%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); %% Path for functions, data and scripts addpath('./mat/'); % Path for Data addpath('./src/'); % Path for functions addpath('./subsystems/'); % Path for Subsystems Simulink files %% Data directory data_dir = './mat/'; % Simulink Model name mdl = 'nano_hexapod_model'; %% Colors for the figures colors = colororder; %% Frequency Vector [Hz] freqs = logspace(0, 3, 1000); % Range validity of the approximate inverse kinematics % The accuracy of the Jacobian-based forward kinematics solution was estimated by a simple analysis. % For a series of platform positions, the exact strut lengths are computed using the analytical inverse kinematics equation eqref:eq:nhexa_inverse_kinematics. % These strut lengths are then used with the Jacobian to estimate the platform pose eqref:eq:nhexa_forward_kinematics_approximate, from which the error between the estimated and true poses can be calculated, both in terms of position $\epsilon_D$ and orientation $\epsilon_R$. % For motion strokes from $1\,\mu m$ to $10\,mm$, the errors are estimated for all direction of motion, and the worst case errors are shown in Figure ref:fig:nhexa_forward_kinematics_approximate_errors. % The results demonstrate that for displacements up to approximately $1\,\%$ of the hexapod's size (which corresponds to $100\,\mu m$ as the size of the Stewart platform is here $\approx 100\,mm$), the Jacobian approximation provides excellent accuracy. % Since the maximum required stroke of the nano-hexapod ($\approx 100\,\mu m$) is three orders of magnitude smaller than its overall size ($\approx 100\,mm$), the Jacobian matrix can be considered constant throughout the workspace. % It can be computed once at the rest position and used for both forward and inverse kinematics with high accuracy. %% Estimate the errors associated with approximate forward kinematics using the Jacobian matrix stewart = initializeSimplifiedNanoHexapod('H', 100e-3); Xrs = logspace(-6, -1, 10); % Wanted X translation of the mobile platform [m] phis = linspace(-pi, pi, 100); % Tested azimutal angles [rad] thetas = linspace(0, pi, 100); % Tested polar angles [rad] % Compute the strut exact length for each X-position Xrs_errors = zeros(1, length(Xrs)); % Maximum distance error [m] Rrs_errors = zeros(1, length(Xrs)); % Maximum angular error [rad] for i = 1:length(Xrs) Xrs_error_min = 0; Rrs_error_min = 0; for theta = thetas for phi = phis ix = [sin(theta)*cos(phi); sin(theta)*sin(phi);cos(theta)]; % Unit vector for the displacement direction [~, L_exact] = inverseKinematics(stewart, 'AP', Xrs(i)*ix); % Compute exact strut length for the wanted position Xrs_approx = inv(stewart.geometry.J)*L_exact; % Approximate the position using the Jacobian Xrs_error = norm(Xrs(i)*ix - Xrs_approx(1:3), 2); % Compute the position estimation error Rrs_error = norm(Xrs_approx(4:6), 2); % Compute the angular estimation error if Xrs_error > Xrs_error_min Xrs_error_min = Xrs_error; end if Rrs_error > Rrs_error_min Rrs_error_min = Rrs_error; end end end Xrs_errors(i) = Xrs_error_min; Rrs_errors(i) = Rrs_error_min; end %% Errors associated with the use of the Jacobian matrix to solve the forward kinematic problem figure; yyaxis left hold on; plot(1e6*Xrs, 1e9*Xrs_errors, 'DisplayName', '$\epsilon_D$'); plot(1e6*Xrs, 1e6*Xrs, '--', 'DisplayName', '$0.1\%$ error'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; xlim([1, 1e4]); ylim([1, 1e4]); xlabel('Motion Stroke'); ylabel('Kinematic Errors'); xticks([1, 10, 100, 1000, 10000]); yticks([1, 10, 100, 1000, 10000]); xticklabels({'$1\mu m$', '$10\mu m$', '$100\mu m$', '$1mm$', '$10mm$'}); yticklabels({'$1nm$', '$10nm$', '$100nm$', '$1\mu m$', '$10\mu m$'}); yyaxis right plot(1e6*Xrs, 1e9*Rrs_errors, 'DisplayName', '$\epsilon_R$'); set(gca, 'YScale', 'log'); ylim([1, 1e4]); yticks([1, 10, 100, 1000, 10000]); yticklabels({'$1$nrad', '$10$nrad', '$100$nrad', '$1\mu$rad', '$10\mu$rad'});