%% test_id31_4_hac.m %% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); %% Path for functions, data and scripts addpath('./mat/'); % Path for Data addpath('./src/'); % Path for functions addpath('./STEPS/'); % Path for STEPS addpath('./subsystems/'); % Path for Subsystems Simulink files %% Data directory data_dir = './mat/'; % Simulink Model name mdl = 'nass_model_id31'; %% Colors for the figures colors = colororder; %% Frequency Vector freqs = logspace(log10(1), log10(2e3), 1000); %% Sampling Time Ts = 1e-4; %% Specifications for Experiments specs_dz_peak = 50; % [nm] specs_dy_peak = 100; % [nm] specs_ry_peak = 0.85; % [urad] specs_dz_rms = 15; % [nm RMS] specs_dy_rms = 30; % [nm RMS] specs_ry_rms = 0.25; % [urad RMS] % Load the estimated damped plant from the multi-body model load('test_id31_simscape_damped_plants.mat', 'Gm_hac_m0_Wz0', 'Gm_hac_m1_Wz0', 'Gm_hac_m2_Wz0', 'Gm_hac_m3_Wz0'); % Load the measured damped plants load('test_id31_identified_damped_plants.mat', 'G_hac_m0_Wz0', 'G_hac_m1_Wz0', 'G_hac_m2_Wz0', 'G_hac_m3_Wz0', 'f'); % Load the undamped plant for comparison load('test_id31_identified_open_loop_plants.mat', 'G_int_m0_Wz0', 'G_int_m1_Wz0', 'G_int_m2_Wz0', 'G_int_m3_Wz0', 'f'); figure; tiledlayout(2, 3, 'TileSpacing', 'tight', 'Padding', 'tight'); ax1 = nexttile(); hold on; plot(f, abs(G_hac_m0_Wz0(:, 1, 1))); plot(freqs, abs(squeeze(freqresp(Gm_hac_m0_Wz0('eL1', 'u1'), freqs, 'Hz')))); text(12, 3e-5, '$\epsilon_{\mathcal{L}1}/u_1^\prime$', 'Horiz','left', 'Vert','top') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('Amplitude [m/V]'); yticks([1e-7, 1e-6, 1e-5]); ax2 = nexttile(); hold on; plot(f, abs(G_hac_m0_Wz0(:, 2, 1))); plot(freqs, abs(squeeze(freqresp(Gm_hac_m0_Wz0('eL2', 'u1'), freqs, 'Hz')))); text(12, 3e-5, '$\epsilon_{\mathcal{L}2}/u_1^\prime$', 'Horiz','left', 'Vert','top') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); ax3 = nexttile(); hold on; plot(f, abs(G_hac_m0_Wz0(:, 3, 1))) plot(freqs, abs(squeeze(freqresp(Gm_hac_m0_Wz0('eL3', 'u1'), freqs, 'Hz')))) text(12, 3e-5, '$\epsilon_{\mathcal{L}3}/u_1^\prime$', 'Horiz','left', 'Vert','top') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); ax4 = nexttile(); hold on; plot(f, abs(G_hac_m0_Wz0(:, 4, 1))); plot(freqs, abs(squeeze(freqresp(Gm_hac_m0_Wz0('eL4', 'u1'), freqs, 'Hz')))); text(12, 3e-5, '$\epsilon_{\mathcal{L}4}/u_1^\prime$', 'Horiz','left', 'Vert','top') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude [m/V]'); xticks([10, 20, 50, 100, 200]) yticks([1e-7, 1e-6, 1e-5]); ax5 = nexttile(); hold on; plot(f, abs(G_hac_m0_Wz0(:, 5, 1))); plot(freqs, abs(squeeze(freqresp(Gm_hac_m0_Wz0('eL5', 'u1'), freqs, 'Hz')))); text(12, 3e-5, '$\epsilon_{\mathcal{L}5}/u_1^\prime$', 'Horiz','left', 'Vert','top') hold off; xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xticks([10, 20, 50, 100, 200]) ax6 = nexttile(); hold on; plot(f, abs(G_hac_m0_Wz0(:, 6, 1)), ... 'DisplayName', 'Measurements'); plot(freqs, abs(squeeze(freqresp(Gm_hac_m0_Wz0('eL6', 'u1'), freqs, 'Hz'))), ... 'DisplayName', 'Model (2-DoF APA)'); text(12, 3e-5, '$\epsilon_{\mathcal{L}6}/u_1^\prime$', 'Horiz','left', 'Vert','top') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); xticks([10, 20, 50, 100, 200]) leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'xy'); xlim([10, 5e2]); ylim([1e-7, 4e-5]); %% Comparison of all the undamped FRF and all the damped FRF figure; tiledlayout(3, 1, 'TileSpacing', 'compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(G_int_m0_Wz0(:,1,1)), 'color', [colors(1,:), 0.5], 'DisplayName', 'Undamped - $\epsilon\mathcal{L}_i/u_i$'); plot(f, abs(G_hac_m0_Wz0(:,1,1)), 'color', [colors(2,:), 0.5], 'DisplayName', 'damped - $\epsilon\mathcal{L}_i/u_i^\prime$'); for i = 1:6 plot(f, abs(G_int_m0_Wz0(:,i, i)), 'color', [colors(1,:), 0.5], 'HandleVisibility', 'off'); plot(f, abs(G_int_m1_Wz0(:,i, i)), 'color', [colors(1,:), 0.5], 'HandleVisibility', 'off'); plot(f, abs(G_int_m2_Wz0(:,i, i)), 'color', [colors(1,:), 0.5], 'HandleVisibility', 'off'); plot(f, abs(G_int_m3_Wz0(:,i, i)), 'color', [colors(1,:), 0.5], 'HandleVisibility', 'off'); end for i = 1:6 plot(f, abs(G_hac_m0_Wz0(:,i, i)), 'color', [colors(2,:), 0.5], 'HandleVisibility', 'off'); plot(f, abs(G_hac_m1_Wz0(:,i, i)), 'color', [colors(2,:), 0.5], 'HandleVisibility', 'off'); plot(f, abs(G_hac_m2_Wz0(:,i, i)), 'color', [colors(2,:), 0.5], 'HandleVisibility', 'off'); plot(f, abs(G_hac_m3_Wz0(:,i, i)), 'color', [colors(2,:), 0.5], 'HandleVisibility', 'off'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/V]'); set(gca, 'XTickLabel',[]); leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ylim([2e-7, 4e-4]); ax2 = nexttile; hold on; for i =1:6 plot(f, 180/pi*unwrapphase(angle(-G_int_m0_Wz0(:,i, i)), f), 'color', [colors(1,:), 0.5]); plot(f, 180/pi*unwrapphase(angle(-G_int_m1_Wz0(:,i, i)), f), 'color', [colors(1,:), 0.5]); plot(f, 180/pi*unwrapphase(angle(-G_int_m2_Wz0(:,i, i)), f), 'color', [colors(1,:), 0.5]); plot(f, 180/pi*unwrapphase(angle(-G_int_m3_Wz0(:,i, i)), f), 'color', [colors(1,:), 0.5]); end for i = 1:6 plot(f, 180/pi*unwrapphase(angle(G_hac_m0_Wz0(:,i, i)), f), 'color', [colors(2,:), 0.5]); plot(f, 180/pi*unwrapphase(angle(G_hac_m1_Wz0(:,i, i)), f), 'color', [colors(2,:), 0.5]); plot(f, 180/pi*unwrapphase(angle(G_hac_m2_Wz0(:,i, i)), f), 'color', [colors(2,:), 0.5]); plot(f, 180/pi*unwrapphase(angle(G_hac_m3_Wz0(:,i, i)), f), 'color', [colors(2,:), 0.5]); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-270, 20]) linkaxes([ax1,ax2],'x'); xlim([1, 5e2]); %% Interaction Analysis - RGA Number rga_m0 = zeros(1,size(G_hac_m0_Wz0,1)); for i = 1:length(rga_m0) rga_m0(i) = sum(sum(abs(inv(squeeze(G_hac_m0_Wz0(i,:,:)).').*squeeze(G_hac_m0_Wz0(i,:,:)) - eye(6)))); end rga_m1 = zeros(1,size(G_hac_m1_Wz0,1)); for i = 1:length(rga_m1) rga_m1(i) = sum(sum(abs(inv(squeeze(G_hac_m1_Wz0(i,:,:)).').*squeeze(G_hac_m1_Wz0(i,:,:)) - eye(6)))); end rga_m2 = zeros(1,size(G_hac_m2_Wz0,1)); for i = 1:length(rga_m2) rga_m2(i) = sum(sum(abs(inv(squeeze(G_hac_m2_Wz0(i,:,:)).').*squeeze(G_hac_m2_Wz0(i,:,:)) - eye(6)))); end rga_m3 = zeros(1,size(G_hac_m3_Wz0,1)); for i = 1:length(rga_m3) rga_m3(i) = sum(sum(abs(inv(squeeze(G_hac_m3_Wz0(i,:,:)).').*squeeze(G_hac_m3_Wz0(i,:,:)) - eye(6)))); end %% RGA-number for the damped plants - Comparison of all the payload conditions figure; hold on; plot(f, rga_m0, 'DisplayName', '$m = 0$ kg') plot(f, rga_m1, 'DisplayName', '$m = 13$ kg') plot(f, rga_m2, 'DisplayName', '$m = 26$ kg') plot(f, rga_m3, 'DisplayName', '$m = 39$ kg') hold off; xlabel('Frequency [Hz]'); ylabel('RGA number'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlim([1, 1e2]); ylim([0, 10]); leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 2); leg.ItemTokenSize(1) = 15; %% HAC Design % Wanted crossover wc = 2*pi*5; % [rad/s] % Integrator H_int = wc/s; % Lead to increase phase margin a = 2; % Amount of phase lead / width of the phase lead / high frequency gain H_lead = 1/sqrt(a)*(1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a))); % Low Pass filter to increase robustness H_lpf = 1/(1 + s/2/pi/30); % Gain to have unitary crossover at 5Hz [~, i_f] = min(abs(f - wc/2/pi)); H_gain = 1./abs(G_hac_m0_Wz0(i_f, 1, 1)); % Decentralized HAC Khac = H_gain * ... % Gain H_int * ... % Integrator H_lpf * ... % Low Pass filter eye(6); % 6x6 Diagonal % The designed HAC controller is saved save('./mat/test_id31_K_hac_robust.mat', 'Khac'); %% Decentralized Loop gain for the High Authority Controller figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f(2:end), abs(G_hac_m0_Wz0(:,1, 1).*squeeze(freqresp(Khac(1,1), f(2:end), 'Hz'))), 'color', colors(1,:), 'DisplayName', '$0$ kg'); plot(f(2:end), abs(G_hac_m1_Wz0(:,1, 1).*squeeze(freqresp(Khac(1,1), f(2:end), 'Hz'))), 'color', colors(2,:), 'DisplayName', '$13$ kg'); plot(f(2:end), abs(G_hac_m2_Wz0(:,1, 1).*squeeze(freqresp(Khac(1,1), f(2:end), 'Hz'))), 'color', colors(3,:), 'DisplayName', '$26$ kg'); plot(f(2:end), abs(G_hac_m3_Wz0(:,1, 1).*squeeze(freqresp(Khac(1,1), f(2:end), 'Hz'))), 'color', colors(4,:), 'DisplayName', '$39$ kg'); xline(5, '--', 'linewidth', 1, 'color', [0,0,0,0.2], 'HandleVisibility', 'off') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Loop Gain'); set(gca, 'XTickLabel',[]); ylim([1e-5, 1e2]); leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; plot(f(2:end), 180/pi*angle(G_hac_m0_Wz0(:,1, 1).*squeeze(freqresp(Khac(1,1), f(2:end), 'Hz'))), 'color', colors(1,:)); plot(f(2:end), 180/pi*angle(G_hac_m1_Wz0(:,1, 1).*squeeze(freqresp(Khac(1,1), f(2:end), 'Hz'))), 'color', colors(2,:)); plot(f(2:end), 180/pi*angle(G_hac_m2_Wz0(:,1, 1).*squeeze(freqresp(Khac(1,1), f(2:end), 'Hz'))), 'color', colors(3,:)); plot(f(2:end), 180/pi*angle(G_hac_m3_Wz0(:,1, 1).*squeeze(freqresp(Khac(1,1), f(2:end), 'Hz'))), 'color', colors(4,:)); xline(5, '--', 'linewidth', 1, 'color', [0,0,0,0.2]) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]) linkaxes([ax1,ax2],'x'); xlim([1, 1e3]); %% Compute the Eigenvalues of the loop gain Ldet = zeros(4, 6, length(f)); % Loop gain Lmimo = pagemtimes(permute(G_hac_m0_Wz0, [2,3,1]),squeeze(freqresp(Khac, f, 'Hz'))); for i_f = 2:length(f) Ldet(1,:, i_f) = eig(squeeze(Lmimo(:,:,i_f))); end Lmimo = pagemtimes(permute(G_hac_m1_Wz0, [2,3,1]),squeeze(freqresp(Khac, f, 'Hz'))); for i_f = 2:length(f) Ldet(2,:, i_f) = eig(squeeze(Lmimo(:,:,i_f))); end Lmimo = pagemtimes(permute(G_hac_m2_Wz0, [2,3,1]),squeeze(freqresp(Khac, f, 'Hz'))); for i_f = 2:length(f) Ldet(3,:, i_f) = eig(squeeze(Lmimo(:,:,i_f))); end Lmimo = pagemtimes(permute(G_hac_m3_Wz0, [2,3,1]),squeeze(freqresp(Khac, f, 'Hz'))); for i_f = 2:length(f) Ldet(4,:, i_f) = eig(squeeze(Lmimo(:,:,i_f))); end %% Plot of the eigenvalues of L in the complex plane figure; hold on; plot(real(squeeze(Ldet(1, 1,:))), imag(squeeze(Ldet(1, 1,:))), ... '.', 'color', colors(1, :), ... 'DisplayName', '$m = 0$ kg'); plot(real(squeeze(Ldet(2, 1,:))), imag(squeeze(Ldet(2, 1,:))), ... '.', 'color', colors(2, :), ... 'DisplayName', '$m = 13$ kg'); plot(real(squeeze(Ldet(3, 1,:))), imag(squeeze(Ldet(3, 1,:))), ... '.', 'color', colors(3, :), ... 'DisplayName', '$m = 26$ kg'); plot(real(squeeze(Ldet(4, 1,:))), imag(squeeze(Ldet(4, 1,:))), ... '.', 'color', colors(4, :), ... 'DisplayName', '$m = 39$ kg'); for i_mass = 1:4 plot(real(squeeze(Ldet(i_mass, 1,:))), -imag(squeeze(Ldet(i_mass, 1,:))), ... '.', 'color', colors(i_mass, :), ... 'HandleVisibility', 'off'); for i = 1:6 plot(real(squeeze(Ldet(i_mass, i,:))), imag(squeeze(Ldet(i_mass, i,:))), ... '.', 'color', colors(i_mass, :), ... 'HandleVisibility', 'off'); plot(real(squeeze(Ldet(i_mass, i,:))), -imag(squeeze(Ldet(i_mass, i,:))), ... '.', 'color', colors(i_mass, :), ... 'HandleVisibility', 'off'); end end plot(-1, 0, 'kx', 'HandleVisibility', 'off'); hold off; set(gca, 'XScale', 'lin'); set(gca, 'YScale', 'lin'); xlabel('Real'); ylabel('Imag'); leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2); leg.ItemTokenSize(1) = 15; axis square xlim([-1.5, 0.5]); ylim([-1, 1]); %% Tomography experiment % Sample is not centered with the rotation axis % This is done by offsetfing the micro-hexapod by 0.9um P_micro_hexapod = [2.5e-6; 0; -0.3e-6]; % [m] open(mdl); set_param(mdl, 'StopTime', '3'); % 6 turns at 180deg/s (30rpm) initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod('AP', P_micro_hexapod); initializeNanoHexapod('flex_bot_type', '2dof', ... 'flex_top_type', '3dof', ... 'motion_sensor_type', 'plates', ... 'actuator_type', '2dof'); initializeSample('type', '0'); initializeSimscapeConfiguration('gravity', false); initializeLoggingConfiguration('log', 'all', 'Ts', 1e-4); initializeController('type', 'open-loop'); initializeDisturbances(... 'Dw_x', true, ... % Ground Motion - X direction 'Dw_y', true, ... % Ground Motion - Y direction 'Dw_z', true, ... % Ground Motion - Z direction 'Fdy_x', false, ... % Translation Stage - X direction 'Fdy_z', false, ... % Translation Stage - Z direction 'Frz_x', true, ... % Spindle - X direction 'Frz_y', true, ... % Spindle - Y direction 'Frz_z', true); % Spindle - Z direction initializeReferences(... 'Rz_type', 'rotating', ... 'Rz_period', 360/180, ... % 180deg/s, 30rpm 'Dh_pos', [P_micro_hexapod; 0; 0; 0]); % Open-Loop Simulation sim(mdl); exp_tomo_ol_m0_Wz180 = simout; % Closed-Loop Simulation load('test_id31_K_iff.mat', 'Kiff'); load('test_id31_K_hac_robust.mat', 'Khac'); initializeController('type', 'hac-iff'); initializeSample('type', '0'); sim(mdl); exp_tomo_cl_m0_Wz180 = simout; % Save the simulation results save('./mat/test_id31_exp_tomo_ol_cl_30rpm_sim.mat', 'exp_tomo_ol_m0_Wz180', 'exp_tomo_cl_m0_Wz180'); %% Simulation of tomography experiment - no payload, 30rpm - XY errors figure; hold on; plot(1e6*exp_tomo_ol_m0_Wz180.y.x.Data, 1e6*exp_tomo_ol_m0_Wz180.y.y.Data, 'DisplayName', 'OL') plot(1e6*exp_tomo_cl_m0_Wz180.y.x.Data(1:2e3), 1e6*exp_tomo_cl_m0_Wz180.y.y.Data(1:2e3), 'color', colors(3,:), 'HandleVisibility', 'off') plot(1e6*exp_tomo_cl_m0_Wz180.y.x.Data(2e3:end), 1e6*exp_tomo_cl_m0_Wz180.y.y.Data(2e3:end), 'color', colors(2,:), 'DisplayName', 'CL') hold off; xlabel('$D_x$ [$\mu$m]'); ylabel('$D_y$ [$\mu$m]'); axis equal xlim([-3, 3]); ylim([-3, 3]); xticks([-3:1:3]); yticks([-3:1:3]); leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; %% Simulation of tomography experiment - no payload, 30rpm - YZ errors figure; tiledlayout(2, 1, 'TileSpacing', 'compact', 'Padding', 'None'); ax1 = nexttile(); hold on; plot(1e6*exp_tomo_ol_m0_Wz180.y.y.Data, 1e6*exp_tomo_ol_m0_Wz180.y.z.Data, 'DisplayName', 'OL') plot(1e6*exp_tomo_cl_m0_Wz180.y.y.Data(1:2e3), 1e6*exp_tomo_cl_m0_Wz180.y.z.Data(1:2e3), 'color', colors(3,:), 'HandleVisibility', 'off') plot(1e6*exp_tomo_cl_m0_Wz180.y.y.Data(2e3:end), 1e6*exp_tomo_cl_m0_Wz180.y.z.Data(2e3:end), 'color', colors(2,:), 'DisplayName', 'CL') hold off; xlabel('$D_y$ [$\mu$m]'); ylabel('$D_z$ [$\mu$m]'); axis equal xlim([-3, 3]); ylim([-0.6, 0.6]); xticks([-3:1:3]); yticks([-3:0.3:3]); leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile(); hold on; plot(1e9*exp_tomo_cl_m0_Wz180.y.y.Data(2e3:end), 1e9*exp_tomo_cl_m0_Wz180.y.z.Data(2e3:end), 'color', colors(2,:), 'DisplayName', 'CL') theta = linspace(0, 2*pi, 500); % Angle to plot the circle [rad] plot(100*cos(theta), 50*sin(theta), 'k--', 'DisplayName', 'Beam size') hold off; xlabel('$D_y$ [nm]'); ylabel('$D_z$ [nm]'); axis equal xlim([-300, 300]); ylim([-100, 100]); % xticks([-3:1:3]); % yticks([-3:1:3]); leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; %% Simulation of tomography experiments at 1RPM with all payloads % Configuration open(mdl); set_param(mdl, 'StopTime', '2'); % 30 degrees at 1rpm initializeLoggingConfiguration('log', 'all', 'Ts', 1e-3); initializeController('type', 'hac-iff'); initializeReferences(... 'Rz_type', 'rotating', ... 'Rz_period', 360/6, ... % 6deg/s, 1 rpm 'Dh_pos', [P_micro_hexapod; 0; 0; 0]); % Perform the simulations initializeSample('type', '0'); sim(mdl); exp_tomo_cl_m0_1rpm = simout; initializeSample('type', '1'); sim(mdl); exp_tomo_cl_m1_1rpm = simout; initializeSample('type', '2'); sim(mdl); exp_tomo_cl_m2_1rpm = simout; initializeSample('type', '3'); sim(mdl); exp_tomo_cl_m3_1rpm = simout; % Save the simulation results save('./mat/test_id31_exp_tomo_cl_1rpm_sim.mat', 'exp_tomo_cl_m0_1rpm', 'exp_tomo_cl_m1_1rpm', 'exp_tomo_cl_m2_1rpm', 'exp_tomo_cl_m3_1rpm'); %% Positioning errors in the Y-Z plane during tomography experiments simulated using the multi-body model figure; tiledlayout(2, 2, 'TileSpacing', 'compact', 'Padding', 'None'); ax1 = nexttile; hold on; plot(1e9*exp_tomo_cl_m0_1rpm.y.y.Data(1e3:end), 1e9*exp_tomo_cl_m0_1rpm.y.z.Data(1e3:end), 'color', colors(1,:), 'DisplayName', '$m = 0$ kg') theta = linspace(0, 2*pi, 500); % Angle to plot the circle [rad] plot(100*cos(theta), 50*sin(theta), 'k--', 'DisplayName', 'Beam size') axis equal xticks([-400:100:400]); yticks([-100:100:100]); xlabel('$D_y$ [nm]'); ylabel('$D_z$ [nm]'); leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; plot(1e9*exp_tomo_cl_m1_1rpm.y.y.Data(1e3:end), 1e9*exp_tomo_cl_m1_1rpm.y.z.Data(1e3:end), 'color', colors(2,:), 'DisplayName', '$m = 13$ kg') theta = linspace(0, 2*pi, 500); % Angle to plot the circle [rad] plot(100*cos(theta), 50*sin(theta), 'k--', 'HandleVisibility', 'off') axis equal xticks([-400:100:400]); yticks([-100:100:100]); xlabel('$D_y$ [nm]'); ylabel('$D_z$ [nm]'); leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax3 = nexttile; hold on; plot(1e9*exp_tomo_cl_m2_1rpm.y.y.Data(1e3:end), 1e9*exp_tomo_cl_m2_1rpm.y.z.Data(1e3:end), 'color', colors(3,:), 'DisplayName', '$m = 26$ kg') theta = linspace(0, 2*pi, 500); % Angle to plot the circle [rad] plot(100*cos(theta), 50*sin(theta), 'k--', 'HandleVisibility', 'off') axis equal xticks([-400:100:400]); yticks([-100:100:100]); xlabel('$D_y$ [nm]'); ylabel('$D_z$ [nm]'); leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax4 = nexttile; hold on; plot(1e9*exp_tomo_cl_m3_1rpm.y.y.Data(1e3:end), 1e9*exp_tomo_cl_m3_1rpm.y.z.Data(1e3:end), 'color', colors(4,:), 'DisplayName', '$m = 39$ kg') theta = linspace(0, 2*pi, 500); % Angle to plot the circle [rad] plot(100*cos(theta), 50*sin(theta), 'k--', 'HandleVisibility', 'off') axis equal xticks([-400:100:400]); yticks([-100:100:100]); xlabel('$D_y$ [nm]'); ylabel('$D_z$ [nm]'); leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; linkaxes([ax1,ax2,ax3, ax4],'xy'); xlim([-450, 450]); ylim([-100, 100]);