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Building upon the validated multi-body model of the micro-station presented in previous sections, this
section focuses on the development and integration of an active vibration platform model.

A review of existing active vibration platforms is given in Section 1, leading to the selection of the
Stewart platform architecture. This parallel manipulator architecture, described in Section 2, requires
specialized analytical tools for kinematic analysis. However, the complexity of its dynamic behavior
poses significant challenges for purely analytical approaches.

Consequently, a multi-body modeling approach was adopted (Section 3), facilitating seamless integration
with the existing micro-station model.

The control of the Stewart platform introduces additional complexity due to its multi-input multi-
output (MIMO) nature. Section 4 explores how the High Authority Control/Low Authority Control
(HAC-LAC) strategy, previously validated on the uniaxial model, can be adapted to address the cou-
pled dynamics of the Stewart platform. This adaptation requires fundamental decisions regarding both
the control architecture (centralized versus decentralized) and the control frame (Cartesian versus strut
space). Through careful analysis of system interactions and plant characteristics in different frames,
a control architecture combining decentralized Integral Force Feedback for active damping with a cen-
tralized high authority controller for positioning was developed, with both controllers implemented in
the frame of the struts.
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1 Active Vibration Platforms

The conceptual phase started with the use of simplified models, such as uniaxial and three-degree-
of-freedom rotating systems. These models were chosen for their ease of analysis, and despite their
simplicity, the principles derived from them usually apply to more complex systems. However, the
development of the Nano Active Stabilization System (NASS) now requires the use of a more accurate
model that will be integrated with the multi-body representation of the micro-station. To develop this
model, the architecture of the active platform must first be determined.

The selection of an appropriate architecture begins with a review of existing positioning stages that
incorporate active platforms similar to NASS (Section 1.1). This review reveals two distinctive features
of the NASS that set it apart from existing systems: the fact that the active platform is continuously
rotating and its requirement to accommodate variable payload masses. In existing systems, the sample
mass is typically negligible compared to the stage mass, whereas in NASS, the sample mass significantly
influences the system’s dynamic behavior.

These distinctive requirements drive the selection of the active platform architecture. In Section 1.2,
different active platform configurations, including serial and parallel configurations, are evaluated, ulti-
mately leading to the choice of a Stewart platform architecture.

1.1 Sample Stages with Active Control

The positioning of samples with respect to X-ray beam, that can be focused to sizes below 100 nanome-
ters, presents significant challenges, because mechanical positioning systems are typically limited to
micron-scale accuracy. To overcome this limitation, external metrology systems have been implemented
to measure sample positions with nanometer accuracy, enabling real-time feedback control for sample
stabilization.

A review of existing sample stages with active vibration control reveals various approaches to implement-
ing such feedback systems. In many cases, sample position control is limited to translational degrees of
freedom. At NSLS-II, for instance, a system capable of 100µm stroke has been developed for payloads
up to 500g, utilizing interferometric measurements for position feedback (Figure 1.1a). Similarly, at
the Sirius facility, a tripod configuration based on voice coil actuators has been implemented for XYZ
position control, achieving feedback bandwidths of approximately 100 Hz (Figure 1.1b).

The integration of Rz rotational capability, which is necessary for tomography experiments, introduces
additional complexity. At ESRF’s ID16A beamline, a Stewart platform (whose architecture will be
presented in Section 2) using piezoelectric actuators has been positioned below the spindle (Figure
1.2a). While this configuration enables the correction of spindle motion errors through 5-DoF control
based on capacitive sensor measurements, the stroke is limited to 50µm due to the inherent constraints
of piezoelectric actuators. In contrast, at PETRA III, an alternative approach places a XYZ-stacked
stage above the spindle, offering 100µm stroke (Figure 1.2b). However, attempts to implement real-time
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(b) SAPOTI sample stage

Figure 1.1: Example of sample stage with active XYZ corrections based on external metrology. The
MLL microscope [1] at NSLS-II (a). Sample stage on SAPOTI beamline [2] at Sirius
facility (b)

feedback using YZ external metrology proved challenging, possibly due to the poor dynamical response
of the serial stage configuration.

Sample
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X-ray
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Frame

(a) Simplified schematic of ID16a end-station
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(b) PtyNAMi microscope

Figure 1.2: Example of two sample stages for tomography experiments. ID16a endstation [3] at the
ESRF (a). PtyNAMi microscope [4], [5] at PETRA III (b)

Table 1.1 provides an overview of existing end-stations that incorporate feedback loops based on online
metrology for sample positioning. Although direct performance comparisons between these systems are
challenging due to their varying experimental requirements, scanning velocities, and specific use cases,
several distinctive characteristics of the NASS can be identified.

The first key distinction of the NASS is in the continuous rotation of the active vibration platform.
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Table 1.1: End-Stations with integrated feedback loops based on online metrology. The stages used
for feedback are indicated in bold font. Stages not used for scanning purposes are ommited
or indicated between parentheses. The specifications for the NASS are indicated in the last
row.

Stacked Stages Specifications Measured DoFs Bandwidth Reference

Sample light Interferometers 3 PID, n/a APS
XYZ stage (piezo) Dxyz : 0.05mm Dxyz [1]

Sample light Capacitive sensors ≈ 10Hz ESRF
Spindle Rz : ±90 deg Dxyz, Rxy ID16a

Hexapod (piezo) Dxyz : 0.05mm [3]
Rxy : 500µrad

Sample light Interferometers n/a PETRA III
XYZ stage (piezo) Dxyz : 0.1mm Dyz P06

Spindle Rz : 180 deg [4], [5]

Sample light Interferometers PID, n/a PSI
Spindle Rz : ±182 deg Dyz, Rx OMNY

Tripod (piezo) Dxyz : 0.4mm [6], [7]

Sample light Interferometers n/a Soleil
(XY stage) Dxyz, Rxy Nanoprobe
Spindle Rz : 360 deg [8], [9]

XYZ linear motors Dxyz : 0.4mm

Sample up to 0.5kg Interferometers n/a NSLS
Spindle Rz : 360 deg Dxyz SRX

XYZ stage (piezo) Dxyz : 0.1mm [10]

Sample up to 0.35kg Interferometers ≈ 100Hz Diamond, I14
Parallel XYZ VC Dxyz : 3mm Dxyz [11]

Sample light Capacitive sensors ≈ 100Hz LNLS
Parallel XYZ VC Dxyz : 3mm and interferometers CARNAUBA

(Spindle) Rz : ±110 deg Dxyz [2]

Sample up to 50kg Dxyz, Rxy ESRF
Active Platform ID31
(Micro-Hexapod) [12], [13]

Spindle Rz : 360 deg
Tilt-Stage Ry : ±3 deg

Translation Stage Dy : ±10mm

This feature introduces significant complexity through gyroscopic effects and real-time changes in the
platform orientation, which substantially impact both the system’s kinematics and dynamics. In ad-
dition, NASS implements a unique Long-Stroke/Short-Stroke architecture. In conventional systems,
active platforms typically correct spindle positioning errors - for example, unwanted translations or tilts
that occur during rotation, whereas the intended rotational motion (Rz) is performed by the spindle
itself and is not corrected. The NASS, however, faces a more complex task: it must compensate for
positioning errors of the translation and tilt stages in real time during their operation, including cor-
rections along their primary axes of motion. For instance, when the translation stage moves along Y,
the active platform must not only correct for unwanted motions in other directions but also correct the
position along Y, which necessitate some synchronization between the control of the long stroke stages
and the control of the active platform.

The second major distinguishing feature of the NASS is its capability to handle payload masses up to 50
kg, exceeding typical capacities in the literature by two orders of magnitude. This substantial increase
in payload mass fundamentally alters the system’s dynamic behavior, as the sample mass significantly
influences the overall system dynamics, in contrast to conventional systems where sample masses are
negligible relative to the stage mass. This characteristic introduces significant control challenges, as
the feedback system must remain stable and maintain performance across a wide range of payload
masses (from a few kilograms to 50 kg), requiring robust control strategies to handle such large plant
variations.
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The NASS also distinguishes itself through its high mobility and versatility, which are achieved through
the use of multiple stacked stages (translation stage, tilt stage, spindle, positioning hexapod) that
enable a wide range of experimental configurations. The resulting mechanical structure exhibits complex
dynamics with multiple resonance modes in the low frequency range. This dynamic complexity poses
significant challenges for the design and control of the active platform.

The primary control requirements focus on [Dy, Dz, Ry] motions; however, the continuous rotation
of the active platform requires the control of [Dx, Dy, Dz, Rx, Ry] in the active platform’s reference
frame.

1.2 Active Vibration Platform

The choice of the active platform architecture for the NASS requires careful consideration of several
critical specifications. The platform must provide control over five degrees of freedom (Dx, Dy, Dz,
Rx, and Ry), with strokes exceeding 100µm to correct for micro-station positioning errors, while fitting
within a cylindrical envelope of 300 mm diameter and 95 mm height. It must accommodate payloads up
to 50 kg while maintaining high dynamical performance. For light samples, the typical design strategy
of maximizing actuator stiffness works well because resonance frequencies in the kilohertz range can be
achieved, enabling control bandwidths up to 100 Hz. However, achieving such resonance frequencies
with a 50 kg payload would require unrealistic stiffness values of approximately 2000N/µm. This
limitation necessitates alternative control approaches, and the High Authority Control/Low Authority
Control (HAC-LAC) strategy is proposed to address this challenge. To this purpose, the design includes
force sensors for active damping. Compliant mechanisms must also be used to eliminate friction and
backlash, which would otherwise compromise the nano-positioning capabilities.

Two primary categories of positioning platform architectures are considered: serial and parallel mech-
anisms. Serial robots, characterized by open-loop kinematic chains, typically dedicate one actuator per
degree of freedom as shown in Figure 1.3a. While offering large workspaces and high maneuverabil-
ity, serial mechanisms suffer from several inherent limitations. These include low structural stiffness,
cumulative positioning errors along the kinematic chain, high mass-to-payload ratios due to actuator
placement, and limited payload capacity [14]. These limitations generally make serial architectures
unsuitable for nano-positioning applications, except when handling very light samples, as was used in
[1] and shown in Figure 1.1a.

In contrast, parallel mechanisms, which connect the mobile platform to the fixed base through multiple
parallel struts, offer several advantages for precision positioning. Their closed-loop kinematic structure
provides inherently higher structural stiffness, as the platform is simultaneously supported by multi-
ple struts [14]. Although parallel mechanisms typically exhibit limited workspace compared to serial
architectures, this limitation is not critical for NASS given its modest stroke requirements. Numerous
parallel kinematic architectures have been developed [15] to address various positioning requirements,
with designs varying based on the desired degrees of freedom and specific application constraints. Fur-
thermore, hybrid architectures combining both serial and parallel elements have been proposed [16], as
illustrated in Figure 1.3, offering potential compromises between the advantages of both approaches.

After evaluating the different options, the Stewart platform architecture was selected for several rea-
sons. In addition to providing control over all required degrees of freedom, its compact design and
predictable dynamic characteristics make it particularly suitable for nano-positioning when combined
with flexible joints. Stewart platforms have been implemented in a wide variety of configurations, as
illustrated in Figure 1.4, which shows two distinct implementations: one utilizing piezoelectric actua-
tors for nano-positioning applications, and another based on voice coil actuators for vibration isolation.
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(a) Serial positioning stage

Mobile Platform

Fixed Base

Intermediate body

Actuator

Actuators

(b) Hybrid 5-DoF stage

Figure 1.3: Examples of an XYZ serial positioning stage [17] (a) and of a 5-DoF hybrid (parallel/serial)
positioning platform [16] (b).

These examples demonstrate the architecture’s versatility in terms of geometry, actuator selection, and
scale, all of which can be optimized for specific applications. Furthermore, the successful implementa-
tion of Integral Force Feedback (IFF) control on Stewart platforms has been well documented [18], [19],
[20], and the extensive body of research on this architecture enables thorough optimization specifically
for the NASS.

Mobile StageSample

Flexure Joint

Eddy Current Sensors

Piezoelectric
Stack Actuators

Amplification
Mechanism

Base Platform

(a) Stewart platform for Nano-positioning

Voice Coil
Actuators

Flexure Joint

(b) Stewart platform for vibration isolation

Figure 1.4: Two examples of Stewart platform. A Stewart platform based on piezoelectric stack
actuators and used for nano-positioning is shown in (a) [21]. A Stewart platform based
on voice coil actuators and used for vibration isolation is shown in (b) [20], [22]
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2 The Stewart platform

The Stewart platform, first introduced by Stewart in 1965 [23] for flight simulation applications, repre-
sents a significant milestone in parallel manipulator design. This mechanical architecture has evolved
far beyond its original purpose, and has been applied across diverse field, from precision positioning sys-
tems to robotic surgery. The fundamental design consists of two platforms connected by six adjustable
struts in parallel, creating a fully parallel manipulator capable of six degrees of freedom motion.

Unlike serial manipulators, in which errors worsen through the kinematic chain, parallel architectures
distribute loads across multiple actuators, leading to enhanced mechanical stiffness and improved posi-
tioning accuracy. This parallel configuration also results in superior dynamic performance because the
actuators directly contribute to the platform’s motion without intermediate linkages. These charac-
teristics make the Stewart platforms particularly valuable in applications requiring high precision and
stiffness.

For the NASS application, the Stewart platform architecture offers three key advantages. First, as a
fully parallel manipulator, all the motion errors of the micro-station can be compensated through the
coordinated action of the six actuators. Second, its compact design compared to serial manipulators
makes it ideal for integration on top micro-station where only 95mm of height is available. Third, the
good dynamical properties should enable high-bandwidth positioning control.

While Stewart platforms excel in precision and stiffness, they typically exhibit a relatively limited
workspace compared to serial manipulators. However, this limitation is not significant for the NASS
application, as the required motion range corresponds to the positioning errors of the micro-station,
which are in the order of 10µm.

This section provides a comprehensive analysis of the Stewart platform’s properties, focusing on as-
pects crucial for precision positioning applications. The analysis encompasses the platform’s kinematic
relationships (Section 2.2), the use of the Jacobian matrix (Section 2.3), static behavior (Section 2.4),
and dynamic characteristics (Section 2.5). These theoretical foundations form the basis for subsequent
design decisions and control strategies, which will be elaborated in later sections.

2.1 Mechanical Architecture

The Stewart platform consists of two rigid platforms connected by six parallel struts (Figure 2.1). Each
strut is modelled with an active prismatic joint that allows for controlled length variation, with its
ends attached to the fixed and mobile platforms through joints. The typical configuration consists
of a universal joint at one end and a spherical joint at the other, providing the necessary degrees of
freedom1.

To facilitate the rigorous analysis of the Stewart platform, four reference frames were defined:

1Different architecture exists, typically referred as “6-SPS” (Spherical, Prismatic, Spherical) or “6-UPS” (Universal,
Prismatic, Spherical)
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Prismatic

Universal

Spherical
Mobile platform

Fixed platform

Figure 2.1: Schematical representation of the Stewart platform architecture.

• The fixed base frame {F}, which is located at the center of the base platform’s bottom surface,
serves as the mounting reference for the support structure.

• The mobile frame {M}, which is located at the center of the top platform’s upper platform,
provides a reference for payload mounting.

• The point-of-interest frame {A}, fixed to the base but positioned at the workspace center.

• The moving point-of-interest frame {B}, attached to the mobile platform coincides with frame
{A} in the home position.

Frames {F} and {M} serve primarily to define the joint locations. In contrast, frames {A} and {B} are
used to describe the relative motion of the two platforms through the position vector APB of frame {B}
expressed in frame {A} and the rotation matrix ARB expressing the orientation of {B} with respect
to {A}. For the nano-hexapod, frames {A} and {B} are chosen to be located at the theoretical focus
point of the X-ray light which is 150mm above the top platform, i.e. above {M}.

The location of the joints and the orientation and length of the struts are crucial for subsequent kine-
matic, static, and dynamic analyses of the Stewart platform. The center of rotation for the joint fixed to
the base is noted ai, while bi is used for the top platform joints. The struts’ orientations are represented
by the unit vectors ŝi and their lengths are represented by the scalars li. This is summarized in Figure
2.2.

2.2 Kinematic Analysis

Loop Closure

The foundation of the kinematic analysis lies in the geometric constraints imposed by each strut, which
can be expressed using loop closure equations. For each strut i (illustrated in Figure 2.3), the loop
closure equation (2.1) can be written.

APB = Aai + li
Aŝi − Bbi︸︷︷︸

ARB
Bbi

for i = 1 to 6 (2.1)
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Figure 2.2: Frame and key notations for the Stewart platform

This equation links the pose2 variables AP and ARB , the position vectors describing the known geom-
etry of the base and the moving platform, ai and bi, and the strut vector li

Aŝi:

Figure 2.3: Notations to compute the kinematic loop closure

Inverse Kinematics

The inverse kinematic problem involves determining the required strut lengths L = [l1, l2, . . . , l6]
⊺
for

a desired platform pose X (i.e. position AP and orientation ARB). This problem can be solved
analytically using the loop closure equations (2.1). The obtained strut lengths are given by (2.2).

li =
√

AP ⊺AP + Bb⊺i Bbi + Aa⊺
i
Aai − 2AP ⊺Aai + 2AP ⊺ [ARB

Bbi]− 2 [ARB
Bbi]

⊺ Aai (2.2)

If the position and orientation of the platform lie in the feasible workspace, the solution is unique.
While configurations outside this workspace yield complex numbers, this only becomes relevant for
large displacements that far exceed the nano-hexapod’s operating range.

2The pose represents the position and orientation of an object
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Forward Kinematics

The forward kinematic problem seeks to determine the platform pose X given a set of strut lengths L.
Unlike inverse kinematics, this presents a significant challenge because it requires solving a system of
nonlinear equations. Although various numerical methods exist for solving this problem, they can be
computationally intensive and may not guarantee convergence to the correct solution.

For the nano-hexapod application, where displacements are typically small, an approximate solution
based on linearization around the operating point provides a practical alternative. This approximation,
which is developed in subsequent sections through the Jacobian matrix analysis, is particularly useful
for real-time control applications.

2.3 The Jacobian Matrix

The Jacobian matrix plays a central role in analyzing the Stewart platform’s behavior, providing a
linear mapping between the platform and actuator velocities. While the previously derived kinematic
relationships are essential for position analysis, the Jacobian enables velocity analysis and forms the
foundation for both static and dynamic studies.

Jacobian Computation

As discussed in Section 2.2, the strut lengths L and the platform pose X are related through a system
of nonlinear algebraic equations representing the kinematic constraints imposed by the struts.

By taking the time derivative of the position loop close (2.1), equation (2.3) is obtained3.

Avp +
AṘB

Bbi +
ARB

B ḃi︸︷︷︸
=0

= l̇i
Aŝi + li

A ˙̂si +
Aȧi︸︷︷︸
=0

(2.3)

Moreover, we have:

• AṘB
Bbi =

Aω × ARB
Bbi =

Aω × Abi in which Aω denotes the angular velocity of the moving
platform expressed in the fixed frame {A}.

• li
A ˙̂si = li

(
Aωi × ŝi

)
in which Aωi is the angular velocity of strut i express in fixed frame {A}.

By multiplying both sides by Aŝi, (2.4) is obtained.

Aŝi
Avp +

Aŝi(
Aω × Abi)︸ ︷︷ ︸

=(Abi×Aŝi)Aω

= l̇i +
Aŝili

(
Aωi × Aŝi

)︸ ︷︷ ︸
=0

(2.4)

Equation (2.4) can be rearranged in matrix form to obtain (2.5), with L̇ = [l̇1 . . . l̇6]
⊺ the vector of

strut velocities, and Ẋ = [Avp,
Aω]⊺ the vector of platform velocity and angular velocity.

3Such equation is called the velocity loop closure
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L̇ = JẊ (2.5)

The matrix J is called the Jacobian matrix and is defined by (2.6), with Aŝi the orientation of the
struts expressed in {A} and Abi the position of the joints with respect to OB and express in {A}.

J =



Aŝ1
⊺

(Ab1 × Aŝ1)
⊺

Aŝ2
⊺

(Ab2 × Aŝ2)
⊺

Aŝ3
⊺

(Ab3 × Aŝ3)
⊺

Aŝ4
⊺

(Ab4 × Aŝ4)
⊺

Aŝ5
⊺

(Ab5 × Aŝ5)
⊺

Aŝ6
⊺

(Ab6 × Aŝ6)
⊺

 (2.6)

Therefore, the Jacobian matrix J links the rate of change of the strut length to the velocity and angular
velocity of the top platform with respect to the fixed base through a set of linear equations. However,
J needs to be recomputed for every Stewart platform pose because it depends on the actual pose of the
manipulator.

Approximate solution to the Forward and Inverse Kinematic problems

For small displacements δX = [δx, δy, δz, δθx, δθy, δθz]
⊺ around an operating point X 0 (for which the

Jacobian was computed), the associated joint displacement δL = [δl1, δl2, δl3, δl4, δl5, δl6]
⊺ can be

computed using the Jacobian (2.7).

δL = JδX (2.7)

Similarly, for small joint displacements δL, it is possible to find the induced small displacement of the
mobile platform (2.8).

δX = J−1δL (2.8)

These two relations solve the forward and inverse kinematic problems for small displacement in a
approximate way. While this approximation offers limited value for inverse kinematics, which can be
solved analytically, it proves particularly useful for the forward kinematic problem where exact analytical
solutions are difficult to obtain.

Range validity of the approximate inverse kinematics

The accuracy of the Jacobian-based forward kinematics solution was estimated by a simple analysis.
For a series of platform positions, the exact strut lengths are computed using the analytical inverse
kinematics equation (2.2). These strut lengths are then used with the Jacobian to estimate the platform
pose (2.8), from which the error between the estimated and true poses can be calculated, both in terms
of position ϵD and orientation ϵR.

13



For motion strokes from 1µm to 10mm, the errors are estimated for all direction of motion, and
the worst case errors are shown in Figure 2.4. The results demonstrate that for displacements up
to approximately 1% of the hexapod’s size (which corresponds to 100µm as the size of the Stewart
platform is here ≈ 100mm), the Jacobian approximation provides excellent accuracy.

Since the maximum required stroke of the nano-hexapod (≈ 100µm) is three orders of magnitude
smaller than its overall size (≈ 100mm), the Jacobian matrix can be considered constant throughout
the workspace. It can be computed once at the rest position and used for both forward and inverse
kinematics with high accuracy.

17m 107m 1007m 1mm 10mm
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Figure 2.4: Errors associated with the use of the Jacobian matrix to solve the forward kinematic
problem. A Stewart platform with a height of 100mm was used to perform this analysis.
ϵD corresponds to the distance between the true positioin and the estimated position.
ϵR corresponds to the angular motion between the true orientation and the estimated
orientation.

Static Forces

The static force analysis of the Stewart platform can be performed using the principle of virtual work.
This principle states that for a system in static equilibrium, the total virtual work of all forces acting
on the system must be zero for any virtual displacement compatible with the system’s constraints.

Let f = [f1, f2, · · · , f6]⊺ represent the vector of actuator forces applied in each strut, and F = [F ,n]⊺

denote the external wrench (combined force F and torque n) acting on the mobile platform at point
OB . The virtual work δW consists of two contributions:

• The work performed by the actuator forces through virtual strut displacements δL: f⊺δL

• The work performed by the external wrench through virtual platform displacements δX : −F⊺δX

Thus, the principle of virtual work can be expressed as:

δW = f⊺δL−F⊺δX = 0 (2.9)
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Using the Jacobian relationship that links virtual displacements (2.7), this equation becomes:

(f⊺J −F⊺) δX = 0 (2.10)

Because this equation must hold for any virtual displacement δX , the force mapping relationships (2.11)
can be derived.

f⊺J −F⊺ = 0 ⇒ F = J⊺f and f = J−⊺F (2.11)

These equations establish that the transpose of the Jacobian matrix maps actuator forces to platform
forces and torques, while its inverse transpose maps platform forces and torques to required actuator
forces.

2.4 Static Analysis

The static stiffness characteristics of the Stewart platform play a crucial role in its performance, par-
ticularly for precision positioning applications. These characteristics are fundamentally determined by
both the actuator properties and the platform geometry.

Starting from the individual actuators, the relationship between applied force fi and resulting displace-
ment δli for each strut i is characterized by its stiffness ki:

fi = kiδli, i = 1, . . . , 6 (2.12)

These individual relationships can be combined into a matrix form using the diagonal stiffness matrix
K:

f = K · δL, K = diag [k1, . . . , k6] (2.13)

By applying the force mapping relationships (2.11) derived in the previous section and the Jacobian
relationship for small displacements (2.8), the relationship between applied wrench F and resulting
platform displacement δX is obtained (2.14).

F = J⊺KJ︸ ︷︷ ︸
K

·δX (2.14)

where K = J⊺KJ is identified as the platform stiffness matrix.

The inverse relationship is given by the compliance matrix C:

δX = (J⊺KJ)−1︸ ︷︷ ︸
C

F (2.15)

These relationships reveal that the overall platform stiffness and compliance characteristics are deter-
mined by two factors:
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• The individual actuator stiffnesses represented by K

• The geometric configuration embodied in the Jacobian matrix J

This geometric dependency means that the platform’s stiffness varies throughout its workspace, as
the Jacobian matrix changes with the platform’s position and orientation. For the NASS application,
where the workspace is small compared to the platform dimensions, these variations can be considered
negligible. However, the initial geometric configuration significantly affects the overall stiffness char-
acteristics. The relationship between maximum stroke and stiffness presents another important design
consideration. As both parameters are influenced by the geometric configuration, their optimization
involves inherent trade-offs that must be carefully balanced based on the application requirements. The
optimization of this configuration to achieve the desired stiffness while having sufficient stroke will be
addressed during the detailed design phase.

2.5 Dynamical Analysis

For initial analysis, a simplified representation of the system has been developed. This model assumes
perfectly rigid bodies for both the platform and base, connected by massless struts through ideal joints
that exhibit neither friction nor compliance.

Under these assumptions, the system dynamics can be expressed in Cartesian space as:

Ms2X = ΣF (2.16)

where M represents the platform mass matrix, X the platform pose, and ΣF the sum of forces acting
on the platform.

The primary forces acting on the system are actuator forces f , elastic forces due to strut stiffness −KL
and damping forces in the struts CL̇.

ΣF = J⊺(f −KL− sCL), K = diag(k1 . . . k6), C = diag(c1 . . . c6) (2.17)

Combining these forces and using (2.8) yields the complete dynamic equation (2.18).

Ms2X = F − J⊺KJX − J⊺CJsX (2.18)

The transfer function matrix in the Cartesian frame becomes (2.19).

X
F (s) = (Ms2 + J⊺CJs+ J⊺KJ)−1 (2.19)

Through coordinate transformation using the Jacobian matrix, the dynamics in the actuator space is
obtained (2.20).

L
f
(s) = (J−⊺MJ−1s2 + C +K)−1 (2.20)
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Although this simplified model provides useful insights, real Stewart platforms exhibit more complex
behaviors. Several factors can significantly increase the model complexity, such as:

• Strut dynamics, including mass distribution and internal resonances [24], [25]

• Joint compliance and friction effects [26], [27]

• Supporting structure dynamics and payload dynamics, which are both very critical for NASS

These additional effects render analytical modeling impractical for complete system analysis.

Conclusion

The fundamental characteristics of the Stewart platform have been analyzed in this chapter. Essential
kinematic relationships were developed through loop closure equations, from which both exact and
approximate solutions for the inverse and forward kinematic problems were derived. The Jacobian
matrix was established as a central mathematical tool through which crucial insights into velocity
relationships, static force transmission, and dynamic behavior of the platform were obtained.

For the NASS application, where displacements are typically limited to the micrometer range, the
accuracy of linearized models using a constant Jacobian matrix has been demonstrated, by which both
analysis and control can be significantly simplified. However, additional complexities such as strut
masses, joint compliance, and supporting structure dynamics must be considered in the full dynamic
behavior. This will be performed in the next section using a multi-body model.

All these characteristics (maneuverability, stiffness, dynamics, etc.) are fundamentally determined by
the platform’s geometry. While a reasonable geometric configuration will be used to validate the NASS
during the conceptual phase, the optimization of these geometric parameters will be explored during
the detailed design phase.
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3 Multi-Body Model

The dynamic modeling of Stewart platforms has traditionally relied on analytical approaches. However,
these analytical models become increasingly complex when the dynamical behaviors of struts and joints
must be captured. To overcome these limitations, a flexible multi-body approach was developed that
can be readily integrated into the broader NASS model. Through this multi-body modeling approach,
each component model (including joints, actuators, and sensors) can be progressively refined.

The analysis is structured as follows. First, the multi-body model is developed, and the geometric
parameters, inertial properties, and actuator characteristics are established (Section 3.1). The model is
then validated through comparison with the analytical equations in a simplified configuration (Section
3.2). Finally, the validated model is employed to analyze the nano-hexapod dynamics, from which
insights for the control system design are derived (Section 3.3).

3.1 Model Definition

Geometry

The Stewart platform’s geometry is defined by two principal coordinate frames (Figure 3.1): a fixed base
frame {F} and a moving platform frame {M}. The joints connecting the actuators to these frames are
located at positions Fai and

Mbi respectively. The point of interest, denoted by frame {A}, is situated
150mm above the moving platform frame {M}.

The geometric parameters of the nano-hexapod are summarized in Table 3.1. These parameters define
the positions of all connection points in their respective coordinate frames. From these parameters,
key kinematic properties can be derived: the strut orientations ŝi, strut lengths li, and the system’s
Jacobian matrix J .
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Figure 3.1: Geometry of the stewart platform

x y z

MOB 0 0 150
FOM 0 0 95
Fa1 −92 −77 20
Fa2 92 −77 20
Fa3 113 −41 20
Fa4 21 118 20
Fa5 −21 118 20
Fa6 −113 −41 20
Mb1 −28 −106 −20
Mb2 28 −106 −20
Mb3 106 28 −20
Mb4 78 78 −20
Mb5 −78 78 −20
Mb6 −106 28 −20

Table 3.1: Parameter values in [mm]

Inertia of Plates

The fixed base and moving platform were modeled as solid cylindrical bodies. The base platform was
characterized by a radius of 120mm and thickness of 15mm, matching the dimensions of the micro-
hexapod’s top platform. The moving platform was similarly modeled with a radius of 110mm and
thickness of 15mm. Both platforms were assigned a mass of 5 kg.

Joints

The platform’s joints play a crucial role in its dynamic behavior. At both the upper and lower connection
points, various degrees of freedom can be modeled, including universal joints, spherical joints, and
configurations with additional axial and lateral stiffness components. For each degree of freedom,
stiffness characteristics can be incorporated into the model.

In the conceptual design phase, a simplified joint configuration is employed: the bottom joints are
modeled as two-degree-of-freedom universal joints, while the top joints are represented as three-degree-
of-freedom spherical joints. These joints are considered massless and exhibit no stiffness along their
degrees of freedom.

Actuators

The actuator model comprises several key elements (Figure 3.2). At its core, each actuator is modeled
as a prismatic joint with internal stiffness ka and damping ca, driven by a force source f . Similarly
to what was found using the rotating 3-DoF model, a parallel stiffness kp is added in parallel with the
force sensor to ensure stability when considering spindle rotation effects.
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Each actuator is equipped with two sensors: a force sensor providing measurements fn and a relative
motion sensor that measures the strut length li. The actuator parameters used in the conceptual phase
are listed in Table 3.2.

This modular approach to actuator modeling allows for future refinements as the design evolves, enabling
the incorporation of additional dynamic effects or sensor characteristics as needed.

Bottom Joint

Top Joint

Figure 3.2: Model of the nano-hexapod actuators

Value

ka 1N/µm
ca 50N/(m/s)
kp 0.05N/µm

Table 3.2: Actuator parameters

3.2 Validation of the multi-body model

The developed multi-body model of the Stewart platform is represented schematically in Figure 3.3,
highlighting the key inputs and outputs: actuator forces f , force sensor measurements fn, and relative
displacement measurements L. The frames {F} and {M} serve as interfaces for integration with other
elements in the multi-body system. A three-dimensional visualization of the model is presented in
Figure 3.4.

Figure 3.3: Nano-Hexapod plant with inputs and outputs.
Frames {F} and {M} can be connected to other
elements in the multi-body models.

Figure 3.4: 3D representation of
the multi-body model

The validation of the multi-body model was performed using the simplest Stewart platform configu-
ration, enabling direct comparison with the analytical transfer functions derived in Section 2.5. This
configuration consists of massless universal joints at the base, massless spherical joints at the top plat-
form, and massless struts with stiffness ka = 1N/µm and damping ca = 10N/(m/s). The geometric
parameters remain as specified in Table 3.2.

While the moving platform itself is considered massless, a 10 kg cylindrical payload is mounted on top
with a radius of r = 110mm and a height h = 300mm.

For the analytical model, the stiffness, damping, and mass matrices are defined in (3.1).
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K = diag(ka, ka, ka, ka, ka, ka) (3.1a)

C = diag(ca, ca, ca, ca, ca, ca) (3.1b)

M = diag

(
m, m, m,

1

12
m(3r2 + h2),

1

12
m(3r2 + h2),

1

2
mr2

)
(3.1c)

The transfer functions from the actuator forces to the strut displacements are computed using these
matrices according to equation (2.20). These analytical transfer functions are then compared with
those extracted from the multi-body model. The developed multi-body model yields a state-space
representation with 12 states, corresponding to the six degrees of freedom of the moving platform.

Figure 3.5 presents a comparison between the analytical and multi-body transfer functions, specifically
showing the response from the first actuator force to all six strut displacements. The close agreement
between both approaches across the frequency spectrum validates the multi-body model’s accuracy in
capturing the system’s dynamic behavior.
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Figure 3.5: Comparison of the analytical transfer functions and the multi-body model

3.3 Nano Hexapod Dynamics

Following the validation of the multi-body model, a detailed analysis of the nano-hexapod dynamics
was performed. The model parameters were set according to the specifications outlined in Section 3.1,
with a payload mass of 10 kg. The transfer functions from actuator forces f to both strut displacements
L and force measurements fn were derived from the multi-body model.

The transfer functions relating actuator forces to strut displacements are presented in Figure 3.6a.
Due to the system’s symmetrical design and identical strut configurations, all diagonal terms (transfer
functions from force fi to displacement li of the same strut) exhibit identical behavior. While the system
has six degrees of freedom, only four distinct resonance frequencies were observed in the frequency
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response. This reduction from six to four observable modes is attributed to the system’s symmetry,
where two pairs of resonances occur at identical frequencies.

The system’s behavior can be characterized in three frequency regions. At low frequencies, well below
the first resonance, the plant demonstrates good decoupling between actuators, with the response
dominated by the strut stiffness: G(jω) −−−→

ω→0
K−1. In the mid-frequency range, the system exhibits

coupled dynamics through its resonant modes, reflecting the complex interactions between the platform’s
degrees of freedom. At high frequencies, above the highest resonance, the response is governed by the
payload’s inertia mapped to the strut coordinates: G(jω) −−−−→

ω→∞
JM−⊺J⊺−1

ω2

The force sensor transfer functions, shown in Figure 3.6b, display characteristics typical of collocated
actuator-sensor pairs. Each actuator’s transfer function to its associated force sensor exhibits alternating
complex conjugate poles and zeros. The inclusion of parallel stiffness introduces an additional complex
conjugate zero at low frequency, which was previously observed in the three-degree-of-freedom rotating
model.
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(b) f to fn

Figure 3.6: Bode plot of the transfer functions computed from the nano-hexapod multi-body model

Conclusion

The multi-body modeling approach presented in this section provides a comprehensive framework for
analyzing the dynamics of the nano-hexapod system. Through comparison with analytical solutions in
a simplified configuration, the model’s accuracy has been validated, demonstrating its ability to capture
the essential dynamic behavior of the Stewart platform.

A key advantage of this modeling approach lies in its flexibility for future refinements. While the
current implementation employs idealized joints for the conceptual design phase, the framework readily
accommodates the incorporation of joint stiffness and other non-ideal effects. The joint stiffness, which
is known to impact the performance of decentralized IFF control strategy [20], will be studied and
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optimized during the detailed design phase. The validated multi-body model will serve as a valuable
tool for predicting system behavior and evaluating control performance throughout the design process.
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4 Control of Stewart Platforms

The control of Stewart platforms presents distinct challenges compared to the uniaxial model due to
their multi-input multi-output nature. Although the uniaxial model demonstrated the effectiveness of
the HAC-LAC strategy, its extension to Stewart platforms requires careful considerations discussed in
this section.

First, the distinction between centralized and decentralized control approaches is discussed in Section
4.1. The impact of the control space selection - either Cartesian or strut space - is then analyzed in Sec-
tion 4.2, highlighting the trade-offs between direction-specific tuning and implementation simplicity.

Building on these analyses, a decentralized active damping strategy using Integral Force Feedback is
developed in Section 4.3, followed by the implementation of a centralized High Authority Control for
positioning in Section 4.4. This architecture, while simple, will be used to demonstrate the feasibility
of the NASS concept and will provide a foundation for more sophisticated control strategies to be
developed during the detailed design phase.

4.1 Centralized and Decentralized Control

In the control of MIMO systems, and more specifically of Stewart platforms, a fundamental architectural
decision lies in the choice between centralized and decentralized control strategies.

In decentralized control, each actuator operates based on feedback from its associated sensor only,
creating independent control loops, as illustrated in Figure 4.1. While mechanical coupling between the
struts exists, control decisions are made locally, with each controller processing information from a single
sensor-actuator pair. This approach offers simplicity in implementation and reduces computational
requirements.

Conversely, centralized control uses information from all sensors to determine the control action of
each actuator. This strategy potentially enables better performance by explicitly accounting for the
mechanical coupling between the struts, though at the cost of increased complexity in both design and
implementation.

The choice between these approaches depends significantly on the degree of interaction between the
different control channels, and also on the available sensors and actuators. For instance, when using
external metrology systems that measure the platform’s global position, centralized control becomes
necessary because each sensor measurement depends on all actuator inputs.

In the context of the nano-hexapod, two distinct control strategies were examined during the conceptual
phase:

• Decentralized Integral Force Feedback (IFF), which utilizes collocated force sensors to implement
independent control loops for each strut (Section 4.3)
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• High-Authority Control (HAC), which employs a centralized approach to achieve precise position-
ing based on external metrology measurements (Section 4.4)

Figure 4.1: Decentralized control strategy using the encoders. The two controllers for the struts on
the back are not shown for simplicity.

4.2 Choice of the Control Space

When controlling a Stewart platform using external metrology that measures the pose of frame {B}
with respect to {A}, denoted as X , the control architecture can be implemented in either Cartesian or
strut space. This choice affects both the control design and the obtained performance.

Control in the Strut space

In this approach, as illustrated in Figure 4.2a, the control is performed in the space of the struts. The
Jacobian matrix is used to solve the inverse kinematics in real-time by mapping position errors from
Cartesian space ϵX to strut space ϵL. A diagonal controller then processes these strut-space errors to
generate force commands for each actuator.

The main advantage of this approach emerges from the plant characteristics in the strut space, as
shown in Figure 4.3a. The diagonal terms of the plant (transfer functions from force to displacement
of the same strut, as measured by the external metrology) are identical due to the system’s symmetry.
This simplifies the control design because only one controller needs to be tuned. Furthermore, at low
frequencies, the plant exhibits good decoupling between the struts, allowing for effective independent
control of each axis.

Control in Cartesian Space

Alternatively, control can be implemented directly in Cartesian space, as illustrated in Figure 4.2b.
Here, the controller processes Cartesian errors ϵX to generate forces and torques F , which are then
mapped to actuator forces using the transpose of the inverse Jacobian matrix (2.11).

The plant behavior in Cartesian space, illustrated in Figure 4.3b, reveals interesting characteristics.
Some degrees of freedom, particularly the vertical translation and rotation about the vertical axis, ex-
hibit simpler second-order dynamics. A key advantage of this approach is that the control performance
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Plant
K1 0

. . .
0 K6

J+
−

XϵX ϵL frX

(a) Control in the frame of the struts. J is used to project errors in the frame of the struts

PlantJ−⊺
KDx 0

. . .
0 KRz

+
−

XϵX F frX

(b) Control in the Cartesian frame. J−⊺ is used to project force and torques on each strut

Figure 4.2: Two control strategies

can be tuned individually for each direction. This is particularly valuable when performance require-
ments differ between degrees of freedom - for instance, when higher positioning accuracy is required
vertically than horizontally, or when certain rotational degrees of freedom can tolerate larger errors
than others.

However, significant coupling exists between certain degrees of freedom, particularly between rotations
and translations (e.g., ϵRx/Fy or ϵDy/Mx).

For the conceptual validation of the nano-hexapod, control in the strut space was selected due to its
simpler implementation and the beneficial decoupling properties observed at low frequencies. More
sophisticated control strategies will be explored during the detailed design phase.
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(b) Plant in the Cartesian Frame

Figure 4.3: Bode plot of the transfer functions computed from the nano-hexapod multi-body model
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4.3 Active Damping with Decentralized IFF

The decentralized Integral Force Feedback (IFF) control strategy is implemented using independent
control loops for each strut, similarly to what is shown in Figure 4.1, but using force sensors instead of
relative motion sensors.

The corresponding block diagram of the control loop is shown in Figure 4.4, in which the controller
KIFF(s) is a diagonal matrix, where each diagonal element is a pure integrator (4.1).

Damped Plant

Plant

KIFF

+
fn

f

L
f ′

Figure 4.4: Schematic of the implemented decentralized IFF controller. The damped plant has a new
inputs f ′

KIFF(s) = g ·

KIFF(s) 0
. . .

0 KIFF(s)

 , KIFF(s) =
1

s
(4.1)

In this section, the stiffness in parallel with the force sensor was omitted since the Stewart platform is
not subjected to rotation. The effect of this parallel stiffness is examined in the next section when the
platform is integrated into the complete NASS.

Root Locus analysis, shown in Figure 4.5b, reveals the evolution of the closed-loop poles as the controller
gain g varies from 0 to ∞. A key characteristic of force feedback control with collocated sensor-
actuator pairs is observed: all closed-loop poles are bounded to the left-half plane, indicating guaranteed
stability [28]. This property is particularly valuable because the coupling is very large around resonance
frequencies, enabling control of modes that would be difficult to include within the bandwidth using
position feedback alone.

The bode plot of an individual loop gain (i.e. the loop gain of KIFF(s) · fni

fi
(s)), presented in Figure 4.5a,

exhibits the typical characteristics of integral force feedback of having a phase bounded between −90o

and +90o. The loop-gain is high around the resonance frequencies, indicating that the decentralized
IFF provides significant control authority over these modes. This high gain, combined with the bounded
phase, enables effective damping of the resonant modes while maintaining stability.

4.4 MIMO High-Authority Control - Low-Authority Control

The design of the High Authority Control positioning loop is now examined. The complete HAC-IFF
control architecture is illustrated in Figure 4.6, where the reference signal rX represents the desired
pose, and X is the measured pose by the external metrology system.
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Figure 4.5: Decentralized IFF

Following the analysis from Section 4.2, the control is implemented in the strut space. The Jacobian
matrix J−1 performs (approximate) real-time approximate inverse kinematics to map position errors
from Cartesian space ϵX to strut space ϵL. A diagonal High Authority Controller KHAC then processes
these errors in the frame of the struts.

Damped Plant

Plant

KIFF

+KHACJ+
−

fn

f

X
f ′ϵX ϵLrX

Figure 4.6: HAC-IFF control architecture with the High Authority Controller being implemented in
the frame of the struts

The effect of decentralized IFF on the plant dynamics can be observed by comparing two sets of
transfer functions. Figure 4.7a shows the original transfer functions from actuator forces f to strut
errors ϵL, which are characterized by pronounced resonant peaks. When the decentralized IFF is
implemented, the transfer functions from modified inputs f ′ to strut errors ϵL exhibit significantly
attenuated resonances (Figure 4.7b). This damping of structural resonances serves two purposes: it
reduces vibrations near resonances and simplifies the design of the high authority controller by providing
simpler plant dynamics.

Based upon the damped plant dynamics shown in Figure 4.7b, a high authority controller was designed
with the structure given in (4.2). The controller combines three elements: an integrator providing
high gain at low frequencies, a lead compensator improving stability margins, and a low-pass filter for
robustness against unmodeled high-frequency dynamics. The loop gain of an individual control channel
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(a) Undamped plant in the frame of the struts
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(b) Damped plant with Decentralized IFF

Figure 4.7: Plant in the frame of the strut for the High Authority Controller.

is shown in Figure 4.8a.

KHAC(s) =

KHAC(s) 0
. . .

0 KHAC(s)

 , KHAC(s) = g0 ·
ωc

s︸︷︷︸
int

· 1√
α

1 + s
ωc/

√
α

1 + s
ωc

√
α︸ ︷︷ ︸

lead

· 1

1 + s
ω0︸ ︷︷ ︸

LPF

(4.2)

The stability of the MIMO feedback loop is analyzed through the characteristic loci method. Such
characteristic loci represent the eigenvalues of the loop gain matrix G(jω)K(jω) plotted in the complex
plane as the frequency varies from 0 to ∞. For MIMO systems, this method generalizes the classical
Nyquist stability criterion: with the open-loop system being stable, the closed-loop system is stable if
none of the characteristic loci encircle the -1 point [29]. As shown in Figure 4.8b, all loci remain to the
right of the −1 point, validating the stability of the closed-loop system. Additionally, the distance of
the loci from the −1 point provides information about stability margins of the coupled system.

Conclusion

The control architecture developed for the uniaxial and the rotating models was adapted for the Stewart
platform.

Two fundamental choices were first addressed: the selection between centralized and decentralized
approaches and the choice of control space. While control in Cartesian space enables direction-specific
performance tuning, implementation in strut space was selected for the conceptual design phase due
to two key advantages: good decoupling at low frequencies and identical diagonal terms in the plant
transfer functions, allowing a single controller design to be replicated across all struts.

The HAC-LAC strategy was then implemented. The inner loop implements decentralized Integral Force
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Figure 4.8: Decentralized HAC-IFF. Loop gain (a) is used for the design of the controller and to
estimate the disturbance rejection performances. Characteristic Loci (b) is used to verify
the stability and robustness of the feedback loop.

Feedback for active damping. The collocated nature of the force sensors ensures stability despite strong
coupling between struts at resonance frequencies, enabling effective damping of structural modes. The
outer loop implements High Authority Control, enabling precise positioning of the mobile platform.
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Conclusion

After evaluating various architectures, the Stewart platform was selected for the active platform. The
parallel kinematic structure offers superior dynamical characteristics, and its compact design satisfies
the strict space constraints of the NASS. The extensive literature on Stewart platforms, including
kinematic analysis, dynamic modeling and control, provides a robust theoretical foundation for this
choice.

A configurable multi-body model of the Stewart platform was developed and validated against analytical
equations. The modular nature of the model allows for progressive refinement of individual components
(plates, joints and actuators) and geometry, making it a valuable tool throughout the development
process. The validated model will be integrated into the broader multi-body representation of the
micro-station, enabling comprehensive analysis of the complete NASS.

The use of this model extends beyond the current conceptual phase. It will serve as a crucial tool during
the detailed design phase, where it will be used to optimize the design and guide the development of so-
phisticated control strategies. Furthermore, during the experimental phase, it will provide a theoretical
framework for comparing and understanding measured dynamics.

The control aspects of the Stewart platform were addressed with particular attention to the challenges
posed by its multi-input multi-output nature. Although the coupled dynamics of the system suggest the
potential benefit of advanced control strategies, a simplified architecture was proposed for the validation
of the NASS concept. This approach combines decentralized Integral Force Feedback for active damping
with High Authority Control for positioning, which was implemented in the strut space to leverage the
natural decoupling observed at low frequencies.

This study establishes the theoretical framework necessary for the subsequent development and valida-
tion of the NASS.
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