig:test_nhexa_enc_plates_iff_comp_offdiag_simscape -#+caption: Off diagonal elements of the IFF Plant -#+RESULTS: -[[file:figs/test_nhexa_enc_plates_iff_comp_offdiag_simscape.png]] - -*** Dynamics from Actuator to Encoder -The identified dynamics is compared with the measured FRF: -- Figure ref:fig:test_nhexa_enc_plates_dvf_comp_simscape_all: the individual transfer function from $u_3$ (the DAC voltage for the actuator number 3) to the six encoders -- Figure ref:fig:test_nhexa_enc_plates_dvf_comp_simscape: all the diagonal elements are compared -- Figure ref:fig:test_nhexa_enc_plates_dvf_comp_offdiag_simscape: all the off-diagonal elements are compared +Another wanted feature of the model is that it well represents the coupling in the system as this is often the limiting factor for the control of MIMO systems. +Instead of comparing the full 36 elements of the $6 \times 6$ FFR matrix from $\mathbf{u}$ to $\mathbf{d}_e$, only the first "column" is compared (Figure ref:fig:test_nhexa_comp_simscape_de_all), which corresponds to the transfer function from the command $u_1$ to the six measured encoder displacements $d_{e1}$ to $d_{e6}$. +It can be seen that the coupling in the model is well matching the measurements up to the first un-modelled flexible mode at 237Hz. +Similar results are observed for all the other coupling terms, as well as for the transfer function from $\mathbf{u}$ to $\mathbf{V}_s$. #+begin_src matlab :exports none %% Comparison of the plants (encoder output) when tuning the misalignment -freqs = 2*logspace(1, 3, 1000); - -i_input = 3; +i_input = 1; figure; -tiledlayout(2, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); +tiledlayout(2, 3, 'TileSpacing', 'tight', 'Padding', 'tight'); ax1 = nexttile(); hold on; -plot(frf_ol.f, abs(frf_ol.G_dL(:, 1, i_input))); -plot(freqs, abs(squeeze(freqresp(sim_ol.G_dL(1, i_input), freqs, 'Hz')))); +plot(frf_ol.f, abs(frf_ol.G_de{1}(:, 1, i_input))); +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{1}(1, i_input), freqs, 'Hz')))); +text(54, 4e-4, '$d_{e1}/u_{1}$', 'Horiz','left', 'Vert','top') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('Amplitude [m/V]'); -title(sprintf('$d\\mathcal{L}_{m1}/u_{%i}$', i_input)); ax2 = nexttile(); hold on; -plot(frf_ol.f, abs(frf_ol.G_dL(:, 2, i_input))); -plot(freqs, abs(squeeze(freqresp(sim_ol.G_dL(2, i_input), freqs, 'Hz')))); +plot(frf_ol.f, abs(frf_ol.G_de{1}(:, 2, i_input))); +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{1}(2, i_input), freqs, 'Hz')))); +text(54, 4e-4, '$d_{e2}/u_{1}$', 'Horiz','left', 'Vert','top') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); -title(sprintf('$d\\mathcal{L}_{m2}/u_{%i}$', i_input)); ax3 = nexttile(); hold on; -plot(frf_ol.f, abs(frf_ol.G_dL(:, 3, i_input)), ... - 'DisplayName', 'Meas.'); -plot(freqs, abs(squeeze(freqresp(sim_ol.G_dL(3, i_input), freqs, 'Hz'))), ... - 'DisplayName', 'Model'); +plot(frf_ol.f, abs(frf_ol.G_de{1}(:, 3, i_input)), ... + 'DisplayName', 'Measurements'); +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{1}(3, i_input), freqs, 'Hz'))), ... + 'DisplayName', 'Model (2-DoF APA)'); +text(54, 4e-4, '$d_{e3}/u_{1}$', 'Horiz','left', 'Vert','top') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); -legend('location', 'southeast', 'FontSize', 8); -title(sprintf('$d\\mathcal{L}_{m3}/u_{%i}$', i_input)); +leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); +leg.ItemTokenSize(1) = 15; ax4 = nexttile(); hold on; -plot(frf_ol.f, abs(frf_ol.G_dL(:, 4, i_input))); -plot(freqs, abs(squeeze(freqresp(sim_ol.G_dL(4, i_input), freqs, 'Hz')))); +plot(frf_ol.f, abs(frf_ol.G_de{1}(:, 4, i_input))); +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{1}(4, i_input), freqs, 'Hz')))); +text(54, 4e-4, '$d_{e4}/u_{1}$', 'Horiz','left', 'Vert','top') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude [m/V]'); -title(sprintf('$d\\mathcal{L}_{m4}/u_{%i}$', i_input)); +xticks([50, 100, 200, 400]) ax5 = nexttile(); hold on; -plot(frf_ol.f, abs(frf_ol.G_dL(:, 5, i_input))); -plot(freqs, abs(squeeze(freqresp(sim_ol.G_dL(5, i_input), freqs, 'Hz')))); +plot(frf_ol.f, abs(frf_ol.G_de{1}(:, 5, i_input))); +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{1}(5, i_input), freqs, 'Hz')))); +text(54, 4e-4, '$d_{e5}/u_{1}$', 'Horiz','left', 'Vert','top') hold off; xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -title(sprintf('$d\\mathcal{L}_{m5}/u_{%i}$', i_input)); +xticks([50, 100, 200, 400]) ax6 = nexttile(); hold on; -plot(frf_ol.f, abs(frf_ol.G_dL(:, 6, i_input))); -plot(freqs, abs(squeeze(freqresp(sim_ol.G_dL(6, i_input), freqs, 'Hz')))); +plot(frf_ol.f, abs(frf_ol.G_de{1}(:, 6, i_input))); +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{1}(6, i_input), freqs, 'Hz')))); +text(54, 4e-4, '$d_{e6}/u_{1}$', 'Horiz','left', 'Vert','top') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); -title(sprintf('$d\\mathcal{L}_{m6}/u_{%i}$', i_input)); +xticks([50, 100, 200, 400]) linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'xy'); -xlim([40, 4e2]); ylim([1e-8, 1e-2]); +xlim([50, 5e2]); ylim([1e-8, 5e-4]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/enc_plates_dvf_comp_simscape_all.pdf', 'width', 'full', 'height', 'tall'); +exportFig('figs/test_nhexa_comp_simscape_de_all.pdf', 'width', 'full', 'height', 700); #+end_src -#+name: fig:test_nhexa_enc_plates_dvf_comp_simscape_all -#+caption: DVF Plant for the first actuator input and all the encoders +#+name: fig:test_nhexa_comp_simscape_de_all +#+caption: Comparison of the measured (in blue) and modelled (in red) frequency transfer functions from the first control signal $u_1$ to the six encoders $d_{e1}$ to $d_{e6}$ #+RESULTS: -[[file:figs/test_nhexa_enc_plates_dvf_comp_simscape_all.png]] +[[file:figs/test_nhexa_comp_simscape_de_all.png]] + +The APA300ML are then modelled with a /super-element/ extracted from a FE-software. +The obtained transfer functions from $u_1$ to the six measured encoder displacements $d_{e1}$ to $d_{e6}$ are compared with the measured FRF in Figure ref:fig:test_nhexa_comp_simscape_de_all_flex. +While the damping of the suspension modes for the /super-element/ is underestimated (which could be solved by properly tuning the proportional damping coefficients), the flexible modes of the struts at 237Hz and 349Hz are well modelled. +Even the mode 395Hz can be observed in the model. +Therefore, if the modes of the struts are to be modelled, the /super-element/ of the APA300ML may be used, at the cost of obtaining a much higher order model. + +#+begin_src matlab +%% Load the plant model with Flexible APA +flex_ol = load('test_nhexa_simscape_flexible_masses.mat', 'G_Vs', 'G_de'); +#+end_src #+begin_src matlab :exports none -%% Diagonal elements of the DVF plant -freqs = 2*logspace(1, 3, 1000); +%% Comparison of the plants (encoder output) when tuning the misalignment +i_input = 1; figure; -tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); +tiledlayout(2, 3, 'TileSpacing', 'tight', 'Padding', 'tight'); -ax1 = nexttile([2,1]); +ax1 = nexttile(); hold on; -plot(frf_ol.f, abs(frf_ol.G_dL(:,1, 1)), 'color', [colors(1,:),0.2], ... - 'DisplayName', '$d\mathcal{L}_{m,i}/u_i$ - FRF') -for i = 2:6 - plot(frf_ol.f, abs(frf_ol.G_dL(:,i, i)), 'color', [colors(1,:),0.2], ... - 'HandleVisibility', 'off'); -end -plot(freqs, abs(squeeze(freqresp(sim_ol.G_dL(1,1), freqs, 'Hz'))), 'color', [colors(2,:),0.2], ... - 'DisplayName', '$d\mathcal{L}_{m,i}/u_i$ - Model') -for i = 2:6 - plot(freqs, abs(squeeze(freqresp(sim_ol.G_dL(i,i), freqs, 'Hz'))), 'color', [colors(2,:),0.2], ... - 'HandleVisibility', 'off'); -end +plot(frf_ol.f, abs(frf_ol.G_de{1}(:, 1, i_input))); +plot(freqs, abs(squeeze(freqresp(flex_ol.G_de{1}(1, i_input), freqs, 'Hz')))); +text(54, 4e-4, '$d_{e1}/u_{1}$', 'Horiz','left', 'Vert','top') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]); -ylim([1e-8, 1e-3]); -legend('location', 'northeast'); +set(gca, 'XTickLabel',[]); ylabel('Amplitude [m/V]'); -ax2 = nexttile; +ax2 = nexttile(); hold on; -for i = 1:6 - plot(frf_ol.f, 180/pi*angle(frf_ol.G_dL(:,i, i)), 'color', [colors(1,:),0.2]); - plot(freqs, 180/pi*angle(squeeze(freqresp(sim_ol.G_dL(i,i), freqs, 'Hz'))), 'color', [colors(2,:),0.2]); -end +plot(frf_ol.f, abs(frf_ol.G_de{1}(:, 2, i_input))); +plot(freqs, abs(squeeze(freqresp(flex_ol.G_de{1}(2, i_input), freqs, 'Hz')))); +text(54, 4e-4, '$d_{e2}/u_{1}$', 'Horiz','left', 'Vert','top') hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); -ylim([-180, 180]); -yticks([-180, -90, 0, 90, 180]); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); -linkaxes([ax1,ax2],'x'); -xlim([freqs(1), freqs(end)]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/enc_plates_dvf_comp_simscape.pdf', 'width', 'wide', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_enc_plates_dvf_comp_simscape -#+caption: Diagonal elements of the DVF Plant -#+RESULTS: -[[file:figs/test_nhexa_enc_plates_dvf_comp_simscape.png]] - -#+begin_src matlab :exports none -%% Off-diagonal elements of the DVF plant -freqs = 2*logspace(1, 3, 1000); - -figure; +ax3 = nexttile(); hold on; -% Off diagonal terms -plot(frf_ol.f, abs(frf_ol.G_dL(:, 1, 2)), 'color', [colors(1,:),0.2], ... - 'DisplayName', '$d\mathcal{L}_{m,i}/u_j$ - FRF') -for i = 1:5 - for j = i+1:6 - plot(frf_ol.f, abs(frf_ol.G_dL(:, i, j)), 'color', [colors(1,:),0.2], ... - 'HandleVisibility', 'off'); - end -end -plot(freqs, abs(squeeze(freqresp(sim_ol.G_dL(1, 2), freqs, 'Hz'))), 'color', [colors(2,:), 0.2], ... - 'DisplayName', '$d\mathcal{L}_{m,i}/u_j$ - Model') -for i = 1:5 - for j = i+1:6 - plot(freqs, abs(squeeze(freqresp(sim_ol.G_dL(i, j), freqs, 'Hz'))), 'color', [colors(2,:), 0.2], ... - 'HandleVisibility', 'off'); - end -end +plot(frf_ol.f, abs(frf_ol.G_de{1}(:, 3, i_input)), ... + 'DisplayName', 'Measurements'); +plot(freqs, abs(squeeze(freqresp(flex_ol.G_de{1}(3, i_input), freqs, 'Hz'))), ... + 'DisplayName', 'Model (Flexible APA)'); +text(54, 4e-4, '$d_{e3}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); +leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); +leg.ItemTokenSize(1) = 15; + +ax4 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{1}(:, 4, i_input))); +plot(freqs, abs(squeeze(freqresp(flex_ol.G_de{1}(4, i_input), freqs, 'Hz')))); +text(54, 4e-4, '$d_{e4}/u_{1}$', 'Horiz','left', 'Vert','top') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude [m/V]'); -xlim([freqs(1), freqs(end)]); ylim([1e-8, 1e-3]); -legend('location', 'northeast'); +xticks([50, 100, 200, 400]) + +ax5 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{1}(:, 5, i_input))); +plot(freqs, abs(squeeze(freqresp(flex_ol.G_de{1}(5, i_input), freqs, 'Hz')))); +text(54, 4e-4, '$d_{e5}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xticks([50, 100, 200, 400]) + +ax6 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{1}(:, 6, i_input))); +plot(freqs, abs(squeeze(freqresp(flex_ol.G_de{1}(6, i_input), freqs, 'Hz')))); +text(54, 4e-4, '$d_{e6}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); +xticks([50, 100, 200, 400]) + +linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'xy'); +xlim([50, 5e2]); ylim([1e-8, 5e-4]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/enc_plates_dvf_comp_offdiag_simscape.pdf', 'width', 'wide', 'height', 'normal'); +exportFig('figs/test_nhexa_comp_simscape_de_all_flex.pdf', 'width', 'full', 'height', 700); #+end_src -#+name: fig:test_nhexa_enc_plates_dvf_comp_offdiag_simscape -#+caption: Off diagonal elements of the DVF Plant +#+name: fig:test_nhexa_comp_simscape_de_all_flex +#+caption: Comparison of the measured (in blue) and modelled (in red) frequency transfer functions from the first control signal $u_1$ to the six encoders $d_{e1}$ to $d_{e6}$ #+RESULTS: -[[file:figs/test_nhexa_enc_plates_dvf_comp_offdiag_simscape.png]] +[[file:figs/test_nhexa_comp_simscape_de_all_flex.png]] -*** Conclusion -#+begin_important -The Simscape model is quite accurate for the transfer function matrices from $\bm{u}$ to $\bm{\tau}_m$ and from $\bm{u}$ to $d\bm{\mathcal{L}}_m$ except at frequencies of the flexible modes of the top-plate. -The Simscape model can therefore be used to develop the control strategies. -#+end_important +** Modelling the effect of payload mass +<> -** Comparison with the Simscape model -:PROPERTIES: -:header-args:matlab+: :tangle matlab/scripts/id_frf_enc_plates_effect_payload_comp_simscape.m -:END: -<> -*** Introduction :ignore: -Let's now compare the identified dynamics with the Simscape model. -We wish to verify if the Simscape model is still accurate for all the tested payloads. +Another important characteristics of the model is that it should well represents the dynamics of the system for all considered payloads. +The model dynamics is therefore compared with the measured dynamics for 4 payloads (no payload, 13kg, 26kg and 39kg) in Figure ref:fig:test_nhexa_comp_simscape_diag_masses. +The observed shift to lower frequency of the suspension modes with an increased payload mass is well represented by the Simscape model. +The complex conjugate zeros are also well matching with the experiments both for the encoder outputs (Figure ref:fig:test_nhexa_comp_simscape_de_diag_masses) and the force sensor outputs (Figure ref:fig:test_nhexa_comp_simscape_Vs_diag_masses). -*** Matlab Init :noexport:ignore: -#+begin_src matlab -%% id_frf_enc_plates_effect_payload_comp_simscape.m -% Comparison of the nano-hexapod dynamics from u to dL and to taum for several payloads - -% Measured FRF and extracted dynamics from the Simscape model -% Encoders are fixed to the plates -#+end_src - -#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) -<> -#+end_src - -#+begin_src matlab :exports none :results silent :noweb yes -<> -#+end_src - -#+begin_src matlab :tangle no :noweb yes -<> -#+end_src - -#+begin_src matlab :eval no :noweb yes -<> -#+end_src - -#+begin_src matlab :noweb yes -<> -<> -#+end_src - -#+begin_src matlab -%% Load the identified FRF -frf_ol_m = load('frf_vib_table_m.mat', 'f', 'Ts', 'G_tau', 'G_dL'); -#+end_src - -*** System Identification -Let's initialize the simscape model with the nano-hexapod fixed on top of the vibration table. -#+begin_src matlab -%% Initialize Nano-Hexapod -table_type = 'Suspended'; % On top of vibration table -device_type = 'Hexapod'; % On top of vibration table -payload_num = 0; % No Payload - -n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ... - 'flex_top_type', '4dof', ... - 'motion_sensor_type', 'plates', ... - 'actuator_type', '2dof'); -#+end_src - -First perform the identification for the transfer functions from $\bm{u}$ to $d\bm{\mathcal{L}}_m$: -#+begin_src matlab -%% Identify the DVF Plant (transfer function from u to dLm) -clear io; io_i = 1; -io(io_i) = linio([mdl, '/u'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs -io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; % Encoders - -%% Identification for all the added payloads -G_dL = {}; - -for i = i_masses - fprintf('i = %i\n', i) - payload_num = i; % Change the payload on the nano-hexapod - G_dL(i+1) = {exp(-s*frf_ol_m.Ts)*linearize(mdl, io, 0.0, options)}; -end -#+end_src - -#+begin_src matlab -%% Identify the IFF Plant (transfer function from u to taum) -clear io; io_i = 1; -io(io_i) = linio([mdl, '/u'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs -io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors - -%% Identification for all the added payloads -G_tau = {}; - -for i = 0:3 - fprintf('i = %i\n', i) - payload_num = i; % Change the payload on the nano-hexapod - G_tau(i+1) = {exp(-s*frf_ol_m.Ts)*linearize(mdl, io, 0.0, options)}; -end -#+end_src - -The identified dynamics are then saved for further use. -#+begin_src matlab :exports none :tangle no -save('matlab/mat/data_frf/sim_vib_table_m.mat', 'G_tau', 'G_dL') -#+end_src - -#+begin_src matlab :eval no -save('./mat/data_frf/sim_vib_table_m.mat', 'G_tau', 'G_dL') -#+end_src +Note that the model displays smaller damping that what is observed experimentally for high values of the payload mass. +One option could be to tune the damping as a function of the mass (similar to what is done with the Rayleigh damping). +However, as decentralized IFF will be applied, the damping will be brought actively, and the open-loop damping value should have very little impact on the obtained plant. #+begin_src matlab :exports none -sim_ol_m = load('sim_vib_table_m.mat', 'G_tau', 'G_dL'); -#+end_src - -*** Transfer function from Actuators to Encoders -The measured FRF and the identified dynamics from $u_i$ to $d\mathcal{L}_{m,i}$ are compared in Figure ref:fig:test_nhexa_comp_masses_model_exp_dvf. -A zoom near the "suspension" modes is shown in Figure ref:fig:test_nhexa_comp_masses_model_exp_dvf_zoom. - -#+begin_src matlab :exports none -%% Bode plot for the transfer function from u to dLm +%% Bode plot for the transfer function from u to de +masses = [0, 13, 26, 39]; figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); -freqs = 2*logspace(1,3,1000); - ax1 = nexttile([2,1]); hold on; -for i_mass = i_masses - plot(frf_ol_m.f, abs(frf_ol_m.G_dL{i_mass+1}(:,1, 1)), 'color', [colors(i_mass+1,:), 0.2], ... - 'DisplayName', sprintf('$d\\mathcal{L}_{m,i}/u_i$ - FRF %i', i_mass)); +for i_mass = [0:3] + plot(frf_ol.f, abs(frf_ol.G_de{i_mass+1}(:,1, 1)), 'color', [colors(i_mass+1,:), 0.2], ... + 'DisplayName', sprintf('Meas (%i kg)', masses(i_mass+1))); for i = 2:6 - plot(frf_ol_m.f, abs(frf_ol_m.G_dL{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.2], ... + plot(frf_ol.f, abs(frf_ol.G_de{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.2], ... 'HandleVisibility', 'off'); end set(gca, 'ColorOrderIndex', i_mass+1) - plot(freqs, abs(squeeze(freqresp(sim_ol_m.G_dL{i_mass+1}(1,1), freqs, 'Hz'))), '--', ... - 'DisplayName', sprintf('$d\\mathcal{L}_{m,i}/u_i$ - Sim %i', i_mass)); + plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{i_mass+1}(1,1), freqs, 'Hz'))), '--', ... + 'DisplayName', 'Simscape'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]); -ylim([1e-8, 1e-3]); -legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); +ylabel('Amplitude $d_e/u$ [m/V]'); set(gca, 'XTickLabel',[]); +ylim([5e-8, 1e-3]); +leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); +leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; -for i_mass = i_masses +for i_mass = [0:3] for i =1:6 - plot(frf_ol_m.f, 180/pi*angle(frf_ol_m.G_dL{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.2]); + plot(frf_ol.f, 180/pi*angle(frf_ol.G_de{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.2]); end set(gca, 'ColorOrderIndex', i_mass+1) - plot(freqs, 180/pi*angle(squeeze(freqresp(sim_ol_m.G_dL{i_mass+1}(1,1), freqs, 'Hz'))), '--'); + plot(freqs, 180/pi*angle(squeeze(freqresp(sim_ol.G_de{i_mass+1}(1,1), freqs, 'Hz'))), '--'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); @@ -5630,73 +1547,46 @@ yticks(-360:45:360); ylim([-45, 180]); linkaxes([ax1,ax2],'x'); -xlim([20, 1e3]); +xlim([20, 2e2]); +xticks([20, 50, 100, 200]) #+end_src -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/comp_masses_model_exp_dvf.pdf', 'width', 'wide', 'height', 'tall'); +#+begin_src matlab :tangle no :exports results :results file none +exportFig('figs/test_nhexa_comp_simscape_de_diag_masses.pdf', 'width', 'half', 'height', 600); #+end_src -#+name: fig:test_nhexa_comp_masses_model_exp_dvf -#+caption: Comparison of the transfer functions from $u_i$ to $d\mathcal{L}_{m,i}$ - measured FRF and identification from the Simscape model -#+RESULTS: -[[file:figs/comp_masses_model_exp_dvf.png]] - -#+begin_src matlab :exports none :tangle no -ax1.YLim = [1e-6, 5e-4]; -xlim([40, 2e2]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/comp_masses_model_exp_dvf_zoom.pdf', 'width', 'wide', 'height', 'tall'); -#+end_src - -#+name: fig:test_nhexa_comp_masses_model_exp_dvf_zoom -#+caption: Comparison of the transfer functions from $u_i$ to $d\mathcal{L}_{m,i}$ - measured FRF and identification from the Simscape model (Zoom) -#+RESULTS: -[[file:figs/test_nhexa_comp_masses_model_exp_dvf_zoom.png]] - -#+begin_important -The Simscape model is very accurately representing the measured dynamics up. -Only the flexible modes of the struts and of the top plate are not represented here as these elements are modelled as rigid bodies. -#+end_important - -*** Transfer function from Actuators to Force Sensors -The measured FRF and the identified dynamics from $u_i$ to $\tau_{m,i}$ are compared in Figure ref:fig:test_nhexa_comp_masses_model_exp_iff. -A zoom near the "suspension" modes is shown in Figure ref:fig:test_nhexa_comp_masses_model_exp_iff_zoom. - #+begin_src matlab :exports none -%% Bode plot for the transfer function from u to dLm +%% Bode plot for the transfer function from u to Vs +masses = [0, 13, 26, 39]; figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); -freqs = 2*logspace(1,3,1000); - ax1 = nexttile([2,1]); hold on; for i_mass = 0:3 - plot(frf_ol_m.f, abs(frf_ol_m.G_tau{i_mass+1}(:,1, 1)), 'color', [colors(i_mass+1,:), 0.2], ... - 'DisplayName', sprintf('$d\\tau_{m,i}/u_i$ - FRF %i', i_mass)); + plot(frf_ol.f, abs(frf_ol.G_Vs{i_mass+1}(:,1, 1)), 'color', [colors(i_mass+1,:), 0.2], ... + 'DisplayName', sprintf('Meas (%i kg)', masses(i_mass+1))); for i = 2:6 - plot(frf_ol_m.f, abs(frf_ol_m.G_tau{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.2], ... + plot(frf_ol.f, abs(frf_ol.G_Vs{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.2], ... 'HandleVisibility', 'off'); end - plot(freqs, abs(squeeze(freqresp(sim_ol_m.G_tau{i_mass+1}(1,1), freqs, 'Hz'))), '--', 'color', colors(i_mass+1,:), ... - 'DisplayName', sprintf('$\\tau_{m,i}/u_i$ - Sim %i', i_mass)); + plot(freqs, abs(squeeze(freqresp(sim_ol.G_Vs{i_mass+1}(1,1), freqs, 'Hz'))), '--', 'color', colors(i_mass+1,:), ... + 'DisplayName', 'Simscape'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]); -ylim([1e-2, 1e2]); -legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 2); +ylabel('Amplitude $V_s/u$ [V/V]'); set(gca, 'XTickLabel',[]); +ylim([1e-3, 1e2]); +leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 2); +leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i_mass = 0:3 for i =1:6 - plot(frf_ol_m.f, 180/pi*angle(frf_ol_m.G_tau{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.2]); + plot(frf_ol.f, 180/pi*angle(frf_ol.G_Vs{i_mass+1}(:,i, i)), 'color', [colors(i_mass+1,:), 0.2]); end - plot(freqs, 180/pi*angle(squeeze(freqresp(sim_ol_m.G_tau{i_mass+1}(i,i), freqs, 'Hz'))), '--', 'color', colors(i_mass+1,:)); + plot(freqs, 180/pi*angle(squeeze(freqresp(sim_ol.G_Vs{i_mass+1}(i,i), freqs, 'Hz'))), '--', 'color', colors(i_mass+1,:)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); @@ -5705,30 +1595,142 @@ hold off; yticks(-360:90:360); linkaxes([ax1,ax2],'x'); -xlim([20, 2e3]); +xlim([20, 2e2]); +xticks([20, 50, 100, 200]) +#+end_src + +#+begin_src matlab :tangle no :exports results :results file none +exportFig('figs/test_nhexa_comp_simscape_Vs_diag_masses.pdf', 'width', 'half', 'height', 600); +#+end_src + +#+name: fig:test_nhexa_comp_simscape_diag_masses +#+caption: Comparison of the diagonal elements (i.e. "direct" terms) of the measured FRF matrix and the identified dynamics from the Simscape model. Both for the dynamics from $u$ to $d_e$ (\subref{fig:test_nhexa_comp_simscape_de_diag}) and from $u$ to $V_s$ (\subref{fig:test_nhexa_comp_simscape_Vs_diag}) +#+attr_latex: :options [htbp] +#+begin_figure +#+attr_latex: :caption \subcaption{\label{fig:test_nhexa_comp_simscape_de_diag_masses}from $u$ to $d_e$} +#+attr_latex: :options {0.49\textwidth} +#+begin_subfigure +#+attr_latex: :width 0.95\linewidth +[[file:figs/test_nhexa_comp_simscape_de_diag_masses.png]] +#+end_subfigure +#+attr_latex: :caption \subcaption{\label{fig:test_nhexa_comp_simscape_Vs_diag_masses}from $u$ to $V_s$} +#+attr_latex: :options {0.49\textwidth} +#+begin_subfigure +#+attr_latex: :width 0.95\linewidth +[[file:figs/test_nhexa_comp_simscape_Vs_diag_masses.png]] +#+end_subfigure +#+end_figure + +In order to also check if the model well represents the coupling when high payload masses are used, the transfer functions from $u_1$ to $d_{e1}$ to $d_{e6}$ are compared in the case of the 39kg payload in Figure ref:fig:test_nhexa_comp_simscape_de_all_high_mass. +Excellent match between the experimental coupling and the model coupling is observed. +The model therefore well represents the system dynamical coupling for different considered payloads. + +#+begin_src matlab :exports none +%% Comparison of the plants (encoder output) when tuning the misalignment +i_input = 1; + +figure; +tiledlayout(2, 3, 'TileSpacing', 'tight', 'Padding', 'tight'); + +ax1 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{4}(:, 1, i_input))); +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{4}(1, i_input), freqs, 'Hz')))); +text(12, 4e-4, '$d_{e1}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); ylabel('Amplitude [m/V]'); + +ax2 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{4}(:, 2, i_input))); +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{4}(2, i_input), freqs, 'Hz')))); +text(12, 4e-4, '$d_{e2}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); + +ax3 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{4}(:, 3, i_input)), ... + 'DisplayName', 'Measurements'); +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{4}(3, i_input), freqs, 'Hz'))), ... + 'DisplayName', 'Model (2-DoF APA)'); +text(12, 4e-4, '$d_{e3}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); +leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); +leg.ItemTokenSize(1) = 15; + +ax4 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{4}(:, 4, i_input))); +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{4}(4, i_input), freqs, 'Hz')))); +text(12, 4e-4, '$d_{e4}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); ylabel('Amplitude [m/V]'); +xticks([10, 50, 100, 200, 400]) + +ax5 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{4}(:, 5, i_input))); +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{4}(5, i_input), freqs, 'Hz')))); +text(12, 4e-4, '$d_{e5}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xticks([10, 50, 100, 200, 400]) + +ax6 = nexttile(); +hold on; +plot(frf_ol.f, abs(frf_ol.G_de{4}(:, 6, i_input))); +plot(freqs, abs(squeeze(freqresp(sim_ol.G_de{4}(6, i_input), freqs, 'Hz')))); +text(12, 4e-4, '$d_{e6}/u_{1}$', 'Horiz','left', 'Vert','top') +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); +xticks([10, 50, 100, 200, 400]) + +linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'xy'); +xlim([10, 5e2]); ylim([1e-8, 5e-4]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/comp_masses_model_exp_iff.pdf', 'width', 'wide', 'height', 'tall'); +exportFig('figs/test_nhexa_comp_simscape_de_all_high_mass.pdf', 'width', 'full', 'height', 700); #+end_src -#+name: fig:test_nhexa_comp_masses_model_exp_iff -#+caption: Comparison of the transfer functions from $u_i$ to $\tau_{m,i}$ - measured FRF and identification from the Simscape model +#+name: fig:test_nhexa_comp_simscape_de_all_high_mass +#+caption: Comparison of the measured (in blue) and modelled (in red) frequency transfer functions from the first control signal $u_1$ to the six encoders $d_{e1}$ to $d_{e6}$ #+RESULTS: -[[file:figs/test_nhexa_comp_masses_model_exp_iff.png]] +[[file:figs/test_nhexa_comp_simscape_de_all_high_mass.png]] -#+begin_src matlab :exports none :tangle no -xlim([40, 2e2]); -#+end_src +** Conclusion +:PROPERTIES: +:UNNUMBERED: t +:END: -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/comp_masses_model_exp_iff_zoom.pdf', 'width', 'wide', 'height', 'tall'); -#+end_src +As illustrated in this section, the developed Simscape model accurately represents the suspension modes of the Nano-Hexapod. +Both FRF matrices from $\mathbf{u}$ to $\mathbf{V}_s$ and from $\mathbf{u}$ to $\mathbf{d}_e$ are well matching with the measurements, even when considering coupling (i.e. off-diagonal) terms, which are very important from a control perspective. -#+name: fig:test_nhexa_comp_masses_model_exp_iff_zoom -#+caption: Comparison of the transfer functions from $u_i$ to $\tau_{m,i}$ - measured FRF and identification from the Simscape model (Zoom) -#+RESULTS: -[[file:figs/test_nhexa_comp_masses_model_exp_iff_zoom.png]] +At frequency above the suspension modes, the Nano-Hexapod model becomes inaccurate as the flexible modes are not modelled. +It was shown that modelling the APA300ML using a "super-element" allows to model the internal resonances of the struts. +The same could be done with the top platform and the encoder supports, but the model order would be higher and may become unpractical for simulation purposes. + +* Conclusion + +The goal of this test bench was to obtain an accurate model of the nano-hexapod that can then be included on top of the micro-station model. + +This strategy was to measure the nano-hexapod in conditions where all factors that could have impacted the nano-hexapod dynamics were taken into account. +This was done by developing a suspended table with low frequency suspension modes which can be accurately modelled. + +While the dynamics of the nano-hexapod was indeed impacted by the dynamics of the suspended platform, this impact was also taken into account in the Simscape model, and a good match was obtained. + +Obtaining a model accurately representing the complex dynamics of the Nano-Hexapod was made possible by the modelling approach used during this work. +This approach consisted of tuning and validating models of individual components (such as the APA and flexible joints) using dedicated test benches. +Only then, the different models could be combined to form the Nano-Hexapod dynamical model. +If a model of the nano-hexapod was developed in one time, it would be difficult to tune all model parameters to match the measured dynamics, or even to know if the model "structure" would be adequate to represents the system dynamics. * Bibliography :ignore: #+latex: \printbibliography[heading=bibintoc,title={Bibliography}] @@ -5747,9 +1749,7 @@ exportFig('figs/comp_masses_model_exp_iff_zoom.pdf', 'width', 'wide', 'height', addpath('./matlab/'); % Path for scripts %% Path for functions, data and scripts -addpath('./matlab/mat/data_frf/'); % Path for Computed FRF -addpath('./matlab/mat/data_sim/'); % Path for Simulation -addpath('./matlab/mat/data_meas/'); % Path for Measurements +addpath('./matlab/mat/'); % Path for Computed FRF addpath('./matlab/src/'); % Path for functions addpath('./matlab/STEPS/'); % Path for STEPS addpath('./matlab/subsystems/'); % Path for Subsystems Simulink files @@ -5758,9 +1758,7 @@ addpath('./matlab/subsystems/'); % Path for Subsystems Simulink files #+NAME: m-init-path-tangle #+BEGIN_SRC matlab %% Path for functions, data and scripts -addpath('./mat/data_frf/'); % Path for Computed FRF -addpath('./mat/data_sim/'); % Path for Simulation -addpath('./mat/data_meas/'); % Path for Measurements +addpath('./mat/'); % Path for Data addpath('./src/'); % Path for functions addpath('./STEPS/'); % Path for STEPS addpath('./subsystems/'); % Path for Subsystems Simulink files @@ -5774,13 +1772,8 @@ table_type = 'Rigid'; % On top of vibration table device_type = 'None'; % On top of vibration table payload_num = 0; % No Payload -%% Open Simulink Model +% Simulink Model name mdl = 'test_bench_nano_hexapod'; - -options = linearizeOptions; -options.SampleTime = 0; - -open(mdl) #+end_src ** Initialize other elements @@ -5789,11 +1782,8 @@ open(mdl) %% Colors for the figures colors = colororder; -%% Tested Masses -i_masses = 0:3; - %% Frequency Vector -freqs = 2*logspace(1, 3, 1000); +freqs = logspace(log10(10), log10(2e3), 1000); #+END_SRC * Footnotes diff --git a/test-bench-nano-hexapod.pdf b/test-bench-nano-hexapod.pdf index 498af5a..621773f 100644 Binary files a/test-bench-nano-hexapod.pdf and b/test-bench-nano-hexapod.pdf differ diff --git a/test-bench-nano-hexapod.tex b/test-bench-nano-hexapod.tex index 1dcc9f8..fb0e560 100644 --- a/test-bench-nano-hexapod.tex +++ b/test-bench-nano-hexapod.tex @@ -1,4 +1,4 @@ -% Created 2024-10-27 Sun 14:49 +% Created 2024-10-29 Tue 15:32 % Intended LaTeX compiler: pdflatex \documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt} @@ -254,329 +254,322 @@ Simscape & 1.3 Hz & 1.8 Hz & 6.8 Hz & 9.5 Hz\\ \end{table} -\chapter{Nano-Hexapod Dynamics} +\section*{Conclusion} +In this section, a suspended table with low frequency suspension modes and high frequency flexible modes was presented. +This suspended table will be used in Section \ref{sec:test_nhexa_dynamics} for dynamical identification of the Nano-Hexapod. +The objective is to be able to accurately identify the dynamics of the nano-hexapod, isolated from complex support dynamics. +The key point of this strategy is to be able to accurately model the suspended table. + +To do so, a modal analysis of the suspended table was performed in Section \ref{ssec:test_nhexa_table_identification}, validating the low frequency suspension modes and high frequency flexible modes. +Then, a multi-body model of this suspended table was tuned to match with the measurements (Section \ref{ssec:test_nhexa_table_model}). + +\chapter{Nano-Hexapod Measured Dynamics} \label{sec:test_nhexa_dynamics} -In Figure \ref{fig:test_nhexa_nano_hexapod_signals} is shown a block diagram of the experimental setup. -When possible, the notations are consistent with this diagram and summarized in Table \ref{tab:list_signals}. +The Nano-Hexapod is then mounted on top of the suspended table as shown in Figure \ref{fig:test_nhexa_hexa_suspended_table}. +All the instrumentation (Speedgoat with ADC, DAC, piezoelectric voltage amplifiers and digital interfaces for the encoder) are setup and connected to the nano-hexapod using many cables. + +\begin{figure}[htbp] +\centering +\includegraphics[scale=1,width=0.7\linewidth]{figs/test_nhexa_hexa_suspended_table.jpg} +\caption{\label{fig:test_nhexa_hexa_suspended_table}Mounted Nano-Hexapod on top of the suspended table} +\end{figure} + +A modal analysis of the nano-hexapod is first performed in Section \ref{ssec:test_nhexa_enc_struts_modal_analysis}. +It will be used to better understand the measured dynamics from actuators to sensors. + +A block diagram schematic of the (open-loop) system is shown in Figure \ref{fig:test_nhexa_nano_hexapod_signals}. +The transfer function from controlled signals \(\mathbf{u}\) to the force sensors voltages \(\mathbf{V}_s\) and to the encoders measured displacements \(\mathbf{d}_e\) are identified in Section \ref{ssec:test_nhexa_identification}. +The effect of the payload mass on the dynamics is studied in Section \ref{ssec:test_nhexa_added_mass}. \begin{figure}[htbp] \centering \includegraphics[scale=1,scale=1]{figs/test_nhexa_nano_hexapod_signals.png} -\caption{\label{fig:test_nhexa_nano_hexapod_signals}Block diagram of the system with named signals} +\caption{\label{fig:test_nhexa_nano_hexapod_signals}Block diagram of the system. Command signal generated by the speedgoat is \(\mathbf{u}\), the measured dignals are \(\mathbf{d}_{e}\) and \(\mathbf{V}_s\). Units are indicated in square brackets.} \end{figure} +\section{Modal analysis} +\label{ssec:test_nhexa_enc_struts_modal_analysis} + +In order to ease the future analysis of the measured plant dynamics, a basic modal analysis of the nano-hexapod is performed. +Five 3-axis accelerometers are fixed on the top platform of the nano-hexapod (Figure \ref{fig:test_nhexa_modal_analysis}) and the top platform is excited using an instrumented hammer. + +\begin{figure}[htbp] +\centering +\includegraphics[scale=1,width=0.7\linewidth]{figs/test_nhexa_modal_analysis.jpg} +\caption{\label{fig:test_nhexa_modal_analysis}Five accelerometers fixed on top of the nano-hexapod to perform a modal analysis} +\end{figure} + +Between 100Hz and 200Hz, 6 suspension modes (i.e. rigid body modes of the top platform) are identified. +At around 700Hz, two flexible modes of the top plate are observed (see Figure \ref{fig:test_nhexa_hexa_flexible_modes}). +These modes are summarized in Table \ref{tab:test_nhexa_hexa_modal_modes_list}. + \begin{table}[htbp] \centering -\begin{tabularx}{\linewidth}{Xllll} +\begin{tabularx}{0.7\linewidth}{ccX} \toprule - & \textbf{Unit} & \textbf{Matlab} & \textbf{Vector} & \textbf{Elements}\\ +\textbf{Mode} & \textbf{Frequency} & \textbf{Description}\\ \midrule -Control Input (wanted DAC voltage) & \texttt{[V]} & \texttt{u} & \(\bm{u}\) & \(u_i\)\\ -DAC Output Voltage & \texttt{[V]} & \texttt{u} & \(\tilde{\bm{u}}\) & \(\tilde{u}_i\)\\ -PD200 Output Voltage & \texttt{[V]} & \texttt{ua} & \(\bm{u}_a\) & \(u_{a,i}\)\\ -Actuator applied force & \texttt{[N]} & \texttt{tau} & \(\bm{\tau}\) & \(\tau_i\)\\ -\midrule -Strut motion & \texttt{[m]} & \texttt{dL} & \(d\bm{\mathcal{L}}\) & \(d\mathcal{L}_i\)\\ -Encoder measured displacement & \texttt{[m]} & \texttt{dLm} & \(d\bm{\mathcal{L}}_m\) & \(d\mathcal{L}_{m,i}\)\\ -\midrule -Force Sensor strain & \texttt{[m]} & \texttt{epsilon} & \(\bm{\epsilon}\) & \(\epsilon_i\)\\ -Force Sensor Generated Voltage & \texttt{[V]} & \texttt{taum} & \(\tilde{\bm{\tau}}_m\) & \(\tilde{\tau}_{m,i}\)\\ -Measured Generated Voltage & \texttt{[V]} & \texttt{taum} & \(\bm{\tau}_m\) & \(\tau_{m,i}\)\\ -\midrule -Motion of the top platform & \texttt{[m,rad]} & \texttt{dX} & \(d\bm{\mathcal{X}}\) & \(d\mathcal{X}_i\)\\ -Metrology measured displacement & \texttt{[m,rad]} & \texttt{dXm} & \(d\bm{\mathcal{X}}_m\) & \(d\mathcal{X}_{m,i}\)\\ +1 & 120 Hz & Suspension Mode: Y-translation\\ +2 & 120 Hz & Suspension Mode: X-translation\\ +3 & 145 Hz & Suspension Mode: Z-translation\\ +4 & 165 Hz & Suspension Mode: Y-rotation\\ +5 & 165 Hz & Suspension Mode: X-rotation\\ +6 & 190 Hz & Suspension Mode: Z-rotation\\ +7 & 692 Hz & (flexible) Membrane mode of the top platform\\ +8 & 709 Hz & Second flexible mode of the top platform\\ \bottomrule \end{tabularx} -\caption{\label{tab:list_signals}List of signals} +\caption{\label{tab:test_nhexa_hexa_modal_modes_list}Description of the identified modes of the Nano-Hexapod} \end{table} \begin{figure}[htbp] -\centering -\includegraphics[scale=1,width=\linewidth]{figs/test_nhexa_IMG_20210625_083801.jpg} -\caption{\label{fig:test_nhexa_enc_fixed_to_struts}Nano-Hexapod with encoders fixed to the struts} +\begin{subfigure}{\textwidth} +\begin{center} +\includegraphics[scale=1,width=\linewidth]{figs/test_nhexa_hexa_flexible_mode_1.jpg} +\end{center} +\subcaption{\label{fig:test_nhexa_hexa_flexible_mode_1}Flexible mode at 692Hz} +\end{subfigure} +\begin{subfigure}{\textwidth} +\begin{center} +\includegraphics[scale=1,width=\linewidth]{figs/test_nhexa_hexa_flexible_mode_2.jpg} +\end{center} +\subcaption{\label{fig:test_nhexa_hexa_flexible_mode_2}Flexible mode at 709Hz} +\end{subfigure} +\caption{\label{fig:test_nhexa_hexa_flexible_modes}Two identified flexible modes of the top plate of the Nano-Hexapod} \end{figure} -It is structured as follow: -\begin{itemize} -\item Section \ref{sec:test_nhexa_enc_plates_plant_id}: The dynamics of the nano-hexapod is identified. -\item Section \ref{sec:test_nhexa_enc_plates_comp_simscape}: The identified dynamics is compared with the Simscape model. -\end{itemize} - \section{Identification of the dynamics} -\label{sec:test_nhexa_enc_plates_plant_id} -In this section, the dynamics of the nano-hexapod with the encoders fixed to the plates is identified. +\label{ssec:test_nhexa_identification} -First, the measurement data are loaded in Section \ref{sec:test_nhexa_enc_plates_plant_id_setup}, then the transfer function matrix from the actuators to the encoders are estimated in Section \ref{sec:test_nhexa_enc_plates_plant_id_dvf}. -Finally, the transfer function matrix from the actuators to the force sensors is estimated in Section \ref{sec:test_nhexa_enc_plates_plant_id_iff}. -\subsection{Data Loading and Spectral Analysis Setup} -\label{sec:test_nhexa_enc_plates_plant_id_setup} +The dynamics of the nano-hexapod from the six command signals (\(u_1\) to \(u_6\)) the six measured displacement by the encoders (\(d_{e1}\) to \(d_{e6}\)) and to the six force sensors (\(V_{s1}\) to \(V_{s6}\)) are identified by generating a low pass filtered white noise for each of the command signals, one by one. -The actuators are excited one by one using a low pass filtered white noise. -For each excitation, the 6 force sensors and 6 encoders are measured and saved. -\subsection{Transfer function from Actuator to Encoder} -\label{sec:test_nhexa_enc_plates_plant_id_dvf} +The \(6 \times 6\) FRF matrix from \(\mathbf{u}\) ot \(\mathbf{d}_e\) is shown in Figure \ref{fig:test_nhexa_identified_frf_de}. +The diagonal terms are displayed using colorful lines, and all the 30 off-diagonal terms are displayed by grey lines. -The 6x6 transfer function matrix from the excitation voltage \(\bm{u}\) and the displacement \(d\bm{\mathcal{L}}_m\) as measured by the encoders is estimated. +All the six diagonal terms are well superimposed up to at least \(1\,kHz\), indicating good manufacturing and mounting uniformity. +Below the first suspension mode, good decoupling can be observed (the amplitude of the all of off-diagonal terms are \(\approx 20\) times smaller than the diagonal terms). -The diagonal and off-diagonal terms of this transfer function matrix are shown in Figure \ref{fig:test_nhexa_enc_plates_dvf_frf}. -\begin{figure}[htbp] -\centering -\includegraphics[scale=1]{figs/enc_plates_dvf_frf.png} -\caption{\label{fig:test_nhexa_enc_plates_dvf_frf}Measured FRF for the transfer function from \(\bm{u}\) to \(d\bm{\mathcal{L}}_m\)} -\end{figure} +From 10Hz up to 1kHz, around 10 resonance frequencies can be observed. +The first 4 are suspension modes (at 122Hz, 143Hz, 165Hz and 191Hz) which correlate the modes measured during the modal analysis in Section \ref{ssec:test_nhexa_enc_struts_modal_analysis}. +Then, three modes at 237Hz, 349Hz and 395Hz are attributed to the internal strut resonances (this will be checked in Section \ref{ssec:test_nhexa_comp_model_coupling}). +Except the mode at 237Hz, their amplitude is rather low. +Two modes at 665Hz and 695Hz are attributed to the flexible modes of the top platform. +Other modes can be observed above 1kHz, which can be attributed to flexible modes of the encoder supports or to flexible modes of the top platform. -\begin{important} -From Figure \ref{fig:test_nhexa_enc_plates_dvf_frf}, we can draw few conclusions on the transfer functions from \(\bm{u}\) to \(d\bm{\mathcal{L}}_m\) when the encoders are fixed to the plates: -\begin{itemize} -\item the decoupling is rather good at low frequency (below the first suspension mode). -The low frequency gain is constant for the off diagonal terms, whereas when the encoders where fixed to the struts, the low frequency gain of the off-diagonal terms were going to zero (Figure \ref{fig:test_nhexa_enc_struts_dvf_frf}). -\item the flexible modes of the struts at 226Hz and 337Hz are indeed shown in the transfer functions, but their amplitudes are rather low. -\item the diagonal terms have alternating poles and zeros up to at least 600Hz: the flexible modes of the struts are not affecting the alternating pole/zero pattern. This what not the case when the encoders were fixed to the struts (Figure \ref{fig:test_nhexa_enc_struts_dvf_frf}). -\end{itemize} -\end{important} - -\subsection{Transfer function from Actuator to Force Sensor} -\label{sec:test_nhexa_enc_plates_plant_id_iff} -Then the 6x6 transfer function matrix from the excitation voltage \(\bm{u}\) and the voltage \(\bm{\tau}_m\) generated by the Force senors is estimated. -The bode plot of the diagonal and off-diagonal terms are shown in Figure \ref{fig:test_nhexa_enc_plates_iff_frf}. -\begin{figure}[htbp] -\centering -\includegraphics[scale=1]{figs/enc_plates_iff_frf.png} -\caption{\label{fig:test_nhexa_enc_plates_iff_frf}Measured FRF for the IFF plant} -\end{figure} - -\begin{important} -It is shown in Figure \ref{fig:test_nhexa_enc_plates_iff_comp_simscape_all} that: -\begin{itemize} -\item The IFF plant has alternating poles and zeros -\item The first flexible mode of the struts as 235Hz is appearing, and therefore is should be possible to add some damping to this mode using IFF -\item The decoupling is quite good at low frequency (below the first model) as well as high frequency (above the last suspension mode, except near the flexible modes of the top plate) -\end{itemize} -\end{important} - -\subsection{Save Identified Plants} -The identified dynamics is saved for further use. -\section{Effect of Payload mass on the Dynamics} -\label{sec:test_nhexa_added_mass} -In this section, the encoders are fixed to the plates, and we identify the dynamics for several payloads. -The added payload are half cylinders, and three layers can be added for a total of around 40kg (Figure \ref{fig:test_nhexa_picture_added_3_masses}). +Up to at least 1kHz, an alternating pole/zero pattern is observed, which renders the control easier to tune. +This would not have been the case if the encoders were fixed to the struts. \begin{figure}[htbp] \centering -\includegraphics[scale=1,width=\linewidth]{figs/test_nhexa_picture_added_3_masses.jpg} -\caption{\label{fig:test_nhexa_picture_added_3_masses}Picture of the nano-hexapod with added mass} +\includegraphics[scale=1]{figs/test_nhexa_identified_frf_de.png} +\caption{\label{fig:test_nhexa_identified_frf_de}Measured FRF for the transfer function from \(\mathbf{u}\) to \(\mathbf{d}_e\). The 6 diagonal terms are the colorfull lines (all superimposed), and the 30 off-diagonal terms are the shaded black lines.} \end{figure} -First the dynamics from \(\bm{u}\) to \(d\mathcal{L}_m\) and \(\bm{\tau}_m\) is identified. -Then, the Integral Force Feedback controller is developed and applied as shown in Figure \ref{fig:test_nhexa_nano_hexapod_signals_iff}. -Finally, the dynamics from \(\bm{u}^\prime\) to \(d\mathcal{L}_m\) is identified and the added damping can be estimated. + +Similarly, the \(6 \times 6\) FRF matrix from \(\mathbf{u}\) to \(\mathbf{V}_s\) is shown in Figure \ref{fig:test_nhexa_identified_frf_Vs}. +Alternating poles and zeros is observed up to at least 2kHz, which is a necessary characteristics in order to apply decentralized IFF. +Similar to what was observed for the encoder outputs, all the ``diagonal'' terms are well superimposed, indicating that the same controller can be applied for all the struts. +The first flexible mode of the struts as 235Hz is appearing, and therefore is should be possible to add some damping to this mode using IFF. \begin{figure}[htbp] \centering -\includegraphics[scale=1]{figs/test_nhexa_nano_hexapod_signals_iff.png} -\caption{\label{fig:test_nhexa_nano_hexapod_signals_iff}Block Diagram of the experimental setup and model} +\includegraphics[scale=1]{figs/test_nhexa_identified_frf_Vs.png} +\caption{\label{fig:test_nhexa_identified_frf_Vs}Measured FRF for the transfer function from \(\mathbf{u}\) to \(\mathbf{V}_s\). The 6 diagonal terms are the colorfull lines (all superimposed), and the 30 off-diagonal terms are the shaded black lines.} \end{figure} -\subsection{Measured Frequency Response Functions} -The following data are loaded: -\begin{itemize} -\item \texttt{Va}: the excitation voltage (corresponding to \(u_i\)) -\item \texttt{Vs}: the generated voltage by the 6 force sensors (corresponding to \(\bm{\tau}_m\)) -\item \texttt{de}: the measured motion by the 6 encoders (corresponding to \(d\bm{\mathcal{L}}_m\)) -\end{itemize} -The window \texttt{win} and the frequency vector \texttt{f} are defined. -Finally the \(6 \times 6\) transfer function matrices from \(\bm{u}\) to \(d\bm{\mathcal{L}}_m\) and from \(\bm{u}\) to \(\bm{\tau}_m\) are identified: + +\section{Effect of payload mass on the dynamics} +\label{ssec:test_nhexa_added_mass} + +As one major challenge in the control of the NASS is the wanted robustness to change of payload mass, it is necessary to understand how the dynamics of the nano-hexapod changes with a change of payload mass. + +In order to study this change of dynamics with the payload mass, up to three ``cylindrical masses'' of \(13\,kg\) each can be added for a total of \(\approx 40\,kg\). +These three cylindrical masses on top of the nano-hexapod are shown in Figure \ref{fig:test_nhexa_table_mass_3}. + +\begin{figure}[htbp] +\centering +\includegraphics[scale=1,width=0.8\linewidth]{figs/test_nhexa_table_mass_3.jpg} +\caption{\label{fig:test_nhexa_table_mass_3}Picture of the nano-hexapod with the added three cylindrical masses for a total of \(\approx 40\,kg\)} +\end{figure} + The identified dynamics are then saved for further use. -\subsection{Transfer function from Actuators to Encoders} -The transfer functions from \(\bm{u}\) to \(d\bm{\mathcal{L}}_{m}\) are shown in Figure \ref{fig:test_nhexa_comp_plant_payloads_dvf}. +The obtained frequency response functions from actuator signal \(u_i\) to the associated encoder \(d_{ei}\) for the four payload conditions (no mass, 13kg, 26kg and 39kg) are shown in Figure \ref{fig:test_nhexa_identified_frf_de_masses}. +As expected, the frequency of the suspension modes are decreasing with an increase of the payload mass. +The low frequency gain does not change as it is linked to the stiffness property of the nano-hexapod, and not to its mass property. -\begin{figure}[htbp] -\centering -\includegraphics[scale=1]{figs/test_nhexa_comp_plant_payloads_dvf.png} -\caption{\label{fig:test_nhexa_comp_plant_payloads_dvf}Measured Frequency Response Functions from \(u_i\) to \(d\mathcal{L}_{m,i}\) for all 4 payload conditions. Diagonal terms are solid lines, and shaded lines are off-diagonal terms.} -\end{figure} - - -\begin{important} -From Figure \ref{fig:test_nhexa_comp_plant_payloads_dvf}, we can observe few things: -\begin{itemize} -\item The obtained dynamics is changing a lot between the case without mass and when there is at least one added mass. -\item Between 1, 2 and 3 added masses, the dynamics is not much different, and it would be easier to design a controller only for these cases. -\item The flexible modes of the top plate is first decreased a lot when the first mass is added (from 700Hz to 400Hz). +The frequencies of the two flexible modes of the top plate are first decreased a lot when the first mass is added (from \(\approx 700\,Hz\) to \(\approx 400\,Hz\)). This is due to the fact that the added mass is composed of two half cylinders which are not fixed together. -Therefore is adds a lot of mass to the top plate without adding a lot of rigidity in one direction. -When more than 1 mass layer is added, the half cylinders are added with some angles such that rigidity are added in all directions (see Figure \ref{fig:test_nhexa_picture_added_3_masses}). +It therefore adds a lot of mass to the top plate without adding stiffness in one direction. +When more than one ``mass layer'' is added, the half cylinders are added with some angles such that rigidity are added in all directions (see how the three mass ``layers'' are positioned in Figure \ref{fig:test_nhexa_table_mass_3}). In that case, the frequency of these flexible modes are increased. -In practice, the payload should be one solid body, and we should not see a massive decrease of the frequency of this flexible mode. -\item Flexible modes of the top plate are becoming less problematic as masses are added. -\item First flexible mode of the strut at 230Hz is not much decreased when mass is added. -However, its apparent amplitude is much decreased. -\end{itemize} -\end{important} +In practice, the payload should be one solid body, and no decrease of the frequency of this flexible mode should be observed. +The apparent amplitude of the flexible mode of the strut at 237Hz becomes smaller as the payload mass is increased. -\subsection{Transfer function from Actuators to Force Sensors} -The transfer functions from \(\bm{u}\) to \(\bm{\tau}_{m}\) are shown in Figure \ref{fig:test_nhexa_comp_plant_payloads_iff}. +The measured FRF from \(u_i\) to \(V_{si}\) are shown in Figure \ref{fig:test_nhexa_identified_frf_Vs_masses}. +For all the tested payloads, the measured FRF always have alternating poles and zeros, indicating that IFF can be applied in a robust way. \begin{figure}[htbp] -\centering -\includegraphics[scale=1]{figs/test_nhexa_comp_plant_payloads_iff.png} -\caption{\label{fig:test_nhexa_comp_plant_payloads_iff}Measured Frequency Response Functions from \(u_i\) to \(\tau_{m,i}\) for all 4 payload conditions. Diagonal terms are solid lines, and shaded lines are off-diagonal terms.} +\begin{subfigure}{0.49\textwidth} +\begin{center} +\includegraphics[scale=1,width=\linewidth]{figs/test_nhexa_identified_frf_de_masses.png} +\end{center} +\subcaption{\label{fig:test_nhexa_identified_frf_de_masses}$u_i$ to $d_{ei}$} +\end{subfigure} +\begin{subfigure}{0.49\textwidth} +\begin{center} +\includegraphics[scale=1,width=\linewidth]{figs/test_nhexa_identified_frf_Vs_masses.png} +\end{center} +\subcaption{\label{fig:test_nhexa_identified_frf_Vs_masses}$u_i$ to $V_{si}$} +\end{subfigure} +\caption{\label{fig:test_struts_mounting}Measured Frequency Response Functions from \(u_i\) to \(d_{ei}\) (\subref{fig:test_nhexa_identified_frf_de_masses}) and from \(u_i\) to \(V_{si}\) (\subref{fig:test_nhexa_identified_frf_Vs_masses}) for all 4 payload conditions. Only diagonal terms are shown.} \end{figure} -\begin{important} -From Figure \ref{fig:test_nhexa_comp_plant_payloads_iff}, we can see that for all added payloads, the transfer function from \(\bm{u}\) to \(\bm{\tau}_{m}\) always has alternating poles and zeros. -\end{important} +\section*{Conclusion} +After the Nano-Hexapod was fixed on top of the suspended table, its dynamics was identified. -\subsection{Coupling of the transfer function from Actuator to Encoders} -The RGA-number, which is a measure of the interaction in the system, is computed for the transfer function matrix from \(\bm{u}\) to \(d\bm{\mathcal{L}}_m\) for all the payloads. -The obtained numbers are compared in Figure \ref{fig:test_nhexa_rga_num_ol_masses}. +The frequency response functions from the six DAC voltages \(\mathbf{u}\) to the six encoders measured displacements \(\mathbf{d}_e\) displays alternating complex conjugate poles and complex conjugate zeros up to at least 1kHz. +At low frequency, the coupling is small, indicating correct assembly of all parts. +This should enables the design of a decentralized positioning controller based on the encoder for relative positioning purposes. +The suspension modes and flexible modes measured during the modal analysis (Section \ref{ssec:test_nhexa_enc_struts_modal_analysis}) are also observed in the dynamics. +Lot's of other modes are present above 700Hz, which will inevitably limit the achievable bandwidth. +The observed effect of the payload's mass on the dynamics is quite large, which also represent a complex control challenge. -\begin{figure}[htbp] -\centering -\includegraphics[scale=1]{figs/test_nhexa_rga_num_ol_masses.png} -\caption{\label{fig:test_nhexa_rga_num_ol_masses}RGA-number for the open-loop transfer function from \(\bm{u}\) to \(d\bm{\mathcal{L}}_m\)} -\end{figure} +The frequency response functions from the six DAC voltages \(\mathbf{u}\) to the six force sensors voltages \(\mathbf{V}_s\) all have alternating complex conjugate poles and complex conjugate zeros. +This indicates that it should be possible to implement decentralized Integral Force Feedback in a robust way. +This alternating property holds for all the tested payloads. -\begin{important} -From Figure \ref{fig:test_nhexa_rga_num_ol_masses}, it is clear that the coupling is quite large starting from the first suspension mode of the nano-hexapod. -Therefore, is the payload's mass is increase, the coupling in the system start to become unacceptably large at lower frequencies. -\end{important} - -\section{Conclusion} -\begin{important} -In this section, the dynamics of the nano-hexapod with the encoders fixed to the plates is studied. - -It has been found that: -\begin{itemize} -\item The measured dynamics is in agreement with the dynamics of the simscape model, up to the flexible modes of the top plate. -See figures \ref{fig:test_nhexa_enc_plates_iff_comp_simscape} and \ref{fig:test_nhexa_enc_plates_iff_comp_offdiag_simscape} for the transfer function to the force sensors and Figures \ref{fig:test_nhexa_enc_plates_dvf_comp_simscape} and \ref{fig:test_nhexa_enc_plates_dvf_comp_offdiag_simscape} for the transfer functions to the encoders -\item The Integral Force Feedback strategy is very effective in damping the suspension modes of the nano-hexapod (Figure \ref{fig:test_nhexa_enc_plant_plates_effect_iff}). -\item The transfer function from \(\bm{u}^\prime\) to \(d\bm{\mathcal{L}}_m\) show nice dynamical properties and is a much better candidate for the high-authority-control than when the encoders were fixed to the struts. -At least up to the flexible modes of the top plate, the diagonal elements of the transfer function matrix have alternating poles and zeros, and the phase is moving smoothly. -Only the flexible modes of the top plates seems to be problematic for control. -\end{itemize} -\end{important} - -\chapter{Comparison with the Nano-Hexapod model?} +\chapter{Nano-Hexapod Model Dynamics} \label{sec:test_nhexa_model} -\section{Comparison with the Simscape Model} -\label{sec:test_nhexa_enc_plates_comp_simscape} -In this section, the measured dynamics done in Section \ref{sec:test_nhexa_enc_plates_plant_id} is compared with the dynamics estimated from the Simscape model. - -A configuration is added to be able to put the nano-hexapod on top of the vibration table as shown in Figure \ref{fig:simscape_vibration_table}. +In this section, the measured dynamics done in Section \ref{sec:test_nhexa_dynamics} is compared with the dynamics estimated from the Simscape model. +The nano-hexapod simscape model is therefore added on top of the vibration table Simscape model as shown in Figure \ref{fig:test_nhexa_hexa_simscape}. \begin{figure}[htbp] \centering -\includegraphics[scale=1,width=0.8\linewidth]{figs/vibration_table_nano_hexapod_simscape.png} -\caption{\label{fig:simscape_vibration_table}3D representation of the simscape model with the nano-hexapod} +\includegraphics[scale=1,width=0.8\linewidth]{figs/test_nhexa_hexa_simscape.png} +\caption{\label{fig:test_nhexa_hexa_simscape}3D representation of the simscape model with the nano-hexapod on top of the suspended table. Three mass ``layers'' are here added} \end{figure} -\subsection{Identification with the Simscape Model} -The nano-hexapod is initialized with the APA taken as 2dof models. -Now, the dynamics from the DAC voltage \(\bm{u}\) to the encoders \(d\bm{\mathcal{L}}_m\) is estimated using the Simscape model. -Then the transfer function from \(\bm{u}\) to \(\bm{\tau}_m\) is identified using the Simscape model. -The identified dynamics is saved for further use. -\subsection{Dynamics from Actuator to Force Sensors} -The identified dynamics is compared with the measured FRF: -\begin{itemize} -\item Figure \ref{fig:test_nhexa_enc_plates_iff_comp_simscape_all}: the individual transfer function from \(u_1\) (the DAC voltage for the first actuator) to the force sensors of all 6 struts are compared -\item Figure \ref{fig:test_nhexa_enc_plates_iff_comp_simscape}: all the diagonal elements are compared -\item Figure \ref{fig:test_nhexa_enc_plates_iff_comp_offdiag_simscape}: all the off-diagonal elements are compared -\end{itemize} + +The model should exhibit certain characteristics that are verified in this section. +First, it should match the measured system dynamics from actuators to sensors that were presented in Section \ref{sec:test_nhexa_dynamics}. +Both the ``direct'' terms (Section \ref{ssec:test_nhexa_comp_model}) and ``coupling'' terms (Section \ref{ssec:test_nhexa_comp_model_coupling}) of the Simscape model are compared with the measured dynamics. +Second, it should also represents how the system dynamics changes when a payload is fixed to the top platform. +This is checked in Section \ref{ssec:test_nhexa_comp_model_masses}. + +\section{Nano-Hexapod model dynamics} +\label{ssec:test_nhexa_comp_model} + +The Simscape model of the nano-hexapod is first configured with 4-DoF flexible joints, 2-DoF APA and rigid top and bottom platforms. +The stiffness of the flexible joints are chosen based on the values estimated using the test bench and based on FEM. +The parameters of the APA model are the ones determined from the test bench of the APA. +The \(6 \times 6\) transfer function matrices from \(\mathbf{u}\) to \(\mathbf{d}_e\) and from \(\mathbf{u}\) to \(\mathbf{V}_s\) are extracted then from the Simscape model. + +A first feature that should be checked is that the model well represents the ``direct'' terms of the measured FRF matrix. +To do so, the diagonal terms of the extracted transfer function matrices are compared with the measured FRF in Figure \ref{fig:test_nhexa_comp_simscape_diag}. +It can be seen that the 4 suspension modes of the nano-hexapod (at 122Hz, 143Hz, 165Hz and 191Hz) are well modelled. +The three resonances that were attributed to ``internal'' flexible modes of the struts (at 237Hz, 349Hz and 395Hz) cannot be seen in the model, which is reasonable as the APA are here modelled as a simple uniaxial 2-DoF system. +At higher frequencies, no resonances can be seen in the model, as the as the top plate and the encoder supports are modelled as rigid bodies. + +\begin{figure}[htbp] +\begin{subfigure}{0.49\textwidth} +\begin{center} +\includegraphics[scale=1,width=0.95\linewidth]{figs/test_nhexa_comp_simscape_de_diag.png} +\end{center} +\subcaption{\label{fig:test_nhexa_comp_simscape_de_diag}from $u$ to $d_e$} +\end{subfigure} +\begin{subfigure}{0.49\textwidth} +\begin{center} +\includegraphics[scale=1,width=0.95\linewidth]{figs/test_nhexa_comp_simscape_Vs_diag.png} +\end{center} +\subcaption{\label{fig:test_nhexa_comp_simscape_Vs_diag}from $u$ to $V_s$} +\end{subfigure} +\caption{\label{fig:test_nhexa_comp_simscape_diag}Comparison of the diagonal elements (i.e. ``direct'' terms) of the measured FRF matrix and the identified dynamics from the Simscape model. Both for the dynamics from \(u\) to \(d_e\) (\subref{fig:test_nhexa_comp_simscape_de_diag}) and from \(u\) to \(V_s\) (\subref{fig:test_nhexa_comp_simscape_Vs_diag})} +\end{figure} + +\section{Modelling dynamical coupling} +\label{ssec:test_nhexa_comp_model_coupling} + +Another wanted feature of the model is that it well represents the coupling in the system as this is often the limiting factor for the control of MIMO systems. +Instead of comparing the full 36 elements of the \(6 \times 6\) FFR matrix from \(\mathbf{u}\) to \(\mathbf{d}_e\), only the first ``column'' is compared (Figure \ref{fig:test_nhexa_comp_simscape_de_all}), which corresponds to the transfer function from the command \(u_1\) to the six measured encoder displacements \(d_{e1}\) to \(d_{e6}\). +It can be seen that the coupling in the model is well matching the measurements up to the first un-modelled flexible mode at 237Hz. +Similar results are observed for all the other coupling terms, as well as for the transfer function from \(\mathbf{u}\) to \(\mathbf{V}_s\). \begin{figure}[htbp] \centering -\includegraphics[scale=1]{figs/test_nhexa_enc_plates_iff_comp_simscape_all.png} -\caption{\label{fig:test_nhexa_enc_plates_iff_comp_simscape_all}IFF Plant for the first actuator input and all the force senosrs} +\includegraphics[scale=1]{figs/test_nhexa_comp_simscape_de_all.png} +\caption{\label{fig:test_nhexa_comp_simscape_de_all}Comparison of the measured (in blue) and modelled (in red) frequency transfer functions from the first control signal \(u_1\) to the six encoders \(d_{e1}\) to \(d_{e6}\)} \end{figure} +The APA300ML are then modelled with a \emph{super-element} extracted from a FE-software. +The obtained transfer functions from \(u_1\) to the six measured encoder displacements \(d_{e1}\) to \(d_{e6}\) are compared with the measured FRF in Figure \ref{fig:test_nhexa_comp_simscape_de_all_flex}. +While the damping of the suspension modes for the \emph{super-element} is underestimated (which could be solved by properly tuning the proportional damping coefficients), the flexible modes of the struts at 237Hz and 349Hz are well modelled. +Even the mode 395Hz can be observed in the model. +Therefore, if the modes of the struts are to be modelled, the \emph{super-element} of the APA300ML may be used, at the cost of obtaining a much higher order model. + \begin{figure}[htbp] \centering -\includegraphics[scale=1]{figs/test_nhexa_enc_plates_iff_comp_simscape.png} -\caption{\label{fig:test_nhexa_enc_plates_iff_comp_simscape}Diagonal elements of the IFF Plant} +\includegraphics[scale=1]{figs/test_nhexa_comp_simscape_de_all_flex.png} +\caption{\label{fig:test_nhexa_comp_simscape_de_all_flex}Comparison of the measured (in blue) and modelled (in red) frequency transfer functions from the first control signal \(u_1\) to the six encoders \(d_{e1}\) to \(d_{e6}\)} \end{figure} +\section{Modelling the effect of payload mass} +\label{ssec:test_nhexa_comp_model_masses} + +Another important characteristics of the model is that it should well represents the dynamics of the system for all considered payloads. +The model dynamics is therefore compared with the measured dynamics for 4 payloads (no payload, 13kg, 26kg and 39kg) in Figure \ref{fig:test_nhexa_comp_simscape_diag_masses}. +The observed shift to lower frequency of the suspension modes with an increased payload mass is well represented by the Simscape model. +The complex conjugate zeros are also well matching with the experiments both for the encoder outputs (Figure \ref{fig:test_nhexa_comp_simscape_de_diag_masses}) and the force sensor outputs (Figure \ref{fig:test_nhexa_comp_simscape_Vs_diag_masses}). + +Note that the model displays smaller damping that what is observed experimentally for high values of the payload mass. +One option could be to tune the damping as a function of the mass (similar to what is done with the Rayleigh damping). +However, as decentralized IFF will be applied, the damping will be brought actively, and the open-loop damping value should have very little impact on the obtained plant. + +\begin{figure}[htbp] +\begin{subfigure}{0.49\textwidth} +\begin{center} +\includegraphics[scale=1,width=0.95\linewidth]{figs/test_nhexa_comp_simscape_de_diag_masses.png} +\end{center} +\subcaption{\label{fig:test_nhexa_comp_simscape_de_diag_masses}from $u$ to $d_e$} +\end{subfigure} +\begin{subfigure}{0.49\textwidth} +\begin{center} +\includegraphics[scale=1,width=0.95\linewidth]{figs/test_nhexa_comp_simscape_Vs_diag_masses.png} +\end{center} +\subcaption{\label{fig:test_nhexa_comp_simscape_Vs_diag_masses}from $u$ to $V_s$} +\end{subfigure} +\caption{\label{fig:test_nhexa_comp_simscape_diag_masses}Comparison of the diagonal elements (i.e. ``direct'' terms) of the measured FRF matrix and the identified dynamics from the Simscape model. Both for the dynamics from \(u\) to \(d_e\) (\subref{fig:test_nhexa_comp_simscape_de_diag}) and from \(u\) to \(V_s\) (\subref{fig:test_nhexa_comp_simscape_Vs_diag})} +\end{figure} + +In order to also check if the model well represents the coupling when high payload masses are used, the transfer functions from \(u_1\) to \(d_{e1}\) to \(d_{e6}\) are compared in the case of the 39kg payload in Figure \ref{fig:test_nhexa_comp_simscape_de_all_high_mass}. +Excellent match between the experimental coupling and the model coupling is observed. +The model therefore well represents the system dynamical coupling for different considered payloads. + \begin{figure}[htbp] \centering -\includegraphics[scale=1]{figs/test_nhexa_enc_plates_iff_comp_offdiag_simscape.png} -\caption{\label{fig:test_nhexa_enc_plates_iff_comp_offdiag_simscape}Off diagonal elements of the IFF Plant} +\includegraphics[scale=1]{figs/test_nhexa_comp_simscape_de_all_high_mass.png} +\caption{\label{fig:test_nhexa_comp_simscape_de_all_high_mass}Comparison of the measured (in blue) and modelled (in red) frequency transfer functions from the first control signal \(u_1\) to the six encoders \(d_{e1}\) to \(d_{e6}\)} \end{figure} -\subsection{Dynamics from Actuator to Encoder} -The identified dynamics is compared with the measured FRF: -\begin{itemize} -\item Figure \ref{fig:test_nhexa_enc_plates_dvf_comp_simscape_all}: the individual transfer function from \(u_3\) (the DAC voltage for the actuator number 3) to the six encoders -\item Figure \ref{fig:test_nhexa_enc_plates_dvf_comp_simscape}: all the diagonal elements are compared -\item Figure \ref{fig:test_nhexa_enc_plates_dvf_comp_offdiag_simscape}: all the off-diagonal elements are compared -\end{itemize} +\section*{Conclusion} +As illustrated in this section, the developed Simscape model accurately represents the suspension modes of the Nano-Hexapod. +Both FRF matrices from \(\mathbf{u}\) to \(\mathbf{V}_s\) and from \(\mathbf{u}\) to \(\mathbf{d}_e\) are well matching with the measurements, even when considering coupling (i.e. off-diagonal) terms, which are very important from a control perspective. -\begin{figure}[htbp] -\centering -\includegraphics[scale=1]{figs/test_nhexa_enc_plates_dvf_comp_simscape_all.png} -\caption{\label{fig:test_nhexa_enc_plates_dvf_comp_simscape_all}DVF Plant for the first actuator input and all the encoders} -\end{figure} +At frequency above the suspension modes, the Nano-Hexapod model becomes inaccurate as the flexible modes are not modelled. +It was shown that modelling the APA300ML using a ``super-element'' allows to model the internal resonances of the struts. +The same could be done with the top platform and the encoder supports, but the model order would be higher and may become unpractical for simulation purposes. -\begin{figure}[htbp] -\centering -\includegraphics[scale=1]{figs/test_nhexa_enc_plates_dvf_comp_simscape.png} -\caption{\label{fig:test_nhexa_enc_plates_dvf_comp_simscape}Diagonal elements of the DVF Plant} -\end{figure} +\chapter{Conclusion} -\begin{figure}[htbp] -\centering -\includegraphics[scale=1]{figs/test_nhexa_enc_plates_dvf_comp_offdiag_simscape.png} -\caption{\label{fig:test_nhexa_enc_plates_dvf_comp_offdiag_simscape}Off diagonal elements of the DVF Plant} -\end{figure} +The goal of this test bench was to obtain an accurate model of the nano-hexapod that can then be included on top of the micro-station model. -\subsection{Conclusion} -\begin{important} -The Simscape model is quite accurate for the transfer function matrices from \(\bm{u}\) to \(\bm{\tau}_m\) and from \(\bm{u}\) to \(d\bm{\mathcal{L}}_m\) except at frequencies of the flexible modes of the top-plate. -The Simscape model can therefore be used to develop the control strategies. -\end{important} +This strategy was to measure the nano-hexapod in conditions where all factors that could have impacted the nano-hexapod dynamics were taken into account. +This was done by developing a suspended table with low frequency suspension modes which can be accurately modelled. -\section{Comparison with the Simscape model} -\label{sec:test_nhexa_added_mass_simscape} -Let's now compare the identified dynamics with the Simscape model. -We wish to verify if the Simscape model is still accurate for all the tested payloads. -\subsection{System Identification} -Let's initialize the simscape model with the nano-hexapod fixed on top of the vibration table. -First perform the identification for the transfer functions from \(\bm{u}\) to \(d\bm{\mathcal{L}}_m\): -The identified dynamics are then saved for further use. -\subsection{Transfer function from Actuators to Encoders} -The measured FRF and the identified dynamics from \(u_i\) to \(d\mathcal{L}_{m,i}\) are compared in Figure \ref{fig:test_nhexa_comp_masses_model_exp_dvf}. -A zoom near the ``suspension'' modes is shown in Figure \ref{fig:test_nhexa_comp_masses_model_exp_dvf_zoom}. +While the dynamics of the nano-hexapod was indeed impacted by the dynamics of the suspended platform, this impact was also taken into account in the Simscape model, and a good match was obtained. -\begin{figure}[htbp] -\centering -\includegraphics[scale=1]{figs/comp_masses_model_exp_dvf.png} -\caption{\label{fig:test_nhexa_comp_masses_model_exp_dvf}Comparison of the transfer functions from \(u_i\) to \(d\mathcal{L}_{m,i}\) - measured FRF and identification from the Simscape model} -\end{figure} - -\begin{figure}[htbp] -\centering -\includegraphics[scale=1]{figs/test_nhexa_comp_masses_model_exp_dvf_zoom.png} -\caption{\label{fig:test_nhexa_comp_masses_model_exp_dvf_zoom}Comparison of the transfer functions from \(u_i\) to \(d\mathcal{L}_{m,i}\) - measured FRF and identification from the Simscape model (Zoom)} -\end{figure} - -\begin{important} -The Simscape model is very accurately representing the measured dynamics up. -Only the flexible modes of the struts and of the top plate are not represented here as these elements are modelled as rigid bodies. -\end{important} - -\subsection{Transfer function from Actuators to Force Sensors} -The measured FRF and the identified dynamics from \(u_i\) to \(\tau_{m,i}\) are compared in Figure \ref{fig:test_nhexa_comp_masses_model_exp_iff}. -A zoom near the ``suspension'' modes is shown in Figure \ref{fig:test_nhexa_comp_masses_model_exp_iff_zoom}. - -\begin{figure}[htbp] -\centering -\includegraphics[scale=1]{figs/test_nhexa_comp_masses_model_exp_iff.png} -\caption{\label{fig:test_nhexa_comp_masses_model_exp_iff}Comparison of the transfer functions from \(u_i\) to \(\tau_{m,i}\) - measured FRF and identification from the Simscape model} -\end{figure} - -\begin{figure}[htbp] -\centering -\includegraphics[scale=1]{figs/test_nhexa_comp_masses_model_exp_iff_zoom.png} -\caption{\label{fig:test_nhexa_comp_masses_model_exp_iff_zoom}Comparison of the transfer functions from \(u_i\) to \(\tau_{m,i}\) - measured FRF and identification from the Simscape model (Zoom)} -\end{figure} +Obtaining a model accurately representing the complex dynamics of the Nano-Hexapod was made possible by the modelling approach used during this work. +This approach consisted of tuning and validating models of individual components (such as the APA and flexible joints) using dedicated test benches. +Only then, the different models could be combined to form the Nano-Hexapod dynamical model. +If a model of the nano-hexapod was developed in one time, it would be difficult to tune all model parameters to match the measured dynamics, or even to know if the model ``structure'' would be adequate to represents the system dynamics. \printbibliography[heading=bibintoc,title={Bibliography}]