%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); %% Path for functions, data and scripts addpath('./mat/'); % Path for data %% Colors for the figures colors = colororder; % Flexible joint Geometry % The flexible joint used for the Nano-Hexapod is shown in Figure ref:fig:test_joints_bend_geometry. % Its bending stiffness is foreseen to be $k_{R_y}\approx 5\,\frac{Nm}{rad}$ and its stroke $\theta_{y,\text{max}}\approx 25\,mrad$. % #+name: fig:test_joints_bend_geometry % #+caption: Geometry of the flexible joint % [[file:figs/test_joints_bend_geometry.png]] % The height between the flexible point (center of the joint) and the point where external forces are applied is $h = 20\,mm$. % Let's define the parameters on Matlab. kRx = 5; % Bending Stiffness [Nm/rad] Rxmax = 25e-3; % Bending Stroke [rad] h = 20e-3; % Height [m] % Required external applied force % The bending $\theta_y$ of the flexible joint due to the force $F_x$ is: % \begin{equation} % \theta_y = \frac{M_y}{k_{R_y}} = \frac{F_x h}{k_{R_y}} % \end{equation} % Therefore, the applied force to test the full range of the flexible joint is: % \begin{equation} % F_{x,\text{max}} = \frac{k_{R_y} \theta_{y,\text{max}}}{h} % \end{equation} Fxmax = kRx*Rxmax/h; % Force to induce maximum stroke [N] % And we obtain: sprintf('\\begin{equation} F_{x,max} = %.1f\\, [N] \\end{equation}', Fxmax) % Required actuator stroke and sensors range % The flexible joint is designed to allow a bending motion of $\pm 25\,mrad$. % The corresponding stroke at the location of the force sensor is: % \[ d_{x,\text{max}} = h \tan(R_{x,\text{max}}) \] dxmax = h*tan(Rxmax); sprintf('\\begin{equation} d_{max} = %.1f\\, [mm] \\end{equation}', 1e3*dxmax)