%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); %% Path for functions, data and scripts addpath('./mat/'); % Path for Data addpath('./src/'); % Path for functions addpath('./subsystems/'); % Path for Subsystems Simulink files %% Data directory data_dir = './mat/'; % Simulink Model name mdl = 'nano_hexapod_model'; %% Colors for the figures colors = colororder; %% Frequency Vector [Hz] freqs = logspace(0, 3, 1000); %% Identify plant from actuator forces to external metrology stewart = initializeSimplifiedNanoHexapod(); initializeSample('type', 'cylindrical', 'm', 10, 'H', 300e-3); initializeLoggingConfiguration('log', 'none'); initializeController('type', 'open-loop'); % Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs [N] io(io_i) = linio([mdl, '/plant'], 1, 'openoutput'); io_i = io_i + 1; % External Metrology [m, rad] % With no payload G = linearize(mdl, io); G.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}; %% Plant in the Cartesian Frame G_cart = G*inv(stewart.geometry.J'); G_cart.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; %% Plant in the frame of the struts G_struts = stewart.geometry.J*G; G_struts.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6'}; %% Bode plot of the plant projected in the frame of the struts figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:5 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G_struts(i,j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); end end plot(freqs, abs(squeeze(freqresp(G_struts(1,1), freqs, 'Hz'))), 'color', colors(1,:), ... 'DisplayName', '$-\epsilon_{\mathcal{L}i}/f_i$') for i = 2:6 plot(freqs, abs(squeeze(freqresp(G_struts(i,i), freqs, 'Hz'))), 'color', colors(1,:), ... 'HandleVisibility', 'off'); end plot(freqs, abs(squeeze(freqresp(G_struts(1,2), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ... 'DisplayName', '$-\epsilon_{\mathcal{L}i}/f_j$') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ylim([1e-9, 1e-4]); leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_struts(i,i), freqs, 'Hz'))), 'color', [colors(1,:),0.5]); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); %% Bode plot of the plant projected in the Cartesian frame figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:5 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G_cart(i,j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ... 'HandleVisibility', 'off'); end end plot(freqs, abs(squeeze(freqresp(G_cart(1,1), freqs, 'Hz'))), 'color', colors(1,:), ... 'DisplayName', '$\epsilon_{D_x}/\mathcal{F}_x$ [m/N]') plot(freqs, abs(squeeze(freqresp(G_cart(2,2), freqs, 'Hz'))), 'color', colors(2,:), ... 'DisplayName', '$\epsilon_{D_y}/\mathcal{F}_y$ [m/N]') plot(freqs, abs(squeeze(freqresp(G_cart(3,3), freqs, 'Hz'))), 'color', colors(3,:), ... 'DisplayName', '$\epsilon_{D_z}/\mathcal{F}_z$ [m/N]') plot(freqs, abs(squeeze(freqresp(G_cart(4,4), freqs, 'Hz'))), 'color', colors(4,:), ... 'DisplayName', '$\epsilon_{R_x}/\mathcal{M}_x$ [rad/Nm]') plot(freqs, abs(squeeze(freqresp(G_cart(5,5), freqs, 'Hz'))), 'color', colors(5,:), ... 'DisplayName', '$\epsilon_{R_y}/\mathcal{M}_y$ [rad/Nm]') plot(freqs, abs(squeeze(freqresp(G_cart(6,6), freqs, 'Hz'))), 'color', colors(6,:), ... 'DisplayName', '$\epsilon_{R_z}/\mathcal{M}_z$ [rad/Nm]') plot(freqs, abs(squeeze(freqresp(G_cart(1,5), freqs, 'Hz'))), 'color', [0, 0, 0, 0.5], ... 'DisplayName', 'Coupling') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude'); set(gca, 'XTickLabel',[]); ylim([1e-9, 4e-3]); leg = legend('location', 'southwest', 'FontSize', 7, 'NumColumns', 3); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_cart(i,i), freqs, 'Hz'))), 'color', colors(i,:)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); %% Identify the IFF Plant stewart = initializeSimplifiedNanoHexapod('actuator_kp', 0); % Ignoring parallel stiffness for now initializeSample('type', 'cylindrical', 'm', 10, 'H', 300e-3); initializeLoggingConfiguration('log', 'none'); initializeController('type', 'open-loop'); % Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs [N] io(io_i) = linio([mdl, '/plant'], 2, 'openoutput', [], 'fn'); io_i = io_i + 1; % Force Sensors [N] % With no payload G_iff = linearize(mdl, io); G_iff.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_iff.OutputName = {'fm1', 'fm2', 'fm3', 'fm4', 'fm5', 'fm6'}; %% IFF Controller Design Kiff = -500/s * ... % Gain eye(6); % Diagonal 6x6 controller (i.e. decentralized) Kiff.InputName = {'fm1', 'fm2', 'fm3', 'fm4', 'fm5', 'fm6'}; Kiff.OutputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; %% Root Locus plot of the Decentralized IFF Control gains = logspace(-2, 1, 200); figure; tiledlayout(1, 1, 'TileSpacing', 'compact', 'Padding', 'None'); nexttile(); hold on; plot(real(pole(G_iff)), imag(pole(G_iff)), 'x', 'color', colors(1,:), ... 'DisplayName', '$g = 0$'); plot(real(tzero(G_iff)), imag(tzero(G_iff)), 'o', 'color', colors(1,:), ... 'HandleVisibility', 'off'); for g = gains clpoles = pole(feedback(G_iff, g*Kiff, +1)); plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:), ... 'HandleVisibility', 'off'); end % Optimal gain clpoles = pole(feedback(G_iff, Kiff, +1)); plot(real(clpoles), imag(clpoles), 'kx', ... 'DisplayName', '$g_{opt}$'); hold off; axis equal; xlim([-600, 50]); ylim([-50, 600]); xticks([-600:100:0]); yticks([0:100:600]); set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); xlabel('Real part'); ylabel('Imaginary part'); %% Loop gain for the Decentralized IFF figure; tiledlayout(3, 1, 'TileSpacing', 'compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(-G_iff(1,1)*Kiff(1,1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Loop Gain'); set(gca, 'XTickLabel',[]); ylim([1e-2, 1e2]); % leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); % leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(-G_iff(1,1)*Kiff(1,1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]) linkaxes([ax1,ax2],'x'); xlim([1, 1e3]); %% Identify the IFF Plant initializeController('type', 'iff'); % Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Inputs [N] io(io_i) = linio([mdl, '/plant'], 1, 'openoutput'); io_i = io_i + 1; % External Metrology [m,rad] % With no payload G_hac = linearize(mdl, io); G_hac.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_hac.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}; %% Plant in the frame of the struts G_hac_struts = stewart.geometry.J*G_hac; G_hac_struts.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6'}; %% Bode plot of the plant projected in the frame of the struts figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:5 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G_struts(i,j), freqs, 'Hz'))), 'color', [0,0,0,0.1], ... 'HandleVisibility', 'off'); end end plot(freqs, abs(squeeze(freqresp(G_struts(1,1), freqs, 'Hz'))), 'color', colors(1,:), ... 'DisplayName', '$-\epsilon_{\mathcal{L}i}/f_i$') for i = 2:6 plot(freqs, abs(squeeze(freqresp(G_struts(i,i), freqs, 'Hz'))), 'color', colors(1,:), ... 'HandleVisibility', 'off'); end plot(freqs, abs(squeeze(freqresp(G_struts(1,2), freqs, 'Hz'))), 'color', [0,0,0,0.1], ... 'DisplayName', '$-\epsilon_{\mathcal{L}i}/f_j$') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ylim([1e-9, 1e-4]); leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_struts(i,i), freqs, 'Hz'))), 'color', colors(1,:)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); %% Bode plot of the plant projected in the frame of the struts figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:5 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G_hac_struts(i,j), freqs, 'Hz'))), 'color', [0,0,0,0.1], ... 'HandleVisibility', 'off'); end end plot(freqs, abs(squeeze(freqresp(G_struts(1,1), freqs, 'Hz'))), 'color', [colors(1,:), 0.2], ... 'DisplayName', '$-\epsilon_{\mathcal{L}i}/f_i$') plot(freqs, abs(squeeze(freqresp(G_hac_struts(1,1), freqs, 'Hz'))), 'color', colors(2,:), ... 'DisplayName', '$-\epsilon_{\mathcal{L}i}/f_i^\prime$') for i = 2:6 plot(freqs, abs(squeeze(freqresp(G_struts(i,i), freqs, 'Hz'))), 'color', [colors(1,:), 0.2], ... 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_hac_struts(i,i), freqs, 'Hz'))), 'color', colors(2,:), ... 'HandleVisibility', 'off'); end plot(freqs, abs(squeeze(freqresp(G_hac_struts(1,2), freqs, 'Hz'))), 'color', [0,0,0,0.1], ... 'DisplayName', '$-\epsilon_{\mathcal{L}i}/f_j^\prime$') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ylim([1e-9, 1e-4]); leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_struts(i,i), freqs, 'Hz'))), 'color', [colors(1,:), 0.2]); plot(freqs, 180/pi*angle(squeeze(freqresp(G_hac_struts(i,i), freqs, 'Hz'))), 'color', colors(2,:)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); %% High Authority Controller - Mid Stiffness Nano-Hexapod % Wanted crossover wc = 2*pi*20; % [rad/s] % Integrator H_int = wc/s; % Lead to increase phase margin a = 2; % Amount of phase lead / width of the phase lead / high frequency gain H_lead = 1/sqrt(a)*(1 + s/(wc/sqrt(a)))/(1 + s/(wc*sqrt(a))); % Low Pass filter to increase robustness H_lpf = 1/(1 + s/2/pi/200); % Gain to have unitary crossover at 5Hz H_gain = 1./abs(evalfr(G_hac_struts(1, 1), 1j*wc)); % Decentralized HAC Khac = H_gain * ... % Gain H_int * ... % Integrator H_lpf * ... % Low Pass filter eye(6); % 6x6 Diagonal %% Plot of the eigenvalues of L in the complex plane Ldet = zeros(6, length(freqs)); Lmimo = squeeze(freqresp(G_hac_struts*Khac, freqs, 'Hz')); for i_f = 2:length(freqs) Ldet(:, i_f) = eig(squeeze(Lmimo(:,:,i_f))); end mod_margin = min(min(abs(Ldet + ones(size(Ldet))))); figure; hold on; for i = 1:6 plot(real(squeeze(Ldet(i,:))), imag(squeeze(Ldet(i,:))), ... '.', 'color', colors(1, :), ... 'HandleVisibility', 'off'); plot(real(squeeze(Ldet(i,:))), -imag(squeeze(Ldet(i,:))), ... '.', 'color', colors(1, :), ... 'HandleVisibility', 'off'); end plot(-1, 0, 'kx', 'HandleVisibility', 'off'); patch(-1 + mod_margin*cos([0:0.1:2*pi+0.1]), mod_margin*sin([0:0.1:2*pi+0.1]), colors(5,:), 'linestyle', '--', 'EdgeColor','black', 'FaceAlpha', 0.5, 'HandleVisibility', 'off'); text(-1,0.1, 'Robustness', 'FontSize', 8, 'horizontalalignment', 'center') hold off; set(gca, 'XScale', 'lin'); set(gca, 'YScale', 'lin'); xlabel('Real Part'); ylabel('Imaginary Part'); axis square xlim([-1.8, 0.2]); ylim([-1, 1]); %% Loop gain for the Decentralized HAC_IFF i_fb = find(abs(squeeze(freqresp(G_hac_struts(1,1)*Khac(1,1), freqs, 'Hz')))<1, 1); figure; tiledlayout(3, 1, 'TileSpacing', 'compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; patch([freqs(1:i_fb), freqs(i_fb), freqs(1)], [abs(squeeze(freqresp(G_hac_struts(1,1)*Khac(1,1), [freqs(1:i_fb)], 'Hz'))); 1; 1], colors(5,:), 'EdgeColor','none', 'FaceAlpha', 0.5) plot(freqs, abs(squeeze(freqresp(G_hac_struts(1,1)*Khac(1,1), freqs, 'Hz')))); text(1.2,2.5,{'Disturbance', 'rejection'}, 'FontSize', 8) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Loop Gain'); set(gca, 'XTickLabel',[]); ylim([1e-2, 1e2]); ax2 = nexttile; hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(G_hac_struts(1,1)*Khac(1,1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 180]) linkaxes([ax1,ax2],'x'); xlim([1, 1e3]);