function [nano_hexapod] = initializeNanoHexapod(args) arguments %% Bottom Flexible Joints args.flex_bot_type char {mustBeMember(args.flex_bot_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof' args.flex_bot_kRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad] args.flex_bot_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad] args.flex_bot_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad] args.flex_bot_kz (6,1) double {mustBeNumeric} = ones(6,1)*7e7 % Axial Stiffness [N/m] args.flex_bot_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % X bending Damping [Nm/(rad/s)] args.flex_bot_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Y bending Damping [Nm/(rad/s)] args.flex_bot_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Torsionnal Damping [Nm/(rad/s)] args.flex_bot_cz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Axial Damping [N/(m/s)] %% Top Flexible Joints args.flex_top_type char {mustBeMember(args.flex_top_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof' args.flex_top_kRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad] args.flex_top_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad] args.flex_top_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad] args.flex_top_kz (6,1) double {mustBeNumeric} = ones(6,1)*7e7 % Axial Stiffness [N/m] args.flex_top_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % X bending Damping [Nm/(rad/s)] args.flex_top_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Y bending Damping [Nm/(rad/s)] args.flex_top_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Torsionnal Damping [Nm/(rad/s)] args.flex_top_cz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Axial Damping [N/(m/s)] %% Jacobian - Location of frame {A} and {B} args.MO_B (1,1) double {mustBeNumeric} = 150e-3 % Height of {B} w.r.t. {M} [m] %% Relative Motion Sensor args.motion_sensor_type char {mustBeMember(args.motion_sensor_type,{'struts', 'plates'})} = 'struts' %% Top Plate args.top_plate_type char {mustBeMember(args.top_plate_type,{'rigid', 'flexible'})} = 'rigid' args.top_plate_xi (1,1) double {mustBeNumeric} = 0.01 % Damping Ratio %% Actuators args.actuator_type char {mustBeMember(args.actuator_type,{'2dof', 'flexible frame', 'flexible'})} = 'flexible' args.actuator_Ga (6,1) double {mustBeNumeric} = zeros(6,1) % Actuator gain [N/V] args.actuator_Gs (6,1) double {mustBeNumeric} = zeros(6,1) % Sensor gain [V/m] % For 2DoF args.actuator_k (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*380000 args.actuator_ke (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*4952605 args.actuator_ka (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*2476302 args.actuator_c (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*5 args.actuator_ce (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*100 args.actuator_ca (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*50 args.actuator_Leq (6,1) double {mustBeNumeric} = ones(6,1)*0.056 % [m] % For Flexible Frame args.actuator_ks (6,1) double {mustBeNumeric} = ones(6,1)*235e6 % Stiffness of one stack [N/m] args.actuator_cs (6,1) double {mustBeNumeric} = ones(6,1)*1e1 % Stiffness of one stack [N/m] % Misalignment args.actuator_d_align (6,3) double {mustBeNumeric} = zeros(6,3) % [m] args.actuator_xi (1,1) double {mustBeNumeric} = 0.01 % Damping Ratio %% Controller args.controller_type char {mustBeMember(args.controller_type,{'none', 'iff', 'dvf', 'hac-iff-struts'})} = 'none' end nano_hexapod = struct(); nano_hexapod.flex_bot = struct(); switch args.flex_bot_type case '2dof' nano_hexapod.flex_bot.type = 1; case '3dof' nano_hexapod.flex_bot.type = 2; case '4dof' nano_hexapod.flex_bot.type = 3; case 'flexible' nano_hexapod.flex_bot.type = 4; end nano_hexapod.flex_bot.kRx = args.flex_bot_kRx; % X bending stiffness [Nm/rad] nano_hexapod.flex_bot.kRy = args.flex_bot_kRy; % Y bending stiffness [Nm/rad] nano_hexapod.flex_bot.kRz = args.flex_bot_kRz; % Torsionnal stiffness [Nm/rad] nano_hexapod.flex_bot.kz = args.flex_bot_kz; % Axial stiffness [N/m] nano_hexapod.flex_bot.cRx = args.flex_bot_cRx; % [Nm/(rad/s)] nano_hexapod.flex_bot.cRy = args.flex_bot_cRy; % [Nm/(rad/s)] nano_hexapod.flex_bot.cRz = args.flex_bot_cRz; % [Nm/(rad/s)] nano_hexapod.flex_bot.cz = args.flex_bot_cz; %[N/(m/s)] nano_hexapod.flex_top = struct(); switch args.flex_top_type case '2dof' nano_hexapod.flex_top.type = 1; case '3dof' nano_hexapod.flex_top.type = 2; case '4dof' nano_hexapod.flex_top.type = 3; case 'flexible' nano_hexapod.flex_top.type = 4; end nano_hexapod.flex_top.kRx = args.flex_top_kRx; % X bending stiffness [Nm/rad] nano_hexapod.flex_top.kRy = args.flex_top_kRy; % Y bending stiffness [Nm/rad] nano_hexapod.flex_top.kRz = args.flex_top_kRz; % Torsionnal stiffness [Nm/rad] nano_hexapod.flex_top.kz = args.flex_top_kz; % Axial stiffness [N/m] nano_hexapod.flex_top.cRx = args.flex_top_cRx; % [Nm/(rad/s)] nano_hexapod.flex_top.cRy = args.flex_top_cRy; % [Nm/(rad/s)] nano_hexapod.flex_top.cRz = args.flex_top_cRz; % [Nm/(rad/s)] nano_hexapod.flex_top.cz = args.flex_top_cz; %[N/(m/s)] nano_hexapod.motion_sensor = struct(); switch args.motion_sensor_type case 'struts' nano_hexapod.motion_sensor.type = 1; case 'plates' nano_hexapod.motion_sensor.type = 2; end nano_hexapod.actuator = struct(); switch args.actuator_type case '2dof' nano_hexapod.actuator.type = 1; case 'flexible frame' nano_hexapod.actuator.type = 2; case 'flexible' nano_hexapod.actuator.type = 3; end %% Actuator gain [N/V] if all(args.actuator_Ga == 0) switch args.actuator_type case '2dof' nano_hexapod.actuator.Ga = ones(6,1)*(-2.5796); case 'flexible frame' nano_hexapod.actuator.Ga = ones(6,1); % TODO case 'flexible' nano_hexapod.actuator.Ga = ones(6,1)*23.2; end else nano_hexapod.actuator.Ga = args.actuator_Ga; % Actuator gain [N/V] end %% Sensor gain [V/m] if all(args.actuator_Gs == 0) switch args.actuator_type case '2dof' nano_hexapod.actuator.Gs = ones(6,1)*466664; case 'flexible frame' nano_hexapod.actuator.Gs = ones(6,1); % TODO case 'flexible' nano_hexapod.actuator.Gs = ones(6,1)*(-4898341); end else nano_hexapod.actuator.Gs = args.actuator_Gs; % Sensor gain [V/m] end switch args.actuator_type case '2dof' nano_hexapod.actuator.k = args.actuator_k; % [N/m] nano_hexapod.actuator.ke = args.actuator_ke; % [N/m] nano_hexapod.actuator.ka = args.actuator_ka; % [N/m] nano_hexapod.actuator.c = args.actuator_c; % [N/(m/s)] nano_hexapod.actuator.ce = args.actuator_ce; % [N/(m/s)] nano_hexapod.actuator.ca = args.actuator_ca; % [N/(m/s)] nano_hexapod.actuator.Leq = args.actuator_Leq; % [m] case 'flexible frame' nano_hexapod.actuator.K = readmatrix('APA300ML_b_mat_K.CSV'); % Stiffness Matrix nano_hexapod.actuator.M = readmatrix('APA300ML_b_mat_M.CSV'); % Mass Matrix nano_hexapod.actuator.P = extractNodes('APA300ML_b_out_nodes_3D.txt'); % Node coordinates [m] nano_hexapod.actuator.ks = args.actuator_ks; % Stiffness of one stack [N/m] nano_hexapod.actuator.cs = args.actuator_cs; % Damping of one stack [N/m] nano_hexapod.actuator.xi = args.actuator_xi; % Damping ratio case 'flexible' nano_hexapod.actuator.K = readmatrix('full_APA300ML_K.CSV'); % Stiffness Matrix nano_hexapod.actuator.M = readmatrix('full_APA300ML_M.CSV'); % Mass Matrix nano_hexapod.actuator.P = extractNodes('full_APA300ML_out_nodes_3D.txt'); % Node coordiantes [m] nano_hexapod.actuator.d_align = args.actuator_d_align; % Misalignment nano_hexapod.actuator.xi = args.actuator_xi; % Damping ratio end nano_hexapod.geometry = struct(); Fa = [[-86.05, -74.78, 22.49], [ 86.05, -74.78, 22.49], [ 107.79, -37.13, 22.49], [ 21.74, 111.91, 22.49], [-21.74, 111.91, 22.49], [-107.79, -37.13, 22.49]]'*1e-3; % Ai w.r.t. {F} [m] Mb = [[-28.47, -106.25, -22.50], [ 28.47, -106.25, -22.50], [ 106.25, 28.47, -22.50], [ 77.78, 77.78, -22.50], [-77.78, 77.78, -22.50], [-106.25, 28.47, -22.50]]'*1e-3; % Bi w.r.t. {M} [m] Fb = Mb + [0; 0; 95e-3]; % Bi w.r.t. {F} [m] si = Fb - Fa; si = si./vecnorm(si); % Normalize Fc = [[-29.362, -105.765, 52.605] [ 29.362, -105.765, 52.605] [ 106.276, 27.454, 52.605] [ 76.914, 78.31, 52.605] [-76.914, 78.31, 52.605] [-106.276, 27.454, 52.605]]'*1e-3; % Meas pos w.r.t. {F} Mc = Fc - [0; 0; 95e-3]; % Meas pos w.r.t. {M} nano_hexapod.geometry.Fa = Fa; nano_hexapod.geometry.Fb = Fb; nano_hexapod.geometry.Fc = Fc; nano_hexapod.geometry.Mb = Mb; nano_hexapod.geometry.Mc = Mc; nano_hexapod.geometry.si = si; nano_hexapod.geometry.MO_B = args.MO_B; Bb = Mb - [0; 0; args.MO_B]; nano_hexapod.geometry.J = [nano_hexapod.geometry.si', cross(Bb, nano_hexapod.geometry.si)']; switch args.motion_sensor_type case 'struts' nano_hexapod.geometry.Js = nano_hexapod.geometry.J; case 'plates' Bc = Mc - [0; 0; args.MO_B]; nano_hexapod.geometry.Js = [nano_hexapod.geometry.si', cross(Bc, nano_hexapod.geometry.si)']; end nano_hexapod.top_plate = struct(); switch args.top_plate_type case 'rigid' nano_hexapod.top_plate.type = 1; case 'flexible' nano_hexapod.top_plate.type = 2; nano_hexapod.top_plate.R_flex = ... {[ 0.53191886726305 0.4795690716524 0.69790817745892 -0.29070157897799 0.8775041341865 -0.38141720787774 -0.79533320729697 0 0.60617249143351 ], [ 0.53191886726305 -0.4795690716524 -0.69790817745892 0.29070157897799 0.8775041341865 -0.38141720787774 0.79533320729697 0 0.60617249143351 ], [-0.01420448131633 -0.9997254079576 -0.01863709726680 0.60600604129104 -0.0234330681729 0.79511481512719 -0.79533320729697 0 0.60617249143351 ], [-0.51771438594672 -0.5201563363051 0.67927108019212 0.31530446231304 -0.8540710660135 -0.41369760724945 0.79533320729697 0 0.60617249143351 ], [-0.51771438594671 0.5201563363052 -0.67927108019211 -0.31530446231304 -0.8540710660135 -0.41369760724945 -0.79533320729697 0 0.60617249143351 ], [-0.01420448131632 0.9997254079576 0.01863709726679 -0.60600604129104 -0.0234330681729 0.79511481512719 0.79533320729697 0 0.60617249143351 ] }; nano_hexapod.top_plate.R_enc = ... { [-0.877504134186525 -0.479569071652412 0 0.479569071652412 -0.877504134186525 0 0 0 1 ], [ 0.877504134186525 -0.479569071652413 0 0.479569071652413 0.877504134186525 0 0 0 1 ], [ 0.023433068172945 0.999725407957606 0 -0.999725407957606 0.023433068172945 0 0 0 1 ], [-0.854071066013566 -0.520156336305202 0 0.520156336305202 -0.854071066013566 0 0 0 1 ], [ 0.854071066013574 -0.520156336305191 0 0.520156336305191 0.854071066013574 0 0 0 1 ], [-0.023433068172958 0.999725407957606 0 -0.999725407957606 -0.023433068172958 0 0 0 1 ] }; nano_hexapod.top_plate.K = readmatrix('top_plate_K_6.CSV'); % Stiffness Matrix nano_hexapod.top_plate.M = readmatrix('top_plate_M_6.CSV'); % Mass Matrix nano_hexapod.top_plate.P = extractNodes('top_plate_out_nodes_3D_qua.txt'); % Node coordiantes [m] nano_hexapod.top_plate.xi = args.top_plate_xi; % Damping ratio end if exist('./mat', 'dir') if exist('./mat/nass_model_stages.mat', 'file') save('mat/nass_model_stages.mat', 'nano_hexapod', '-append'); else save('mat/nass_model_stages.mat', 'nano_hexapod'); end elseif exist('./matlab', 'dir') if exist('./matlab/mat/nass_model_stages.mat', 'file') save('matlab/mat/nass_model_stages.mat', 'nano_hexapod', '-append'); else save('matlab/mat/nass_model_stages.mat', 'nano_hexapod'); end end end