#+TITLE: Simscape Model - Micro Station :DRAWER: #+LANGUAGE: en #+EMAIL: dehaeze.thomas@gmail.com #+AUTHOR: Dehaeze Thomas #+HTML_LINK_HOME: ../index.html #+HTML_LINK_UP: ../index.html #+HTML_HEAD: #+HTML_HEAD: #+BIND: org-latex-image-default-option "scale=1" #+BIND: org-latex-image-default-width "" #+LaTeX_CLASS: scrreprt #+LaTeX_CLASS_OPTIONS: [a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc] #+LATEX_HEADER: \input{preamble.tex} #+LATEX_HEADER_EXTRA: \input{preamble_extra.tex} #+LATEX_HEADER_EXTRA: \bibliography{simscape-micro-station.bib} #+BIND: org-latex-bib-compiler "biber" #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :exports none #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :noweb yes #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:matlab+ :tangle no #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}") #+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 #+PROPERTY: header-args:latex+ :imoutoptions -quality 100 #+PROPERTY: header-args:latex+ :results file raw replace #+PROPERTY: header-args:latex+ :buffer no #+PROPERTY: header-args:latex+ :tangle no #+PROPERTY: header-args:latex+ :eval no-export #+PROPERTY: header-args:latex+ :exports results #+PROPERTY: header-args:latex+ :mkdirp yes #+PROPERTY: header-args:latex+ :output-dir figs #+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png") :END: #+begin_export html

This report is also available as a pdf.


#+end_export #+latex: \clearpage * Build :noexport: #+NAME: startblock #+BEGIN_SRC emacs-lisp :results none :tangle no (add-to-list 'org-latex-classes '("scrreprt" "\\documentclass{scrreprt}" ("\\chapter{%s}" . "\\chapter*{%s}") ("\\section{%s}" . "\\section*{%s}") ("\\subsection{%s}" . "\\subsection*{%s}") ("\\paragraph{%s}" . "\\paragraph*{%s}") )) ;; Remove automatic org heading labels (defun my-latex-filter-removeOrgAutoLabels (text backend info) "Org-mode automatically generates labels for headings despite explicit use of `#+LABEL`. This filter forcibly removes all automatically generated org-labels in headings." (when (org-export-derived-backend-p backend 'latex) (replace-regexp-in-string "\\\\label{sec:org[a-f0-9]+}\n" "" text))) (add-to-list 'org-export-filter-headline-functions 'my-latex-filter-removeOrgAutoLabels) ;; Remove all org comments in the output LaTeX file (defun delete-org-comments (backend) (loop for comment in (reverse (org-element-map (org-element-parse-buffer) 'comment 'identity)) do (setf (buffer-substring (org-element-property :begin comment) (org-element-property :end comment)) ""))) (add-hook 'org-export-before-processing-hook 'delete-org-comments) ;; Use no package by default (setq org-latex-packages-alist nil) (setq org-latex-default-packages-alist nil) ;; Do not include the subtitle inside the title (setq org-latex-subtitle-separate t) (setq org-latex-subtitle-format "\\subtitle{%s}") (setq org-export-before-parsing-hook '(org-ref-glossary-before-parsing org-ref-acronyms-before-parsing)) #+END_SRC * Notes :noexport: ** Notes Prefix is =ustation= From modal analysis: validation of the multi-body model. *Goals*: - *Modelling of the micro-station*: Kinematics + Dynamics + Disturbances - Kinematics of each stage - Modelling: solid bodies + joints. Show what is used for each stage - Correlation with the dynamical measurements - Inclusion of disturbances (correlation with measurements) *Notes*: - Do not talk about Nano-Hexapod yet - Do not talk about external metrology Based on: - [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/kinematics.org][kinematics]] - [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/simscape_subsystems.org][simscape_subsystems]]: general presentation of the micro-station. Used model: solid body + joints. Presentation of each stage. - [ ] [[file:~/Cloud/work-projects/ID31-NASS/documents/work-package-1/work-package-1.org::*Specification of requirements][Specification of requirements]] - [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/identification.org][identification]]: comparison of measurements and simscape model (not so good?) - [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/experiments.org][experiments]]: simulation of experiments with the Simscape model - [ ] Measurement of disturbances / things that will have to be corrected using the NASS: - [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-measurements/static-to-dynamic/index.org]] - [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-measurements/disturbance-control-system/index.org]] - [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-measurements/disturbance-sr-rz/index.org]] - [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-measurements/ground-motion/index.org]] - [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-measurements/static-spindle/index.org]] - [ ] Check [[file:~/Cloud/work-projects/ID31-NASS/specifications/id-31-spindle-meas][this directory]] and [[file:~/Cloud/work-projects/ID31-NASS/specifications/stage-by-stage][this directory]] ** DONE [#B] Put colors for each different stage CLOSED: [2024-10-30 Wed 14:07] ** DONE [#B] Delete Gravity compensation Stage CLOSED: [2024-10-30 Wed 13:51] ** DONE [#B] Maybe make a simpler Simscape model for this report CLOSED: [2024-10-30 Wed 13:51] ** DONE [#A] Open the Simscape model and verify it all works CLOSED: [2024-10-30 Wed 13:33] SCHEDULED: <2024-10-30 Wed> #+begin_src matlab initializeSimscapeConfiguration('gravity', false); initializeLoggingConfiguration('log', 'none'); initializeGround( 'type', 'rigid'); initializeGranite( 'type', 'modal-analysis'); initializeTy( 'type', 'modal-analysis'); initializeRy( 'type', 'modal-analysis'); initializeRz( 'type', 'modal-analysis'); initializeMicroHexapod('type', 'modal-analysis'); initializeReferences(); initializeDisturbances('enable', false); #+end_src #+begin_src matlab % initializeAxisc( 'type', 'flexible'); % initializeMirror( 'type', 'none'); % initializeNanoHexapod( 'type', 'none'); % initializeSample( 'type', 'none'); initializeController( 'type', 'open-loop'); #+end_src ** TODO [#B] Make good "init" for the Simscape model ** TODO [#C] Verify that we get "correct" compliance * Introduction :ignore: #+name: tab:ustation_section_matlab_code #+caption: Report sections and corresponding Matlab files #+attr_latex: :environment tabularx :width 0.6\linewidth :align lX #+attr_latex: :center t :booktabs t | *Sections* | *Matlab File* | |---------------------------------------------+-------------------------------------| | Section ref:sec: | =ustation_1_.m= | * Micro-Station Kinematics :PROPERTIES: :HEADER-ARGS:matlab+: :tangle matlab/.m :END: <> ** Introduction :ignore: [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/kinematics.org]] # - Small overview of each stage and associated stiffnesses / inertia # - schematic that shows to considered DoF # - import from CAD ** Matlab Init :noexport:ignore: #+begin_src matlab %% .m #+end_src #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no :noweb yes <> #+end_src #+begin_src matlab :eval no :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src ** Granite ** Translation Stage ** Tilt Stage ** Spindle ** Micro-Hexapod * Stage Modeling :PROPERTIES: :HEADER-ARGS:matlab+: :tangle matlab/.m :END: <> ** Introduction :ignore: The goal here is to tune the Simscape model of the station in order to have a good dynamical representation of the real system. In order to do so, we reproduce the Modal Analysis done on the station using the Simscape model. We can then compare the measured Frequency Response Functions with the identified dynamics of the model. Finally, this should help to tune the parameters of the model such that the dynamics is closer to the measured FRF. # Validation of the Model # - Most important metric: support compliance # - Compare model and measurement ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no :noweb yes <> #+end_src #+begin_src matlab :eval no :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src ** Some notes about the Simscape Model The Simscape Model of the micro-station consists of several solid bodies: - Bottom Granite - Top Granite - Translation Stage - Tilt Stage - Spindle - Hexapod Each solid body has some characteristics: Center of Mass, mass, moment of inertia, etc... These parameters are automatically computed from the geometry and from the density of the materials. Then, the solid bodies are connected with springs and dampers. Some of the springs and dampers values can be estimated from the joints/stages specifications, however, we here prefer to tune these values based on the measurements. ** Compare with measurements at the CoM of each element *** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no simulinkproject('../'); #+end_src *** Prepare the Simulation We load the configuration. #+begin_src matlab load('mat/conf_simulink.mat'); #+end_src We set a small =StopTime=. #+begin_src matlab set_param(conf_simulink, 'StopTime', '0.5'); #+end_src We initialize all the stages. #+begin_src matlab initializeGround( 'type', 'rigid'); initializeGranite( 'type', 'modal-analysis'); initializeTy( 'type', 'modal-analysis'); initializeRy( 'type', 'modal-analysis'); initializeRz( 'type', 'modal-analysis'); initializeMicroHexapod('type', 'modal-analysis'); initializeAxisc( 'type', 'flexible'); initializeMirror( 'type', 'none'); initializeNanoHexapod( 'type', 'none'); initializeSample( 'type', 'none'); initializeController( 'type', 'open-loop'); initializeLoggingConfiguration('log', 'none'); initializeReferences(); initializeDisturbances('enable', false); #+end_src *** Estimate the position of the CoM of each solid and compare with the one took for the Measurement Analysis Thanks to the [[https://fr.mathworks.com/help/physmod/sm/ref/inertiasensor.html][Inertia Sensor]] simscape block, it is possible to estimate the position of the Center of Mass of a solid body with respect to a defined frame. #+begin_src matlab sim('nass_model') #+end_src The results are shown in the table [[tab:com_simscape]]. #+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) stages_com = 1e3*[granite_bot_com.Data(end, :) ; granite_top_com.Data(end, :) ; ty_com.Data(end, :) ; ry_com.Data(end, :) ; rz_com.Data(end, :) ; hexa_com.Data(end, :) ]'; data2orgtable(stages_com, {'X [mm]', 'Y [mm]', 'Z [mm]'}, {'granite bot', 'granite top', 'ty', 'ry', 'rz', 'hexa'}, ' %.1f '); #+end_src #+name: tab:com_simscape #+caption: Center of Mass of each solid body as defined in Simscape #+RESULTS: | | granite bot | granite top | ty | ry | rz | hexa | |--------+-------------+-------------+--------+--------+--------+--------| | X [mm] | 52.4 | 51.7 | 0.9 | -0.1 | 0.0 | -0.0 | | Y [mm] | 190.4 | 263.2 | 0.7 | 5.2 | -0.0 | 0.1 | | Z [mm] | -1200.0 | -777.1 | -598.9 | -627.7 | -643.2 | -317.1 | We can compare the obtained center of mass (table [[tab:com_simscape]]) with the one used for the Modal Analysis shown in table [[tab:com_solidworks]]. #+name: tab:com_solidworks #+caption: Estimated Center of Mass of each solid body using Solidworks | | granite bot | granite top | ty | ry | rz | hexa | |--------+-------------+-------------+------+------+------+------| | X [mm] | 45 | 52 | 0 | 0 | 0 | -4 | | Y [mm] | 144 | 258 | 14 | -5 | 0 | 6 | | Z [mm] | -1251 | -778 | -600 | -628 | -580 | -319 | The results are quite similar. The differences can be explained by some differences in the chosen density of the materials or by the fact that not exactly all the same elements have been chosen for each stage. For instance, on simscape, the fixed part of the translation stage counts for the top granite solid body. However, in SolidWorks, this has probably not be included with the top granite. *** Create a frame at the CoM of each solid body Now we use one =inertiasensor= block connected on each solid body that measured the center of mass of this solid with respect to the same connected frame. We do that in order to position an accelerometer on the Simscape model at this particular point. #+begin_src matlab open('identification/matlab/sim_micro_station_com_estimation.slx') #+end_src #+begin_src matlab sim('sim_micro_station_com_estimation') #+end_src #+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*) stages_com = 1e3*[granite_bot_com.Data(end, :) ; granite_top_com.Data(end, :) ; ty_com.Data(end, :) ; ry_com.Data(end, :) ; rz_com.Data(end, :) ; hexa_com.Data(end, :) ]'; data2orgtable(stages_com, {'X [mm]', 'Y [mm]', 'Z [mm]'}, {'granite bot', 'granite top', 'ty', 'ry', 'rz', 'hexa'}, ' %.1f '); #+end_src #+RESULTS: | | granite bot | granite top | ty | ry | rz | hexa | |--------+-------------+-------------+-------+--------+-------+-------| | X [mm] | 0.0 | 51.7 | 0.9 | -0.1 | 0.0 | -0.0 | | Y [mm] | 0.0 | 753.2 | 0.7 | 5.2 | -0.0 | 0.1 | | Z [mm] | -250.0 | 22.9 | -17.1 | -146.5 | -23.2 | -47.1 | We now same this for further use: #+begin_src matlab granite_bot_com = granite_bot_com.Data(end, :)'; granite_top_com = granite_top_com.Data(end, :)'; ty_com = ty_com.Data(end, :)'; ry_com = ry_com.Data(end, :)'; rz_com = rz_com.Data(end, :)'; hexa_com = hexa_com.Data(end, :)'; save('./mat/solids_com.mat', 'granite_bot_com', 'granite_top_com', 'ty_com', 'ry_com', 'rz_com', 'hexa_com'); #+end_src Then, we use the obtained results to add a =rigidTransform= block in order to create a new frame at the center of mass of each solid body. *** Identification of the dynamics of the Simscape Model We now use a new Simscape Model where 6DoF inertial sensors are located at the Center of Mass of each solid body. #+begin_src matlab % load('mat/solids_com.mat', 'granite_bot_com', 'granite_top_com', 'ty_com', 'ry_com', 'rz_com', 'hexa_com'); #+end_src #+begin_src matlab open('nass_model.slx') #+end_src We use the =linearize= function in order to estimate the dynamics from forces applied on the Translation stage at the same position used for the real modal analysis to the inertial sensors. #+begin_src matlab %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'nass_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Micro-Station/Translation Stage/Modal Analysis/F_hammer'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Micro-Station/Granite/Modal Analysis/accelerometer'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Micro-Station/Translation Stage/Modal Analysis/accelerometer'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Micro-Station/Tilt Stage/Modal Analysis/accelerometer'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Micro-Station/Spindle/Modal Analysis/accelerometer'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Micro-Station/Micro Hexapod/Modal Analysis/accelerometer'], 1, 'openoutput'); io_i = io_i + 1; #+end_src #+begin_src matlab % Run the linearization G_ms = linearize(mdl, io, 0); %% Input/Output definition G_ms.InputName = {'Fx', 'Fy', 'Fz'}; G_ms.OutputName = {'gtop_x', 'gtop_y', 'gtop_z', 'gtop_rx', 'gtop_ry', 'gtop_rz', ... 'ty_x', 'ty_y', 'ty_z', 'ty_rx', 'ty_ry', 'ty_rz', ... 'ry_x', 'ry_y', 'ry_z', 'ry_rx', 'ry_ry', 'ry_rz', ... 'rz_x', 'rz_y', 'rz_z', 'rz_rx', 'rz_ry', 'rz_rz', ... 'hexa_x', 'hexa_y', 'hexa_z', 'hexa_rx', 'hexa_ry', 'hexa_rz'}; #+end_src The output of =G_ms= is the acceleration of each solid body. In order to obtain a displacement, we divide the obtained transfer function by $1/s^{2}$; #+begin_src matlab G_ms = G_ms/s^2; #+end_src *** Compare with measurements We now load the Frequency Response Functions measurements during the Modal Analysis (accessible [[file:../../meas/modal-analysis/index.org][here]]). #+begin_src matlab load('../meas/modal-analysis/mat/frf_coh_matrices.mat', 'freqs'); load('../meas/modal-analysis/mat/frf_com.mat', 'FRFs_CoM'); #+end_src We then compare the measurements with the identified transfer functions using the Simscape Model. #+begin_src matlab :exports none dirs = {'x', 'y', 'z', 'rx', 'ry', 'rz'}; stages = {'gbot', 'gtop', 'ty', 'ry', 'rz', 'hexa'} n_stg = 3; n_dir = 6; % x, y, z, Rx, Ry, Rz n_exc = 2; % x, y, z f = logspace(0, 3, 1000); figure; hold on; plot(freqs, abs(squeeze(FRFs_CoM(6*(n_stg-1) + n_dir, n_exc, :)))./((2*pi*freqs).^2)'); plot(f, abs(squeeze(freqresp(G_ms([stages{n_stg}, '_', dirs{n_dir}], ['F', dirs{n_exc}]), f, 'Hz')))); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); hold off; xlim([1, 200]); #+end_src #+begin_src matlab :exports none dirs = {'x', 'y', 'z', 'rx', 'ry', 'rz'}; stages = {'gtop', 'ty', 'ry', 'rz', 'hexa'} f = logspace(1, 3, 1000); figure; for n_stg = 1:2 for n_dir = 1:3 subplot(3, 2, (n_dir-1)*2 + n_stg); title(['F ', dirs{n_dir}, ' to ', stages{n_stg}, ' ', dirs{n_dir}]); hold on; plot(freqs, abs(squeeze(FRFs_CoM(6*(n_stg) + n_dir, n_dir, :)))./((2*pi*freqs).^2)'); plot(f, abs(squeeze(freqresp(G_ms([stages{n_stg}, '_', dirs{n_dir}], ['F', dirs{n_dir}]), f, 'Hz')))); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); if n_dir == 3 xlabel('Frequency [Hz]'); end hold off; xlim([10, 1000]); ylim([1e-12, 1e-6]); end end #+end_src #+HEADER: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/identification_comp_bot_stages.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:identification_comp_bot_stages #+CAPTION: caption ([[./figs/identification_comp_bot_stages.png][png]], [[./figs/identification_comp_bot_stages.pdf][pdf]]) [[file:figs/identification_comp_bot_stages.png]] #+begin_src matlab :exports none dirs = {'x', 'y', 'z', 'rx', 'ry', 'rz'}; stages = {'ry', 'rz', 'hexa'} f = logspace(1, 3, 1000); figure; for n_stg = 1:2 for n_dir = 1:3 subplot(3, 2, (n_dir-1)*2 + n_stg); title(['F ', dirs{n_dir}, ' to ', stages{n_stg}, ' ', dirs{n_dir}]); hold on; plot(freqs, abs(squeeze(FRFs_CoM(6*(n_stg+2) + n_dir, n_dir, :)))./((2*pi*freqs).^2)'); plot(f, abs(squeeze(freqresp(G_ms([stages{n_stg}, '_', dirs{n_dir}], ['F', dirs{n_dir}]), f, 'Hz')))); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); if n_dir == 3 xlabel('Frequency [Hz]'); end hold off; xlim([10, 1000]); ylim([1e-12, 1e-6]); end end #+end_src #+HEADER: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/identification_comp_mid_stages.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:identification_comp_mid_stages #+CAPTION: caption ([[./figs/identification_comp_mid_stages.png][png]], [[./figs/identification_comp_mid_stages.pdf][pdf]]) [[file:figs/identification_comp_mid_stages.png]] #+begin_src matlab :exports none dirs = {'x', 'y', 'z', 'rx', 'ry', 'rz'}; stages = {'hexa'} f = logspace(1, 3, 1000); figure; for n_stg = 1 for n_dir = 1:3 subplot(3, 1, (n_dir-1) + n_stg); title(['F ', dirs{n_dir}, ' to ', stages{n_stg}, ' ', dirs{n_dir}]); hold on; plot(freqs, abs(squeeze(FRFs_CoM(6*(n_stg+4) + n_dir, n_dir, :)))./((2*pi*freqs).^2)'); plot(f, abs(squeeze(freqresp(G_ms([stages{n_stg}, '_', dirs{n_dir}], ['F', dirs{n_dir}]), f, 'Hz')))); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); if n_dir == 3 xlabel('Frequency [Hz]'); end hold off; xlim([10, 1000]); ylim([1e-12, 1e-6]); end end #+end_src #+HEADER: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/identification_comp_top_stages.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+NAME: fig:identification_comp_top_stages #+CAPTION: caption ([[./figs/identification_comp_top_stages.png][png]], [[./figs/identification_comp_top_stages.pdf][pdf]]) [[file:figs/identification_comp_top_stages.png]] ** Obtained Compliance of the Micro-Station *** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no simulinkproject('../'); #+end_src #+begin_src matlab open('nass_model.slx') #+end_src *** Initialization We initialize all the stages with the default parameters. #+begin_src matlab initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod('type', 'compliance'); #+end_src We put nothing on top of the micro-hexapod. #+begin_src matlab initializeAxisc('type', 'none'); initializeMirror('type', 'none'); initializeNanoHexapod('type', 'none'); initializeSample('type', 'none'); #+end_src #+begin_src matlab initializeReferences(); initializeDisturbances(); initializeController(); initializeSimscapeConfiguration(); initializeLoggingConfiguration(); #+end_src And we identify the dynamics from forces/torques applied on the micro-hexapod top platform to the motion of the micro-hexapod top platform at the same point. The obtained compliance is shown in Figure [[fig:compliance_micro_station]]. #+begin_src matlab %% Name of the Simulink File mdl = 'nass_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Micro-Station/Micro Hexapod/Compliance/Fm'], 1, 'openinput'); io_i = io_i + 1; % Direct Forces/Torques applied on the micro-hexapod top platform io(io_i) = linio([mdl, '/Micro-Station/Micro Hexapod/Compliance/Dm'], 1, 'output'); io_i = io_i + 1; % Absolute displacement of the top platform %% Run the linearization Gm = linearize(mdl, io, 0); Gm.InputName = {'Fmx', 'Fmy', 'Fmz', 'Mmx', 'Mmy', 'Mmz'}; Gm.OutputName = {'Dx', 'Dy', 'Dz', 'Drx', 'Dry', 'Drz'}; #+end_src #+begin_src matlab save('../meas/micro-station-compliance/mat/model.mat', 'Gm'); #+end_src #+begin_src matlab :exports none labels = {'$D_x/F_{x}$', '$D_y/F_{y}$', '$D_z/F_{z}$', '$R_{x}/M_{x}$', '$R_{y}/M_{y}$', '$R_{R}/M_{z}$'}; freqs = logspace(1, 3, 1000); figure; hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(Gm(i, i), freqs, 'Hz'))), 'DisplayName', labels{i}); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Compliance'); legend('location', 'northwest'); #+end_src #+header: :tangle no :exports results :results none :noweb yes #+begin_src matlab :var filepath="figs/compliance_micro_station.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png") <> #+end_src #+name: fig:compliance_micro_station #+caption: Obtained compliance of the Micro-Station ([[./figs/compliance_micro_station.png][png]], [[./figs/compliance_micro_station.pdf][pdf]]) [[file:figs/compliance_micro_station.png]] ** Conclusion #+begin_important For such a complex system, we believe that the Simscape Model represents the dynamics of the system with enough fidelity. #+end_important * Measurement of Positioning Errors :PROPERTIES: :HEADER-ARGS:matlab+: :tangle matlab/ustation_2_kinematics.m :END: <> ** Introduction :ignore: [[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/kinematics.org]] ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no :noweb yes <> #+end_src #+begin_src matlab :eval no :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src * Simulation of Scientific Experiments :PROPERTIES: :HEADER-ARGS:matlab+: :tangle matlab/.m :END: <> ** Introduction :ignore: ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <> #+end_src #+begin_src matlab :exports none :results silent :noweb yes <> #+end_src #+begin_src matlab :tangle no :noweb yes <> #+end_src #+begin_src matlab :eval no :noweb yes <> #+end_src #+begin_src matlab :noweb yes <> #+end_src * Estimation of disturbances * Conclusion <> * Bibliography :ignore: #+latex: \printbibliography[heading=bibintoc,title={Bibliography}] * Matlab Functions :noexport: ** Simscape Configuration :PROPERTIES: :header-args:matlab+: :tangle matlab/src/initializeSimscapeConfiguration.m :header-args:matlab+: :comments none :mkdirp yes :eval no :END: *** Function description :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab function [] = initializeSimscapeConfiguration(args) #+end_src *** Optional Parameters :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab arguments args.gravity logical {mustBeNumericOrLogical} = true end #+end_src *** Structure initialization :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab conf_simscape = struct(); #+end_src *** Add Type :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab if args.gravity conf_simscape.type = 1; else conf_simscape.type = 2; end #+end_src *** Save the Structure #+begin_src matlab if exist('./mat', 'dir') if exist('./mat/conf_simscape.mat', 'file') save('mat/conf_simscape.mat', 'conf_simscape', '-append'); else save('mat/conf_simscape.mat', 'conf_simscape'); end elseif exist('./matlab', 'dir') if exist('./matlab/mat/conf_simscape.mat', 'file') save('matlab/mat/conf_simscape.mat', 'conf_simscape', '-append'); else save('matlab/mat/conf_simscape.mat', 'conf_simscape'); end end #+end_src ** Logging Configuration :PROPERTIES: :header-args:matlab+: :tangle matlab/src/initializeLoggingConfiguration.m :header-args:matlab+: :comments none :mkdirp yes :eval no :END: *** Function description :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab function [] = initializeLoggingConfiguration(args) #+end_src *** Optional Parameters :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab arguments args.log char {mustBeMember(args.log,{'none', 'all', 'forces'})} = 'none' args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 end #+end_src *** Structure initialization :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab conf_log = struct(); #+end_src *** Add Type :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab switch args.log case 'none' conf_log.type = 0; case 'all' conf_log.type = 1; case 'forces' conf_log.type = 2; end #+end_src *** Sampling Time :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab conf_log.Ts = args.Ts; #+end_src *** Save the Structure #+begin_src matlab if exist('./mat', 'dir') if exist('./mat/conf_log.mat', 'file') save('mat/conf_log.mat', 'conf_log', '-append'); else save('mat/conf_log.mat', 'conf_log'); end elseif exist('./matlab', 'dir') if exist('./matlab/mat/conf_log.mat', 'file') save('matlab/mat/conf_log.mat', 'conf_log', '-append'); else save('matlab/mat/conf_log.mat', 'conf_log'); end end #+end_src ** Ground :PROPERTIES: :header-args:matlab+: :tangle matlab/src/initializeGround.m :header-args:matlab+: :comments none :mkdirp yes :eval no :END: *** Function description :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab function [ground] = initializeGround(args) #+end_src *** Optional Parameters :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab arguments args.type char {mustBeMember(args.type,{'none', 'rigid'})} = 'rigid' args.rot_point (3,1) double {mustBeNumeric} = zeros(3,1) % Rotation point for the ground motion [m] end #+end_src *** Structure initialization :PROPERTIES: :UNNUMBERED: t :END: First, we initialize the =granite= structure. #+begin_src matlab ground = struct(); #+end_src *** Add Type :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab switch args.type case 'none' ground.type = 0; case 'rigid' ground.type = 1; end #+end_src *** Ground Solid properties :PROPERTIES: :UNNUMBERED: t :END: We set the shape and density of the ground solid element. #+begin_src matlab ground.shape = [2, 2, 0.5]; % [m] ground.density = 2800; % [kg/m3] #+end_src *** Rotation Point :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab ground.rot_point = args.rot_point; #+end_src *** Save the Structure #+begin_src matlab if exist('./mat', 'dir') if exist('./mat/nass_stages.mat', 'file') save('mat/nass_stages.mat', 'ground', '-append'); else save('mat/nass_stages.mat', 'ground'); end elseif exist('./matlab', 'dir') if exist('./matlab/mat/nass_stages.mat', 'file') save('matlab/mat/nass_stages.mat', 'ground', '-append'); else save('matlab/mat/nass_stages.mat', 'ground'); end end #+end_src ** Granite :PROPERTIES: :header-args:matlab+: :tangle matlab/src/initializeGranite.m :header-args:matlab+: :comments none :mkdirp yes :eval no :END: *** Function description :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab function [granite] = initializeGranite(args) #+end_src *** Optional Parameters :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab arguments args.type char {mustBeMember(args.type,{'rigid', 'flexible', 'none', 'modal-analysis', 'init'})} = 'flexible' args.Foffset logical {mustBeNumericOrLogical} = false args.density (1,1) double {mustBeNumeric, mustBeNonnegative} = 2800 % Density [kg/m3] args.K (3,1) double {mustBeNumeric, mustBeNonnegative} = [4e9; 3e8; 8e8] % [N/m] args.C (3,1) double {mustBeNumeric, mustBeNonnegative} = [4.0e5; 1.1e5; 9.0e5] % [N/(m/s)] args.x0 (1,1) double {mustBeNumeric} = 0 % Rest position of the Joint in the X direction [m] args.y0 (1,1) double {mustBeNumeric} = 0 % Rest position of the Joint in the Y direction [m] args.z0 (1,1) double {mustBeNumeric} = 0 % Rest position of the Joint in the Z direction [m] args.sample_pos (1,1) double {mustBeNumeric} = 0.8 % Height of the measurment point [m] end #+end_src *** Structure initialization :PROPERTIES: :UNNUMBERED: t :END: First, we initialize the =granite= structure. #+begin_src matlab granite = struct(); #+end_src *** Add Granite Type :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab switch args.type case 'none' granite.type = 0; case 'rigid' granite.type = 1; case 'flexible' granite.type = 2; case 'modal-analysis' granite.type = 3; case 'init' granite.type = 4; end #+end_src *** Material and Geometry :PROPERTIES: :UNNUMBERED: t :END: Properties of the Material and link to the geometry of the granite. #+begin_src matlab granite.density = args.density; % [kg/m3] granite.STEP = 'granite.STEP'; #+end_src Z-offset for the initial position of the sample with respect to the granite top surface. #+begin_src matlab granite.sample_pos = args.sample_pos; % [m] #+end_src *** Stiffness and Damping properties :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab granite.K = args.K; % [N/m] granite.C = args.C; % [N/(m/s)] #+end_src *** Equilibrium position of the each joint. :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab if args.Foffset && ~strcmp(args.type, 'none') && ~strcmp(args.type, 'rigid') && ~strcmp(args.type, 'init') load('Foffset.mat', 'Fgm'); granite.Deq = -Fgm'./granite.K; else granite.Deq = zeros(6,1); end #+end_src *** Save the Structure #+begin_src matlab if exist('./mat', 'dir') if exist('./mat/nass_stages.mat', 'file') save('mat/nass_stages.mat', 'granite', '-append'); else save('mat/nass_stages.mat', 'granite'); end elseif exist('./matlab', 'dir') if exist('./matlab/mat/nass_stages.mat', 'file') save('matlab/mat/nass_stages.mat', 'granite', '-append'); else save('matlab/mat/nass_stages.mat', 'granite'); end end #+end_src ** Translation Stage :PROPERTIES: :header-args:matlab+: :tangle matlab/src/initializeTy.m :header-args:matlab+: :comments none :mkdirp yes :eval no :END: *** Function description :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab function [ty] = initializeTy(args) #+end_src *** Optional Parameters :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab arguments args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible', 'modal-analysis', 'init'})} = 'flexible' args.Foffset logical {mustBeNumericOrLogical} = false end #+end_src *** Structure initialization :PROPERTIES: :UNNUMBERED: t :END: First, we initialize the =ty= structure. #+begin_src matlab ty = struct(); #+end_src *** Add Translation Stage Type :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab switch args.type case 'none' ty.type = 0; case 'rigid' ty.type = 1; case 'flexible' ty.type = 2; case 'modal-analysis' ty.type = 3; case 'init' ty.type = 4; end #+end_src *** Material and Geometry :PROPERTIES: :UNNUMBERED: t :END: Define the density of the materials as well as the geometry (STEP files). #+begin_src matlab % Ty Granite frame ty.granite_frame.density = 7800; % [kg/m3] => 43kg ty.granite_frame.STEP = 'Ty_Granite_Frame.STEP'; % Guide Translation Ty ty.guide.density = 7800; % [kg/m3] => 76kg ty.guide.STEP = 'Ty_Guide.STEP'; % Ty - Guide_Translation12 ty.guide12.density = 7800; % [kg/m3] ty.guide12.STEP = 'Ty_Guide_12.STEP'; % Ty - Guide_Translation11 ty.guide11.density = 7800; % [kg/m3] ty.guide11.STEP = 'Ty_Guide_11.STEP'; % Ty - Guide_Translation22 ty.guide22.density = 7800; % [kg/m3] ty.guide22.STEP = 'Ty_Guide_22.STEP'; % Ty - Guide_Translation21 ty.guide21.density = 7800; % [kg/m3] ty.guide21.STEP = 'Ty_Guide_21.STEP'; % Ty - Plateau translation ty.frame.density = 7800; % [kg/m3] ty.frame.STEP = 'Ty_Stage.STEP'; % Ty Stator Part ty.stator.density = 5400; % [kg/m3] ty.stator.STEP = 'Ty_Motor_Stator.STEP'; % Ty Rotor Part ty.rotor.density = 5400; % [kg/m3] ty.rotor.STEP = 'Ty_Motor_Rotor.STEP'; #+end_src *** Stiffness and Damping properties :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab ty.K = [2e8; 1e8; 2e8; 6e7; 9e7; 6e7]; % [N/m, N*m/rad] ty.C = [8e4; 5e4; 8e4; 2e4; 3e4; 2e4]; % [N/(m/s), N*m/(rad/s)] #+end_src *** Equilibrium position of the each joint. :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab if args.Foffset && ~strcmp(args.type, 'none') && ~strcmp(args.type, 'rigid') && ~strcmp(args.type, 'init') load('Foffset.mat', 'Ftym'); ty.Deq = -Ftym'./ty.K; else ty.Deq = zeros(6,1); end #+end_src *** Save the Structure #+begin_src matlab if exist('./mat', 'dir') if exist('./mat/nass_stages.mat', 'file') save('mat/nass_stages.mat', 'ty', '-append'); else save('mat/nass_stages.mat', 'ty'); end elseif exist('./matlab', 'dir') if exist('./matlab/mat/nass_stages.mat', 'file') save('matlab/mat/nass_stages.mat', 'ty', '-append'); else save('matlab/mat/nass_stages.mat', 'ty'); end end #+end_src ** Tilt Stage :PROPERTIES: :header-args:matlab+: :tangle matlab/src/initializeRy.m :header-args:matlab+: :comments none :mkdirp yes :eval no :END: *** Function description :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab function [ry] = initializeRy(args) #+end_src *** Optional Parameters :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab arguments args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible', 'modal-analysis', 'init'})} = 'flexible' args.Foffset logical {mustBeNumericOrLogical} = false args.Ry_init (1,1) double {mustBeNumeric} = 0 end #+end_src *** Structure initialization :PROPERTIES: :UNNUMBERED: t :END: First, we initialize the =ry= structure. #+begin_src matlab ry = struct(); #+end_src *** Add Tilt Type :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab switch args.type case 'none' ry.type = 0; case 'rigid' ry.type = 1; case 'flexible' ry.type = 2; case 'modal-analysis' ry.type = 3; case 'init' ry.type = 4; end #+end_src *** Material and Geometry :PROPERTIES: :UNNUMBERED: t :END: Properties of the Material and link to the geometry of the Tilt stage. #+begin_src matlab % Ry - Guide for the tilt stage ry.guide.density = 7800; % [kg/m3] ry.guide.STEP = 'Tilt_Guide.STEP'; % Ry - Rotor of the motor ry.rotor.density = 2400; % [kg/m3] ry.rotor.STEP = 'Tilt_Motor_Axis.STEP'; % Ry - Motor ry.motor.density = 3200; % [kg/m3] ry.motor.STEP = 'Tilt_Motor.STEP'; % Ry - Plateau Tilt ry.stage.density = 7800; % [kg/m3] ry.stage.STEP = 'Tilt_Stage.STEP'; #+end_src Z-Offset so that the center of rotation matches the sample center; #+begin_src matlab ry.z_offset = 0.58178; % [m] #+end_src #+begin_src matlab ry.Ry_init = args.Ry_init; % [rad] #+end_src *** Stiffness and Damping properties :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab ry.K = [3.8e8; 4e8; 3.8e8; 1.2e8; 6e4; 1.2e8]; ry.C = [1e5; 1e5; 1e5; 3e4; 1e3; 3e4]; #+end_src *** Equilibrium position of the each joint. :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab if args.Foffset && ~strcmp(args.type, 'none') && ~strcmp(args.type, 'rigid') && ~strcmp(args.type, 'init') load('Foffset.mat', 'Fym'); ry.Deq = -Fym'./ry.K; else ry.Deq = zeros(6,1); end #+end_src *** Save the Structure #+begin_src matlab if exist('./mat', 'dir') if exist('./mat/nass_stages.mat', 'file') save('mat/nass_stages.mat', 'ry', '-append'); else save('mat/nass_stages.mat', 'ry'); end elseif exist('./matlab', 'dir') if exist('./matlab/mat/nass_stages.mat', 'file') save('matlab/mat/nass_stages.mat', 'ry', '-append'); else save('matlab/mat/nass_stages.mat', 'ry'); end end #+end_src ** Spindle :PROPERTIES: :header-args:matlab+: :tangle matlab/src/initializeRz.m :header-args:matlab+: :comments none :mkdirp yes :eval no :END: *** Function description :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab function [rz] = initializeRz(args) #+end_src *** Optional Parameters :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab arguments args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible', 'modal-analysis', 'init'})} = 'flexible' args.Foffset logical {mustBeNumericOrLogical} = false end #+end_src *** Structure initialization :PROPERTIES: :UNNUMBERED: t :END: First, we initialize the =rz= structure. #+begin_src matlab rz = struct(); #+end_src *** Add Spindle Type :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab switch args.type case 'none' rz.type = 0; case 'rigid' rz.type = 1; case 'flexible' rz.type = 2; case 'modal-analysis' rz.type = 3; case 'init' rz.type = 4; end #+end_src *** Material and Geometry :PROPERTIES: :UNNUMBERED: t :END: Properties of the Material and link to the geometry of the spindle. #+begin_src matlab % Spindle - Slip Ring rz.slipring.density = 7800; % [kg/m3] rz.slipring.STEP = 'Spindle_Slip_Ring.STEP'; % Spindle - Rotor rz.rotor.density = 7800; % [kg/m3] rz.rotor.STEP = 'Spindle_Rotor.STEP'; % Spindle - Stator rz.stator.density = 7800; % [kg/m3] rz.stator.STEP = 'Spindle_Stator.STEP'; #+end_src *** Stiffness and Damping properties :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab rz.K = [7e8; 7e8; 2e9; 1e7; 1e7; 1e7]; rz.C = [4e4; 4e4; 7e4; 1e4; 1e4; 1e4]; #+end_src *** Equilibrium position of the each joint. :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab if args.Foffset && ~strcmp(args.type, 'none') && ~strcmp(args.type, 'rigid') && ~strcmp(args.type, 'init') load('Foffset.mat', 'Fzm'); rz.Deq = -Fzm'./rz.K; else rz.Deq = zeros(6,1); end #+end_src *** Save the Structure #+begin_src matlab if exist('./mat', 'dir') if exist('./mat/nass_stages.mat', 'file') save('mat/nass_stages.mat', 'rz', '-append'); else save('mat/nass_stages.mat', 'rz'); end elseif exist('./matlab', 'dir') if exist('./matlab/mat/nass_stages.mat', 'file') save('matlab/mat/nass_stages.mat', 'rz', '-append'); else save('matlab/mat/nass_stages.mat', 'rz'); end end #+end_src ** Micro Hexapod :PROPERTIES: :header-args:matlab+: :tangle matlab/src/initializeMicroHexapod.m :header-args:matlab+: :comments none :mkdirp yes :eval no :END: *** Function description :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab function [micro_hexapod] = initializeMicroHexapod(args) #+end_src *** Optional Parameters :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab arguments args.type char {mustBeMember(args.type,{'none', 'rigid', 'flexible', 'modal-analysis', 'init', 'compliance'})} = 'flexible' % initializeFramesPositions args.H (1,1) double {mustBeNumeric, mustBePositive} = 350e-3 args.MO_B (1,1) double {mustBeNumeric} = 270e-3 % generateGeneralConfiguration args.FH (1,1) double {mustBeNumeric, mustBePositive} = 50e-3 args.FR (1,1) double {mustBeNumeric, mustBePositive} = 175.5e-3 args.FTh (6,1) double {mustBeNumeric} = [-10, 10, 120-10, 120+10, 240-10, 240+10]*(pi/180) args.MH (1,1) double {mustBeNumeric, mustBePositive} = 45e-3 args.MR (1,1) double {mustBeNumeric, mustBePositive} = 118e-3 args.MTh (6,1) double {mustBeNumeric} = [-60+10, 60-10, 60+10, 180-10, 180+10, -60-10]*(pi/180) % initializeStrutDynamics args.Ki (6,1) double {mustBeNumeric, mustBeNonnegative} = 2e7*ones(6,1) args.Ci (6,1) double {mustBeNumeric, mustBeNonnegative} = 1.4e3*ones(6,1) % initializeCylindricalPlatforms args.Fpm (1,1) double {mustBeNumeric, mustBePositive} = 10 args.Fph (1,1) double {mustBeNumeric, mustBePositive} = 26e-3 args.Fpr (1,1) double {mustBeNumeric, mustBePositive} = 207.5e-3 args.Mpm (1,1) double {mustBeNumeric, mustBePositive} = 10 args.Mph (1,1) double {mustBeNumeric, mustBePositive} = 26e-3 args.Mpr (1,1) double {mustBeNumeric, mustBePositive} = 150e-3 % initializeCylindricalStruts args.Fsm (1,1) double {mustBeNumeric, mustBePositive} = 1 args.Fsh (1,1) double {mustBeNumeric, mustBePositive} = 100e-3 args.Fsr (1,1) double {mustBeNumeric, mustBePositive} = 25e-3 args.Msm (1,1) double {mustBeNumeric, mustBePositive} = 1 args.Msh (1,1) double {mustBeNumeric, mustBePositive} = 100e-3 args.Msr (1,1) double {mustBeNumeric, mustBePositive} = 25e-3 % inverseKinematics args.AP (3,1) double {mustBeNumeric} = zeros(3,1) args.ARB (3,3) double {mustBeNumeric} = eye(3) % Force that stiffness of each joint should apply at t=0 args.Foffset logical {mustBeNumericOrLogical} = false end #+end_src *** Function content :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, ... 'H', args.H, ... 'MO_B', args.MO_B); stewart = generateGeneralConfiguration(stewart, ... 'FH', args.FH, ... 'FR', args.FR, ... 'FTh', args.FTh, ... 'MH', args.MH, ... 'MR', args.MR, ... 'MTh', args.MTh); stewart = computeJointsPose(stewart); #+end_src #+begin_src matlab stewart = initializeStrutDynamics(stewart, ... 'K', args.Ki, ... 'C', args.Ci); stewart = initializeJointDynamics(stewart, ... 'type_F', 'universal_p', ... 'type_M', 'spherical_p'); #+end_src #+begin_src matlab stewart = initializeCylindricalPlatforms(stewart, ... 'Fpm', args.Fpm, ... 'Fph', args.Fph, ... 'Fpr', args.Fpr, ... 'Mpm', args.Mpm, ... 'Mph', args.Mph, ... 'Mpr', args.Mpr); stewart = initializeCylindricalStruts(stewart, ... 'Fsm', args.Fsm, ... 'Fsh', args.Fsh, ... 'Fsr', args.Fsr, ... 'Msm', args.Msm, ... 'Msh', args.Msh, ... 'Msr', args.Msr); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart, ... 'AP', args.AP, ... 'ARB', args.ARB); #+end_src #+begin_src matlab stewart = initializeInertialSensor(stewart, 'type', 'none'); #+end_src Equilibrium position of the each joint. #+begin_src matlab if args.Foffset && ~strcmp(args.type, 'none') && ~strcmp(args.type, 'rigid') && ~strcmp(args.type, 'init') load('Foffset.mat', 'Fhm'); stewart.actuators.dLeq = -Fhm'./args.Ki; else stewart.actuators.dLeq = zeros(6,1); end #+end_src *** Add Type :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab switch args.type case 'none' stewart.type = 0; case 'rigid' stewart.type = 1; case 'flexible' stewart.type = 2; case 'modal-analysis' stewart.type = 3; case 'init' stewart.type = 4; case 'compliance' stewart.type = 5; end #+end_src *** Save the Structure #+begin_src matlab micro_hexapod = stewart; if exist('./mat', 'dir') if exist('./mat/nass_stages.mat', 'file') save('mat/nass_stages.mat', 'micro_hexapod', '-append'); else save('mat/nass_stages.mat', 'micro_hexapod'); end elseif exist('./matlab', 'dir') if exist('./matlab/mat/nass_stages.mat', 'file') save('matlab/mat/nass_stages.mat', 'micro_hexapod', '-append'); else save('matlab/mat/nass_stages.mat', 'micro_hexapod'); end end #+end_src ** Generate Reference Signals :PROPERTIES: :header-args:matlab+: :tangle matlab/src/initializeReferences.m :header-args:matlab+: :comments none :mkdirp yes :eval no :END: *** Function Declaration and Documentation :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab function [ref] = initializeReferences(args) #+end_src *** Optional Parameters :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab arguments % Sampling Frequency [s] args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 % Maximum simulation time [s] args.Tmax (1,1) double {mustBeNumeric, mustBePositive} = 100 % Either "constant" / "triangular" / "sinusoidal" args.Dy_type char {mustBeMember(args.Dy_type,{'constant', 'triangular', 'sinusoidal'})} = 'constant' % Amplitude of the displacement [m] args.Dy_amplitude (1,1) double {mustBeNumeric} = 0 % Period of the displacement [s] args.Dy_period (1,1) double {mustBeNumeric, mustBePositive} = 1 % Either "constant" / "triangular" / "sinusoidal" args.Ry_type char {mustBeMember(args.Ry_type,{'constant', 'triangular', 'sinusoidal'})} = 'constant' % Amplitude [rad] args.Ry_amplitude (1,1) double {mustBeNumeric} = 0 % Period of the displacement [s] args.Ry_period (1,1) double {mustBeNumeric, mustBePositive} = 1 % Either "constant" / "rotating" args.Rz_type char {mustBeMember(args.Rz_type,{'constant', 'rotating', 'rotating-not-filtered'})} = 'constant' % Initial angle [rad] args.Rz_amplitude (1,1) double {mustBeNumeric} = 0 % Period of the rotating [s] args.Rz_period (1,1) double {mustBeNumeric, mustBePositive} = 1 % For now, only constant is implemented args.Dh_type char {mustBeMember(args.Dh_type,{'constant'})} = 'constant' % Initial position [m,m,m,rad,rad,rad] of the top platform (Pitch-Roll-Yaw Euler angles) args.Dh_pos (6,1) double {mustBeNumeric} = zeros(6, 1), ... % For now, only constant is implemented args.Rm_type char {mustBeMember(args.Rm_type,{'constant'})} = 'constant' % Initial position of the two masses args.Rm_pos (2,1) double {mustBeNumeric} = [0; pi] % For now, only constant is implemented args.Dn_type char {mustBeMember(args.Dn_type,{'constant'})} = 'constant' % Initial position [m,m,m,rad,rad,rad] of the top platform args.Dn_pos (6,1) double {mustBeNumeric} = zeros(6,1) end #+end_src *** Initialize Parameters :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab %% Set Sampling Time Ts = args.Ts; Tmax = args.Tmax; %% Low Pass Filter to filter out the references s = zpk('s'); w0 = 2*pi*10; xi = 1; H_lpf = 1/(1 + 2*xi/w0*s + s^2/w0^2); #+end_src *** Translation Stage :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab %% Translation stage - Dy t = 0:Ts:Tmax; % Time Vector [s] Dy = zeros(length(t), 1); Dyd = zeros(length(t), 1); Dydd = zeros(length(t), 1); switch args.Dy_type case 'constant' Dy(:) = args.Dy_amplitude; Dyd(:) = 0; Dydd(:) = 0; case 'triangular' % This is done to unsure that we start with no displacement Dy_raw = args.Dy_amplitude*sawtooth(2*pi*t/args.Dy_period,1/2); i0 = find(t>=args.Dy_period/4,1); Dy(1:end-i0+1) = Dy_raw(i0:end); Dy(end-i0+2:end) = Dy_raw(end); % we fix the last value % The signal is filtered out Dy = lsim(H_lpf, Dy, t); Dyd = lsim(H_lpf*s, Dy, t); Dydd = lsim(H_lpf*s^2, Dy, t); case 'sinusoidal' Dy(:) = args.Dy_amplitude*sin(2*pi/args.Dy_period*t); Dyd = args.Dy_amplitude*2*pi/args.Dy_period*cos(2*pi/args.Dy_period*t); Dydd = -args.Dy_amplitude*(2*pi/args.Dy_period)^2*sin(2*pi/args.Dy_period*t); otherwise warning('Dy_type is not set correctly'); end Dy = struct('time', t, 'signals', struct('values', Dy), 'deriv', Dyd, 'dderiv', Dydd); #+end_src *** Tilt Stage :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab %% Tilt Stage - Ry t = 0:Ts:Tmax; % Time Vector [s] Ry = zeros(length(t), 1); Ryd = zeros(length(t), 1); Rydd = zeros(length(t), 1); switch args.Ry_type case 'constant' Ry(:) = args.Ry_amplitude; Ryd(:) = 0; Rydd(:) = 0; case 'triangular' Ry_raw = args.Ry_amplitude*sawtooth(2*pi*t/args.Ry_period,1/2); i0 = find(t>=args.Ry_period/4,1); Ry(1:end-i0+1) = Ry_raw(i0:end); Ry(end-i0+2:end) = Ry_raw(end); % we fix the last value % The signal is filtered out Ry = lsim(H_lpf, Ry, t); Ryd = lsim(H_lpf*s, Ry, t); Rydd = lsim(H_lpf*s^2, Ry, t); case 'sinusoidal' Ry(:) = args.Ry_amplitude*sin(2*pi/args.Ry_period*t); Ryd = args.Ry_amplitude*2*pi/args.Ry_period*cos(2*pi/args.Ry_period*t); Rydd = -args.Ry_amplitude*(2*pi/args.Ry_period)^2*sin(2*pi/args.Ry_period*t); otherwise warning('Ry_type is not set correctly'); end Ry = struct('time', t, 'signals', struct('values', Ry), 'deriv', Ryd, 'dderiv', Rydd); #+end_src *** Spindle :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab %% Spindle - Rz t = 0:Ts:Tmax; % Time Vector [s] Rz = zeros(length(t), 1); Rzd = zeros(length(t), 1); Rzdd = zeros(length(t), 1); switch args.Rz_type case 'constant' Rz(:) = args.Rz_amplitude; Rzd(:) = 0; Rzdd(:) = 0; case 'rotating-not-filtered' Rz(:) = 2*pi/args.Rz_period*t; % The signal is filtered out Rz(:) = 2*pi/args.Rz_period*t; Rzd(:) = 2*pi/args.Rz_period; Rzdd(:) = 0; % We add the angle offset Rz = Rz + args.Rz_amplitude; case 'rotating' Rz(:) = 2*pi/args.Rz_period*t; % The signal is filtered out Rz = lsim(H_lpf, Rz, t); Rzd = lsim(H_lpf*s, Rz, t); Rzdd = lsim(H_lpf*s^2, Rz, t); % We add the angle offset Rz = Rz + args.Rz_amplitude; otherwise warning('Rz_type is not set correctly'); end Rz = struct('time', t, 'signals', struct('values', Rz), 'deriv', Rzd, 'dderiv', Rzdd); #+end_src *** Micro Hexapod :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab %% Micro-Hexapod t = [0, Ts]; Dh = zeros(length(t), 6); Dhl = zeros(length(t), 6); switch args.Dh_type case 'constant' Dh = [args.Dh_pos, args.Dh_pos]; load('nass_stages.mat', 'micro_hexapod'); AP = [args.Dh_pos(1) ; args.Dh_pos(2) ; args.Dh_pos(3)]; tx = args.Dh_pos(4); ty = args.Dh_pos(5); tz = args.Dh_pos(6); ARB = [cos(tz) -sin(tz) 0; sin(tz) cos(tz) 0; 0 0 1]*... [ cos(ty) 0 sin(ty); 0 1 0; -sin(ty) 0 cos(ty)]*... [1 0 0; 0 cos(tx) -sin(tx); 0 sin(tx) cos(tx)]; [~, Dhl] = inverseKinematics(micro_hexapod, 'AP', AP, 'ARB', ARB); Dhl = [Dhl, Dhl]; otherwise warning('Dh_type is not set correctly'); end Dh = struct('time', t, 'signals', struct('values', Dh)); Dhl = struct('time', t, 'signals', struct('values', Dhl)); #+end_src *** Axis Compensation :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab %% Axis Compensation - Rm t = [0, Ts]; Rm = [args.Rm_pos, args.Rm_pos]; Rm = struct('time', t, 'signals', struct('values', Rm)); #+end_src *** Nano Hexapod :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab %% Nano-Hexapod t = [0, Ts]; Dn = zeros(length(t), 6); switch args.Dn_type case 'constant' Dn = [args.Dn_pos, args.Dn_pos]; load('nass_stages.mat', 'nano_hexapod'); AP = [args.Dn_pos(1) ; args.Dn_pos(2) ; args.Dn_pos(3)]; tx = args.Dn_pos(4); ty = args.Dn_pos(5); tz = args.Dn_pos(6); ARB = [cos(tz) -sin(tz) 0; sin(tz) cos(tz) 0; 0 0 1]*... [ cos(ty) 0 sin(ty); 0 1 0; -sin(ty) 0 cos(ty)]*... [1 0 0; 0 cos(tx) -sin(tx); 0 sin(tx) cos(tx)]; [~, Dnl] = inverseKinematics(nano_hexapod, 'AP', AP, 'ARB', ARB); Dnl = [Dnl, Dnl]; otherwise warning('Dn_type is not set correctly'); end Dn = struct('time', t, 'signals', struct('values', Dn)); Dnl = struct('time', t, 'signals', struct('values', Dnl)); #+end_src *** Save the Structure #+begin_src matlab micro_hexapod = stewart; if exist('./mat', 'dir') if exist('./mat/nass_references.mat', 'file') save('mat/nass_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Dhl', 'Rm', 'Dn', 'Dnl', 'args', 'Ts', '-append'); else save('mat/nass_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Dhl', 'Rm', 'Dn', 'Dnl', 'args', 'Ts'); end elseif exist('./matlab', 'dir') if exist('./matlab/mat/nass_references.mat', 'file') save('matlab/mat/nass_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Dhl', 'Rm', 'Dn', 'Dnl', 'args', 'Ts', '-append'); else save('matlab/mat/nass_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Dhl', 'Rm', 'Dn', 'Dnl', 'args', 'Ts'); end end #+end_src ** Initialize Disturbances :PROPERTIES: :header-args:matlab+: :tangle matlab/src/initializeDisturbances.m :header-args:matlab+: :comments none :mkdirp yes :header-args:matlab+: :eval no :results none :END: *** Function Declaration and Documentation :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab function [] = initializeDisturbances(args) % initializeDisturbances - Initialize the disturbances % % Syntax: [] = initializeDisturbances(args) % % Inputs: % - args - #+end_src *** Optional Parameters :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab arguments % Global parameter to enable or disable the disturbances args.enable logical {mustBeNumericOrLogical} = true % Ground Motion - X direction args.Dwx logical {mustBeNumericOrLogical} = true % Ground Motion - Y direction args.Dwy logical {mustBeNumericOrLogical} = true % Ground Motion - Z direction args.Dwz logical {mustBeNumericOrLogical} = true % Translation Stage - X direction args.Fty_x logical {mustBeNumericOrLogical} = true % Translation Stage - Z direction args.Fty_z logical {mustBeNumericOrLogical} = true % Spindle - Z direction args.Frz_z logical {mustBeNumericOrLogical} = true end #+end_src *** Load Data :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab load('./mat/dist_psd.mat', 'dist_f'); #+end_src We remove the first frequency point that usually is very large. #+begin_src matlab :exports none dist_f.f = dist_f.f(2:end); dist_f.psd_gm = dist_f.psd_gm(2:end); dist_f.psd_ty = dist_f.psd_ty(2:end); dist_f.psd_rz = dist_f.psd_rz(2:end); #+end_src *** Parameters :PROPERTIES: :UNNUMBERED: t :END: We define some parameters that will be used in the algorithm. #+begin_src matlab Fs = 2*dist_f.f(end); % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz] N = 2*length(dist_f.f); % Number of Samples match the one of the wanted PSD T0 = N/Fs; % Signal Duration [s] df = 1/T0; % Frequency resolution of the DFT [Hz] % Also equal to (dist_f.f(2)-dist_f.f(1)) t = linspace(0, T0, N+1)'; % Time Vector [s] Ts = 1/Fs; % Sampling Time [s] #+end_src *** Ground Motion :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab phi = dist_f.psd_gm; C = zeros(N/2,1); for i = 1:N/2 C(i) = sqrt(phi(i)*df); end #+end_src #+begin_src matlab if args.Dwx && args.enable rng(111); theta = 2*pi*rand(N/2,1); % Generate random phase [rad] Cx = [0 ; C.*complex(cos(theta),sin(theta))]; Cx = [Cx; flipud(conj(Cx(2:end)))];; Dwx = N/sqrt(2)*ifft(Cx); % Ground Motion - x direction [m] else Dwx = zeros(length(t), 1); end #+end_src #+begin_src matlab if args.Dwy && args.enable rng(112); theta = 2*pi*rand(N/2,1); % Generate random phase [rad] Cx = [0 ; C.*complex(cos(theta),sin(theta))]; Cx = [Cx; flipud(conj(Cx(2:end)))];; Dwy = N/sqrt(2)*ifft(Cx); % Ground Motion - y direction [m] else Dwy = zeros(length(t), 1); end #+end_src #+begin_src matlab if args.Dwy && args.enable rng(113); theta = 2*pi*rand(N/2,1); % Generate random phase [rad] Cx = [0 ; C.*complex(cos(theta),sin(theta))]; Cx = [Cx; flipud(conj(Cx(2:end)))];; Dwz = N/sqrt(2)*ifft(Cx); % Ground Motion - z direction [m] else Dwz = zeros(length(t), 1); end #+end_src *** Translation Stage - X direction :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab if args.Fty_x && args.enable phi = dist_f.psd_ty; % TODO - we take here the vertical direction which is wrong but approximate C = zeros(N/2,1); for i = 1:N/2 C(i) = sqrt(phi(i)*df); end rng(121); theta = 2*pi*rand(N/2,1); % Generate random phase [rad] Cx = [0 ; C.*complex(cos(theta),sin(theta))]; Cx = [Cx; flipud(conj(Cx(2:end)))];; u = N/sqrt(2)*ifft(Cx); % Disturbance Force Ty x [N] Fty_x = u; else Fty_x = zeros(length(t), 1); end #+end_src *** Translation Stage - Z direction :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab if args.Fty_z && args.enable phi = dist_f.psd_ty; C = zeros(N/2,1); for i = 1:N/2 C(i) = sqrt(phi(i)*df); end rng(122); theta = 2*pi*rand(N/2,1); % Generate random phase [rad] Cx = [0 ; C.*complex(cos(theta),sin(theta))]; Cx = [Cx; flipud(conj(Cx(2:end)))];; u = N/sqrt(2)*ifft(Cx); % Disturbance Force Ty z [N] Fty_z = u; else Fty_z = zeros(length(t), 1); end #+end_src *** Spindle - Z direction :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab if args.Frz_z && args.enable phi = dist_f.psd_rz; C = zeros(N/2,1); for i = 1:N/2 C(i) = sqrt(phi(i)*df); end rng(131); theta = 2*pi*rand(N/2,1); % Generate random phase [rad] Cx = [0 ; C.*complex(cos(theta),sin(theta))]; Cx = [Cx; flipud(conj(Cx(2:end)))];; u = N/sqrt(2)*ifft(Cx); % Disturbance Force Rz z [N] Frz_z = u; else Frz_z = zeros(length(t), 1); end #+end_src *** Direct Forces :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab u = zeros(length(t), 6); Fd = u; #+end_src *** Set initial value to zero :PROPERTIES: :UNNUMBERED: t :END: #+begin_src matlab Dwx = Dwx - Dwx(1); Dwy = Dwy - Dwy(1); Dwz = Dwz - Dwz(1); Fty_x = Fty_x - Fty_x(1); Fty_z = Fty_z - Fty_z(1); Frz_z = Frz_z - Frz_z(1); #+end_src *** Save the Structure #+begin_src matlab micro_hexapod = stewart; if exist('./mat', 'dir') if exist('./mat/nass_disturbances.mat', 'file') save('mat/nass_disturbances.mat', 'Dwx', 'Dwy', 'Dwz', 'Fty_x', 'Fty_z', 'Frz_z', 'Fd', 'Ts', 't', 'args', '-append'); else save('mat/nass_disturbances.mat', 'Dwx', 'Dwy', 'Dwz', 'Fty_x', 'Fty_z', 'Frz_z', 'Fd', 'Ts', 't', 'args'); end elseif exist('./matlab', 'dir') if exist('./matlab/mat/nass_disturbances.mat', 'file') save('matlab/mat/nass_disturbances.mat', 'Dwx', 'Dwy', 'Dwz', 'Fty_x', 'Fty_z', 'Frz_z', 'Fd', 'Ts', 't', 'args', '-append'); else save('matlab/mat/nass_disturbances.mat', 'Dwx', 'Dwy', 'Dwz', 'Fty_x', 'Fty_z', 'Frz_z', 'Fd', 'Ts', 't', 'args'); end end #+end_src ** Z-Axis Geophone :PROPERTIES: :header-args:matlab+: :tangle matlab/src/initializeZAxisGeophone.m :header-args:matlab+: :comments none :mkdirp yes :eval no :END: #+begin_src matlab function [geophone] = initializeZAxisGeophone(args) arguments args.mass (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 % [kg] args.freq (1,1) double {mustBeNumeric, mustBePositive} = 1 % [Hz] end %% geophone.m = args.mass; %% The Stiffness is set to have the damping resonance frequency geophone.k = geophone.m * (2*pi*args.freq)^2; %% We set the damping value to have critical damping geophone.c = 2*sqrt(geophone.m * geophone.k); #+end_src #+begin_src matlab if exist('./mat', 'dir') if exist('./mat/geophone_z_axis.mat', 'file') save('mat/geophone_z_axis.mat', 'geophone', '-append'); else save('mat/geophone_z_axis.mat', 'geophone'); end elseif exist('./matlab', 'dir') if exist('./matlab/mat/geophone_z_axis.mat', 'file') save('matlab/mat/geophone_z_axis.mat', 'geophone', '-append'); else save('matlab/mat/geophone_z_axis.mat', 'geophone'); end end #+end_src ** Z-Axis Accelerometer :PROPERTIES: :header-args:matlab+: :tangle matlab/src/initializeZAxisAccelerometer.m :header-args:matlab+: :comments none :mkdirp yes :eval no :END: #+begin_src matlab function [accelerometer] = initializeZAxisAccelerometer(args) arguments args.mass (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 % [kg] args.freq (1,1) double {mustBeNumeric, mustBePositive} = 5e3 % [Hz] end %% accelerometer.m = args.mass; %% The Stiffness is set to have the damping resonance frequency accelerometer.k = accelerometer.m * (2*pi*args.freq)^2; %% We set the damping value to have critical damping accelerometer.c = 2*sqrt(accelerometer.m * accelerometer.k); %% Gain correction of the accelerometer to have a unity gain until the resonance accelerometer.gain = -accelerometer.k/accelerometer.m; #+end_src #+begin_src matlab if exist('./mat', 'dir') if exist('./mat/accelerometer_z_axis.mat', 'file') save('mat/accelerometer_z_axis.mat', 'accelerometer', '-append'); else save('mat/accelerometer_z_axis.mat', 'accelerometer'); end elseif exist('./matlab', 'dir') if exist('./matlab/mat/accelerometer_z_axis.mat', 'file') save('matlab/mat/accelerometer_z_axis.mat', 'accelerometer', '-append'); else save('matlab/mat/accelerometer_z_axis.mat', 'accelerometer'); end end #+end_src * Helping Functions :noexport: ** Initialize Path #+NAME: m-init-path #+BEGIN_SRC matlab addpath('./matlab/'); % Path for scripts %% Path for functions, data and scripts addpath('./matlab/mat/'); % Path for Computed FRF addpath('./matlab/src/'); % Path for functions addpath('./matlab/STEPS/'); % Path for STEPS addpath('./matlab/subsystems/'); % Path for Subsystems Simulink files #+END_SRC #+NAME: m-init-path-tangle #+BEGIN_SRC matlab %% Path for functions, data and scripts addpath('./mat/'); % Path for Data addpath('./src/'); % Path for functions addpath('./STEPS/'); % Path for STEPS addpath('./subsystems/'); % Path for Subsystems Simulink files #+END_SRC ** Initialize Simscape Model #+NAME: m-init-simscape #+begin_src matlab % Simulink Model name mdl = 'ustation_simscape'; #+end_src ** Initialize other elements #+NAME: m-init-other #+BEGIN_SRC matlab %% Colors for the figures colors = colororder; %% Frequency Vector freqs = logspace(log10(10), log10(2e3), 1000); #+END_SRC