#+TITLE: Test Bench - Amplified Piezoelectric Actuator :DRAWER: #+LANGUAGE: en #+EMAIL: dehaeze.thomas@gmail.com #+AUTHOR: Dehaeze Thomas #+HTML_LINK_HOME: ../index.html #+HTML_LINK_UP: ../index.html #+HTML_HEAD: #+HTML_HEAD: #+BIND: org-latex-image-default-option "scale=1" #+BIND: org-latex-image-default-width "" #+LaTeX_CLASS: scrreprt #+LaTeX_CLASS_OPTIONS: [a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc] #+LaTeX_HEADER_EXTRA: \input{preamble.tex} #+LATEX_HEADER_EXTRA: \bibliography{test-bench-apa.bib} #+BIND: org-latex-bib-compiler "biber" #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :exports none #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :noweb yes #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:matlab+ :tangle no #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}") #+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 #+PROPERTY: header-args:latex+ :imoutoptions -quality 100 #+PROPERTY: header-args:latex+ :results file raw replace #+PROPERTY: header-args:latex+ :buffer no #+PROPERTY: header-args:latex+ :tangle no #+PROPERTY: header-args:latex+ :eval no-export #+PROPERTY: header-args:latex+ :exports results #+PROPERTY: header-args:latex+ :mkdirp yes #+PROPERTY: header-args:latex+ :output-dir figs #+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png") :END: #+begin_export html

This report is also available as a pdf.


#+end_export #+latex: \clearpage * Build :noexport: #+NAME: startblock #+BEGIN_SRC emacs-lisp :results none :tangle no (add-to-list 'org-latex-classes '("scrreprt" "\\documentclass{scrreprt}" ("\\chapter{%s}" . "\\chapter*{%s}") ("\\section{%s}" . "\\section*{%s}") ("\\subsection{%s}" . "\\subsection*{%s}") ("\\paragraph{%s}" . "\\paragraph*{%s}") )) ;; Remove automatic org heading labels (defun my-latex-filter-removeOrgAutoLabels (text backend info) "Org-mode automatically generates labels for headings despite explicit use of `#+LABEL`. This filter forcibly removes all automatically generated org-labels in headings." (when (org-export-derived-backend-p backend 'latex) (replace-regexp-in-string "\\\\label{sec:org[a-f0-9]+}\n" "" text))) (add-to-list 'org-export-filter-headline-functions 'my-latex-filter-removeOrgAutoLabels) ;; Remove all org comments in the output LaTeX file (defun delete-org-comments (backend) (loop for comment in (reverse (org-element-map (org-element-parse-buffer) 'comment 'identity)) do (setf (buffer-substring (org-element-property :begin comment) (org-element-property :end comment)) ""))) (add-hook 'org-export-before-processing-hook 'delete-org-comments) ;; Use no package by default (setq org-latex-packages-alist nil) (setq org-latex-default-packages-alist nil) ;; Do not include the subtitle inside the title (setq org-latex-subtitle-separate t) (setq org-latex-subtitle-format "\\subtitle{%s}") (setq org-export-before-parsing-hook '(org-ref-glossary-before-parsing org-ref-acronyms-before-parsing)) #+END_SRC * Notes :noexport: Prefix for figures/section/tables =test_apa= ** Add the following reports - [X] [[file:~/Cloud/work-projects/ID31-NASS/matlab/test-bench-apa95ml/test-bench-apa95ml.org][test-bench-apa95ml]] Maybe not useful - [X] See if the IFF root locus has been measured with the APA300ML *Yes* - [X] [[file:~/Cloud/work-projects/ID31-NASS/matlab/test-bench-apa300ml/test-bench-apa300ml.org][test-bench-apa300ml]] - Model (Section 1) - Basic measurements (dimensions, electrical, stroke, etc...) (Section 2) - Dynamical measurements (Section 3) - Simscape Model (Section 4) ** TODO [#B] Check things about resistor in parallel with the force sensor Verify that everything interesting to say about that is either done before in the thesis or in this report. * Introduction :ignore: #+name: fig:test_apa_received #+attr_latex: :width 0.7\linewidth #+caption: Picture of 5 out of the 7 received APA300ML [[file:figs/test_apa_received.jpg]] The first goal is to characterize the APA300ML in terms of: - The, geometric features, electrical capacitance, stroke, hysteresis, spurious resonances. This is performed in Section ref:sec:test_apa_basic_meas. - The dynamics from the generated DAC voltage (going to the voltage amplifiers and then applied on the actuator stacks) to the induced displacement, and to the measured voltage by the force sensor stack. Also the "actuator constant" and "sensor constant" are identified. This is done in Section ref:sec:test_apa_dynamics. - Compare the measurements with the Simscape models (2DoF, Super-Element) in order to tuned/validate the models. This is explained in Section ref:sec:test_apa_simscape. #+name: tab:test_apa_section_matlab_code #+caption: Report sections and corresponding Matlab files #+attr_latex: :environment tabularx :width 0.6\linewidth :align lX #+attr_latex: :center t :booktabs t | *Sections* | *Matlab File* | |-------------------------------------+---------------------------| | Section ref:sec:test_apa_basic_meas | =test_apa_1_basic_meas.m= | | Section ref:sec:test_apa_dynamics | =test_apa_2_.m= | | Section ref:sec:test_apa_simscape | =test_apa_3_.m= | * First Basic Measurements :PROPERTIES: :header-args:matlab+: :tangle matlab/test_apa_1_basic_meas.m :END: <> ** Introduction :ignore: Before using the measurement bench to characterize the APA300ML, first simple measurements are performed: - Section ref:sec:test_apa_geometrical_measurements: the geometric tolerances of the interface planes are checked - Section ref:sec:test_apa_electrical_measurements: the capacitance of the piezoelectric stacks is measured - Section ref:sec:test_apa_stroke_measurements: the stroke of each APA is measured - Section ref:sec:test_apa_spurious_resonances: the "spurious" resonances of the APA are investigated ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no :noweb yes <> #+end_src #+begin_src matlab :eval no :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src ** Geometrical Measurements <> To measure the flatness of the two mechanical interfaces of the APA300ML, a small measurement bench is installed on top of a metrology granite with very good flatness. As shown in Figure ref:fig:test_apa_flatness_setup, the APA is fixed to a clamp while a measuring probe[fn:3] is used to measure the height of 4 points on each of the APA300ML interfaces. From the X-Y-Z coordinates of the measured 8 points, the flatness is estimated by best fitting[fn:4] a plane through all the points. #+name: fig:test_apa_flatness_setup #+attr_latex: :width 0.4\linewidth #+caption: Measurement setup for flatness estimation of the two mechanical interfaces [[file:figs/test_apa_flatness_setup.png]] #+begin_src matlab %% Measured height for all the APA at the 8 locations apa1 = 1e-6*[0, -0.5 , 3.5 , 3.5 , 42 , 45.5, 52.5 , 46]; apa2 = 1e-6*[0, -2.5 , -3 , 0 , -1.5 , 1 , -2 , -4]; apa3 = 1e-6*[0, -1.5 , 15 , 17.5 , 6.5 , 6.5 , 21 , 23]; apa4 = 1e-6*[0, 6.5 , 14.5 , 9 , 16 , 22 , 29.5 , 21]; apa5 = 1e-6*[0, -12.5, 16.5 , 28.5 , -43 , -52 , -22.5, -13.5]; apa6 = 1e-6*[0, -8 , -2 , 5 , -57.5, -62 , -55.5, -52.5]; apa7 = 1e-6*[0, 9 , -18.5, -30 , 31 , 46.5, 16.5 , 7.5]; apa = {apa1, apa2, apa3, apa4, apa5, apa6, apa7}; %% X-Y positions of the measurements points W = 20e-3; % Width [m] L = 61e-3; % Length [m] d = 1e-3; % Distance from border [m] l = 15.5e-3; % [m] pos = [[-L/2 + d, W/2 - d]; [-L/2 + l - d, W/2 - d]; [-L/2 + l - d, -W/2 + d]; [-L/2 + d, -W/2 + d]; [L/2 - l + d, W/2 - d]; [L/2 - d, W/2 - d]; [L/2 - d, -W/2 + d]; [L/2 - l + d, -W/2 + d]]'; %% Using fminsearch to find the best fitting plane apa_d = zeros(1, 7); % Measured flatness of the APA for i = 1:7 fun = @(x)max(abs(([pos; apa{i}]-[0;0;x(1)])'*([x(2:3);1]/norm([x(2:3);1])))); x0 = [0;0;0]; [x, min_d] = fminsearch(fun,x0); apa_d(i) = min_d; end #+end_src The measured flatness, summarized in Table ref:tab:test_apa_flatness_meas, are within the specifications. #+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) data2orgtable(1e6*apa_d', {'APA 1', 'APA 2', 'APA 3', 'APA 4', 'APA 5', 'APA 6', 'APA 7'}, {'*Flatness* $[\mu m]$'}, ' %.1f '); #+end_src #+name: tab:test_apa_flatness_meas #+caption: Estimated flatness of the APA300ML interfaces #+attr_latex: :environment tabularx :width 0.3\linewidth :align Xc #+attr_latex: :center t :booktabs t #+RESULTS: | | *Flatness* $[\mu m]$ | |-------+----------------------| | APA 1 | 8.9 | | APA 2 | 3.1 | | APA 3 | 9.1 | | APA 4 | 3.0 | | APA 5 | 1.9 | | APA 6 | 7.1 | | APA 7 | 18.7 | ** Electrical Measurements <> From the documentation of the APA300ML, the total capacitance of the three stacks should be between $18\,\mu F$ and $26\,\mu F$ with a nominal capacitance of $20\,\mu F$. The capacitance of the piezoelectric stacks found in the APA300ML have been measured with the LCR meter[fn:1] shown in Figure ref:fig:test_apa_lcr_meter. The two stacks used as an actuator and the stack used as a force sensor are measured separately. #+name: fig:test_apa_lcr_meter #+caption: LCR Meter used for the measurements #+attr_latex: :width 0.6\linewidth [[file:figs/test_apa_lcr_meter.jpg]] The measured capacitance are summarized in Table ref:tab:test_apa_capacitance and the average capacitance of one stack is $\approx 5 \mu F$. However, the measured capacitance of the stacks of "APA 3" is only half of the expected capacitance. This may indicate a manufacturing defect. The measured capacitance is found to be lower than the specified one. This may be due to the fact that the manufacturer measures the capacitance with large signals ($-20\,V$ to $150\,V$) while it was here measured with small signals. #+name: tab:test_apa_capacitance #+caption: Capacitance measured with the LCR meter. The excitation signal is a sinus at 1kHz #+attr_latex: :environment tabularx :width 0.5\linewidth :align lcc #+attr_latex: :center t :booktabs t | | *Sensor Stack* | *Actuator Stacks* | |-------+----------------+-------------------| | APA 1 | 5.10 | 10.03 | | APA 2 | 4.99 | 9.85 | | APA 3 | 1.72 | 5.18 | | APA 4 | 4.94 | 9.82 | | APA 5 | 4.90 | 9.66 | | APA 6 | 4.99 | 9.91 | | APA 7 | 4.85 | 9.85 | ** Stroke Measurement <> The goal is here to verify that the stroke of the APA300ML is as specified in the datasheet. To do so, one side of the APA is fixed to the granite, and a displacement probe[fn:2] is located on the other side as shown in Figure ref:fig:test_apa_stroke_bench. Then, the voltage across the two actuator stacks is varied from $-20\,V$ to $150\,V$ using a DAC and a voltage amplifier. Note that the voltage is here slowly varied as the displacement probe has a very low measurement bandwidth (see Figure ref:fig:test_apa_stroke_bench, left). #+name: fig:test_apa_stroke_bench #+caption: Bench to measured the APA stroke #+attr_latex: :width 0.9\linewidth [[file:figs/test_apa_stroke_bench.jpg]] The measured APA displacement is shown as a function of the applied voltage in Figure ref:fig:test_apa_stroke_result, right. Typical hysteresis curves for piezoelectric stack actuators can be observed. The measured stroke is approximately $250\,\mu m$ when using only two of the three stacks, which is enough for the current application. This is even above what is specified as the nominal stroke in the data-sheet ($304\,\mu m$, therefore $\approx 200\,\mu m$ if only two stacks are used). It is clear from Figure ref:fig:test_apa_stroke_result that "APA 3" has an issue compared to the other units. This confirms the abnormal electrical measurements made in Section ref:sec:test_apa_electrical_measurements. This unit was send sent back to Cedrat and a new one was shipped back. From now on, only the six APA that behave as expected will be used. #+begin_src matlab %% Load the measured strokes load('meas_apa_stroke.mat', 'apa300ml_2s') #+end_src #+begin_src matlab :exports none :results none %% Results of the measured APA stroke figure; tiledlayout(1, 2, 'TileSpacing', 'Compact', 'Padding', 'None'); % Generated voltage across the two piezoelectric stack actuators to estimate the stroke of the APA300ML ax1 = nexttile(); plot(apa300ml_2s{1}.t - apa300ml_2s{1}.t(1), 20*apa300ml_2s{1}.V, 'k-') xlabel('Time [s]'); ylabel('Voltage [V]') ylim([-20, 160]) % Measured displacement as a function of the applied voltage ax2 = nexttile(); hold on; for i = 1:7 plot(20*apa300ml_2s{i}.V, 1e6*apa300ml_2s{i}.d, 'DisplayName', sprintf('APA %i', i)) end hold off; xlabel('Voltage [V]'); ylabel('Displacement [$\mu m$]') legend('location', 'southwest', 'FontSize', 8) xlim([-20, 150]); ylim([-250, 0]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/test_apa_stroke_result.pdf', 'width', 'full', 'height', 'normal'); #+end_src #+name: fig:test_apa_stroke_result #+caption: Generated voltage across the two piezoelectric stack actuators to estimate the stroke of the APA300ML (left). Measured displacement as a function of the applied voltage (right) #+RESULTS: [[file:figs/test_apa_stroke_result.png]] ** TODO Spurious resonances - APA :@philipp: SCHEDULED: <2024-03-27 Wed> <> *** Introduction From a Finite Element Model of the struts, it have been found that three main resonances are foreseen to be problematic for the control of the APA300ML (Figure ref:fig:test_apa_mode_shapes): - Mode in X-bending at 189Hz - Mode in Y-bending at 285Hz - Mode in Z-torsion at 400Hz #+name: fig:test_apa_mode_shapes #+caption: Spurious resonances. a) X-bending mode at 189Hz. b) Y-bending mode at 285Hz. c) Z-torsion mode at 400Hz #+attr_latex: :width \linewidth [[file:figs/test_apa_mode_shapes.png]] These modes are present when flexible joints are fixed to the ends of the APA300ML. In this section, we try to find the resonance frequency of these modes when one end of the APA is fixed and the other is free. In the section ref:sec:spurious_resonances_struts, a similar measurement will be performed directly on the struts. *** Measurement Setup The measurement setup is shown in Figure ref:fig:test_apa_meas_setup_torsion. A Laser vibrometer is measuring the difference of motion between two points. The APA is excited with an instrumented hammer and the transfer function from the hammer to the measured rotation is computed. #+begin_note The instrumentation used are: - Laser Doppler Vibrometer Polytec OFV512 - Instrumented hammer #+end_note #+name: fig:test_apa_meas_setup_torsion #+caption: Measurement setup with a Laser Doppler Vibrometer and one instrumental hammer #+attr_latex: :width 0.7\linewidth [[file:figs/test_apa_meas_setup_torsion.jpg]] *** X-Bending Mode The vibrometer is setup to measure the X-bending motion is shown in Figure ref:fig:test_apa_meas_setup_X_bending. The APA is excited with an instrumented hammer having a solid metallic tip. The impact point is on the back-side of the APA aligned with the top measurement point. #+name: fig:test_apa_meas_setup_X_bending #+caption: X-Bending measurement setup #+attr_latex: :width 0.7\linewidth [[file:figs/test_apa_meas_setup_X_bending.jpg]] The data is loaded. #+begin_src matlab %% Load Data bending_X = load('apa300ml_bending_X_top.mat'); #+end_src The configuration (Sampling time and windows) for =tfestimate= is done: #+begin_src matlab %% Spectral Analysis setup Ts = bending_X.Track1_X_Resolution; % Sampling Time [s] Nfft = floor(1/Ts); win = hanning(Nfft); Noverlap = floor(Nfft/2); #+end_src The transfer function from the input force to the output "rotation" (difference between the two measured distances). #+begin_src matlab %% Compute the transfer function from applied force to measured rotation [G_bending_X, f] = tfestimate(bending_X.Track1, bending_X.Track2, win, Noverlap, Nfft, 1/Ts); #+end_src The result is shown in Figure ref:fig:test_apa_meas_freq_bending_x. The can clearly observe a nice peak at 280Hz, and then peaks at the odd "harmonics" (third "harmonic" at 840Hz, and fifth "harmonic" at 1400Hz). #+begin_src matlab :exports none %% Plot the transfer function figure; hold on; plot(f, abs(G_bending_X), 'k-'); hold off; set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude'); xlim([50, 2e3]); ylim([1e-5, 2e-1]); text(280, 5.5e-2,{'280Hz'},'VerticalAlignment','bottom','HorizontalAlignment','center') text(840, 2.0e-3,{'840Hz'},'VerticalAlignment','bottom','HorizontalAlignment','center') text(1400, 7.0e-3,{'1400Hz'},'VerticalAlignment','bottom','HorizontalAlignment','center') #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/test_apa_meas_freq_bending_x.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_apa_meas_freq_bending_x #+caption: Obtained FRF for the X-bending #+RESULTS: [[file:figs/test_apa_meas_freq_bending_x.png]] Then the APA is in the "free-free" condition, this bending mode is foreseen to be at 200Hz (Figure ref:fig:test_apa_mode_shapes). We are here in the "fixed-free" condition. If we consider that we therefore double the stiffness associated with this mode, we should obtain a resonance a factor $\sqrt{2}$ higher than 200Hz which is indeed 280Hz. Not sure this reasoning is correct though. *** Y-Bending Mode The setup to measure the Y-bending is shown in Figure ref:fig:test_apa_meas_setup_Y_bending. The impact point of the instrumented hammer is located on the back surface of the top interface (on the back of the 2 measurements points). #+name: fig:test_apa_meas_setup_Y_bending #+caption: Y-Bending measurement setup #+attr_latex: :width 0.7\linewidth [[file:figs/test_apa_meas_setup_Y_bending.jpg]] The data is loaded, and the transfer function from the force to the measured rotation is computed. #+begin_src matlab %% Load Data bending_Y = load('apa300ml_bending_Y_top.mat'); %% Compute the transfer function [G_bending_Y, ~] = tfestimate(bending_Y.Track1, bending_Y.Track2, win, Noverlap, Nfft, 1/Ts); #+end_src The results are shown in Figure ref:fig:test_apa_meas_freq_bending_y. The main resonance is at 412Hz, and we also see the third "harmonic" at 1220Hz. #+begin_src matlab :exports none %% Plot the transfer function figure; hold on; plot(f, abs(G_bending_Y), 'k-'); hold off; set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude'); xlim([50, 2e3]); ylim([1e-5, 3e-2]) text(412, 1.5e-2,{'412Hz'},'VerticalAlignment','bottom','HorizontalAlignment','center') text(1218, 1.5e-2,{'1220Hz'},'VerticalAlignment','bottom','HorizontalAlignment','center') #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/test_apa_meas_freq_bending_y.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_apa_meas_freq_bending_y #+caption: Obtained FRF for the Y-bending #+RESULTS: [[file:figs/test_apa_meas_freq_bending_y.png]] We can apply the same reasoning as in the previous section and estimate the mode to be a factor $\sqrt{2}$ higher than the mode estimated in the "free-free" condition. We would obtain a mode at 403Hz which is very close to the one estimated here. *** Z-Torsion Mode Finally, we measure the Z-torsion resonance as shown in Figure ref:fig:test_apa_meas_setup_torsion_bis. The excitation is shown on the other side of the APA, on the side to excite the torsion motion. #+name: fig:test_apa_meas_setup_torsion_bis #+caption: Z-Torsion measurement setup #+attr_latex: :width 0.7\linewidth [[file:figs/test_apa_meas_setup_torsion_bis.jpg]] The data is loaded, and the transfer function computed. #+begin_src matlab %% Load Data torsion = load('apa300ml_torsion_left.mat'); %% Compute transfer function [G_torsion, ~] = tfestimate(torsion.Track1, torsion.Track2, win, Noverlap, Nfft, 1/Ts); #+end_src The results are shown in Figure ref:fig:test_apa_meas_freq_torsion_z. We observe a first peak at 267Hz, which corresponds to the X-bending mode that was measured at 280Hz. And then a second peak at 415Hz, which corresponds to the X-bending mode that was measured at 412Hz. A third mode at 800Hz could correspond to this torsion mode. #+begin_src matlab :exports none %% Plot the transfer function figure; hold on; plot(f, abs(G_torsion), 'k-'); hold off; set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude'); xlim([50, 2e3]); ylim([1e-5, 2e-2]) text(415, 4.3e-3,{'415Hz'},'VerticalAlignment','bottom','HorizontalAlignment','center') text(267, 8e-4,{'267Hz'}, 'VerticalAlignment', 'bottom','HorizontalAlignment','center') text(800, 6e-4,{'800Hz'}, 'VerticalAlignment', 'bottom','HorizontalAlignment','center') #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/test_apa_meas_freq_torsion_z.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_apa_meas_freq_torsion_z #+caption: Obtained FRF for the Z-torsion #+RESULTS: [[file:figs/test_apa_meas_freq_torsion_z.png]] In order to verify that, the APA is excited on the top part such that the torsion mode should not be excited. #+begin_src matlab %% Load data torsion = load('apa300ml_torsion_top.mat'); %% Compute transfer function [G_torsion_top, ~] = tfestimate(torsion.Track1, torsion.Track2, win, Noverlap, Nfft, 1/Ts); #+end_src The two FRF are compared in Figure ref:fig:test_apa_meas_freq_torsion_z_comp. It is clear that the first two modes does not correspond to the torsional mode. Maybe the resonance at 800Hz, or even higher resonances. It is difficult to conclude here. #+begin_src matlab :exports none %% Plot the two transfer functions figure; hold on; plot(f, abs(G_torsion), 'k-', 'DisplayName', 'Left excitation'); plot(f, abs(G_torsion_top), '-', 'DisplayName', 'Top excitation'); hold off; set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude'); xlim([50, 2e3]); ylim([1e-5, 2e-2]) text(415, 4.3e-3,{'415Hz'},'VerticalAlignment','bottom','HorizontalAlignment','center') text(267, 8e-4,{'267Hz'}, 'VerticalAlignment', 'bottom','HorizontalAlignment','center') text(800, 2e-3,{'800Hz'}, 'VerticalAlignment', 'bottom','HorizontalAlignment','center') legend('location', 'northwest'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/test_apa_meas_freq_torsion_z_comp.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_apa_meas_freq_torsion_z_comp #+caption: Obtained FRF for the Z-torsion #+RESULTS: [[file:figs/test_apa_meas_freq_torsion_z_comp.png]] *** Compare The three measurements are shown in Figure ref:fig:test_apa_meas_freq_compare. #+begin_src matlab :exports none figure; hold on; plot(f, abs(G_torsion), 'DisplayName', 'Torsion'); plot(f, abs(G_bending_X), 'DisplayName', 'Bending - X'); plot(f, abs(G_bending_Y), 'DisplayName', 'Bending - Y'); hold off; set(gca, 'Xscale', 'log'); set(gca, 'Yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude'); xlim([50, 2e3]); ylim([1e-5, 1e-1]); legend('location', 'southeast'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/test_apa_meas_freq_compare.pdf', 'width', 'full', 'height', 'tall'); #+end_src #+name: fig:test_apa_meas_freq_compare #+caption: Obtained FRF - Comparison #+RESULTS: [[file:figs/test_apa_meas_freq_compare.png]] *** Conclusion When two flexible joints are fixed at each ends of the APA, the APA is mostly in a free/free condition in terms of bending/torsion (the bending/torsional stiffness of the joints being very small). In the current tests, the APA are in a fixed/free condition. Therefore, it is quite obvious that we measured higher resonance frequencies than what is foreseen for the struts. It is however quite interesting that there is a factor $\approx \sqrt{2}$ between the two (increased of the stiffness by a factor 2?). #+name: tab:apa300ml_measured_modes_freq #+caption: Measured frequency of the modes #+attr_latex: :environment tabularx :width 0.7\linewidth :align Xcc #+attr_latex: :center t :booktabs t :float t | *Mode* | *FEM - Strut mode* | *Measured Frequency* | |-----------+--------------------+----------------------| | X-Bending | 189Hz | 280Hz | | Y-Bending | 285Hz | 410Hz | | Z-Torsion | 400Hz | 800Hz? | ** Conclusion :ignore: * Dynamical measurements :PROPERTIES: :header-args:matlab+: :tangle matlab/test_apa_2_dynamics.m :END: <> ** Introduction :ignore: After the basic measurements on the APA were performed in Section ref:sec:test_apa_basic_meas, a new test bench is used to better characterize the APA. This test bench is shown in Figure ref:fig:test_bench_apa and consists of the APA300ML fixed on one end to the fixed granite, and on the other end to the 5kg granite vertically guided with an air bearing. An encoder is used to measure the relative motion between the two granites (i.e. the displacement of the APA). #+name: fig:test_bench_apa #+caption: Test bench used to characterize the APA300ML #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:test_apa_bench_picture}Picture of the test bench} #+attr_latex: :options {0.3\textwidth} #+begin_subfigure #+attr_latex: :height 8cm [[file:figs/test_apa_bench_picture.jpg]] #+end_subfigure #+attr_latex: :caption \subcaption{\label{fig:test_apa_bench_picture_encoder}Zoom on the APA with the encoder} #+attr_latex: :options {0.69\textwidth} #+begin_subfigure #+attr_latex: :height 8cm [[file:figs/test_apa_bench_picture_encoder.jpg]] #+end_subfigure #+end_figure The bench is schematically shown in Figure ref:fig:test_apa_schematic and the signal used are summarized in Table ref:tab:test_apa_variables. #+name: fig:test_apa_schematic #+caption: Schematic of the Test Bench #+attr_latex: :scale 1 [[file:figs/test_apa_schematic.png]] #+name: tab:test_apa_variables #+caption: Variables used during the measurements #+attr_latex: :environment tabularx :width 0.6\linewidth :align cXc #+attr_latex: :center t :booktabs t | *Variable* | *Description* | *Unit* | |------------+------------------------------+--------| | $u$ | Output DAC Voltage | $V$ | | $V_a$ | Output Amplifier Voltage | $V$ | | $V_s$ | Measured Stack Voltage (ADC) | $V$ | | $d_e$ | Encoder Measurement | $m$ | This bench will be used to: - measure the dynamics of the APA (from $V_a$ to $d_e$ and $d_a$ in Section ref:ssec:test_apa_meas_frf_disp, and from $V_a$ to $V_s$ in section ref:ssec:test_apa_meas_frf_force) - estimate the added damping using Integral Force Feedback (Section ref:ssec:test_apa_iff_locus) These measurements will also be used to tune the model of the APA in Section ref:sec:test_apa_simscape. ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no :noweb yes <> #+end_src #+begin_src matlab :eval no :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src ** Hysteresis <> As the payload is vertically guided without friction, the hysteresis of the APA can be estimated from the motion of the payload. A quasi static sinusoidal excitation $V_a$ with an offset of $65\,V$ (halfway between $-20\,V$ and $150\,V$), and an amplitude varying from $4\,V$ up to $80\,V$. For each excitation amplitude, the vertical displacement $d_e$ of the mass is measured and displayed as a function of the applied voltage.. #+begin_src matlab %% Load measured data - hysteresis apa_hyst = load('frf_data_1_hysteresis.mat', 't', 'u', 'de'); % Initial time set to zero apa_hyst.t = apa_hyst.t - apa_hyst.t(1); ampls = [0.1, 0.2, 0.4, 1, 2, 4]; % Excitation voltage amplitudes #+end_src The measured displacements as a function of the output voltages are shown in Figure ref:fig:test_apa_meas_hysteresis. It is interesting to see that the hysteresis is increasing with the excitation amplitude. #+begin_src matlab :exports none %% Measured displacement as a function of the output voltage figure; hold on; for i = [6,5,4,2] i_lim = apa_hyst.t > i*5-1 & apa_hyst.t < i*5; plot(20*apa_hyst.u(i_lim), 1e6*detrend(apa_hyst.de(i_lim), 0), ... 'DisplayName', sprintf('$V_a = 65 + %.0f \\sin (\\omega t) \\ [V]$', 20*ampls(i))) end hold off; xlabel('Stack Voltage $V_a$ [V]'); ylabel('Displacement $d_e$ [$\mu$m]'); legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); xlim([-20, 150]); ylim([-120, 120]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/test_apa_meas_hysteresis.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_apa_meas_hysteresis #+caption: Obtained hysteresis curves (displacement as a function of applied voltage) for multiple excitation amplitudes #+RESULTS: [[file:figs/test_apa_meas_hysteresis.png]] ** Axial stiffness <> In order to estimate the stiffness of the APA, a weight with known mass $m_a = 6.4\,\text{kg}$ is added on top of the suspended granite and the deflection $d_e$ is measured using the encoder. The APA stiffness can then be estimated from equation eqref:eq:test_apa_stiffness. \begin{equation} \label{eq:test_apa_stiffness} k_{\text{apa}} = \frac{m_a g}{\Delta d_e} \end{equation} #+begin_src matlab %% Load data for stiffness measurement apa_nums = [1 2 4 5 6 8]; apa_mass = {}; for i = 1:length(apa_nums) apa_mass(i) = {load(sprintf('frf_data_%i_add_mass_closed_circuit.mat', apa_nums(i)), 't', 'de')}; % The initial displacement is set to zero apa_mass{i}.de = apa_mass{i}.de - mean(apa_mass{i}.de(apa_mass{i}.t<11)); end added_mass = 6.4; % Added mass [kg] #+end_src The measured displacement $d_e$ as a function of time is shown in Figure ref:fig:test_apa_meas_stiffness_time. It can be seen that there are some drifts in the measured displacement (probably due to piezoelectric creep) and the that displacement does not come back to the initial position after the mass is removed (probably due to piezoelectric hysteresis). These two effects induce some uncertainties in the measured stiffness. #+begin_src matlab :exports none %% Plot the deflection at a function of time figure; hold on; plot(apa_mass{2}.t(1:100:end)-apa_mass{2}.t(1), 1e6*apa_mass{2}.de(1:100:end), 'k-'); plot([0,20], [-0.4, -0.4], 'k--', 'LineWidth', 0.5) plot([0,20], [-4.5, -4.5], 'k--', 'LineWidth', 0.5) plot([0,20], [-37.4, -37.4], 'k--', 'LineWidth', 0.5) % first stroke for stiffness measurements anArrow = annotation('doublearrow', 'LineWidth', 0.5); anArrow.Parent = gca; anArrow.Position = [2, -0.4, 0, -37]; text(2.5, -20, sprintf('$d_1$'), 'horizontalalignment', 'left'); % second stroke for stiffness measurements anArrow = annotation('doublearrow', 'LineWidth', 0.5); anArrow.Parent = gca; anArrow.Position = [18, -37.4, 0, 32.9]; text(18.5, -20, sprintf('$d_2$'), 'horizontalalignment', 'left'); % annotation('textarrow',[],y,'String',' Growth ','FontSize',13,'Linewidth',2) hold off; xlabel('Time [s]'); ylabel('Displacement $d_e$ [$\mu$m]'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/test_apa_meas_stiffness_time.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_apa_meas_stiffness_time #+caption: Measured displacement when adding the mass (at $t \approx 3\,s$) and removing the mass(at $t \approx 13\,s$) #+RESULTS: [[file:figs/test_apa_meas_stiffness_time.png]] The stiffnesses are computed for all the APA from the two displacements $d_1$ and $d_2$ (see Figure ref:fig:test_apa_meas_stiffness_time) leading to two stiffness estimations $k_1$ and $k_2$. These estimated stiffnesses are summarized in Table ref:tab:test_apa_measured_stiffnesses and are found to be close to the nominal stiffness $k = 1.8\,N/\mu m$ found in the APA300ML manual. #+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) data2orgtable(1e-6*apa_k, cellstr(num2str(apa_nums')), {'APA', '$k_1$', '$k_2$'}, ' %.2f '); #+end_src #+name: tab:test_apa_measured_stiffnesses #+caption: Measured stiffnesses (in $N/\mu m$) #+attr_latex: :environment tabularx :width 0.2\linewidth :align ccc #+attr_latex: :center t :booktabs t :float t #+RESULTS: | APA | $k_1$ | $k_2$ | |-----+-------+-------| | 1 | 1.68 | 1.9 | | 2 | 1.69 | 1.9 | | 4 | 1.7 | 1.91 | | 5 | 1.7 | 1.93 | | 6 | 1.7 | 1.92 | | 8 | 1.73 | 1.98 | The stiffness can also be computed using equation eqref:eq:test_apa_res_freq by knowing the main vertical resonance frequency $\omega_z \approx 94\,\text{Hz}$ (estimated by the dynamical measurements shown in section ref:ssec:test_apa_meas_frf_disp) and the suspended mass $m_{\text{sus}} = 5.7\,\text{kg}$. \begin{equation} \label{eq:test_apa_res_freq} \omega_z = \sqrt{\frac{k}{m_{\text{sus}}}} \end{equation} The obtain stiffness is $k \approx 2\,N/\mu m$ which is close to the values found in the documentation and by the "static deflection" method. However, changes in the electrical impedance connected to the piezoelectric stacks impacts the mechanical compliance (or stiffness) of the piezoelectric stack [[cite:&reza06_piezoel_trans_vibrat_contr_dampin chap. 2]]. To estimate this effect, the stiffness of the APA if measured using the "static deflection" method in two cases: - $k_{\text{os}}$: piezoelectric stacks left unconnected (or connect to the high impedance ADC) - $k_{\text{sc}}$: piezoelectric stacks short circuited (or connected to the voltage amplifier with small output impedance) The open-circuit stiffness is estimated at $k_{\text{oc}} \approx 2.3\,N/\mu m$ and the closed-circuit stiffness $k_{\text{sc}} \approx 1.7\,N/\mu m$. #+begin_src matlab %% Load Data add_mass_oc = load('frf_data_1_add_mass_open_circuit.mat', 't', 'de'); add_mass_cc = load('frf_data_1_add_mass_closed_circuit.mat', 't', 'de'); %% Zero displacement at initial time add_mass_oc.de = add_mass_oc.de - mean(add_mass_oc.de(add_mass_oc.t<11)); add_mass_cc.de = add_mass_cc.de - mean(add_mass_cc.de(add_mass_cc.t<11)); %% Estimation of the stiffness in Open Circuit and Closed-Circuit apa_k_oc = 9.8 * added_mass / (mean(add_mass_oc.de(add_mass_oc.t > 12 & add_mass_oc.t < 12.5)) - mean(add_mass_oc.de(add_mass_oc.t > 20 & add_mass_oc.t < 20.5))); apa_k_sc = 9.8 * added_mass / (mean(add_mass_cc.de(add_mass_cc.t > 12 & add_mass_cc.t < 12.5)) - mean(add_mass_cc.de(add_mass_cc.t > 20 & add_mass_cc.t < 20.5))); %% Estimated coupling factor sqrt(1 - apa_k_sc/apa_k_oc) #+end_src ** Dynamics <> In this section, the dynamics of the system from the excitation voltage $u$ to encoder measured displacement $d_e$ and to the force sensor voltage $V_s$ is identified. #+begin_src matlab %% Identification using sweep sine (low frequency) load('frf_data_sweep.mat'); load('frf_data_noise_hf.mat'); %% Sampling Frequency Ts = 1e-4; % Sampling Time [s] Fs = 1/Ts; % Sampling Frequency [Hz] %% "Hanning" windows used for the spectral analysis: Nfft = floor(2/Ts); win = hanning(Nfft); Noverlap = floor(Nfft/2); %% Separation of frequencies: low freqs using sweep sine, and high freq using noise % Only used to have the frequency vector "f" [~, f] = tfestimate(apa_sweep{1}.u, apa_sweep{1}.de, win, Noverlap, Nfft, 1/Ts); i_lf = f <= 350; i_hf = f > 350; %% FRF estimation of the transfer function from u to de enc_frf = zeros(length(f), length(apa_nums)); for i = 1:length(apa_nums) [frf_lf, ~] = tfestimate(apa_sweep{i}.u, apa_sweep{i}.de, win, Noverlap, Nfft, 1/Ts); [frf_hf, ~] = tfestimate(apa_noise_hf{i}.u, apa_noise_hf{i}.de, win, Noverlap, Nfft, 1/Ts); enc_frf(:, i) = [frf_lf(i_lf); frf_hf(i_hf)]; end %% FRF estimation of the transfer function from u to Vs iff_frf = zeros(length(f), length(apa_nums)); for i = 1:length(apa_nums) [frf_lf, ~] = tfestimate(apa_sweep{i}.u, apa_sweep{i}.Vs, win, Noverlap, Nfft, 1/Ts); [frf_hf, ~] = tfestimate(apa_noise_hf{i}.u, apa_noise_hf{i}.Vs, win, Noverlap, Nfft, 1/Ts); iff_frf(:, i) = [frf_lf(i_lf); frf_hf(i_hf)]; end #+end_src #+begin_src matlab :tangle no :exports none %% Save the identified dynamics for further analysis save('matlab/mat/meas_apa_frf.mat', 'f', 'Ts', 'enc_frf', 'iff_frf', 'apa_nums'); #+end_src #+begin_src matlab :eval no %% Save the identified dynamics for further analysis save('mat/meas_apa_frf.mat', 'f', 'Ts', 'enc_frf', 'iff_frf', 'apa_nums'); #+end_src The obtained transfer functions for the 6 APA between the excitation voltage $u$ and the encoder displacement $d_e$ are shown in Figure ref:fig:test_apa_frf_encoder. The obtained transfer functions are close to a mass-spring-damper system. The following can be observed: - A "stiffness line" indicating a static gain equal to $\approx -17\,\mu m/V$. The minus sign comes from the fact that an increase in voltage stretches the piezoelectric stack that then reduces the height of the APA - A lightly damped resonance at $95\,\text{Hz}$ - A "mass line" up to $\approx 800\,\text{Hz}$, above which some resonances appear #+begin_src matlab :exports none %% Plot the FRF from u to de figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:length(apa_nums) plot(f, abs(enc_frf(:, i)), ... 'DisplayName', sprintf('APA %i', apa_nums(i))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $d_e/u$ [m/V]'); set(gca, 'XTickLabel',[]); hold off; legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 2); ylim([1e-8, 1e-3]); ax2 = nexttile; hold on; for i = 1:length(apa_nums) plot(f, 180/pi*angle(enc_frf(:, i))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); linkaxes([ax1,ax2],'x'); xlim([10, 2e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/test_apa_frf_encoder.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_apa_frf_encoder #+caption: Estimated Frequency Response Function from generated voltage $u$ to the encoder displacement $d_e$ for the 6 APA300ML #+RESULTS: [[file:figs/test_apa_frf_encoder.png]] The dynamics from $u$ to the measured voltage across the sensor stack $V_s$ is also identified and shown in Figure ref:fig:test_apa_frf_force. A lightly damped resonance is observed at $95\,\text{Hz}$ and a lightly damped anti-resonance at $41\,\text{Hz}$. No additional resonances is present up to at least $2\,\text{kHz}$ indicating at Integral Force Feedback can be applied without stability issues from high frequency flexible modes. As illustrated by the Root Locus, the poles of the closed-loop system converges to the zeros of the open-loop plant. Suppose that a controller with a very high gain is implemented such that the voltage $V_s$ across the sensor stack is zero. In that case, because of the very high controller gain, no stress and strain is present on the sensor stack (and on the actuator stacks are well, as they are both in series). Such closed-loop system would therefore virtually corresponds to a system for which the piezoelectric stacks have been removed and just the mechanical shell is kept. From this analysis, the axial stiffness of the shell can be estimated to be $k_{\text{shell}} = 5.7 \cdot (2\pi \cdot 41)^2 = 0.38\,N/\mu m$. # TODO - Compare with FEM result Such reasoning can lead to very interesting insight into the system just from an open-loop identification. #+begin_src matlab :exports none %% Plot the FRF from u to Vs figure; tiledlayout(2, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile; hold on; for i = 1:length(apa_nums) plot(f, abs(iff_frf(:, i)), ... 'DisplayName', sprintf('APA %i', apa_nums(i))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $V_s/u$ [V/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-2, 1e2]); legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 2); ax2 = nexttile; hold on; for i = 1:length(apa_nums) plot(f, 180/pi*angle(iff_frf(:, i))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 2e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/test_apa_frf_force.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_apa_frf_force #+caption: Estimated Frequency Response Function from generated voltage $u$ to the sensor stack voltage $V_s$ for the 6 APA300ML #+RESULTS: [[file:figs/test_apa_frf_force.png]] All the identified dynamics of the six APA300ML (both when looking at the encoder in Figure ref:fig:test_apa_frf_encoder and at the force sensor in Figure ref:fig:test_apa_frf_force) are almost identical, indicating good manufacturing repeatability for the piezoelectric stacks and the mechanical lever. ** Effect of the resistor on the IFF Plant <> A resistor $R \approx 80.6\,k\Omega$ is added in parallel with the sensor stack which has the effect to form a high pass filter with the capacitance of the stack. As explain before, this is done for two reasons: 1. Limit the voltage offset due to the input bias current of the ADC 2. Limit the low frequency gain The (low frequency) transfer function from $u$ to $V_s$ with and without this resistor have been measured and are compared in Figure ref:fig:test_apa_effect_resistance. It is confirmed that the added resistor as the effect of adding an high pass filter with a cut-off frequency of $\approx 0.35\,\text{Hz}$. #+begin_src matlab %% Load the data wi_k = load('frf_data_1_sweep_lf_with_R.mat', 't', 'Vs', 'Va'); % With the resistor wo_k = load('frf_data_1_sweep_lf.mat', 't', 'Vs', 'Va'); % Without the resistor %% Large Hanning window for good low frequency estimate Nfft = floor(50/Ts); win = hanning(Nfft); Noverlap = floor(Nfft/2); %% Compute the transfer functions from Va to Vs [frf_wo_k, f] = tfestimate(wo_k.Va, wo_k.Vs, win, Noverlap, Nfft, 1/Ts); [frf_wi_k, ~] = tfestimate(wi_k.Va, wi_k.Vs, win, Noverlap, Nfft, 1/Ts); %% Model for the high pass filter C = 5.1e-6; % Sensor Stack capacitance [F] R = 80.6e3; % Parallel Resistor [Ohm] f0 = 1/(2*pi*R*C); % Crossover frequency of RC HPF [Hz] G_hpf = 0.6*(s/2*pi*f0)/(1 + s/2*pi*f0); #+end_src #+begin_src matlab :exports none %% Compare the HPF model and the measured FRF figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(frf_wo_k), 'DisplayName', 'Without $R$'); plot(f, abs(frf_wi_k), 'DisplayName', 'With $R$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $V_s/u$ [V/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-1, 1e0]); legend('location', 'southeast') ax2 = nexttile; hold on; plot(f, 180/pi*angle(frf_wo_k)); plot(f, 180/pi*angle(frf_wi_k)); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:45:360); ylim([-45, 90]); linkaxes([ax1,ax2],'x'); xlim([0.2, 8]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/test_apa_effect_resistance.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_apa_effect_resistance #+caption: Transfer function from u to $V_s$ with and without the resistor $R$ in parallel with the piezoelectric stack used as the force sensor #+RESULTS: [[file:figs/test_apa_effect_resistance.png]] ** Integral Force Feedback <> This test bench can also be used to estimate the damping added by the implementation of an Integral Force Feedback strategy. #+begin_src matlab %% Load identification Data data = load("2023-03-17_11-28_iff_plant.mat"); %% Spectral Analysis setup Ts = 1e-4; % Sampling Time [s] Nfft = floor(5/Ts); win = hanning(Nfft); Noverlap = floor(Nfft/2); %% Compute the transfer function from applied force to measured rotation [G_iff, f] = tfestimate(data.id_plant, data.Vs, win, Noverlap, Nfft, 1/Ts); #+end_src First, the transfer function eqref:eq:test_apa_iff_manual_fit is manually tuned to match the identified dynamics from generated voltage $u$ to the measured sensor stack voltage $V_s$ in Section ref:ssec:test_apa_meas_dynamics. The obtained parameter values are $\omega_{\textsc{hpf}} = 0.4\, \text{Hz}$, $\omega_{z} = 42.7\, \text{Hz}$, $\xi_{z} = 0.4\,\%$, $\omega_{p} = 95.2\, \text{Hz}$, $\xi_{p} = 2\,\%$ and $g_0 = 0.64$. \begin{equation} \label{eq:test_apa_iff_manual_fit} G_{\textsc{iff},m}(s) = g_0 \cdot \frac{1 + 2 \xi_z \frac{s}{\omega_z} + \frac{s^2}{\omega_z^2}}{1 + 2 \xi_p \frac{s}{\omega_p} + \frac{s^2}{\omega_p^2}} \cdot \frac{s}{\omega_{\textsc{hpf}} + s} \end{equation} The comparison between the identified plant and the manually tuned transfer function is done in Figure ref:fig:test_apa_iff_plant_comp_manual_fit. #+begin_src matlab %% Basic manually tuned model w0z = 2*pi*42.7; % Zero frequency xiz = 0.004; % Zero damping w0p = 2*pi*95.2; % Pole frequency xip = 0.02; % Pole damping G_iff_model = exp(-2*s*Ts)*0.64*(1 + 2*xiz/w0z*s + s^2/w0z^2)/(1 + 2*xip/w0p*s + s^2/w0p^2)*(s/(s+2*pi*0.4)); #+end_src #+begin_src matlab :exports none :results none %% Identified IFF plant and manually tuned model of the plant figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(G_iff), 'color', colors(2,:), 'DisplayName', 'Identified plant') plot(f, abs(squeeze(freqresp(G_iff_model, f, 'Hz'))), 'k--', 'DisplayName', 'Manual fit') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $V_s/u$ [V/V]'); set(gca, 'XTickLabel',[]); legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); ax2 = nexttile; hold on; plot(f, 180/pi*angle(G_iff), 'color', colors(2,:)); plot(f, 180/pi*angle(squeeze(freqresp(G_iff_model, f, 'Hz'))), 'k--') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:45:360); ylim([-90, 180]) linkaxes([ax1,ax2],'x'); xlim([0.2, 1e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/test_apa_iff_plant_comp_manual_fit.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_apa_iff_plant_comp_manual_fit #+caption: Identified IFF plant and manually tuned model of the plant (a time delay of $200\,\mu s$ is added to the model of the plant to better match the identified phase) #+RESULTS: [[file:figs/test_apa_iff_plant_comp_manual_fit.png]] The implemented Integral Force Feedback Controller transfer function is shown in equation eqref:eq:test_apa_Kiff_formula. It contains an high pass filter (cut-off frequency of $2\,\text{Hz}$) to limit the low frequency gain, a low pass filter to add integral action above $20\,\text{Hz}$, a second low pass filter to add robustness to high frequency resonances and a tunable gain $g$. \begin{equation} \label{eq:test_apa_Kiff_formula} K_{\textsc{iff}}(s) = -10 \cdot g \cdot \frac{s}{s + 2\pi \cdot 2} \cdot \frac{1}{1 + 2\pi \cdot 20} \cdot \frac{1}{s + 2\pi\cdot 2000} \end{equation} #+begin_src matlab %% Integral Force Feedback Controller K_iff = -10*(1/(s + 2*pi*20)) * ... % LPF: provides integral action above 20Hz (s/(s + 2*pi*2)) * ... % HPF: limit low frequency gain (1/(1 + s/2/pi/2e3)); % LPF: more robust to high frequency resonances #+end_src To estimate how the dynamics of the APA changes when the Integral Force Feedback controller is implemented, the test bench shown in Figure ref:fig:test_apa_iff_schematic is used. The transfer function from the "damped" plant input $u\prime$ to the encoder displacement $d_e$ is identified for several IFF controller gains $g$. #+name: fig:test_apa_iff_schematic #+caption: Figure caption [[file:figs/test_apa_iff_schematic.png]] #+begin_src matlab %% Load Data data = load("2023-03-17_14-10_damped_plants_new.mat"); %% Spectral Analysis setup Ts = 1e-4; % Sampling Time [s] Nfft = floor(1/Ts); win = hanning(Nfft); Noverlap = floor(Nfft/2); %% Get the frequency vector [~, f] = tfestimate(data.data(1).id_plant(1:end), data.data(1).dL(1:end), win, Noverlap, Nfft, 1/Ts); %% Gains used for analysis are between 1 and 50 i_kept = [5:10] %% Identify the damped plant from u' to de for different IFF gains G_dL_frf = {zeros(1,length(i_kept))}; for i = 1:length(i_kept) [G_dL, ~] = tfestimate(data.data(i_kept(i)).id_plant(1:end), data.data(i_kept(i)).dL(1:end), win, Noverlap, Nfft, 1/Ts); G_dL_frf(i) = {G_dL}; end #+end_src The identified dynamics are then fitted by second order transfer functions. The comparison between the identified damped dynamics and the fitted second order transfer functions is done in Figure ref:fig:test_apa_identified_damped_plants for different gains $g$. It is clear that large amount of damping is added when the gain is increased and that the frequency of the pole is shifted to lower frequencies. #+begin_src matlab %% Fit the data with 2nd order transfer function using vectfit3 opts = struct(); opts.stable = 1; % Enforce stable poles opts.asymp = 1; % Force D matrix to be null opts.relax = 1; % Use vector fitting with relaxed non-triviality constraint opts.skip_pole = 0; % Do NOT skip pole identification opts.skip_res = 0; % Do NOT skip identification of residues (C,D,E) opts.cmplx_ss = 0; % Create real state space model with block diagonal A opts.spy1 = 0; % No plotting for first stage of vector fitting opts.spy2 = 0; % Create magnitude plot for fitting of f(s) Niter = 100; % Number of iteration. N = 2; % Order of approximation poles = [-25 - 1i*60, -25 + 1i*60]; % First get for the pole location G_dL_id = {zeros(1,length(i_kept))}; % Identification just between two frequencies f_keep = (f>20 & f<200); for i = 1:length(i_kept) %% Estimate resonance frequency and damping for iter = 1:Niter [G_est, poles, ~, frf_est] = vectfit3(G_dL_frf{i}(f_keep).', 1i*2*pi*f(f_keep)', poles, ones(size(f(f_keep)))', opts); end G_dL_id(i) = {ss(G_est.A, G_est.B, G_est.C, G_est.D)}; end #+end_src #+begin_src matlab :exports none :results none %% Identified dynamics from u' to de for different IFF gains figure; tiledlayout(1, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile(); hold on; for i = 1:length(i_kept) plot(f, abs(G_dL_frf{i}), 'color', [colors(i,:), 1], 'DisplayName', sprintf('g = %.0f', data.gains(i_kept(i)))) plot(f, abs(squeeze(freqresp(G_dL_id{i}, f, 'Hz'))), '--', 'color', [colors(i,:), 1], 'HandleVisibility', 'off') end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude $d_L/V_a$ [m/V]'); xlim([10, 1e3]); legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/test_apa_identified_damped_plants.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:test_apa_identified_damped_plants #+caption: Identified dynamics (solid lines) and fitted transfer functions (dashed lines) from $u\prime$ to $d_e$ for different IFF gains #+RESULTS: [[file:figs/test_apa_identified_damped_plants.png]] The evolution of the pole in the complex plane as a function of the controller gain $g$ (i.e. the "root locus") is computed: - using the IFF plant model eqref:eq:test_apa_iff_manual_fit and the implemented controller eqref:eq:test_apa_Kiff_formula - from the fitted transfer functions of the damped plants experimentally identified for several controller gains The two obtained root loci are compared in Figure ref:fig:test_apa_iff_root_locus and are in good agreement considering that the damped plants were only fitted using a second order transfer function. #+begin_src matlab :exports none :results none %% Root Locus of the APA300ML with Integral Force Feedback % Comparison between the computed root locus from the plant model and the root locus estimated from the damped plant pole identification figure; gains = logspace(-1, 3, 1000); figure; hold on; G_iff_poles = pole(G_iff_model); i = imag(G_iff_poles) > 100; % Only keep relevant poles plot(real(G_iff_poles(i)), imag(G_iff_poles(i)), 'kx', ... 'DisplayName', '$g = 0$'); G_iff_zeros = tzero(G_iff_model); i = imag(G_iff_zeros) > 100; % Only keep relevant zeros plot(real(G_iff_zeros(i)), imag(G_iff_zeros(i)), 'ko', ... 'HandleVisibility', 'off'); for g = gains clpoles = pole(feedback(G_iff_model, g*K_iff, 1)); i = imag(clpoles) > 100; % Only keep relevant poles plot(real(clpoles(i)), imag(clpoles(i)), 'k.', ... 'HandleVisibility', 'off'); end for i = 1:length(i_kept) plot(real(pole(G_dL_id{i})), imag(pole(G_dL_id{i})), 'x', 'color', [colors(i,:), 1], 'DisplayName', sprintf('g = %1.f', data.gains(i_kept(i)))); end ylim([0, 700]); xlim([-600,100]); xlabel('Real Part') ylabel('Imaginary Part') axis square legend('location', 'northwest'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/test_apa_iff_root_locus.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:test_apa_iff_root_locus #+caption: Root Locus of the APA300ML with Integral Force Feedback - Comparison between the computed root locus from the plant model (black line) and the root locus estimated from the damped plant pole identification (colorful crosses) #+RESULTS: [[file:figs/test_apa_iff_root_locus.png]] ** Conclusion #+begin_important So far, all the measured FRF are showing the dynamical behavior that was expected. #+end_important * Simscape Model :PROPERTIES: :header-args:matlab+: :tangle matlab/test_apa_3_simscape.m :END: <> ** Introduction :ignore: In this section, a simscape model (Figure ref:fig:test_apa_bench_model) of the measurement bench is used to compare the model of the APA with the measured FRF. After the transfer functions are extracted from the model (Section ref:sec:simscape_bench_apa_first_id), the comparison of the obtained dynamics with the measured FRF will permit to: 1. Estimate the "actuator constant" and "sensor constant" (Section ref:sec:simscape_bench_apa_id_constants) - "Actuator constant": Gain from the applied voltage $V_a$ to the generated Force $F_a$ - "Sensor constant": Gain from the sensor stack strain $\delta L$ to the generated voltage $V_s$ 2. Tune the model of the APA to match the measured dynamics (Section ref:sec:simscape_bench_apa_tune_2dof_model) #+name: fig:test_apa_bench_model #+caption: Screenshot of the Simscape model #+attr_latex: :width 0.5\linewidth [[file:figs/test_apa_bench_model.png]] ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no :noweb yes <> #+end_src #+begin_src matlab :eval no :noweb yes <> #+end_src #+begin_src matlab :tangle no :noweb yes <> #+end_src #+begin_src matlab :eval no :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src ** First Identification <> The APA is first initialized with default parameters: #+begin_src matlab %% Initialize the structure with default values n_hexapod = struct(); n_hexapod.actuator = initializeAPA(... 'type', '2dof', ... 'Ga', 1, ... % Actuator constant [N/V] 'Gs', 1); % Sensor constant [V/m] #+end_src The transfer function from excitation voltage $V_a$ (before the amplification of $20$ due to the PD200 amplifier) to: 1. the sensor stack voltage $V_s$ 2. the measured displacement by the encoder $d_e$ #+begin_src matlab %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % DAC Voltage io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Sensor Voltage io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoder %% Linearization options opts = linearizeOptions; opts.SampleTime = 0; %% Run the linearization Ga = linearize(mdl, io, 0.0, opts); Ga.InputName = {'Va'}; Ga.OutputName = {'Vs', 'de', 'da'}; #+end_src The obtain dynamics are shown in Figure ref:fig:apa_model_bench_bode_vs and ref:fig:apa_model_bench_bode_dl_z. It can be seen that: - the shape of these bode plots are very similar to the one measured in Section ref:sec:dynamical_meas_apa expect from a change in gain and exact location of poles and zeros - there is a sign error for the transfer function from $V_a$ to $V_s$. This will be corrected by taking a negative "sensor gain". - the low frequency zero of the transfer function from $V_a$ to $V_s$ is minimum phase as expected. The measured FRF are showing non-minimum phase zero, but it is most likely due to measurements artifacts. #+begin_src matlab :exports none %% Bode plot of the transfer function from u to taum freqs = logspace(1, 3, 1000); figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(Ga('Vs', 'Va'), freqs, 'Hz'))), 'k-') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $V_s/V_a$ [V/V]'); set(gca, 'XTickLabel',[]); hold off; ax2 = nexttile; hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(Ga('Vs', 'Va'), freqs, 'Hz'))), 'k-') set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:45:360); ylim([-180, 0]) linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa_model_bench_bode_vs.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:apa_model_bench_bode_vs #+caption: Bode plot of the transfer function from $V_a$ to $V_s$ #+RESULTS: [[file:figs/apa_model_bench_bode_vs.png]] #+begin_src matlab :exports none %% Bode plot of the transfer function from Va to de and da freqs = logspace(1, 3, 1000); figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(Ga('de', 'Va'), freqs, 'Hz'))), 'DisplayName', 'Encoder') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $d/V_a$ [m/V]'); set(gca, 'XTickLabel',[]); hold off; legend('location', 'southwest'); ax2 = nexttile; hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(Ga('de', 'Va'), freqs, 'Hz')))) set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:45:360); ylim([-180, 0]) linkaxes([ax1,ax2],'x'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa_model_bench_bode_dl_z.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:apa_model_bench_bode_dl_z #+caption: Bode plot of the transfer function from $V_a$ to $d_L$ and to $z$ #+RESULTS: [[file:figs/apa_model_bench_bode_dl_z.png]] ** Identify Sensor/Actuator constants and compare with measured FRF <> *** How to identify these constants? **** Piezoelectric Actuator Constant Using the measurement test-bench, it is rather easy the determine the static gain between the applied voltage $V_a$ to the induced displacement $d$. \begin{equation} d = g_{d/V_a} \cdot V_a \end{equation} Using the Simscape model of the APA, it is possible to determine the static gain between the actuator force $F_a$ to the induced displacement $d$: \begin{equation} d = g_{d/F_a} \cdot F_a \end{equation} From the two gains, it is then easy to determine $g_a$: \begin{equation} \label{eq:actuator_constant_formula} \boxed{g_a = \frac{F_a}{V_a} = \frac{F_a}{d} \cdot \frac{d}{V_a} = \frac{g_{d/V_a}}{g_{d/F_a}}} \end{equation} **** Piezoelectric Sensor Constant Similarly, it is easy to determine the gain from the excitation voltage $V_a$ to the voltage generated by the sensor stack $V_s$: \begin{equation} V_s = g_{V_s/V_a} V_a \end{equation} Note here that there is an high pass filter formed by the piezoelectric capacitor and parallel resistor. The gain can be computed from the dynamical identification and taking the gain at the wanted frequency (above the first resonance). Using the simscape model, compute the gain at the same frequency from the actuator force $F_a$ to the strain of the sensor stack $dl$: \begin{equation} dl = g_{dl/F_a} F_a \end{equation} Then, the "sensor" constant is: \begin{equation} \label{eq:sensor_constant_formula} \boxed{g_s = \frac{V_s}{dl} = \frac{V_s}{V_a} \cdot \frac{V_a}{F_a} \cdot \frac{F_a}{dl} = \frac{g_{V_s/V_a}}{g_a \cdot g_{dl/F_a}}} \end{equation} *** Identification Data Let's load the measured FRF from the DAC voltage to the measured encoder and to the sensor stack voltage. #+begin_src matlab %% Load Data load('meas_apa_frf.mat', 'f', 'Ts', 'enc_frf', 'iff_frf', 'apa_nums'); #+end_src *** 2DoF APA **** 2DoF APA Let's initialize the APA as a 2DoF model with unity sensor and actuator gains. #+begin_src matlab %% Initialize a 2DoF APA with Ga=Gs=1 n_hexapod.actuator = initializeAPA(... 'type', '2dof', ... 'ga', 1, ... 'gs', 1); #+end_src **** Identification without actuator or sensor constants The transfer function from $V_a$ to $V_s$, $d_e$ and $d_a$ is identified. #+begin_src matlab %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % Actuator Voltage io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Sensor Voltage io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoder io(io_i) = linio([mdl, '/da'], 1, 'openoutput'); io_i = io_i + 1; % Attocube %% Identification Gs = linearize(mdl, io, 0.0, options); Gs.InputName = {'Va'}; Gs.OutputName = {'Vs', 'de', 'da'}; #+end_src **** Actuator Constant Then, the actuator constant can be computed as shown in Eq. eqref:eq:actuator_constant_formula by dividing the measured DC gain of the transfer function from $V_a$ to $d_e$ by the estimated DC gain of the transfer function from $V_a$ (in truth the actuator force called $F_a$) to $d_e$ using the Simscape model. #+begin_src matlab %% Estimated Actuator Constant ga = -mean(abs(enc_frf(f>10 & f<20)))./dcgain(Gs('de', 'Va')); % [N/V] #+end_src #+begin_src matlab :results value replace :exports results :tangle no sprintf('ga = %.1f [N/V]', ga); #+end_src #+RESULTS: : ga = -32.2 [N/V] **** Sensor Constant Similarly, the sensor constant can be estimated using Eq. eqref:eq:sensor_constant_formula. #+begin_src matlab %% Estimated Sensor Constant gs = -mean(abs(iff_frf(f>400 & f<500)))./(ga*abs(squeeze(freqresp(Gs('Vs', 'Va'), 1e3, 'Hz')))); % [V/m] #+end_src #+begin_src matlab :results value replace :exports results :tangle no sprintf('gs = %.3f [V/m]', gs); #+end_src #+RESULTS: : gs = 0.088 [V/m] **** Comparison Let's now initialize the APA with identified sensor and actuator constant: #+begin_src matlab %% Set the identified constants n_hexapod.actuator = initializeAPA(... 'type', '2dof', ... 'ga', ga, ... % Actuator gain [N/V] 'gs', gs); % Sensor gain [V/m] #+end_src And identify the dynamics with included constants. #+begin_src matlab %% Identify again the dynamics with correct Ga,Gs Gs = linearize(mdl, io, 0.0, options); Gs = Gs*exp(-Ts*s); Gs.InputName = {'Va'}; Gs.OutputName = {'Vs', 'de', 'da'}; #+end_src The transfer functions from $V_a$ to $d_e$ are compared in Figure ref:fig:apa_act_constant_comp and the one from $V_a$ to $V_s$ are compared in Figure ref:fig:apa_sens_constant_comp. #+begin_src matlab :exports none %% Bode plot of the transfer function from u to de freqs = logspace(1,4,1000); figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:length(apa_nums) plot(f, abs(enc_frf(:, i)), 'color', [0,0,0,0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gs('de', 'Va'), freqs, 'Hz')))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $d\mathcal{L}_m/u$ [m/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-8, 1e-3]); ax2 = nexttile; hold on; for i = 1:length(apa_nums) plot(f, 180/pi*angle(enc_frf(:,1)), 'color', [0,0,0,0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('de', 'Va'), freqs, 'Hz')))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 2e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa_act_constant_comp.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:apa_act_constant_comp #+caption: Comparison of the experimental data and Simscape model ($V_a$ to $d_e$) #+RESULTS: [[file:figs/apa_act_constant_comp.png]] #+begin_src matlab :exports none %% Bode plot of the transfer function from Va to Vs (both Simscape and measured FRF) freqs = logspace(1,4,1000); figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:length(apa_nums) plot(f, abs(iff_frf(:, i)), 'color', [0,0,0,0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gs('Vs', 'Va'), freqs, 'Hz')))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $\tau_m/u$ [V/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-2, 1e2]); ax2 = nexttile; hold on; for i = 1:length(apa_nums) plot(f, 180/pi*angle(iff_frf(:,1)), 'color', [0,0,0,0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('Vs', 'Va'), freqs, 'Hz')))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 2e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa_sens_constant_comp.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:apa_sens_constant_comp #+caption: Comparison of the experimental data and Simscape model ($V_a$ to $V_s$) #+RESULTS: [[file:figs/apa_sens_constant_comp.png]] #+begin_src matlab :exports none %% Compare the FRF and identified dynamics from Va to Vs and da colors = colororder; figure; tiledlayout(3, 2, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(enc_frf(:, 1)), 'color', [0,0,0,0.2], ... 'DisplayName', 'FRF'); for i = 2:length(apa_nums) plot(f, abs(enc_frf(:, i)), 'color', [0,0,0, 0.2], ... 'HandleVisibility', 'off'); end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gs('da', 'Va'), freqs, 'Hz'))), '--', ... 'DisplayName', 'Model') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $d_a/V_a$ [m/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-8, 1e-3]); legend('location', 'southwest'); ax1b = nexttile([2,1]); hold on; plot(f, abs(iff_frf(:, i)), 'color', [0,0,0,0.2], ... 'DisplayName', 'FRF'); for i = 1:length(apa_nums) plot(f, abs(iff_frf(:, i)), 'color', [0,0,0,0.2], ... 'HandleVisibility', 'off'); end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gs('Vs', 'Va'), freqs, 'Hz'))), '--', ... 'DisplayName', 'Model') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $V_s/V_a$ [V/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-2, 1e2]); legend('location', 'southeast'); ax2 = nexttile; hold on; for i = 1:length(apa_nums) plot(f, 180/pi*angle(enc_frf(:, i)), 'color', [0,0,0, 0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('da', 'Va'), freqs, 'Hz'))), '--') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); ax2b = nexttile; hold on; for i = 1:length(apa_nums) plot(f, 180/pi*angle(iff_frf(:, i)), 'color', [0,0,0, 0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('Vs', 'Va'), freqs, 'Hz'))), '--') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2,ax1b,ax2b],'x'); xlim([10, 2e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa_comp_model_frf.pdf', 'width', 1500, 'height', 'tall'); #+end_src #+name: fig:apa_comp_model_frf #+caption: #+RESULTS: [[file:figs/apa_comp_model_frf.png]] #+begin_important The "actuator constant" and "sensor constant" can indeed be identified using this test bench. After identifying these constants, the 2DoF model shows good agreement with the measured dynamics. #+end_important *** Flexible APA **** Introduction :ignore: In this section, the sensor and actuator "constants" are also estimated for the flexible model of the APA. **** Flexible APA The Simscape APA model is initialized as a flexible one with unity "constants". #+begin_src matlab %% Initialize the APA as a flexible body n_hexapod.actuator = initializeAPA(... 'type', 'flexible', ... 'ga', 1, ... 'gs', 1); #+end_src **** Identification without actuator or sensor constants The dynamics from $V_a$ to $V_s$, $d_e$ and $d_a$ is identified. #+begin_src matlab %% Identify the dynamics Gs = linearize(mdl, io, 0.0, options); Gs.InputName = {'Va'}; Gs.OutputName = {'Vs', 'de', 'da'}; #+end_src **** Actuator Constant Then, the actuator constant can be computed as shown in Eq. eqref:eq:actuator_constant_formula: #+begin_src matlab %% Actuator Constant ga = -mean(abs(enc_frf(f>10 & f<20)))./dcgain(Gs('de', 'Va')); % [N/V] #+end_src #+begin_src matlab :results value replace :exports results :tangle no sprintf('ga = %.1f [N/V]', ga); #+end_src #+RESULTS: : ga = 23.5 [N/V] **** Sensor Constant #+begin_src matlab %% Sensor Constant gs = -mean(abs(iff_frf(f>400 & f<500)))./(ga*abs(squeeze(freqresp(Gs('Vs', 'Va'), 1e3, 'Hz')))); % [V/m] #+end_src #+begin_src matlab :results value replace :exports results :tangle no sprintf('gs = %.3f [V/m]', gs); #+end_src #+RESULTS: : gs = -4839841.756 [V/m] **** Comparison Let's now initialize the flexible APA with identified sensor and actuator constant: #+begin_src matlab %% Set the identified constants n_hexapod.actuator = initializeAPA(... 'type', 'flexible', ... 'ga', ga, ... % Actuator gain [N/V] 'gs', gs); % Sensor gain [V/m] #+end_src And identify the dynamics with included constants. #+begin_src matlab %% Identify with updated constants Gs = linearize(mdl, io, 0.0, options); Gs = Gs*exp(-Ts*s); Gs.InputName = {'Va'}; Gs.OutputName = {'Vs', 'de', 'da'}; #+end_src The obtained dynamics is compared with the measured one in Figures ref:fig:apa_act_constant_comp_flex and ref:fig:apa_sens_constant_comp_flex. #+begin_src matlab :exports none %% Bode plot of the transfer function from V_a to d_e (both Simscape and measured FRF) figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:length(apa_nums) plot(f, abs(enc_frf(:, i)), 'color', [0,0,0,0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gs('de', 'Va'), freqs, 'Hz')))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $d\mathcal{L}_m/u$ [m/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-9, 1e-3]); ax2 = nexttile; hold on; for i = 1:length(apa_nums) plot(f, 180/pi*angle(enc_frf(:,1)), 'color', [0,0,0,0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('de', 'Va'), freqs, 'Hz')))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 2e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa_act_constant_comp_flex.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:apa_act_constant_comp_flex #+caption: Comparison of the experimental data and Simscape model ($u$ to $d\mathcal{L}_m$) #+RESULTS: [[file:figs/apa_act_constant_comp_flex.png]] #+begin_src matlab :exports none %% Bode plot of the transfer function from Va to Vs (both Simscape and measured FRF) figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:length(apa_nums) plot(f, abs(iff_frf(:, i)), 'color', [0,0,0,0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gs('Vs', 'Va'), freqs, 'Hz')))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $\tau_m/u$ [V/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-2, 1e2]); ax2 = nexttile; hold on; for i = 1:length(apa_nums) plot(f, 180/pi*angle(iff_frf(:,1)), 'color', [0,0,0,0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('Vs', 'Va'), freqs, 'Hz')))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 2e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa_sens_constant_comp_flex.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:apa_sens_constant_comp_flex #+caption: Comparison of the experimental data and Simscape model ($u$ to $\tau_m$) #+RESULTS: [[file:figs/apa_sens_constant_comp_flex.png]] #+begin_important The flexible model is a bit "soft" as compared with the experimental results. #+end_important ** Optimize 2-DoF model to fit the experimental Data <> The parameters of the 2DoF model presented in Section ref:sec:apa_2dof_model are now optimize such that the model best matches the measured FRF. After optimization, the following parameters are used: #+begin_src matlab %% Optimized parameters n_hexapod.actuator = initializeAPA('type', '2dof', ... 'Ga', -32.2, ... 'Gs', 0.088, ... 'k', ones(6,1)*0.38e6, ... 'ke', ones(6,1)*1.75e6, ... 'ka', ones(6,1)*3e7, ... 'c', ones(6,1)*1.3e2, ... 'ce', ones(6,1)*1e1, ... 'ca', ones(6,1)*1e1 ... ); #+end_src #+begin_src matlab :exports none %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; % Actuator Voltage io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Sensor Voltage io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoder %% Identification with optimized parameters Gs = exp(-s*Ts)*linearize(mdl, io, 0.0, options); Gs.InputName = {'Va'}; Gs.OutputName = {'Vs', 'de'}; #+end_src The dynamics is identified using the Simscape model and compared with the measured FRF in Figure ref:fig:comp_apa_plant_after_opt. #+begin_src matlab :exports none %% Comparison of the experimental data and Simscape Model freqs = 5*logspace(0, 3, 1000); figure; tiledlayout(3, 2, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:length(apa_nums) plot(f, abs(enc_frf(:, i)), 'color', [0,0,0,0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gs('de', 'Va'), freqs, 'Hz')))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $d_e/V_a$ [m/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-8, 1e-3]); ax1b = nexttile([2,1]); hold on; for i = 1:length(apa_nums) plot(f, abs(iff_frf(:, i)), 'color', [0,0,0,0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gs('Vs', 'Va'), freqs, 'Hz')))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $V_s/V_a$ [V/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-2, 1e2]); ax2 = nexttile; hold on; for i = 1:length(apa_nums) plot(f, 180/pi*angle(enc_frf(:, i)), 'color', [0,0,0,0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('de', 'Va'), freqs, 'Hz')))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); ax2b = nexttile; hold on; for i = 1:length(apa_nums) plot(f, 180/pi*angle(iff_frf(:, i)), 'color', [0,0,0,0.2]); end set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(Gs('Vs', 'Va'), freqs, 'Hz')))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2,ax1b,ax2b],'x'); xlim([10, 2e3]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/comp_apa_plant_after_opt.pdf', 'width', 'full', 'height', 'tall'); #+end_src #+name: fig:comp_apa_plant_after_opt #+caption: Comparison of the measured FRF and the optimized model #+RESULTS: [[file:figs/comp_apa_plant_after_opt.png]] #+begin_important The tuned 2DoF is very well representing the (axial) dynamics of the APA. #+end_important * TODO Compare with the FEM/Simscape Model :noexport: ** Introduction :ignore: In this section, the Amplified Piezoelectric Actuator APA300ML ([[file:doc/APA300ML.pdf][doc]]) is modeled using a Finite Element Software. Then a /super element/ is exported and imported in Simscape where its dynamic is studied. A 3D view of the Amplified Piezoelectric Actuator (APA300ML) is shown in Figure ref:fig:test_apa_ansys. The remote point used are also shown in this figure. #+name: fig:test_apa_ansys #+caption: Ansys FEM of the APA300ML [[file:figs/test_apa_ansys.jpg]] ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no addpath('matlab/'); addpath('matlab/APA300ML/'); #+end_src #+begin_src matlab :eval no addpath('APA300ML/'); #+end_src #+begin_src matlab open('APA300ML.slx'); #+end_src ** Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates We first extract the stiffness and mass matrices. #+begin_src matlab K = readmatrix('APA300ML_mat_K.CSV'); M = readmatrix('APA300ML_mat_M.CSV'); #+end_src #+begin_src matlab :exports results :results value table replace :tangle no data2orgtable(K(1:10, 1:10), {}, {}, ' %.1g '); #+end_src #+caption: First 10x10 elements of the Stiffness matrix #+RESULTS: | 200000000.0 | 30000.0 | -20000.0 | -70.0 | 300000.0 | 40.0 | 10000000.0 | 10000.0 | -6000.0 | 30.0 | | 30000.0 | 30000000.0 | 2000.0 | -200000.0 | 60.0 | -10.0 | 4000.0 | 2000000.0 | -500.0 | 9000.0 | | -20000.0 | 2000.0 | 7000000.0 | -10.0 | -30.0 | 10.0 | 6000.0 | 900.0 | -500000.0 | 3 | | -70.0 | -200000.0 | -10.0 | 1000.0 | -0.1 | 0.08 | -20.0 | -9000.0 | 3 | -30.0 | | 300000.0 | 60.0 | -30.0 | -0.1 | 900.0 | 0.1 | 30000.0 | 20.0 | -10.0 | 0.06 | | 40.0 | -10.0 | 10.0 | 0.08 | 0.1 | 10000.0 | 20.0 | 9 | -5 | 0.03 | | 10000000.0 | 4000.0 | 6000.0 | -20.0 | 30000.0 | 20.0 | 200000000.0 | 10000.0 | 9000.0 | 50.0 | | 10000.0 | 2000000.0 | 900.0 | -9000.0 | 20.0 | 9 | 10000.0 | 30000000.0 | -500.0 | 200000.0 | | -6000.0 | -500.0 | -500000.0 | 3 | -10.0 | -5 | 9000.0 | -500.0 | 7000000.0 | -2 | | 30.0 | 9000.0 | 3 | -30.0 | 0.06 | 0.03 | 50.0 | 200000.0 | -2 | 1000.0 | #+begin_src matlab :exports results :results value table replace :tangle no data2orgtable(M(1:10, 1:10), {}, {}, ' %.1g '); #+end_src #+caption: First 10x10 elements of the Mass matrix #+RESULTS: | 0.01 | -2e-06 | 1e-06 | 6e-09 | 5e-05 | -5e-09 | -0.0005 | -7e-07 | 6e-07 | -3e-09 | | -2e-06 | 0.01 | 8e-07 | -2e-05 | -8e-09 | 2e-09 | -9e-07 | -0.0002 | 1e-08 | -9e-07 | | 1e-06 | 8e-07 | 0.009 | 5e-10 | 1e-09 | -1e-09 | -5e-07 | 3e-08 | 6e-05 | 1e-10 | | 6e-09 | -2e-05 | 5e-10 | 3e-07 | 2e-11 | -3e-12 | 3e-09 | 9e-07 | -4e-10 | 3e-09 | | 5e-05 | -8e-09 | 1e-09 | 2e-11 | 6e-07 | -4e-11 | -1e-06 | -2e-09 | 1e-09 | -8e-12 | | -5e-09 | 2e-09 | -1e-09 | -3e-12 | -4e-11 | 1e-07 | -2e-09 | -1e-09 | -4e-10 | -5e-12 | | -0.0005 | -9e-07 | -5e-07 | 3e-09 | -1e-06 | -2e-09 | 0.01 | 1e-07 | -3e-07 | -2e-08 | | -7e-07 | -0.0002 | 3e-08 | 9e-07 | -2e-09 | -1e-09 | 1e-07 | 0.01 | -4e-07 | 2e-05 | | 6e-07 | 1e-08 | 6e-05 | -4e-10 | 1e-09 | -4e-10 | -3e-07 | -4e-07 | 0.009 | -2e-10 | | -3e-09 | -9e-07 | 1e-10 | 3e-09 | -8e-12 | -5e-12 | -2e-08 | 2e-05 | -2e-10 | 3e-07 | Then, we extract the coordinates of the interface nodes. #+begin_src matlab [int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('APA300ML_out_nodes_3D.txt'); #+end_src #+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) data2orgtable([[1:length(int_i)]', int_i, int_xyz], {}, {'Node i', 'Node Number', 'x [m]', 'y [m]', 'z [m]'}, ' %f '); #+end_src #+caption: Coordinates of the interface nodes #+RESULTS: | Node i | Node Number | x [m] | y [m] | z [m] | |--------+-------------+---------+-------+--------| | 1.0 | 697783.0 | 0.0 | 0.0 | -0.015 | | 2.0 | 697784.0 | 0.0 | 0.0 | 0.015 | | 3.0 | 697785.0 | -0.0325 | 0.0 | 0.0 | | 4.0 | 697786.0 | -0.0125 | 0.0 | 0.0 | | 5.0 | 697787.0 | -0.0075 | 0.0 | 0.0 | | 6.0 | 697788.0 | 0.0125 | 0.0 | 0.0 | | 7.0 | 697789.0 | 0.0325 | 0.0 | 0.0 | #+begin_src matlab :exports results :results value table replace :tangle no data2orgtable([length(n_i); length(int_i); size(M,1) - 6*length(int_i); size(M,1)], {'Total number of Nodes', 'Number of interface Nodes', 'Number of Modes', 'Size of M and K matrices'}, {}, ' %.0f '); #+end_src #+caption: Some extracted parameters of the FEM #+RESULTS: | Total number of Nodes | 7 | | Number of interface Nodes | 7 | | Number of Modes | 120 | | Size of M and K matrices | 162 | Using =K=, =M= and =int_xyz=, we can now use the =Reduced Order Flexible Solid= simscape block. ** Piezoelectric parameters #+begin_src matlab Ga = 1; % [N/V] Gs = 1; % [V/m] #+end_src #+begin_src matlab m = 0.1; % [kg] #+end_src ** Simscape Model The flexible element is imported using the =Reduced Order Flexible Solid= simscape block. Let's say we use two stacks as a force sensor and one stack as an actuator: - A =Relative Motion Sensor= block is added between the nodes A and C - An =Internal Force= block is added between the remote points E and B The interface nodes are shown in Figure ref:fig:test_apa_ansys. One mass is fixed at one end of the piezo-electric stack actuator (remove point F), the other end is fixed to the world frame (remote point G). ** Identification of the APA Characteristics *** Stiffness #+begin_src matlab :exports none m = 0.0001; #+end_src The transfer function from vertical external force to the relative vertical displacement is identified. #+begin_src matlab :exports none %% Name of the Simulink File mdl = 'APA300ML'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Fd'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/z'], 1, 'openoutput'); io_i = io_i + 1; G = linearize(mdl, io); #+end_src The inverse of its DC gain is the axial stiffness of the APA: #+begin_src matlab :results replace value 1e-6/dcgain(G) % [N/um] #+end_src #+RESULTS: : 1.753 The specified stiffness in the datasheet is $k = 1.8\, [N/\mu m]$. *** Resonance Frequency The resonance frequency is specified to be between 650Hz and 840Hz. This is also the case for the FEM model (Figure ref:fig:apa300ml_resonance). #+begin_src matlab :exports none freqs = logspace(2, 4, 5000); figure; hold on; plot(freqs, abs(squeeze(freqresp(G, freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Amplitude'); hold off; #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa300ml_resonance.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:apa300ml_resonance #+caption: First resonance is around 800Hz #+RESULTS: [[file:figs/apa300ml_resonance.png]] *** Amplification factor The amplification factor is the ratio of the vertical displacement to the stack displacement. #+begin_src matlab :exports none %% Name of the Simulink File mdl = 'APA300ML'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/z'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/d'], 1, 'openoutput'); io_i = io_i + 1; G = linearize(mdl, io); #+end_src The ratio of the two displacement is computed from the FEM model. #+begin_src matlab :results replace value abs(dcgain(G(1,1))./dcgain(G(2,1))) #+end_src #+RESULTS: : 5.0749 This is actually correct and approximately corresponds to the ratio of the piezo height and length: #+begin_src matlab :results replace value 75/15 #+end_src #+RESULTS: : 5 *** Stroke Estimation of the actuator stroke: \[ \Delta H = A n \Delta L \] with: - $\Delta H$ Axial Stroke of the APA - $A$ Amplification factor (5 for the APA300ML) - $n$ Number of stack used - $\Delta L$ Stroke of the stack (0.1% of its length) #+begin_src matlab :results replace value 1e6 * 5 * 3 * 20e-3 * 0.1e-2 #+end_src #+RESULTS: : 300 This is exactly the specified stroke in the data-sheet. *** TODO Stroke BIS - [ ] Identified the stroke form the transfer function from V to z #+begin_src matlab :exports none %% Name of the Simulink File mdl = 'APA300ML'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/V'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/d'], 1, 'openoutput'); io_i = io_i + 1; G = linearize(mdl, io); 1e6*170*abs(dcgain(G)) #+end_src ** Identification of the Dynamics from actuator to replace displacement We first set the mass to be approximately zero. #+begin_src matlab :exports none m = 0.01; #+end_src The dynamics is identified from the applied force to the measured relative displacement. #+begin_src matlab :exports none %% Name of the Simulink File mdl = 'APA300ML'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/z'], 1, 'openoutput'); io_i = io_i + 1; Gh = -linearize(mdl, io); #+end_src The same dynamics is identified for a payload mass of 10Kg. #+begin_src matlab m = 10; #+end_src #+begin_src matlab :exports none %% Name of the Simulink File mdl = 'APA300ML'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/z'], 1, 'openoutput'); io_i = io_i + 1; Ghm = -linearize(mdl, io); #+end_src #+begin_src matlab :exports none freqs = logspace(0, 4, 5000); figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(Gh, freqs, 'Hz'))), '-'); plot(freqs, abs(squeeze(freqresp(Ghm, freqs, 'Hz'))), '-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = nexttile; hold on; plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gh, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 0kg$'); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Ghm, freqs, 'Hz')))), '-', ... 'DisplayName', '$m = 10kg$'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); ylim([-360 0]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); legend('location', 'southwest'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa300ml_plant_dynamics.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:apa300ml_plant_dynamics #+caption: Transfer function from forces applied by the stack to the axial displacement of the APA #+RESULTS: [[file:figs/apa300ml_plant_dynamics.png]] The root locus corresponding to Direct Velocity Feedback with a mass of 10kg is shown in Figure ref:fig:apa300ml_dvf_root_locus. #+begin_src matlab :exports none figure; gains = logspace(0, 5, 500); hold on; plot(real(pole(Ghm)), imag(pole(G)), 'kx'); plot(real(tzero(Ghm)), imag(tzero(G)), 'ko'); for k = 1:length(gains) cl_poles = pole(feedback(Ghm, gains(k)*s)); plot(real(cl_poles), imag(cl_poles), 'k.'); end hold off; axis square; xlim([-500, 10]); ylim([0, 510]); xlabel('Real Part'); ylabel('Imaginary Part'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa300ml_dvf_root_locus.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:apa300ml_dvf_root_locus #+caption: Root Locus for Direct Velocity Feedback #+RESULTS: [[file:figs/apa300ml_dvf_root_locus.png]] ** Identification of the Dynamics from actuator to force sensor Let's use 2 stacks as a force sensor and 1 stack as force actuator. The transfer function from actuator voltage to sensor voltage is identified and shown in Figure ref:fig:apa300ml_iff_plant. #+begin_src matlab :exports none m = 10; #+end_src #+begin_src matlab :exports none %% Name of the Simulink File mdl = 'APA300ML'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Va'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; Giff = -linearize(mdl, io); #+end_src #+begin_src matlab :exports none freqs = logspace(0, 4, 5000); figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(Giff, freqs, 'Hz'))), '-'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = nexttile; hold on; plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Giff, freqs, 'Hz')))), '-'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); ylim([-180 180]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa300ml_iff_plant.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:apa300ml_iff_plant #+caption: Transfer function from actuator to force sensor #+RESULTS: [[file:figs/apa300ml_iff_plant.png]] For root locus corresponding to IFF is shown in Figure ref:fig:apa300ml_iff_root_locus. #+begin_src matlab :exports none figure; gains = logspace(0, 5, 500); hold on; plot(real(pole(Giff)), imag(pole(Giff)), 'kx'); plot(real(tzero(Giff)), imag(tzero(Giff)), 'ko'); for k = 1:length(gains) cl_poles = pole(feedback(Giff, gains(k)/s)); plot(real(cl_poles), imag(cl_poles), 'k.'); end hold off; axis square; xlim([-500, 10]); ylim([0, 510]); xlabel('Real Part'); ylabel('Imaginary Part'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa300ml_iff_root_locus.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:apa300ml_iff_root_locus #+caption: Root Locus for IFF #+RESULTS: [[file:figs/apa300ml_iff_root_locus.png]] ** Identification for a simpler model The goal in this section is to identify the parameters of a simple APA model from the FEM. This can be useful is a lower order model is to be used for simulations. The presented model is based on cite:souleille18_concep_activ_mount_space_applic. The model represents the Amplified Piezo Actuator (APA) from Cedrat-Technologies (Figure ref:fig:souleille18_model_piezo). The parameters are shown in the table below. #+name: fig:souleille18_model_piezo #+caption: Picture of an APA100M from Cedrat Technologies. Simplified model of a one DoF payload mounted on such isolator [[file:./figs/souleille18_model_piezo.png]] #+caption:Parameters used for the model of the APA 100M | | Meaning | |-------+----------------------------------------------------------------| | $k_e$ | Stiffness used to adjust the pole of the isolator | | $k_1$ | Stiffness of the metallic suspension when the stack is removed | | $k_a$ | Stiffness of the actuator | | $c_1$ | Added viscous damping | The goal is to determine $k_e$, $k_a$ and $k_1$ so that the simplified model fits the FEM model. \[ \alpha = \frac{x_1}{f}(\omega=0) = \frac{\frac{k_e}{k_e + k_a}}{k_1 + \frac{k_e k_a}{k_e + k_a}} \] \[ \beta = \frac{x_1}{F}(\omega=0) = \frac{1}{k_1 + \frac{k_e k_a}{k_e + k_a}} \] If we can fix $k_a$, we can determine $k_e$ and $k_1$ with: \[ k_e = \frac{k_a}{\frac{\beta}{\alpha} - 1} \] \[ k_1 = \frac{1}{\beta} - \frac{k_e k_a}{k_e + k_a} \] #+begin_src matlab :exports none m = 10; #+end_src #+begin_src matlab :exports none %% Name of the Simulink File mdl = 'APA300ML'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Fd'], 1, 'openinput'); io_i = io_i + 1; % External Vertical Force [N] io(io_i) = linio([mdl, '/w'], 1, 'openinput'); io_i = io_i + 1; % Base Motion [m] io(io_i) = linio([mdl, '/Fa'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force [N] io(io_i) = linio([mdl, '/z'], 1, 'openoutput'); io_i = io_i + 1; % Vertical Displacement [m] io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensor [V] io(io_i) = linio([mdl, '/d'], 1, 'openoutput'); io_i = io_i + 1; % Stack Displacement [m] G = linearize(mdl, io); G.InputName = {'Fd', 'w', 'Fa'}; G.OutputName = {'y', 'Fs', 'd'}; #+end_src From the identified dynamics, compute $\alpha$ and $\beta$ #+begin_src matlab alpha = abs(dcgain(G('y', 'Fa'))); beta = abs(dcgain(G('y', 'Fd'))); #+end_src $k_a$ is estimated using the following formula: #+begin_src matlab ka = 0.8/abs(dcgain(G('y', 'Fa'))); #+end_src The factor can be adjusted to better match the curves. Then $k_e$ and $k_1$ are computed. #+begin_src matlab ke = ka/(beta/alpha - 1); k1 = 1/beta - ke*ka/(ke + ka); #+end_src #+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) data2orgtable(1e-6*[ka; ke; k1], {'ka', 'ke', 'k1'}, {'Value [N/um]'}, ' %.1f '); #+end_src #+RESULTS: | | Value [N/um] | |----+--------------| | ka | 40.5 | | ke | 1.5 | | k1 | 0.4 | The damping in the system is adjusted to match the FEM model if necessary. #+begin_src matlab c1 = 1e2; #+end_src The analytical model of the simpler system is defined below: #+begin_src matlab Ga = 1/(m*s^2 + k1 + c1*s + ke*ka/(ke + ka)) * ... [ 1 , k1 + c1*s + ke*ka/(ke + ka) , ke/(ke + ka) ; -ke*ka/(ke + ka), ke*ka/(ke + ka)*m*s^2 , -ke/(ke + ka)*(m*s^2 + c1*s + k1)]; Ga.InputName = {'Fd', 'w', 'Fa'}; Ga.OutputName = {'y', 'Fs'}; #+end_src And the DC gain is adjusted for the force sensor: #+begin_src matlab F_gain = dcgain(G('Fs', 'Fd'))/dcgain(Ga('Fs', 'Fd')); #+end_src The dynamics of the FEM model and the simpler model are compared in Figure ref:fig:apa300ml_comp_simpler_model. #+begin_src matlab :exports none freqs = logspace(0, 5, 1000); figure; tiledlayout(2, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'y', 'w'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Ga('y', 'w'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('$x_1/w$ [m/m]'); ylim([1e-6, 1e2]); ax2 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'y', 'Fa'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Ga('y', 'Fa'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('$x_1/f$ [m/N]'); ylim([1e-14, 1e-6]); ax3 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'y', 'Fd'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Ga('y', 'Fd'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('$x_1/F$ [m/N]'); ylim([1e-14, 1e-4]); ax4 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'Fs', 'w'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(F_gain*Ga('Fs', 'w'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('$F_s/w$ [m/m]'); ylim([1e2, 1e8]); ax5 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'Fs', 'Fa'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(F_gain*Ga('Fs', 'Fa'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('$F_s/f$ [m/N]'); ylim([1e-4, 1e1]); ax6 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'Fs', 'Fd'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(F_gain*Ga('Fs', 'Fd'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('$F_s/F$ [m/N]'); ylim([1e-7, 1e2]); linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa300ml_comp_simpler_model.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:apa300ml_comp_simpler_model #+caption: Comparison of the Dynamics between the FEM model and the simplified one #+RESULTS: [[file:figs/apa300ml_comp_simpler_model.png]] The simplified model has also been implemented in Simscape. The dynamics of the Simscape simplified model is identified and compared with the FEM one in Figure ref:fig:apa300ml_comp_simpler_simscape. #+begin_src matlab :exports none %% Name of the Simulink File mdl = 'APA300ML_simplified'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Fd'], 1, 'openinput'); io_i = io_i + 1; % External Vertical Force [N] io(io_i) = linio([mdl, '/w'], 1, 'openinput'); io_i = io_i + 1; % Base Motion [m] io(io_i) = linio([mdl, '/Fa'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force [N] io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1; % Vertical Displacement [m] io(io_i) = linio([mdl, '/Fs'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensor [V] Gs = linearize(mdl, io); Gs.InputName = {'Fd', 'w', 'Fa'}; Gs.OutputName = {'y', 'Fs'}; #+end_src #+begin_src matlab :exports none freqs = logspace(0, 5, 1000); figure; tiledlayout(2, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'y', 'w'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gs('y', 'w'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('$x_1/w$ [m/m]'); ylim([1e-6, 1e2]); ax2 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'y', 'Fa'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gs('y', 'Fa'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('$x_1/f$ [m/N]'); ylim([1e-14, 1e-6]); ax3 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'y', 'Fd'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gs('y', 'Fd'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('$x_1/F$ [m/N]'); ylim([1e-14, 1e-4]); ax4 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'Fs', 'w'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(F_gain*Gs('Fs', 'w'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('$F_s/w$ [m/m]'); ylim([1e2, 1e8]); ax5 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'Fs', 'Fa'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(F_gain*Gs('Fs', 'Fa'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('$F_s/f$ [m/N]'); ylim([1e-4, 1e1]); ax6 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G( 'Fs', 'Fd'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(F_gain*Gs('Fs', 'Fd'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('$F_s/F$ [m/N]'); ylim([1e-7, 1e2]); linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/apa300ml_comp_simpler_simscape.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:apa300ml_comp_simpler_simscape #+caption: Comparison of the Dynamics between the FEM model and the simplified simscape model #+RESULTS: [[file:figs/apa300ml_comp_simpler_simscape.png]] ** Integral Force Feedback In this section, Integral Force Feedback control architecture is applied on the APA300ML. First, the plant (dynamics from voltage actuator to voltage sensor is identified). #+begin_src matlab :exports none Kiff = tf(0); #+end_src The payload mass is set to 10kg. #+begin_src matlab m = 10; #+end_src #+begin_src matlab :exports none %% Name of the Simulink File mdl = 'APA300ML_IFF'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/w'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Fd'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/z'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/APA300ML'], 1, 'openoutput'); io_i = io_i + 1; G_ol = linearize(mdl, io); G_ol.InputName = {'w', 'f', 'F'}; G_ol.OutputName = {'x1', 'Fs'}; G = G_ol({'Fs'}, {'f'}); #+end_src The obtained dynamics is shown in Figure ref:fig:piezo_amplified_iff_plant. #+begin_src matlab :exports none freqs = logspace(1, 5, 1000); figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(G, freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = nexttile; hold on; plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G, freqs, 'Hz'))))); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); ylim([-390 30]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/piezo_amplified_iff_plant.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:piezo_amplified_iff_plant #+caption: IFF Plant #+RESULTS: [[file:figs/piezo_amplified_iff_plant.png]] The controller is defined below and the loop gain is shown in Figure ref:fig:piezo_amplified_iff_loop_gain. #+begin_src matlab Kiff = -1e3/s; #+end_src #+begin_src matlab :exports none freqs = logspace(1, 5, 1000); figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(G*Kiff, freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); hold off; ax2 = nexttile; hold on; plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G*Kiff, freqs, 'Hz'))))); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); yticks(-360:90:360); ylim([-180 180]); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/piezo_amplified_iff_loop_gain.pdf', 'width', 'wide', 'height', 'tall'); #+end_src #+name: fig:piezo_amplified_iff_loop_gain #+caption: IFF Loop Gain #+RESULTS: [[file:figs/piezo_amplified_iff_loop_gain.png]] Now the closed-loop system is identified again and compare with the open loop system in Figure ref:fig:piezo_amplified_iff_comp. It is the expected behavior as shown in the Figure ref:fig:souleille18_results (from cite:souleille18_concep_activ_mount_space_applic). #+begin_src matlab :exports none clear io; io_i = 1; io(io_i) = linio([mdl, '/w'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Fd'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/z'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/APA300ML'], 1, 'output'); io_i = io_i + 1; Giff = linearize(mdl, io); Giff.InputName = {'w', 'f', 'F'}; Giff.OutputName = {'x1', 'Fs'}; #+end_src #+begin_src matlab :exports none freqs = logspace(0, 3, 1000); figure; tiledlayout(2, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G_ol('x1', 'w'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Giff('x1', 'w'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('$x_1/w$ [m/m]') ax2 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G_ol('x1', 'f'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Giff('x1', 'f'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('$x_1/f$ [m/N]'); ax3 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G_ol('x1', 'F'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Giff('x1', 'F'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('$x_1/F$ [m/N]'); ax4 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G_ol('Fs', 'w'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Giff('Fs', 'w'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('$F_s/w$ [N/m]'); ax5 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G_ol('Fs', 'f'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Giff('Fs', 'f'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('$F_s/f$ [N/N]'); ax6 = nexttile; hold on; plot(freqs, abs(squeeze(freqresp(G_ol('Fs', 'F'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Giff('Fs', 'F'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('$F_s/F$ [N/N]'); linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x'); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/piezo_amplified_iff_comp.pdf', 'width', 'full', 'height', 'full'); #+end_src #+name: fig:piezo_amplified_iff_comp #+caption: OL and CL transfer functions #+RESULTS: [[file:figs/piezo_amplified_iff_comp.png]] #+name: fig:souleille18_results #+caption: Results obtained in cite:souleille18_concep_activ_mount_space_applic [[file:figs/souleille18_results.png]] * Conclusion <> * Bibliography :ignore: #+latex: \printbibliography[heading=bibintoc,title={Bibliography}] * Helping Functions :noexport: ** Initialize Path #+NAME: m-init-path #+BEGIN_SRC matlab %% Path for functions, data and scripts addpath('./matlab/src/'); % Path for scripts addpath('./matlab/mat/'); % Path for data addpath('./matlab/'); #+END_SRC #+NAME: m-init-path-tangle #+BEGIN_SRC matlab %% Path for functions, data and scripts addpath('./src/'); % Path for scripts addpath('./mat/'); % Path for data #+END_SRC ** Initialize Simscape #+NAME: m-init-path-simscape #+BEGIN_SRC matlab addpath('./matlab/STEPS/'); % Path for Simscape Model %% Open Simscape Model mdl = 'test_apa_simscape'; % Name of the Simulink File open(mdl); % Open Simscape Model #+END_SRC #+NAME: m-init-path-simscape-tangle #+BEGIN_SRC matlab addpath('./STEPS/'); % Path for Simscape Model %% Open Simscape Model mdl = 'test_apa_simscape'; % Name of the Simulink File open(mdl); % Open Simscape Model #+END_SRC ** Initialize other elements #+NAME: m-init-other #+BEGIN_SRC matlab %% Colors for the figures colors = colororder; #+END_SRC ** =initializeAPA= - Initialize APA :PROPERTIES: :header-args:matlab+: :tangle matlab/src/initializeAPA.m :header-args:matlab+: :comments none :mkdirp yes :eval no :END: <> *** Function description :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab function [actuator] = initializeAPA(args) % initializeAPA - % % Syntax: [actuator] = initializeAPA(args) % % Inputs: % - args - % % Outputs: % - actuator - #+end_src *** Optional Parameters :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab arguments args.type char {mustBeMember(args.type,{'2dof', 'flexible frame', 'flexible'})} = '2dof' % Actuator and Sensor constants args.Ga (1,1) double {mustBeNumeric} = 0 args.Gs (1,1) double {mustBeNumeric} = 0 % For 2DoF args.k (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*0.38e6 args.ke (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*1.75e6 args.ka (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*3e7 args.c (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*3e1 args.ce (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*2e1 args.ca (6,1) double {mustBeNumeric, mustBePositive} = ones(6,1)*2e1 args.Leq (6,1) double {mustBeNumeric} = ones(6,1)*0.056 % Force Flexible APA args.xi (1,1) double {mustBeNumeric, mustBePositive} = 0.01 args.d_align (3,1) double {mustBeNumeric} = zeros(3,1) % [m] args.d_align_bot (3,1) double {mustBeNumeric} = zeros(3,1) % [m] args.d_align_top (3,1) double {mustBeNumeric} = zeros(3,1) % [m] % For Flexible Frame args.ks (1,1) double {mustBeNumeric, mustBePositive} = 235e6 args.cs (1,1) double {mustBeNumeric, mustBePositive} = 1e1 end #+end_src *** Initialize Structure :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab actuator = struct(); #+end_src *** Type :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab switch args.type case '2dof' actuator.type = 1; case 'flexible frame' actuator.type = 2; case 'flexible' actuator.type = 3; end #+end_src *** Actuator/Sensor Constants :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab if args.Ga == 0 switch args.type case '2dof' actuator.Ga = -30.0; case 'flexible frame' actuator.Ga = 1; % TODO case 'flexible' actuator.Ga = 23.4; end else actuator.Ga = args.Ga; % Actuator gain [N/V] end #+end_src #+begin_src matlab if args.Gs == 0 switch args.type case '2dof' actuator.Gs = 0.098; case 'flexible frame' actuator.Gs = 1; % TODO case 'flexible' actuator.Gs = -4674824; end else actuator.Gs = args.Gs; % Sensor gain [V/m] end #+end_src *** 2DoF parameters :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab actuator.k = args.k; % [N/m] actuator.ke = args.ke; % [N/m] actuator.ka = args.ka; % [N/m] actuator.c = args.c; % [N/(m/s)] actuator.ce = args.ce; % [N/(m/s)] actuator.ca = args.ca; % [N/(m/s)] actuator.Leq = args.Leq; % [m] #+end_src *** Flexible frame and fully flexible :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab switch args.type case 'flexible frame' actuator.K = readmatrix('APA300ML_b_mat_K.CSV'); % Stiffness Matrix actuator.M = readmatrix('APA300ML_b_mat_M.CSV'); % Mass Matrix actuator.P = extractNodes('APA300ML_b_out_nodes_3D.txt'); % Node coordinates [m] case 'flexible' actuator.K = readmatrix('full_APA300ML_K.CSV'); % Stiffness Matrix actuator.M = readmatrix('full_APA300ML_M.CSV'); % Mass Matrix actuator.P = extractNodes('full_APA300ML_out_nodes_3D.txt'); % Node coordiantes [m] actuator.d_align = args.d_align; actuator.d_align_bot = args.d_align_bot; actuator.d_align_top = args.d_align_top; end actuator.xi = args.xi; % Damping ratio actuator.ks = args.ks; % Stiffness of one stack [N/m] actuator.cs = args.cs; % Damping of one stack [N/m] #+end_src * Footnotes [fn:4]The Matlab =fminsearch= command is used to fit the plane [fn:3]Heidenhain MT25, specified accuracy of $0.5\,\mu m$ [fn:2]Millimar 1318 probe, specified linearity better than $1\,\mu m$ [fn:1]LCR-819 from Gwinstek, specified accuracy of $0.05\%$, measured frequency is set at $1\,\text{kHz}$