# Nano-Hexapod on the micro-station

Dehaeze Thomas

March 19, 2024

# Contents

| 1 | Sho   | rt Stroke Metrology System 3                                                                     |
|---|-------|--------------------------------------------------------------------------------------------------|
|   | 1.1   | Kinematics                                                                                       |
|   | 1.2   | Rough alignment of spheres using comparators                                                     |
|   | 1.3   | Alignment of spheres using interferometers6                                                      |
|   |       | 1.3.1 Angular alignment                                                                          |
|   |       | 1.3.2 Eccentricity alignment                                                                     |
|   | 1.4   | Residual error after alignment                                                                   |
|   | 1.5   | Metrology acceptance                                                                             |
| 2 | Sim   | scape Model 10                                                                                   |
|   | 2.1   | Init model                                                                                       |
|   | 2.2   | Identify Transfer functions                                                                      |
|   | 2.3   | IFF Plant                                                                                        |
|   | 2.4   | Encoder plant                                                                                    |
|   | 2.5   | HAC Undamped plant                                                                               |
|   |       |                                                                                                  |
| 3 | Iden  | tified Open Loop Plant 13                                                                        |
|   | 3.1   | IFF Plant                                                                                        |
|   | 3.2   | Encoder plant                                                                                    |
|   | 3.3   | HAC Undamped plant 18                                                                            |
|   | 3.4   | Decoupling improvement thanks to better Rz alignment                                             |
|   |       | 3.4.1 Alignment procedure                                                                        |
|   |       | 3.4.2 m0                                                                                         |
|   |       | 3.4.3 m3                                                                                         |
|   | 3.5   | Conclusion                                                                                       |
| л | Naia  | a Budgat                                                                                         |
| 4 | 11015 | Open Leen Noise Pudget 24                                                                        |
|   | 4.1   | Effect of LAC 24                                                                                 |
|   | 4.2   | Effect of rotation                                                                               |
|   | 4.0   | Effect of UAC                                                                                    |
|   | 4.4   | Lifect of HAU                                                                                    |
|   | 4.0   | Noise coming from force sensor                                                                   |
| 5 | Inte  | gral Force Feedback 28                                                                           |
|   | 5.1   | IFF Plants                                                                                       |
|   |       | 5.1.1 6x6 Plant                                                                                  |
|   |       | 5.1.2 Effect of Rotation                                                                         |
|   |       | 5.1.3 Effect of Mass                                                                             |
|   |       | 5.1.4 Compare with the model $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 31$ |
|   | 5.2   | IFF Controller                                                                                   |
|   |       | 5.2.1 Controller Design                                                                          |
|   |       | 5.2.2 Verify Stability                                                                           |
|   |       | 5.2.3 Save Controller                                                                            |
|   | 5.3   | Estimated Damped Plant                                                                           |

| 6      | Hig                                                                                                                                                        | h Authority Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | 6.1                                                                                                                                                        | Identify Spurious modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | 6.2                                                                                                                                                        | HAC Plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                                                                                                            | 6.2.1 6x6 Plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                                                                                                            | 6.2.2 Effect of Mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                                                                                                            | 6.2.3 Compare with the model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                                                                                                                            | 6.2.4 Comparison with Undermod plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 00<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | 6.2                                                                                                                                                        | Debugt UAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 00<br>96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | 0.0                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                                                                                                            | 6.3.1 Controller design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                                                                                                            | 6.3.2 Verify Stability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                                                                                                            | 6.3.3 Estimated performances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                                                                                                            | 6.3.4 Save Controller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | 6.4                                                                                                                                                        | High Performance HAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                                                                                                            | 6.4.1 Mass 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                                                                                                            | 6.4.2 Mass 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | 6.5                                                                                                                                                        | Tomography - Performances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | 0.0                                                                                                                                                        | 6.5.1 First scan with closed-loop at middle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                                                                                                                            | 6.5.2 Slow Rotation - 6RPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                                                                                                            | 6.5.2 David Dotation 20DDM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7      | 6Dc                                                                                                                                                        | E Control in Cartesian plane (rotating with the nano-beyanod)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | 7 1                                                                                                                                                        | 5v5 plant in Cartesian plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43<br>/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | 7.0                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | 1.2                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | (.3                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | 7.4                                                                                                                                                        | Save controllers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | 7.5                                                                                                                                                        | Performances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8      | 300                                                                                                                                                        | oF Control in Cartesian plane (fixed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | лл                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8      | <b>3D</b> c                                                                                                                                                | oF Control in Cartesian plane (fixed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>44</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8      | <b>3D</b> c<br>8.1                                                                                                                                         | <b>DF Control in Cartesian plane (fixed)</b><br>3x3 plant in Cartesian plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>44</b><br>. 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8      | <b>3Dc</b><br>8.1<br>8.2                                                                                                                                   | <b>DF Control in Cartesian plane (fixed)</b><br>3x3 plant in Cartesian plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>44</b><br>44<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8      | <b>3Do</b><br>8.1<br>8.2                                                                                                                                   | <b>oF Control in Cartesian plane (fixed)</b> 3x3 plant in Cartesian plane         Controller Design         8.2.1       Dy         Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>44</b><br>44<br>47<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8      | <b>3Dc</b><br>8.1<br>8.2                                                                                                                                   | <b>bF Control in Cartesian plane (fixed)</b> 3x3 plant in Cartesian plane         Controller Design         8.2.1       Dy         8.2.2       Dz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>44</b><br>44<br>47<br>47<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8      | <b>3Dc</b><br>8.1<br>8.2                                                                                                                                   | <b>DF Control in Cartesian plane (fixed)</b> 3x3 plant in Cartesian plane         Controller Design         8.2.1 Dy         8.2.2 Dz         8.2.3 Ry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>44</b><br>44<br>47<br>47<br>47<br>47<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8      | <b>3Do</b><br>8.1<br>8.2                                                                                                                                   | <b>bF Control in Cartesian plane (fixed)</b> 3x3 plant in Cartesian plane         Controller Design         8.2.1 Dy         8.2.2 Dz         8.2.3 Ry         8.2.4 3x3 controller                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>44</b><br>447<br>477<br>477<br>477<br>477<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8      | <b>3Dc</b><br>8.1<br>8.2                                                                                                                                   | <b>DF Control in Cartesian plane (fixed)</b> 3x3 plant in Cartesian plane         Controller Design         8.2.1       Dy         8.2.2       Dz         8.2.3       Ry         8.2.4       3x3 controller         Check Stability                                                                                                                                                                                                                                                                                                                                                                                                                | <b>44</b><br>44<br>47<br>47<br>47<br>47<br>47<br>47<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8      | <b>3Dc</b><br>8.1<br>8.2<br>8.3<br>8.4                                                                                                                     | <b>DF Control in Cartesian plane (fixed)</b> 3x3 plant in Cartesian plane         Controller Design         8.2.1 Dy         8.2.2 Dz         8.2.3 Ry         8.2.4 3x3 controller         Check Stability         Save controllers                                                                                                                                                                                                                                                                                                                                                                                                               | <b>44</b><br>44<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8      | <b>3Dc</b><br>8.1<br>8.2<br>8.3<br>8.4                                                                                                                     | <b>bF</b> Control in Cartesian plane (fixed)         3x3 plant in Cartesian plane .         Controller Design .         8.2.1 Dy .         8.2.2 Dz .         8.2.3 Ry .         8.2.4 3x3 controller .         Check Stability .         Save controllers .         8.4.1 Save Controller .                                                                                                                                                                                                                                                                                                                                                       | <b>44</b><br>44<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8      | <b>3Dc</b><br>8.1<br>8.2<br>8.3<br>8.4<br>8.5                                                                                                              | <b>bF Control in Cartesian plane (fixed)</b> 3x3 plant in Cartesian plane .         Controller Design .         8.2.1 Dy .         8.2.2 Dz .         8.2.3 Ry .         8.2.4 3x3 controller .         Check Stability .         Save controllers .         8.4.1 Save Controller .         Controller Design (normalized) .                                                                                                                                                                                                                                                                                                                      | <b>44</b><br>44<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8      | <b>3Dc</b><br>8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6                                                                                                       | <b>bF Control in Cartesian plane (fixed)</b> 3x3 plant in Cartesian plane .         Controller Design .         8.2.1 Dy .         8.2.2 Dz .         8.2.3 Ry .         8.2.4 3x3 controller .         Check Stability .         Save controllers .         8.4.1 Save Controller .         Controller Design (normalized) .         Verify Stability .                                                                                                                                                                                                                                                                                           | <b>44</b><br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8      | <b>3Dc</b><br>8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7                                                                                                | <b>bF Control in Cartesian plane (fixed)</b> 3x3 plant in Cartesian plane .         Controller Design .         8.2.1 Dy .         8.2.2 Dz .         8.2.3 Ry .         8.2.4 3x3 controller .         Check Stability .         Save controllers .         8.4.1 Save Controller .         Controller Design (normalized)         Verify Stability .         Control Performances                                                                                                                                                                                                                                                                | <b>44</b><br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8      | <b>3Dc</b><br>8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7                                                                                                | <b>bF Control in Cartesian plane (fixed)</b> 3x3 plant in Cartesian plane .         Controller Design .         8.2.1 Dy .         8.2.2 Dz .         8.2.3 Ry .         8.2.4 3x3 controller .         Check Stability .         Save controllers .         8.4.1 Save Controller .         Controller Design (normalized) .         Verify Stability .         Control Performances .                                                                                                                                                                                                                                                            | <b>44</b><br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8      | <b>3D</b> c<br>8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br><b>Con</b>                                                                                 | <b>bF Control in Cartesian plane (fixed)</b> 3x3 plant in Cartesian plane .         Controller Design .         8.2.1 Dy .         8.2.2 Dz .         8.2.3 Ry .         8.2.4 3x3 controller .         Check Stability .         Save controllers .         8.4.1 Save Controller .         Controller Design (normalized) .         Verify Stability .         Control Performances .                                                                                                                                                                                                                                                            | <b>44</b><br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8      | <b>3D</b> c<br>8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br><b>Con</b><br>9.1                                                                          | <b>oF Control in Cartesian plane (fixed)</b> 3x3 plant in Cartesian plane .         Controller Design .         8.2.1 Dy .         8.2.2 Dz .         8.2.3 Ry .         8.2.4 3x3 controller .         Check Stability .         Save controllers .         8.4.1 Save Controller .         Controller Design (normalized) .         Verify Stability .         Control Performances .                                                                                                                                                                                                                                                            | <b>44</b><br>447<br>477<br>477<br>477<br>477<br>477<br>477<br>477<br>477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8      | <b>3D</b> c<br>8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br><b>Con</b><br>9.1                                                                          | <b>bF Control in Cartesian plane (fixed)</b> 3x3 plant in Cartesian plane .         Controller Design .         8.2.1 Dy .         8.2.2 Dz .         8.2.3 Ry .         8.2.4 3x3 controller .         Check Stability .         Save controllers .         8.4.1 Save Controller .         Controller Design (normalized) .         Verify Stability .         Control Performances . <b>nplementary Filter Control</b> m0 .         9.1.1 3x3 plant in Cartesian plane .                                                                                                                                                                        | <b>44</b><br>447<br>477<br>477<br>477<br>477<br>477<br>477<br>477<br>477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8<br>9 | <b>3D</b> c<br>8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br><b>Con</b><br>9.1                                                                          | <b>bF Control in Cartesian plane (fixed)</b> 3x3 plant in Cartesian plane .         Controller Design .         8.2.1 Dy .         8.2.2 Dz .         8.2.3 Ry .         8.2.4 3x3 controller .         Check Stability .         Save controllers .         8.4.1 Save Controller .         Controller Design (normalized) .         Verify Stability .         Control Performances . <b>nplementary Filter Control</b> .         m0 .         9.1.1 3x3 plant in Cartesian plane .         9.1.2 Plant Invert .                                                                                                                                 | <b>44</b><br>447<br>477<br>477<br>477<br>477<br>477<br>477<br>477<br>477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8<br>9 | <b>3D</b> c<br>8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br><b>Con</b><br>9.1                                                                          | <b>bF Control in Cartesian plane (fixed)</b> 3x3 plant in Cartesian plane .         Controller Design .         8.2.1 Dy .         8.2.2 Dz .         8.2.3 Ry .         8.2.4 3x3 controller .         Check Stability .         Save controllers .         8.4.1 Save Controller .         Control Performances . <b>nplementary Filter Control</b> m0 .         9.1.1 3x3 plant in Cartesian plane .         9.1.2 Plant Invert .         9.1.3 Save Plant Inverse .                                                                                                                                                                            | <b>44</b><br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8<br>9 | <b>3D</b> c<br>8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br><b>Con</b><br>9.1                                                                          | <b>bF Control in Cartesian plane (fixed)</b> 3x3 plant in Cartesian plane .         Controller Design .         8.2.1 Dy .         8.2.2 Dz .         8.2.3 Ry .         8.2.4 3x3 controller .         Check Stability .         Save controllers .         8.4.1 Save Controller .         Control Performances . <b>verify Stability .</b> Control Performances . <b>no</b> .         9.1.1 3x3 plant in Cartesian plane .         9.1.2 Plant Invert .         9.1.3 Save Plant Inverse .         9.1.4 Control Performances .                                                                                                                 | <b>44</b><br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9      | <b>3D</b> c<br>8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br><b>Con</b><br>9.1                                                                          | <b>bF Control in Cartesian plane (fixed)</b> 3x3 plant in Cartesian plane .         Controller Design .         8.2.1 Dy .         8.2.2 Dz .         8.2.3 Ry .         8.2.4 3x3 controller .         Check Stability .         Save controllers .         8.4.1 Save Controller .         Control Performances .         verify Stability .         Control Performances .         nplementary Filter Control         m0 .         9.1.1 3x3 plant in Cartesian plane .         9.1.2 Plant Invert .         9.1.3 Save Plant Inverse .         9.1.4 Control Performances .                                                                    | <b>44</b><br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9      | 3Dc<br>8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br>Con<br>9.1                                                                                         | <b>bF Control in Cartesian plane (fixed)</b> 3x3 plant in Cartesian plane .         Controller Design .         8.2.1 Dy .         8.2.2 Dz .         8.2.3 Ry .         8.2.4 3x3 controller .         Check Stability .         Save controllers .         8.4.1 Save Controller .         Control Performances . <b>nplementary Filter Control</b> m0 .         9.1.1 3x3 plant in Cartesian plane .         9.1.2 Plant Invert .         9.1.3 Save Plant Inverse .         9.1.4 Control Performances .         9.1.5 Better plant invert .         9.1.6 Control Performances .                                                              | 44         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         48         48         48         48         48         49         49         49         49           49          49          49          49          49          49< |
| 9      | <ul> <li><b>3Dc</b></li> <li>8.1</li> <li>8.2</li> <li>8.3</li> <li>8.4</li> <li>8.5</li> <li>8.6</li> <li>8.7</li> <li><b>Con</b></li> <li>9.1</li> </ul> | <b>bF Control in Cartesian plane (fixed)</b> 3x3 plant in Cartesian plane .         Controller Design .         8.2.1 Dy .         8.2.2 Dz .         8.2.3 Ry .         8.2.4 3x3 controller .         Check Stability .         Save controllers .         8.4.1 Save Controller .         Control Performances . <b>nplementary Filter Control</b> m0 .         9.1.1 3x3 plant in Cartesian plane .         9.1.2 Plant Invert .         9.1.3 Save Plant Inverse .         9.1.4 Control Performances .         9.1.5 Better plant invert .         9.1.6 Control Performances .                                                              | <b>44</b><br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9      | <b>3D</b> c<br>8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br><b>Con</b><br>9.1                                                                          | <b>bF Control in Cartesian plane (fixed)</b> 3x3 plant in Cartesian plane .         Controller Design .         8.2.1 Dy .         8.2.2 Dz .         8.2.3 Ry .         8.2.4 3x3 controller .         Check Stability .         Save controllers .         8.4.1 Save Controller .         Control Performances . <b>nplementary Filter Control</b> m0 .         9.1.1 3x3 plant in Cartesian plane .         9.1.2 Plant Invert .         9.1.3 Save Plant Inverse .         9.1.4 Control Performances .         9.1.5 Better plant invert .         9.1.6 Control Performances .                                                              | <b>44</b><br>447<br>477<br>477<br>477<br>477<br>477<br>477<br>477<br>477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9      | <b>3D</b> c<br>8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br><b>Con</b><br>9.1                                                                          | <b>b Control in Cartesian plane (fixed)</b> 3x3 plant in Cartesian plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         48         48         48         48         49         49         50         50           50          50          50          50          50          50< |
| 9      | <b>3D</b> c<br>8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br><b>Con</b><br>9.1                                                                          | <b>bF Control in Cartesian plane (fixed)</b> 3x3 plant in Cartesian plane         Controller Design         8.2.1 Dy         8.2.2 Dz         8.2.3 Ry         8.2.4 3x3 controller         Check Stability         Save controllers         8.4.1 Save Controller         Control Performances <b>nplementary Filter Control</b> m0         9.1.1 3x3 plant in Cartesian plane         9.1.2 Plant Invert         9.1.3 Save Plant Inverse         9.1.4 Control Performances         9.1.5 Better plant invert         9.1.6 Control Performances         9.1.7 Scans with good controller         m1         9.2.1 3x3 plant in Cartesian plane | 44         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         47         48         48         48         48         48         49         49         50         50         50         50           50          50          50            <              |

|         | 9.2.3 Control Performances                        | 50 |
|---------|---------------------------------------------------|----|
|         | 9.2.4 Scans with good controller                  | 51 |
| 9.3     | m2                                                | 51 |
|         | 9.3.1 3x3 plant in Cartesian plane                | 51 |
|         | 9.3.2 Better plant invert                         | 51 |
|         | 9.3.3 Control Performances                        | 51 |
|         | 9.3.4 Scans with good controller                  | 52 |
| 9.4     | m3                                                | 52 |
|         | 9.4.1 3x3 plant in Cartesian plane                | 52 |
|         | 9.4.2 Better plant invert                         | 52 |
|         | 9.4.3 Control Performances                        | 52 |
|         | 9.4.4 Scans with good controller                  | 53 |
| 10 Scar | ns                                                | 54 |
| 10.1    | $R_z$ scans: Tomography                           | 54 |
|         | 10.1.1 Robust Control - 1rpm                      | 54 |
|         | 10.1.2 Robust Control - 6rpm                      | 56 |
|         | 10.1.3 Robust Control - 30rpm                     | 56 |
| 10.2    | $D_z$ scans: Dirty Layer Scans                    | 56 |
|         | 10.2.1 Step by Step $D_z$ motion                  | 56 |
|         | 10.2.2 Continuous $D_z$ motion: Dirty Layer Scans | 56 |
| 10.3    | $R_y$ scans: Reflectivity                         | 59 |
| 10.4    | $D_y$ Scans                                       | 59 |
|         | 10.4.1 Open Loop                                  | 59 |
|         | 10.4.2 Closed Loop                                | 59 |
|         | 10.4.3 Faster Scan                                | 59 |
| 10.5    | Combined $R_z$ and $D_y$ : Diffraction Tomography | 32 |
| 10.6    | Summary of experiments                            | 33 |

# 1 Short Stroke Metrology System

The control of the nano-hexapod requires an external metrology system measuring the relative position of the nano-hexapod top platform with respect to the granite. As the long-stroke ( $\approx 1 \, cm^3$ ) metrology system is not developed yet, a stroke stroke (> 100  $\mu m^3$ ) can be used instead to validate the nano-hexapod control.

This short stroke metrology system consists of 5 interferometers pointing at 2 spheres fixed on top of the nano-hexapod (Figure 1.1).



Figure 1.1: Metrology system with LION spheres (1 inch diameter) and 5 interferometers fixed to their individual tip-tilts

This short stroke metrology system is fixed to the main granite using a gantry made of granite blocs to have good vibration and thermal stability (see Figure 1.2).

As the metrology system as limited stroke (estimated to be in the order of hundreds of micro-meters in x-y-z), it has to be well aligned in the rest position.

The alignment procedure is as follows:



Figure 1.2: Granite gantry used to fix the short-stroke metrology system

- 1. The granite is aligned to be perpendicular to gravity (using inclinometer and adjusting airlocks)
- 2. The height of micro-hexapod is tuned to be able to position the short stroke metrology without additional shim
- 3. It is verified that the spindle axis is well perpendicular to the granite using the laser tracker
- 4. The micro hexapod is then used to align the two spheres with the spindle axis.

# 1.1 Kinematics



Figure 1.3: Schematic of the measurement system

We have the following set of equations:

$$d_1 = +D_y - l_2 R_x (1.1)$$

- $d_2 = +D_y + l_1 R_x \tag{1.2}$
- $d_3 = -D_x l_2 R_y (1.3)$
- $d_4 = -D_x + l_1 R_y \tag{1.4}$
- $d_5 = -D_z \tag{1.5}$

That can be written as a linear transformation:

$$\begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \\ d_5 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & -l_2 & 0 \\ 0 & 1 & 0 & l_1 & 0 \\ -1 & 0 & 0 & 0 & -l_2 \\ -1 & 0 & 0 & 0 & l_1 \\ 0 & 0 & -1 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} D_x \\ D_y \\ D_z \\ R_x \\ R_y \end{bmatrix}$$
(1.6)

By inverting the matrix, we obtain the Jacobian relation:

$$\begin{bmatrix} D_x \\ D_y \\ D_z \\ R_x \\ R_y \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & -l_2 & 0 \\ 0 & 1 & 0 & l_1 & 0 \\ -1 & 0 & 0 & 0 & -l_2 \\ -1 & 0 & 0 & 0 & l_1 \\ 0 & 0 & -1 & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \\ d_5 \end{bmatrix}$$
(1.7)

| Table 1 | 1.1: | Jacobian | matrix | for | the | metrology | system |
|---------|------|----------|--------|-----|-----|-----------|--------|
|---------|------|----------|--------|-----|-----|-----------|--------|

|                        | d1     | d2    | d3     | d4    | d5   |
|------------------------|--------|-------|--------|-------|------|
| Dx                     | 0.0    | 0.0   | -0.79  | -0.21 | 0.0  |
| Dy                     | 0.79   | 0.21  | 0.0    | 0.0   | 0.0  |
| $\mathbf{D}\mathbf{z}$ | 0.0    | 0.0   | 0.0    | 0.0   | -1.0 |
| $\mathbf{R}\mathbf{x}$ | -13.12 | 13.12 | -0.0   | 0.0   | 0.0  |
| $\mathbf{R}\mathbf{y}$ | -0.0   | -0.0  | -13.12 | 13.12 | 0.0  |

## 1.2 Rough alignment of spheres using comparators

Bottom Sphere, then top sphere.

Alignment better than 10um. But the coaxiality between the cylinder and the sphere might not be good.

# 1.3 Alignment of spheres using interferometers

#### 1.3.1 Angular alignment

#### 1.3.2 Eccentricity alignment

## 1.4 Residual error after alignment

- Dx and Dy are less than 1um.
- Dz less than 0.1um.
- Rx and Ry less than 4urad.

# 1.5 Metrology acceptance

Because the interferometers are pointing to spheres and not flat surfaces, the lateral acceptance is limited.



Figure 1.4: Two mechanical comparators used to align the top sphere with the rotation axis of the spindle



Figure 1.5: Rx/Ry alignment of the spheres using the micro-station



Figure 1.6: Dx/Dy alignment of the spheres using the micro-station



Figure 1.7: Remaining errors after aligning the metrology using the interferometers



Figure 1.8: XY mapping of the Z measurement by the interferometer

# 2 Simscape Model

# 2.1 Init model

# 2.2 Identify Transfer functions

# $10^{2}$ $10^1$ Amplitude [V/V] $10^0$ $10^{-1}$ $au_{m,i}/u_i$ - $m_0$ $au_{m,i}/u_i$ - $m_2$ $\tau_{m,i}/u_i$ - $m_3^2$ $au_{m,i}/u_i$ - $m_1$ $10^{-2}$ 180 Phase [deg] 90 0 -90 ∟ 10<sup>0</sup> $10^1$ $10^2$ $10^3$ Frequency [Hz]

# 2.3 IFF Plant

Figure 2.1: IFF transfer function - Simscape model



Figure 2.2: ENC transfer function - Simscape model

# 2.4 Encoder plant



# 2.5 HAC Undamped plant

Figure 2.3: INT transfer function - Simscape model

# **3** Identified Open Loop Plant

# 3.1 IFF Plant



Figure 3.1: Measured transfer function from generated voltages to measured voltage on the force sensors

The measured frequency response functions from DAC voltages  $u_i$  to measured voltages on the force sensors  $\tau_{m,i}$  are compared with the simscape model in Figure 3.2.

The effect of the payload mass on the diagonal elements are shown in Figure 3.3.

# 3.2 Encoder plant

The identified frequency response functions from general voltages  $u_i$  to measured displacement of the struts by the encoders  $d\mathcal{L}_i$  are compared with the simscape model in Figure 3.4.



Figure 3.2: Comparison of the Simscape model and identified IFF plant



Figure 3.3: Effect of the payload mass on the IFF plant



Figure 3.4: Comparison of the Simscape model and identified plant - Transfer functions from voltages to encoders



Figure 3.5: Effect of the payload mass on the transfer function from actuator voltage to encoder displacement

# 3.3 HAC Undamped plant

The identified frequency response functions from actuator voltages  $u_i$  to measured strut motion from the external metrology (i.e. the interferometers) are compare with the simscape model in Figure 3.7.



Figure 3.6: Measured transfer function from generated voltages to measured voltage on the force sensors

# 3.4 Decoupling improvement thanks to better Rz alignment

#### 3.4.1 Alignment procedure

- Control based on encoders
- Slow moving in X and Y
- Compare with X and Y from interf



Figure 3.7: Comparison of the Simscape model and identified plant - Transfer functions from voltages to estimated strut motion from interferometers



Figure 3.8: Effect of the payload mass on the transfer functions from actuator voltage to measured strut motion by the external metrology



Figure 3.10: description



Figure 3.11: Decrease of the coupling with better Rz alignment

# 3.4.2 m0

3.4.3 m3



Figure 3.12: Decrease of the coupling with better Rz alignment

# 3.5 Conclusion

• Good match between the model and experiment

# 4 Noise Budget

In this section, the noise budget is performed. The vibrations of the sample is measured in different conditions using the external metrology.

# 4.1 Open-Loop Noise Budget

First, the noise is measured while no motion is performed.

Noise budget in the cartesian frame Data in the time domain



Figure 4.1: Measured vibration with the interferometers

In the frequency domain

# 4.2 Effect of LAC

Effect of LAC (Figure 4.4):

- $\bullet\,$  reduce amplitude around 80Hz
- Inject some noise between 200 and 700Hz?



Figure 4.2: Measured vibration with the interferometers



Figure 4.3: Measured vibration with the interferometers



Figure 4.4: Measured vibration with the interferometers



Figure 4.5: Measured vibration with the interferometers

# 4.3 Effect of rotation

Rotation induces lots of vibrations, especially at high velocity.



Figure 4.6: Cumulative Amplitude Spectrum for the three important directions  $(D_y, D_z \text{ and } R_y)$ . Three rotating velocities are shown. Integrated RMS values are shown in the legend.

# 4.4 Effect of HAC

Bandwidth is approximately 10Hz.

## 4.5 Noise coming from force sensor

![](_page_28_Figure_0.jpeg)

Figure 4.7: Measured vibration with the interferometers

![](_page_28_Figure_2.jpeg)

Figure 4.8: Measured vibration with the interferometers

# **5** Integral Force Feedback

# 5.1 IFF Plants

## 5.1.1 6x6 Plant

![](_page_29_Figure_3.jpeg)

Figure 5.1: Obtained transfer function from generated voltages to measured voltages on the piezoelectric force sensor

Compare with Model:

![](_page_30_Figure_0.jpeg)

Figure 5.2: Obtained transfer function from generated voltages to measured voltages on the piezoelectric force sensor

![](_page_31_Figure_0.jpeg)

Figure 5.3: Obtained transfer function from generated voltages to measured voltages on the piezoelectric force sensor

#### 5.1.2 Effect of Rotation

#### 5.1.3 Effect of Mass

![](_page_32_Figure_2.jpeg)

#### 5.1.4 Compare with the model

Figure 5.4: Comparison of the identified IFF plant and the IFF plant extracted from the simscape model

# 5.2 IFF Controller

#### 5.2.1 Controller Design

Test second order high pass filter: We want integral action between 20Hz and 200Hz. Loop Gain: Root Locus to obtain optimal gain.

#### 5.2.2 Verify Stability

Verify Stability with Nyquist plot:

![](_page_33_Figure_0.jpeg)

![](_page_33_Figure_1.jpeg)

Figure 5.6: Root Locus for IFF. Green crosses are closed-loop poles for the same choosen IFF gain.

• Why bad stability margins?

## 5.2.3 Save Controller

![](_page_34_Figure_2.jpeg)

# 5.3 Estimated Damped Plant

Figure 5.7: description

# 6 High Authority Control

# 6.1 Identify Spurious modes

# 6.2 HAC Plants

## 6.2.1 6x6 Plant

Compare with Model:

![](_page_35_Figure_5.jpeg)

Figure 6.1: 6x6 plant from generated voltages to displacement of the struts as measured by the external metrology

![](_page_36_Figure_0.jpeg)

Figure 6.2: Obtained transfer function from generated voltages to measured voltages on the piezoelectric force sensor

#### 6.2.2 Effect of Mass

![](_page_37_Figure_1.jpeg)

#### 6.2.3 Compare with the model

Figure 6.3: Comparison of the identified HAC plant and the HAC plant extracted from the simscape model  $\mathbf{F}$ 

## 6.2.4 Comparison with Undamped plant

# 6.3 Robust HAC

#### 6.3.1 Controller design

Loop gain

![](_page_38_Figure_0.jpeg)

Figure 6.4: description

![](_page_39_Figure_0.jpeg)

Figure 6.6: description

## 6.3.2 Verify Stability

#### 6.3.3 Estimated performances

#### 6.3.4 Save Controller

# 6.4 High Performance HAC

The goal is to make a controller specific for one mass in order to have high bandwidth.

#### 6.4.1 Mass 0

Load Plant

#### Plant

**Controller design** Loop gain

![](_page_40_Figure_9.jpeg)

Figure 6.7: Loop gain for the High Authority Control

![](_page_41_Figure_0.jpeg)

Figure 6.8: Nyquist plot for the High Authority Control

Verify Stability

 $\label{eq:comparison} \textbf{Estimated performances} \quad \text{Loop gain with model}$ 

Save Controller

**Experimental Validation** 

|       | Dy [nm] | Dz [nm] | Ry [urad] |
|-------|---------|---------|-----------|
| 1rpm  | 55.3    | 5.9     | 0.1       |
| 30rpm | 85.2    | 12.5    | 0.3       |

**Closed-Loop identification** 

#### 6.4.2 Mass 1

Load Plant

Plant

**Plant Inverse** 

Controller design Loop gain

Verify Stability

Estimated performances Loop gain with model

Save Controller

# 6.5 Tomography - Performances

![](_page_42_Figure_6.jpeg)

6.5.1 First scan with closed-loop at middle

Figure 6.9: description

6.5.2 Slow Rotation - 6RPM

6.5.3 Rapid Rotation - 30RPM

![](_page_43_Figure_0.jpeg)

Figure 6.10: Cumulative Amplitude Spectrum of the errors in  $D_y$ ,  $D_z$  and  $R_y$  during a tomography scan at 30RPM. Three control configuration are compared: Open-Loop, Low Authority Control, and High Authority Control

# 7 6DoF Control in Cartesian plane (rotating with the nano-hexapod)

As only Dy, Dz and Ry directions are important, we could only control them. This lead to a 3x3 plant that may be more decoupled than the 6x6 plant.

## 7.1 5x5 plant in Cartesian plane

Compute identified plant in the Cartesian plane: Compute plant model in the Cartesian plane:

# 7.2 Controller Design

- 7.3 Check Stability
- 7.4 Save controllers

#### 7.5 Performances

2023-08-18-18-33-m0-1rpm-K-cart.mat

# 8 3DoF Control in Cartesian plane (fixed)

As only Dy, Dz and Ry directions are important, we could only control them. This lead to a 3x3 plant that may be more decoupled than the 6x6 plant.

# 8.1 3x3 plant in Cartesian plane

Compute identified plant in the Cartesian plane: Compute plant model in the Cartesian plane:

#### Important

Diagonal elements are matching quite well, but off-diagonal elements are very different. Why so much more coupling than from the model?

• Is it due to the metrology? The spheres could induce coupling as for instance X motion will also be seen as Z motion. This is especially true if not well centered with the sphere (as seemed to be the case for the lateral interferometers).

Normalization of outputs:

![](_page_46_Figure_0.jpeg)

Figure 8.1: 3x3 cartesian plant

![](_page_47_Figure_0.jpeg)

Figure 8.3: description

# 8.2 Controller Design

- 8.2.1 Dy
- 8.2.2 Dz
- 8.2.3 Ry
- 8.2.4 3x3 controller
- 8.3 Check Stability

# 8.4 Save controllers

- 8.4.1 Save Controller
- 8.5 Controller Design (normalized)

# 8.6 Verify Stability

# 8.7 Control Performances

Compare with estimated performances

# 9 Complementary Filter Control

# 9.1 m0

#### 9.1.1 3x3 plant in Cartesian plane

Compute identified plant in the Cartesian plane: Compute plant model in the Cartesian plane:

#### 9.1.2 Plant Invert

![](_page_49_Figure_5.jpeg)

![](_page_49_Figure_6.jpeg)

Figure 9.1: Comparaison of the measured direct terms and the reduced order models

Invert and make realizable

#### 9.1.3 Save Plant Inverse

#### 9.1.4 Control Performances

#### 5Hz

Compare with estimated performances

#### 20Hz

Compare with estimated performances

#### Different bandwidth for different directions

Compare with estimated performances

#### Dz 25Hz

Compare with estimated performances

#### 9.1.5 Better plant invert

Dy Stable Inverse

- Dz Stable Inverse
- ${Ry} \quad {\rm Stable \ Inverse}$

#### **Compare Invert plants**

Save plant inverse

**Compare Digital Invert plants** 

#### 9.1.6 Control Performances

#### 9.1.7 Scans with good controller

**1rpm** 1RPM scans are performed for all the masses with the same controller.

 Dx [nm]
 Dy [nm]
 Dz [nm]
 Rx [nrad]
 Ry [nrad]

 m0
 796
 20
 8
 8209
 73

**30rpm** 1RPM scans are performed for all the masses with the same controller.

|    | Dx [nm] | Dy [nm] | Dz [nm] | Rx [nrad] | Ry [nrad] |
|----|---------|---------|---------|-----------|-----------|
| m0 | 820     | 39      | 13      | 7790      | 156       |

# 9.2 m1

#### 9.2.1 3x3 plant in Cartesian plane

Compute identified plant in the Cartesian plane: Compute plant model in the Cartesian plane: Normalization of outputs:

#### 9.2.2 Better plant invert

Dy Stable Inverse

- Dz Stable Inverse
- Ry Stable Inverse

#### **Compare Invert plants**

Save plant inverse

**Compare Digital Invert plants** 

#### 9.2.3 Control Performances

#### 9.2.4 Scans with good controller

**1rpm** 1RPM scans are performed for all the masses with the same controller.

 Dx [nm]
 Dy [nm]
 Dz [nm]
 Rx [nrad]
 Ry [nrad]

 m0
 796
 20
 8
 8209
 73

**30rpm** 1RPM scans are performed for all the masses with the same controller.

|    | Dx [nm] | Dy [nm] | Dz [nm] | Rx [nrad] | Ry [nrad] |
|----|---------|---------|---------|-----------|-----------|
| m0 | 820     | 39      | 13      | 7790      | 156       |

# 9.3 m2

#### 9.3.1 3x3 plant in Cartesian plane

Compute identified plant in the Cartesian plane: Compute plant model in the Cartesian plane: Normalization of outputs:

#### 9.3.2 Better plant invert

Dy Stable Inverse

- Dz Stable Inverse
- Ry Stable Inverse

#### **Compare Invert plants**

Save plant inverse

**Compare Digital Invert plants** 

#### 9.3.3 Control Performances

#### 9.3.4 Scans with good controller

**1rpm** 1RPM scans are performed for all the masses with the same controller.

 Dx [nm]
 Dy [nm]
 Dz [nm]
 Rx [nrad]
 Ry [nrad]

 m0
 796
 20
 8
 8209
 73

**30rpm** 1RPM scans are performed for all the masses with the same controller.

|    | Dx [nm] | Dy [nm] | Dz [nm] | Rx [nrad] | Ry [nrad] |
|----|---------|---------|---------|-----------|-----------|
| m0 | 820     | 39      | 13      | 7790      | 156       |

# 9.4 m3

#### 9.4.1 3x3 plant in Cartesian plane

Compute identified plant in the Cartesian plane: Compute plant model in the Cartesian plane: Normalization of outputs:

#### 9.4.2 Better plant invert

Dy Stable Inverse

- Dz Stable Inverse
- Ry Stable Inverse

#### **Compare Invert plants**

Save plant inverse

**Compare Digital Invert plants** 

#### 9.4.3 Control Performances

# 9.4.4 Scans with good controller

**1rpm** 1RPM scans are performed for all the masses with the same controller.

|    | Dx [nm] | Dy [nm] | Dz [nm] | Rx [nrad] | Ry [nrad] |
|----|---------|---------|---------|-----------|-----------|
| m0 | 796     | 20      | 8       | 8209      | 73        |

**30rpm** 1RPM scans are performed for all the masses with the same controller.

| _ |    | Dx [nm] | Dy [nm] | Dz [nm] | Rx [nrad] | Ry [nrad] |
|---|----|---------|---------|---------|-----------|-----------|
|   | m0 | 820     | 39      | 13      | 7790      | 156       |

# 10 Scans

- Section 10.1
- Section 10.2
- Section 10.3
- Section 10.4
- Section 10.5

# 10.1 $R_z$ scans: Tomography

m0: 30rpm, 6rpm, 1rpm m1: 6rpm, 1rpm m2: 6rpm, 1rpm m3: 1rpm

#### 10.1.1 Robust Control - 1rpm

1RPM scans are performed for all the masses with the same robust controller.

The problem for these scans is that the position initialization was not make properly, so the open-loop errors are quite large (see Figure 10.1).

The obtained open-loop and closed-loop errors are shown in tables 10.1 and 10.2 respectively.

|       |                 |                 | 0 1 1        | 015 (                      | 1 /               |
|-------|-----------------|-----------------|--------------|----------------------------|-------------------|
|       | $D_x \ [\mu m]$ | $D_y \ [\mu m]$ | $D_z \ [nm]$ | $R_x \ [\mu \mathrm{rad}]$ | $R_y \ [\mu rad]$ |
| $m_0$ | 6               | 6               | 32           | 34                         | 34                |
| $m_1$ | 6               | 7               | 26           | 51                         | 55                |
| $m_2$ | 36              | 38              | 36           | 259                        | 253               |
| $m_3$ | 31              | 33              | 38           | 214                        | 203               |

Table 10.1: Measured error during open-loop tomography scans (1rpm)

![](_page_56_Figure_0.jpeg)

Figure 10.1:  $D_x$ ,  $D_y$  and  $D_z$  motion during a slow (1RPM) tomography experiment. Open Loop data is shown in blue and closed-loop data in red

| Table | 10.2: | Measured | error | during | closed-loop | tomography | $\operatorname{scans}$ | (1rpm, | $\operatorname{robust}$ | controller) |  |
|-------|-------|----------|-------|--------|-------------|------------|------------------------|--------|-------------------------|-------------|--|
|       |       |          |       |        |             |            |                        |        |                         |             |  |

|       | $D_x$ [nm] | $D_y$ [nm] | $D_z$ [nm] | $R_x$ [nrad] | $R_y$ [nrad] |
|-------|------------|------------|------------|--------------|--------------|
| $m_0$ | 13         | 15         | 5          | 57           | 55           |
| $m_1$ | 16         | 25         | 6          | 102          | 55           |
| $m_2$ | 25         | 25         | 7          | 120          | 103          |
| $m_3$ | 40         | 53         | 9          | 225          | 169          |

Table 10.3: Measured error during open-loop tomography scans (6rpm)

|       | $D_x \ [\mu m]$ | $D_y \ [\mu m]$ | $D_z \ [nm]$ | $R_x \ [\mu \mathrm{rad}]$ | $R_y \; [\mu \mathrm{rad}]$ |
|-------|-----------------|-----------------|--------------|----------------------------|-----------------------------|
| $m_0$ | 8               | 7               | 20           | 41                         | 41                          |
| $m_1$ | 4               | 4               | 21           | 39                         | 39                          |

| Table 10.4:         Measured error during closed-loop tomography scans (6) | 6rpm, robust controller) |
|----------------------------------------------------------------------------|--------------------------|
|----------------------------------------------------------------------------|--------------------------|

|       | $D_x$ [nm] | $D_y$ [nm] | $D_z$ [nm] | $R_x$ [nrad] | $R_y$ [nrad] |
|-------|------------|------------|------------|--------------|--------------|
| $m_0$ | 17         | 19         | 5          | 70           | 73           |
| $m_1$ | 20         | 26         | 7          | 110          | 77           |

| Table 10.5: Measured error during open-loop tomography scans (30rpm) |
|----------------------------------------------------------------------|
|----------------------------------------------------------------------|

|       | $D_x \ [\mu m]$ | $D_y \; [\mu m]$ | $D_z \ [nm]$ | $R_x \ [\mu rad]$ | $R_y \ [\mu rad]$ |
|-------|-----------------|------------------|--------------|-------------------|-------------------|
| $m_0$ | 2               | 2                | 24           | 10                | 10                |

| Table 10.6: Measured error | or during closed-loop | tomography scans ( | (30rpm, robust controller) |
|----------------------------|-----------------------|--------------------|----------------------------|
|                            |                       |                    |                            |

|       | $D_x$ [nm] | $D_y$ [nm] | $D_z$ [nm] | $R_x$ [nrad] | $R_y$ [nrad] |
|-------|------------|------------|------------|--------------|--------------|
| $m_0$ | 34         | 38         | 10         | 127          | 129          |

![](_page_57_Figure_0.jpeg)

Figure 10.2: Measured motion during tomography scan at 30RPM with a robust controller

#### 10.1.2 Robust Control - 6rpm

#### 10.1.3 Robust Control - 30rpm

# 10.2 $D_z$ scans: Dirty Layer Scans

# 10.2.1 Step by Step $D_z$ motion

Three step sizes are tested:

- 10 nm steps (Figure 10.3)
- 100 nm steps (Figure 10.4)
- $1 \mu m$  steps (Figure 10.5)

## 10.2.2 Continuous $D_z$ motion: Dirty Layer Scans

Two  $D_z$  scans are performed:

- at  $10 \,\mu m/s$  in Figure 10.6
- at  $100 \,\mu m/s$  in Figure 10.7

![](_page_58_Figure_0.jpeg)

Figure 10.3: Dz MIM test with 10nm steps (low pass filter with cut-off frequency of 10Hz is applied)

![](_page_58_Figure_2.jpeg)

![](_page_58_Figure_3.jpeg)

Figure 10.5:  $D_z$  step response - Stabilization time is around 70ms

![](_page_59_Figure_0.jpeg)

Figure 10.6: Dirty layer scan:  $D_z$  motion at  $10 \, \mu m/s$ 

![](_page_59_Figure_2.jpeg)

Figure 10.7: Dirty layer scan:  $D_z$  motion at  $100 \, \mu m/s$ 

# **10.3** $R_y$ scans: Reflectivity

An  $R_y$  scan is performed at  $100 \,\mu rad/s$  velocity (Figure 10.8). During the  $R_y$  scan, the errors in  $D_y$  are  $D_z$  are kept small.

![](_page_60_Figure_2.jpeg)

Figure 10.8:  $R_y$  reflecitivity scan at 100  $\mu$ rad/s velocity

# **10.4** $D_y$ Scans

The steps generated by the IcePAP for the  $T_y$  stage are send to the Speedgoat. Then, we can know in real time what is the wanted position in  $D_y$  during  $T_y$  scans.

#### 10.4.1 Open Loop

We can clearly see micro-stepping errors of the stepper motor used for the  $T_y$  stage. The errors have a period of  $10 \,\mu m$  with an amplitude of  $\pm 100 \,nm$ .

#### 10.4.2 Closed Loop

#### 10.4.3 Faster Scan

Because of micro-stepping errors of the Ty stepper motor, when scanning at high velocity this induce high frequency vibration that are outside the bandwidth of the feedback controller.

At  $100 \,\mu m/s$ , the micro-stepping errors with a period of  $10 \,\mu m$  (see Figure 10.9) are at 10Hz. These errors are them amplified by some resonances in the system.

This could be easily solved by changing the stepper motor for a torque motor for instance.

![](_page_61_Figure_0.jpeg)

Figure 10.9:  $T_y$  scan (at  $10 \,\mu m/s$ ) -  $D_y$  errors. The micro-stepping errors can clearly be seen with a period of  $10 \,\mu m$  and an amplitude of  $\pm 100 \,nm$ 

![](_page_61_Figure_2.jpeg)

Figure 10.10:  $T_y$  scan (at  $10 \mu m/s$ ) -  $D_z$  and  $R_y$  errors. The  $D_z$  error is most likely due to having the top interferometer pointing to a sphere. The large  $R_y$  errors might also be due to the metrology system

![](_page_62_Figure_0.jpeg)

Figure 10.11:  $T_y$  scan (at  $10\,\mu m/s)$  -  $D_y$  errors. Open-loop and Closed-loop scans

![](_page_62_Figure_2.jpeg)

Figure 10.12:  $T_y$  scan (at  $10 \, \mu m/s$ ) -  $D_z$  and  $R_y$  errors. Open-loop and Closed-loop scans

![](_page_62_Figure_4.jpeg)

Figure 10.13:  $T_y$  scan (at  $100 \, \mu m/s$ ) -  $D_y$  errors. Open-loop and Closed-loop scans

![](_page_63_Figure_0.jpeg)

Figure 10.14:  $T_y$  scan (at  $100 \, \mu m/s$ ) -  $D_z$  and  $R_y$  errors. Open-loop and Closed-loop scans

# **10.5** Combined $R_z$ and $D_y$ : Diffraction Tomography

Instead of doing a fast  $R_z$  motion a slow  $D_y$ , the idea is to perform slow  $R_z$  (here 1rpm) and fast  $D_y$  scans with the nano-hexapod.

Here, the  $D_y$  scans are performed only with the nano-hexapod (the Ty stage is not moving), so we are limited to  $\pm 100 \, \mu m$ .

Several  $D_y$  velocities are tested:  $0.1 \, mm/s$ ,  $0.5 \, mm/s$ ,  $1 \, mm/s$  and  $10 \, mm/s$  (see Figure 10.15).

![](_page_63_Figure_6.jpeg)

Figure 10.15: Dy motion for several configured velocities

The corresponding "repetition rate" and  $D_y$  scan per spindle turn are shown in Table 10.7.

The main issue here is the "waiting" time between two scans that is in the order of 50ms. By removing this waiting time (fairly easily), we can double the repetition rate at 10mm/s.

| $D_y$ Velocity | Repetition rate    | Scans per turn (at 1RPM) |
|----------------|--------------------|--------------------------|
| 0.1 mm/s       | 4 s                | 15                       |
| 0.5  mm/s      | $0.9 \ s$          | 65                       |
| 1  mm/s        | $0.5 \ \mathrm{s}$ | 120                      |
| 10  mm/s       | 0.18 s             | 330                      |

Table 10.7:  $D_y$  scaning repetition rate

The scan results for a velocity of 1mm/s is shown in Figure 10.16. The  $D_z$  and  $R_y$  errors are quite small during the scan.

The  $D_y$  errors are quite large as the velocity is increased. This type of scan can probably be massively improved by using feed-forward and optimizing the trajectory. Also, if the detectors are triggered in position (the Speedgoat could generate an encoder signal for instance), we don't care about the  $D_y$ errors.

![](_page_64_Figure_4.jpeg)

Figure 10.16: Diffraction tomography with Dy velocity of 1mm/s and Rz velocity of 1RPM

# 10.6 Summary of experiments

For each conducted experiments, the  $D_y$ ,  $D_z$  and  $R_y$  errors are computed and summarized in Table 10.9.

|                              |                         | verai <i>B</i> y verocities |
|------------------------------|-------------------------|-----------------------------|
| Velocity                     | $D_y  [\mathrm{nmRMS}]$ | $D_z \text{ [nmRMS]}$       |
| $R_y \; [\mu \text{radRMS}]$ |                         |                             |
| 0.1  mm/s                    | 75.5                    | 9.1                         |
| 0.1                          |                         |                             |
| 0.5  mm/s                    | 190.5                   | 10.0                        |
| 0.1                          |                         |                             |
| 1  mm/s                      | 428.0                   | 11.2                        |
| 0.2                          |                         |                             |
| 10  mm/s                     | 4639.9                  | 55.9                        |
| 1.4                          |                         |                             |

**Table 10.8:** Obtained errors for several  $D_y$  velocities

Table 10.9: Table caption

|                                                                | $D_y$ [nmRMS] | $D_z$ [nmRMS] | $R_y$ [nradRMS] |
|----------------------------------------------------------------|---------------|---------------|-----------------|
| Tomography $(R_z \text{ 1rpm})$                                | 15            | 5             | 55              |
| Tomography $(R_z \text{ 6rpm})$                                | 19            | 5             | 73              |
| Tomography $(R_z \ 30 \text{rpm})$                             | 38            | 10            | 129             |
| Dirty Layer $(D_z \ 10 \ \mu m/s)$                             | 25            | 5             | 114             |
| Dirty Layer $(D_z \ 100 \ \mu m/s)$                            | 34            | 15            | 130             |
| Reflectivity $(R_y \ 100 \ \mu \text{rad}/s)$                  | 28            | 6             | 118             |
| Lateral Scan $(D_u \ 10 \ \mu m/s)$                            | 21            | 10            | 37              |
| Diffraction Tomography ( $R_z$ 1rpm, $D_y$ 0.1mm/s)            | 75            | 9             | 118             |
| Diffraction Tomography $(R_z \text{ 1rpm}, D_u \text{ 1mm/s})$ | 428           | 11            | 169             |