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Now that the multi-body model of the micro-station has been developed and validated using dynamical
measurements, a model of the active vibration platform can be integrated.

First, the mechanical architecture of the active platform needs to be carefully chosen. In Section 1, a
quick review of active vibration platforms is performed.

The chosen architecture is the Stewart platform, which is presented in Section 2. It is a parallel
manipulator that require the use of specific tools to study its kinematics.

However, to study the dynamics of the Stewart platform, the use of analytical equations is very complex.
Instead, a multi-body model of the Stewart platform is developed (Section 3), that can then be easily
integrated on top of the micro-station’s model.

From a control point of view, the Stewart platform is a MIMO system with complex dynamics. To
control such system, it requires several tools to study interaction (Section 4).
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1 Active Vibration Platforms

Goals:

• Quick review of active vibration platforms (5 or 6DoF) similar to NASS

• Explain why Stewart platform architecture is chosen

• Wanted controlled DOF: Y, Z, Ry

• But because of continuous rotation (key specificity): X,Y,Z,Rx,Ry in the frame of the active
platform

• Literature review? (maybe more suited for chapter 2)

– file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.
org

– Talk about flexible joint? Maybe not so much as it should be topic of second chapter. Just
say that we must of flexible joints that can be defined as 3 to 6DoF joints, and it will be
optimize in chapter 2.

• [1]

• For some systems, just XYZ control (stack stages), example: holler

• For other systems, Stewart platform (ID16a), piezo based

• Examples of Stewart platforms for general vibration control, some with Piezo, other with Voice
coil. IFF, . . . Show different geometry configuration

• DCM: tripod?

1.1 Active vibration control of sample stages

Review of stages with online metrology for Synchrotrons

□ Talk about external metrology? Maybe not the topic here.

□ Talk about control architecture?

□ Comparison with the micro-station / NASS
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1.2 Serial and Parallel Manipulators

Goal:

• Explain why a parallel manipulator is here preferred

• Compact, 6DoF, higher control bandwidth, linear, simpler

• Show some example of serial and parallel manipulators

• A review of Stewart platform will be given in Chapter related to the detailed design of the Nano-
Hexapod

Serial Robots Parallel Robots

Advantages Large Workspace High Stiffness
Disadvantages Low Stiffness Small Workspace
Kinematic Struture Open Closed-loop

Table 1.1: Advantages and Disadvantages of both serial and parallel robots
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2 The Stewart platform

The Stewart platform, first introduced by Stewart in 1965 [2] for flight simulation applications, repre-
sents a significant milestone in parallel manipulator design. This mechanical architecture has evolved
far beyond its original purpose, finding applications across diverse fields from precision positioning sys-
tems to robotic surgery. The fundamental design consists of two platforms connected by six adjustable
struts in parallel, creating a fully parallel manipulator capable of six degrees of freedom motion.

Unlike serial manipulators where errors worsen through the kinematic chain, parallel architectures
distribute loads across multiple actuators, leading to enhanced mechanical stiffness and improved po-
sitioning accuracy. This parallel configuration also results in superior dynamic performance, as the
actuators directly contribute to the platform’s motion without intermediate linkages. These character-
istics of Stewart platforms have made them particularly valuable in applications requiring high precision
and stiffness.

For the NASS application, the Stewart platform architecture presents three key advantages. First, as
a fully parallel manipulator, all motion errors of the micro-station can be compensated through the
coordinated action of the six actuators. Second, its compact design compared to serial manipulators
makes it ideal for integration on top micro-station where only 95mm of height is available. Third, the
good dynamical properties should enable high bandwidth positioning control.

While Stewart platforms excel in precision and stiffness, they typically exhibit a relatively limited
workspace compared to serial manipulators. However, this limitation is not significant for the NASS
application, as the required motion range corresponds to the positioning errors of the micro-station
which are in the order of 10µm.

This section provides a comprehensive analysis of the Stewart platform’s properties, focusing on as-
pects crucial for precision positioning applications. The analysis encompasses the platform’s kinematic
relationships (Section 2.2), the use of the Jacobian matrix (Section 2.3), static behavior (Section 2.4),
and dynamic characteristics (Section 2.5). These theoretical foundations form the basis for subsequent
design decisions and control strategies, which will be elaborated in later sections.

2.1 Mechanical Architecture

The Stewart platform consists of two rigid platforms connected by six struts arranged in parallel (Figure
2.1). Each strut incorporates an active prismatic joint that enables controlled length variation, with
its ends attached to the fixed and mobile platforms through joints. The typical configuration consists
of a universal joint at one end and a spherical joint at the other, providing the necessary degrees of
freedom1.

To facilitate rigorous analysis of the Stewart platform, four reference frames are defined:

1Different architecture exists, typically referred as “6-SPS” (Spherical, Prismatic, Spherical) or “6-UPS” (Universal,
Prismatic, Spherical)
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Prismatic

Universal

Spherical
Mobile platform

Fixed platform

Figure 2.1: Schematical representation of the Stewart platform architecture.

• The fixed base frame {F}, located at the center of the base platform’s bottom surface, serves as
the mounting reference for the support structure.

• The mobile frame {M}, situated at the center of the top platform’s upper surface, provides a
reference for payload mounting.

• The point-of-interest frame {A}, fixed to the base but positioned at the workspace center.

• The moving point-of-interest frame {B}, attached to the mobile platform and coincident with
frame {A} in the home position.

Frames {F} and {M} serve primarily to define the joint locations. On the other hand, frames {A} and
{B} are used to describe the relative motion of the two platforms through the position vector APB of
frame {B} expressed in frame {A} and the rotation matrix ARB expressing the orientation of {B} with
respect to {A}. For the nano-hexapod, frames {A} and {B} are chosen to be located at the theoretical
focus point of the X-ray light which is 150mm above the top platform, i.e. above {M}.

Location of the joints and orientation and length of the struts are crucial for subsequent kinematic,
static, and dynamic analyses of the Stewart platform. The center of rotation for the joint fixed to the
base is noted ai, while bi is used for the top platform joints. The struts orientation are represented by
the unit vectors ŝi and their lengths by the scalars li. This is summarized in Figure 2.2.

Figure 2.2: Frame and key notations for the Stewart platform
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2.2 Kinematic Analysis

The kinematic analysis of the Stewart platform involves understanding the geometric relationships
between the platform position/orientation and the actuator lengths, without considering the forces
involved.

Loop Closure The foundation of the kinematic analysis lies in the geometric constraints imposed by
each strut, which can be expressed through loop closure equations. For each strut i (illustrated in
Figure 2.3), the loop closure equation (2.1) can be written.

APB = Aai + li
Aŝi − Bbi︸︷︷︸

ARB
Bbi

for i = 1 to 6 (2.1)

Such equation links the pose variables AP and ARB , the position vectors describing the known geometry
of the base and of the moving platform, ai and bi, and the strut vector li

Aŝi:

Figure 2.3: Notations to compute the kinematic loop closure

Inverse Kinematics The inverse kinematic problem involves determining the required strut lengths
L = [l1, l2, . . . , l6]

T
for a desired platform pose X (i.e. position AP and orientation ARB). This problem

can be solved analytically using the loop closure equations (2.1). The obtain strut lengths are given by
(2.2).

li =

√
AP TAP + BbTi

Bbi + AaT
i
Aai − 2AP TAai + 2AP T [ARB

Bbi]− 2 [ARB
Bbi]

T Aai (2.2)

If the position and orientation of the platform lie in the feasible workspace, the solution is unique.
Otherwise, the solution gives complex numbers.

Forward Kinematics The forward kinematic problem seeks to determine the platform pose X given a
set of strut lengths L. Unlike the inverse kinematics, this presents a significant challenge as it requires
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solving a system of nonlinear equations. While various numerical methods exist for solving this problem,
they can be computationally intensive and may not guarantee convergence to the correct solution.

For the nano-hexapod application, where displacements are typically small, an approximate solution
based on linearization around the operating point provides a practical alternative. This approximation,
developed in subsequent sections through the Jacobian matrix analysis, proves particularly useful for
real-time control applications.

2.3 The Jacobian Matrix

The Jacobian matrix plays a central role in analyzing the Stewart platform’s behavior, providing a linear
mapping between platform and actuator velocities. While the previously derived kinematic relationships
are essential for position analysis, the Jacobian enables velocity analysis and forms the foundation for
both static and dynamic studies.

Jacobian Computation - Velocity Loop Closure As was shown in Section 2.2, the strut lengths L
and the platform pose X are related through a system of nonlinear algebraic equations representing the
kinematic constraints imposed by the struts.

By taking the time derivative of the position loop close (2.1), the velocity loop closure is obtained
(2.3).

Avp +
AṘB

Bbi +
ARB

B ḃi︸︷︷︸
=0

= l̇i
Aŝi + li

A ˙̂si +
Aȧi︸︷︷︸
=0

(2.3)

Moreover, we have:

• AṘB
Bbi =

Aω × ARB
Bbi =

Aω × Abi in which Aω denotes the angular velocity of the moving
platform expressed in the fixed frame {A}.

• li
A ˙̂si = li

(
Aωi × ŝi

)
in which Aωi is the angular velocity of strut i express in fixed frame {A}.

By multiplying both sides by Aŝi, (2.4) is obtained.

Aŝi
Avp +

Aŝi(
Aω × Abi)︸ ︷︷ ︸

=(Abi×Aŝi)Aω

= l̇i +
Aŝili

(
Aωi × Aŝi

)︸ ︷︷ ︸
=0

(2.4)

Equation (2.4) can be rearranged in a matrix form to obtain (2.5), with L̇ = [l̇1 . . . l̇6]
T the vector of

strut velocities, and Ẋ = [Avp,
Aω]T the vector of platform velocity and angular velocity.

L̇ = JẊ (2.5)

The matrix J is called the Jacobian matrix, and is defined by (2.6), with:
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• Aŝi the orientation of the struts expressed in {A}

• Abi the position of the joints with respect to OB and express in {A}

J =



Aŝ1
T

(Ab1 × Aŝ1)
T

Aŝ2
T

(Ab2 × Aŝ2)
T

Aŝ3
T

(Ab3 × Aŝ3)
T

Aŝ4
T

(Ab4 × Aŝ4)
T

Aŝ5
T

(Ab5 × Aŝ5)
T

Aŝ6
T

(Ab6 × Aŝ6)
T


(2.6)

This Jacobian matrix J therefore links the rate of change of strut length to the velocity and angular
velocity of the top platform with respect to the fixed base through a set of linear equations. However,
J needs to be recomputed for every Stewart platform pose as it depends on the actual pose of of the
manipulator.

Approximate solution of the Forward and Inverse Kinematic problems For small displacements
δX = [δx, δy, δz, δθx, δθy, δθz]

T around an operating point X 0 (for which the Jacobian was computed),
the associated joint displacement δL = [δl1, δl2, δl3, δl4, δl5, δl6]

T can be computed using the Jacobian
(approximate solution of the inverse kinematic problem):

δL = JδX (2.7)

Similarly, for small joint displacements δL, it is possible to find the induced small displacement of the
mobile platform (approximate solution of the forward kinematic problem):

δX = J−1δL (2.8)

These two relations solve the forward and inverse kinematic problems for small displacement in a
approximate way. As the inverse kinematic can be easily solved exactly this is not much useful, however,
as the forward kinematic problem is difficult to solve, this approximation can be very useful for small
displacements.

Range validity of the approximate inverse kinematics The accuracy of the Jacobian-based forward
kinematics solution was estimated through a systematic error analysis. For a series of platform positions
along the $x$-axis, the exact strut lengths are computed using the analytical inverse kinematics equation
(2.2). These strut lengths are then used with the Jacobian to estimate the platform pose, from which
the error between the estimated and true poses can be calculated.

The estimation errors in the x, y, and z directions are shown in Figure 2.4. The results demonstrate
that for displacements up to approximately 1% of the hexapod’s size (which corresponds to 100µm
as the size of the Stewart platform is here ≈ 100mm), the Jacobian approximation provides excellent
accuracy.

This finding has particular significance for the Nano-hexapod application. Since the maximum required
stroke (≈ 100µm) is three orders of magnitude smaller than the stewart platform size (≈ 100mm), the
Jacobian matrix can be considered constant throughout the workspace. It can be computed once at
the rest position and used for both forward and inverse kinematics with high accuracy.
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17m 107m 1007m 1mm 10mm
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100nm
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0:1% error

Figure 2.4: Errors associated with the use of the Jacobian matrix to solve the forward kinematic
problem. A Stewart platform with an height of 100mm was used to perform this analysis

Static Forces The static force analysis of the Stewart platform can be elegantly performed using the
principle of virtual work. This principle states that, for a system in static equilibrium, the total virtual
work of all forces acting on the system must be zero for any virtual displacement compatible with the
system’s constraints.

Let τ = [τ1, τ2, · · · , τ6]T represent the vector of actuator forces applied in each strut, and F = [f ,n]T

denote the external wrench (combined force f and torque n) acting on the mobile platform at point
OB . The virtual work δW consists of two contributions:

• The work performed by the actuator forces through virtual strut displacements δL: τT δL

• The work performed by the external wrench through virtual platform displacements δX : −FT δX

The principle of virtual work can thus be expressed as:

δW = τT δL−FT δX = 0 (2.9)

Using the Jacobian relationship that links virtual displacements (2.7), this equation becomes:(
τTJ −FT

)
δX = 0 (2.10)

Since this equation must hold for any virtual displacement δX , the following force mapping relationships
can be derived:

τTJ −FT = 0 ⇒ F = JT τ and τ = J−TF (2.11)

These equations establish that the transpose of the Jacobian matrix maps actuator forces to platform
forces and torques, while its inverse transpose maps platform forces and torques to required actuator
forces.
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2.4 Static Analysis

The static stiffness characteristics of the Stewart platform play a crucial role in its performance, par-
ticularly for precision positioning applications. These characteristics are fundamentally determined by
both the actuator properties and the platform geometry.

Starting from the individual actuators, the relationship between applied force δτi and resulting dis-
placement δli for each strut i is characterized by its stiffness ki:

τi = kiδli, i = 1, . . . , 6 (2.12)

These individual relationships can be combined into a matrix form using the diagonal stiffness matrix
K:

τ = KδL, K = diag [k1, . . . , k6] (2.13)

By applying the force mapping relationships (2.11) derived in the previous section and the Jacobian
relationship for small displacements (2.8), the relationship between applied wrench F and resulting
platform displacement δX is obtained (2.14).

F = JTKJ︸ ︷︷ ︸
K

δX (2.14)

where K = JTKJ is identified as the platform stiffness matrix.

The inverse relationship is given by the compliance matrix C:

δX = (JTKJ)−1︸ ︷︷ ︸
C

F (2.15)

These relationships reveal that the overall platform stiffness and compliance characteristics are deter-
mined by two factors:

• The individual actuator stiffnesses represented by K

• The geometric configuration embodied in the Jacobian matrix J

This geometric dependency means that the platform’s stiffness varies throughout its workspace, as the
Jacobian matrix changes with the platform’s position and orientation. For the NASS application, where
the workspace is relatively small compared to the platform dimensions, these variations can be con-
sidered minimal. However, the initial geometric configuration significantly impacts the overall stiffness
characteristics. The relationship between maximum stroke and stiffness presents another important de-
sign consideration. As both parameters are influenced by the geometric configuration, their optimization
involves inherent trade-offs that must be carefully balanced based on application requirements. The
optimization of this configuration to achieve desired stiffness properties while having enough stroke will
be addressed during the detailed design phase.
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2.5 Dynamic Analysis

The dynamic behavior of a Stewart platform can be analyzed through various approaches, depending on
the desired level of model fidelity. For initial analysis, we consider a simplified model with the following
assumptions:

• Massless struts

• Ideal joints without friction or compliance

• Rigid platform and base

Under these assumptions, the system dynamics can be expressed in the Cartesian space as:

Ms2X = ΣF (2.16)

where M represents the platform mass matrix, X the platform pose, and ΣF the sum of forces acting
on the platform.

The primary forces acting on the system are actuator forces τ , elastic forces due to strut stiffness −KL
and damping forces in the struts CL̇.

ΣF = JT (τ −KL− sCL), K = diag(k1 . . . k6), C = diag(c1 . . . c6) (2.17)

Combining these forces and using (2.8) yields the complete dynamic equation (2.18).

Ms2X = F − JTKJX − JTCJsX (2.18)

The transfer function in the Cartesian frame becomes (2.19).

X
F
(s) = (Ms2 + JTCJs+ JTKJ)−1 (2.19)

Through coordinate transformation using the Jacobian matrix, the dynamics in the actuator space is
obtained (2.20).

L
τ
(s) = (J−TMJ−1s2 + C +K)−1 (2.20)

While this simplified model provides useful insights, real Stewart platforms exhibit more complex be-
haviors. Several factors significantly increase model complexity:

• Strut dynamics, including mass distribution and internal resonances

• Joint compliance and friction effects

• Supporting structure dynamics and payload dynamics, which are both very critical for NASS
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These additional effects make analytical modeling impractical for complete system analysis.

Conclusion

The fundamental characteristics of the Stewart platform have been analyzed in this chapter. Essential
kinematic relationships were developed through loop closure equations, from which both exact and
approximate solutions for the inverse and forward kinematic problems were derived. The Jacobian
matrix was established as a central mathematical tool, through which crucial insights into velocity
relationships, static force transmission, and dynamic behavior of the platform were obtained.

For the NASS application, where displacements are typically limited to the micrometer range, the
accuracy of linearized models using a constant Jacobian matrix has been demonstrated, by which both
analysis and control can be significantly simplified. However, additional complexities such as strut
masses, joint compliance, and supporting structure dynamics must be considered in the full dynamic
behavior. This will be performed in the next section using a multi-body model.

All these characteristics (maneuverability, stiffness, dynamics, etc.) are fundamentally determined by
the platform’s geometry. While a reasonable geometric configuration will be used to validate the NASS
during this conceptual phase, the optimization of these geometric parameters will be explored during
the detailed design phase.
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3 Multi-Body Model

Goal:

• Study the dynamics of Stewart platform

• Instead of working with complex analytical models: a multi-body model is used. Complex because
has to model the inertia of the struts. Cite papers that tries to model the stewart platform
analytically Advantage: it will be easily included in the model of the NASS

3.1 Model Definition

Geometry The geometry of the Stewart platform (see Figure 3.1) is defined by the position of frame
{F} with respect to {M} and by the locations of the joints Fai and

Mbi. The point of interest, indicated
by frame {A} is located 150mm above the top platform (i.e. above the {M} frame). Parameters that
defines the geometry of the nano-hexapod multi-body models are summarized in Table 3.1.

From this, the orientation ŝi and length li of the struts can be computed, the Jacobian matrix J can
be computed, and the kinematics of the Stewart platform can be studied.

Figure 3.1: Geometry of the stewart platform

x y z

MOB 0 0 150
FOM 0 0 95
F a1 −92 −77 20
F a2 92 −77 20
F a3 113 −41 20
F a4 21 118 20
F a5 −21 118 20
F a6 −113 −41 20
Mb1 −28 −106 −20
Mb2 28 −106 −20
Mb3 106 28 −20
Mb4 78 78 −20
Mb5 −78 78 −20
Mb6 −106 28 −20

Table 3.1: Parameter values in [mm]
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Inertia of Plates Both the fixed base and the top platform are modelled are solid bodies. The bottom
plate is a cylinder with radius of 120mm (matching the size of the micro-hexapod’s top platform) and
a thickness of 15mm. The top plate is also modelled as a cylinder with a radius of 110mm and a
thickness of 15,mm. Both have a mass of 5 kg.

Joints The top and bottom joints, different number of DoF can be considered. universal joint, spherical
joint, with added axial stiffness and even with added lateral stiffnesses. For each DoF, stiffnesses can
be added.

During the conceptual design phase, bottom joints are modelled with universal joints (2-DoF) while
top joints are modelled with spherical joints (3-DoF). Both have no stiffness along their DoF and are
mass-less.

Actuators In its simplest form, the actuators are modelled with one prismatic joint having some
internal stiffness ka and damping ca, and a force source f .

As was shown using the 3DoF rotating model, having a parallel stiffness kp with the force sensor permits
to regain the guaranteed stability of decentralized IFF when the spindle is rotating.

A force sensor with output fm is added as well as a relative motion sensor with output dL. The model
of the nano-hexapod actuators used during the conceptual phase are shown in Figure 3.2 with the
parameters summarized in Table 3.2.

Thanks to the flexibility of the multi-body model, the model of the actuators can later be refined.

Bottom Joint

Top Joint

Figure 3.2: Model of the nano-hexapod actuators

Value

ka 1N/µm
ca 50N/(m/s)
kp 0.05N/µm

Table 3.2: Actuator parameters

3.2 Model Dynamics

□ Screenshot of the obtained multi-body model ?
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Figure 3.3: Nano-Hexapod plant with inputs and outputs.
Frames {F} and {M} can be connected to other
elements in the multi-body models.

Figure 3.4: 3D representation of
the multi-body model

• If all is perfect (mass-less struts, perfect joints, etc. . . ), maybe compare analytical model with
simscape model?

• Say something about the model order Model order is 12, and that we can compute modes from
matrices M and K, compare with the Simscape model

• 4 observed modes (due to symmetry, in reality 6 modes)

• Compare with analytical formulas (see number of states)

□ Effect of parallel on IFF plant?

3.3 Nano Hexapod

Conclusion

• Validation of multi-body model in a simple case

• Possible to increase the model complexity when required

– If considered 6dof joint stiffness, model order increases

– Can have an effect on IFF performances: [3]

– Conclusion: during the conceptual design, we consider a perfect, but will be taken into
account later

– Optimization of the Flexible joint will be performed in Chapter 2.2

• MIMO system: how to control? =¿ next section
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4 Control of Stewart Platforms

MIMO control: much more complex than SISO control because of interaction. Possible to ignore
interaction when good decoupling is achieved. Important to have tools to study interaction Different
ways to try to decouple a MIMO plant.

Reference book: [4]

4.1 Centralized and Decentralized Control

• Explain what is centralized and decentralized:

– linked to the sensor position relative to the actuators

– linked to the fact that sensors and actuators pairs are “independent” or each other (related
to the control architecture, not because there is no coupling)

• When can decentralized control be used and when centralized control is necessary? Study of
interaction: RGA

4.2 Choice of the control space

□ file:///home/thomas/Cloud/research/matlab/decoupling-strategies/svd-control.org

• Jacobian matrices, CoK, CoM, control in the frame of the struts, SVD, Modal, . . .

• Combined CoM and CoK =¿ Discussion of cubic architecture ? (quick, as it is going to be in
detailed in chapter 2)

• Explain also the link with the setpoint: it is interesting to have the controller in the frame of the
performance variables Also speak about disturbances? (and how disturbances can be mixed to
different outputs due to control and interaction)

• Table that summarizes the trade-off for each strategy

• Say that in this study, we will do the control in the frame of the struts for simplicity (even though
control in the cartesian frame was also tested)

Maybe all details about control should be in chapter 2, dedicated to control Here, just
say that using kinematics, we control in the frame of the struts

18

file:///home/thomas/Cloud/research/matlab/decoupling-strategies/svd-control.org


4.3 Active Damping with Decentralized IFF

Guaranteed stability: [5]

□ I think there is another paper about that

For decentralized control: “MIMO root locus” can be used to estimate the damping / optimal gain
Poles and converging towards transmission zeros

How to optimize the added damping to all modes?

□ Add some papers citations

Compute:

□ Plant dynamics

□ Root Locus

4.4 MIMO High-Authority Control - Low-Authority Control

Compute:

□ compare open-loop and damped plant (outputs are the encoders)

□ Implement decentralized control?

□ Check stability:

– Characteristic Loci: Eigenvalues of G(jω) plotted in the complex plane

– Generalized Nyquist Criterion: If G(s) has p0 unstable poles, then the closed-loop system
with return ratio kG(s) is stable if and only if the characteristic loci of kG(s), taken together,
encircle the point −1, p0 times anti-clockwise, assuming there are no hidden modes

□ Show some performance metric? For instance compliance?

Conclusion
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Conclusion

• Configurable Stewart platform model

• Will be included in the multi-body model of the micro-station =¿ nass multi body model

• Control: complex problem, try to use simplest architecture
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