#+TITLE: Simscape Model - Nano Active Stabilization System :DRAWER: #+LANGUAGE: en #+EMAIL: dehaeze.thomas@gmail.com #+AUTHOR: Dehaeze Thomas #+HTML_LINK_HOME: ../index.html #+HTML_LINK_UP: ../index.html #+HTML_HEAD: #+HTML_HEAD: #+BIND: org-latex-image-default-option "scale=1" #+BIND: org-latex-image-default-width "" #+LaTeX_CLASS: scrreprt #+LaTeX_CLASS_OPTIONS: [a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc] #+LATEX_HEADER: \input{preamble.tex} #+LATEX_HEADER_EXTRA: \input{preamble_extra.tex} #+LATEX_HEADER_EXTRA: \bibliography{simscape-nass.bib} #+BIND: org-latex-bib-compiler "biber" #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :exports none #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :noweb yes #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:matlab+ :tangle no #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}") #+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 #+PROPERTY: header-args:latex+ :imoutoptions -quality 100 #+PROPERTY: header-args:latex+ :results file raw replace #+PROPERTY: header-args:latex+ :buffer no #+PROPERTY: header-args:latex+ :tangle no #+PROPERTY: header-args:latex+ :eval no-export #+PROPERTY: header-args:latex+ :exports results #+PROPERTY: header-args:latex+ :mkdirp yes #+PROPERTY: header-args:latex+ :output-dir figs #+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png") :END: #+latex: \clearpage * Build :noexport: #+NAME: startblock #+BEGIN_SRC emacs-lisp :results none :tangle no (add-to-list 'org-latex-classes '("scrreprt" "\\documentclass{scrreprt}" ("\\chapter{%s}" . "\\chapter*{%s}") ("\\section{%s}" . "\\section*{%s}") ("\\subsection{%s}" . "\\subsection*{%s}") ("\\paragraph{%s}" . "\\paragraph*{%s}") )) ;; Remove automatic org heading labels (defun my-latex-filter-removeOrgAutoLabels (text backend info) "Org-mode automatically generates labels for headings despite explicit use of `#+LABEL`. This filter forcibly removes all automatically generated org-labels in headings." (when (org-export-derived-backend-p backend 'latex) (replace-regexp-in-string "\\\\label{sec:org[a-f0-9]+}\n" "" text))) (add-to-list 'org-export-filter-headline-functions 'my-latex-filter-removeOrgAutoLabels) ;; Remove all org comments in the output LaTeX file (defun delete-org-comments (backend) (loop for comment in (reverse (org-element-map (org-element-parse-buffer) 'comment 'identity)) do (setf (buffer-substring (org-element-property :begin comment) (org-element-property :end comment)) ""))) (add-hook 'org-export-before-processing-hook 'delete-org-comments) ;; Use no package by default (setq org-latex-packages-alist nil) (setq org-latex-default-packages-alist nil) ;; Do not include the subtitle inside the title (setq org-latex-subtitle-separate t) (setq org-latex-subtitle-format "\\subtitle{%s}") (setq org-export-before-parsing-hook '(org-ref-glossary-before-parsing org-ref-acronyms-before-parsing)) #+END_SRC * Notes :noexport: ** Notes Prefix is =nass= The goals of this report are: - [X] ([[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/positioning_error.org][positioning_error]]): Explain how the NASS control is made (computation of the wanted position, measurement of the sample position, computation of the errors) - [X] ([[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty_experiment.org][uncertainty_experiment]]): Effect of experimental conditions on the plant (payload mass, Ry position, Rz position, Rz velocity, etc...) - [ ] Determination of the *optimal stiffness* for the hexapod actuators: - [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty_optimal_stiffness.org][uncertainty_optimal_stiffness]] - [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/optimal_stiffness_disturbances.org][optimal_stiffness_disturbances]] - [ ] [[file:~/Cloud/work-projects/ID31-NASS/documents/state-of-thesis-2020/index.org][state-of-thesis-2020]] - [ ] [[file:/home/thomas/Cloud/meetings/group-meetings-me/2020-04-06-NASS-Design/2020-04-06-NASS-Design.org][group-meeting-optimal-stiffness]] Should this be in this report? *This should be in chapter 2* - [X] Explain why HAC-LAC strategy is nice (*It was already explained in uniaxial model*) - [X] [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/control.org][different control architectures]] - [X] [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/control-vibration-isolation.org][hexapod - vibration isolation]] - [X] How to apply/optimize IFF on an hexapod? ([[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/control_active_damping.org][control_active_damping]], [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/control-active-damping.org][active damping for stewart platforms]]) - [X] ([[file:~/Cloud/research/matlab/decoupling-strategies/svd-control.org][decoupling-strategies]]): Decoupling strategies for HAC? (maybe also in previous report) *Will be in chapter 2* - [X] Validation of the concept using simulations: - [X] Find where this simulation in OL/CL is made (maybe for the conference?) It was re-made for micro-station validation. Will just have to do the same simulation but with nano-hexapod in closed-loop - Tomography experiment (maybe also Ty scans) - Open VS Closed loop results - *Conclusion*: concept validation nano hexapod architecture with APA decentralized IFF + centralized HAC - In this section simple control (in the frame of the struts) - Justify future used control architecture (control in the frame of the struts? Need to check what was done in ID31 tests) - Table that compares different approaches (specify performances in different DoF, same plans on the diagonal, etc...) - Literature review about Stewart platform control? *In chapter 2: Special section about MIMO control, complementary filters, etc...* ** Outline *** Control Kinematics - Explain how the position error can be expressed in the frame of the nano-hexapod - ([[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/positioning_error.org][positioning_error]]): Explain how the NASS control is made (computation of the wanted position, measurement of the sample position, computation of the errors) - Control architecture, block diagram *** LAC - How to apply/optimize IFF on an hexapod? ([[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/control_active_damping.org][control_active_damping]], [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/control-active-damping.org][active damping for stewart platforms]]) - Robustness to payload mass - Root Locus - Damping optimization *** HAC - ([[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty_experiment.org][uncertainty_experiment]]): Effect of experimental conditions on the plant (payload mass, Ry position, Rz position, Rz velocity, etc...) - Determination of the *optimal stiffness* for the hexapod actuators: - [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty_optimal_stiffness.org][uncertainty_optimal_stiffness]] - [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/optimal_stiffness_disturbances.org][optimal_stiffness_disturbances]] - [ ] [[file:~/Cloud/work-projects/ID31-NASS/documents/state-of-thesis-2020/index.org][state-of-thesis-2020]] - [ ] [[file:/home/thomas/Cloud/meetings/group-meetings-me/2020-04-06-NASS-Design/2020-04-06-NASS-Design.org][group-meeting-optimal-stiffness]] - Effect of micro-station compliance - Effect of IFF - Effect of payload mass - Decoupled plant - Controller design *** Simulations - Take into account disturbances, metrology sensor noise. Maybe say here that we don't take in account other noise sources as they will be optimized latter (detail design phase) - Tomography + lateral scans (same as what was done in open loop [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A4-simscape-micro-station/simscape-micro-station.org::*Simulation of Scientific Experiments][here]]) - Validation of concept ** DONE Old Outline CLOSED: [2024-11-07 Thu 16:19] *** Introduction :ignore: Discussion of: - Transformation matrices / control architecture (computation of the position error in the frame of the nano-hexapod) - Control of parallel architectures - Control in the frame of struts or cartesian? - Effect of rotation on IFF? => APA - HAC-LAC - New noise budgeting? *** Control Kinematics - Explain how the position error can be expressed in the frame of the nano-hexapod - block diagram - Explain how to go from external metrology to the frame of the nano-hexapod *** High Authority Control - Low Authority Control (HAC-LAC) - general idea - case for parallel manipulator: decentralized LAC + centralized HAC *** Decoupling Strategies for parallel manipulators [[file:~/Cloud/research/matlab/decoupling-strategies/svd-control.org::+TITLE: Diagonal control using the SVD and the Jacobian Matrix][study]] - Jacobian matrices, CoK, CoM, ... - Discussion of cubic architecture - SVD, Modal, ... *** Decentralized Integral Force Feedback (LAC) - Root Locus - Damping optimization *** Decoupled Dynamics - Centralized HAC - Control in the frame of the struts - Effect of IFF *** Centralized Position Controller (HAC) - Decoupled plant - Controller design *** Time domain simulations Goal: validation of the concept - Take into account disturbances, sensor noise, etc... - Tomography + lateral scans (same as what was done in open loop [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A4-simscape-micro-station/simscape-micro-station.org::*Simulation of Scientific Experiments][here]]) ** DONE [#A] Merge the micro-station model with the nano-hexapod model CLOSED: [2025-02-12 Wed 12:10] SCHEDULED: <2025-02-12 Wed> - [X] *Start from the Simscape model of the ID31 tests* =/home/thomas/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/C5-test-bench-id31/matlab/nass_model_id31.slx= - [X] Remove LION metrology to have perfect measurement - [X] Remove nano-hexapod model and add simplified model - [ ] Add "cylindrical" payloads (configurable in mass) ** DONE [#B] Add payload configurable subsystem CLOSED: [2025-02-12 Wed 14:17] SCHEDULED: <2025-02-12 Wed> ** DONE [#A] Verify formulas to have the errors in the frame of the nano-hexapod and in the frame of the granite CLOSED: [2025-02-17 Mon 10:35] SCHEDULED: <2025-02-17 Mon> Errors in the frame of the nano-hexapod: \begin{equation}\label{eq:nass_transformation_error} \bm{T}_{\text{error}} = \bm{T}_{\mu\text{-station}}^{-1} \cdot \bm{T}_{\text{sample}} \end{equation} Errors in the frame of the granite: WTe(1:3, 4, i) = WTr(1:3, 4, i) - WTm(1:3, 4, i); WTe(1:3, 1:3, i) = WTr(1:3, 1:3, end)*WTm(1:3, 1:3, end)'; ** DONE [#A] Fix IFF and HAC controllers CLOSED: [2025-02-17 Mon 16:00] SCHEDULED: <2025-02-17 Mon> ** DONE [#A] Compute all figures CLOSED: [2025-02-17 Mon 18:26] SCHEDULED: <2025-02-17 Mon> ** DONE [#B] Discuss the necessity of estimated Rz? CLOSED: [2025-02-17 Mon 18:26] One big advantage of doing the control in the cartesian plane, is that we don't need the estimation of nano-hexapod Rz, therefore we don't need the encoders anymore! Maybe this should be done *here*. Here it can be reminded when doing the control in the cartesian frame. ** DONE [#B] Determine which .mat files are used and which are not CLOSED: [2025-02-17 Mon 23:04] #+begin_src matlab :eval no :tangle no load("nass_model_conf_log.mat"); load("nass_model_conf_simscape.mat"); dist = load("nass_model_disturbances.mat"); load("nass_model_references.mat"); load("nass_model_controller.mat"); load("nass_model_stages.mat"); J_L_to_X = inv(nano_hexapod.geometry.J); #+end_src - [ ] matlab/mat/conf_log.mat - [ ] matlab/mat/conf_simscape.mat - [ ] matlab/mat/conf_simulink.mat - [ ] matlab/mat/nano_hexapod.mat - [ ] matlab/mat/nass_disturbances.mat - [X] matlab/mat/nass_model_conf_log.mat - [X] matlab/mat/nass_model_conf_simscape.mat - [X] matlab/mat/nass_model_controller.mat - [X] matlab/mat/nass_model_disturbances.mat - [X] matlab/mat/nass_model_references.mat - [X] matlab/mat/nass_model_stages.mat - [ ] matlab/mat/nass_references.mat - [ ] matlab/mat/nass_stages.mat ** TODO [#B] Check if things are compatible to results of uniaxial model ** DONE [#C] Check if it would be interesting to show soft/stiff nano-hexapod plants CLOSED: [2025-02-17 Mon 18:26] - [ ] Would we see u-station dynamics with very stiff nano-hexapod? - [ ] Would rotation be difficult to handle with soft nano-hexapod? ** DONE [#C] Why not plant with very stiff actuators? CLOSED: [2025-02-17 Mon 18:26] - [ ] Check if it is confirms that having very stiff actuators is bad Not much better decoupling: 10Hz of bandwidth achievable, but may have worst sensitivity to disturbances #+begin_src matlab %% Identify the IFF plant dynamics using the Simscape model % Initialize each Simscape model elements initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(); initializeSimplifiedNanoHexapod(); % Initial Simscape Configuration initializeSimscapeConfiguration('gravity', false); initializeDisturbances('enable', false); initializeLoggingConfiguration('log', 'none'); initializeController('type', 'open-loop'); initializeReferences(); % Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs [N] io(io_i) = linio([mdl, '/NASS'], 3, 'openoutput', [], 'fn'); io_i = io_i + 1; % Force Sensors [N] initializeSimplifiedNanoHexapod('actuator_k', 1e8, 'actuator_kp', 0, 'actuator_c', 1e2); initializeSample('type', 'cylindrical', 'm', 1); G_m1_iff_pz = linearize(mdl, io); G_m1_iff_pz.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_m1_iff_pz.OutputName = {'fn1', 'fn2', 'fn3', 'fn4', 'fn5', 'fn6'}; #+end_src #+begin_src matlab :exports none :results none %% IFF Plant - Without parallel stiffness f = logspace(0,4,1000); figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:5 for j = i+1:6 plot(f, abs(squeeze(freqresp(G_m1_iff_pz(i,j), f, 'Hz'))), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); end end plot(f, abs(squeeze(freqresp(G_m1_iff_pz(1,1), f, 'Hz'))), 'color', colors(1,:), ... 'DisplayName', '$f_{ni}/f_i$ - $k_p = 0$') for i = 2:6 plot(f, abs(squeeze(freqresp(G_m1_iff_pz(i,i), f, 'Hz'))), 'color', colors(1,:), ... 'HandleVisibility', 'off'); end plot(f, abs(squeeze(freqresp(G_m1_iff_pz(1,2), f, 'Hz'))), 'color', [0, 0, 0, 0.2], ... 'DisplayName', '$f_{ni}/f_j$ - $k_p = 0$') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]); ylim([1e-4, 1e1]); leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i = 1:6 plot(f, 180/pi*unwrap(angle(squeeze(freqresp(G_m1_iff_pz(i,i), f, 'Hz')))), 'color', colors(1,:)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-20, 200]); yticks([0:45:180]); linkaxes([ax1,ax2],'x'); xlim([f(1), f(end)]); #+end_src #+begin_src matlab %% Identify the IFF plant dynamics using the Simscape model % Initialize each Simscape model elements initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(); initializeSimplifiedNanoHexapod('actuator_k', 1e8, 'actuator_kp', 0, 'actuator_c', 1e2); initializeSample('type', 'cylindrical', 'm', 1); % Initial Simscape Configuration initializeSimscapeConfiguration('gravity', false); initializeDisturbances('enable', false); initializeLoggingConfiguration('log', 'none'); initializeController('type', 'open-loop'); initializeReferences(); % Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Inputs [N] io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'EdL'); io_i = io_i + 1; % Strut errors [m] %% Identify HAC Plant without using IFF initializeSample('type', 'cylindrical', 'm', 1); G_m1_pz = linearize(mdl, io); G_m1_pz.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_m1_pz.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6'}; initializeSample('type', 'cylindrical', 'm', 25); G_m25_pz = linearize(mdl, io); G_m25_pz.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_m25_pz.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6'}; initializeSample('type', 'cylindrical', 'm', 50); G_m50_pz = linearize(mdl, io); G_m50_pz.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_m50_pz.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6'}; #+end_src #+begin_src matlab :exports none :results none figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(G_m1_pz(1,1), freqs, 'Hz'))), 'color', colors(1,:), ... 'DisplayName', '$f_{ni}/f_i$ - 1kg') plot(freqs, abs(squeeze(freqresp(G_m25_pz(1,1), freqs, 'Hz'))), 'color', colors(2,:), ... 'DisplayName', '$f_{ni}/f_i$ - 25kg') plot(freqs, abs(squeeze(freqresp(G_m50_pz(1,1), freqs, 'Hz'))), 'color', colors(3,:), ... 'DisplayName', '$f_{ni}/f_i$ - 50kg') for i = 1:5 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G_m1_pz(i,j), freqs, 'Hz'))), 'color', [colors(1,:), 0.2], ... 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_m25_pz(i,j), freqs, 'Hz'))), 'color', [colors(2,:), 0.2], ... 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_m50_pz(i,j), freqs, 'Hz'))), 'color', [colors(3,:), 0.2], ... 'HandleVisibility', 'off'); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); % ylim([1e-5, 1e1]); leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i = 1:6 plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_m1_pz(i,i), freqs, 'Hz')))), 'color', colors(1,:)); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_m25_pz(i,i), freqs, 'Hz')))), 'color', colors(2,:)); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_m50_pz(i,i), freqs, 'Hz')))), 'color', colors(3,:)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-200, 20]); yticks([-180:45:180]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src Compare with Hexapod alone: #+begin_src matlab %% Identify the IFF plant dynamics using the Simscape model % Initialize each Simscape model elements initializeGround('type', 'rigid'); initializeGranite('type', 'rigid'); initializeTy('type', 'rigid'); initializeRy('type', 'rigid'); initializeRz('type', 'rigid'); initializeMicroHexapod('type', 'rigid'); initializeSimplifiedNanoHexapod('actuator_k', 1e8, 'actuator_kp', 0, 'actuator_c', 1e2); initializeSample('type', 'cylindrical', 'm', 25); % Initial Simscape Configuration initializeSimscapeConfiguration('gravity', false); initializeDisturbances('enable', false); initializeLoggingConfiguration('log', 'none'); initializeController('type', 'open-loop'); initializeReferences(); % Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Inputs [N] io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'EdL'); io_i = io_i + 1; % Strut errors [m] %% Identify HAC Plant without using IFF G_m25_pz_rigid = linearize(mdl, io); G_m25_pz_rigid.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_m25_pz_rigid.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6'}; #+end_src #+begin_src matlab :exports none :results none figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(G_m25_pz_rigid(1,1), freqs, 'Hz'))), 'color', colors(1,:), ... 'DisplayName', '$f_{ni}/f_i$ - 25kg') plot(freqs, abs(squeeze(freqresp(G_m25_pz(1,1), freqs, 'Hz'))), 'color', colors(2,:), ... 'DisplayName', '$f_{ni}/f_i$ - 25kg') for i = 1:5 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G_m25_pz_rigid(i,j), freqs, 'Hz'))), 'color', [colors(1,:), 0.2], ... 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_m25_pz(i,j), freqs, 'Hz'))), 'color', [colors(2,:), 0.2], ... 'HandleVisibility', 'off'); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); % ylim([1e-5, 1e1]); leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i = 1:6 plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_m25_pz_rigid(i,i), freqs, 'Hz')))), 'color', colors(1,:)); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_m25_pz(i,i), freqs, 'Hz')))), 'color', colors(2,:)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-200, 20]); yticks([-180:45:180]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src ** DONE [#A] Add possibility to configure the nano-hexapod to be fully rigid CLOSED: [2025-02-12 Wed 14:46] - Use to compare TF without the NASS ** CANC [#C] What performance metric can we use? :@christophe: CLOSED: [2024-11-12 Tue 09:22] - State "CANC" from "QUES" [2024-11-12 Tue 09:22] This can be nice to have a (scalar) performance metric that can be used for optimization. In cite:hauge04_sensor_contr_space_based_six, a (scalar) performance metric representing the 6dof transmissibility is used. ** DONE [#C] Identify the sensibility to disturbances without the nano-hexapod and save the results CLOSED: [2024-11-07 Thu 09:20] This can then be used to compare with obtained performance with the nano-hexapod. This should be done in the ustation report (A4). * Introduction :ignore: From last sections: - Uniaxial: No stiff nano-hexapod (should also demonstrate that here) - Rotating: No soft nano-hexapod, Decentralized IFF can be used robustly by adding parallel stiffness - Micro-Station multi body model tuned from a modal analysis - Multi-body model of a nano-hexapod that can be merged with the multi-body model of the micro-station In this section: - Take the model of the nano-hexapod described in previous section (stiffness 1um/N) - Control kinematics: how the external metrology, the nano-hexapod metrology are used to control the sample's position (Section ref:sec:nass_kinematics) - Apply decentralized IFF (Section ref:sec:nass_active_damping) - Apply HAC-LAC (Section ref:sec:nass_hac) - Check robustness to change of payload and to spindle rotation - Simulation of experiments - Conclusion of the conceptual phase, validation with simulations #+name: fig:nass_simscape_model #+caption: 3D view of the NASS multi-body model #+attr_latex: :width 0.8\linewidth [[file:figs/nass_simscape_model.jpg]] * Control Kinematics :PROPERTIES: :HEADER-ARGS:matlab+: :tangle matlab/nass_1_kinematics.m :END: <> ** Introduction :ignore: Figure ref:fig:nass_concept_schematic presents a schematic overview of the NASS. This section focuses specifically on the components of the "Instrumentation and Real-Time Control" block. #+name: fig:nass_concept_schematic #+caption: Schematic of the Nano Active Stabilization System [[file:figs/nass_concept_schematic.png]] As established in the previous section on Stewart platforms, the proposed control strategy combines Decentralized Integral Force Feedback with a High Authority Controller performed in the frame of the struts. For the Nano Active Stabilization System, computing the positioning errors in the frame of the struts involves three key steps. First, the system computes the desired sample pose relative to a frame representing the point where the X-ray light is focused using micro-station kinematics, as detailed in Section ref:ssec:nass_ustation_kinematics. Second, it measures the actual sample pose relative to the same fix frame, described in Section ref:ssec:nass_sample_pose_error. Finally, it determines the sample pose error and maps these errors to the nano-hexapod struts, as explained in Section ref:ssec:nass_error_struts. The complete control architecture is detailed in Section ref:ssec:nass_control_architecture. ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no :noweb yes <> #+end_src #+begin_src matlab :eval no :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src ** Micro Station Kinematics <> The micro-station kinematics enables the computation of the desired sample pose from the reference signals of each micro-station stage. These reference signals consist of the desired lateral position $r_{D_y}$, tilt angle $r_{R_y}$, and spindle angle $r_{R_z}$. The micro-hexapod pose is defined by six parameters: three translations ($r_{D_{\mu x}}$, $r_{D_{\mu y}}$, $r_{D_{\mu z}}$) and three rotations ($r_{\theta_{\mu x}}$, $r_{\theta_{\mu y}}$, $r_{\theta_{\mu z}}$). Using these reference signals, the desired sample position relative to the fixed frame is expressed through the homogeneous transformation matrix $\bm{T}_{\mu\text{-station}}$, as defined in equation eqref:eq:nass_sample_ref. \begin{equation}\label{eq:nass_sample_ref} \bm{T}_{\mu\text{-station}} = \bm{T}_{D_y} \cdot \bm{T}_{R_y} \cdot \bm{T}_{R_z} \cdot \bm{T}_{\mu\text{-hexapod}} \end{equation} \begin{equation}\label{eq:nass_ustation_matrices} \begin{align} \bm{T}_{D_y} &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & r_{D_y} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \bm{T}_{\mu\text{-hexapod}} = \left[ \begin{array}{ccc|c} & & & r_{D_{\mu x}} \\ & \bm{R}_x(r_{\theta_{\mu x}}) \bm{R}_y(r_{\theta_{\mu y}}) \bm{R}_{z}(r_{\theta_{\mu z}}) & & r_{D_{\mu y}} \\ & & & r_{D_{\mu z}} \cr \hline 0 & 0 & 0 & 1 \end{array} \right] \\ \bm{T}_{R_z} &= \begin{bmatrix} \cos(r_{R_z}) & -\sin(r_{R_z}) & 0 & 0 \\ \sin(r_{R_z}) & \cos(r_{R_z}) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \bm{T}_{R_y} = \begin{bmatrix} \cos(r_{R_y}) & 0 & \sin(r_{R_y}) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(r_{R_y}) & 0 & \cos(r_{R_y}) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{align} \end{equation} ** Computation of the sample's pose error <> The external metrology system measures the sample position relative to the fixed granite. Due to the system's symmetry, this metrology provides measurements for five degrees of freedom: three translations ($D_x$, $D_y$, $D_z$) and two rotations ($R_x$, $R_y$). The sixth degree of freedom ($R_z$) is still required to compute the errors in the frame of the nano-hexapod struts (i.e. to compute the nano-hexapod inverse kinematics). This $R_z$ rotation is estimated by combining measurements from the spindle encoder and the nano-hexapod's internal metrology, which consists of relative motion sensors in each strut (note that the micro-hexapod is not used for $R_z$ rotation, and is therefore ignore for $R_z$ estimation). The measured sample pose is represented by the homogeneous transformation matrix $\bm{T}_{\text{sample}}$, as shown in equation eqref:eq:nass_sample_pose. \begin{equation}\label{eq:nass_sample_pose} \bm{T}_{\text{sample}} = \left[ \begin{array}{ccc|c} & & & D_{x} \\ & \bm{R}_x(R_{x}) \bm{R}_y(R_{y}) \bm{R}_{z}(R_{z}) & & D_{y} \\ & & & D_{z} \cr \hline 0 & 0 & 0 & 1 \end{array} \right] \end{equation} ** Position error in the frame of the struts <> The homogeneous transformation formalism enables straightforward computation of the sample position error. This computation involves the previously computed homogeneous $4 \times 4$ matrices: $\bm{T}_{\mu\text{-station}}$ representing the desired pose, and $\bm{T}_{\text{sample}}$ representing the measured pose. Their combination yields $\bm{T}_{\text{error}}$, which expresses the position error of the sample in the frame of the rotating nano-hexapod, as shown in equation eqref:eq:nass_transformation_error. \begin{equation}\label{eq:nass_transformation_error} \bm{T}_{\text{error}} = \bm{T}_{\mu\text{-station}}^{-1} \cdot \bm{T}_{\text{sample}} \end{equation} The known structure of the homogeneous transformation matrix facilitates efficient real-time computation of the inverse. From $\bm{T}_{\text{error}}$, the position and orientation errors $\bm{\epsilon}_{\mathcal{X}} = [\epsilon_{D_x},\ \epsilon_{D_y},\ \epsilon_{D_z},\ \epsilon_{R_x},\ \epsilon_{R_y},\ \epsilon_{R_z}]$ of the sample are extracted using equation eqref:eq:nass_compute_errors: \begin{equation}\label{eq:nass_compute_errors} \begin{align} \epsilon_{D_x} & = \bm{T}_{\text{error}}(1,4) \\ \epsilon_{D_y} & = \bm{T}_{\text{error}}(2,4) \\ \epsilon_{D_z} & = \bm{T}_{\text{error}}(3,4) \\ \epsilon_{R_y} & = \text{atan2}(\bm{T}_{\text{error}}(1,3), \sqrt{\bm{T}_{\text{error}}(1,1)^2 + \bm{T}_{\text{error}}(1,2)^2}) \\ \epsilon_{R_x} & = \text{atan2}(-\bm{T}_{\text{error}}(2,3)/\cos(\epsilon_{R_y}), \bm{T}_{\text{error}}(3,3)/\cos(\epsilon_{R_y})) \\ \epsilon_{R_z} & = \text{atan2}(-\bm{T}_{\text{error}}(1,2)/\cos(\epsilon_{R_y}), \bm{T}_{\text{error}}(1,1)/\cos(\epsilon_{R_y})) \\ \end{align} \end{equation} Finally, these errors are mapped to the strut space through the nano-hexapod Jacobian matrix eqref:eq:nass_inverse_kinematics. \begin{equation}\label{eq:nass_inverse_kinematics} \bm{\epsilon}_{\mathcal{L}} = \bm{J} \cdot \bm{\epsilon}_{\mathcal{X}} \end{equation} ** Control Architecture - Summary <> The complete control architecture is summarized in Figure ref:fig:nass_control_architecture. The sample pose is measured using external metrology for five degrees of freedom, while the sixth degree of freedom (Rz) is estimated by combining measurements from the nano-hexapod encoders and spindle encoder. The sample reference pose is determined by the reference signals of the translation stage, tilt stage, spindle, and micro-hexapod. Position error computation follows a two-step process: first, homogeneous transformation matrices are used to determine the error in the nano-hexapod frame, then the Jacobian matrix $\bm{J}$ maps these errors to individual strut coordinates. For control purposes, force sensors mounted on each strut are used in a decentralized way for active damping, as detailed in Section ref:sec:nass_active_damping. Then, the high authority controller uses the computed errors in the frame of the struts to provides real-time stabilization of the sample position (Section ref:sec:nass_hac). #+begin_src latex :file nass_control_architecture.pdf \begin{tikzpicture} % Blocs \node[block={2.0cm}{1.0cm}, fill=colorblue!20!white] (metrology) {Metrology}; \node[block={2.0cm}{2.0cm}, below=0.1 of metrology, align=center, fill=colorblue!20!white] (nhexa) {Nano\\Hexapod}; \node[block={3.0cm}{1.5cm}, below=0.1 of nhexa, align=center, fill=colorblue!20!white] (ustation) {Micro\\Station}; \coordinate[] (inputf) at ($(nhexa.south west)!0.5!(nhexa.north west)$); \coordinate[] (outputfn) at ($(nhexa.south east)!0.3!(nhexa.north east)$); \coordinate[] (outputde) at ($(nhexa.south east)!0.7!(nhexa.north east)$); \coordinate[] (outputDy) at ($(ustation.south east)!0.1!(ustation.north east)$); \coordinate[] (outputRy) at ($(ustation.south east)!0.5!(ustation.north east)$); \coordinate[] (outputRz) at ($(ustation.south east)!0.9!(ustation.north east)$); \node[block={1.0cm}{1.0cm}, right=0.5 of outputde, fill=colorred!20!white] (Rz_kinematics) {$\bm{J}_{R_z}^{-1}$}; \node[block={2.0cm}{2.0cm}, right=2.2 of ustation, align=center, fill=colorred!20!white] (ustation_kinematics) {Compute\\Reference\\Position}; \node[block={2.0cm}{2.0cm}, right=0.8 of ustation_kinematics, align=center, fill=colorred!20!white] (compute_error) {Compute\\Error\\Position}; \node[block={2.0cm}{2.0cm}, above=0.8 of compute_error, align=center, fill=colorred!20!white] (compute_pos) {Compute\\Sample\\Position}; \node[block={1.0cm}{1.0cm}, right=0.8 of compute_error, fill=colorred!20!white] (hexa_jacobian) {$\bm{J}$}; \coordinate[] (inputMetrology) at ($(compute_error.north east)!0.3!(compute_error.north west)$); \coordinate[] (inputRz) at ($(compute_error.north east)!0.7!(compute_error.north west)$); \node[addb={+}{}{}{}{}, right=0.4 of Rz_kinematics, fill=colorred!20!white] (addRz) {}; \draw[->] (Rz_kinematics.east) -- (addRz.west); \draw[->] (outputRz-|addRz)node[branch]{} -- (addRz.south); \draw[->] (outputDy) node[above right]{$r_{D_y}$} -- (outputDy-|ustation_kinematics.west); \draw[->] (outputRy) node[above right]{$r_{R_y}$} -- (outputRy-|ustation_kinematics.west); \draw[->] (outputRz) node[above right]{$r_{R_z}$} -- (outputRz-|ustation_kinematics.west); \draw[->] (metrology.east)node[above right]{$[D_x,\,D_y,\,D_z,\,R_x,\,R_y]$} -- (compute_pos.west|-metrology); \draw[->] (addRz.east)node[above right]{$R_z$} -- (compute_pos.west|-addRz); \draw[->] (compute_pos.south)node -- (compute_error.north)node[above right]{$\bm{y}_{\mathcal{X}}$}; \draw[->] (outputde) -- (Rz_kinematics.west) node[above left]{$\bm{\mathcal{L}}$}; \draw[->] (ustation_kinematics.east) -- (compute_error.west) node[above left]{$\bm{r}_{\mathcal{X}}$}; \draw[->] (compute_error.east) -- (hexa_jacobian.west) node[above left]{$\bm{\epsilon\mathcal{X}}$}; \draw[->] (hexa_jacobian.east) -- ++(1.8, 0) node[above left]{$\bm{\epsilon\mathcal{L}}$}; \draw[->] (outputfn) -- ($(outputfn-|hexa_jacobian.east) + (1.0, 0)$)coordinate(fn) node[above left]{$\bm{f}_n$}; \begin{scope}[on background layer] \node[fit={(metrology.north-|ustation.west) (hexa_jacobian.east|-compute_error.south)}, fill=black!10!white, draw, dashed, inner sep=4pt] (plant) {}; \node[anchor={north east}] at (plant.north east){$\text{Plant}$}; \end{scope} \node[block, above=0.2 of plant, fill=coloryellow!20!white] (Kiff) {$\bm{K}_{\text{IFF}}$}; \draw[->] ($(fn)-(0.6,0)$)node[branch]{} |- (Kiff.east); \node[addb={+}{}{}{}{}, left=0.8 of inputf] (addf) {}; \draw[->] (Kiff.west) -| (addf.north); \begin{scope}[on background layer] \node[fit={(plant.south-|fn) (addf.west|-Kiff.north)}, fill=black!20!white, draw, dashed, inner sep=4pt] (damped_plant) {}; \node[anchor={north east}] at (damped_plant.north east){$\text{Damped Plant}$}; \end{scope} \begin{scope}[on background layer] \node[fit={(metrology.north-|ustation.west) (hexa_jacobian.east|-compute_error.south)}, fill=black!10!white, draw, dashed, inner sep=4pt] (plant) {}; \node[anchor={north east}] at (plant.north east){$\text{Plant}$}; \end{scope} \node[block, left=0.8 of addf, fill=colorgreen!20!white] (Khac) {$\bm{K}_{\text{HAC}}$}; \draw[->] ($(hexa_jacobian.east)+(1.4,0)$)node[branch]{} |- ($(Khac.west)+(-0.4, -3.4)$) |- (Khac.west); \draw[->] (Khac.east) -- node[midway, above]{$\bm{f}^{\prime}$} (addf.west); \draw[->] (addf.east) -- (inputf) node[above left]{$\bm{f}$}; \end{tikzpicture} #+end_src #+name: fig:nass_control_architecture #+caption: The physical systems are shown in blue, the control kinematics in red, the decentralized Integral Force Feedback in yellow and the centralized High Authority Controller in green. #+attr_latex: :width \linewidth #+RESULTS: [[file:figs/nass_control_architecture.png]] * Decentralized Active Damping :PROPERTIES: :HEADER-ARGS:matlab+: :tangle matlab/nass_2_active_damping.m :END: <> ** Introduction :ignore: Building upon the uniaxial model study, this section implements decentralized Integral Force Feedback (IFF) as the first component of the HAC-LAC strategy. Springs in parallel to the force sensors are used to guarantee the control robustness as was found using the 3DoF rotating model. The objective here is to design a decentralized IFF controller that provides good damping of the nano-hexapod modes across payload masses ranging from $1$ to $50\,\text{kg}$ and rotational velocity up to $360\,\text{deg/s}$. Used payloads have a cylindrical shape with 250 mm height and with masses of 1 kg, 25 kg, and 50 kg. ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no :noweb yes <> #+end_src #+begin_src matlab :eval no :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src ** IFF Plant <> Transfer functions from actuator forces $f_i$ to force sensor measurements $f_{mi}$ are computed using the multi-body model. Figure ref:fig:nass_iff_plant_effect_kp examines how parallel stiffness affects the plant dynamics, with identification performed at maximum spindle velocity $\Omega_z = 360\,\text{deg/s}$ and with a payload mass of 25 kg. Without parallel stiffness (Figure ref:fig:nass_iff_plant_no_kp), the dynamics exhibits non-minimum phase zeros at low frequency, confirming predictions from the three-degree-of-freedom rotating model. Adding parallel stiffness (Figure ref:fig:nass_iff_plant_kp) transforms these into minimum phase complex conjugate zeros, enabling unconditionally stable decentralized IFF implementation. Though both cases show significant coupling around resonances, stability is guaranteed by the collocated arrangement of actuators and sensors [[cite:&preumont08_trans_zeros_struc_contr_with]]. #+begin_src matlab %% Identify the IFF plant dynamics using the Simscape model % Initialize each Simscape model elements initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(); initializeSimplifiedNanoHexapod(); % Initial Simscape Configuration initializeSimscapeConfiguration('gravity', false); initializeDisturbances('enable', false); initializeLoggingConfiguration('log', 'none'); initializeController('type', 'open-loop'); initializeReferences(); % Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs [N] io(io_i) = linio([mdl, '/NASS'], 3, 'openoutput', [], 'fn'); io_i = io_i + 1; % Force Sensors [N] %% Identify for multi payload masses (no rotation) initializeReferences(); % No Spindle Rotation % 1kg Sample initializeSample('type', 'cylindrical', 'm', 1); G_iff_m1 = linearize(mdl, io); G_iff_m1.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_iff_m1.OutputName = {'fn1', 'fn2', 'fn3', 'fn4', 'fn5', 'fn6'}; % 25kg Sample initializeSample('type', 'cylindrical', 'm', 25); G_iff_m25 = linearize(mdl, io); G_iff_m25.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_iff_m25.OutputName = {'fn1', 'fn2', 'fn3', 'fn4', 'fn5', 'fn6'}; % 50kg Sample initializeSample('type', 'cylindrical', 'm', 50); G_iff_m50 = linearize(mdl, io); G_iff_m50.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_iff_m50.OutputName = {'fn1', 'fn2', 'fn3', 'fn4', 'fn5', 'fn6'}; %% Effect of Rotation initializeReferences(... 'Rz_type', 'rotating', ... 'Rz_period', 1); % 360 deg/s initializeSample('type', 'cylindrical', 'm', 25); G_iff_m25_Rz = linearize(mdl, io, 0.1); G_iff_m25_Rz.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_iff_m25_Rz.OutputName = {'fn1', 'fn2', 'fn3', 'fn4', 'fn5', 'fn6'}; %% Effect of Rotation - No added parallel stiffness initializeSimplifiedNanoHexapod('actuator_kp', 0); initializeReferences(... 'Rz_type', 'rotating', ... 'Rz_period', 1); % 360 deg/s initializeSample('type', 'cylindrical', 'm', 25); G_iff_m25_Rz_no_kp = linearize(mdl, io, 0.1); G_iff_m25_Rz_no_kp.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_iff_m25_Rz_no_kp.OutputName = {'fn1', 'fn2', 'fn3', 'fn4', 'fn5', 'fn6'}; #+end_src #+begin_src matlab :exports none :results none %% IFF Plant - Without parallel stiffness f = logspace(-1,3,1000); figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:5 for j = i+1:6 plot(f, abs(squeeze(freqresp(G_iff_m25_Rz_no_kp(i,j), f, 'Hz'))), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); end end plot(f, abs(squeeze(freqresp(G_iff_m25_Rz_no_kp(1,1), f, 'Hz'))), 'color', colors(1,:), ... 'DisplayName', '$f_{ni}/f_i$ - $k_p = 0$') for i = 2:6 plot(f, abs(squeeze(freqresp(G_iff_m25_Rz_no_kp(i,i), f, 'Hz'))), 'color', colors(1,:), ... 'HandleVisibility', 'off'); end plot(f, abs(squeeze(freqresp(G_iff_m25_Rz_no_kp(1,2), f, 'Hz'))), 'color', [0, 0, 0, 0.2], ... 'DisplayName', '$f_{ni}/f_j$ - $k_p = 0$') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]); ylim([1e-4, 1e1]); leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i = 1:6 plot(f, 180/pi*unwrap(angle(squeeze(freqresp(G_iff_m25_Rz_no_kp(i,i), f, 'Hz')))), 'color', colors(1,:)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-20, 200]); yticks([0:45:180]); linkaxes([ax1,ax2],'x'); xlim([f(1), f(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file none exportFig('figs/nass_iff_plant_no_kp.pdf', 'width', 'half', 'height', 600); #+end_src #+begin_src matlab :exports none :results none %% IFF Plant - With added parallel stiffness figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:5 for j = i+1:6 plot(f, abs(squeeze(freqresp(G_iff_m25_Rz(i,j), f, 'Hz'))), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); end end plot(f, abs(squeeze(freqresp(G_iff_m25_Rz(1,1), f, 'Hz'))), 'color', colors(1,:), ... 'DisplayName', '$f_{ni}/f_i$ - $k_p = 50N/mm$') for i = 2:6 plot(f, abs(squeeze(freqresp(G_iff_m25_Rz(i,i), f, 'Hz'))), 'color', colors(1,:), ... 'HandleVisibility', 'off'); end plot(f, abs(squeeze(freqresp(G_iff_m25_Rz(1,2), f, 'Hz'))), 'color', [0, 0, 0, 0.2], ... 'DisplayName', '$f_{ni}/f_j$ - $k_p = 50N/mm$') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]); ylim([1e-4, 1e1]); leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i = 1:6 plot(f, 180/pi*angle(squeeze(freqresp(G_iff_m25_Rz(i,i), f, 'Hz'))), 'color', colors(1,:)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-20, 200]); yticks([0:45:180]); linkaxes([ax1,ax2],'x'); xlim([f(1), f(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file none exportFig('figs/nass_iff_plant_kp.pdf', 'width', 'half', 'height', 600); #+end_src #+name: fig:nass_iff_plant_effect_kp #+caption: Effect of stiffness parallel to the force sensor on the IFF plant with $\Omega_z = 360\,\text{deg/s}$ and payload mass of 25kg. The dynamics without parallel stiffness has non-minimum phase zeros at low frequency (\subref{fig:nass_iff_plant_no_kp}). The added parallel stiffness transforms the non-minimum phase zeros to complex conjugate zeros (\subref{fig:nass_iff_plant_kp}) #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:nass_iff_plant_no_kp}without parallel stiffness} #+attr_latex: :options {0.48\textwidth} #+begin_subfigure #+attr_latex: :width 0.95\linewidth [[file:figs/nass_iff_plant_no_kp.png]] #+end_subfigure #+attr_latex: :caption \subcaption{\label{fig:nass_iff_plant_kp}with parallel stiffness} #+attr_latex: :options {0.48\textwidth} #+begin_subfigure #+attr_latex: :width 0.95\linewidth [[file:figs/nass_iff_plant_kp.png]] #+end_subfigure #+end_figure The effect of rotation, shown in Figure ref:fig:nass_iff_plant_effect_rotation, is negligible as the actuator stiffness ($k_a = 1\,N/\mu m$) is large compared to the negative stiffness induced by gyroscopic effects (estimated from the 3DoF rotating model). Figure ref:fig:nass_iff_plant_effect_payload illustrate the effect of payload mass on the plant dynamics. While the poles and zeros are shifting with payload mass, the alternating pattern of poles and zeros is maintained, ensuring that the phase remains bounded between 0 and 180 degrees, and thus good robustness properties. #+begin_src matlab :exports none :results none %% Effect of spindle's rotation on the IFF Plant figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:5 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G_iff_m25(i,j), freqs, 'Hz'))), 'color', [colors(1,:), 0.1], ... 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_iff_m25_Rz(i,j), freqs, 'Hz'))), 'color', [colors(2,:), 0.1], ... 'HandleVisibility', 'off'); end end plot(freqs, abs(squeeze(freqresp(G_iff_m25(1,1), freqs, 'Hz'))), 'color', colors(1,:), ... 'DisplayName', '$f_{ni}/f_i$ - $\Omega_z = 0$ deg/s') plot(freqs, abs(squeeze(freqresp(G_iff_m25_Rz(1,1), freqs, 'Hz'))), 'color', colors(2,:), ... 'DisplayName', '$f_{ni}/f_i$ - $\Omega_z = 360$ deg/s') for i = 2:6 plot(freqs, abs(squeeze(freqresp(G_iff_m25(i,i), freqs, 'Hz'))), 'color', colors(1,:), ... 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_iff_m25_Rz(i,i), freqs, 'Hz'))), 'color', colors(2,:), ... 'HandleVisibility', 'off'); end % plot(freqs, abs(squeeze(freqresp(G_iff_m25_Rz(1,2), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ... % 'DisplayName', '$f_{ni}/f_j$') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]); ylim([1e-4, 1e2]); leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff_m25(i,i), freqs, 'Hz'))), 'color', colors(1,:)); plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff_m25_Rz(i,i), freqs, 'Hz'))), 'color', colors(2,:)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-20, 200]); yticks([0:45:180]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file none exportFig('figs/nass_iff_plant_effect_rotation.pdf', 'width', 'half', 'height', 600); #+end_src #+begin_src matlab :exports none :results none %% Effect of the payload's mass on the IFF Plant figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(G_iff_m1(1,1), freqs, 'Hz'))), 'color', [colors(1,:), 0.5], ... 'DisplayName', '$f_{ni}/f_i$ - 1kg') for i = 2:6 plot(freqs, abs(squeeze(freqresp(G_iff_m1(i,i), freqs, 'Hz'))), 'color', [colors(1,:), 0.5], ... 'HandleVisibility', 'off'); end plot(freqs, abs(squeeze(freqresp(G_iff_m25(1,1), freqs, 'Hz'))), 'color', [colors(2,:), 0.5], ... 'DisplayName', '$f_{ni}/f_i$ - 25kg') for i = 2:6 plot(freqs, abs(squeeze(freqresp(G_iff_m25(i,i), freqs, 'Hz'))), 'color', [colors(2,:), 0.5], ... 'HandleVisibility', 'off'); end plot(freqs, abs(squeeze(freqresp(G_iff_m50(1,1), freqs, 'Hz'))), 'color', [colors(3,:), 0.5], ... 'DisplayName', '$f_{ni}/f_i$ - 50kg') for i = 2:6 plot(freqs, abs(squeeze(freqresp(G_iff_m50(i,i), freqs, 'Hz'))), 'color', [colors(3,:), 0.5], ... 'HandleVisibility', 'off'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]); ylim([1e-4, 1e2]); leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff_m1(i,i), freqs, 'Hz'))), 'color', [colors(1,:), 0.5]); end for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff_m25(i,i), freqs, 'Hz'))), 'color', [colors(2,:), 0.5]); end for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff_m50(i,i), freqs, 'Hz'))), 'color', [colors(3,:), 0.5]); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-20, 200]); yticks([0:45:180]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file none exportFig('figs/nass_iff_plant_effect_payload.pdf', 'width', 'half', 'height', 600); #+end_src #+name: fig:nass_iff_plant_effect_rotation_payload #+caption: Effect of the Spindle's rotational velocity on the IFF plant (\subref{fig:nass_iff_plant_effect_rotation}) and effect of the payload's mass on the IFF plant (\subref{fig:nass_iff_plant_effect_payload}) #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:nass_iff_plant_effect_rotation}Effect of Spindle rotation} #+attr_latex: :options {0.48\textwidth} #+begin_subfigure #+attr_latex: :width 0.95\linewidth [[file:figs/nass_iff_plant_effect_rotation.png]] #+end_subfigure #+attr_latex: :caption \subcaption{\label{fig:nass_iff_plant_effect_payload}Effect of payload mass} #+attr_latex: :options {0.48\textwidth} #+begin_subfigure #+attr_latex: :width 0.95\linewidth [[file:figs/nass_iff_plant_effect_payload.png]] #+end_subfigure #+end_figure ** Controller Design <> Previous analysis using the 3DoF rotating model showed that decentralized Integral Force Feedback (IFF) with pure integrators is unstable due to gyroscopic effects caused by spindle rotation. This finding is also confirmed with the multi-body model of the NASS: the system is unstable when using pure integrators and without parallel stiffness. This instability can be mitigated by introducing sufficient stiffness in parallel with the force sensors. However, as illustrated in Figure ref:fig:nass_iff_plant_kp, adding parallel stiffness increases the low frequency gain. If using pure integrators, this would results in high loop gain at low frequencies, adversely affecting the damped plant dynamics, which is undesirable. To resolve this issue, a second-order high-pass filter is introduced to limit the low frequency gain, as shown in Equation eqref:eq:nass_kiff. \begin{equation}\label{eq:nass_kiff} \bm{K}_{\text{IFF}}(s) = g \cdot \begin{bmatrix} K_{\text{IFF}}(s) & & 0 \\ & \ddots & \\ 0 & & K_{\text{IFF}}(s) \end{bmatrix}, \quad K_{\text{IFF}}(s) = \frac{1}{s} \cdot \frac{\frac{s^2}{\omega_z^2}}{\frac{s^2}{\omega_z^2} + 2 \xi_z \frac{s}{\omega_z} + 1} \end{equation} The cut-off frequency of the second-order high-pass filter is tuned to be below the frequency of the complex conjugate zero for the highest mass, which is at $5\,\text{Hz}$. The overall gain is then increased to have large loop gain around resonances to be damped, as illustrated in Figure ref:fig:nass_iff_loop_gain. #+begin_src matlab %% Verify that parallel stiffness permits to have a stable plant Kiff_pure_int = -200/s*eye(6); isstable(feedback(G_iff_m25_Rz, Kiff_pure_int, 1)) isstable(feedback(G_iff_m25_Rz_no_kp, Kiff_pure_int, 1)) #+end_src #+begin_src matlab %% IFF Controller Design % Second order high pass filter wz = 2*pi*2; xiz = 0.7; Ghpf = (s^2/wz^2)/(s^2/wz^2 + 2*xiz*s/wz + 1); Kiff = -200 * ... % Gain 1/(0.01*2*pi + s) * ... % LPF: provides integral action Ghpf * ... % 2nd order HPF (limit low frequency gain) eye(6); % Diagonal 6x6 controller (i.e. decentralized) Kiff.InputName = {'fm1', 'fm2', 'fm3', 'fm4', 'fm5', 'fm6'}; Kiff.OutputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; #+end_src #+begin_src matlab :exports none :tangle no % The designed IFF controller is saved save('./matlab/mat/nass_K_iff.mat', 'Kiff'); #+end_src #+begin_src matlab :eval no % The designed IFF controller is saved save('./mat/nass_K_iff.mat', 'Kiff'); #+end_src #+begin_src matlab :exports none :results none %% Loop gain for the decentralized IFF figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(Kiff(1,1)*G_iff_m1(1,1), freqs, 'Hz'))), 'color', [colors(1,:), 0.5], ... 'DisplayName', '1kg') for i = 2:6 plot(freqs, abs(squeeze(freqresp(Kiff(1,1)*G_iff_m1(i,i), freqs, 'Hz'))), 'color', [colors(1,:), 0.5], ... 'HandleVisibility', 'off'); end plot(freqs, abs(squeeze(freqresp(Kiff(1,1)*G_iff_m25(1,1), freqs, 'Hz'))), 'color', [colors(2,:), 0.5], ... 'DisplayName', '25kg') for i = 2:6 plot(freqs, abs(squeeze(freqresp(Kiff(1,1)*G_iff_m25(i,i), freqs, 'Hz'))), 'color', [colors(2,:), 0.5], ... 'HandleVisibility', 'off'); end plot(freqs, abs(squeeze(freqresp(Kiff(1,1)*G_iff_m50(1,1), freqs, 'Hz'))), 'color', [colors(3,:), 0.5], ... 'DisplayName', '50kg') for i = 2:6 plot(freqs, abs(squeeze(freqresp(Kiff(1,1)*G_iff_m50(i,i), freqs, 'Hz'))), 'color', [colors(3,:), 0.5], ... 'HandleVisibility', 'off'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Loop Gain'); set(gca, 'XTickLabel',[]); ylim([1e-4, 1e2]); leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(-Kiff(1,1)*G_iff_m1(i,i), freqs, 'Hz'))), 'color', [colors(1,:), 0.5]); end for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(-Kiff(1,1)*G_iff_m25(i,i), freqs, 'Hz'))), 'color', [colors(2,:), 0.5]); end for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(-Kiff(1,1)*G_iff_m50(i,i), freqs, 'Hz'))), 'color', [colors(3,:), 0.5]); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-110, 200]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/nass_iff_loop_gain.pdf', 'width', 'wide', 'height', 'normal'); #+end_src #+name: fig:nass_iff_loop_gain #+caption: Loop gain for the decentralized IFF: $K_{\text{IFF}}(s) \cdot \frac{f_{mi}}{f_i}(s)$ #+RESULTS: [[file:figs/nass_iff_loop_gain.png]] To verify stability, root loci for the three payload configurations are computed and shown in Figure ref:fig:nass_iff_root_locus. The results demonstrate that the closed-loop poles remain within the left-half plane, indicating the robust stability properties of the applied decentralized IFF. #+begin_src matlab :exports none :results none %% Root Locus for the Decentralized IFF controller - 1kg Payload figure; gains = logspace(-2, 1, 200); figure; tiledlayout(1, 1, 'TileSpacing', 'compact', 'Padding', 'None'); nexttile(); hold on; plot(real(pole(G_iff_m1)), imag(pole(G_iff_m1)), 'x', 'color', colors(1,:), ... 'DisplayName', '$g = 0$'); plot(real(tzero(G_iff_m1)), imag(tzero(G_iff_m1)), 'o', 'color', colors(1,:), ... 'HandleVisibility', 'off'); for g = gains clpoles = pole(feedback(G_iff_m1, g*Kiff, +1)); plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:), ... 'HandleVisibility', 'off'); end % Optimal gain clpoles = pole(feedback(G_iff_m1, Kiff, +1)); plot(real(clpoles), imag(clpoles), 'kx', ... 'DisplayName', '$g_{opt}$'); xline(0); yline(0); hold off; axis equal; xlim([-900, 100]); ylim([-100, 900]); xticks([-900:100:0]); yticks([0:100:900]); set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); xlabel('Real part'); ylabel('Imaginary part'); #+end_src #+begin_src matlab :tangle no :exports results :results file none exportFig('figs/nass_iff_root_locus_1kg.pdf', 'width', 'third', 'height', 'normal'); #+end_src #+begin_src matlab :exports none :results none %% Root Locus for the Decentralized IFF controller - 25kg Payload gains = logspace(-2, 1, 200); figure; tiledlayout(1, 1, 'TileSpacing', 'compact', 'Padding', 'None'); nexttile(); hold on; plot(real(pole(G_iff_m25)), imag(pole(G_iff_m25)), 'x', 'color', colors(2,:), ... 'DisplayName', '$g = 0$'); plot(real(tzero(G_iff_m25)), imag(tzero(G_iff_m25)), 'o', 'color', colors(2,:), ... 'HandleVisibility', 'off'); for g = gains clpoles = pole(feedback(G_iff_m25, g*Kiff, +1)); plot(real(clpoles), imag(clpoles), '.', 'color', colors(2,:), ... 'HandleVisibility', 'off'); end % Optimal gain clpoles = pole(feedback(G_iff_m25, Kiff, +1)); plot(real(clpoles), imag(clpoles), 'kx', ... 'DisplayName', '$g_{opt}$'); xline(0); yline(0); hold off; axis equal; xlim([-900, 100]); ylim([-100, 900]); xticks([-900:100:0]); yticks([0:100:900]); set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); xlabel('Real part'); ylabel('Imaginary part'); #+end_src #+begin_src matlab :tangle no :exports results :results file none exportFig('figs/nass_iff_root_locus_25kg.pdf', 'width', 'third', 'height', 'normal'); #+end_src #+begin_src matlab :exports none :results none %% Root Locus for the Decentralized IFF controller - 50kg Payload gains = logspace(-2, 1, 200); figure; tiledlayout(1, 1, 'TileSpacing', 'compact', 'Padding', 'None'); nexttile(); hold on; plot(real(pole(G_iff_m50)), imag(pole(G_iff_m50)), 'x', 'color', colors(3,:), ... 'DisplayName', '$g = 0$'); plot(real(tzero(G_iff_m50)), imag(tzero(G_iff_m50)), 'o', 'color', colors(3,:), ... 'HandleVisibility', 'off'); for g = gains clpoles = pole(feedback(G_iff_m50, g*Kiff, +1)); plot(real(clpoles), imag(clpoles), '.', 'color', colors(3,:), ... 'HandleVisibility', 'off'); end % Optimal gain clpoles = pole(feedback(G_iff_m50, Kiff, +1)); plot(real(clpoles), imag(clpoles), 'kx', ... 'DisplayName', '$g_{opt}$'); xline(0); yline(0); hold off; axis equal; xlim([-900, 100]); ylim([-100, 900]); xticks([-900:100:0]); yticks([0:100:900]); set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); xlabel('Real part'); ylabel('Imaginary part'); #+end_src #+begin_src matlab :tangle no :exports results :results file none exportFig('figs/nass_iff_root_locus_50kg.pdf', 'width', 'third', 'height', 'normal'); #+end_src #+name: fig:nass_iff_root_locus #+caption: Root Loci for Decentralized IFF for three payload masses. Closed-loop poles are shown by the black crosses. #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:nass_iff_root_locus_1kg} $1\,\text{kg}$} #+attr_latex: :options {0.33\textwidth} #+begin_subfigure #+attr_latex: :width 0.9\linewidth [[file:figs/nass_iff_root_locus_1kg.png]] #+end_subfigure #+attr_latex: :caption \subcaption{\label{fig:nass_iff_root_locus_25kg} $25\,\text{kg}$} #+attr_latex: :options {0.33\textwidth} #+begin_subfigure #+attr_latex: :width 0.9\linewidth [[file:figs/nass_iff_root_locus_25kg.png]] #+end_subfigure #+attr_latex: :caption \subcaption{\label{fig:nass_iff_root_locus_50kg} $50\,\text{kg}$} #+attr_latex: :options {0.33\textwidth} #+begin_subfigure #+attr_latex: :width 0.9\linewidth [[file:figs/nass_iff_root_locus_50kg.png]] #+end_subfigure #+end_figure * Centralized Active Vibration Control :PROPERTIES: :HEADER-ARGS:matlab+: :tangle matlab/nass_3_hac.m :END: <> ** Introduction :ignore: # - [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty_experiment.org][uncertainty_experiment]]: Effect of experimental conditions on the plant (payload mass, Ry position, Rz position, Rz velocity, etc...) - [ ] Effect of micro-station compliance Compare plant with "rigid" u-station and normal u-station - Effect of IFF - Effect of payload mass - Decoupled plant - Controller design From control kinematics: - Talk about issue of not estimating Rz from external metrology? (maybe could be nice to discuss that during the experiments!) - Show what happens is Rz is not estimated (for instance supposed equaled to zero => increased coupling) ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no :noweb yes <> #+end_src #+begin_src matlab :eval no :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src ** HAC Plant #+begin_src matlab %% Identify the IFF plant dynamics using the Simscape model % Initialize each Simscape model elements initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(); initializeSimplifiedNanoHexapod(); initializeSample('type', 'cylindrical', 'm', 1); % Initial Simscape Configuration initializeSimscapeConfiguration('gravity', false); initializeDisturbances('enable', false); initializeLoggingConfiguration('log', 'none'); initializeController('type', 'open-loop'); initializeReferences(); % Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Inputs [N] io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'EdL'); io_i = io_i + 1; % Strut errors [m] %% Identify HAC Plant without using IFF initializeSample('type', 'cylindrical', 'm', 1); G_m1 = linearize(mdl, io); G_m1.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_m1.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6'}; initializeSample('type', 'cylindrical', 'm', 25); G_m25 = linearize(mdl, io); G_m25.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_m25.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6'}; initializeSample('type', 'cylindrical', 'm', 50); G_m50 = linearize(mdl, io); G_m50.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_m50.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6'}; %% Effect of Rotation initializeSample('type', 'cylindrical', 'm', 1); initializeReferences(... 'Rz_type', 'rotating', ... 'Rz_period', 1); % 360 deg/s G_m1_Rz = linearize(mdl, io, 0.1); G_m1_Rz.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_m1_Rz.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6'}; #+end_src - Effect of rotation: ref:fig:nass_undamped_plant_effect_Wz Add some coupling at low frequency, but still small at the considered velocity. This is thanks to the relatively stiff nano-hexapod (CF rotating model) - Effect of payload mass: Decrease resonance frequencies Increase coupling: ref:fig:nass_undamped_plant_effect_mass => control challenge for high payload masses - Other effects such as: Ry tilt angle, Rz spindle position, micro-hexapod position are found to have negligible effect on the plant dynamics. This is thanks to the fact the the plant dynamics is well decoupled from the micro-station dynamics. #+begin_src matlab :exports none :results none figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(G_m1(1,1), freqs, 'Hz'))), 'color', colors(1,:), ... 'DisplayName', '$\epsilon_{\mathcal{L}i}/f_i$, $\Omega = 0$') plot(freqs, abs(squeeze(freqresp(G_m1_Rz(1,1), freqs, 'Hz'))), 'color', colors(2,:), ... 'DisplayName', '$\epsilon_{\mathcal{L}i}/f_i$, $\Omega = 360$ deg/s') plot(freqs, abs(squeeze(freqresp(G_m1(1,2), freqs, 'Hz'))), 'color', [colors(1,:), 0.2], ... 'DisplayName', '$\epsilon_{\mathcal{L}i}/f_j$') plot(freqs, abs(squeeze(freqresp(G_m1_Rz(1,2), freqs, 'Hz'))), 'color', [colors(2,:), 0.2], ... 'DisplayName', '$\epsilon_{\mathcal{L}i}/f_j$') for i = 1:5 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G_m1(i,j), freqs, 'Hz'))), 'color', [colors(1,:), 0.2], ... 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_m1_Rz(i,j), freqs, 'Hz'))), 'color', [colors(2,:), 0.2], ... 'HandleVisibility', 'off'); end end for i = 2:6 plot(freqs, abs(squeeze(freqresp(G_m1(i,i), freqs, 'Hz'))), 'color', colors(1,:), ... 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_m1_Rz(i,i), freqs, 'Hz'))), 'color', colors(2,:), ... 'HandleVisibility', 'off'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ylim([1e-11, 2e-5]); leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 2); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i = 1:6 plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_m1(i,i), freqs, 'Hz')))), 'color', colors(1,:)); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_m1_Rz(i,i), freqs, 'Hz')))), 'color', colors(2,:)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-200, 20]); yticks([-180:45:180]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file none exportFig('figs/nass_undamped_plant_effect_Wz.pdf', 'width', 'half', 'height', 600); #+end_src #+begin_src matlab :exports none :results none figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(G_m1( 1,1), freqs, 'Hz'))), 'color', colors(1,:), ... 'DisplayName', '$\epsilon_{\mathcal{L}i}/f_i$, 1 kg') plot(freqs, abs(squeeze(freqresp(G_m25(1,1), freqs, 'Hz'))), 'color', colors(2,:), ... 'DisplayName', '$\epsilon_{\mathcal{L}i}/f_i$, 25 kg') plot(freqs, abs(squeeze(freqresp(G_m50(1,1), freqs, 'Hz'))), 'color', colors(3,:), ... 'DisplayName', '$\epsilon_{\mathcal{L}i}/f_i$, 50 kg') for i = 1:5 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G_m1(i,j), freqs, 'Hz'))), 'color', [colors(1,:), 0.2], ... 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_m25(i,j), freqs, 'Hz'))), 'color', [colors(2,:), 0.2], ... 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_m50(i,j), freqs, 'Hz'))), 'color', [colors(3,:), 0.2], ... 'HandleVisibility', 'off'); end end for i = 2:6 plot(freqs, abs(squeeze(freqresp(G_m1( i,i), freqs, 'Hz'))), 'color', colors(1,:), ... 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_m25(i,i), freqs, 'Hz'))), 'color', colors(2,:), ... 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_m50(i,i), freqs, 'Hz'))), 'color', colors(3,:), ... 'HandleVisibility', 'off'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ylim([1e-11, 2e-5]); leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i = 1:6 plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_m1(i,i), freqs, 'Hz')))), 'color', colors(1,:)); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_m25(i,i), freqs, 'Hz')))), 'color', colors(2,:)); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_m50(i,i), freqs, 'Hz')))), 'color', colors(3,:)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-200, 20]); yticks([-180:45:180]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file none exportFig('figs/nass_undamped_plant_effect_mass.pdf', 'width', 'half', 'height', 600); #+end_src #+name: fig:nass_undamped_plant_effect #+caption: Effect of the Spindle's rotational velocity on the positioning plant (\subref{fig:nass_undamped_plant_effect_Wz}) and effect of the payload's mass on the positioning plant (\subref{fig:nass_undamped_plant_effect_mass}) #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:nass_undamped_plant_effect_Wz}Effect of rotational velocity $\Omega_z$} #+attr_latex: :options {0.48\textwidth} #+begin_subfigure #+attr_latex: :width 0.95\linewidth [[file:figs/nass_undamped_plant_effect_Wz.png]] #+end_subfigure #+attr_latex: :caption \subcaption{\label{fig:nass_undamped_plant_effect_mass}Effect of payload's mass} #+attr_latex: :options {0.48\textwidth} #+begin_subfigure #+attr_latex: :width 0.95\linewidth [[file:figs/nass_undamped_plant_effect_mass.png]] #+end_subfigure #+end_figure - Effect of IFF on the plant ref:fig:nass_comp_undamped_damped_plant_m1 Modes are well damped Small coupling increase at low frequency - Benefits of using IFF ref:fig:nass_hac_plants with added damping, the set of plants to be controlled (with payloads from 1kg to 50kg) is more easily controlled. Between 10 and 50Hz, the plant dynamics does not vary a lot with the frequency, whereas without active damping, it would be impossible to design a robust controller with bandwidth above 10Hz that is robust to the change of payload #+begin_src matlab %% Identify HAC Plant without using IFF initializeReferences(); % No Spindle Rotation initializeController('type', 'iff'); % Implemented IFF controller load('nass_K_iff.mat', 'Kiff'); % Load designed IFF controller % 1kg payload initializeSample('type', 'cylindrical', 'm', 1); G_hac_m1 = linearize(mdl, io); G_hac_m1.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_hac_m1.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6'}; % 25kg payload initializeSample('type', 'cylindrical', 'm', 25); G_hac_m25 = linearize(mdl, io); G_hac_m25.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_hac_m25.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6'}; % 50kg payload initializeSample('type', 'cylindrical', 'm', 50); G_hac_m50 = linearize(mdl, io); G_hac_m50.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_hac_m50.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6'}; % Check stability if not(isstable(G_hac_m1) && isstable(G_hac_m25) && isstable(G_hac_m50)) warning('One of HAC plant is not stable') end #+end_src #+begin_src matlab :exports none :results none figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(G_m1( 1,1), freqs, 'Hz'))), 'color', colors(1,:), ... 'DisplayName', '$\epsilon_{\mathcal{L}i}/f_i$, OL') plot(freqs, abs(squeeze(freqresp(G_hac_m1(1,1), freqs, 'Hz'))), 'color', colors(2,:), ... 'DisplayName', '$\epsilon_{\mathcal{L}i}/f_i$, with IFF') for i = 1:5 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G_m1(i,j), freqs, 'Hz'))), 'color', [colors(1,:), 0.2], ... 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_hac_m1(i,j), freqs, 'Hz'))), 'color', [colors(2,:), 0.2], ... 'HandleVisibility', 'off'); end end for i = 2:6 plot(freqs, abs(squeeze(freqresp(G_m1( i,i), freqs, 'Hz'))), 'color', colors(1,:), ... 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_hac_m1(i,i), freqs, 'Hz'))), 'color', colors(2,:), ... 'HandleVisibility', 'off'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ylim([1e-10, 2e-5]); leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i = 1:6 plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_m1(i,i), freqs, 'Hz')))), 'color', colors(1,:)); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_hac_m1(i,i), freqs, 'Hz')))), 'color', colors(2,:)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-200, 20]); yticks([-180:45:180]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file none exportFig('figs/nass_comp_undamped_damped_plant_m1.pdf', 'width', 'half', 'height', 600); #+end_src #+begin_src matlab :exports none :results none %% Comparison of all the undamped FRF and all the damped FRF figure; tiledlayout(3, 1, 'TileSpacing', 'compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(G_m1( 1,1), freqs, 'Hz'))), 'color', [colors(1,:), 0.5], 'DisplayName', 'Undamped - $\epsilon\mathcal{L}_i/f_i$'); plot(freqs, abs(squeeze(freqresp(G_hac_m1(1,1), freqs, 'Hz'))), 'color', [colors(2,:), 0.5], 'DisplayName', 'Damped - $\epsilon\mathcal{L}_i/f_i^\prime$'); for i = 1:6 plot(freqs, abs(squeeze(freqresp(G_m1( i,i), freqs, 'Hz'))), 'color', [colors(1,:), 0.5], 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_m25(i,i), freqs, 'Hz'))), 'color', [colors(1,:), 0.5], 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_m50(i,i), freqs, 'Hz'))), 'color', [colors(1,:), 0.5], 'HandleVisibility', 'off'); end for i = 1:6 plot(freqs, abs(squeeze(freqresp(G_hac_m1( i,i), freqs, 'Hz'))), 'color', [colors(2,:), 0.5], 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_hac_m25(i,i), freqs, 'Hz'))), 'color', [colors(2,:), 0.5], 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_hac_m50(i,i), freqs, 'Hz'))), 'color', [colors(2,:), 0.5], 'HandleVisibility', 'off'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; % ylim([1e-8, 1e-4]); ax2 = nexttile; hold on; for i =1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_m1( i,i), freqs, 'Hz'))), 'color', [colors(1,:), 0.5]); plot(freqs, 180/pi*angle(squeeze(freqresp(G_m25(i,i), freqs, 'Hz'))), 'color', [colors(1,:), 0.5]); plot(freqs, 180/pi*angle(squeeze(freqresp(G_m50(i,i), freqs, 'Hz'))), 'color', [colors(1,:), 0.5]); end for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_hac_m1( i,i), freqs, 'Hz'))), 'color', [colors(2,:), 0.5]); plot(freqs, 180/pi*angle(squeeze(freqresp(G_hac_m25(i,i), freqs, 'Hz'))), 'color', [colors(2,:), 0.5]); plot(freqs, 180/pi*angle(squeeze(freqresp(G_hac_m50(i,i), freqs, 'Hz'))), 'color', [colors(2,:), 0.5]); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; ylim([-200, 20]); yticks([-180:45:180]); linkaxes([ax1,ax2],'x'); % xlim([1, 5e2]); #+end_src #+begin_src matlab :tangle no :exports results :results file none exportFig('figs/nass_hac_plants.pdf', 'width', 'half', 'height', 600); #+end_src #+name: fig:nass_hac_plant #+caption: Effect of the Spindle's rotational velocity on the positioning plant (\subref{fig:nass_undamped_plant_effect_Wz}) and effect of the payload's mass on the positioning plant (\subref{fig:nass_undamped_plant_effect_mass}) #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:nass_comp_undamped_damped_plant_m1}Effect of IFF - $m = 1\,\text{kg}$} #+attr_latex: :options {0.48\textwidth} #+begin_subfigure #+attr_latex: :width 0.95\linewidth [[file:figs/nass_comp_undamped_damped_plant_m1.png]] #+end_subfigure #+attr_latex: :caption \subcaption{\label{fig:nass_hac_plants}Effect of IFF on the set of plants to control} #+attr_latex: :options {0.48\textwidth} #+begin_subfigure #+attr_latex: :width 0.95\linewidth [[file:figs/nass_hac_plants.png]] #+end_subfigure #+end_figure ** Effect of micro-station compliance Micro-Station complex dynamics has almost no effect on the plant dynamics (Figure ref:fig:nass_effect_ustation_compliance): - adds some alternating poles and zeros above 100Hz, which should not be an issue for control #+begin_src matlab %% Identify plant with "rigid" micro-station initializeGround('type', 'rigid'); initializeGranite('type', 'rigid'); initializeTy('type', 'rigid'); initializeRy('type', 'rigid'); initializeRz('type', 'rigid'); initializeMicroHexapod('type', 'rigid'); initializeSimplifiedNanoHexapod(); initializeSample('type', 'cylindrical', 'm', 25); initializeReferences(); initializeController('type', 'open-loop'); % Implemented IFF controller load('nass_K_iff.mat', 'Kiff'); % Load designed IFF controller % Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Inputs [N] io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'EdL'); io_i = io_i + 1; % Strut errors [m] G_m25_rigid = linearize(mdl, io); G_m25_rigid.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_m25_rigid.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6'}; #+end_src #+begin_src matlab :exports none :results none %% Effect of the micro-station limited compliance on the plant dynamics figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(G_m25_rigid( 1,1), freqs, 'Hz'))), 'color', colors(1,:), ... 'DisplayName', '$\epsilon_{\mathcal{L}i}/f_i$, OL') plot(freqs, abs(squeeze(freqresp(G_m25(1,1), freqs, 'Hz'))), 'color', colors(2,:), ... 'DisplayName', '$\epsilon_{\mathcal{L}i}/f_i$, with IFF') for i = 1:5 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G_m25_rigid(i,j), freqs, 'Hz'))), 'color', [colors(1,:), 0.2], ... 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_m25(i,j), freqs, 'Hz'))), 'color', [colors(2,:), 0.2], ... 'HandleVisibility', 'off'); end end for i = 2:6 plot(freqs, abs(squeeze(freqresp(G_m25_rigid( i,i), freqs, 'Hz'))), 'color', colors(1,:), ... 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_m25(i,i), freqs, 'Hz'))), 'color', colors(2,:), ... 'HandleVisibility', 'off'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ylim([1e-10, 2e-5]); leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i = 1:6 plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_m25_rigid(i,i), freqs, 'Hz')))), 'color', colors(1,:)); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_m25(i,i), freqs, 'Hz')))), 'color', colors(2,:)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-200, 20]); yticks([-180:45:180]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file replace exportFig('figs/nass_effect_ustation_compliance.pdf', 'width', 'wide', 'height', 600); #+end_src #+name: fig:nass_effect_ustation_compliance #+caption: Effect of the micro-station limited compliance on the plant dynamics #+RESULTS: [[file:figs/nass_effect_ustation_compliance.png]] ** Higher or lower nano-hexapod stiffness? *Goal*: confirm the analysis with simpler models (uniaxial and 3DoF) that a nano-hexapod stiffness of $\approx 1\,N/\mu m$ should give better performances than a very stiff or very soft nano-hexapod. - *Stiff nano-hexapod*: uniaxial model: high nano-hexapod stiffness induce coupling between the nano-hexapod and the micro-station dynamics. considering the complex dynamics of the micro-station as shown by the modal analysis, that would result in a complex system to control To show that, a nano-hexapod with actuator stiffness equal to 100N/um is initialized, payload of 25kg. The dynamics from $\bm{f}$ to $\bm{\epsilon}_{\mathcal{L}}$ is identified and compared to the case where the micro-station is infinitely rigid (figure ref:fig:nass_stiff_nano_hexapod_coupling_ustation): - Coupling induced by the micro-station: much more complex and difficult to model / predict - Similar to what was predicted using the uniaxial model - *Soft nano-hexapod*: Nano-hexapod with stiffness of 0.01N/um is initialized, payload of 25kg. Dynamics is identified with no spindle rotation, and with spindle rotation of 36deg/s and 360deg/s (Figure ref:fig:nass_soft_nano_hexapod_effect_Wz) - Rotation as huge effect on the dynamics: unstable for high rotational velocities, added coupling due to gyroscopic effects, and change of resonance frequencies as a function of the rotational velocity - Simple 3DoF rotating model is helpful to understand the complex effect of the rotation => similar conclusion - Say that controlling the frame of the struts is not adapted with a soft nano-hexapod, but we should rather control in the frame matching the center of mass of the payload, but we would still obtain large coupling and change of dynamics due to gyroscopic effects. #+begin_src matlab %% Identify Dynamics with a Stiff nano-hexapod (100N/um) % Initialize each Simscape model elements initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(); initializeSimplifiedNanoHexapod('actuator_k', 1e8, 'actuator_kp', 0, 'actuator_c', 1e3); initializeSample('type', 'cylindrical', 'm', 25); % Initial Simscape Configuration initializeSimscapeConfiguration('gravity', false); initializeDisturbances('enable', false); initializeLoggingConfiguration('log', 'none'); initializeController('type', 'open-loop'); initializeReferences(); % Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Inputs [N] io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'EdL'); io_i = io_i + 1; % Strut errors [m] % Identify Plant G_m25_pz = linearize(mdl, io); G_m25_pz.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_m25_pz.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6'}; %% Compare with Nano-Hexapod alone (rigid micro-station) initializeGround('type', 'rigid'); initializeGranite('type', 'rigid'); initializeTy('type', 'rigid'); initializeRy('type', 'rigid'); initializeRz('type', 'rigid'); initializeMicroHexapod('type', 'rigid'); % Identify Plant G_m25_pz_rigid = linearize(mdl, io); G_m25_pz_rigid.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_m25_pz_rigid.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6'}; #+end_src #+begin_src matlab :exports none :results none %% Stiff nano-hexapod - Coupling with the micro-station figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(G_m25_pz_rigid(1,1), freqs, 'Hz'))), 'color', colors(1,:), ... 'DisplayName', '$\epsilon_{\mathcal{L}i}/f_i$ - Rigid') plot(freqs, abs(squeeze(freqresp(G_m25_pz(1,1), freqs, 'Hz'))), 'color', colors(2,:), ... 'DisplayName', '$\epsilon_{\mathcal{L}i}/f_i$ - $\mu$-station') plot(freqs, abs(squeeze(freqresp(G_m25_pz_rigid(1,2), freqs, 'Hz'))), 'color', [colors(1,:), 0.1], ... 'DisplayName', '$\epsilon_{\mathcal{L}i}/f_j$ - Rigid') plot(freqs, abs(squeeze(freqresp(G_m25_pz(1,2), freqs, 'Hz'))), 'color', [colors(2,:), 0.1], ... 'DisplayName', '$\epsilon_{\mathcal{L}i}/f_j$ - $\mu$-station') for i = 1:5 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G_m25_pz_rigid(i,j), freqs, 'Hz'))), 'color', [colors(1,:), 0.1], ... 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_m25_pz(i,j), freqs, 'Hz'))), 'color', [colors(2,:), 0.1], ... 'HandleVisibility', 'off'); end end for i = 2:6 plot(freqs, abs(squeeze(freqresp(G_m25_pz_rigid(i,i), freqs, 'Hz'))), 'color', colors(1,:), ... 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_m25_pz(i,i), freqs, 'Hz'))), 'color', colors(2,:), ... 'HandleVisibility', 'off'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ylim([1e-12, 3e-7]); leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i = 1:6 plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_m25_pz_rigid(i,i), freqs, 'Hz')))), 'color', colors(1,:)); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_m25_pz(i,i), freqs, 'Hz')))), 'color', colors(2,:)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-200, 20]); yticks([-180:45:180]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file none exportFig('figs/nass_stiff_nano_hexapod_coupling_ustation.pdf', 'width', 'half', 'height', 600); #+end_src #+begin_src matlab %% Identify Dynamics with a Soft nano-hexapod (0.01N/um) initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(); initializeSimplifiedNanoHexapod('actuator_k', 1e4, 'actuator_kp', 0, 'actuator_c', 1); % Initialize each Simscape model elements initializeSample('type', 'cylindrical', 'm', 25); % 25kg payload initializeController('type', 'open-loop'); % Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Inputs [N] io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'EdL'); io_i = io_i + 1; % Strut errors [m] % Identify the dynamics without rotation initializeReferences(); G_m1_vc = linearize(mdl, io); G_m1_vc.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_m1_vc.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6'}; % Identify the dynamics with 36 deg/s rotation initializeReferences(... 'Rz_type', 'rotating', ... 'Rz_period', 10); % 36 deg/s G_m1_vc_Rz_slow = linearize(mdl, io, 0.1); G_m1_vc_Rz_slow.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_m1_vc_Rz_slow.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6'}; % Identify the dynamics with 360 deg/s rotation initializeReferences(... 'Rz_type', 'rotating', ... 'Rz_period', 1); % 360 deg/s G_m1_vc_Rz_fast = linearize(mdl, io, 0.1); G_m1_vc_Rz_fast.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_m1_vc_Rz_fast.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6'}; #+end_src #+begin_src matlab :exports none :results none %% Soft Nano-Hexapod - effect of rotational velocity on the dynamics f = logspace(-1,2,200); figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(squeeze(freqresp(G_m1_vc(1,1), f, 'Hz'))), 'color', colors(1,:), ... 'DisplayName', '$f_{ni}/f_i$ - $\Omega_z = 0$') plot(f, abs(squeeze(freqresp(G_m1_vc_Rz_slow(1,1), f, 'Hz'))), 'color', colors(2,:), ... 'DisplayName', '$f_{ni}/f_i$ - $\Omega_z = 36$ deg/s') plot(f, abs(squeeze(freqresp(G_m1_vc_Rz_fast(1,1), f, 'Hz'))), 'color', colors(3,:), ... 'DisplayName', '$f_{ni}/f_i$ - $\Omega_z = 360$ deg/s') for i = 1:5 for j = i+1:6 plot(f, abs(squeeze(freqresp(G_m1_vc(i,j), f, 'Hz'))), 'color', [colors(1,:), 0.2], ... 'HandleVisibility', 'off'); plot(f, abs(squeeze(freqresp(G_m1_vc_Rz_slow(i,j), f, 'Hz'))), 'color', [colors(2,:), 0.2], ... 'HandleVisibility', 'off'); plot(f, abs(squeeze(freqresp(G_m1_vc_Rz_fast(i,j), f, 'Hz'))), 'color', [colors(3,:), 0.2], ... 'HandleVisibility', 'off'); end end for i = 2:6 plot(f, abs(squeeze(freqresp(G_m1_vc(i,i), f, 'Hz'))), 'color', colors(1,:), ... 'HandleVisibility', 'off'); end for i = 2:6 plot(f, abs(squeeze(freqresp(G_m1_vc_Rz_slow(i,i), f, 'Hz'))), 'color', colors(2,:), ... 'HandleVisibility', 'off'); end for i = 2:6 plot(f, abs(squeeze(freqresp(G_m1_vc_Rz_fast(i,i), f, 'Hz'))), 'color', colors(3,:), ... 'HandleVisibility', 'off'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ylim([1e-9, 1e-2]); leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i = 1:6 plot(f, 180/pi*angle(squeeze(freqresp(G_m1_vc(i,i), f, 'Hz'))), 'color', colors(1,:)); plot(f, 180/pi*angle(squeeze(freqresp(G_m1_vc_Rz_slow(i,i), f, 'Hz'))), 'color', colors(2,:)); plot(f, 180/pi*angle(squeeze(freqresp(G_m1_vc_Rz_fast(i,i), f, 'Hz'))), 'color', colors(3,:)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180:90:180]); linkaxes([ax1,ax2],'x'); xlim([f(1), f(end)]); #+end_src #+begin_src matlab :tangle no :exports results :results file none exportFig('figs/nass_soft_nano_hexapod_effect_Wz.pdf', 'width', 'half', 'height', 600); #+end_src #+name: fig:nass_soft_stiff_hexapod #+caption: Plant dynamics of a stiff ($k_a = 100\,N/\mu m$) nano-hexapod (\subref{fig:nass_stiff_nano_hexapod_coupling_ustation}) and of a soft ($k_a = 0.01\,N/\mu m$) nano-hexapod (\subref{fig:nass_soft_nano_hexapod_effect_Wz}) #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:nass_stiff_nano_hexapod_coupling_ustation}Stiff nano-hexapod - Coupling with the micro-station} #+attr_latex: :options {0.48\textwidth} #+begin_subfigure #+attr_latex: :width 0.95\linewidth [[file:figs/nass_stiff_nano_hexapod_coupling_ustation.png]] #+end_subfigure #+attr_latex: :caption \subcaption{\label{fig:nass_soft_nano_hexapod_effect_Wz}Soft nano-hexapod - Effect of Spindle rotational velocity} #+attr_latex: :options {0.48\textwidth} #+begin_subfigure #+attr_latex: :width 0.95\linewidth [[file:figs/nass_soft_nano_hexapod_effect_Wz.png]] #+end_subfigure #+end_figure ** Controller design In this section, a high authority controller is design such that: - it is robust to the change of payload mass (i.e. is should be stable for all the damped plants of Figure ref:fig:nass_hac_plants) - it has reasonably high bandwidth to give good performances (here 10Hz) eqref:eq:nass_robust_hac \begin{equation}\label{eq:nass_robust_hac} K_{\text{HAC}}(s) = g_0 \cdot \underbrace{\frac{\omega_c}{s}}_{\text{int}} \cdot \underbrace{\frac{1}{\sqrt{\alpha}}\frac{1 + \frac{s}{\omega_c/\sqrt{\alpha}}}{1 + \frac{s}{\omega_c\sqrt{\alpha}}}}_{\text{lead}} \cdot \underbrace{\frac{1}{1 + \frac{s}{\omega_0}}}_{\text{LPF}}, \quad \left( \omega_c = 2\pi10\,\text{rad/s},\ \alpha = 2,\ \omega_0 = 2\pi80\,\text{rad/s} \right) \end{equation} #+begin_src matlab %% HAC Design % Wanted crossover wc = 2*pi*10; % [rad/s] % Integrator H_int = wc/s; % Lead to increase phase margin a = 2; % Amount of phase lead / width of the phase lead / high frequency gain H_lead = 1/sqrt(a)*(1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a))); % Low Pass filter to increase robustness H_lpf = 1/(1 + s/2/pi/80); % Gain to have unitary crossover at wc H_gain = 1./abs(evalfr(G_hac_m50(1,1), 1j*wc)); % Decentralized HAC Khac = -H_gain * ... % Gain H_int * ... % Integrator H_lead * ... % Low Pass filter H_lpf * ... % Low Pass filter eye(6); % 6x6 Diagonal #+end_src #+begin_src matlab :exports none :tangle no % The designed HAC controller is saved save('./matlab/mat/nass_K_hac.mat', 'Khac'); #+end_src #+begin_src matlab :eval no % The designed HAC controller is saved save('./mat/nass_K_hac.mat', 'Khac'); #+end_src - "Decentralized" Loop Gain: Bandwidth around 10Hz - Characteristic Loci: Stable for all payloads with acceptable stability margins #+begin_src matlab :exports none :results none %% "Diagonal" loop gain for the High Authority Controller f = logspace(-1, 2, 1000); figure; tiledlayout(3, 1, 'TileSpacing', 'compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(squeeze(freqresp(Khac(i,i)*G_hac_m1( i,i), f, 'Hz'))), ... 'color', [colors(1,:), 0.5], 'DisplayName', '1kg'); plot(f, abs(squeeze(freqresp(Khac(i,i)*G_hac_m25(i,i), f, 'Hz'))), ... 'color', [colors(2,:), 0.5], 'DisplayName', '25kg'); plot(f, abs(squeeze(freqresp(Khac(i,i)*G_hac_m50(i,i), f, 'Hz'))), ... 'color', [colors(3,:), 0.5], 'DisplayName', '50kg'); for i = 2:6 plot(f, abs(squeeze(freqresp(Khac(i,i)*G_hac_m1( i,i), f, 'Hz'))), 'color', [colors(1,:), 0.5], 'HandleVisibility', 'off'); plot(f, abs(squeeze(freqresp(Khac(i,i)*G_hac_m25(i,i), f, 'Hz'))), 'color', [colors(2,:), 0.5], 'HandleVisibility', 'off'); plot(f, abs(squeeze(freqresp(Khac(i,i)*G_hac_m50(i,i), f, 'Hz'))), 'color', [colors(3,:), 0.5], 'HandleVisibility', 'off'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Loop Gain'); set(gca, 'XTickLabel',[]); ylim([1e-2, 1e2]); leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i = 1:6 plot(f, 180/pi*angle(squeeze(freqresp(-Khac(i,i)*G_hac_m1( i,i), f, 'Hz'))), 'color', [colors(1,:), 0.5]); plot(f, 180/pi*angle(squeeze(freqresp(-Khac(i,i)*G_hac_m25(i,i), f, 'Hz'))), 'color', [colors(2,:), 0.5]); plot(f, 180/pi*angle(squeeze(freqresp(-Khac(i,i)*G_hac_m50(i,i), f, 'Hz'))), 'color', [colors(3,:), 0.5]); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]) linkaxes([ax1,ax2],'x'); xlim([0.1, 100]); #+end_src #+begin_src matlab :tangle no :exports results :results file none exportFig('figs/nass_hac_loop_gain.pdf', 'width', 'half', 'height', 600); #+end_src #+begin_src matlab :exports none :results none %% Characteristic Loci for the High Authority Controller Ldet_m1 = zeros(6, length(freqs)); Lmimo_m1 = squeeze(freqresp(-G_hac_m1*Khac, freqs, 'Hz')); for i_f = 2:length(freqs) Ldet_m1(:, i_f) = eig(squeeze(Lmimo_m1(:,:,i_f))); end Ldet_m25 = zeros(6, length(freqs)); Lmimo_m25 = squeeze(freqresp(-G_hac_m25*Khac, freqs, 'Hz')); for i_f = 2:length(freqs) Ldet_m25(:, i_f) = eig(squeeze(Lmimo_m25(:,:,i_f))); end Ldet_m50 = zeros(6, length(freqs)); Lmimo_m50 = squeeze(freqresp(-G_hac_m50*Khac, freqs, 'Hz')); for i_f = 2:length(freqs) Ldet_m50(:, i_f) = eig(squeeze(Lmimo_m50(:,:,i_f))); end figure; hold on; plot(real(squeeze(Ldet_m1(1,:))), imag(squeeze(Ldet_m1(1,:))), ... '.', 'color', colors(1, :), ... 'DisplayName', '1kg'); plot(real(squeeze(Ldet_m1(1,:))),-imag(squeeze(Ldet_m1(1,:))), ... '.', 'color', colors(1, :), ... 'HandleVisibility', 'off'); plot(real(squeeze(Ldet_m25(1,:))), imag(squeeze(Ldet_m25(1,:))), ... '.', 'color', colors(2, :), ... 'DisplayName', '25kg'); plot(real(squeeze(Ldet_m25(1,:))),-imag(squeeze(Ldet_m25(1,:))), ... '.', 'color', colors(2, :), ... 'HandleVisibility', 'off'); plot(real(squeeze(Ldet_m50(1,:))), imag(squeeze(Ldet_m50(1,:))), ... '.', 'color', colors(3, :), ... 'DisplayName', '50kg'); plot(real(squeeze(Ldet_m50(1,:))),-imag(squeeze(Ldet_m50(1,:))), ... '.', 'color', colors(3, :), ... 'HandleVisibility', 'off'); for i = 2:6 plot(real(squeeze(Ldet_m1(i,:))), imag(squeeze(Ldet_m1(i,:))), ... '.', 'color', colors(1, :), ... 'HandleVisibility', 'off'); plot(real(squeeze(Ldet_m1(i,:))), -imag(squeeze(Ldet_m1(i,:))), ... '.', 'color', colors(1, :), ... 'HandleVisibility', 'off'); plot(real(squeeze(Ldet_m25(i,:))), imag(squeeze(Ldet_m25(i,:))), ... '.', 'color', colors(2, :), ... 'HandleVisibility', 'off'); plot(real(squeeze(Ldet_m25(i,:))), -imag(squeeze(Ldet_m25(i,:))), ... '.', 'color', colors(2, :), ... 'HandleVisibility', 'off'); plot(real(squeeze(Ldet_m50(i,:))), imag(squeeze(Ldet_m50(i,:))), ... '.', 'color', colors(3, :), ... 'HandleVisibility', 'off'); plot(real(squeeze(Ldet_m50(i,:))), -imag(squeeze(Ldet_m50(i,:))), ... '.', 'color', colors(3, :), ... 'HandleVisibility', 'off'); end plot(-1, 0, 'kx', 'HandleVisibility', 'off'); hold off; set(gca, 'XScale', 'lin'); set(gca, 'YScale', 'lin'); xlabel('Real Part'); ylabel('Imaginary Part'); axis square xlim([-1.8, 0.2]); ylim([-1, 1]); leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; #+end_src #+begin_src matlab :tangle no :exports results :results file none exportFig('figs/nass_hac_loci.pdf', 'width', 'half', 'height', 600); #+end_src #+name: fig:nass_hac_controller #+caption: High Authority Controller - "Diagonal Loop Gain" (\subref{fig:nass_hac_loop_gain}) and Characteristic Loci (\subref{fig:nass_hac_loci}) #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:nass_hac_loop_gain}Loop Gain} #+attr_latex: :options {0.48\textwidth} #+begin_subfigure #+attr_latex: :width 0.95\linewidth [[file:figs/nass_hac_loop_gain.png]] #+end_subfigure #+attr_latex: :caption \subcaption{\label{fig:nass_hac_loci}Characteristic Loci} #+attr_latex: :options {0.48\textwidth} #+begin_subfigure #+attr_latex: :width 0.95\linewidth [[file:figs/nass_hac_loci.png]] #+end_subfigure #+end_figure ** TODO Sensitivity to disturbances :noexport: - Compute transfer functions from spindle vertical error to sample vertical error with HAC-IFF Compare without the NASS, and with just IFF - Same for horizontal #+begin_src matlab % Initialize each Simscape model elements initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(); initializeSimplifiedNanoHexapod(); initializeSample('type', 'cylindrical', 'm', 1); % Initial Simscape Configuration initializeSimscapeConfiguration('gravity', false); initializeDisturbances('enable', false); initializeLoggingConfiguration('log', 'none'); initializeController('type', 'open-loop'); initializeReferences(); % Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Frz_y'); io_i = io_i + 1; % Spindle Lateral Vibration [N] io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Frz_z'); io_i = io_i + 1; % Spindle Vertical Vibration [N] io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Fdy_z'); io_i = io_i + 1; % Vertical Ground Motion [m] io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Dwy'); io_i = io_i + 1; % Vertical Ground Motion [m] io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Dwz'); io_i = io_i + 1; % Vertical Ground Motion [m] io(io_i) = linio([mdl, '/NASS'], 2, 'output', [], 'y'); io_i = io_i + 1; % Lateral Displacement [m] io(io_i) = linio([mdl, '/NASS'], 2, 'output', [], 'z'); io_i = io_i + 1; % Vertical Displacement [m] Gd_ol = linearize(mdl, io); Gd_ol.InputName = {'Frz_y', 'Frz_z', 'Fdy_z', 'Dwy', 'Dwz'}; Gd_ol.OutputName = {'Dy', 'Dz'}; initializeController('type', 'iff'); % Implemented IFF controller load('nass_K_iff.mat', 'Kiff'); % Load designed IFF controller Gd_iff = linearize(mdl, io); Gd_iff.InputName = {'Frz_y', 'Frz_z', 'Fdy_z', 'Dwy', 'Dwz'}; Gd_iff.OutputName = {'Dy', 'Dz'}; initializeController('type', 'hac-iff'); % Implemented IFF controller load('nass_K_hac.mat', 'Khac'); % Load designed HAC controller Gd_hac_iff = linearize(mdl, io); Gd_hac_iff.InputName = {'Frz_y', 'Frz_z', 'Fdy_z', 'Dwy', 'Dwz'}; Gd_hac_iff.OutputName = {'Dy', 'Dz'}; #+end_src #+begin_src matlab dist = load('ustation_disturbance_psd.mat'); #+end_src Spindle, lateral: #+begin_src matlab figure; hold on; plot(freqs, abs(squeeze(freqresp(Gd_ol( 'Dy', 'Frz_y'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gd_iff('Dy', 'Frz_y'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gd_hac_iff('Dy', 'Frz_y'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $D_z/F_{R_z,z}$ [m/N]'); xlabel('Frequency [Hz]'); xticks([1e0, 1e1, 1e2]); xlim([1, 500]); #+end_src Spindle, vertical: #+begin_src matlab freqs = logspace(-1,3,1000); figure; hold on; plot(freqs, abs(squeeze(freqresp(Gd_ol( 'Dz', 'Frz_z'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gd_iff('Dz', 'Frz_z'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gd_hac_iff('Dz', 'Frz_z'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $D_z/F_{R_z,z}$ [m/N]'); xlabel('Frequency [Hz]'); #+end_src Ground motion, vertical: #+begin_src matlab freqs = logspace(-1,3,1000); figure; hold on; plot(freqs, abs(squeeze(freqresp(Gd_ol( 'Dz', 'Dwz'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gd_iff('Dz', 'Dwz'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gd_hac_iff('Dz', 'Dwz'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $D_z/F_{R_z,z}$ [m/N]'); xlabel('Frequency [Hz]'); xticks([1e0, 1e1, 1e2]); % xlim([1, 500]); #+end_src Ground motion, lateral: #+begin_src matlab figure; hold on; plot(freqs, abs(squeeze(freqresp(Gd_ol( 'Dy', 'Dwy'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gd_iff('Dy', 'Dwy'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gd_hac_iff('Dy', 'Dwy'), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude $D_y/F_{R_z,z}$ [m/N]'); xlabel('Frequency [Hz]'); xticks([1e0, 1e1, 1e2]); xlim([1, 500]); #+end_src Noise Budget: #+begin_src matlab figure; hold on; plot(dist.gm_dist.f, sqrt(flip(-cumtrapz(flip(dist.gm_dist.f), flip(dist.gm_dist.pxx_y.*abs(squeeze(freqresp(Gd_ol( 'Dy', 'Dwy'), dist.gm_dist.f, 'Hz'))).^2))))); plot(dist.gm_dist.f, sqrt(flip(-cumtrapz(flip(dist.gm_dist.f), flip(dist.gm_dist.pxx_y.*abs(squeeze(freqresp(Gd_iff( 'Dy', 'Dwy'), dist.gm_dist.f, 'Hz'))).^2))))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('ASD [m/sqrt(Hz)]'); xlabel('Frequency [Hz]'); xticks([1e0, 1e1, 1e2]); xlim([1, 500]); #+end_src ** Tomography experiment - Validation of concept with tomography scans at the highest rotational velocity of $\Omega_z = 360\,\text{deg/s}$ - Compare obtained results with the smallest beam size that is expected with future beamline upgrade: 200nm (horizontal size) x 100nm (vertical size) - Take into account the two main sources of disturbances: ground motion, spindle vibrations Other noise sources are not taken into account here as they will be optimized latter (detail design phase): measurement noise, electrical noise for DAC and voltage amplifiers, ... The open-loop errors and the closed-loop errors for the tomography scan with the light sample $1\,kg$ are shown in Figure ref:fig:nass_tomo_1kg_60rpm. #+begin_src matlab % Sample is not centered with the rotation axis % This is done by offsetfing the micro-hexapod by 0.9um P_micro_hexapod = [0.9e-6; 0; 0]; % [m] open(mdl); set_param(mdl, 'StopTime', '2'); initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod('AP', P_micro_hexapod); initializeSample('type', 'cylindrical', 'm', 1); initializeSimscapeConfiguration('gravity', false); initializeLoggingConfiguration('log', 'all', 'Ts', 1e-3); initializeDisturbances(... 'Dw_x', true, ... % Ground Motion - X direction 'Dw_y', true, ... % Ground Motion - Y direction 'Dw_z', true, ... % Ground Motion - Z direction 'Fdy_x', false, ... % Translation Stage - X direction 'Fdy_z', false, ... % Translation Stage - Z direction 'Frz_x', true, ... % Spindle - X direction 'Frz_y', true, ... % Spindle - Y direction 'Frz_z', true); % Spindle - Z direction initializeReferences(... 'Rz_type', 'rotating', ... 'Rz_period', 1, ... 'Dh_pos', [P_micro_hexapod; 0; 0; 0]); % Open-Loop Simulation without Nano-Hexapod - 1kg payload initializeSimplifiedNanoHexapod('type', 'none'); initializeController('type', 'open-loop'); sim(mdl); exp_tomo_ol_m1 = simout; % Closed-Loop Simulation with NASS initializeSimplifiedNanoHexapod(); initializeController('type', 'hac-iff'); load('nass_K_iff.mat', 'Kiff'); load('nass_K_hac.mat', 'Khac'); % 1kg payload initializeSample('type', 'cylindrical', 'm', 1); sim(mdl); exp_tomo_cl_m1 = simout; % 25kg payload initializeSample('type', 'cylindrical', 'm', 25); sim(mdl); exp_tomo_cl_m25 = simout; % 50kg payload initializeSample('type', 'cylindrical', 'm', 50); sim(mdl); exp_tomo_cl_m50 = simout; % Slower tomography for high payload mass % initializeReferences(... % 'Rz_type', 'rotating', ... % 'Rz_period', 10, ... % 36deg/s % 'Dh_pos', [P_micro_hexapod; 0; 0; 0]); % initializeSample('type', 'cylindrical', 'm', 50); % set_param(mdl, 'StopTime', '5'); % sim(mdl); % exp_tomo_cl_m50_slow = simout; #+end_src #+begin_src matlab :exports none :results none %% Simulation of tomography experiment - 1kg payload - 360deg/s - XY errors figure; hold on; plot(1e6*exp_tomo_ol_m1.y.x.Data, 1e6*exp_tomo_ol_m1.y.y.Data, 'DisplayName', 'OL') plot(1e6*exp_tomo_cl_m1.y.x.Data(1e3:end), 1e6*exp_tomo_cl_m1.y.y.Data(1e3:end), 'color', colors(2,:), 'DisplayName', 'CL') hold off; xlabel('$D_x$ [$\mu$m]'); ylabel('$D_y$ [$\mu$m]'); axis equal xlim([-2, 2]); ylim([-2, 2]); xticks([-2:1:2]); yticks([-2:1:2]); leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; #+end_src #+begin_src matlab :tangle no :exports results :results file none exportFig('figs/nass_tomo_1kg_60rpm_xy.pdf', 'width', 'half', 'height', 'normal'); #+end_src #+begin_src matlab :exports none :results none %% Simulation of tomography experiment - no payload, 30rpm - YZ errors figure; tiledlayout(2, 1, 'TileSpacing', 'compact', 'Padding', 'None'); ax1 = nexttile(); hold on; plot(1e6*exp_tomo_ol_m1.y.y.Data, 1e6*exp_tomo_ol_m1.y.z.Data, 'DisplayName', 'OL') plot(1e6*exp_tomo_cl_m1.y.y.Data(1e3:end), 1e6*exp_tomo_cl_m1.y.z.Data(1e3:end), 'color', colors(2,:), 'DisplayName', 'CL') hold off; xlabel('$D_y$ [$\mu$m]'); ylabel('$D_z$ [$\mu$m]'); axis equal xlim([-2, 2]); ylim([-0.4, 0.4]); xticks([-2:1:2]); yticks([-2:0.2:2]); leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile(); hold on; plot(1e9*exp_tomo_cl_m1.y.y.Data(1e3:end), 1e9*exp_tomo_cl_m1.y.z.Data(1e3:end), 'color', colors(2,:), 'DisplayName', 'CL') theta = linspace(0, 2*pi, 500); % Angle to plot the circle [rad] plot(100*cos(theta), 50*sin(theta), 'k--', 'DisplayName', 'Beam size') hold off; xlabel('$D_y$ [nm]'); ylabel('$D_z$ [nm]'); axis equal xlim([-500, 500]); ylim([-100, 100]); xticks([-500:100:500]); yticks([-100:50:100]); leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; #+end_src #+begin_src matlab :tangle no :exports results :results file none exportFig('figs/nass_tomo_1kg_60rpm_yz.pdf', 'width', 'half', 'height', 'normal'); #+end_src #+name: fig:nass_tomo_1kg_60rpm #+caption: Position error of the sample in the XY (\subref{fig:nass_tomo_1kg_60rpm_xy}) and YZ (\subref{fig:nass_tomo_1kg_60rpm_yz}) planes during a simulation of a tomography experiment at $360\,\text{deg/s}$. 1kg payload is placed on top of the nano-hexapod. #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:nass_tomo_1kg_60rpm_xy}XY plane} #+attr_latex: :options {0.48\textwidth} #+begin_subfigure #+attr_latex: :scale 0.9 [[file:figs/nass_tomo_1kg_60rpm_xy.png]] #+end_subfigure #+attr_latex: :caption \subcaption{\label{fig:nass_tomo_1kg_60rpm_yz}YZ plane} #+attr_latex: :options {0.48\textwidth} #+begin_subfigure #+attr_latex: :scale 0.9 [[file:figs/nass_tomo_1kg_60rpm_yz.png]] #+end_subfigure #+end_figure - Effect of payload mass (Figure ref:fig:nass_tomography_hac_iff): Worse performance for high masses, as expected from the control analysis, but still acceptable considering that the rotational velocity of 360deg/s is only used for light payloads. #+begin_src matlab :exports none :results none %% Simulation of tomography experiment - no payload, 30rpm - YZ errors figure; tiledlayout(1, 1, 'TileSpacing', 'compact', 'Padding', 'None'); ax1 = nexttile(); hold on; plot(1e9*exp_tomo_cl_m1.y.y.Data(1e3:end), 1e9*exp_tomo_cl_m1.y.z.Data(1e3:end), 'color', colors(1,:), 'DisplayName', '$m = 1$ kg') theta = linspace(0, 2*pi, 500); % Angle to plot the circle [rad] plot(100*cos(theta), 50*sin(theta), 'k--', 'DisplayName', 'Beam size') hold off; xlabel('$D_y$ [$\mu$m]'); ylabel('$D_z$ [$\mu$m]'); axis equal xlim([-200, 200]); ylim([-100, 100]); xticks([-200:50:200]); yticks([-100:50:100]); #+end_src #+begin_src matlab :tangle no :exports results :results file none exportFig('figs/nass_tomography_hac_iff_m1.pdf', 'width', 'third', 'height', 'normal'); #+end_src #+begin_src matlab :exports none :results none %% Simulation of tomography experiment - no payload, 30rpm - YZ errors figure; tiledlayout(1, 1, 'TileSpacing', 'compact', 'Padding', 'None'); ax1 = nexttile(); hold on; plot(1e9*exp_tomo_cl_m25.y.y.Data(1e3:end), 1e9*exp_tomo_cl_m25.y.z.Data(1e3:end), 'color', colors(2,:), 'DisplayName', '$m = 25$ kg') theta = linspace(0, 2*pi, 500); % Angle to plot the circle [rad] plot(100*cos(theta), 50*sin(theta), 'k--', 'DisplayName', 'Beam size') hold off; xlabel('$D_y$ [$\mu$m]'); ylabel('$D_z$ [$\mu$m]'); axis equal xlim([-200, 200]); ylim([-100, 100]); xticks([-200:50:200]); yticks([-100:50:100]); #+end_src #+begin_src matlab :tangle no :exports results :results file none exportFig('figs/nass_tomography_hac_iff_m25.pdf', 'width', 'third', 'height', 'normal'); #+end_src #+begin_src matlab :exports none :results none %% Simulation of tomography experiment - no payload, 30rpm - YZ errors figure; tiledlayout(1, 1, 'TileSpacing', 'compact', 'Padding', 'None'); ax1 = nexttile(); hold on; plot(1e9*exp_tomo_cl_m50.y.y.Data(1e3:end), 1e9*exp_tomo_cl_m50.y.z.Data(1e3:end), 'color', colors(3,:), 'DisplayName', '$m = 50$ kg') theta = linspace(0, 2*pi, 500); % Angle to plot the circle [rad] plot(100*cos(theta), 50*sin(theta), 'k--', 'DisplayName', 'Beam size') hold off; xlabel('$D_y$ [$\mu$m]'); ylabel('$D_z$ [$\mu$m]'); axis equal xlim([-200, 200]); ylim([-100, 100]); xticks([-200:50:200]); yticks([-100:50:100]); #+end_src #+begin_src matlab :tangle no :exports results :results file none exportFig('figs/nass_tomography_hac_iff_m50.pdf', 'width', 'third', 'height', 'normal'); #+end_src #+name: fig:nass_tomography_hac_iff #+caption: Simulation of tomography experiments - 360deg/s. Beam size shown by dashed black #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:nass_tomography_hac_iff_m1} $m = 1\,kg$} #+attr_latex: :options {0.33\textwidth} #+begin_subfigure #+attr_latex: :scale 1 [[file:figs/nass_tomography_hac_iff_m1.png]] #+end_subfigure #+attr_latex: :caption \subcaption{\label{fig:nass_tomography_hac_iff_m25} $m = 25\,kg$} #+attr_latex: :options {0.33\textwidth} #+begin_subfigure #+attr_latex: :scale 1 [[file:figs/nass_tomography_hac_iff_m25.png]] #+end_subfigure #+attr_latex: :caption \subcaption{\label{fig:nass_tomography_hac_iff_m50} $m = 50\,kg$} #+attr_latex: :options {0.33\textwidth} #+begin_subfigure #+attr_latex: :scale 1 [[file:figs/nass_tomography_hac_iff_m50.png]] #+end_subfigure #+end_figure ** Conclusion :PROPERTIES: :UNNUMBERED: t :END: * Conclusion :PROPERTIES: :UNNUMBERED: t :END: <> * Bibliography :ignore: #+latex: \printbibliography[heading=bibintoc,title={Bibliography}] * Helping Functions :noexport: ** Initialize Path #+NAME: m-init-path #+BEGIN_SRC matlab addpath('./matlab/'); % Path for scripts %% Path for functions, data and scripts addpath('./matlab/mat/'); % Path for Computed FRF addpath('./matlab/src/'); % Path for functions addpath('./matlab/STEPS/'); % Path for STEPS addpath('./matlab/subsystems/'); % Path for Subsystems Simulink files %% Data directory data_dir = './matlab/mat/' #+END_SRC #+NAME: m-init-path-tangle #+BEGIN_SRC matlab %% Path for functions, data and scripts addpath('./mat/'); % Path for Data addpath('./src/'); % Path for functions addpath('./STEPS/'); % Path for STEPS addpath('./subsystems/'); % Path for Subsystems Simulink files %% Data directory data_dir = './mat/'; #+END_SRC ** Initialize Simscape Model #+NAME: m-init-simscape #+begin_src matlab % Simulink Model name mdl = 'nass_model'; #+end_src ** Initialize other elements #+NAME: m-init-other #+BEGIN_SRC matlab %% Colors for the figures colors = colororder; %% Frequency Vector [Hz] freqs = logspace(0, 3, 1000); #+END_SRC * Matlab Functions :noexport: ** =initializeSimscapeConfiguration=: Simscape Configuration :PROPERTIES: :header-args:matlab+: :tangle matlab/src/initializeSimscapeConfiguration.m :header-args:matlab+: :comments none :mkdirp yes :eval no :END: *** Function description #+begin_src matlab function [] = initializeSimscapeConfiguration(args) #+end_src *** Optional Parameters #+begin_src matlab arguments args.gravity logical {mustBeNumericOrLogical} = true end #+end_src *** Structure initialization #+begin_src matlab conf_simscape = struct(); #+end_src *** Add Type #+begin_src matlab if args.gravity conf_simscape.type = 1; else conf_simscape.type = 2; end #+end_src *** Save the Structure #+begin_src matlab if exist('./mat', 'dir') if exist('./mat/nass_model_conf_simscape.mat', 'file') save('mat/nass_model_conf_simscape.mat', 'conf_simscape', '-append'); else save('mat/nass_model_conf_simscape.mat', 'conf_simscape'); end elseif exist('./matlab', 'dir') if exist('./matlab/mat/nass_model_conf_simscape.mat', 'file') save('matlab/mat/nass_model_conf_simscape.mat', 'conf_simscape', '-append'); else save('matlab/mat/nass_model_conf_simscape.mat', 'conf_simscape'); end end #+end_src ** =initializeLoggingConfiguration=: Logging Configuration :PROPERTIES: :header-args:matlab+: :tangle matlab/src/initializeLoggingConfiguration.m :header-args:matlab+: :comments none :mkdirp yes :eval no :END: *** Function description #+begin_src matlab function [] = initializeLoggingConfiguration(args) #+end_src *** Optional Parameters #+begin_src matlab arguments args.log char {mustBeMember(args.log,{'none', 'all', 'forces'})} = 'none' args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 end #+end_src *** Structure initialization #+begin_src matlab conf_log = struct(); #+end_src *** Add Type #+begin_src matlab switch args.log case 'none' conf_log.type = 0; case 'all' conf_log.type = 1; case 'forces' conf_log.type = 2; end #+end_src *** Sampling Time #+begin_src matlab conf_log.Ts = args.Ts; #+end_src *** Save the Structure #+begin_src matlab if exist('./mat', 'dir') if exist('./mat/nass_model_conf_log.mat', 'file') save('mat/nass_model_conf_log.mat', 'conf_log', '-append'); else save('mat/nass_model_conf_log.mat', 'conf_log'); end elseif exist('./matlab', 'dir') if exist('./matlab/mat/nass_model_conf_log.mat', 'file') save('matlab/mat/nass_model_conf_log.mat', 'conf_log', '-append'); else save('matlab/mat/nass_model_conf_log.mat', 'conf_log'); end end #+end_src ** =initializeReferences=: Generate Reference Signals :PROPERTIES: :header-args:matlab+: :tangle matlab/src/initializeReferences.m :header-args:matlab+: :comments none :mkdirp yes :eval no :END: *** Function Declaration and Documentation #+begin_src matlab function [ref] = initializeReferences(args) #+end_src *** Optional Parameters #+begin_src matlab arguments % Sampling Frequency [s] args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 % Maximum simulation time [s] args.Tmax (1,1) double {mustBeNumeric, mustBePositive} = 100 % Either "constant" / "triangular" / "sinusoidal" args.Dy_type char {mustBeMember(args.Dy_type,{'constant', 'triangular', 'sinusoidal'})} = 'constant' % Amplitude of the displacement [m] args.Dy_amplitude (1,1) double {mustBeNumeric} = 0 % Period of the displacement [s] args.Dy_period (1,1) double {mustBeNumeric, mustBePositive} = 1 % Either "constant" / "triangular" / "sinusoidal" args.Ry_type char {mustBeMember(args.Ry_type,{'constant', 'triangular', 'sinusoidal'})} = 'constant' % Amplitude [rad] args.Ry_amplitude (1,1) double {mustBeNumeric} = 0 % Period of the displacement [s] args.Ry_period (1,1) double {mustBeNumeric, mustBePositive} = 1 % Either "constant" / "rotating" args.Rz_type char {mustBeMember(args.Rz_type,{'constant', 'rotating', 'rotating-not-filtered'})} = 'constant' % Initial angle [rad] args.Rz_amplitude (1,1) double {mustBeNumeric} = 0 % Period of the rotating [s] args.Rz_period (1,1) double {mustBeNumeric, mustBePositive} = 1 % For now, only constant is implemented args.Dh_type char {mustBeMember(args.Dh_type,{'constant'})} = 'constant' % Initial position [m,m,m,rad,rad,rad] of the top platform (Pitch-Roll-Yaw Euler angles) args.Dh_pos (6,1) double {mustBeNumeric} = zeros(6, 1), ... % For now, only constant is implemented args.Rm_type char {mustBeMember(args.Rm_type,{'constant'})} = 'constant' % Initial position of the two masses args.Rm_pos (2,1) double {mustBeNumeric} = [0; pi] % For now, only constant is implemented args.Dn_type char {mustBeMember(args.Dn_type,{'constant'})} = 'constant' % Initial position [m,m,m,rad,rad,rad] of the top platform args.Dn_pos (6,1) double {mustBeNumeric} = zeros(6,1) end #+end_src *** Initialize Parameters #+begin_src matlab %% Set Sampling Time Ts = args.Ts; Tmax = args.Tmax; %% Low Pass Filter to filter out the references s = zpk('s'); w0 = 2*pi*10; xi = 1; H_lpf = 1/(1 + 2*xi/w0*s + s^2/w0^2); #+end_src *** Translation Stage #+begin_src matlab %% Translation stage - Dy t = 0:Ts:Tmax; % Time Vector [s] Dy = zeros(length(t), 1); Dyd = zeros(length(t), 1); Dydd = zeros(length(t), 1); switch args.Dy_type case 'constant' Dy(:) = args.Dy_amplitude; Dyd(:) = 0; Dydd(:) = 0; case 'triangular' % This is done to unsure that we start with no displacement Dy_raw = args.Dy_amplitude*sawtooth(2*pi*t/args.Dy_period,1/2); i0 = find(t>=args.Dy_period/4,1); Dy(1:end-i0+1) = Dy_raw(i0:end); Dy(end-i0+2:end) = Dy_raw(end); % we fix the last value % The signal is filtered out Dy = lsim(H_lpf, Dy, t); Dyd = lsim(H_lpf*s, Dy, t); Dydd = lsim(H_lpf*s^2, Dy, t); case 'sinusoidal' Dy(:) = args.Dy_amplitude*sin(2*pi/args.Dy_period*t); Dyd = args.Dy_amplitude*2*pi/args.Dy_period*cos(2*pi/args.Dy_period*t); Dydd = -args.Dy_amplitude*(2*pi/args.Dy_period)^2*sin(2*pi/args.Dy_period*t); otherwise warning('Dy_type is not set correctly'); end Dy = struct('time', t, 'signals', struct('values', Dy), 'deriv', Dyd, 'dderiv', Dydd); #+end_src *** Tilt Stage #+begin_src matlab %% Tilt Stage - Ry t = 0:Ts:Tmax; % Time Vector [s] Ry = zeros(length(t), 1); Ryd = zeros(length(t), 1); Rydd = zeros(length(t), 1); switch args.Ry_type case 'constant' Ry(:) = args.Ry_amplitude; Ryd(:) = 0; Rydd(:) = 0; case 'triangular' Ry_raw = args.Ry_amplitude*sawtooth(2*pi*t/args.Ry_period,1/2); i0 = find(t>=args.Ry_period/4,1); Ry(1:end-i0+1) = Ry_raw(i0:end); Ry(end-i0+2:end) = Ry_raw(end); % we fix the last value % The signal is filtered out Ry = lsim(H_lpf, Ry, t); Ryd = lsim(H_lpf*s, Ry, t); Rydd = lsim(H_lpf*s^2, Ry, t); case 'sinusoidal' Ry(:) = args.Ry_amplitude*sin(2*pi/args.Ry_period*t); Ryd = args.Ry_amplitude*2*pi/args.Ry_period*cos(2*pi/args.Ry_period*t); Rydd = -args.Ry_amplitude*(2*pi/args.Ry_period)^2*sin(2*pi/args.Ry_period*t); otherwise warning('Ry_type is not set correctly'); end Ry = struct('time', t, 'signals', struct('values', Ry), 'deriv', Ryd, 'dderiv', Rydd); #+end_src *** Spindle #+begin_src matlab %% Spindle - Rz t = 0:Ts:Tmax; % Time Vector [s] Rz = zeros(length(t), 1); Rzd = zeros(length(t), 1); Rzdd = zeros(length(t), 1); switch args.Rz_type case 'constant' Rz(:) = args.Rz_amplitude; Rzd(:) = 0; Rzdd(:) = 0; case 'rotating-not-filtered' Rz(:) = 2*pi/args.Rz_period*t; % The signal is filtered out Rz(:) = 2*pi/args.Rz_period*t; Rzd(:) = 2*pi/args.Rz_period; Rzdd(:) = 0; % We add the angle offset Rz = Rz + args.Rz_amplitude; case 'rotating' Rz(:) = 2*pi/args.Rz_period*t; % The signal is filtered out Rz = lsim(H_lpf, Rz, t); Rzd = lsim(H_lpf*s, Rz, t); Rzdd = lsim(H_lpf*s^2, Rz, t); % We add the angle offset Rz = Rz + args.Rz_amplitude; otherwise warning('Rz_type is not set correctly'); end Rz = struct('time', t, 'signals', struct('values', Rz), 'deriv', Rzd, 'dderiv', Rzdd); #+end_src *** Micro Hexapod #+begin_src matlab %% Micro-Hexapod t = [0, Ts]; Dh = zeros(length(t), 6); Dhl = zeros(length(t), 6); switch args.Dh_type case 'constant' Dh = [args.Dh_pos, args.Dh_pos]; load('nass_model_stages.mat', 'micro_hexapod'); AP = [args.Dh_pos(1) ; args.Dh_pos(2) ; args.Dh_pos(3)]; tx = args.Dh_pos(4); ty = args.Dh_pos(5); tz = args.Dh_pos(6); ARB = [cos(tz) -sin(tz) 0; sin(tz) cos(tz) 0; 0 0 1]*... [ cos(ty) 0 sin(ty); 0 1 0; -sin(ty) 0 cos(ty)]*... [1 0 0; 0 cos(tx) -sin(tx); 0 sin(tx) cos(tx)]; [~, Dhl] = inverseKinematics(micro_hexapod, 'AP', AP, 'ARB', ARB); Dhl = [Dhl, Dhl]; otherwise warning('Dh_type is not set correctly'); end Dh = struct('time', t, 'signals', struct('values', Dh)); Dhl = struct('time', t, 'signals', struct('values', Dhl)); #+end_src *** Save the Structure #+begin_src matlab if exist('./mat', 'dir') if exist('./mat/nass_model_references.mat', 'file') save('mat/nass_model_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Dhl', 'args', 'Ts', '-append'); else save('mat/nass_model_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Dhl', 'args', 'Ts'); end elseif exist('./matlab', 'dir') if exist('./matlab/mat/nass_model_references.mat', 'file') save('matlab/mat/nass_model_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Dhl', 'args', 'Ts', '-append'); else save('matlab/mat/nass_model_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Dhl', 'args', 'Ts'); end end #+end_src ** =initializeDisturbances=: Initialize Disturbances :PROPERTIES: :header-args:matlab+: :tangle matlab/src/initializeDisturbances.m :header-args:matlab+: :comments none :mkdirp yes :header-args:matlab+: :eval no :results none :END: *** Function Declaration and Documentation #+begin_src matlab function [] = initializeDisturbances(args) % initializeDisturbances - Initialize the disturbances % % Syntax: [] = initializeDisturbances(args) % % Inputs: % - args - #+end_src *** Optional Parameters #+begin_src matlab arguments % Global parameter to enable or disable the disturbances args.enable logical {mustBeNumericOrLogical} = true % Ground Motion - X direction args.Dw_x logical {mustBeNumericOrLogical} = true % Ground Motion - Y direction args.Dw_y logical {mustBeNumericOrLogical} = true % Ground Motion - Z direction args.Dw_z logical {mustBeNumericOrLogical} = true % Translation Stage - X direction args.Fdy_x logical {mustBeNumericOrLogical} = true % Translation Stage - Z direction args.Fdy_z logical {mustBeNumericOrLogical} = true % Spindle - X direction args.Frz_x logical {mustBeNumericOrLogical} = true % Spindle - Y direction args.Frz_y logical {mustBeNumericOrLogical} = true % Spindle - Z direction args.Frz_z logical {mustBeNumericOrLogical} = true end #+end_src #+begin_src matlab % Initialization of random numbers rng("shuffle"); #+end_src *** Ground Motion #+begin_src matlab %% Ground Motion if args.enable % Load the PSD of disturbance load('ustation_disturbance_psd.mat', 'gm_dist') % Frequency Data Dw.f = gm_dist.f; Dw.psd_x = gm_dist.pxx_x; Dw.psd_y = gm_dist.pxx_y; Dw.psd_z = gm_dist.pxx_z; % Time data Fs = 2*Dw.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz] N = 2*length(Dw.f); % Number of Samples match the one of the wanted PSD T0 = N/Fs; % Signal Duration [s] Dw.t = linspace(0, T0, N+1)'; % Time Vector [s] % ASD representation of the ground motion C = zeros(N/2,1); for i = 1:N/2 C(i) = sqrt(Dw.psd_x(i)/T0); end if args.Dw_x theta = 2*pi*rand(N/2,1); % Generate random phase [rad] Cx = [0 ; C.*complex(cos(theta),sin(theta))]; Cx = [Cx; flipud(conj(Cx(2:end)))];; Dw.x = N/sqrt(2)*ifft(Cx); % Ground Motion - x direction [m] else Dw.x = zeros(length(Dw.t), 1); end if args.Dw_y theta = 2*pi*rand(N/2,1); % Generate random phase [rad] Cx = [0 ; C.*complex(cos(theta),sin(theta))]; Cx = [Cx; flipud(conj(Cx(2:end)))];; Dw.y = N/sqrt(2)*ifft(Cx); % Ground Motion - y direction [m] else Dw.y = zeros(length(Dw.t), 1); end if args.Dw_y theta = 2*pi*rand(N/2,1); % Generate random phase [rad] Cx = [0 ; C.*complex(cos(theta),sin(theta))]; Cx = [Cx; flipud(conj(Cx(2:end)))];; Dw.z = N/sqrt(2)*ifft(Cx); % Ground Motion - z direction [m] else Dw.z = zeros(length(Dw.t), 1); end else Dw.t = [0,1]; % Time Vector [s] Dw.x = [0,0]; % Ground Motion - X [m] Dw.y = [0,0]; % Ground Motion - Y [m] Dw.z = [0,0]; % Ground Motion - Z [m] end #+end_src *** Translation stage #+begin_src matlab %% Translation stage if args.enable % Load the PSD of disturbance load('ustation_disturbance_psd.mat', 'dy_dist') % Frequency Data Dy.f = dy_dist.f; Dy.psd_x = dy_dist.pxx_fx; Dy.psd_z = dy_dist.pxx_fz; % Time data Fs = 2*Dy.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz] N = 2*length(Dy.f); % Number of Samples match the one of the wanted PSD T0 = N/Fs; % Signal Duration [s] Dy.t = linspace(0, T0, N+1)'; % Time Vector [s] % ASD representation of the disturbance voice C = zeros(N/2,1); for i = 1:N/2 C(i) = sqrt(Dy.psd_x(i)/T0); end if args.Fdy_x theta = 2*pi*rand(N/2,1); % Generate random phase [rad] Cx = [0 ; C.*complex(cos(theta),sin(theta))]; Cx = [Cx; flipud(conj(Cx(2:end)))];; Dy.x = N/sqrt(2)*ifft(Cx); % Translation stage disturbances - X direction [N] else Dy.x = zeros(length(Dy.t), 1); end if args.Fdy_z theta = 2*pi*rand(N/2,1); % Generate random phase [rad] Cx = [0 ; C.*complex(cos(theta),sin(theta))]; Cx = [Cx; flipud(conj(Cx(2:end)))];; Dy.z = N/sqrt(2)*ifft(Cx); % Translation stage disturbances - Z direction [N] else Dy.z = zeros(length(Dy.t), 1); end else Dy.t = [0,1]; % Time Vector [s] Dy.x = [0,0]; % Translation Stage disturbances - X [N] Dy.z = [0,0]; % Translation Stage disturbances - Z [N] end #+end_src *** Spindle #+begin_src matlab %% Spindle if args.enable % Load the PSD of disturbance load('ustation_disturbance_psd.mat', 'rz_dist') % Frequency Data Rz.f = rz_dist.f; Rz.psd_x = rz_dist.pxx_fx; Rz.psd_y = rz_dist.pxx_fy; Rz.psd_z = rz_dist.pxx_fz; % Time data Fs = 2*Rz.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz] N = 2*length(Rz.f); % Number of Samples match the one of the wanted PSD T0 = N/Fs; % Signal Duration [s] Rz.t = linspace(0, T0, N+1)'; % Time Vector [s] % ASD representation of the disturbance voice C = zeros(N/2,1); for i = 1:N/2 C(i) = sqrt(Rz.psd_x(i)/T0); end if args.Frz_x theta = 2*pi*rand(N/2,1); % Generate random phase [rad] Cx = [0 ; C.*complex(cos(theta),sin(theta))]; Cx = [Cx; flipud(conj(Cx(2:end)))];; Rz.x = N/sqrt(2)*ifft(Cx); % spindle disturbances - X direction [N] else Rz.x = zeros(length(Rz.t), 1); end if args.Frz_y theta = 2*pi*rand(N/2,1); % Generate random phase [rad] Cx = [0 ; C.*complex(cos(theta),sin(theta))]; Cx = [Cx; flipud(conj(Cx(2:end)))];; Rz.y = N/sqrt(2)*ifft(Cx); % spindle disturbances - Y direction [N] else Rz.y = zeros(length(Rz.t), 1); end if args.Frz_z theta = 2*pi*rand(N/2,1); % Generate random phase [rad] Cx = [0 ; C.*complex(cos(theta),sin(theta))]; Cx = [Cx; flipud(conj(Cx(2:end)))];; Rz.z = N/sqrt(2)*ifft(Cx); % spindle disturbances - Z direction [N] else Rz.z = zeros(length(Rz.t), 1); end else Rz.t = [0,1]; % Time Vector [s] Rz.x = [0,0]; % Spindle disturbances - X [N] Rz.y = [0,0]; % Spindle disturbances - X [N] Rz.z = [0,0]; % Spindle disturbances - Z [N] end #+end_src *** Direct Forces #+begin_src matlab u = zeros(100, 6); Fd = u; #+end_src *** Set initial value to zero #+begin_src matlab Dw.x = Dw.x - Dw.x(1); Dw.y = Dw.y - Dw.y(1); Dw.z = Dw.z - Dw.z(1); Dy.x = Dy.x - Dy.x(1); Dy.z = Dy.z - Dy.z(1); Rz.x = Rz.x - Rz.x(1); Rz.y = Rz.y - Rz.y(1); Rz.z = Rz.z - Rz.z(1); #+end_src *** Save the Structure #+begin_src matlab if exist('./mat', 'dir') save('mat/nass_model_disturbances.mat', 'Dw', 'Dy', 'Rz', 'Fd', 'args'); elseif exist('./matlab', 'dir') save('matlab/mat/nass_model_disturbances.mat', 'Dw', 'Dy', 'Rz', 'Fd', 'args'); end #+end_src ** =initializeController=: Initialize Controller #+begin_src matlab :tangle matlab/src/initializeController.m :comments none :mkdirp yes :eval no function [] = initializeController(args) arguments args.type char {mustBeMember(args.type,{'open-loop', 'iff', 'dvf', 'hac-dvf', 'ref-track-L', 'ref-track-iff-L', 'cascade-hac-lac', 'hac-iff', 'stabilizing'})} = 'open-loop' end controller = struct(); switch args.type case 'open-loop' controller.type = 1; controller.name = 'Open-Loop'; case 'dvf' controller.type = 2; controller.name = 'Decentralized Direct Velocity Feedback'; case 'iff' controller.type = 3; controller.name = 'Decentralized Integral Force Feedback'; case 'hac-dvf' controller.type = 4; controller.name = 'HAC-DVF'; case 'ref-track-L' controller.type = 5; controller.name = 'Reference Tracking in the frame of the legs'; case 'ref-track-iff-L' controller.type = 6; controller.name = 'Reference Tracking in the frame of the legs + IFF'; case 'cascade-hac-lac' controller.type = 7; controller.name = 'Cascade Control + HAC-LAC'; case 'hac-iff' controller.type = 8; controller.name = 'HAC-IFF'; case 'stabilizing' controller.type = 9; controller.name = 'Stabilizing Controller'; end if exist('./mat', 'dir') save('mat/nass_model_controller.mat', 'controller'); elseif exist('./matlab', 'dir') save('matlab/mat/nass_model_controller.mat', 'controller'); end end #+end_src ** =describeMicroStationSetup= :PROPERTIES: :header-args:matlab+: :tangle matlab/src/describeMicroStationSetup.m :header-args:matlab+: :comments none :mkdirp yes :eval no :END: *** Function description #+begin_src matlab function [] = describeMicroStationSetup() % describeMicroStationSetup - % % Syntax: [] = describeMicroStationSetup() % % Inputs: % - - % % Outputs: % - - #+end_src *** Simscape Configuration #+begin_src matlab load('./mat/nass_model_conf_simscape.mat', 'conf_simscape'); #+end_src #+begin_src matlab fprintf('Simscape Configuration:\n'); if conf_simscape.type == 1 fprintf('- Gravity is included\n'); else fprintf('- Gravity is not included\n'); end fprintf('\n'); #+end_src *** Disturbances #+begin_src matlab load('./mat/nass_model_disturbances.mat', 'args'); #+end_src #+begin_src matlab fprintf('Disturbances:\n'); if ~args.enable fprintf('- No disturbance is included\n'); else if args.Dwx && args.Dwy && args.Dwz fprintf('- Ground motion\n'); end if args.Fdy_x && args.Fdy_z fprintf('- Vibrations of the Translation Stage\n'); end if args.Frz_z fprintf('- Vibrations of the Spindle\n'); end end fprintf('\n'); #+end_src *** References #+begin_src matlab load('./mat/nass_model_references.mat', 'args'); #+end_src #+begin_src matlab fprintf('Reference Tracking:\n'); fprintf('- Translation Stage:\n'); switch args.Dy_type case 'constant' fprintf(' - Constant Position\n'); fprintf(' - Dy = %.0f [mm]\n', args.Dy_amplitude*1e3); case 'triangular' fprintf(' - Triangular Path\n'); fprintf(' - Amplitude = %.0f [mm]\n', args.Dy_amplitude*1e3); fprintf(' - Period = %.0f [s]\n', args.Dy_period); case 'sinusoidal' fprintf(' - Sinusoidal Path\n'); fprintf(' - Amplitude = %.0f [mm]\n', args.Dy_amplitude*1e3); fprintf(' - Period = %.0f [s]\n', args.Dy_period); end fprintf('- Tilt Stage:\n'); switch args.Ry_type case 'constant' fprintf(' - Constant Position\n'); fprintf(' - Ry = %.0f [mm]\n', args.Ry_amplitude*1e3); case 'triangular' fprintf(' - Triangular Path\n'); fprintf(' - Amplitude = %.0f [mm]\n', args.Ry_amplitude*1e3); fprintf(' - Period = %.0f [s]\n', args.Ry_period); case 'sinusoidal' fprintf(' - Sinusoidal Path\n'); fprintf(' - Amplitude = %.0f [mm]\n', args.Ry_amplitude*1e3); fprintf(' - Period = %.0f [s]\n', args.Ry_period); end fprintf('- Spindle:\n'); switch args.Rz_type case 'constant' fprintf(' - Constant Position\n'); fprintf(' - Rz = %.0f [deg]\n', 180/pi*args.Rz_amplitude); case { 'rotating', 'rotating-not-filtered' } fprintf(' - Rotating\n'); fprintf(' - Speed = %.0f [rpm]\n', 60/args.Rz_period); end fprintf('- Micro Hexapod:\n'); switch args.Dh_type case 'constant' fprintf(' - Constant Position\n'); fprintf(' - Dh = %.0f, %.0f, %.0f [mm]\n', args.Dh_pos(1), args.Dh_pos(2), args.Dh_pos(3)); fprintf(' - Rh = %.0f, %.0f, %.0f [deg]\n', args.Dh_pos(4), args.Dh_pos(5), args.Dh_pos(6)); end fprintf('\n'); #+end_src *** Micro-Station #+begin_src matlab load('./mat/nass_model_stages.mat', 'ground', 'granite', 'ty', 'ry', 'rz', 'micro_hexapod', 'axisc'); #+end_src #+begin_src matlab fprintf('Micro Station:\n'); if granite.type == 1 && ... ty.type == 1 && ... ry.type == 1 && ... rz.type == 1 && ... micro_hexapod.type == 1; fprintf('- All stages are rigid\n'); elseif granite.type == 2 && ... ty.type == 2 && ... ry.type == 2 && ... rz.type == 2 && ... micro_hexapod.type == 2; fprintf('- All stages are flexible\n'); else if granite.type == 1 || granite.type == 4 fprintf('- Granite is rigid\n'); else fprintf('- Granite is flexible\n'); end if ty.type == 1 || ty.type == 4 fprintf('- Translation Stage is rigid\n'); else fprintf('- Translation Stage is flexible\n'); end if ry.type == 1 || ry.type == 4 fprintf('- Tilt Stage is rigid\n'); else fprintf('- Tilt Stage is flexible\n'); end if rz.type == 1 || rz.type == 4 fprintf('- Spindle is rigid\n'); else fprintf('- Spindle is flexible\n'); end if micro_hexapod.type == 1 || micro_hexapod.type == 4 fprintf('- Micro Hexapod is rigid\n'); else fprintf('- Micro Hexapod is flexible\n'); end end fprintf('\n'); #+end_src ** =computeReferencePose= :PROPERTIES: :header-args:matlab+: :tangle matlab/src/computeReferencePose.m :header-args:matlab+: :comments none :mkdirp yes :eval no :END: #+begin_src matlab function [WTr] = computeReferencePose(Dy, Ry, Rz, Dh, Dn) % computeReferencePose - Compute the homogeneous transformation matrix corresponding to the wanted pose of the sample % % Syntax: [WTr] = computeReferencePose(Dy, Ry, Rz, Dh, Dn) % % Inputs: % - Dy - Reference of the Translation Stage [m] % - Ry - Reference of the Tilt Stage [rad] % - Rz - Reference of the Spindle [rad] % - Dh - Reference of the Micro Hexapod (Pitch, Roll, Yaw angles) [m, m, m, rad, rad, rad] % - Dn - Reference of the Nano Hexapod [m, m, m, rad, rad, rad] % % Outputs: % - WTr - %% Translation Stage Rty = [1 0 0 0; 0 1 0 Dy; 0 0 1 0; 0 0 0 1]; %% Tilt Stage - Pure rotating aligned with Ob Rry = [ cos(Ry) 0 sin(Ry) 0; 0 1 0 0; -sin(Ry) 0 cos(Ry) 0; 0 0 0 1]; %% Spindle - Rotation along the Z axis Rrz = [cos(Rz) -sin(Rz) 0 0 ; sin(Rz) cos(Rz) 0 0 ; 0 0 1 0 ; 0 0 0 1 ]; %% Micro-Hexapod Rhx = [1 0 0; 0 cos(Dh(4)) -sin(Dh(4)); 0 sin(Dh(4)) cos(Dh(4))]; Rhy = [ cos(Dh(5)) 0 sin(Dh(5)); 0 1 0; -sin(Dh(5)) 0 cos(Dh(5))]; Rhz = [cos(Dh(6)) -sin(Dh(6)) 0; sin(Dh(6)) cos(Dh(6)) 0; 0 0 1]; Rh = [1 0 0 Dh(1) ; 0 1 0 Dh(2) ; 0 0 1 Dh(3) ; 0 0 0 1 ]; Rh(1:3, 1:3) = Rhz*Rhy*Rhx; %% Nano-Hexapod Rnx = [1 0 0; 0 cos(Dn(4)) -sin(Dn(4)); 0 sin(Dn(4)) cos(Dn(4))]; Rny = [ cos(Dn(5)) 0 sin(Dn(5)); 0 1 0; -sin(Dn(5)) 0 cos(Dn(5))]; Rnz = [cos(Dn(6)) -sin(Dn(6)) 0; sin(Dn(6)) cos(Dn(6)) 0; 0 0 1]; Rn = [1 0 0 Dn(1) ; 0 1 0 Dn(2) ; 0 0 1 Dn(3) ; 0 0 0 1 ]; Rn(1:3, 1:3) = Rnz*Rny*Rnx; %% Total Homogeneous transformation WTr = Rty*Rry*Rrz*Rh*Rn; end #+end_src ** =circlefit= :PROPERTIES: :header-args:matlab+: :tangle matlab/src/circlefit.m :header-args:matlab+: :comments none :mkdirp yes :eval no :END: #+begin_src matlab function [xc,yc,R,a] = circlefit(x,y) % % [xc yx R] = circfit(x,y) % % fits a circle in x,y plane in a more accurate % (less prone to ill condition ) % procedure than circfit2 but using more memory % x,y are column vector where (x(i),y(i)) is a measured point % % result is center point (yc,xc) and radius R % an optional output is the vector of coeficient a % describing the circle's equation % % x^2+y^2+a(1)*x+a(2)*y+a(3)=0 % % By: Izhak bucher 25/oct /1991, x=x(:); y=y(:); a=[x y ones(size(x))]\[-(x.^2+y.^2)]; xc = -.5*a(1); yc = -.5*a(2); R = sqrt((a(1)^2+a(2)^2)/4-a(3)); #+end_src ** Initialize Micro-Station Stages *** =initializeGround=: Ground #+begin_src matlab :tangle matlab/src/initializeGround.m :comments none :mkdirp yes :eval no function [ground] = initializeGround(args) arguments args.type char {mustBeMember(args.type,{'none', 'rigid'})} = 'rigid' args.rot_point (3,1) double {mustBeNumeric} = zeros(3,1) % Rotation point for the ground motion [m] end ground = struct(); switch args.type case 'none' ground.type = 0; case 'rigid' ground.type = 1; end ground.shape = [2, 2, 0.5]; % [m] ground.density = 2800; % [kg/m3] ground.rot_point = args.rot_point; if exist('./mat', 'dir') if exist('./mat/nass_model_stages.mat', 'file') save('mat/nass_model_stages.mat', 'ground', '-append'); else save('mat/nass_model_stages.mat', 'ground'); end elseif exist('./matlab', 'dir') if exist('./matlab/mat/nass_model_stages.mat', 'file') save('matlab/mat/nass_model_stages.mat', 'ground', '-append'); else save('matlab/mat/nass_model_stages.mat', 'ground'); end end end #+end_src *** =initializeGranite=: Granite #+begin_src matlab :tangle matlab/src/initializeGranite.m :comments none :mkdirp yes :eval no function [granite] = initializeGranite(args) arguments args.type char {mustBeMember(args.type,{'rigid', 'flexible', 'none'})} = 'flexible' args.density (1,1) double {mustBeNumeric, mustBeNonnegative} = 2800 % Density [kg/m3] args.K (6,1) double {mustBeNumeric, mustBeNonnegative} = [5e9; 5e9; 5e9; 2.5e7; 2.5e7; 1e7] % [N/m] args.C (6,1) double {mustBeNumeric, mustBeNonnegative} = [4.0e5; 1.1e5; 9.0e5; 2e4; 2e4; 1e4] % [N/(m/s)] args.x0 (1,1) double {mustBeNumeric} = 0 % Rest position of the Joint in the X direction [m] args.y0 (1,1) double {mustBeNumeric} = 0 % Rest position of the Joint in the Y direction [m] args.z0 (1,1) double {mustBeNumeric} = 0 % Rest position of the Joint in the Z direction [m] args.sample_pos (1,1) double {mustBeNumeric} = 0.775 % Height of the measurment point [m] end granite = struct(); switch args.type case 'none' granite.type = 0; case 'rigid' granite.type = 1; case 'flexible' granite.type = 2; end granite.density = args.density; % [kg/m3] granite.STEP = 'granite.STEP'; % Z-offset for the initial position of the sample with respect to the granite top surface. granite.sample_pos = args.sample_pos; % [m] granite.K = args.K; % [N/m] granite.C = args.C; % [N/(m/s)] if exist('./mat', 'dir') if exist('./mat/nass_model_stages.mat', 'file') save('mat/nass_model_stages.mat', 'granite', '-append'); else save('mat/nass_model_stages.mat', 'granite'); end elseif exist('./matlab', 'dir') if exist('./matlab/mat/nass_model_stages.mat', 'file') save('matlab/mat/nass_model_stages.mat', 'granite', '-append'); else save('matlab/mat/nass_model_stages.mat', 'granite'); end end end #+end_src *** =initializeTy=: Translation Stage #+begin_src matlab :tangle matlab/src/initializeTy.m :comments none :mkdirp yes :eval no function [ty] = initializeTy(args) arguments args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible'})} = 'flexible' end ty = struct(); switch args.type case 'none' ty.type = 0; case 'rigid' ty.type = 1; case 'flexible' ty.type = 2; end % Ty Granite frame ty.granite_frame.density = 7800; % [kg/m3] => 43kg ty.granite_frame.STEP = 'Ty_Granite_Frame.STEP'; % Guide Translation Ty ty.guide.density = 7800; % [kg/m3] => 76kg ty.guide.STEP = 'Ty_Guide.STEP'; % Ty - Guide_Translation12 ty.guide12.density = 7800; % [kg/m3] ty.guide12.STEP = 'Ty_Guide_12.STEP'; % Ty - Guide_Translation11 ty.guide11.density = 7800; % [kg/m3] ty.guide11.STEP = 'Ty_Guide_11.STEP'; % Ty - Guide_Translation22 ty.guide22.density = 7800; % [kg/m3] ty.guide22.STEP = 'Ty_Guide_22.STEP'; % Ty - Guide_Translation21 ty.guide21.density = 7800; % [kg/m3] ty.guide21.STEP = 'Ty_Guide_21.STEP'; % Ty - Plateau translation ty.frame.density = 7800; % [kg/m3] ty.frame.STEP = 'Ty_Stage.STEP'; % Ty Stator Part ty.stator.density = 5400; % [kg/m3] ty.stator.STEP = 'Ty_Motor_Stator.STEP'; % Ty Rotor Part ty.rotor.density = 5400; % [kg/m3] ty.rotor.STEP = 'Ty_Motor_Rotor.STEP'; ty.K = [2e8; 1e8; 2e8; 6e7; 9e7; 6e7]; % [N/m, N*m/rad] ty.C = [8e4; 5e4; 8e4; 2e4; 3e4; 1e4]; % [N/(m/s), N*m/(rad/s)] if exist('./mat', 'dir') if exist('./mat/nass_model_stages.mat', 'file') save('mat/nass_model_stages.mat', 'ty', '-append'); else save('mat/nass_model_stages.mat', 'ty'); end elseif exist('./matlab', 'dir') if exist('./matlab/mat/nass_model_stages.mat', 'file') save('matlab/mat/nass_model_stages.mat', 'ty', '-append'); else save('matlab/mat/nass_model_stages.mat', 'ty'); end end end #+end_src *** =initializeRy=: Tilt Stage #+begin_src matlab :tangle matlab/src/initializeRy.m :comments none :mkdirp yes :eval no function [ry] = initializeRy(args) arguments args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible'})} = 'flexible' args.Ry_init (1,1) double {mustBeNumeric} = 0 end ry = struct(); switch args.type case 'none' ry.type = 0; case 'rigid' ry.type = 1; case 'flexible' ry.type = 2; end % Ry - Guide for the tilt stage ry.guide.density = 7800; % [kg/m3] ry.guide.STEP = 'Tilt_Guide.STEP'; % Ry - Rotor of the motor ry.rotor.density = 2400; % [kg/m3] ry.rotor.STEP = 'Tilt_Motor_Axis.STEP'; % Ry - Motor ry.motor.density = 3200; % [kg/m3] ry.motor.STEP = 'Tilt_Motor.STEP'; % Ry - Plateau Tilt ry.stage.density = 7800; % [kg/m3] ry.stage.STEP = 'Tilt_Stage.STEP'; % Z-Offset so that the center of rotation matches the sample center; ry.z_offset = 0.58178; % [m] ry.Ry_init = args.Ry_init; % [rad] ry.K = [3.8e8; 4e8; 3.8e8; 1.2e8; 6e4; 1.2e8]; ry.C = [1e5; 1e5; 1e5; 3e4; 1e3; 3e4]; if exist('./mat', 'dir') if exist('./mat/nass_model_stages.mat', 'file') save('mat/nass_model_stages.mat', 'ry', '-append'); else save('mat/nass_model_stages.mat', 'ry'); end elseif exist('./matlab', 'dir') if exist('./matlab/mat/nass_model_stages.mat', 'file') save('matlab/mat/nass_model_stages.mat', 'ry', '-append'); else save('matlab/mat/nass_model_stages.mat', 'ry'); end end end #+end_src *** =initializeRz=: Spindle #+begin_src matlab :tangle matlab/src/initializeRz.m :comments none :mkdirp yes :eval no function [rz] = initializeRz(args) arguments args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible'})} = 'flexible' end rz = struct(); switch args.type case 'none' rz.type = 0; case 'rigid' rz.type = 1; case 'flexible' rz.type = 2; end % Spindle - Slip Ring rz.slipring.density = 7800; % [kg/m3] rz.slipring.STEP = 'Spindle_Slip_Ring.STEP'; % Spindle - Rotor rz.rotor.density = 7800; % [kg/m3] rz.rotor.STEP = 'Spindle_Rotor.STEP'; % Spindle - Stator rz.stator.density = 7800; % [kg/m3] rz.stator.STEP = 'Spindle_Stator.STEP'; rz.K = [7e8; 7e8; 2e9; 1e7; 1e7; 1e7]; rz.C = [4e4; 4e4; 7e4; 1e4; 1e4; 1e4]; if exist('./mat', 'dir') if exist('./mat/nass_model_stages.mat', 'file') save('mat/nass_model_stages.mat', 'rz', '-append'); else save('mat/nass_model_stages.mat', 'rz'); end elseif exist('./matlab', 'dir') if exist('./matlab/mat/nass_model_stages.mat', 'file') save('matlab/mat/nass_model_stages.mat', 'rz', '-append'); else save('matlab/mat/nass_model_stages.mat', 'rz'); end end end #+end_src *** =initializeMicroHexapod=: Micro Hexapod #+begin_src matlab :tangle matlab/src/initializeMicroHexapod.m :comments none :mkdirp yes :eval no function [micro_hexapod] = initializeMicroHexapod(args) arguments args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible'})} = 'flexible' % initializeFramesPositions args.H (1,1) double {mustBeNumeric, mustBePositive} = 350e-3 args.MO_B (1,1) double {mustBeNumeric} = 270e-3 % generateGeneralConfiguration args.FH (1,1) double {mustBeNumeric, mustBePositive} = 50e-3 args.FR (1,1) double {mustBeNumeric, mustBePositive} = 175.5e-3 args.FTh (6,1) double {mustBeNumeric} = [-10, 10, 120-10, 120+10, 240-10, 240+10]*(pi/180) args.MH (1,1) double {mustBeNumeric, mustBePositive} = 45e-3 args.MR (1,1) double {mustBeNumeric, mustBePositive} = 118e-3 args.MTh (6,1) double {mustBeNumeric} = [-60+10, 60-10, 60+10, 180-10, 180+10, -60-10]*(pi/180) % initializeStrutDynamics args.Ki (1,1) double {mustBeNumeric, mustBeNonnegative} = 2e7 args.Ci (1,1) double {mustBeNumeric, mustBeNonnegative} = 1.4e3 % initializeCylindricalPlatforms args.Fpm (1,1) double {mustBeNumeric, mustBePositive} = 10 args.Fph (1,1) double {mustBeNumeric, mustBePositive} = 26e-3 args.Fpr (1,1) double {mustBeNumeric, mustBePositive} = 207.5e-3 args.Mpm (1,1) double {mustBeNumeric, mustBePositive} = 10 args.Mph (1,1) double {mustBeNumeric, mustBePositive} = 26e-3 args.Mpr (1,1) double {mustBeNumeric, mustBePositive} = 150e-3 % initializeCylindricalStruts args.Fsm (1,1) double {mustBeNumeric, mustBePositive} = 1 args.Fsh (1,1) double {mustBeNumeric, mustBePositive} = 100e-3 args.Fsr (1,1) double {mustBeNumeric, mustBePositive} = 25e-3 args.Msm (1,1) double {mustBeNumeric, mustBePositive} = 1 args.Msh (1,1) double {mustBeNumeric, mustBePositive} = 100e-3 args.Msr (1,1) double {mustBeNumeric, mustBePositive} = 25e-3 % inverseKinematics args.AP (3,1) double {mustBeNumeric} = zeros(3,1) args.ARB (3,3) double {mustBeNumeric} = eye(3) end stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, ... 'H', args.H, ... 'MO_B', args.MO_B); stewart = generateGeneralConfiguration(stewart, ... 'FH', args.FH, ... 'FR', args.FR, ... 'FTh', args.FTh, ... 'MH', args.MH, ... 'MR', args.MR, ... 'MTh', args.MTh); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart, ... 'k', args.Ki, ... 'c', args.Ci); stewart = initializeJointDynamics(stewart, ... 'type_F', '2dof', ... 'type_M', '3dof'); stewart = initializeCylindricalPlatforms(stewart, ... 'Fpm', args.Fpm, ... 'Fph', args.Fph, ... 'Fpr', args.Fpr, ... 'Mpm', args.Mpm, ... 'Mph', args.Mph, ... 'Mpr', args.Mpr); stewart = initializeCylindricalStruts(stewart, ... 'Fsm', args.Fsm, ... 'Fsh', args.Fsh, ... 'Fsr', args.Fsr, ... 'Msm', args.Msm, ... 'Msh', args.Msh, ... 'Msr', args.Msr); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart, ... 'AP', args.AP, ... 'ARB', args.ARB); stewart = initializeInertialSensor(stewart, 'type', 'none'); switch args.type case 'none' stewart.type = 0; case 'rigid' stewart.type = 1; case 'flexible' stewart.type = 2; end micro_hexapod = stewart; if exist('./mat', 'dir') if exist('./mat/nass_model_stages.mat', 'file') save('mat/nass_model_stages.mat', 'micro_hexapod', '-append'); else save('mat/nass_model_stages.mat', 'micro_hexapod'); end elseif exist('./matlab', 'dir') if exist('./matlab/mat/nass_model_stages.mat', 'file') save('matlab/mat/nass_model_stages.mat', 'micro_hexapod', '-append'); else save('matlab/mat/nass_model_stages.mat', 'micro_hexapod'); end end end #+end_src *** =initializeSimplifiedNanoHexapod=: Nano Hexapod #+begin_src matlab :tangle matlab/src/initializeSimplifiedNanoHexapod.m :comments none :mkdirp yes :eval no function [nano_hexapod] = initializeSimplifiedNanoHexapod(args) arguments args.type char {mustBeMember(args.type,{'none', 'stewart'})} = 'stewart' %% initializeFramesPositions args.H (1,1) double {mustBeNumeric, mustBePositive} = 95e-3 % Height of the nano-hexapod [m] args.MO_B (1,1) double {mustBeNumeric} = 150e-3 % Height of {B} w.r.t. {M} [m] %% generateGeneralConfiguration args.FH (1,1) double {mustBeNumeric, mustBePositive} = 15e-3 % Height of fixed joints [m] args.FR (1,1) double {mustBeNumeric, mustBePositive} = 120e-3 % Radius of fixed joints [m] args.FTh (6,1) double {mustBeNumeric} = [220, 320, 340, 80, 100, 200]*(pi/180) % Angles of fixed joints [rad] args.MH (1,1) double {mustBeNumeric, mustBePositive} = 15e-3 % Height of mobile joints [m] args.MR (1,1) double {mustBeNumeric, mustBePositive} = 110e-3 % Radius of mobile joints [m] args.MTh (6,1) double {mustBeNumeric} = [255, 285, 15, 45, 135, 165]*(pi/180) % Angles of fixed joints [rad] %% Actuators args.actuator_type char {mustBeMember(args.actuator_type,{'1dof', '2dof', 'flexible'})} = '1dof' args.actuator_k (1,1) double {mustBeNumeric, mustBePositive} = 1e6 args.actuator_kp (1,1) double {mustBeNumeric, mustBeNonnegative} = 5e4 args.actuator_ke (1,1) double {mustBeNumeric, mustBePositive} = 4952605 args.actuator_ka (1,1) double {mustBeNumeric, mustBePositive} = 2476302 args.actuator_c (1,1) double {mustBeNumeric, mustBePositive} = 50 args.actuator_cp (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.actuator_ce (1,1) double {mustBeNumeric, mustBePositive} = 100 args.actuator_ca (1,1) double {mustBeNumeric, mustBePositive} = 50 %% initializeCylindricalPlatforms args.Fpm (1,1) double {mustBeNumeric, mustBePositive} = 5 % Mass of the fixed plate [kg] args.Fph (1,1) double {mustBeNumeric, mustBePositive} = 10e-3 % Thickness of the fixed plate [m] args.Fpr (1,1) double {mustBeNumeric, mustBePositive} = 150e-3 % Radius of the fixed plate [m] args.Mpm (1,1) double {mustBeNumeric, mustBePositive} = 5 % Mass of the mobile plate [kg] args.Mph (1,1) double {mustBeNumeric, mustBePositive} = 10e-3 % Thickness of the mobile plate [m] args.Mpr (1,1) double {mustBeNumeric, mustBePositive} = 150e-3 % Radius of the mobile plate [m] %% initializeCylindricalStruts args.Fsm (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 % Mass of the fixed part of the strut [kg] args.Fsh (1,1) double {mustBeNumeric, mustBePositive} = 60e-3 % Length of the fixed part of the struts [m] args.Fsr (1,1) double {mustBeNumeric, mustBePositive} = 5e-3 % Radius of the fixed part of the struts [m] args.Msm (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 % Mass of the mobile part of the strut [kg] args.Msh (1,1) double {mustBeNumeric, mustBePositive} = 60e-3 % Length of the mobile part of the struts [m] args.Msr (1,1) double {mustBeNumeric, mustBePositive} = 5e-3 % Radius of the fixed part of the struts [m] %% Bottom and Top Flexible Joints args.flex_type_F char {mustBeMember(args.flex_type_F,{'2dof', '3dof', '4dof', '6dof', 'flexible'})} = '2dof' args.flex_type_M char {mustBeMember(args.flex_type_M,{'2dof', '3dof', '4dof', '6dof', 'flexible'})} = '3dof' args.Kf_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Cf_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Kt_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Ct_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Kf_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Cf_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Kt_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Ct_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Ka_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Ca_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Kr_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Cr_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Ka_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Ca_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Kr_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Cr_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 %% inverseKinematics args.AP (3,1) double {mustBeNumeric} = zeros(3,1) args.ARB (3,3) double {mustBeNumeric} = eye(3) end stewart = initializeStewartPlatform(); switch args.type case 'none' stewart.type = 0; case 'stewart' stewart.type = 1; end stewart = initializeFramesPositions(stewart, ... 'H', args.H, ... 'MO_B', args.MO_B); stewart = generateGeneralConfiguration(stewart, ... 'FH', args.FH, ... 'FR', args.FR, ... 'FTh', args.FTh, ... 'MH', args.MH, ... 'MR', args.MR, ... 'MTh', args.MTh); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart, ... 'type', args.actuator_type, ... 'k', args.actuator_k, ... 'kp', args.actuator_kp, ... 'ke', args.actuator_ke, ... 'ka', args.actuator_ka, ... 'c', args.actuator_c, ... 'cp', args.actuator_cp, ... 'ce', args.actuator_ce, ... 'ca', args.actuator_ca); stewart = initializeJointDynamics(stewart, ... 'type_F', args.flex_type_F, ... 'type_M', args.flex_type_M, ... 'Kf_M', args.Kf_M, ... 'Cf_M', args.Cf_M, ... 'Kt_M', args.Kt_M, ... 'Ct_M', args.Ct_M, ... 'Kf_F', args.Kf_F, ... 'Cf_F', args.Cf_F, ... 'Kt_F', args.Kt_F, ... 'Ct_F', args.Ct_F, ... 'Ka_F', args.Ka_F, ... 'Ca_F', args.Ca_F, ... 'Kr_F', args.Kr_F, ... 'Cr_F', args.Cr_F, ... 'Ka_M', args.Ka_M, ... 'Ca_M', args.Ca_M, ... 'Kr_M', args.Kr_M, ... 'Cr_M', args.Cr_M); stewart = initializeCylindricalPlatforms(stewart, ... 'Fpm', args.Fpm, ... 'Fph', args.Fph, ... 'Fpr', args.Fpr, ... 'Mpm', args.Mpm, ... 'Mph', args.Mph, ... 'Mpr', args.Mpr); stewart = initializeCylindricalStruts(stewart, ... 'Fsm', args.Fsm, ... 'Fsh', args.Fsh, ... 'Fsr', args.Fsr, ... 'Msm', args.Msm, ... 'Msh', args.Msh, ... 'Msr', args.Msr); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart, ... 'AP', args.AP, ... 'ARB', args.ARB); nano_hexapod = stewart; if exist('./mat', 'dir') if exist('./mat/nass_model_stages.mat', 'file') save('mat/nass_model_stages.mat', 'nano_hexapod', '-append'); else save('mat/nass_model_stages.mat', 'nano_hexapod'); end elseif exist('./matlab', 'dir') if exist('./matlab/mat/nass_model_stages.mat', 'file') save('matlab/mat/nass_model_stages.mat', 'nano_hexapod', '-append'); else save('matlab/mat/nass_model_stages.mat', 'nano_hexapod'); end end end #+end_src *** =initializeSample=: Sample #+begin_src matlab :tangle matlab/src/initializeSample.m :comments none :mkdirp yes :eval no function [sample] = initializeSample(args) arguments args.type char {mustBeMember(args.type,{'none', 'cylindrical'})} = 'none' args.H (1,1) double {mustBeNumeric, mustBePositive} = 250e-3 % Height [m] args.R (1,1) double {mustBeNumeric, mustBePositive} = 110e-3 % Radius [m] args.m (1,1) double {mustBeNumeric, mustBePositive} = 1 % Mass [kg] end sample = struct(); switch args.type case 'none' sample.type = 0; sample.m = 0; case 'cylindrical' sample.type = 1; sample.H = args.H; sample.R = args.R; sample.m = args.m; end if exist('./mat', 'dir') if exist('./mat/nass_model_stages.mat', 'file') save('mat/nass_model_stages.mat', 'sample', '-append'); else save('mat/nass_model_stages.mat', 'sample'); end elseif exist('./matlab', 'dir') if exist('./matlab/mat/nass_model_stages.mat', 'file') save('matlab/mat/nass_model_stages.mat', 'sample', '-append'); else save('matlab/mat/nass_model_stages.mat', 'sample'); end end end #+end_src ** Initialize Nano-Hexapod *** =initializeStewartPlatform=: Initialize the Stewart Platform structure #+begin_src matlab :tangle matlab/src/initializeStewartPlatform.m :comments none :mkdirp yes :eval no function [stewart] = initializeStewartPlatform() % initializeStewartPlatform - Initialize the stewart structure % % Syntax: [stewart] = initializeStewartPlatform(args) % % Outputs: % - stewart - A structure with the following sub-structures: % - platform_F - % - platform_M - % - joints_F - % - joints_M - % - struts_F - % - struts_M - % - actuators - % - geometry - % - properties - stewart = struct(); stewart.platform_F = struct(); stewart.platform_M = struct(); stewart.joints_F = struct(); stewart.joints_M = struct(); stewart.struts_F = struct(); stewart.struts_M = struct(); stewart.actuators = struct(); stewart.sensors = struct(); stewart.sensors.inertial = struct(); stewart.sensors.force = struct(); stewart.sensors.relative = struct(); stewart.geometry = struct(); stewart.kinematics = struct(); end #+end_src *** =initializeFramesPositions=: Initialize the positions of frames {A}, {B}, {F} and {M} #+begin_src matlab :tangle matlab/src/initializeFramesPositions.m :comments none :mkdirp yes :eval no function [stewart] = initializeFramesPositions(stewart, args) % initializeFramesPositions - Initialize the positions of frames {A}, {B}, {F} and {M} % % Syntax: [stewart] = initializeFramesPositions(stewart, args) % % Inputs: % - args - Can have the following fields: % - H [1x1] - Total Height of the Stewart Platform (height from {F} to {M}) [m] % - MO_B [1x1] - Height of the frame {B} with respect to {M} [m] % % Outputs: % - stewart - A structure with the following fields: % - geometry.H [1x1] - Total Height of the Stewart Platform [m] % - geometry.FO_M [3x1] - Position of {M} with respect to {F} [m] % - platform_M.MO_B [3x1] - Position of {B} with respect to {M} [m] % - platform_F.FO_A [3x1] - Position of {A} with respect to {F} [m] arguments stewart args.H (1,1) double {mustBeNumeric, mustBePositive} = 90e-3 args.MO_B (1,1) double {mustBeNumeric} = 50e-3 end H = args.H; % Total Height of the Stewart Platform [m] FO_M = [0; 0; H]; % Position of {M} with respect to {F} [m] MO_B = [0; 0; args.MO_B]; % Position of {B} with respect to {M} [m] FO_A = MO_B + FO_M; % Position of {A} with respect to {F} [m] stewart.geometry.H = H; stewart.geometry.FO_M = FO_M; stewart.platform_M.MO_B = MO_B; stewart.platform_F.FO_A = FO_A; end #+end_src *** =generateGeneralConfiguration=: Generate a Very General Configuration #+begin_src matlab :tangle matlab/src/generateGeneralConfiguration.m :comments none :mkdirp yes :eval no function [stewart] = generateGeneralConfiguration(stewart, args) % generateGeneralConfiguration - Generate a Very General Configuration % % Syntax: [stewart] = generateGeneralConfiguration(stewart, args) % % Inputs: % - args - Can have the following fields: % - FH [1x1] - Height of the position of the fixed joints with respect to the frame {F} [m] % - FR [1x1] - Radius of the position of the fixed joints in the X-Y [m] % - FTh [6x1] - Angles of the fixed joints in the X-Y plane with respect to the X axis [rad] % - MH [1x1] - Height of the position of the mobile joints with respect to the frame {M} [m] % - FR [1x1] - Radius of the position of the mobile joints in the X-Y [m] % - MTh [6x1] - Angles of the mobile joints in the X-Y plane with respect to the X axis [rad] % % Outputs: % - stewart - updated Stewart structure with the added fields: % - platform_F.Fa [3x6] - Its i'th column is the position vector of joint ai with respect to {F} % - platform_M.Mb [3x6] - Its i'th column is the position vector of joint bi with respect to {M} arguments stewart args.FH (1,1) double {mustBeNumeric, mustBePositive} = 15e-3 args.FR (1,1) double {mustBeNumeric, mustBePositive} = 115e-3; args.FTh (6,1) double {mustBeNumeric} = [-10, 10, 120-10, 120+10, 240-10, 240+10]*(pi/180); args.MH (1,1) double {mustBeNumeric, mustBePositive} = 15e-3 args.MR (1,1) double {mustBeNumeric, mustBePositive} = 90e-3; args.MTh (6,1) double {mustBeNumeric} = [-60+10, 60-10, 60+10, 180-10, 180+10, -60-10]*(pi/180); end Fa = zeros(3,6); Mb = zeros(3,6); for i = 1:6 Fa(:,i) = [args.FR*cos(args.FTh(i)); args.FR*sin(args.FTh(i)); args.FH]; Mb(:,i) = [args.MR*cos(args.MTh(i)); args.MR*sin(args.MTh(i)); -args.MH]; end stewart.platform_F.Fa = Fa; stewart.platform_M.Mb = Mb; end #+end_src *** =computeJointsPose=: Compute the Pose of the Joints #+begin_src matlab :tangle matlab/src/computeJointsPose.m :comments none :mkdirp yes :eval no function [stewart] = computeJointsPose(stewart) % computeJointsPose - % % Syntax: [stewart] = computeJointsPose(stewart) % % Inputs: % - stewart - A structure with the following fields % - platform_F.Fa [3x6] - Its i'th column is the position vector of joint ai with respect to {F} % - platform_M.Mb [3x6] - Its i'th column is the position vector of joint bi with respect to {M} % - platform_F.FO_A [3x1] - Position of {A} with respect to {F} % - platform_M.MO_B [3x1] - Position of {B} with respect to {M} % - geometry.FO_M [3x1] - Position of {M} with respect to {F} % % Outputs: % - stewart - A structure with the following added fields % - geometry.Aa [3x6] - The i'th column is the position of ai with respect to {A} % - geometry.Ab [3x6] - The i'th column is the position of bi with respect to {A} % - geometry.Ba [3x6] - The i'th column is the position of ai with respect to {B} % - geometry.Bb [3x6] - The i'th column is the position of bi with respect to {B} % - geometry.l [6x1] - The i'th element is the initial length of strut i % - geometry.As [3x6] - The i'th column is the unit vector of strut i expressed in {A} % - geometry.Bs [3x6] - The i'th column is the unit vector of strut i expressed in {B} % - struts_F.l [6x1] - Length of the Fixed part of the i'th strut % - struts_M.l [6x1] - Length of the Mobile part of the i'th strut % - platform_F.FRa [3x3x6] - The i'th 3x3 array is the rotation matrix to orientate the bottom of the i'th strut from {F} % - platform_M.MRb [3x3x6] - The i'th 3x3 array is the rotation matrix to orientate the top of the i'th strut from {M} assert(isfield(stewart.platform_F, 'Fa'), 'stewart.platform_F should have attribute Fa') Fa = stewart.platform_F.Fa; assert(isfield(stewart.platform_M, 'Mb'), 'stewart.platform_M should have attribute Mb') Mb = stewart.platform_M.Mb; assert(isfield(stewart.platform_F, 'FO_A'), 'stewart.platform_F should have attribute FO_A') FO_A = stewart.platform_F.FO_A; assert(isfield(stewart.platform_M, 'MO_B'), 'stewart.platform_M should have attribute MO_B') MO_B = stewart.platform_M.MO_B; assert(isfield(stewart.geometry, 'FO_M'), 'stewart.geometry should have attribute FO_M') FO_M = stewart.geometry.FO_M; Aa = Fa - repmat(FO_A, [1, 6]); Bb = Mb - repmat(MO_B, [1, 6]); Ab = Bb - repmat(-MO_B-FO_M+FO_A, [1, 6]); Ba = Aa - repmat( MO_B+FO_M-FO_A, [1, 6]); As = (Ab - Aa)./vecnorm(Ab - Aa); % As_i is the i'th vector of As l = vecnorm(Ab - Aa)'; Bs = (Bb - Ba)./vecnorm(Bb - Ba); FRa = zeros(3,3,6); MRb = zeros(3,3,6); for i = 1:6 FRa(:,:,i) = [cross([0;1;0], As(:,i)) , cross(As(:,i), cross([0;1;0], As(:,i))) , As(:,i)]; FRa(:,:,i) = FRa(:,:,i)./vecnorm(FRa(:,:,i)); MRb(:,:,i) = [cross([0;1;0], Bs(:,i)) , cross(Bs(:,i), cross([0;1;0], Bs(:,i))) , Bs(:,i)]; MRb(:,:,i) = MRb(:,:,i)./vecnorm(MRb(:,:,i)); end stewart.geometry.Aa = Aa; stewart.geometry.Ab = Ab; stewart.geometry.Ba = Ba; stewart.geometry.Bb = Bb; stewart.geometry.As = As; stewart.geometry.Bs = Bs; stewart.geometry.l = l; stewart.struts_F.l = l/2; stewart.struts_M.l = l/2; stewart.platform_F.FRa = FRa; stewart.platform_M.MRb = MRb; end #+end_src *** =initializeCylindricalPlatforms=: Initialize the geometry of the Fixed and Mobile Platforms #+begin_src matlab :tangle matlab/src/initializeCylindricalPlatforms.m :comments none :mkdirp yes :eval no function [stewart] = initializeCylindricalPlatforms(stewart, args) % initializeCylindricalPlatforms - Initialize the geometry of the Fixed and Mobile Platforms % % Syntax: [stewart] = initializeCylindricalPlatforms(args) % % Inputs: % - args - Structure with the following fields: % - Fpm [1x1] - Fixed Platform Mass [kg] % - Fph [1x1] - Fixed Platform Height [m] % - Fpr [1x1] - Fixed Platform Radius [m] % - Mpm [1x1] - Mobile Platform Mass [kg] % - Mph [1x1] - Mobile Platform Height [m] % - Mpr [1x1] - Mobile Platform Radius [m] % % Outputs: % - stewart - updated Stewart structure with the added fields: % - platform_F [struct] - structure with the following fields: % - type = 1 % - M [1x1] - Fixed Platform Mass [kg] % - I [3x3] - Fixed Platform Inertia matrix [kg*m^2] % - H [1x1] - Fixed Platform Height [m] % - R [1x1] - Fixed Platform Radius [m] % - platform_M [struct] - structure with the following fields: % - M [1x1] - Mobile Platform Mass [kg] % - I [3x3] - Mobile Platform Inertia matrix [kg*m^2] % - H [1x1] - Mobile Platform Height [m] % - R [1x1] - Mobile Platform Radius [m] arguments stewart args.Fpm (1,1) double {mustBeNumeric, mustBePositive} = 1 args.Fph (1,1) double {mustBeNumeric, mustBePositive} = 10e-3 args.Fpr (1,1) double {mustBeNumeric, mustBePositive} = 125e-3 args.Mpm (1,1) double {mustBeNumeric, mustBePositive} = 1 args.Mph (1,1) double {mustBeNumeric, mustBePositive} = 10e-3 args.Mpr (1,1) double {mustBeNumeric, mustBePositive} = 100e-3 end I_F = diag([1/12*args.Fpm * (3*args.Fpr^2 + args.Fph^2), ... 1/12*args.Fpm * (3*args.Fpr^2 + args.Fph^2), ... 1/2 *args.Fpm * args.Fpr^2]); I_M = diag([1/12*args.Mpm * (3*args.Mpr^2 + args.Mph^2), ... 1/12*args.Mpm * (3*args.Mpr^2 + args.Mph^2), ... 1/2 *args.Mpm * args.Mpr^2]); stewart.platform_F.type = 1; stewart.platform_F.I = I_F; stewart.platform_F.M = args.Fpm; stewart.platform_F.R = args.Fpr; stewart.platform_F.H = args.Fph; stewart.platform_M.type = 1; stewart.platform_M.I = I_M; stewart.platform_M.M = args.Mpm; stewart.platform_M.R = args.Mpr; stewart.platform_M.H = args.Mph; end #+end_src *** =initializeCylindricalStruts=: Define the inertia of cylindrical struts #+begin_src matlab :tangle matlab/src/initializeCylindricalStruts.m :comments none :mkdirp yes :eval no function [stewart] = initializeCylindricalStruts(stewart, args) % initializeCylindricalStruts - Define the mass and moment of inertia of cylindrical struts % % Syntax: [stewart] = initializeCylindricalStruts(args) % % Inputs: % - args - Structure with the following fields: % - Fsm [1x1] - Mass of the Fixed part of the struts [kg] % - Fsh [1x1] - Height of cylinder for the Fixed part of the struts [m] % - Fsr [1x1] - Radius of cylinder for the Fixed part of the struts [m] % - Msm [1x1] - Mass of the Mobile part of the struts [kg] % - Msh [1x1] - Height of cylinder for the Mobile part of the struts [m] % - Msr [1x1] - Radius of cylinder for the Mobile part of the struts [m] % % Outputs: % - stewart - updated Stewart structure with the added fields: % - struts_F [struct] - structure with the following fields: % - M [6x1] - Mass of the Fixed part of the struts [kg] % - I [3x3x6] - Moment of Inertia for the Fixed part of the struts [kg*m^2] % - H [6x1] - Height of cylinder for the Fixed part of the struts [m] % - R [6x1] - Radius of cylinder for the Fixed part of the struts [m] % - struts_M [struct] - structure with the following fields: % - M [6x1] - Mass of the Mobile part of the struts [kg] % - I [3x3x6] - Moment of Inertia for the Mobile part of the struts [kg*m^2] % - H [6x1] - Height of cylinder for the Mobile part of the struts [m] % - R [6x1] - Radius of cylinder for the Mobile part of the struts [m] arguments stewart args.Fsm (1,1) double {mustBeNumeric, mustBePositive} = 0.1 args.Fsh (1,1) double {mustBeNumeric, mustBePositive} = 50e-3 args.Fsr (1,1) double {mustBeNumeric, mustBePositive} = 5e-3 args.Msm (1,1) double {mustBeNumeric, mustBePositive} = 0.1 args.Msh (1,1) double {mustBeNumeric, mustBePositive} = 50e-3 args.Msr (1,1) double {mustBeNumeric, mustBePositive} = 5e-3 end stewart.struts_M.type = 1; %% Compute the properties of the cylindrical struts Fsm = args.Fsm; Fsh = args.Fsh; Fsr = args.Fsr; Msm = args.Msm; Msh = args.Msh; Msr = args.Msr; I_F = [1/12 * Fsm * (3*Fsr^2 + Fsh^2), ... 1/12 * Fsm * (3*Fsr^2 + Fsh^2), ... 1/2 * Fsm * Fsr^2]; I_M = [1/12 * Msm * (3*Msr^2 + Msh^2), ... 1/12 * Msm * (3*Msr^2 + Msh^2), ... 1/2 * Msm * Msr^2]; stewart.struts_M.I = I_M; stewart.struts_F.I = I_F; stewart.struts_M.M = args.Msm; stewart.struts_M.R = args.Msr; stewart.struts_M.H = args.Msh; stewart.struts_F.type = 1; stewart.struts_F.M = args.Fsm; stewart.struts_F.R = args.Fsr; stewart.struts_F.H = args.Fsh; end #+end_src *** =initializeStrutDynamics=: Add Stiffness and Damping properties of each strut #+begin_src matlab :tangle matlab/src/initializeStrutDynamics.m :comments none :mkdirp yes :eval no function [stewart] = initializeStrutDynamics(stewart, args) % initializeStrutDynamics - Add Stiffness and Damping properties of each strut % % Syntax: [stewart] = initializeStrutDynamics(args) % % Inputs: % - args - Structure with the following fields: % - K [6x1] - Stiffness of each strut [N/m] % - C [6x1] - Damping of each strut [N/(m/s)] % % Outputs: % - stewart - updated Stewart structure with the added fields: % - actuators.type = 1 % - actuators.K [6x1] - Stiffness of each strut [N/m] % - actuators.C [6x1] - Damping of each strut [N/(m/s)] arguments stewart args.type char {mustBeMember(args.type,{'1dof', '2dof', 'flexible'})} = '1dof' args.k (1,1) double {mustBeNumeric, mustBeNonnegative} = 20e6 args.kp (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.ke (1,1) double {mustBeNumeric, mustBeNonnegative} = 5e6 args.ka (1,1) double {mustBeNumeric, mustBeNonnegative} = 60e6 args.c (1,1) double {mustBeNumeric, mustBeNonnegative} = 2e1 args.cp (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.ce (1,1) double {mustBeNumeric, mustBeNonnegative} = 1e6 args.ca (1,1) double {mustBeNumeric, mustBeNonnegative} = 10 args.F_gain (1,1) double {mustBeNumeric} = 1 args.me (1,1) double {mustBeNumeric} = 0.01 args.ma (1,1) double {mustBeNumeric} = 0.01 end if strcmp(args.type, '1dof') stewart.actuators.type = 1; elseif strcmp(args.type, '2dof') stewart.actuators.type = 2; elseif strcmp(args.type, 'flexible') stewart.actuators.type = 3; end stewart.actuators.k = args.k; stewart.actuators.c = args.c; % Parallel stiffness stewart.actuators.kp = args.kp; stewart.actuators.cp = args.cp; stewart.actuators.ka = args.ka; stewart.actuators.ca = args.ca; stewart.actuators.ke = args.ke; stewart.actuators.ce = args.ce; stewart.actuators.F_gain = args.F_gain; stewart.actuators.ma = args.ma; stewart.actuators.me = args.me; end #+end_src *** =initializeJointDynamics=: Add Stiffness and Damping properties for spherical joints #+begin_src matlab :tangle matlab/src/initializeJointDynamics.m :comments none :mkdirp yes :eval no function [stewart] = initializeJointDynamics(stewart, args) % initializeJointDynamics - Add Stiffness and Damping properties for the spherical joints % % Syntax: [stewart] = initializeJointDynamics(args) % % Inputs: % - args - Structure with the following fields: % - type_F - 'universal', 'spherical', 'universal_p', 'spherical_p' % - type_M - 'universal', 'spherical', 'universal_p', 'spherical_p' % - Kf_M [6x1] - Bending (Rx, Ry) Stiffness for each top joints [(N.m)/rad] % - Kt_M [6x1] - Torsion (Rz) Stiffness for each top joints [(N.m)/rad] % - Cf_M [6x1] - Bending (Rx, Ry) Damping of each top joint [(N.m)/(rad/s)] % - Ct_M [6x1] - Torsion (Rz) Damping of each top joint [(N.m)/(rad/s)] % - Kf_F [6x1] - Bending (Rx, Ry) Stiffness for each bottom joints [(N.m)/rad] % - Kt_F [6x1] - Torsion (Rz) Stiffness for each bottom joints [(N.m)/rad] % - Cf_F [6x1] - Bending (Rx, Ry) Damping of each bottom joint [(N.m)/(rad/s)] % - Cf_F [6x1] - Torsion (Rz) Damping of each bottom joint [(N.m)/(rad/s)] % % Outputs: % - stewart - updated Stewart structure with the added fields: % - stewart.joints_F and stewart.joints_M: % - type - 1 (universal), 2 (spherical), 3 (universal perfect), 4 (spherical perfect) % - Kx, Ky, Kz [6x1] - Translation (Tx, Ty, Tz) Stiffness [N/m] % - Kf [6x1] - Flexion (Rx, Ry) Stiffness [(N.m)/rad] % - Kt [6x1] - Torsion (Rz) Stiffness [(N.m)/rad] % - Cx, Cy, Cz [6x1] - Translation (Rx, Ry) Damping [N/(m/s)] % - Cf [6x1] - Flexion (Rx, Ry) Damping [(N.m)/(rad/s)] % - Cb [6x1] - Torsion (Rz) Damping [(N.m)/(rad/s)] arguments stewart args.type_F char {mustBeMember(args.type_F,{'2dof', '3dof', '4dof', '6dof', 'flexible'})} = '2dof' args.type_M char {mustBeMember(args.type_M,{'2dof', '3dof', '4dof', '6dof', 'flexible'})} = '3dof' args.Kf_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Cf_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Kt_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Ct_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Kf_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Cf_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Kt_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Ct_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Ka_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Ca_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Kr_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Cr_F (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Ka_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Ca_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Kr_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.Cr_M (1,1) double {mustBeNumeric, mustBeNonnegative} = 0 args.K_M double {mustBeNumeric} = zeros(6,6) args.M_M double {mustBeNumeric} = zeros(6,6) args.n_xyz_M double {mustBeNumeric} = zeros(2,3) args.xi_M double {mustBeNumeric} = 0.1 args.step_file_M char {} = '' args.K_F double {mustBeNumeric} = zeros(6,6) args.M_F double {mustBeNumeric} = zeros(6,6) args.n_xyz_F double {mustBeNumeric} = zeros(2,3) args.xi_F double {mustBeNumeric} = 0.1 args.step_file_F char {} = '' end switch args.type_F case '2dof' stewart.joints_F.type = 1; case '3dof' stewart.joints_F.type = 2; case '4dof' stewart.joints_F.type = 3; case '6dof' stewart.joints_F.type = 4; case 'flexible' stewart.joints_F.type = 5; otherwise error("joints_F are not correctly defined") end switch args.type_M case '2dof' stewart.joints_M.type = 1; case '3dof' stewart.joints_M.type = 2; case '4dof' stewart.joints_M.type = 3; case '6dof' stewart.joints_M.type = 4; case 'flexible' stewart.joints_M.type = 5; otherwise error("joints_M are not correctly defined") end stewart.joints_M.Ka = args.Ka_M; stewart.joints_M.Kr = args.Kr_M; stewart.joints_F.Ka = args.Ka_F; stewart.joints_F.Kr = args.Kr_F; stewart.joints_M.Ca = args.Ca_M; stewart.joints_M.Cr = args.Cr_M; stewart.joints_F.Ca = args.Ca_F; stewart.joints_F.Cr = args.Cr_F; stewart.joints_M.Kf = args.Kf_M; stewart.joints_M.Kt = args.Kt_M; stewart.joints_F.Kf = args.Kf_F; stewart.joints_F.Kt = args.Kt_F; stewart.joints_M.Cf = args.Cf_M; stewart.joints_M.Ct = args.Ct_M; stewart.joints_F.Cf = args.Cf_F; stewart.joints_F.Ct = args.Ct_F; stewart.joints_F.M = args.M_F; stewart.joints_F.K = args.K_F; stewart.joints_F.n_xyz = args.n_xyz_F; stewart.joints_F.xi = args.xi_F; stewart.joints_F.xi = args.xi_F; stewart.joints_F.step_file = args.step_file_F; stewart.joints_M.M = args.M_M; stewart.joints_M.K = args.K_M; stewart.joints_M.n_xyz = args.n_xyz_M; stewart.joints_M.xi = args.xi_M; stewart.joints_M.step_file = args.step_file_M; end #+end_src *** =initializeStewartPose=: Determine the initial stroke in each leg to have the wanted pose #+begin_src matlab :tangle matlab/src/initializeStewartPose.m :comments none :mkdirp yes :eval no function [stewart] = initializeStewartPose(stewart, args) % initializeStewartPose - Determine the initial stroke in each leg to have the wanted pose % It uses the inverse kinematic % % Syntax: [stewart] = initializeStewartPose(stewart, args) % % Inputs: % - stewart - A structure with the following fields % - Aa [3x6] - The positions ai expressed in {A} % - Bb [3x6] - The positions bi expressed in {B} % - args - Can have the following fields: % - AP [3x1] - The wanted position of {B} with respect to {A} % - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A} % % Outputs: % - stewart - updated Stewart structure with the added fields: % - actuators.Leq [6x1] - The 6 needed displacement of the struts from the initial position in [m] to have the wanted pose of {B} w.r.t. {A} arguments stewart args.AP (3,1) double {mustBeNumeric} = zeros(3,1) args.ARB (3,3) double {mustBeNumeric} = eye(3) end [Li, dLi] = inverseKinematics(stewart, 'AP', args.AP, 'ARB', args.ARB); stewart.actuators.Leq = dLi; end #+end_src *** =computeJacobian=: Compute the Jacobian Matrix #+begin_src matlab :tangle matlab/src/computeJacobian.m :comments none :mkdirp yes :eval no function [stewart] = computeJacobian(stewart) % computeJacobian - % % Syntax: [stewart] = computeJacobian(stewart) % % Inputs: % - stewart - With at least the following fields: % - geometry.As [3x6] - The 6 unit vectors for each strut expressed in {A} % - geometry.Ab [3x6] - The 6 position of the joints bi expressed in {A} % - actuators.K [6x1] - Total stiffness of the actuators % % Outputs: % - stewart - With the 3 added field: % - geometry.J [6x6] - The Jacobian Matrix % - geometry.K [6x6] - The Stiffness Matrix % - geometry.C [6x6] - The Compliance Matrix assert(isfield(stewart.geometry, 'As'), 'stewart.geometry should have attribute As') As = stewart.geometry.As; assert(isfield(stewart.geometry, 'Ab'), 'stewart.geometry should have attribute Ab') Ab = stewart.geometry.Ab; assert(isfield(stewart.actuators, 'k'), 'stewart.actuators should have attribute k') Ki = stewart.actuators.k; J = [As' , cross(Ab, As)']; K = J'*diag(Ki)*J; C = inv(K); stewart.geometry.J = J; stewart.geometry.K = K; stewart.geometry.C = C; end #+end_src *** =inverseKinematics=: Compute Inverse Kinematics #+begin_src matlab :tangle matlab/src/inverseKinematics.m :comments none :mkdirp yes :eval no function [Li, dLi] = inverseKinematics(stewart, args) % inverseKinematics - Compute the needed length of each strut to have the wanted position and orientation of {B} with respect to {A} % % Syntax: [stewart] = inverseKinematics(stewart) % % Inputs: % - stewart - A structure with the following fields % - geometry.Aa [3x6] - The positions ai expressed in {A} % - geometry.Bb [3x6] - The positions bi expressed in {B} % - geometry.l [6x1] - Length of each strut % - args - Can have the following fields: % - AP [3x1] - The wanted position of {B} with respect to {A} % - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A} % % Outputs: % - Li [6x1] - The 6 needed length of the struts in [m] to have the wanted pose of {B} w.r.t. {A} % - dLi [6x1] - The 6 needed displacement of the struts from the initial position in [m] to have the wanted pose of {B} w.r.t. {A} arguments stewart args.AP (3,1) double {mustBeNumeric} = zeros(3,1) args.ARB (3,3) double {mustBeNumeric} = eye(3) end assert(isfield(stewart.geometry, 'Aa'), 'stewart.geometry should have attribute Aa') Aa = stewart.geometry.Aa; assert(isfield(stewart.geometry, 'Bb'), 'stewart.geometry should have attribute Bb') Bb = stewart.geometry.Bb; assert(isfield(stewart.geometry, 'l'), 'stewart.geometry should have attribute l') l = stewart.geometry.l; Li = sqrt(args.AP'*args.AP + diag(Bb'*Bb) + diag(Aa'*Aa) - (2*args.AP'*Aa)' + (2*args.AP'*(args.ARB*Bb))' - diag(2*(args.ARB*Bb)'*Aa)); dLi = Li-l; end #+end_src *** =displayArchitecture=: 3D plot of the Stewart platform architecture :PROPERTIES: :header-args:matlab+: :tangle matlab/src/displayArchitecture.m :header-args:matlab+: :comments none :mkdirp yes :eval no :END: <> This Matlab function is accessible [[file:../src/displayArchitecture.m][here]]. **** Function description :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab function [] = displayArchitecture(stewart, args) % displayArchitecture - 3D plot of the Stewart platform architecture % % Syntax: [] = displayArchitecture(args) % % Inputs: % - stewart % - args - Structure with the following fields: % - AP [3x1] - The wanted position of {B} with respect to {A} % - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A} % - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A} % - F_color [color] - Color used for the Fixed elements % - M_color [color] - Color used for the Mobile elements % - L_color [color] - Color used for the Legs elements % - frames [true/false] - Display the Frames % - legs [true/false] - Display the Legs % - joints [true/false] - Display the Joints % - labels [true/false] - Display the Labels % - platforms [true/false] - Display the Platforms % - views ['all', 'xy', 'yz', 'xz', 'default'] - % % Outputs: #+end_src **** Optional Parameters :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab arguments stewart args.AP (3,1) double {mustBeNumeric} = zeros(3,1) args.ARB (3,3) double {mustBeNumeric} = eye(3) args.F_color = [0 0.4470 0.7410] args.M_color = [0.8500 0.3250 0.0980] args.L_color = [0 0 0] args.frames logical {mustBeNumericOrLogical} = true args.legs logical {mustBeNumericOrLogical} = true args.joints logical {mustBeNumericOrLogical} = true args.labels logical {mustBeNumericOrLogical} = true args.platforms logical {mustBeNumericOrLogical} = true args.views char {mustBeMember(args.views,{'all', 'xy', 'xz', 'yz', 'default'})} = 'default' end #+end_src **** Check the =stewart= structure elements :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab assert(isfield(stewart.platform_F, 'FO_A'), 'stewart.platform_F should have attribute FO_A') FO_A = stewart.platform_F.FO_A; assert(isfield(stewart.platform_M, 'MO_B'), 'stewart.platform_M should have attribute MO_B') MO_B = stewart.platform_M.MO_B; assert(isfield(stewart.geometry, 'H'), 'stewart.geometry should have attribute H') H = stewart.geometry.H; assert(isfield(stewart.platform_F, 'Fa'), 'stewart.platform_F should have attribute Fa') Fa = stewart.platform_F.Fa; assert(isfield(stewart.platform_M, 'Mb'), 'stewart.platform_M should have attribute Mb') Mb = stewart.platform_M.Mb; #+end_src **** Figure Creation, Frames and Homogeneous transformations :PROPERTIES: :UNNUMBERED: t :END: The reference frame of the 3d plot corresponds to the frame $\{F\}$. #+begin_src matlab if ~strcmp(args.views, 'all') figure; else f = figure('visible', 'off'); end hold on; #+end_src We first compute homogeneous matrices that will be useful to position elements on the figure where the reference frame is $\{F\}$. #+begin_src matlab FTa = [eye(3), FO_A; ... zeros(1,3), 1]; ATb = [args.ARB, args.AP; ... zeros(1,3), 1]; BTm = [eye(3), -MO_B; ... zeros(1,3), 1]; FTm = FTa*ATb*BTm; #+end_src Let's define a parameter that define the length of the unit vectors used to display the frames. #+begin_src matlab d_unit_vector = H/4; #+end_src Let's define a parameter used to position the labels with respect to the center of the element. #+begin_src matlab d_label = H/20; #+end_src **** Fixed Base elements :PROPERTIES: :UNNUMBERED: t :END: Let's first plot the frame $\{F\}$. #+begin_src matlab Ff = [0, 0, 0]; if args.frames quiver3(Ff(1)*ones(1,3), Ff(2)*ones(1,3), Ff(3)*ones(1,3), ... [d_unit_vector 0 0], [0 d_unit_vector 0], [0 0 d_unit_vector], '-', 'Color', args.F_color) if args.labels text(Ff(1) + d_label, ... Ff(2) + d_label, ... Ff(3) + d_label, '$\{F\}$', 'Color', args.F_color); end end #+end_src Now plot the frame $\{A\}$ fixed to the Base. #+begin_src matlab if args.frames quiver3(FO_A(1)*ones(1,3), FO_A(2)*ones(1,3), FO_A(3)*ones(1,3), ... [d_unit_vector 0 0], [0 d_unit_vector 0], [0 0 d_unit_vector], '-', 'Color', args.F_color) if args.labels text(FO_A(1) + d_label, ... FO_A(2) + d_label, ... FO_A(3) + d_label, '$\{A\}$', 'Color', args.F_color); end end #+end_src Let's then plot the circle corresponding to the shape of the Fixed base. #+begin_src matlab if args.platforms && stewart.platform_F.type == 1 theta = [0:0.01:2*pi+0.01]; % Angles [rad] v = null([0; 0; 1]'); % Two vectors that are perpendicular to the circle normal center = [0; 0; 0]; % Center of the circle radius = stewart.platform_F.R; % Radius of the circle [m] points = center*ones(1, length(theta)) + radius*(v(:,1)*cos(theta) + v(:,2)*sin(theta)); plot3(points(1,:), ... points(2,:), ... points(3,:), '-', 'Color', args.F_color); end #+end_src Let's now plot the position and labels of the Fixed Joints #+begin_src matlab if args.joints scatter3(Fa(1,:), ... Fa(2,:), ... Fa(3,:), 'MarkerEdgeColor', args.F_color); if args.labels for i = 1:size(Fa,2) text(Fa(1,i) + d_label, ... Fa(2,i), ... Fa(3,i), sprintf('$a_{%i}$', i), 'Color', args.F_color); end end end #+end_src **** Mobile Platform elements :PROPERTIES: :UNNUMBERED: t :END: Plot the frame $\{M\}$. #+begin_src matlab Fm = FTm*[0; 0; 0; 1]; % Get the position of frame {M} w.r.t. {F} if args.frames FM_uv = FTm*[d_unit_vector*eye(3); zeros(1,3)]; % Rotated Unit vectors quiver3(Fm(1)*ones(1,3), Fm(2)*ones(1,3), Fm(3)*ones(1,3), ... FM_uv(1,1:3), FM_uv(2,1:3), FM_uv(3,1:3), '-', 'Color', args.M_color) if args.labels text(Fm(1) + d_label, ... Fm(2) + d_label, ... Fm(3) + d_label, '$\{M\}$', 'Color', args.M_color); end end #+end_src Plot the frame $\{B\}$. #+begin_src matlab FB = FO_A + args.AP; if args.frames FB_uv = FTm*[d_unit_vector*eye(3); zeros(1,3)]; % Rotated Unit vectors quiver3(FB(1)*ones(1,3), FB(2)*ones(1,3), FB(3)*ones(1,3), ... FB_uv(1,1:3), FB_uv(2,1:3), FB_uv(3,1:3), '-', 'Color', args.M_color) if args.labels text(FB(1) - d_label, ... FB(2) + d_label, ... FB(3) + d_label, '$\{B\}$', 'Color', args.M_color); end end #+end_src Let's then plot the circle corresponding to the shape of the Mobile platform. #+begin_src matlab if args.platforms && stewart.platform_M.type == 1 theta = [0:0.01:2*pi+0.01]; % Angles [rad] v = null((FTm(1:3,1:3)*[0;0;1])'); % Two vectors that are perpendicular to the circle normal center = Fm(1:3); % Center of the circle radius = stewart.platform_M.R; % Radius of the circle [m] points = center*ones(1, length(theta)) + radius*(v(:,1)*cos(theta) + v(:,2)*sin(theta)); plot3(points(1,:), ... points(2,:), ... points(3,:), '-', 'Color', args.M_color); end #+end_src Plot the position and labels of the rotation joints fixed to the mobile platform. #+begin_src matlab if args.joints Fb = FTm*[Mb;ones(1,6)]; scatter3(Fb(1,:), ... Fb(2,:), ... Fb(3,:), 'MarkerEdgeColor', args.M_color); if args.labels for i = 1:size(Fb,2) text(Fb(1,i) + d_label, ... Fb(2,i), ... Fb(3,i), sprintf('$b_{%i}$', i), 'Color', args.M_color); end end end #+end_src **** Legs :PROPERTIES: :UNNUMBERED: t :END: Plot the legs connecting the joints of the fixed base to the joints of the mobile platform. #+begin_src matlab if args.legs for i = 1:6 plot3([Fa(1,i), Fb(1,i)], ... [Fa(2,i), Fb(2,i)], ... [Fa(3,i), Fb(3,i)], '-', 'Color', args.L_color); if args.labels text((Fa(1,i)+Fb(1,i))/2 + d_label, ... (Fa(2,i)+Fb(2,i))/2, ... (Fa(3,i)+Fb(3,i))/2, sprintf('$%i$', i), 'Color', args.L_color); end end end #+end_src **** Figure parameters #+begin_src matlab switch args.views case 'default' view([1 -0.6 0.4]); case 'xy' view([0 0 1]); case 'xz' view([0 -1 0]); case 'yz' view([1 0 0]); end axis equal; axis off; #+end_src **** Subplots #+begin_src matlab if strcmp(args.views, 'all') hAx = findobj('type', 'axes'); figure; s1 = subplot(2,2,1); copyobj(get(hAx(1), 'Children'), s1); view([0 0 1]); axis equal; axis off; title('Top') s2 = subplot(2,2,2); copyobj(get(hAx(1), 'Children'), s2); view([1 -0.6 0.4]); axis equal; axis off; s3 = subplot(2,2,3); copyobj(get(hAx(1), 'Children'), s3); view([1 0 0]); axis equal; axis off; title('Front') s4 = subplot(2,2,4); copyobj(get(hAx(1), 'Children'), s4); view([0 -1 0]); axis equal; axis off; title('Side') close(f); end #+end_src *** =describeStewartPlatform=: Display some text describing the current defined Stewart Platform :PROPERTIES: :header-args:matlab+: :tangle matlab/src/describeStewartPlatform.m :header-args:matlab+: :comments none :mkdirp yes :eval no :END: <> This Matlab function is accessible [[file:../src/describeStewartPlatform.m][here]]. **** Function description :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab function [] = describeStewartPlatform(stewart) % describeStewartPlatform - Display some text describing the current defined Stewart Platform % % Syntax: [] = describeStewartPlatform(args) % % Inputs: % - stewart % % Outputs: #+end_src **** Optional Parameters :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab arguments stewart end #+end_src **** Geometry #+begin_src matlab fprintf('GEOMETRY:\n') fprintf('- The height between the fixed based and the top platform is %.3g [mm].\n', 1e3*stewart.geometry.H) if stewart.platform_M.MO_B(3) > 0 fprintf('- Frame {A} is located %.3g [mm] above the top platform.\n', 1e3*stewart.platform_M.MO_B(3)) else fprintf('- Frame {A} is located %.3g [mm] below the top platform.\n', - 1e3*stewart.platform_M.MO_B(3)) end fprintf('- The initial length of the struts are:\n') fprintf('\t %.3g, %.3g, %.3g, %.3g, %.3g, %.3g [mm]\n', 1e3*stewart.geometry.l) fprintf('\n') #+end_src **** Actuators #+begin_src matlab fprintf('ACTUATORS:\n') if stewart.actuators.type == 1 fprintf('- The actuators are modelled as 1DoF.\n') fprintf('- The Stiffness and Damping of each actuators is:\n') fprintf('\t k = %.0e [N/m] \t c = %.0e [N/(m/s)]\n', stewart.actuators.k(1), stewart.actuators.c(1)) if stewart.actuators.kp > 0 fprintf('\t Added parallel stiffness: kp = %.0e [N/m] \t c = %.0e [N/(m/s)]\n', stewart.actuators.kp(1)) end elseif stewart.actuators.type == 2 fprintf('- The actuators are modelled as 2DoF (APA).\n') fprintf('- The vertical stiffness and damping contribution of the piezoelectric stack is:\n') fprintf('\t ka = %.0e [N/m] \t ca = %.0e [N/(m/s)]\n', stewart.actuators.ka(1), stewart.actuators.ca(1)) fprintf('- Vertical stiffness when the piezoelectric stack is removed is:\n') fprintf('\t kr = %.0e [N/m] \t cr = %.0e [N/(m/s)]\n', stewart.actuators.kr(1), stewart.actuators.cr(1)) elseif stewart.actuators.type == 3 fprintf('- The actuators are modelled with a flexible element (FEM).\n') end fprintf('\n') #+end_src **** Joints #+begin_src matlab fprintf('JOINTS:\n') #+end_src Type of the joints on the fixed base. #+begin_src matlab switch stewart.joints_F.type case 1 fprintf('- The joints on the fixed based are universal joints (2DoF)\n') case 2 fprintf('- The joints on the fixed based are spherical joints (3DoF)\n') end #+end_src Type of the joints on the mobile platform. #+begin_src matlab switch stewart.joints_M.type case 1 fprintf('- The joints on the mobile based are universal joints (2DoF)\n') case 2 fprintf('- The joints on the mobile based are spherical joints (3DoF)\n') end #+end_src Position of the fixed joints #+begin_src matlab fprintf('- The position of the joints on the fixed based with respect to {F} are (in [mm]):\n') fprintf('\t % .3g \t % .3g \t % .3g\n', 1e3*stewart.platform_F.Fa) #+end_src Position of the mobile joints #+begin_src matlab fprintf('- The position of the joints on the mobile based with respect to {M} are (in [mm]):\n') fprintf('\t % .3g \t % .3g \t % .3g\n', 1e3*stewart.platform_M.Mb) fprintf('\n') #+end_src **** Kinematics #+begin_src matlab fprintf('KINEMATICS:\n') if isfield(stewart.kinematics, 'K') fprintf('- The Stiffness matrix K is (in [N/m]):\n') fprintf('\t % .0e \t % .0e \t % .0e \t % .0e \t % .0e \t % .0e\n', stewart.kinematics.K) end if isfield(stewart.kinematics, 'C') fprintf('- The Damping matrix C is (in [m/N]):\n') fprintf('\t % .0e \t % .0e \t % .0e \t % .0e \t % .0e \t % .0e\n', stewart.kinematics.C) end #+end_src