% Matlab Init :noexport:ignore: %% ustation_2_modeling.m %% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); %% Path for functions, data and scripts addpath('./mat/'); % Path for Data addpath('./src/'); % Path for functions addpath('./STEPS/'); % Path for STEPS addpath('./subsystems/'); % Path for Subsystems Simulink files % Simulink Model name mdl = 'ustation_simscape'; load('nass_model_conf_simulink.mat'); %% Colors for the figures colors = colororder; %% Frequency Vector freqs = logspace(log10(10), log10(2e3), 1000); % Comparison with the measured dynamics % <> % The dynamics of the micro-station was measured by placing accelerometers on each stage and by impacting the translation stage with an instrumented hammer in three directions. % The obtained FRFs were then projected at the CoM of each stage. % To gain a first insight into the accuracy of the obtained model, the FRFs from the hammer impacts to the acceleration of each stage were extracted from the multi-body model and compared with the measurements in Figure ref:fig:ustation_comp_com_response. % Even though there is some similarity between the model and the measurements (similar overall shapes and amplitudes), it is clear that the multi-body model does not accurately represent the complex micro-station dynamics. % Tuning the numerous model parameters to better match the measurements is a highly non-linear optimization problem that is difficult to solve in practice. %% Indentify the model dynamics from the 3 hammer imapcts % To the motion of each solid body at their CoM % All stages are initialized initializeGround( 'type', 'rigid'); initializeGranite( 'type', 'flexible'); initializeTy( 'type', 'flexible'); initializeRy( 'type', 'flexible'); initializeRz( 'type', 'flexible'); initializeMicroHexapod('type', 'flexible'); initializeLoggingConfiguration('log', 'none'); initializeReferences(); initializeDisturbances('enable', false); % Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Micro-Station/Translation Stage/Flexible/F_hammer'], 1, 'openinput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Micro-Station/Granite/Flexible/accelerometer'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Micro-Station/Translation Stage/Flexible/accelerometer'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Micro-Station/Tilt Stage/Flexible/accelerometer'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Micro-Station/Spindle/Flexible/accelerometer'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/Micro-Station/Micro Hexapod/Flexible/accelerometer'], 1, 'openoutput'); io_i = io_i + 1; % Run the linearization G_ms = linearize(mdl, io, 0); G_ms.InputName = {'Fx', 'Fy', 'Fz'}; G_ms.OutputName = {'gtop_x', 'gtop_y', 'gtop_z', 'gtop_rx', 'gtop_ry', 'gtop_rz', ... 'ty_x', 'ty_y', 'ty_z', 'ty_rx', 'ty_ry', 'ty_rz', ... 'ry_x', 'ry_y', 'ry_z', 'ry_rx', 'ry_ry', 'ry_rz', ... 'rz_x', 'rz_y', 'rz_z', 'rz_rx', 'rz_ry', 'rz_rz', ... 'hexa_x', 'hexa_y', 'hexa_z', 'hexa_rx', 'hexa_ry', 'hexa_rz'}; % Load estimated FRF at CoM load('ustation_frf_matrix.mat', 'freqs'); load('ustation_frf_com.mat', 'frfs_CoM'); % Initialization of some variables to the figures dirs = {'x', 'y', 'z', 'rx', 'ry', 'rz'}; stages = {'gbot', 'gtop', 'ty', 'ry', 'rz', 'hexa'}; f = logspace(log10(10), log10(500), 1000); %% Spindle - X response n_stg = 5; % Measured Stage n_dir = 1; % Measured DoF: x, y, z, Rx, Ry, Rz n_exc = 1; % Hammer impact: x, y, z figure; hold on; plot(freqs, abs(squeeze(frfs_CoM(6*(n_stg-1) + n_dir, n_exc, :))), 'DisplayName', 'Measurement'); plot(f, abs(squeeze(freqresp(G_ms([stages{n_stg}, '_', dirs{n_dir}], ['F', dirs{n_exc}]), f, 'Hz'))), 'DisplayName', 'Model'); text(50, 2e-2,{'$D_x/F_x$ - Spindle'},'VerticalAlignment','bottom','HorizontalAlignment','center') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Magnitude [$m/s^2/N$]'); leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; xlim([10, 200]); ylim([1e-6, 1e-1]) %% Hexapod - Y response n_stg = 6; % Measured Stage n_dir = 2; % Measured DoF: x, y, z, Rx, Ry, Rz n_exc = 2; % Hammer impact: x, y, z figure; hold on; plot(freqs, abs(squeeze(frfs_CoM(6*(n_stg-1) + n_dir, n_exc, :))), 'DisplayName', 'Measurement'); plot(f, abs(squeeze(freqresp(G_ms([stages{n_stg}, '_', dirs{n_dir}], ['F', dirs{n_exc}]), f, 'Hz'))), 'DisplayName', 'Model'); text(50, 2e-2,{'$D_y/F_y$ - Hexapod'},'VerticalAlignment','bottom','HorizontalAlignment','center') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Magnitude [$m/s^2/N$]'); leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; xlim([10, 200]); ylim([1e-6, 1e-1]) %% Tilt stage - Z response n_stg = 4; % Measured Stage n_dir = 3; % Measured DoF: x, y, z, Rx, Ry, Rz n_exc = 3; % Hammer impact: x, y, z figure; hold on; plot(freqs, abs(squeeze(frfs_CoM(6*(n_stg-1) + n_dir, n_exc, :))), 'DisplayName', 'Measurement'); plot(f, abs(squeeze(freqresp(G_ms([stages{n_stg}, '_', dirs{n_dir}], ['F', dirs{n_exc}]), f, 'Hz'))), 'DisplayName', 'Model'); text(50, 2e-2,{'$D_z/F_z$ - Tilt'},'VerticalAlignment','bottom','HorizontalAlignment','center') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Magnitude [$m/s^2/N$]'); leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; xlim([10, 200]); ylim([1e-6, 1e-1]) % Micro-station compliance % <> % As discussed in the previous section, the dynamics of the micro-station is complex, and tuning the multi-body model parameters to obtain a perfect match is difficult. % When considering the NASS, the most important dynamical characteristics of the micro-station is its compliance, as it can affect the plant dynamics. % Therefore, the adopted strategy is to accurately model the micro-station compliance. % The micro-station compliance was experimentally measured using the setup illustrated in Figure ref:fig:ustation_compliance_meas. % Four 3-axis accelerometers were fixed to the micro-hexapod top platform. % The micro-hexapod top platform was impacted at 10 different points. % For each impact position, 10 impacts were performed to average and improve the data quality. % #+name: fig:ustation_compliance_meas % #+caption: Schematic of the measurement setup used to estimate the compliance of the micro-station. The top platform of the positioning hexapod is shown with four 3-axis accelerometers (shown in red) are on top. 10 hammer impacts are performed at different locations (shown in blue). % [[file:figs/ustation_compliance_meas.png]] % To convert the 12 acceleration signals $a_{\mathcal{L}} = [a_{1x}\ a_{1y}\ a_{1z}\ a_{2x}\ \dots\ a_{4z}]$ to the acceleration expressed in the frame $\{\mathcal{X}\}$ $a_{\mathcal{X}} = [a_{dx}\ a_{dy}\ a_{dz}\ a_{rx}\ a_{ry}\ a_{rz}]$, a Jacobian matrix $\bm{J}_a$ is written based on the positions and orientations of the accelerometers eqref:eq:ustation_compliance_acc_jacobian. % \begin{equation}\label{eq:ustation_compliance_acc_jacobian} % \bm{J}_a = \begin{bmatrix} % 1 & 0 & 0 & 0 & 0 &-d \\ % 0 & 1 & 0 & 0 & 0 & 0 \\ % 0 & 0 & 1 & d & 0 & 0 \\ % 1 & 0 & 0 & 0 & 0 & 0 \\ % 0 & 1 & 0 & 0 & 0 &-d \\ % 0 & 0 & 1 & 0 & d & 0 \\ % 1 & 0 & 0 & 0 & 0 & d \\ % 0 & 1 & 0 & 0 & 0 & 0 \\ % 0 & 0 & 1 &-d & 0 & 0 \\ % 1 & 0 & 0 & 0 & 0 & 0 \\ % 0 & 1 & 0 & 0 & 0 & d \\ % 0 & 0 & 1 & 0 &-d & 0 % \end{bmatrix} % \end{equation} % Then, the acceleration in the cartesian frame can be computed using eqref:eq:ustation_compute_cart_acc. % \begin{equation}\label{eq:ustation_compute_cart_acc} % a_{\mathcal{X}} = \bm{J}_a^\dagger \cdot a_{\mathcal{L}} % \end{equation} % Similar to what is done for the accelerometers, a Jacobian matrix $\bm{J}_F$ is computed eqref:eq:ustation_compliance_force_jacobian and used to convert the individual hammer forces $F_{\mathcal{L}}$ to force and torques $F_{\mathcal{X}}$ applied at the center of the micro-hexapod top plate (defined by frame $\{\mathcal{X}\}$ in Figure ref:fig:ustation_compliance_meas). % \begin{equation}\label{eq:ustation_compliance_force_jacobian} % \bm{J}_F = \begin{bmatrix} % 0 & -1 & 0 & 0 & 0 & 0\\ % 0 & 0 & -1 & -d & 0 & 0\\ % 1 & 0 & 0 & 0 & 0 & 0\\ % 0 & 0 & -1 & 0 & -d & 0\\ % 0 & 1 & 0 & 0 & 0 & 0\\ % 0 & 0 & -1 & d & 0 & 0\\ % -1 & 0 & 0 & 0 & 0 & 0\\ % 0 & 0 & -1 & 0 & d & 0\\ % -1 & 0 & 0 & 0 & 0 & -d\\ % -1 & 0 & 0 & 0 & 0 & d % \end{bmatrix} % \end{equation} % The equivalent forces and torques applied at center of $\{\mathcal{X}\}$ are then computed using eqref:eq:ustation_compute_cart_force. % \begin{equation}\label{eq:ustation_compute_cart_force} % F_{\mathcal{X}} = \bm{J}_F^t \cdot F_{\mathcal{L}} % \end{equation} % Using the two Jacobian matrices, the FRF from the 10 hammer impacts to the 12 accelerometer outputs can be converted to the FRF from 6 forces/torques applied at the origin of frame $\{\mathcal{X}\}$ to the 6 linear/angular accelerations of the top platform expressed with respect to $\{\mathcal{X}\}$. % These FRFs were then used for comparison with the multi-body model. % Positions and orientation of accelerometers % | *Num* | *Position* | *Orientation* | *Sensibility* | *Channels* | % |-------+------------+---------------+---------------+------------| % | 1 | [0, +A, 0] | [x, y, z] | 1V/g | 1-3 | % | 2 | [-B, 0, 0] | [x, y, z] | 1V/g | 4-6 | % | 3 | [0, -A, 0] | [x, y, z] | 0.1V/g | 7-9 | % | 4 | [+B, 0, 0] | [x, y, z] | 1V/g | 10-12 | % % Measuerment channels % % | Acc Number | Dir | Channel Number | % |------------+-----+----------------| % | 1 | x | 1 | % | 1 | y | 2 | % | 1 | z | 3 | % | 2 | x | 4 | % | 2 | y | 5 | % | 2 | z | 6 | % | 3 | x | 7 | % | 3 | y | 8 | % | 3 | z | 9 | % | 4 | x | 10 | % | 4 | y | 11 | % | 4 | z | 12 | % | Hammer | | 13 | % 10 measurements corresponding to 10 different Hammer impact locations % | *Num* | *Direction* | *Position* | Accelerometer position | Jacobian number | % |-------+-------------+------------+------------------------+-----------------| % | 1 | -Y | [0, +A, 0] | 1 | -2 | % | 2 | -Z | [0, +A, 0] | 1 | -3 | % | 3 | X | [-B, 0, 0] | 2 | 4 | % | 4 | -Z | [-B, 0, 0] | 2 | -6 | % | 5 | Y | [0, -A, 0] | 3 | 8 | % | 6 | -Z | [0, -A, 0] | 3 | -9 | % | 7 | -X | [+B, 0, 0] | 4 | -10 | % | 8 | -Z | [+B, 0, 0] | 4 | -12 | % | 9 | -X | [0, -A, 0] | 3 | -7 | % | 10 | -X | [0, +A, 0] | 1 | -1 | %% Jacobian for accelerometers % aX = Ja . aL d = 0.14; % [m] Ja = [1 0 0 0 0 -d; 0 1 0 0 0 0; 0 0 1 d 0 0; 1 0 0 0 0 0; 0 1 0 0 0 -d; 0 0 1 0 d 0; 1 0 0 0 0 d; 0 1 0 0 0 0; 0 0 1 -d 0 0; 1 0 0 0 0 0; 0 1 0 0 0 d; 0 0 1 0 -d 0]; Ja_inv = pinv(Ja); %% Jacobian for hammer impacts % F = Jf' tau Jf = [0 -1 0 0 0 0; 0 0 -1 -d 0 0; 1 0 0 0 0 0; 0 0 -1 0 -d 0; 0 1 0 0 0 0; 0 0 -1 d 0 0; -1 0 0 0 0 0; 0 0 -1 0 d 0; -1 0 0 0 0 -d; -1 0 0 0 0 d]'; Jf_inv = pinv(Jf); %% Load raw measurement data % "Track1" to "Track12" are the 12 accelerometers % "Track13" is the instrumented hammer force sensor data = [ load('ustation_compliance_hammer_1.mat'), ... load('ustation_compliance_hammer_2.mat'), ... load('ustation_compliance_hammer_3.mat'), ... load('ustation_compliance_hammer_4.mat'), ... load('ustation_compliance_hammer_5.mat'), ... load('ustation_compliance_hammer_6.mat'), ... load('ustation_compliance_hammer_7.mat'), ... load('ustation_compliance_hammer_8.mat'), ... load('ustation_compliance_hammer_9.mat'), ... load('ustation_compliance_hammer_10.mat')]; %% Prepare the FRF computation Ts = 1e-3; % Sampling Time [s] Nfft = floor(1/Ts); % Number of points for the FFT computation win = ones(Nfft, 1); % Rectangular window [~, f] = tfestimate(data(1).Track13, data(1).Track1, win, [], Nfft, 1/Ts); % Samples taken before and after the hammer "impact" pre_n = floor(0.1/Ts); post_n = Nfft - pre_n - 1; %% Compute the FRFs for the 10 hammer impact locations. % The FRF from hammer force the 12 accelerometers are computed % for each of the 10 hammer impacts and averaged G_raw = zeros(12,10,length(f)); for i = 1:10 % For each impact location % Find the 10 impacts [~, impacts_i] = find(diff(data(i).Track13 > 50)==1); % Only keep the first 10 impacts if there are more than 10 impacts if length(impacts_i)>10 impacts_i(11:end) = []; end % Average the FRF for the 10 impacts for impact_i = impacts_i i_start = impact_i - pre_n; i_end = impact_i + post_n; data_in = data(i).Track13(i_start:i_end); % [N] % Remove hammer DC offset data_in = data_in - mean(data_in(end-pre_n:end)); % Combine all outputs [m/s^2] data_out = [data(i).Track1( i_start:i_end); ... data(i).Track2( i_start:i_end); ... data(i).Track3( i_start:i_end); ... data(i).Track4( i_start:i_end); ... data(i).Track5( i_start:i_end); ... data(i).Track6( i_start:i_end); ... data(i).Track7( i_start:i_end); ... data(i).Track8( i_start:i_end); ... data(i).Track9( i_start:i_end); ... data(i).Track10(i_start:i_end); ... data(i).Track11(i_start:i_end); ... data(i).Track12(i_start:i_end)]; [frf, ~] = tfestimate(data_in, data_out', win, [], Nfft, 1/Ts); G_raw(:,i,:) = squeeze(G_raw(:,i,:)) + 0.1*frf'./(-(2*pi*f').^2); end end %% Compute transfer function in cartesian frame using Jacobian matrices % FRF_cartesian = inv(Ja) * FRF * inv(Jf) FRF_cartesian = pagemtimes(Ja_inv, pagemtimes(G_raw, Jf_inv)); % The compliance of the micro-station multi-body model was extracted by computing the transfer function from forces/torques applied on the hexapod's top platform to the "absolute" motion of the top platform. % These results are compared with the measurements in Figure ref:fig:ustation_frf_compliance_model. % Considering the complexity of the micro-station compliance dynamics, the model compliance matches sufficiently well for the current application. %% Identification of the compliance of the micro-station % Initialize simulation with default parameters (flexible elements) initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(); initializeReferences(); initializeSimscapeConfiguration(); initializeLoggingConfiguration(); % Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Micro-Station/Micro Hexapod/Flexible/Fm'], 1, 'openinput'); io_i = io_i + 1; % Direct Forces/Torques applied on the micro-hexapod top platform io(io_i) = linio([mdl, '/Micro-Station/Micro Hexapod/Flexible/Dm'], 1, 'output'); io_i = io_i + 1; % Absolute displacement of the top platform % Run the linearization Gm = linearize(mdl, io, 0); Gm.InputName = {'Fmx', 'Fmy', 'Fmz', 'Mmx', 'Mmy', 'Mmz'}; Gm.OutputName = {'Dx', 'Dy', 'Dz', 'Drx', 'Dry', 'Drz'}; %% Extracted FRF of the compliance of the micro-station in the Cartesian frame from the Simscape model figure; hold on; plot(f, abs(squeeze(FRF_cartesian(1,1,:))), '-', 'color', [colors(1,:), 0.5], 'linewidth', 2.5, 'DisplayName', '$D_x/F_x$ - Measured') plot(f, abs(squeeze(FRF_cartesian(2,2,:))), '-', 'color', [colors(2,:), 0.5], 'linewidth', 2.5, 'DisplayName', '$D_y/F_y$ - Measured') plot(f, abs(squeeze(FRF_cartesian(3,3,:))), '-', 'color', [colors(3,:), 0.5], 'linewidth', 2.5, 'DisplayName', '$D_z/F_z$ - Measured') plot(f, abs(squeeze(freqresp(Gm(1,1), f, 'Hz'))), '-', 'color', colors(1,:), 'DisplayName', '$D_x/F_x$ - Model') plot(f, abs(squeeze(freqresp(Gm(2,2), f, 'Hz'))), '-', 'color', colors(2,:), 'DisplayName', '$D_y/F_y$ - Model') plot(f, abs(squeeze(freqresp(Gm(3,3), f, 'Hz'))), '-', 'color', colors(3,:), 'DisplayName', '$D_z/F_z$ - Model') hold off; leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); leg.ItemTokenSize(1) = 15; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Magnitude [m/N]'); xlim([20, 500]); ylim([2e-10, 1e-6]); xticks([20, 50, 100, 200, 500]) %% Extracted FRF of the compliance of the micro-station in the Cartesian frame from the Simscape model figure; hold on; plot(f, abs(squeeze(FRF_cartesian(4,4,:))), '-', 'color', [colors(1,:), 0.5], 'linewidth', 2.5, 'DisplayName', '$R_x/M_x$ - Measured') plot(f, abs(squeeze(FRF_cartesian(5,5,:))), '-', 'color', [colors(2,:), 0.5], 'linewidth', 2.5, 'DisplayName', '$R_y/M_y$ - Measured') plot(f, abs(squeeze(FRF_cartesian(6,6,:))), '-', 'color', [colors(3,:), 0.5], 'linewidth', 2.5, 'DisplayName', '$R_z/M_z$ - Measured') plot(f, abs(squeeze(freqresp(Gm(4,4), f, 'Hz'))), '-', 'color', colors(1,:), 'DisplayName', '$R_x/M_x$ - Model') plot(f, abs(squeeze(freqresp(Gm(5,5), f, 'Hz'))), '-', 'color', colors(2,:), 'DisplayName', '$R_y/M_y$ - Model') plot(f, abs(squeeze(freqresp(Gm(6,6), f, 'Hz'))), '-', 'color', colors(3,:), 'DisplayName', '$R_z/M_z$ - Model') hold off; leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); leg.ItemTokenSize(1) = 15; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Magnitude [rad/Nm]'); xlim([20, 500]); ylim([2e-7, 1e-4]); xticks([20, 50, 100, 200, 500])