% Matlab Init :noexport:ignore: %% ustation_3_disturbances.m %% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); %% Path for functions, data and scripts addpath('./mat/'); % Path for Data addpath('./src/'); % Path for functions addpath('./STEPS/'); % Path for STEPS addpath('./subsystems/'); % Path for Subsystems Simulink files % Simulink Model name mdl = 'ustation_simscape'; load('nass_model_conf_simulink.mat'); %% Colors for the figures colors = colororder; %% Frequency Vector freqs = logspace(log10(10), log10(2e3), 1000); % Ground Motion % The ground motion was measured by using a sensitive 3-axis geophone[fn:11] placed on the ground. % The generated voltages were recorded with a high resolution DAC, and converted to displacement using the Geophone sensitivity transfer function. % The obtained ground motion displacement is shown in Figure ref:fig:ustation_ground_disturbance. %% Compute Floor Motion Spectral Density % Load floor motion data % velocity in [m/s] is measured in X, Y and Z directions load('ustation_ground_motion.mat', 'Ts', 'Fs', 'vel_x', 'vel_y', 'vel_z', 't'); % Estimate ground displacement from measured velocity % This is done by integrating the motion gm_x = lsim(1/(s+0.1*2*pi), vel_x, t); gm_y = lsim(1/(s+0.1*2*pi), vel_y, t); gm_z = lsim(1/(s+0.1*2*pi), vel_z, t); Nfft = floor(2/Ts); win = hanning(Nfft); Noverlap = floor(Nfft/2); [pxx_gm_vx, f_gm] = pwelch(vel_x, win, Noverlap, Nfft, 1/Ts); [pxx_gm_vy, ~] = pwelch(vel_y, win, Noverlap, Nfft, 1/Ts); [pxx_gm_vz, ~] = pwelch(vel_z, win, Noverlap, Nfft, 1/Ts); % Convert PSD in velocity to PSD in displacement pxx_gm_x = pxx_gm_vx./((2*pi*f_gm).^2); pxx_gm_y = pxx_gm_vy./((2*pi*f_gm).^2); pxx_gm_z = pxx_gm_vz./((2*pi*f_gm).^2); %% Measured ground motion figure; hold on; plot(t, 1e6*gm_x, 'DisplayName', '$D_{xf}$') plot(t, 1e6*gm_y, 'DisplayName', '$D_{yf}$') plot(t, 1e6*gm_z, 'DisplayName', '$D_{zf}$') hold off; xlabel('Time [s]'); ylabel('Ground motion [$\mu$m]') xlim([0, 5]); ylim([-2, 2]) leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; % Ty Stage % To measure the positioning errors of the translation stage, the setup shown in Figure ref:fig:ustation_errors_ty_setup is used. % A special optical element (called a "straightness interferometer"[fn:9]) is fixed on top of the micro-station, while a laser source[fn:10] and a straightness reflector are fixed on the ground. % A similar setup was used to measure the horizontal deviation (i.e. in the $x$ direction), as well as the pitch and yaw errors of the translation stage. % #+name: fig:ustation_errors_ty_setup % #+caption: Experimental setup to measure the flatness (vertical deviation) of the translation stage % [[file:figs/ustation_errors_ty_setup.png]] % Six scans were performed between $-4.5\,mm$ and $4.5\,mm$. % The results for each individual scan are shown in Figure ref:fig:ustation_errors_dy_vertical. % The measurement axis may not be perfectly aligned with the translation stage axis; this, a linear fit is removed from the measurement. % The remaining vertical displacement is shown in Figure ref:fig:ustation_errors_dy_vertical_remove_mean. % A vertical error of $\pm300\,nm$ induced by the translation stage is expected. % Similar result is obtained for the $x$ lateral direction. %% Ty errors % Setpoint is in [mm] % Vertical error is in [um] ty_errors = load('ustation_errors_ty.mat'); % Compute best straight line to remove it from data average_error = mean(ty_errors.ty_z')'; straight_line = average_error - detrend(average_error, 1); %% Measurement of the linear (vertical) deviation of the Translation stage figure; hold on; plot(ty_errors.setpoint, ty_errors.ty_z(:,1), '-', 'color', colors(1,:), 'DisplayName', 'Raw data') plot(ty_errors.setpoint, ty_errors.ty_z(:,2:end), '-', 'color', colors(1,:), 'HandleVisibility', 'off') plot(ty_errors.setpoint, straight_line, '--', 'color', colors(2,:), 'DisplayName', 'Linear fit') hold off; xlabel('$D_y$ position [mm]'); ylabel('Vertical error [$\mu$m]'); xlim([-5, 5]); ylim([-8, 8]); legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); %% Measurement of the linear (vertical) deviation of the Translation stage - Remove best linear fit figure; plot(ty_errors.setpoint, ty_errors.ty_z - straight_line, 'k-') xlabel('$D_y$ position [mm]'); ylabel('Vertical error [$\mu$m]'); xlim([-5, 5]); ylim([-0.4, 0.4]); % #+name: fig:ustation_errors_dy % #+caption: Measurement of the linear (vertical) deviation of the Translation stage (\subref{fig:ustation_errors_dy_vertical}). A linear fit is then removed from the data (\subref{fig:ustation_errors_dy_vertical_remove_mean}). % #+attr_latex: :options [htbp] % #+begin_figure % #+attr_latex: :caption \subcaption{\label{fig:ustation_errors_dy_vertical}Measured vertical error} % #+attr_latex: :options {0.49\textwidth} % #+begin_subfigure % #+attr_latex: :width 0.95\linewidth % [[file:figs/ustation_errors_dy_vertical.png]] % #+end_subfigure % #+attr_latex: :caption \subcaption{\label{fig:ustation_errors_dy_vertical_remove_mean}Error after removing linear fit} % #+attr_latex: :options {0.49\textwidth} % #+begin_subfigure % #+attr_latex: :width 0.95\linewidth % [[file:figs/ustation_errors_dy_vertical_remove_mean.png]] % #+end_subfigure % #+end_figure %% Convert the data to frequency domain % Suppose a certain constant velocity scan delta_ty = (ty_errors.setpoint(end) - ty_errors.setpoint(1))/(length(ty_errors.setpoint) - 1); % [mm] ty_vel = 8*1.125; % [mm/s] Ts = delta_ty/ty_vel; Fs = 1/Ts; % Frequency Analysis Nfft = floor(length(ty_errors.setpoint)); % Number of frequency points win = hanning(Nfft); % Windowing Noverlap = floor(Nfft/2); % Overlap for frequency analysis % Comnpute the power spectral density [pxx_dy_dz, f_dy] = pwelch(1e-6*detrend(ty_errors.ty_z, 1), win, Noverlap, Nfft, Fs); pxx_dy_dz = mean(pxx_dy_dz')'; % Having the PSD of the lateral error equal to the PSD of the vertical error % is a reasonable assumption (and verified in practice) pxx_dy_dx = pxx_dy_dz; % Spindle % To measure the positioning errors induced by the Spindle, a "Spindle error analyzer"[fn:7] is used as shown in Figure ref:fig:ustation_rz_meas_lion_setup. % A specific target is fixed on top of the micro-station, which consists of two sphere with 1 inch diameter precisely aligned with the spindle rotation axis. % Five capacitive sensors[fn:8] are pointing at the two spheres, as shown in Figure ref:fig:ustation_rz_meas_lion_zoom. % From the 5 measured displacements $[d_1,\,d_2,\,d_3,\,d_4,\,d_5]$, the translations and rotations $[D_x,\,D_y,\,D_z,\,R_x,\,R_y]$ of the target can be estimated. % #+name: fig:ustation_rz_meas_lion_setup % #+caption: Experimental setup used to estimate the errors induced by the Spindle rotation (\subref{fig:ustation_rz_meas_lion}). The motion of the two reference spheres is measured using 5 capacitive sensors (\subref{fig:ustation_rz_meas_lion_zoom}) % #+attr_latex: :options [htbp] % #+begin_figure % #+attr_latex: :caption \subcaption{\label{fig:ustation_rz_meas_lion}Micro-station and 5-DoF metrology} % #+attr_latex: :options {0.49\textwidth} % #+begin_subfigure % #+attr_latex: :width 0.9\linewidth % [[file:figs/ustation_rz_meas_lion.jpg]] % #+end_subfigure % #+attr_latex: :caption \subcaption{\label{fig:ustation_rz_meas_lion_zoom}Zoom on the metrology system} % #+attr_latex: :options {0.49\textwidth} % #+begin_subfigure % #+attr_latex: :width 0.9\linewidth % [[file:figs/ustation_rz_meas_lion_zoom.jpg]] % #+end_subfigure % #+end_figure % A measurement was performed during a constant rotational velocity of the spindle of 60rpm and during 10 turns. % The obtained results are shown in Figure ref:fig:ustation_errors_spindle. % A large fraction of the radial (Figure ref:fig:ustation_errors_spindle_radial) and tilt (Figure ref:fig:ustation_errors_spindle_tilt) errors is linked to the fact that the two spheres are not perfectly aligned with the rotation axis of the Spindle. % This is displayed by the dashed circle. % After removing the best circular fit from the data, the vibrations induced by the Spindle may be viewed as stochastic disturbances. % However, some misalignment between the "point-of-interest" of the sample and the rotation axis will be considered because the alignment is not perfect in practice. % The vertical motion induced by scanning the spindle is in the order of $\pm 30\,nm$ (Figure ref:fig:ustation_errors_spindle_axial). %% Spindle Errors % Errors are already converted to x,y,z,Rx,Ry % Units are in [m] and [rad] spindle_errors = load('ustation_errors_spindle.mat'); %% Measured radial errors of the Spindle figure; hold on; plot(1e6*spindle_errors.Dx(1:100:end), 1e6*spindle_errors.Dy(1:100:end), 'DisplayName', 'Raw data') % Compute best fitting circle [x0, y0, R] = circlefit(spindle_errors.Dx, spindle_errors.Dy); theta = linspace(0, 2*pi, 500); % Angle to plot the circle [rad] plot(1e6*(x0 + R*cos(theta)), 1e6*(y0 + R*sin(theta)), '--', 'DisplayName', 'Best Fit') hold off; xlabel('X displacement [$\mu$m]'); ylabel('Y displacement [$\mu$m]'); axis equal xlim([-1, 1]); ylim([-1, 1]); xticks([-1, -0.5, 0, 0.5, 1]); yticks([-1, -0.5, 0, 0.5, 1]); leg = legend('location', 'none', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; %% Measured axial errors of the Spindle figure; plot(spindle_errors.deg(1:100:end)/360, 1e9*spindle_errors.Dz(1:100:end)) xlabel('Rotation [turn]'); ylabel('Z displacement [nm]'); axis square xlim([0,2]); ylim([-40, 40]); %% Measured tilt errors of the Spindle figure; plot(1e6*spindle_errors.Rx(1:100:end), 1e6*spindle_errors.Ry(1:100:end)) xlabel('X angle [$\mu$rad]'); ylabel('Y angle [$\mu$rad]'); axis equal xlim([-35, 35]); ylim([-35, 35]); xticks([-30, -15, 0, 15, 30]); yticks([-30, -15, 0, 15, 30]); % #+name: fig:ustation_errors_spindle % #+caption: Measurement of the radial (\subref{fig:ustation_errors_spindle_radial}), axial (\subref{fig:ustation_errors_spindle_axial}) and tilt (\subref{fig:ustation_errors_spindle_tilt}) Spindle errors during a 60rpm spindle rotation. The circular best fit is shown by the dashed circle. It represents the misalignment of the spheres with the rotation axis. % #+attr_latex: :options [htbp] % #+begin_figure % #+attr_latex: :caption \subcaption{\label{fig:ustation_errors_spindle_radial}Radial errors} % #+attr_latex: :options {0.33\textwidth} % #+begin_subfigure % #+attr_latex: :width 0.9\linewidth % [[file:figs/ustation_errors_spindle_radial.png]] % #+end_subfigure % #+attr_latex: :caption \subcaption{\label{fig:ustation_errors_spindle_axial}Axial error} % #+attr_latex: :options {0.33\textwidth} % #+begin_subfigure % #+attr_latex: :width 0.9\linewidth % [[file:figs/ustation_errors_spindle_axial.png]] % #+end_subfigure % #+attr_latex: :caption \subcaption{\label{fig:ustation_errors_spindle_tilt}Tilt errors} % #+attr_latex: :options {0.33\textwidth} % #+begin_subfigure % #+attr_latex: :width 0.9\linewidth % [[file:figs/ustation_errors_spindle_tilt.png]] % #+end_subfigure % #+end_figure %% Remove the circular fit from the data [x0, y0, R] = circlefit(spindle_errors.Dx, spindle_errors.Dy); % Search the best angular match fun = @(theta)rms((spindle_errors.Dx - (x0 + R*cos(pi/180*spindle_errors.deg+theta(1)))).^2 + (spindle_errors.Dy - (y0 - R*sin(pi/180*spindle_errors.deg+theta(1)))).^2); x0 = [0]; delta_theta = fminsearch(fun, 0); % Compute the remaining error after removing the best circular fit spindle_errors.Dx_err = spindle_errors.Dx - (x0 + R*cos(pi/180*spindle_errors.deg+delta_theta)); spindle_errors.Dy_err = spindle_errors.Dy - (y0 - R*sin(pi/180*spindle_errors.deg+delta_theta)); %% Convert the data to frequency domain Ts = (spindle_errors.t(end) - spindle_errors.t(1))/(length(spindle_errors.t)-1); % [s] Fs = 1/Ts; % [Hz] % Frequency Analysis Nfft = floor(2.0*Fs); % Number of frequency points win = hanning(Nfft); % Windowing Noverlap = floor(Nfft/2); % Overlap for frequency analysis % Comnpute the power spectral density [pxx_rz_dz, f_rz] = pwelch(spindle_errors.Dz, win, Noverlap, Nfft, Fs); [pxx_rz_dx, ~ ] = pwelch(spindle_errors.Dx_err, win, Noverlap, Nfft, Fs); [pxx_rz_dy, ~ ] = pwelch(spindle_errors.Dy_err, win, Noverlap, Nfft, Fs); % Sensitivity to disturbances % <> % To compute the disturbance source (i.e. forces) that induced the measured vibrations in Section ref:ssec:ustation_disturbances_meas, the transfer function from the disturbance sources to the stage vibration (i.e. the "sensitivity to disturbances") needs to be estimated. % This is achieved using the multi-body model presented in Section ref:sec:ustation_modeling. % The obtained transfer functions are shown in Figure ref:fig:ustation_model_sensitivity. %% Extract sensitivity to disturbances from the Simscape model % Initialize stages initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(); initializeDisturbances('enable', false); initializeSimscapeConfiguration('gravity', false); initializeLoggingConfiguration(); % Configure inputs and outputs clear io; io_i = 1; io(io_i) = linio([mdl, '/Disturbances/Dwx'], 1, 'openinput'); io_i = io_i + 1; % Vertical Ground Motion io(io_i) = linio([mdl, '/Disturbances/Dwy'], 1, 'openinput'); io_i = io_i + 1; % Vertical Ground Motion io(io_i) = linio([mdl, '/Disturbances/Dwz'], 1, 'openinput'); io_i = io_i + 1; % Vertical Ground Motion io(io_i) = linio([mdl, '/Disturbances/Fdy_x'], 1, 'openinput'); io_i = io_i + 1; % Parasitic force Ty io(io_i) = linio([mdl, '/Disturbances/Fdy_z'], 1, 'openinput'); io_i = io_i + 1; % Parasitic force Ty io(io_i) = linio([mdl, '/Disturbances/Frz_x'], 1, 'openinput'); io_i = io_i + 1; % Parasitic force Rz io(io_i) = linio([mdl, '/Disturbances/Frz_y'], 1, 'openinput'); io_i = io_i + 1; % Parasitic force Rz io(io_i) = linio([mdl, '/Disturbances/Frz_z'], 1, 'openinput'); io_i = io_i + 1; % Parasitic force Rz io(io_i) = linio([mdl, '/Micro-Station/metrology_6dof/x'], 1, 'openoutput'); io_i = io_i + 1; % Relative motion - Hexapod/Granite io(io_i) = linio([mdl, '/Micro-Station/metrology_6dof/y'], 1, 'openoutput'); io_i = io_i + 1; % Relative motion - Hexapod/Granite io(io_i) = linio([mdl, '/Micro-Station/metrology_6dof/z'], 1, 'openoutput'); io_i = io_i + 1; % Relative motion - Hexapod/Granite % Run the linearization Gd = linearize(mdl, io, 0); Gd.InputName = {'Dwx', 'Dwy', 'Dwz', 'Fdy_x', 'Fdy_z', 'Frz_x', 'Frz_y', 'Frz_z'}; Gd.OutputName = {'Dx', 'Dy', 'Dz'}; % The identified dynamics are then saved for further use. save('./mat/ustation_disturbance_sensitivity.mat', 'Gd') %% Sensitivity to Ground motion freqs = logspace(log10(10), log10(2e2), 1000); figure; hold on; plot(freqs, abs(squeeze(freqresp(Gd('Dx', 'Dwx'), freqs, 'Hz'))), 'DisplayName', '$D_x/D_{xf}$'); plot(freqs, abs(squeeze(freqresp(Gd('Dy', 'Dwy'), freqs, 'Hz'))), 'DisplayName', '$D_y/D_{yf}$'); plot(freqs, abs(squeeze(freqresp(Gd('Dz', 'Dwz'), freqs, 'Hz'))), 'DisplayName', '$D_z/D_{zf}$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/m]'); xlabel('Frequency [Hz]'); leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; %% Sensitivity to Translation stage disturbance forces figure; hold on; plot(freqs, abs(squeeze(freqresp(Gd('Dx', 'Fdy_x'), freqs, 'Hz'))), 'color', colors(1,:), 'DisplayName', '$D_x/F_{xD_y}$'); plot(freqs, abs(squeeze(freqresp(Gd('Dz', 'Fdy_z'), freqs, 'Hz'))), 'color', colors(3,:), 'DisplayName', '$D_z/F_{zD_y}$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]'); ylim([1e-10, 1e-7]); leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; %% Sensitivity to Spindle disturbance forces figure; hold on; plot(freqs, abs(squeeze(freqresp(Gd('Dx', 'Frz_x'), freqs, 'Hz'))), 'DisplayName', '$D_x/F_{xR_z}$'); plot(freqs, abs(squeeze(freqresp(Gd('Dy', 'Frz_y'), freqs, 'Hz'))), 'DisplayName', '$D_y/F_{yR_z}$'); plot(freqs, abs(squeeze(freqresp(Gd('Dz', 'Frz_z'), freqs, 'Hz'))), 'DisplayName', '$D_z/F_{zR_z}$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]'); ylim([1e-10, 1e-7]); leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; % Obtained disturbance sources % <> % From the measured effect of disturbances in Section ref:ssec:ustation_disturbances_meas and the sensitivity to disturbances extracted from the Simscape model in Section ref:ssec:ustation_disturbances_sensitivity, the power spectral density of the disturbance sources (i.e. forces applied in the stage's joint) can be estimated. % The obtained power spectral density of the disturbances are shown in Figure ref:fig:ustation_dist_sources. %% Compute the PSD of the equivalent disturbance sources pxx_rz_fx = pxx_rz_dx./abs(squeeze(freqresp(Gd('Dx', 'Frz_x'), f_rz, 'Hz'))).^2; pxx_rz_fy = pxx_rz_dy./abs(squeeze(freqresp(Gd('Dy', 'Frz_y'), f_rz, 'Hz'))).^2; pxx_rz_fz = pxx_rz_dz./abs(squeeze(freqresp(Gd('Dz', 'Frz_z'), f_rz, 'Hz'))).^2; pxx_dy_fx = pxx_dy_dx./abs(squeeze(freqresp(Gd('Dx', 'Fdy_x'), f_dy, 'Hz'))).^2; pxx_dy_fz = pxx_dy_dz./abs(squeeze(freqresp(Gd('Dz', 'Fdy_z'), f_dy, 'Hz'))).^2; %% Save the PSD of the disturbance sources for further used % in the Simscape model % Ground motion min_f = 1; max_f = 100; gm_dist.f = f_gm(f_gm < max_f & f_gm > min_f); gm_dist.pxx_x = pxx_gm_x(f_gm < max_f & f_gm > min_f); gm_dist.pxx_y = pxx_gm_y(f_gm < max_f & f_gm > min_f); gm_dist.pxx_z = pxx_gm_z(f_gm < max_f & f_gm > min_f); % Translation stage min_f = 0.5; max_f = 500; dy_dist.f = f_dy(f_dy < max_f & f_dy > min_f); dy_dist.pxx_fx = pxx_dy_fx(f_dy < max_f & f_dy > min_f); dy_dist.pxx_fz = pxx_dy_fz(f_dy < max_f & f_dy > min_f); % Spindle min_f = 1; max_f = 500; rz_dist.f = f_rz(f_rz < max_f & f_rz > min_f); rz_dist.pxx_fx = pxx_rz_fx(f_rz < max_f & f_rz > min_f); rz_dist.pxx_fy = pxx_rz_fy(f_rz < max_f & f_rz > min_f); rz_dist.pxx_fz = pxx_rz_fz(f_rz < max_f & f_rz > min_f); % The identified dynamics are then saved for further use. save('./mat/ustation_disturbance_psd.mat', 'rz_dist', 'dy_dist', 'gm_dist') %% Ground Motion figure; hold on; plot(f_gm, sqrt(pxx_gm_x), 'DisplayName', '$D_{wx}$'); plot(f_gm, sqrt(pxx_gm_y), 'DisplayName', '$D_{wy}$'); plot(f_gm, sqrt(pxx_gm_z), 'DisplayName', '$D_{wz}$'); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('Spectral Density $\left[\frac{m}{\sqrt{Hz}}\right]$') xlim([1, 200]); leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; figure; hold on; plot(f_dy, sqrt(pxx_dy_fx), 'DisplayName', '$F_{xD_y}$'); plot(f_dy, sqrt(pxx_dy_fz), 'DisplayName', '$F_{zD_y}$'); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('Spectral Density $\left[\frac{N}{\sqrt{Hz}}\right]$') xlim([1, 200]); ylim([1e-3, 1e3]); leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; figure; hold on; plot(f_rz, sqrt(pxx_rz_fx), 'DisplayName', '$F_{xR_z}$'); plot(f_rz, sqrt(pxx_rz_fy), 'DisplayName', '$F_{yR_z}$'); plot(f_rz, sqrt(pxx_rz_fz), 'DisplayName', '$F_{zR_z}$'); set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('Spectral Density $\left[\frac{N}{\sqrt{Hz}}\right]$') xlim([1, 200]); ylim([1e-3, 1e3]); leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; % #+name: fig:ustation_dist_sources % #+caption: Measured spectral density of the micro-station disturbance sources. Ground motion (\subref{fig:ustation_dist_source_ground_motion}), translation stage (\subref{fig:ustation_dist_source_translation_stage}) and spindle (\subref{fig:ustation_dist_source_spindle}). % #+attr_latex: :options [htbp] % #+begin_figure % #+attr_latex: :caption \subcaption{\label{fig:ustation_dist_source_ground_motion}Ground Motion} % #+attr_latex: :options {0.33\textwidth} % #+begin_subfigure % #+attr_latex: :width 0.9\linewidth % [[file:figs/ustation_dist_source_ground_motion.png]] % #+end_subfigure % #+attr_latex: :caption \subcaption{\label{fig:ustation_dist_source_translation_stage}Translation Stage} % #+attr_latex: :options {0.33\textwidth} % #+begin_subfigure % #+attr_latex: :width 0.9\linewidth % [[file:figs/ustation_dist_source_translation_stage.png]] % #+end_subfigure % #+attr_latex: :caption \subcaption{\label{fig:ustation_dist_source_spindle}Spindle} % #+attr_latex: :options {0.33\textwidth} % #+begin_subfigure % #+attr_latex: :width 0.9\linewidth % [[file:figs/ustation_dist_source_spindle.png]] % #+end_subfigure % #+end_figure % The disturbances are characterized by their power spectral densities, as shown in Figure ref:fig:ustation_dist_sources. % However, to perform time domain simulations, disturbances must be represented by a time domain signal. % To generate stochastic time-domain signals with a specific power spectral densities, the discrete inverse Fourier transform is used, as explained in [[cite:&preumont94_random_vibrat_spect_analy chap. 12.11]]. % Examples of the obtained time-domain disturbance signals are shown in Figure ref:fig:ustation_dist_sources_time. %% Compute time domain disturbance signals initializeDisturbances(); load('nass_model_disturbances.mat'); figure; hold on; plot(Rz.t, Rz.x, 'DisplayName', '$F_{xR_z}$'); plot(Rz.t, Rz.y, 'DisplayName', '$F_{yR_z}$'); plot(Rz.t, Rz.z, 'DisplayName', '$F_{zR_z}$'); xlabel('Time [s]'); ylabel('Amplitude [N]') xlim([0, 1]); ylim([-100, 100]); leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; figure; hold on; plot(Dy.t, Dy.x, 'DisplayName', '$F_{xD_y}$'); plot(Dy.t, Dy.z, 'DisplayName', '$F_{zD_y}$'); xlabel('Time [s]'); ylabel('Amplitude [N]') xlim([0, 1]); ylim([-60, 60]) leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; figure; hold on; plot(Dw.t, 1e6*Dw.x, 'DisplayName', '$D_{xf}$'); plot(Dw.t, 1e6*Dw.y, 'DisplayName', '$D_{yf}$'); plot(Dw.t, 1e6*Dw.z, 'DisplayName', '$D_{zf}$'); xlabel('Time [s]'); ylabel('Amplitude [$\mu$m]') xlim([0, 1]); ylim([-0.6, 0.6]) leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15;