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Now that the multi-body model of the micro-station has been developed and validated using dynamical
measurements, a model of the active vibration platform can be integrated.

First, the mechanical architecture of the active platform needs to be carefully chosen. In Section 1, a
quick review of active vibration platforms is performed.

The chosen architecture is the Stewart platform, which is presented in Section 2. It is a parallel
manipulator that require the use of specific tools to study its kinematics.

However, to study the dynamics of the Stewart platform, the use of analytical equations is very complex.
Instead, a multi-body model of the Stewart platform is developed (Section 3), that can then be easily
integrated on top of the micro-station’s model.

From a control point of view, the Stewart platform is a MIMO system with complex dynamics. To
control such system, it requires several tools to study interaction (Section 4).
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1 Active Vibration Platforms

Goals:

• Quick review of active vibration platforms (5 or 6DoF) similar to NASS

• Explain why Stewart platform architecture is chosen

• Wanted controlled DOF: Y, Z, Ry

• But because of continuous rotation (key specificity): X,Y,Z,Rx,Ry in the frame of the active
platform

• Literature review? (maybe more suited for chapter 2)

– file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.
org

– Talk about flexible joint? Maybe not so much as it should be topic of second chapter. Just
say that we must of flexible joints that can be defined as 3 to 6DoF joints, and it will be
optimize in chapter 2.

• [1]

• For some systems, just XYZ control (stack stages), example: holler

• For other systems, Stewart platform (ID16a), piezo based

• Examples of Stewart platforms for general vibration control, some with Piezo, other with Voice
coil. IFF, . . . Show different geometry configuration

• DCM: tripod?

1.1 Active vibration control of sample stages

Review of stages with online metrology for Synchrotrons

□ Talk about external metrology? Maybe not the topic here.

□ Talk about control architecture?

□ Comparison with the micro-station / NASS
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1.2 Serial and Parallel Manipulators

Goal:

• Explain why a parallel manipulator is here preferred

• Compact, 6DoF, higher control bandwidth, linear, simpler

• Show some example of serial and parallel manipulators

• A review of Stewart platform will be given in Chapter related to the detailed design of the Nano-
Hexapod

Serial Robots Parallel Robots

Advantages Large Workspace High Stiffness
Disadvantages Low Stiffness Small Workspace
Kinematic Struture Open Closed-loop

Table 1.1: Advantages and Disadvantages of both serial and parallel robots
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2 The Stewart platform

The Stewart platform, first introduced by Stewart in 1965 [2] for flight simulation applications, repre-
sents a significant milestone in parallel manipulator design. This mechanical architecture has evolved
far beyond its original purpose, finding applications across diverse fields from precision positioning sys-
tems to robotic surgery. The fundamental design consists of two platforms connected by six adjustable
struts in parallel, creating a fully parallel manipulator capable of six degrees of freedom motion.

Unlike serial manipulators where errors worsen through the kinematic chain, parallel architectures
distribute loads across multiple actuators, leading to enhanced mechanical stiffness and improved po-
sitioning accuracy. This parallel configuration also results in superior dynamic performance, as the
actuators directly contribute to the platform’s motion without intermediate linkages. These character-
istics of Stewart platforms have made them particularly valuable in applications requiring high precision
and stiffness.

For the NASS application, the Stewart platform architecture presents three key advantages. First, as
a fully parallel manipulator, all motion errors of the micro-station can be compensated through the
coordinated action of the six actuators. Second, its compact design compared to serial manipulators
makes it ideal for integration on top micro-station where only 95mm of height is available. Third, the
good dynamical properties should enable high bandwidth positioning control.

While Stewart platforms excel in precision and stiffness, they typically exhibit a relatively limited
workspace compared to serial manipulators. However, this limitation is not significant for the NASS
application, as the required motion range corresponds to the positioning errors of the micro-station
which are in the order of 10µm.

This section provides a comprehensive analysis of the Stewart platform’s properties, focusing on as-
pects crucial for precision positioning applications. The analysis encompasses the platform’s kinematic
relationships (Section 2.2), the use of the Jacobian matrix (Section 2.3), static behavior (Section 2.4),
and dynamic characteristics (Section 2.5). These theoretical foundations form the basis for subsequent
design decisions and control strategies, which will be elaborated in later sections.

2.1 Mechanical Architecture

The Stewart platform consists of two rigid platforms connected by six struts arranged in parallel (Figure
2.1). Each strut incorporates an active prismatic joint that enables controlled length variation, with
its ends attached to the fixed and mobile platforms through joints. The typical configuration consists
of a universal joint at one end and a spherical joint at the other, providing the necessary degrees of
freedom1.

To facilitate rigorous analysis of the Stewart platform, four reference frames are defined:

1Different architecture exists, typically referred as “6-SPS” (Spherical, Prismatic, Spherical) or “6-UPS” (Universal,
Prismatic, Spherical)

6



Prismatic

Universal

Spherical
Mobile platform

Fixed platform

Figure 2.1: Schematical representation of the Stewart platform architecture.

• The fixed base frame {F}, located at the center of the base platform’s bottom surface, serves as
the mounting reference for the support structure.

• The mobile frame {M}, situated at the center of the top platform’s upper surface, provides a
reference for payload mounting.

• The point-of-interest frame {A}, fixed to the base but positioned at the workspace center.

• The moving point-of-interest frame {B}, attached to the mobile platform and coincident with
frame {A} in the home position.

Frames {F} and {M} serve primarily to define the joint locations. On the other hand, frames {A} and
{B} are used to describe the relative motion of the two platforms through the position vector APB of
frame {B} expressed in frame {A} and the rotation matrix ARB expressing the orientation of {B} with
respect to {A}. For the nano-hexapod, frames {A} and {B} are chosen to be located at the theoretical
focus point of the X-ray light which is 150mm above the top platform, i.e. above {M}.

Location of the joints and orientation and length of the struts are crucial for subsequent kinematic,
static, and dynamic analyses of the Stewart platform. The center of rotation for the joint fixed to the
base is noted ai, while bi is used for the top platform joints. The struts orientation are represented by
the unit vectors ŝi and their lengths by the scalars li. This is summarized in Figure 2.2.

Figure 2.2: Frame and key notations for the Stewart platform
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2.2 Kinematic Analysis

The kinematic analysis of the Stewart platform involves understanding the geometric relationships
between the platform position/orientation and the actuator lengths, without considering the forces
involved.

Loop Closure The foundation of the kinematic analysis lies in the geometric constraints imposed by
each strut, which can be expressed through loop closure equations. For each strut i (illustrated in
Figure 2.3), the loop closure equation (2.1) can be written.

APB = Aai + li
Aŝi − Bbi︸︷︷︸

ARB
Bbi

for i = 1 to 6 (2.1)

Such equation links the pose variables AP and ARB , the position vectors describing the known geometry
of the base and of the moving platform, ai and bi, and the strut vector li

Aŝi:

Figure 2.3: Notations to compute the kinematic loop closure

Inverse Kinematics The inverse kinematic problem involves determining the required strut lengths
L = [l1, l2, . . . , l6]

T
for a desired platform pose X (i.e. position AP and orientation ARB). This problem

can be solved analytically using the loop closure equations (2.1). The obtain strut lengths are given by
(2.2).

li =

√
AP TAP + BbTi

Bbi + AaT
i
Aai − 2AP TAai + 2AP T [ARB

Bbi]− 2 [ARB
Bbi]

T Aai (2.2)

If the position and orientation of the platform lie in the feasible workspace, the solution is unique.
Otherwise, the solution gives complex numbers.

Forward Kinematics The forward kinematic problem seeks to determine the platform pose X given a
set of strut lengths L. Unlike the inverse kinematics, this presents a significant challenge as it requires
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solving a system of nonlinear equations. While various numerical methods exist for solving this problem,
they can be computationally intensive and may not guarantee convergence to the correct solution.

For the nano-hexapod application, where displacements are typically small, an approximate solution
based on linearization around the operating point provides a practical alternative. This approximation,
developed in subsequent sections through the Jacobian matrix analysis, proves particularly useful for
real-time control applications.

2.3 The Jacobian Matrix

The Jacobian matrix plays a central role in analyzing the Stewart platform’s behavior, providing a linear
mapping between platform and actuator velocities. While the previously derived kinematic relationships
are essential for position analysis, the Jacobian enables velocity analysis and forms the foundation for
both static and dynamic studies.

Jacobian Computation - Velocity Loop Closure As was shown in Section 2.2, the strut lengths L
and the platform pose X are related through a system of nonlinear algebraic equations representing the
kinematic constraints imposed by the struts.

By taking the time derivative of the position loop close (2.1), the velocity loop closure is obtained
(2.3).

Avp +
AṘB

Bbi +
ARB

B ḃi︸︷︷︸
=0

= l̇i
Aŝi + li

A ˙̂si +
Aȧi︸︷︷︸
=0

(2.3)

Moreover, we have:

• AṘB
Bbi =

Aω × ARB
Bbi =

Aω × Abi in which Aω denotes the angular velocity of the moving
platform expressed in the fixed frame {A}.

• li
A ˙̂si = li

(
Aωi × ŝi

)
in which Aωi is the angular velocity of strut i express in fixed frame {A}.

By multiplying both sides by Aŝi, (2.4) is obtained.

Aŝi
Avp +

Aŝi(
Aω × Abi)︸ ︷︷ ︸

=(Abi×Aŝi)Aω

= l̇i +
Aŝili

(
Aωi × Aŝi

)︸ ︷︷ ︸
=0

(2.4)

Equation (2.4) can be rearranged in a matrix form to obtain (2.5), with L̇ = [l̇1 . . . l̇6]
T the vector of

strut velocities, and Ẋ = [Avp,
Aω]T the vector of platform velocity and angular velocity.

L̇ = JẊ (2.5)

The matrix J is called the Jacobian matrix, and is defined by (2.6), with:
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• Aŝi the orientation of the struts expressed in {A}

• Abi the position of the joints with respect to OB and express in {A}

J =



Aŝ1
T

(Ab1 × Aŝ1)
T

Aŝ2
T

(Ab2 × Aŝ2)
T

Aŝ3
T

(Ab3 × Aŝ3)
T

Aŝ4
T

(Ab4 × Aŝ4)
T

Aŝ5
T

(Ab5 × Aŝ5)
T

Aŝ6
T

(Ab6 × Aŝ6)
T


(2.6)

This Jacobian matrix J therefore links the rate of change of strut length to the velocity and angular
velocity of the top platform with respect to the fixed base through a set of linear equations. However,
J needs to be recomputed for every Stewart platform pose as it depends on the actual pose of of the
manipulator.

Approximate solution of the Forward and Inverse Kinematic problems For small displacements
δX = [δx, δy, δz, δθx, δθy, δθz]

T around an operating point X 0 (for which the Jacobian was computed),
the associated joint displacement δL = [δl1, δl2, δl3, δl4, δl5, δl6]

T can be computed using the Jacobian
(approximate solution of the inverse kinematic problem):

δL = JδX (2.7)

Similarly, for small joint displacements δL, it is possible to find the induced small displacement of the
mobile platform (approximate solution of the forward kinematic problem):

δX = J−1δL (2.8)

These two relations solve the forward and inverse kinematic problems for small displacement in a
approximate way. As the inverse kinematic can be easily solved exactly this is not much useful, however,
as the forward kinematic problem is difficult to solve, this approximation can be very useful for small
displacements.

Range validity of the approximate inverse kinematics The accuracy of the Jacobian-based forward
kinematics solution was estimated through a systematic error analysis. For a series of platform positions
along the x-axis, the exact strut lengths are computed using the analytical inverse kinematics equation
(2.2). These strut lengths are then used with the Jacobian to estimate the platform pose, from which
the error between the estimated and true poses can be calculated.

The estimation errors in the x, y, and z directions are shown in Figure 2.4. The results demonstrate
that for displacements up to approximately 1% of the hexapod’s size (which corresponds to 100µm
as the size of the Stewart platform is here ≈ 100mm), the Jacobian approximation provides excellent
accuracy.

This finding has particular significance for the Nano-hexapod application. Since the maximum required
stroke (≈ 100µm) is three orders of magnitude smaller than the stewart platform size (≈ 100mm), the
Jacobian matrix can be considered constant throughout the workspace. It can be computed once at
the rest position and used for both forward and inverse kinematics with high accuracy.
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0z
0:1% error

Figure 2.4: Errors associated with the use of the Jacobian matrix to solve the forward kinematic
problem. A Stewart platform with an height of 100mm was used to perform this analysis

Static Forces The static force analysis of the Stewart platform can be elegantly performed using the
principle of virtual work. This principle states that, for a system in static equilibrium, the total virtual
work of all forces acting on the system must be zero for any virtual displacement compatible with the
system’s constraints.

Let f = [f1, f2, · · · , f6]T represent the vector of actuator forces applied in each strut, and F = [F ,n]T

denote the external wrench (combined force F and torque n) acting on the mobile platform at point
OB . The virtual work δW consists of two contributions:

• The work performed by the actuator forces through virtual strut displacements δL: fT δL

• The work performed by the external wrench through virtual platform displacements δX : −FT δX

The principle of virtual work can thus be expressed as:

δW = fT δL−FT δX = 0 (2.9)

Using the Jacobian relationship that links virtual displacements (2.7), this equation becomes:(
fTJ −FT

)
δX = 0 (2.10)

Since this equation must hold for any virtual displacement δX , the following force mapping relationships
can be derived:

fTJ −FT = 0 ⇒ F = JTf and f = J−TF (2.11)

These equations establish that the transpose of the Jacobian matrix maps actuator forces to platform
forces and torques, while its inverse transpose maps platform forces and torques to required actuator
forces.
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2.4 Static Analysis

The static stiffness characteristics of the Stewart platform play a crucial role in its performance, par-
ticularly for precision positioning applications. These characteristics are fundamentally determined by
both the actuator properties and the platform geometry.

Starting from the individual actuators, the relationship between applied force fi and resulting displace-
ment δli for each strut i is characterized by its stiffness ki:

fi = kiδli, i = 1, . . . , 6 (2.12)

These individual relationships can be combined into a matrix form using the diagonal stiffness matrix
K:

f = K · δL, K = diag [k1, . . . , k6] (2.13)

By applying the force mapping relationships (2.11) derived in the previous section and the Jacobian
relationship for small displacements (2.8), the relationship between applied wrench F and resulting
platform displacement δX is obtained (2.14).

F = JTKJ︸ ︷︷ ︸
K

·δX (2.14)

where K = JTKJ is identified as the platform stiffness matrix.

The inverse relationship is given by the compliance matrix C:

δX = (JTKJ)−1︸ ︷︷ ︸
C

F (2.15)

These relationships reveal that the overall platform stiffness and compliance characteristics are deter-
mined by two factors:

• The individual actuator stiffnesses represented by K

• The geometric configuration embodied in the Jacobian matrix J

This geometric dependency means that the platform’s stiffness varies throughout its workspace, as the
Jacobian matrix changes with the platform’s position and orientation. For the NASS application, where
the workspace is relatively small compared to the platform dimensions, these variations can be con-
sidered minimal. However, the initial geometric configuration significantly impacts the overall stiffness
characteristics. The relationship between maximum stroke and stiffness presents another important de-
sign consideration. As both parameters are influenced by the geometric configuration, their optimization
involves inherent trade-offs that must be carefully balanced based on application requirements. The
optimization of this configuration to achieve desired stiffness properties while having enough stroke will
be addressed during the detailed design phase.
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2.5 Dynamic Analysis

The dynamic behavior of a Stewart platform can be analyzed through various approaches, depending on
the desired level of model fidelity. For initial analysis, we consider a simplified model with the following
assumptions:

• Massless struts

• Ideal joints without friction or compliance

• Rigid platform and base

Under these assumptions, the system dynamics can be expressed in the Cartesian space as:

Ms2X = ΣF (2.16)

where M represents the platform mass matrix, X the platform pose, and ΣF the sum of forces acting
on the platform.

The primary forces acting on the system are actuator forces f , elastic forces due to strut stiffness −KL
and damping forces in the struts CL̇.

ΣF = JT (f −KL− sCL), K = diag(k1 . . . k6), C = diag(c1 . . . c6) (2.17)

Combining these forces and using (2.8) yields the complete dynamic equation (2.18).

Ms2X = F − JTKJX − JTCJsX (2.18)

The transfer function matrix in the Cartesian frame becomes (2.19).

X
F (s) = (Ms2 + JTCJs+ JTKJ)−1 (2.19)

Through coordinate transformation using the Jacobian matrix, the dynamics in the actuator space is
obtained (2.20).

L
f
(s) = (J−TMJ−1s2 + C +K)−1 (2.20)

While this simplified model provides useful insights, real Stewart platforms exhibit more complex be-
haviors. Several factors significantly increase model complexity:

• Strut dynamics, including mass distribution and internal resonances

• Joint compliance and friction effects

• Supporting structure dynamics and payload dynamics, which are both very critical for NASS
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These additional effects make analytical modeling impractical for complete system analysis.

Conclusion

The fundamental characteristics of the Stewart platform have been analyzed in this chapter. Essential
kinematic relationships were developed through loop closure equations, from which both exact and
approximate solutions for the inverse and forward kinematic problems were derived. The Jacobian
matrix was established as a central mathematical tool, through which crucial insights into velocity
relationships, static force transmission, and dynamic behavior of the platform were obtained.

For the NASS application, where displacements are typically limited to the micrometer range, the
accuracy of linearized models using a constant Jacobian matrix has been demonstrated, by which both
analysis and control can be significantly simplified. However, additional complexities such as strut
masses, joint compliance, and supporting structure dynamics must be considered in the full dynamic
behavior. This will be performed in the next section using a multi-body model.

All these characteristics (maneuverability, stiffness, dynamics, etc.) are fundamentally determined by
the platform’s geometry. While a reasonable geometric configuration will be used to validate the NASS
during this conceptual phase, the optimization of these geometric parameters will be explored during
the detailed design phase.
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3 Multi-Body Model

The dynamic modeling of Stewart platforms has traditionally relied on analytical approaches. However,
these analytical models become increasingly complex when the full dynamic behavior of struts and
joints must be captured. To overcome these limitations, a flexible multi-body approach has been
developed that can be readily integrated into the broader NASS system model. Through this multi-
body modeling approach, each component model (including joints, actuators, and sensors) can be
progressively refined.

The analysis is structured in three parts. First, the multi-body model is developed, wherein detailed
geometric parameters, inertial properties, and actuator characteristics are established (Section 3.1).
The model is then validated through comparison with analytical equations in a simplified configuration
(Section 3.2). Finally, the validated model is employed to analyze the nano-hexapod dynamics, from
which insights for the control system design are derived (Section 3.3).

3.1 Model Definition

Geometry The Stewart platform’s geometry is defined by two principal coordinate frames (Figure
3.1): a fixed base frame {F} and a moving platform frame {M}. The joints connecting the actuators
to these frames are located at positions Fai and Mbi respectively. The point of interest, denoted by
frame {A}, is situated 150mm above the moving platform frame {M}.

The geometric parameters of the nano-hexapod are summarized in Table 3.1. These parameters define
the positions of all connection points in their respective coordinate frames. From these parameters,
key kinematic properties can be derived: the strut orientations ŝi, strut lengths li, and the system’s
Jacobian matrix J .
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Figure 3.1: Geometry of the stewart platform

x y z

MOB 0 0 150
FOM 0 0 95
Fa1 −92 −77 20
Fa2 92 −77 20
Fa3 113 −41 20
Fa4 21 118 20
Fa5 −21 118 20
Fa6 −113 −41 20
Mb1 −28 −106 −20
Mb2 28 −106 −20
Mb3 106 28 −20
Mb4 78 78 −20
Mb5 −78 78 −20
Mb6 −106 28 −20

Table 3.1: Parameter values in [mm]

Inertia of Plates The fixed base and moving platform are modeled as solid cylindrical bodies. The
base platform is characterized by a radius of 120mm and thickness of 15mm, matching the dimensions
of the micro-hexapod’s top platform. The moving platform is similarly modeled with a radius of 110mm
and thickness of 15mm. Both platforms are assigned a mass of 5 kg.

Joints The platform’s joints play a crucial role in its dynamic behavior. At both the upper and lower
connection points, various degrees of freedom can be modeled, including universal joints, spherical
joints, and configurations with additional axial and lateral stiffness components. For each degree of
freedom, stiffness characteristics can be incorporated into the model.

In the conceptual design phase, a simplified joint configuration is employed: the bottom joints are
modeled as two-degree-of-freedom universal joints, while the top joints are represented as three-degree-
of-freedom spherical joints. These joints are considered massless and exhibit no stiffness along their
degrees of freedom.

Actuators The actuator model comprises several key elements (Figure 3.2). At its core, each actuator
is modeled as a prismatic joint with internal stiffness ka and damping ca, driven by a force source f .
Similarly to what was found using the rotating 3-DoF model, a parallel stiffness kp is added in parallel
with the force sensor to ensure stability when considering spindle rotation effects.

Each actuator is equipped with two sensors: a force sensor providing measurements fn and a relative
motion sensor measuring strut length li. The actuator parameters used in the conceptual phase are
presented in Table 3.2.

This modular approach to actuator modeling allows for future refinements as the design evolves, enabling
the incorporation of additional dynamic effects or sensor characteristics as needed.
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Bottom Joint

Top Joint

Figure 3.2: Model of the nano-hexapod actuators

Value

ka 1N/µm
ca 50N/(m/s)
kp 0.05N/µm

Table 3.2: Actuator parameters

3.2 Validation of the multi-body model

The developed multi-body model of the Stewart platform is represented schematically in Figure 3.3,
highlighting the key inputs and outputs: actuator forces f , force sensor measurements fn, and relative
displacement measurements L. The frames {F} and {M} serve as interfaces for integration with other
elements in the multi-body system. A three-dimensional visualization of the model is presented in
Figure 3.4.

Figure 3.3: Nano-Hexapod plant with inputs and outputs.
Frames {F} and {M} can be connected to other
elements in the multi-body models.

Figure 3.4: 3D representation of
the multi-body model

The validation of the multi-body model is performed using the simplest Stewart platform configuration,
enabling direct comparison with the analytical transfer functions derived in Section 2.5. This configura-
tion consists of massless universal joints at the base, massless spherical joints at the top platform, and
massless struts with stiffness ka = 1N/µm and damping ca = 10N/(m/s). The geometric parameters
remain as specified in Table 3.2.

While the moving platform itself is considered massless, a 10 kg cylindrical payload is mounted on top
with a radius of r = 110mm and a height h = 300mm.

For the analytical model, the stiffness, damping and mass matrices are defined in (3.1).

K = diag(ka, ka, ka, ka, ka, ka) (3.1a)

C = diag(ca, ca, ca, ca, ca, ca) (3.1b)

M = diag

(
m, m, m,

1

12
m(3r2 + h2),

1

12
m(3r2 + h2),

1

2
mr2

)
(3.1c)
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The transfer functions from actuator forces to strut displacements are computed using these matrices
according to equation (2.20). These analytical transfer functions are then compared with those extracted
from the multi-body model. The multi-body model yields a state-space representation with 12 states,
corresponding to the six degrees of freedom of the moving platform.

Figure 3.5 presents a comparison between the analytical and multi-body transfer functions, specifically
showing the response from the first actuator force to all six strut displacements. The close agreement
between both approaches across the frequency spectrum validates the multi-body model’s accuracy in
capturing the system’s dynamic behavior.
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Figure 3.5: Comparison of the analytical transfer functions and the multi-body model

3.3 Nano Hexapod Dynamics

Following the validation of the multi-body model, a detailed analysis of the nano-hexapod dynamics has
been performed. The model parameters are set according to the specifications outlined in Section 3.1,
with a payload mass of 10 kg. Transfer functions from actuator forces f to both strut displacements L
and force measurements fn are derived from the multi-body model.

The transfer functions relating actuator forces to strut displacements are presented in Figure 3.6a.
Due to the system’s symmetrical design and identical strut configurations, all diagonal terms (transfer
functions from force fi to displacement li of the same strut) exhibit identical behavior. While the system
possesses six degrees of freedom, only four distinct resonance frequencies are observed in the frequency
response. This reduction from six to four observable modes is attributed to the system’s symmetry,
where two pairs of resonances occur at identical frequencies.

The system’s behavior can be characterized in three frequency regions. At low frequencies, well below
the first resonance, the plant demonstrates good decoupling between actuators, with the response
dominated by the strut stiffness: G(jω) −−−→

ω→0
K−1. In the mid-frequency range, the system exhibits

coupled dynamics through its resonant modes, reflecting the complex interactions between the platform’s
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degrees of freedom. At high frequencies, above the highest resonance, the response is governed by the
payload’s inertia mapped to the strut coordinates: G(jω) −−−−→

ω→∞
JM−TJT −1

ω2

The force sensor transfer functions, shown in Figure 3.6b, display characteristics typical of collocated
actuator-sensor pairs. Each actuator’s transfer function to its associated force sensor exhibits alternating
complex conjugate poles and zeros. The inclusion of parallel stiffness introduces an additional complex
conjugate zero at low frequency, a feature previously observed in the three-degree-of-freedom rotating
model.
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Figure 3.6: Bode plot of the transfer functions computed from the nano-hexapod multi-body model

Conclusion

The multi-body modeling approach presented in this section provides a comprehensive framework for
analyzing the dynamics of the nano-hexapod system. Through comparison with analytical solutions in
a simplified configuration, the model’s accuracy has been validated, demonstrating its ability to capture
the essential dynamic behavior of the Stewart platform.

A key advantage of this modeling approach lies in its flexibility for future refinements. While the
current implementation employs idealized joints for the conceptual design phase, the framework readily
accommodates the incorporation of joint stiffness and other non-ideal effects. The joint stiffness, known
to impact the performance of decentralized IFF control strategy [3], can be studied as the design evolved
and will be optimized during the detail design phase. The validated multi-body model will serve as a
valuable tool for predicting system behavior and evaluating control performance throughout the design
process.
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4 Control of Stewart Platforms

The control of Stewart platforms presents distinct challenges compared to the uniaxial model due to
their multi-input multi-output nature. While the uniaxial model demonstrated the effectiveness of the
HAC-LAC strategy, its extension to Stewart platforms requires careful consideration discussed in this
section.

First, the distinction between centralized and decentralized control approaches is discussed in Section
4.1. The impact of the control space selection - either Cartesian or strut space - is then analyzed in Sec-
tion 4.2, highlighting the trade-offs between direction-specific tuning and implementation simplicity.

Building upon these analyses, a decentralized active damping strategy using Integral Force Feedback is
developed in Section 4.3, followed by the implementation of a centralized High Authority Control for
positioning in Section 4.4. This architecture, while simple, will be used to demonstrate the feasibility
of the NASS concept and will provide a foundation for more sophisticated control strategies to be
developed during the detailed design phase.

4.1 Centralized and Decentralized Control

In the control of MIMO systems and more specifically of Stewart platforms, a fundamental architectural
decision lies in the choice between centralized and decentralized control strategies.

In decentralized control, each actuator operates based on feedback from its associated sensor only,
creating independent control loops as illustrated in Figure 4.1. While mechanical coupling between
the struts exists, the control decisions are made locally, with each controller processing information
from a single sensor-actuator pair. This approach offers simplicity in implementation and reduced
computational requirements.

Conversely, centralized control utilizes information from all sensors to determine the control action for
each actuator. This strategy potentially enables better performance by explicitly accounting for the
mechanical coupling between the struts, though at the cost of increased complexity in both design and
implementation.

The choice between these approaches depends significantly on the degree of interaction between the
different control channels, but also on the available sensors and actuators. For instance, when using
external metrology systems that measure the platform’s global position, centralized control becomes
necessary as each sensor measurement depends on all actuator inputs.

In the context of the nano-hexapod, two distinct control strategies will be examined during the concep-
tual phase:

• Decentralized Integral Force Feedback (IFF), which utilizes collocated force sensors to implement
independent control loops for each strut (Section 4.3)
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• High-Authority Control (HAC), which employs a centralized approach to achieve precise position-
ing based on external metrology measurements (Section 4.4)

Figure 4.1: Decentralized control strategy using the encoders. The two controllers for the struts on
the back are not shown for simplicity.

4.2 Choice of the Control Space

When controlling a Stewart platform using external metrology that measures the pose of frame {B}
with respect to {A}, denoted as X , the control architecture can be implemented in either Cartesian
space or strut space. This choice impacts both the control design and the obtained performance.

Control in the Strut space In this approach, illustrated in Figure 4.2a, the control is performed in the
space of the struts. The Jacobian matrix is used to solve the inverse kinematics in real-time, mapping
position errors from Cartesian space ϵX to strut space ϵL. A diagonal controller then processes these
strut-space errors to generate force commands for each actuator.

The main advantage of this approach emerges from the plant characteristics in strut space, as shown
in Figure 4.3a. The diagonal terms of the plant (transfer functions from force to displacement of the
same strut, as measured by the external metrology) are identical due to the system’s symmetry. This
simplifies the control design as only one controller needs to be tuned. Furthermore, at low frequencies,
the plant exhibits good decoupling between struts, allowing for effective independent control of each
axis.

Control in Cartesian Space Alternatively, control can be implemented directly in Cartesian space, as
shown in Figure 4.2b. Here, the controller processes Cartesian errors ϵX to generate forces and torques
F , which are then mapped to actuator forces through the transpose of the inverse Jacobian matrix.

The plant behavior in Cartesian space, illustrated in Figure 4.3b, reveals interesting characteristics.
Some degrees of freedom, particularly the vertical translation and rotation about the vertical axis, ex-
hibit simpler second-order dynamics. A key advantage of this approach is that control performance can
be individually tuned for each direction. This is particularly valuable when performance requirements
differ between degrees of freedom - for instance, when higher positioning accuracy is required vertically
than horizontally, or when certain rotational degrees of freedom can tolerate larger errors than others.
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Plant
K1 0

. . .
0 K6

J+
−

XϵX ϵL frX

(a) Control in the frame of the struts. J is used to project errors in the frame of the struts

PlantJ−T

Kx 0
. . .

0 KRz

+
−

XϵX F frX

(b) Control in the Cartesian frame. J−T is used to project force and torques on each strut

Figure 4.2: Two control strategies

However, significant coupling exists between certain degrees of freedom, particularly between rotations
and translations (e.g., ϵRx

/Fy or ϵDy
/Mx).

For the conceptual validation of the nano-hexapod, control in the strut space has been selected due to
its simpler implementation and the beneficial decoupling properties observed at low frequencies. More
sophisticated control strategies will be explored during the detailed design phase.
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Figure 4.3: Bode plot of the transfer functions computed from the nano-hexapod multi-body model
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4.3 Active Damping with Decentralized IFF

The decentralized Integral Force Feedback (IFF) control strategy is implemented using independent
control loops for each strut, similarly to what is shown in Figure 4.1, but using force sensors instead of
relative motion sensors.

The corresponding block diagram of the control loop is shown in Figure 4.4, in which the controller
KIFF(s) is a diagonal matrix where each diagonal element is a pure integrator (4.1).

Damped Plant

Plant

KIFF

+
fn

f

L
f ′

Figure 4.4: Schematic of the implemented decentralized IFF controller. The damped plant has a new
inputs f ′

KIFF(s) = g ·

KIFF(s) 0
. . .

0 KIFF(s)

 , KIFF(s) =
1

s
(4.1)

In this section, the stiffness in parallel with the force sensor has been omitted since the Stewart platform
is not subjected to rotation. The effect of this parallel stiffness will be examined in the next section
when the platform is integrated into the complete NASS system.

The Root Locus analysis, shown in Figure 4.5b, reveals the evolution of the closed-loop poles as the
controller gain g varies from 0 to ∞. A key characteristic of force feedback control with collocated
sensor-actuator pairs is observed: all closed-loop poles are bounded to the left-half plane, indicating
guaranteed stability [5]. This property is particularly valuable as the coupling is very large around
resonance frequencies, enabling control of modes that would be difficult to include within the bandwidth
using position feedback alone.

The bode plot of an individual loop gain (i.e. the loop gain of KIFF(s) · fni

fi
(s)), presented in Figure 4.5a,

exhibits the typical characteristics of integral force feedback of having a phase bounded between −90o

and +90o. The loop-gain is high around the resonance frequencies, indicating that the decentralized
IFF provides significant control authority over these modes. This high gain, combined with the bounded
phase, enables effective damping of the resonant modes while maintaining stability.

4.4 MIMO High-Authority Control - Low-Authority Control

The design of the High Authority Control positioning loop is now examined. The complete HAC-IFF
control architecture is illustrated in Figure 4.6, where the reference signal rX represents the desired
pose, and X is the measured pose by the external metrology system.
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Figure 4.5: Decentralized IFF

Following the analysis from Section 4.2, the control is implemented in the strut space. The Jacobian
matrix J−1 performs real-time approximate inverse kinematics to map position errors from Cartesian
space ϵX to strut space ϵL. A diagonal High Authority Controller KHAC then processes these errors in
the frame of the struts.

Damped Plant

Plant

KIFF

+KHACJ−1+
−

fn

f

X
f ′ϵX ϵLrX

Figure 4.6: HAC-IFF control architecture with the High Authority Controller being implemented in
the frame of the struts

The effect of decentralized IFF on the plant dynamics can be observed by comparing two sets of
transfer functions. Figure 4.7a shows the original transfer functions from actuator forces f to strut
errors ϵL, characterized by pronounced resonant peaks. When decentralized IFF is implemented, the
transfer functions from modified inputs f ′ to strut errors ϵL, shown in Figure 4.7b, exhibit significantly
attenuated resonances. This damping of structural resonances serves two purposes: it reduces vibrations
in the vicinity of resonances and simplifies the design of the high authority controller by providing a
simpler plant dynamics.

Building upon the damped plant dynamics shown in Figure 4.7b, a high authority controller is designed
with the structure given in (4.2). The controller combines three elements: an integrator providing
high gain at low frequencies, a lead compensator improving stability margins, and a low-pass filter for
robustness to unmodeled high-frequency dynamics. The loop gain of an individual control channel is
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(a) Undamped plant in the frame of the struts
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(b) Damped plant with Decentralized IFF

Figure 4.7: Plant in the frame of the strut for the High Authority Controller.

shown in Figure 4.8a.

KHAC(s) =

KHAC(s) 0
. . .

0 KHAC(s)

 , KHAC(s) = g0 ·
ωc

s︸︷︷︸
int

· 1√
α

1 + s
ωc/

√
α

1 + s
ωc

√
α︸ ︷︷ ︸

lead

· 1

1 + s
ω0︸ ︷︷ ︸

LPF

(4.2)

The stability of the MIMO feedback loop is analyzed through the characteristic loci method. Such
characteristic loci, shown in Figure 4.8b, represent the eigenvalues of the loop gain matrix G(jω)K(jω)
plotted in the complex plane as frequency varies from 0 to ∞. For MIMO systems, this method
generalizes the classical Nyquist stability criterion: with the open-loop system being stable, the closed-
loop system is stable if none of the characteristic loci encircle the -1 point [4]. As seen in Figure 4.8b, all
loci remain to the right of the -1 point, confirming the stability of the closed-loop system. Additionally,
the distance of the loci from the -1 point provides information about stability margins for the coupled
system.

Conclusion

The control architecture developed for the uniaxial and the rotating models has been adapted for the
Stewart platform.

Two fundamental choices were first addressed: the selection between centralized and decentralized
approaches, and the choice of control space. While control in Cartesian space enables direction-specific
performance tuning, the implementation in strut space was selected for the conceptual design phase due
to two key advantages: good decoupling at low frequencies and identical diagonal terms in the plant
transfer functions, allowing a single controller design to be replicated across all struts.
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Figure 4.8: Decentralized HAC-IFF

The HAC-LAC strategy was then implemented. The inner loop implements decentralized Integral Force
Feedback for active damping. The collocated nature of the force sensors ensures stability despite strong
coupling between struts at resonance frequencies, enabling effective damping of structural modes. The
outer loop implements High Authority Control, enabling precise positioning of the platform.

This control architecture will then be used for the conceptual validation of the NASS. More sophisticated
control strategies will be investigated during the detailed design phase
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Conclusion

• Configurable Stewart platform model

• Will be included in the multi-body model of the micro-station =¿ nass multi body model

• Control: complex problem, try to use simplest architecture
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