%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); %% Path for functions, data and scripts addpath('./src/'); % Path for scripts addpath('./mat/'); % Path for data addpath('./STEPS/'); % Path for Simscape Model %% Linearization options opts = linearizeOptions; opts.SampleTime = 0; %% Open Simscape Model mdl = 'test_apa_simscape'; % Name of the Simulink File open(mdl); % Open Simscape Model %% Colors for the figures colors = colororder; %% Input/Output definition of the Model clear io; io_i = 1; io(io_i) = linio([mdl, '/u'], 1, 'openinput'); io_i = io_i + 1; % DAC Voltage io(io_i) = linio([mdl, '/Vs'], 1, 'openoutput'); io_i = io_i + 1; % Sensor Voltage io(io_i) = linio([mdl, '/de'], 1, 'openoutput'); io_i = io_i + 1; % Encoder %% Frequency vector for analysis freqs = 5*logspace(0, 3, 1000); %% Identification of the actuator and sensor "constants" % Initialize the APA as a flexible body with unity "constants" n_hexapod.actuator = initializeAPA(... 'type', 'flexible', ... 'ga', 1, ... 'gs', 1); c_granite = 50; % Rought estimation of the damping added by the air bearing % Identify the dynamics G_norm = linearize(mdl, io, 0.0, opts); G_norm.InputName = {'u'}; G_norm.OutputName = {'Vs', 'de'}; % Load Identification Data to estimate the two gains load('meas_apa_frf.mat', 'f', 'Ts', 'enc_frf', 'iff_frf', 'apa_nums'); % Actuator Constant in [N/V] ga = -mean(abs(enc_frf(f>10 & f<20)))./dcgain(G_norm('de', 'u')); % Sensor Constant in [V/m] gs = -mean(abs(iff_frf(f>400 & f<500)))./(ga*abs(squeeze(freqresp(G_norm('Vs', 'u'), 1e3, 'Hz')))); %% Idenfify the dynamics of the Simscape model with correct actuator and sensor "constants" % Initialize the APA n_hexapod.actuator = initializeAPA(... 'type', 'flexible', ... 'ga', 23.2, ... % Actuator sensitivity [N/V] 'gs', -4.9e6); % Sensor sensitivity [V/m] % Identify with updated constants G_flex = exp(-Ts*s)*linearize(mdl, io, 0.0, opts); G_flex.InputName = {'u'}; G_flex.OutputName = {'Vs', 'de'}; %% Comparison of the measured FRF and the "Flexible" model of the APA300ML figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(enc_frf(:, 1)), 'color', [0,0,0,0.2], 'DisplayName', 'Identified'); for i = 1:length(apa_nums) plot(f, abs(enc_frf(:, i)), 'color', [0,0,0,0.2], 'HandleVisibility', 'off'); end plot(freqs, abs(squeeze(freqresp(G_flex('de', 'u'), freqs, 'Hz'))), '--', 'color', colors(2,:), 'DisplayName', '"Flexible" Model') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $d_e/u$ [m/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-8, 1e-3]); legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); ax2 = nexttile; hold on; for i = 1:length(apa_nums) plot(f, 180/pi*angle(enc_frf(:, i)), 'color', [0,0,0,0.2]); end plot(freqs, 180/pi*angle(squeeze(freqresp(G_flex('de', 'u'), freqs, 'Hz'))), '--', 'color', colors(2,:)) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 2e3]); %% Comparison of the measured FRF and the "Flexible" model of the APA300ML figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(iff_frf(:, 1)), 'color', [0,0,0,0.2], 'DisplayName', 'Identified'); for i = 2:length(apa_nums) plot(f, abs(iff_frf(:, i)), 'color', [0,0,0,0.2], 'HandleVisibility', 'off'); end plot(freqs, abs(squeeze(freqresp(G_flex('Vs', 'u'), freqs, 'Hz'))), '--', 'color', colors(2,:), 'DisplayName', '"Flexible" Model') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $V_s/u$ [V/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1e-2, 1e2]); legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); ax2 = nexttile; hold on; for i = 1:length(apa_nums) plot(f, 180/pi*angle(iff_frf(:, i)), 'color', [0,0,0,0.2]); end plot(freqs, 180/pi*angle(squeeze(freqresp(G_flex('Vs', 'u'), freqs, 'Hz'))), '--', 'color', colors(2,:)) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]); linkaxes([ax1,ax2],'x'); xlim([10, 2e3]);