%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); %% Path for functions, data and scripts addpath('./mat/'); % Path for Data addpath('./src/'); % Path for functions addpath('./subsystems/'); % Path for Subsystems Simulink files %% Data directory data_dir = './mat/'; % Simulink Model name mdl = 'nano_hexapod_model'; %% Colors for the figures colors = colororder; %% Frequency Vector freqs = logspace(0, 3, 1000); % Validation of the multi-body model % <> % The developed multi-body model of the Stewart platform is represented schematically in Figure ref:fig:nhexa_stewart_model_input_outputs, highlighting the key inputs and outputs: actuator forces $\bm{f}$, force sensor measurements $\bm{f}_n$, and relative displacement measurements $\bm{\mathcal{L}}$. % The frames $\{F\}$ and $\{M\}$ serve as interfaces for integration with other elements in the multi-body system. % A three-dimensional visualization of the model is presented in Figure ref:fig:nhexa_simscape_screenshot. % #+attr_latex: :options [b]{0.6\linewidth} % #+begin_minipage % #+name: fig:nhexa_stewart_model_input_outputs % #+caption: Nano-Hexapod plant with inputs and outputs. Frames $\{F\}$ and $\{M\}$ can be connected to other elements in the multi-body models. % #+attr_latex: :scale 1 :float nil % [[file:figs/nhexa_stewart_model_input_outputs.png]] % #+end_minipage % \hfill % #+attr_latex: :options [b]{0.35\linewidth} % #+begin_minipage % #+name: fig:nhexa_simscape_screenshot % #+caption: 3D representation of the multi-body model % #+attr_latex: :width 0.90\linewidth :float nil % [[file:figs/nhexa_simscape_screenshot.jpg]] % #+end_minipage % The validation of the multi-body model is performed using the simplest Stewart platform configuration, enabling direct comparison with the analytical transfer functions derived in Section ref:ssec:nhexa_stewart_platform_dynamics. % This configuration consists of massless universal joints at the base, massless spherical joints at the top platform, and massless struts with stiffness $k_a = 1\,\text{N}/\mu\text{m}$ and damping $c_a = 10\,\text{N}/({\text{m}/\text{s}})$. % The geometric parameters remain as specified in Table ref:tab:nhexa_actuator_parameters. % While the moving platform itself is considered massless, a $10\,\text{kg}$ cylindrical payload is mounted on top with a radius of $r = 110\,mm$ and a height $h = 300\,mm$. % For the analytical model, the stiffness, damping and mass matrices are defined in eqref:eq:nhexa_analytical_matrices. % \begin{subequations}\label{eq:nhexa_analytical_matrices} % \begin{align} % \bm{\mathcal{K}} &= \text{diag}(k_a,\ k_a,\ k_a,\ k_a,\ k_a,\ k_a) \\ % \bm{\mathcal{C}} &= \text{diag}(c_a,\ c_a,\ c_a,\ c_a,\ c_a,\ c_a) \\ % \bm{M} &= \text{diag}\left(m,\ m,\ m,\ \frac{1}{12}m(3r^2 + h^2),\ \frac{1}{12}m(3r^2 + h^2),\ \frac{1}{2}mr^2\right) % \end{align} % \end{subequations} % The transfer functions from actuator forces to strut displacements are computed using these matrices according to equation eqref:eq:nhexa_transfer_function_struts. % These analytical transfer functions are then compared with those extracted from the multi-body model. % The multi-body model yields a state-space representation with 12 states, corresponding to the six degrees of freedom of the moving platform. % Figure ref:fig:nhexa_comp_multi_body_analytical presents a comparison between the analytical and multi-body transfer functions, specifically showing the response from the first actuator force to all six strut displacements. % The close agreement between both approaches across the frequency spectrum validates the multi-body model's accuracy in capturing the system's dynamic behavior. %% Plant using Analytical Equations % Stewart platform definition k = 1e6; % Actuator stiffness [N/m] c = 1e1; % Actuator damping [N/(m/s)] stewart = initializeSimplifiedNanoHexapod(... 'Mpm', 1e-3, ... 'actuator_type', '1dof', ... 'actuator_k', k, ... 'actuator_kp', 0, ... 'actuator_c', c ... ); % Payload: Cylinder h = 300e-3; % Height of the cylinder [m] r = 110e-3; % Radius of the cylinder [m] m = 10; % Mass of the payload [kg] initializeSample('type', 'cylindrical', 'm', m, 'H', h, 'R', r); % Mass Matrix M = zeros(6,6); M(1,1) = m; M(2,2) = m; M(3,3) = m; M(4,4) = 1/12*m*(3*r^2 + h^2); M(5,5) = 1/12*m*(3*r^2 + h^2); M(6,6) = 1/2*m*r^2; % Stiffness and Damping matrices K = k*eye(6); C = c*eye(6); % Compute plant in the frame of the struts G_analytical = inv(ss(inv(stewart.geometry.J')*M*inv(stewart.geometry.J)*s^2 + C*s + K)); % Compare with Simscape model initializeLoggingConfiguration('log', 'none'); initializeController('type', 'open-loop'); % Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs [N] io(io_i) = linio([mdl, '/plant'], 2, 'openoutput', [], 'dL'); io_i = io_i + 1; % Encoders [m] G_simscape = linearize(mdl, io); G_simscape.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_simscape.OutputName = {'dL1', 'dL2', 'dL3', 'dL4', 'dL5', 'dL6'}; %% Comparison of the analytical transfer functions and the multi-body model figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(G_simscape(i,1), freqs, 'Hz'))), 'color', [colors(i,:), 0.5], ... 'DisplayName', sprintf('$l_%i/f_1$ - Multi-Body', i)) end for i = 1:6 plot(freqs, abs(squeeze(freqresp(G_analytical(i,1), freqs, 'Hz'))), '--', 'color', [colors(i,:)], ... 'DisplayName', sprintf('$l_%i/f_1$ - Analytical', i)) end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ylim([1e-9, 1e-4]); leg = legend('location', 'northwest', 'FontSize', 6, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_simscape(i,1), freqs, 'Hz'))), 'color', [colors(i,:),0.5]); end for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_analytical(i,1), freqs, 'Hz'))), '--', 'color', colors(i,:)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); % Nano Hexapod Dynamics % <> % Following the validation of the multi-body model, a detailed analysis of the nano-hexapod dynamics has been performed. % The model parameters are set according to the specifications outlined in Section ref:ssec:nhexa_model_def, with a payload mass of $10\,kg$. % Transfer functions from actuator forces $\bm{f}$ to both strut displacements $\bm{\mathcal{L}}$ and force measurements $\bm{f}_n$ are derived from the multi-body model. % The transfer functions relating actuator forces to strut displacements are presented in Figure ref:fig:nhexa_multi_body_plant_dL. % Due to the system's symmetrical design and identical strut configurations, all diagonal terms (transfer functions from force $f_i$ to displacement $l_i$ of the same strut) exhibit identical behavior. % While the system possesses six degrees of freedom, only four distinct resonance frequencies are observed in the frequency response. % This reduction from six to four observable modes is attributed to the system's symmetry, where two pairs of resonances occur at identical frequencies. % The system's behavior can be characterized in three frequency regions. % At low frequencies, well below the first resonance, the plant demonstrates good decoupling between actuators, with the response dominated by the strut stiffness: $\bm{G}(j\omega) \xrightarrow[\omega \to 0]{} \bm{\mathcal{K}}^{-1}$. % In the mid-frequency range, the system exhibits coupled dynamics through its resonant modes, reflecting the complex interactions between the platform's degrees of freedom. % At high frequencies, above the highest resonance, the response is governed by the payload's inertia mapped to the strut coordinates: $\bm{G}(j\omega) \xrightarrow[\omega \to \infty]{} \bm{J} \bm{M}^{-T} \bm{J}^T \frac{-1}{\omega^2}$ % The force sensor transfer functions, shown in Figure ref:fig:nhexa_multi_body_plant_fm, display characteristics typical of collocated actuator-sensor pairs. % Each actuator's transfer function to its associated force sensor exhibits alternating complex conjugate poles and zeros. % The inclusion of parallel stiffness introduces an additional complex conjugate zero at low frequency, a feature previously observed in the three-degree-of-freedom rotating model. %% Multi-Body model of the Nano-Hexapod % Initialize 1DoF initializeSimplifiedNanoHexapod('flex_type_F', '2dof', 'flex_type_M', '3dof', 'actuator_type', '1dof'); initializeSample('type', 'cylindrical', 'm', 10, 'H', 300e-3); initializeLoggingConfiguration('log', 'none'); initializeController('type', 'open-loop'); % Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs [N] io(io_i) = linio([mdl, '/plant'], 2, 'openoutput', [], 'dL'); io_i = io_i + 1; % Encoders [m] io(io_i) = linio([mdl, '/plant'], 2, 'openoutput', [], 'fn'); io_i = io_i + 1; % Force Sensors [N] % With no payload G = linearize(mdl, io); G.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G.OutputName = {'dL1', 'dL2', 'dL3', 'dL4', 'dL5', 'dL6', ... 'fn1', 'fn2', 'fn3', 'fn4', 'fn5', 'fn6'}; %% Multi-Body model of the Nano-Hexapod without parallel stiffness % Initialize 1DoF initializeSimplifiedNanoHexapod('flex_type_F', '2dof', 'flex_type_M', '3dof', 'actuator_type', '1dof', 'actuator_kp', 0); % With no payload G_no_kp = linearize(mdl, io); G_no_kp.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_no_kp.OutputName = {'dL1', 'dL2', 'dL3', 'dL4', 'dL5', 'dL6', ... 'fn1', 'fn2', 'fn3', 'fn4', 'fn5', 'fn6'}; %% Transfer function from actuator force inputs to displacement of each strut figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:5 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G(i,j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); end end plot(freqs, abs(squeeze(freqresp(G(1,1), freqs, 'Hz'))), 'color', colors(1,:), ... 'DisplayName', '$l_i/f_i$') for i = 2:6 plot(freqs, abs(squeeze(freqresp(G(i,i), freqs, 'Hz'))), 'color', colors(1,:), ... 'HandleVisibility', 'off'); end plot(freqs, abs(squeeze(freqresp(G(1,2), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ... 'DisplayName', '$l_i/f_j$') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ylim([1e-9, 1e-4]); leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G(i,i), freqs, 'Hz'))), 'color', [colors(1,:),0.5]); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); %% Transfer function from actuator force inputs to force sensor in each strut figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:5 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G(6+i,j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); end end plot(freqs, abs(squeeze(freqresp(G(7,1), freqs, 'Hz'))), 'color', colors(1,:), ... 'DisplayName', '$f_{ni}/f_i$') plot(freqs, abs(squeeze(freqresp(G_no_kp(7,1), freqs, 'Hz'))), 'color', colors(2,:), ... 'DisplayName', '$f_{ni}/f_i$ (no $k_p$)') for i = 2:6 plot(freqs, abs(squeeze(freqresp(G(6+i,i), freqs, 'Hz'))), 'color', colors(1,:), ... 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_no_kp(6+i,i), freqs, 'Hz'))), 'color', colors(2,:), ... 'HandleVisibility', 'off'); end plot(freqs, abs(squeeze(freqresp(G(7,2), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ... 'DisplayName', '$f_{ni}/f_j$') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]); ylim([1e-4, 1e2]); leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G(6+i,i), freqs, 'Hz'))), 'color', colors(1,:)); plot(freqs, 180/pi*angle(squeeze(freqresp(G_no_kp(6+i,i), freqs, 'Hz'))), 'color', colors(2,:)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]);