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In this report, a uniaxial model of the Nano Active Stabilization System (NASS) is developed and used
to have a first idea of the challenges involved in this complex system. Note that in this study, only the
vertical direction is considered (which is the most stiff), but other directions were considered as well
and yields to similar conclusions. The model is schematically shown in Figure 1 where the colors are
representing the studied parts in different sections.

In order to have a relevant model, the micro-station dynamics is first identified and its model is tuned
to match the measurements (Section 1). Then, a model of the nano-hexapod is added on top of the
micro-station. With added sample and sensors, this gives a uniaxial dynamical model of the NASS that
will be used for further analysis (Section 2).

The disturbances affecting the position stability are identified experimentally (Section 3) and included
in the model for dynamical noise budgeting (Section 4). In all the following analysis, three nano-
hexapod stiffnesses are considered to better understand the trade-offs and to find the most adequate
nano-hexapod design. Three sample masses are also considered to verify the robustness of the applied
control strategies with respect to a change of sample.

In order to improve the position stability of the sample, an High Authority Control - Low Authority
Control (HAC-LAC) strategy is applied. It consists of first actively damp the plant (the LAC part),
and then applying a position control on the damped plant (the HAC part).

Three active damping techniques are studied (Section 5) which are used to both reduce the effect of
disturbances as well as render the system easier to control afterwards. Once the system is well damped,
a feedback position controller is applied, and the obtained performance are compared (Section 6).

Two key effects that may limit that positioning performances are then considered: the limited micro-
station compliance (Section 7) and the presence of dynamics between the nano-hexapod and the sample’s
point of interest (Section 8).

Conclusion remarks are given in Section 9.
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Figure 1: Uniaxial Micro-Station model in blue (Section 1), Nano-Hexapod models in red (Section 2),
Disturbances in yellow (Section 3), Active Damping in green (Section 5), Position control in
purple (Section 6) and Sample dynamics in cyan (Section 8)
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1 Micro Station Model

In this section, a uni-axial model of the micro-station is tuned in order to match measurements made
on the micro-station. The measurement setup is shown in Figure 1.1 where several geophones1 are fixed
to the micro-station and an instrumented hammer is used to inject forces on different stages of the
micro-station.

From the measured frequency response functions (FRF), the model can be tuned to approximate the
uniaxial dynamics of the micro-station.

Figure 1.1: Experimental setup used for the first dynamical measurements on the Micro-Station. Geo-
phones are fixed to different stages of the micro-station.

1Mark Product L4-C geophones are used. Sensitivity is 171 V
m/s

, natural frequency is ≈ 1Hz
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1.1 Measured dynamics

The measurement setup is schematically shown in Figure 1.2a where two vertical hammer hits are
performed, one on the Granite (force Fg), and one on the micro-hexapod’s top platform (force Fh). The
vertical inertial motion of the granite xg and the micro-hexapod’s top platform xh are measured using
geophones. Three frequency response functions are computed: one from Fh to xh (i.e. the compliance
of the micro-station), one from Fg to xh (or from Fh to xg) and one from Fg to xg.

Due to the bad coherence at low frequency, these frequency response functions will only be shown
between 20 and 200Hz (solid lines in Figure 1.3).
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(a) Measurement setup - Schematic
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Figure 1.2: Schematic of the Micro-Station measurement setup and uniaxial model.

1.2 Uniaxial Model

The uni-axial model of the micro-station is shown in Figure 1.2b. It consists of a mass spring damper
system with 3 degrees of freedom. One mass-spring-damper system represents the granite (with mass
mg, stiffness kg and damping cg). Another mass-spring-damper system represents the different micro-
station stages (the Ty stage, the Ry stage and the Rz stage) with mass mt, damping ct and stiffness kt.
Finally, a third mass-spring-damper system represents the micro-hexapod with mass mh, damping ch
and stiffness kh.

The masses of the different stages are estimated from the 3D model, while the stiffnesses are from the
data-sheet of the manufacturers. The damping coefficients are tuned to match the identified damping
from the measurements. The obtained parameters are summarized in Table 1.1.

Two disturbances are considered (shows in red): the Floor motion xf and the Stage vibrations repre-
sented by ft. The hammer impacts Fh, Fg are shown in blue while the measured inertial motion xh, xg

are shown in black.

6



Table 1.1: Physical parameters used for the micro-station uniaxial model
Stage Mass Stiffness Damping

Micro-Hexapod mh = 15 kg kh = 61N/µm ch = 3 kN
m/s

Ty, Ry, Rz mt = 1200 kg kt = 520N/µm ct = 80 kN
m/s

Granite mg = 2500 kg kg = 950N/µm cg = 250 kN
m/s

1.3 Comparison of the model and measurements

The transfer functions from injected forces by the hammers to the measured inertial motion of the micro-
hexapod and the granite are extracted from the uniaxial model and compared with the measurements
in Figure 1.3.

Because the uniaxial model has 3 degrees of freedom, only three modes with frequencies at 70Hz, 140Hz
and 320Hz are modelled. From Figure 1.3, it is clear that many more modes could be measured and
that the uniaxial model does not perfectly match the measured frequency response functions. However,
the goal is not to have a perfect match with the measurement (this would require a much more complex
model) but to have a first approximation. More accurate models will be used later on.
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Figure 1.3: Comparison of the measured FRF and identified ones from the uni-axial model
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2 Nano-Hexapod Model

A model of the nano-hexapod and sample is now added on top of the uni-axial model of the micro-
station (Figure 2.1a). Disturbances (shown in red) are fs the direct forces applied to the sample (for
instance cable forces), ft representing the vibrations induced when scanning the different stages and xf

the floor motion. The control signal is the force applied by the nano-hexapod f and the measurement
is the relative motion between the sample and the granite d. The sample is here considered as a rigid
body and rigidly fixed to the nano-hexapod. The effect of having resonances between the sample’s point
of interest and the nano-hexapod actuator will be considered in Section 8.
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(b) Bode Plot of the transfer function from actuator forces f to
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Figure 2.1: Uniaxial model of the NASS (a) with the the micro-station shown in black, the nano-
hexapod represented in blue and the sample represented in green. Disturbances are shown
in red. Extracted transfer function from f to d (b).
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2.1 Nano-Hexapod Parameters

The nano-hexapod is represented by a mass spring damper system (shown in blue in Figure 2.1a). Its
mass mn is set to 15 kg while its stiffness kn can vary depending on the chosen architecture/technology.
The sample is represented by a mass ms that can vary from 1 kg up to 50 kg.

As a first example, the nano-hexapod stiffness of is set at kn = 10N/µm and the sample mass is chosen
at ms = 10 kg.

2.2 Obtained Dynamic Response

The sensitivity to disturbances (i.e. the transfer functions from xf , ft, fs to d) can be extracted from
the uniaxial model of Figure 2.1a and are shown in Figure 2.2. The plant (i.e. the transfer function
from actuator force f to measured displacement d) is shown in Figure 2.1b.

For further analysis, 9 “configurations” of the uniaxial NASS model of Figure 2.1a will be considered:
three nano-hexapod stiffnesses (kn = 0.01N/µm, kn = 1N/µm and kn = 100N/µm) combined with
three sample’s masses (ms = 1 kg, ms = 25 kg and ms = 50 kg).
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Figure 2.2: Sensitivity of the relative motion d to disturbances: fs the direct forces applied on the
sample (a), ft disturbances from the micro-station stages (b) and xf the floor motion (a)
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3 Disturbance Identification

In order to quantify disturbances (red signals in Figure 2.1a), three geophones1 are used. One is located
on the floor, another one on the granite and the last one on the micro-hexapod’s top platform (see Figure
3.1a). The geophone located on the floor is used to measured the floor motion xf while the other two
geophones are used to measure vibrations introduced by scanning of the Ty stage and Rz stage (see
Figure 3.1b).

xhgeophone

Ty

xg
geophone

Granite xf
geophone

θz

z

x
y

(a) Disturbance measurement setup - Schematic
(b) Two geophones are used to measure vibrations in-

duced by Ty and Rz scans

Figure 3.1: Identification of the disturbances coming from the micro-station. Measurement schematic
is shown in (a). A picture of the setup is shown in (b)

3.1 Ground Motion

In order to acquire the geophone signals, the measurement setup shown in Figure 3.2 is used. The
voltage generated by the geophone is amplified using a low noise voltage amplifier2 with a gain of 60dB
before going to the ADC. This is done in order to improve the signal over noise ratio.

To reconstruct the displacement xf from the measured voltage V̂xf
, the transfer function of the mea-

surement chain from xf to V̂xf
needs to be estimated. First the transfer function Ggeo from the floor

motion xf to generated geophone voltage Vxf
is shown in (3.1), with Tg = 88 V

m/s the sensitivity of the
geophone, f0 = ω0

2π = 2Hz its resonance frequency and ξ = 0.7 its damping ratio. This model of the
geophone is taken from [1]. The gain of the voltage amplifier is V ′

xf
/Vxf

= g0 = 1000.

1Mark Product L-22D geophones are used. Sensitivity is 88 V
m/s

, natural frequency is ≈ 2Hz
2DLPVA-100-B from Femto. Voltage input noise is 2.4nV/

√
Hz
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Ggeo(s) =
Vxf

xf
(s) = Tg · s ·

s2

s2 + 2ξω0s+ ω2
0

[V/m] (3.1)

geophonexf g0 ADC
Vxf

V ′
xf

V̂xf

Figure 3.2: Measurement setup for one geophone. The inertial displacement x is converted to a voltage
V by the geophone. This voltage is amplified by a factor g0 = 60 dB using a low-noise
voltage amplifier. It is then converted to a digital value V̂x using a 16bit ADC.

The amplitude spectral density of the floor motion Γxf
can be computed from the amplitude spectral

density of measured voltage ΓV̂xf
using (3.2). The estimated amplitude spectral density Γxf

of the floor
motion xf is shown in Figure 3.3a.

Γxf
(ω) =

ΓV̂xf
(ω)

|Ggeo(jω)| · g0

[
m/

√
Hz
]

(3.2)
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Figure 3.3: Estimated amplitude spectral density of the floor motion xf (a) and of the stage distur-
bances ft (b)

3.2 Stage Vibration

In order to estimate the vibrations induced by the scanning of the micro-station stages, two geophones
are used as shown in Figure 3.1b. The vertical relative velocity between the top platform of the micro
hexapod and the granite is estimated in two cases: first without moving the micro-station stages, and
then during a Spindle rotation at 6rpm. The vibrations induced by the Ty stage are not considered
here because the induced vibrations have less amplitude than the vibrations induced by the Rz stage
and because the Ty stage can be scanned at lower velocities if the induced vibrations are found to be
an issue.
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The amplitude spectral density of the relative motion with and without the Spindle rotation are com-
pared in Figure 3.4. It is shown that the spindle rotation increases the vibrations above 20Hz. The
sharp peak observed at 24Hz is believed to be induced by electromagnetic interference between the
currents in the spindle motor phases and the geophone cable because this peak is not observed when
rotating the spindle “by hand”.
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Figure 3.4: Amplitude Spectral Density ΓRz
of the relative motion measured between the granite and

the micro-hexapod’s top platform during Spindle rotating

In order to compute the equivalent disturbance force ft (Figure 1.2b) that induces such motion, the
transfer function Gft(s) from ft to the relative motion between the micro-hexapod’s top platform and
the granite (xh−xg) is extracted from the model. The amplitude spectral density Γft of the disturbance
force is them computed from (3.3) and is shown in Figure 3.3b.

Γft(ω) =
ΓRz

(ω)

|Gft(jω)|
(3.3)
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4 Open-Loop Dynamic Noise Budgeting

Now that a model of the NASS has been obtained (see section 2) and that the disturbances have been
estimated (see section 3), it is possible to perform an open-loop dynamic noise budgeting.

In order to perform such noise budgeting, the disturbances needs to be modelled by their spectral
densities (done in section 3). Then, the transfer functions from disturbances to the performance metric
(here the distance d) are computed (Section 4.1). Finally, these two information are combined to
estimate the corresponding spectral density of the performance metric. This is very useful to identify
what is limiting the performances in the system, or the compare the achievable performances with
different system parameters (Section 4.2).

4.1 Sensitivity to disturbances

From the Uni-axial model of the NASS (Figure 2.1a), the transfer function from the disturbances (fs,
xf and ft) to the displacement d are computed.

This is done for two extreme sample masses ms = 1 kg and ms = 50 kg and three nano-hexapod
stiffnesses:

• kn = 0.01N/µm that could represent a voice coil actuator with soft flexible guiding

• kn = 1N/µm that could represent a voice coil actuator with a stiff flexible guiding or a mechani-
cally amplified piezoelectric actuator

• kn = 100N/µm that could represent a stiff piezoelectric stack actuator

The obtained sensitivity to disturbances for the three nano-hexapod stiffnesses are shown in Figure 4.1
for the sample mass ms = 1 kg (same conclusions can be drawn with ms = 50 kg):

• The soft nano-hexapod is more sensitive to forces applied on the sample (cable forces for instance),
which is expected due to its lower stiffness (Figure 4.1a)

• Between the suspension mode of the nano-hexapod (here at 5Hz for the soft nano-hexapod) and
the first mode of the micro-station (here at 70Hz), the disturbances induced by the stage vibrations
are filtered out (Figure 4.1b)

• Above the suspension mode of the nano-hexapod, the sample’s inertial motion is unaffected by
the floor motion, and therefore the sensitivity to floor motion is close to 1 (Figure 4.1c)
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Figure 4.1: Sensitivity of d to disturbances for three different nano-hexpod stiffnesses. fs the direct
forces applied on the sample (a), ft disturbances from the micro-station stages (b) and xf

the floor motion (a)

4.2 Open-Loop Dynamic Noise Budgeting

Now, the amplitude spectral density of the disturbances are taken into account to estimate the residual
motion d for each nano-hexapod and sample configuration. The Cumulative Amplitude Spectrum of
the relative motion d due to both the floor motion xf and the stage vibrations ft are shown in Figure
4.2a for the three nano-hexapod stiffnesses. It is shown that the effect of the floor motion is much less
than the effect of stage vibrations, except for the soft nano-hexapod below 5Hz.

The total cumulative amplitude spectrum of d for the three nano-hexapod stiffnesses and for the two
sample’s masses are shown in Figure 4.2b. The conclusion is that the sample’s mass has little effect on
the cumulative amplitude spectrum of the relative motion d.

Conclusion

Open-loop residual vibrations of d can be estimated from the low frequency value of the cumula-
tive amplitude spectrum in Figure 4.2b. This residual vibration of d is found to be in the order of
100nmRMS for the stiff nano-hexapod (kn = 100N/µm), 200nmRMS for the relatively stiff nano-
hexapod (kn = 1N/µm) and 1µmRMS for the soft nano-hexapod (kn = 0.01N/µm). From this
analysis, it may be concluded that that the stiffer the nano-hexapod the better.

However, what is more important is the closed-loop residual vibration of d (i.e. while the feedback
controller is used). The goal is to have a closed-loop residual vibration εd ≈ 20nmRMS (represented
by an horizontal dashed black line in Figure 4.2b). The bandwidth of the feedback controller leading to
a closed-loop residual vibration of 20nmRMS can be estimated as the frequency where the cumulative
amplitude spectrum crosses the black dashed line in Figure 4.2b.

14



100 101 102

Frequency [Hz]

10!12

10!10

10!8

10!6
C
A

S
[m

]

ft

ft

ft

xf (kn = 0:01N=7m)
xf (kn = 1N=7m)
xf (kn = 100N=7m)

(a) Effect of floor motion xf and stage disturbances ft

100 101 102

Frequency [Hz]

10!12

10!10

10!8

10!6

C
A

S
[m

] 20 nm RMS

ms = 1 kg, kn = 0:01N=7m
ms = 1 kg, kn = 1N=7m
ms = 1 kg, kn = 100N=7m
ms = 50 kg, kn = 0:01N=7m
ms = 50 kg, kn = 1N=7m
ms = 50 kg, kn = 100N=7m

(b) Effect of nano-hexapod stiffness kn and payload
mass ms

Figure 4.2: Cumulative Amplitude Spectrum of the relative motion d. The effect of xf and ft are
shown in (a). The effect of sample mass for the three hexapod stiffnesses is shown in (b).
The control objective of having a residual error of 20 nm RMS is shown by the horizontal
black dashed line.

Closed loop bandwidth of ≈ 10Hz is found for the soft nano-hexapod (kn = 0.01N/µm), ≈ 50Hz for the
relatively stiff nano-hexapod (kn = 1N/µm) and ≈ 100Hz for the stiff nano-hexapod (kn = 100N/µm).
Therefore, while the open-loop vibration is the lowest for the stiff nano-hexapod, it requires the largest
feedback bandwidth to meet the specifications.

The advantage of the soft nano-hexapod can be explained by the natural isolation from the micro-station
vibration above its suspension mode as shown in Figure 4.1b.
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5 Active Damping

In this section, three active damping techniques are applied on the nano-hexapod (see Figure 5.1):
Integral Force Feedback (IFF) [2], Relative Damping Control (RDC) [3, Chapter 7.2] and Direct Velocity
Feedback (DVF) [4]–[6].

These damping strategies are first described (Section 5.1) and are then compared in terms of achievable
damping of the nano-hexapod mode (Section 5.3), reduction of the effect of disturbances (i.e. xf , ft
and fs) on the displacement d (Sections 5.4).
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Figure 5.1: Three active damping strategies. Integral Force Feedback (a) using a force sensor, Relative
Damping Control (b) using a relative displacement sensor, and Direct Velocity Feedback
(c) using a geophone

5.1 Active Damping Strategies

Integral Force Feedback (IFF) The Integral Force Feedback strategy consists of using a force sensor
in series with the actuator (see Figure 5.2a) and applying an “integral” feedback controller (5.1).
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KIFF(s) =
g

s
(5.1)

The mechanical equivalent of this IFF strategy is a dashpot in series with the actuator stiffness with a
damping coefficient equal to the stiffness of the actuator divided by the controller gain k/g (see Figure
5.2b).

m

fm

k g/s
f

(a) Integral Force Feedback

m

k

k/g

(b) Equivalent mechanical representation

Figure 5.2: Integral Force Feedback (a) is equivalent to a damper in series with the actuators stiffness
(b)

Relative Damping Control (RDC) For the Relative Damping Control strategy, a relative motion
sensor that measures the motion of the actuator is used (see Figure 5.3a) and a “derivative” feedback
controller is used (5.2).

KRDC(s) = −g · s (5.2)

The mechanical equivalent of RDC is a dashpot in parallel with the actuator with a damping coefficient
equal to the controller gain g (see Figure 5.3b).

Direct Velocity Feedback (DVF) Finally, the Direct Velocity Feedback strategy consists of using an
inertial sensor (usually a geophone) that measures the “absolute” velocity of the body fixed on top of
the actuator (see Figure 5.4a). This velocity is fed back to the actuator with a “proportional” controller
(5.3).

KDVF(s) = −g (5.3)

This is equivalent to a dashpot (with a damping coefficient equal to the controller gain g) between the
body (on which the inertial sensor is fixed) and an inertial reference frame (see Figure 5.4b). This is
usually refers to as “sky hook damper”.
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5.2 Plant Dynamics for Active Damping

The plant dynamics for all three active damping techniques are shown in Figure 5.5. All have alternating
poles and zeros meaning that the phase do not vary by more than 180deg which makes the design of a
robust damping controller very easy.

This alternating poles and zeros property is guaranteed for the IFF and RDC cases because the sensors
are collocated with the actuator [3, Chapter 7]. For the DVF controller, this property is not guaranteed,
and may be lost if some flexibility between the nano-hexapod and the sample is considered [3, Chapter
8.4].

When the nano-hexapod’s suspension modes are at lower frequencies than the resonances of the micro-
station (blue and red curves in Figure 5.5), the resonances of the micro-stations have little impact on the
IFF and DVF transfer functions. For the stiff nano-hexapod (yellow curves), the micro-station dynamics
can be seen on the transfer functions in Figure 5.5. Therefore, it is expected that the micro-station
dynamics might impact the achievable damping if a stiff nano-hexapod is used.
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Figure 5.5: Plant dynamics for the three active damping techniques (IFF: a, RDC: b, DVF: c), for
three nano-hexapod stiffnesses (kn = 0.01N/µm in blue, kn = 1N/µm in red and kn =
100N/µm in yellow) and three sample’s masses (ms = 1 kg: solid curves, ms = 25 kg:
dot-dashed curves, and ms = 50 kg: dashed curves).
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5.3 Achievable Damping and Damped Plants

In order to compare the added damping using the three considered active damping strategies, the root
locus plot is used. Indeed, the damping ratio ξ of a pole in the complex plane can be estimated from the
angle φ it makes with the imaginary axis (5.4). Increasing the angle with the imaginary axis therefore
means more damping is added to the considered resonance. This is illustrated in Figure 5.7 by the
dashed black line indicating maximum achievable damping.

ξ = sin(φ) (5.4)

The Root Locus for the three nano-hexapod stiffnesses and for the three active damping techniques
are shown in Figure 5.6. All three active damping approach can lead to critical damping of the nano-
hexapod suspension mode (angle φ can be increased up to 90 degrees). There is even some damping
authority on micro-station modes in the following cases:

IFF with a stiff nano-hexapod (Figure 5.6c) This can be understood from the mechanical equivalent
of IFF shown in Figure 5.2b considering an high stiffness k. The micro-station top platform is
connected to an inertial mass (the nano-hexapod) through a damper, which damps the micro-
station suspension suspension mode.

DVF with a stiff nano-hexapod (Figure 5.6c) In that case, the “sky hook damper” (see mechanical
equivalent of DVF in Figure 5.4b) is connected to the micro-station top platform through the stiff
nano-hexapod.

RDC with a soft nano-hexapod (Figure 5.7) At the frequency of the micro-station mode, the nano-
hexapod top mass is behaving as an inertial reference as the suspension mode of the soft nano-
hexapod is at much lower frequency. The micro-station and the nano-hexapod masses are con-
nected through a large damper induced by RDC (see mechanical equivalent in Figure 5.3b) which
allows some damping of the micro-station.
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Figure 5.6: Root Loci for the three active damping techniques (IFF in blue, RDC in red and DVF in
yellow). This is shown for three nano-hexapod stiffnesses. The Root Loci are zoomed on
the suspension mode of the nano-hexapod.

The transfer functions from the plant input f to the relative displacement d while the active damping
is implemented are shown in Figure 5.8. All three active damping techniques yield similar damped
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Figure 5.7: Root Locus for the three damping techniques applied with the soft nano-hexapod. It is
shown that the RDC active damping technique has some authority on one mode of the
micro-station. This mode corresponds to the suspension mode of the micro-hexapod.
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Figure 5.8: Obtained damped transfer function from f to d for the three damping techniques.

5.4 Sensitivity to disturbances and Noise Budgeting

Reasonable gains are chosen for the three active damping strategies such that the nano-hexapod sus-
pension mode is well damped. The sensitivity to disturbances (direct forces fs, stage vibrations ft and
floor motion xf ) for all three active damping techniques are compared in Figure 5.9. The comparison
is done with the nano-hexapod having a stiffness kn = 1N/µm.

Several conclusions can be made by comparing of obtained sensitivity transfer functions:
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• IFF degrades the sensitivity to direct forces on the sample (i.e. the compliance) below the reso-
nance of the nano-hexapod (Figure 5.9a). This is a well known effect of using IFF for vibration
isolation [7].

• RDC degrades the sensitivity to stage vibrations around the nano-hexapod’s resonance as com-
pared to the other two methods (Figure 5.9b). This is due to the fact that the equivalent damper
in parallel with the actuator (see Figure 5.3b) increases the transmission of the micro-station
vibration to the sample which is not the same for the other two active damping strategies.

• both IFF and DVF degrade the sensitivity to floor motion below the resonance of the nano-
hexapod (Figure 5.9c).
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Figure 5.9: Change of sensitivity to disturbance with all three active damping strategies. fs the direct
forces applied on the sample (a), ft disturbances from the micro-station stages (b) and xf

the floor motion (a)

From the amplitude spectral density of the disturbances (computed in Section 3) and the sensitivity to
disturbances estimated with the three active damping strategies, a noise budget can be performed. The
cumulative amplitude spectrum of the distance d with all three active damping techniques are shown
in Figure 5.10 and compared with the open-loop case. All three active damping methods are giving
similar results.

Conclusion

Three active damping strategies have been studied for the Nano Active Stabilization System (NASS).
Equivalent mechanical representations were derived in Section 5.1 which are helpful to understand the
specific effects of each strategy. The plant dynamics were then compared in Section 5.2 and were found to
all have alternating poles and zeros which helps the design of the active damping controller. However,
this property is not guaranteed for DVF. The achievable damping of the nano-hexapod suspension
mode can be made as large as possible for all three active damping techniques (Section 5.3). Even
some damping can be applied to some micro-station modes in specific cases. The obtained damped
plants were found to be similar. The damping strategies were then compared in terms of reduction of
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Figure 5.10: Comparison of the cumulative amplitude spectrum (CAS) of the distance d for all three
active damping techniques (OL in black, IFF in blue, RDC in red and DVF in yellow).

disturbances in Section 5.4.

The comparison between the three active damping strategies is summarized in Table 5.1. It is difficult
to conclude on the best active damping strategy for the Nano Active Stabilization System (NASS) yet.
Which one will be used will be determined with the use of more accurate models and will depend on
which is the easiest to implement in practice

Table 5.1: Comparison of active damping strategies
IFF RDC DVF

Sensor Force sensor Relative motion sensor Inertial sensor

Damping Up to critical Up to critical Up to Critical

Robustness Requires collocation Requires collocation Impacted by geophone resonances

fs Disturbance ↗ at low frequency ↘ near resonance ↘ near resonance
ft Disturbance ↘ near resonance ↗ near resonance ↘ near resonance
xf Disturbance ↗ at low frequency ↘ near resonance ↗ at low frequency
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6 Position Feedback Controller

The High Authority Control - Low Authority Control (HAC-LAC) architecture is shown in Figure 6.1a.
It corresponds to a two step control strategy:

• First, an active damping controller KLAC is implemented (see Section 5). It allows to reduce
the vibration level, and it also makes the damped plant (transfer function from u′ to y) easier to
control than the undamped plant (transfer function from u to y). It is called low authority control
as it only slightly affects the system poles [3, Chapter 14.6].

• Then, a position controller KHAC is implemented which is used to control the position d. This is
called high authority control as it usually relocates the system’s poles.

In this section, Integral Force Feedback is used as the Low Authority Controller (the other two damping
strategies would lead to the same conclusions here). This control architecture applied on the uniaxial
model is shown in Figure 6.1b.
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Figure 6.1: High Authority Control - Low Authority Control (HAC-LAC)
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6.1 Damped Plant Dynamics

The obtained damped plants for the three nano-hexapod stiffnesses are shown in Figure 6.2. For
kn = 0.01N/µm and kn = 1N/µm, the dynamics is quite simple and can be well approximated by a
second order plant (Figures 6.2a and 6.2b). However, this is not the case for the stiff nano-hexapod
(kn = 100N/µm) where two modes can be seen (Figure 6.2c). This is due to the interaction between
the micro-station (modelled modes at 70Hz, 140Hz and 320Hz) and the nano-hexapod. Such effect will
be further explained in Section 7.
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Figure 6.2: Obtained damped plant using Integral Force Feedback for three sample’s masses

6.2 Position Feedback Controller

The objective is to design high authority feedback controllers for the three nano-hexapod’s. This
controller must be robust to the change of sample’s mass (from 1 kg up to 50 kg).

The required feedback bandwidths were estimated in Section 4:

• fb ≈ 10Hz for the soft nano-hexapod (kn = 0.01N/µm). Near this frequency, the plants (shown
in Figure 6.2a) are equivalent to a mass line (i.e. slope of −40 dB/dec and a phase of -180 degrees).
The gain of this mass line can vary up to a fact ≈ 5 (suspended mass from 16 kg up to 65 kg).
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This means that the designed controller will need to have large gain margins to be robust to the
change of sample’s mass.

• ≈ 50Hz for the relatively stiff nano-hexapod (kn = 1N/µm). Similarly to the soft nano-hexapod,
the plants near the crossover frequency are equivalent to a mass line (Figure 6.2b). It will be
probably easier to have a little bit more bandwidth in this configuration to be further away from
the nano-hexapod suspension mode.

• ≈ 100Hz for the stiff nano-hexapod (kn = 100N/µm). Contrary to the two first nano-hexapod
stiffnesses, here the plants have more complex dynamics near the wanted crossover frequency (see
Figure 6.2c). The micro-station is not stiff enough to have a clear stiffness line at this frequency.
Therefore, there are both a change of phase and gain depending on the sample’s mass. This makes
the robust design of the controller a little bit more complicated.

Position feedback controllers are designed for each nano-hexapod such that it is stable for all considered
sample masses with similar stability margins (see Nyquist plots in Figure 6.3). An arbitrary minimum
modulus margin of 0.25 was chosen when designing the controllers. These high authority controllers
are generally composed of a lag at low frequency for disturbance rejection, a lead to increase the phase
margin near the crossover frequency and a low pass filter to increase the robustness to high frequency
dynamics. The controllers used for the three nano-hexapod are shown in Equation (6.1), and the used
parameters are summarized in Table 6.1.

Ksoft(s) = g · s+ ω0

s+ ωi︸ ︷︷ ︸
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Table 6.1: Parameters used for the position feedback controllers
Soft Moderately stiff Stiff

Gain g = 4 · 105 g = 3 · 106 g = 6 · 1012
Lead a = 5, ωc = 20Hz a = 4, ωc = 70Hz a = 5, ωc = 100Hz
Lag ω0 = 5Hz, ωi = 0.01Hz ω0 = 20Hz, ωi = 0.01Hz ωi = 0.01Hz
LPF ωl = 200Hz ωl = 300Hz ωl = 500Hz

The loop gains corresponding to the designed high authority controllers for the three nano-hexapod
are shown in Figure 6.4. We can see that for the soft and moderately stiff nano-hexapod (Figures 6.3a
and 6.3b), the crossover frequency varies a lot with the sample mass. This is due to the fact that the
crossover frequency corresponds to the mass line of the plant (whose gain is inversely proportional to
the mass). For the stiff nano-hexapod (Figure 6.3c), it was difficult to achieve the wanted closed-loop
bandwidth of ≈ 100Hz. A cross-over frequency of ≈ 65Hz was achieved instead.
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Note that these controllers were not designed using any optimization methods. The goal is just to have
a first estimation of the attainable performance.
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Figure 6.3: Nyquist Plot for the High Authority Controller. The minimum modulus margin is illus-
trated by the black circle.
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Figure 6.4: Loop gain for the High Authority Controller

6.3 Closed-Loop Noise Budgeting

The high authority position feedback controllers are then implemented and the closed-loop sensitivity
to disturbances are computed. These are compared with the open-loop and damped plants cases in
Figure 6.5 for just one configuration (moderately stiff nano-hexapod with 25kg sample’s mass). As
expected, the sensitivity to disturbances is decreased in the controller bandwidth and slightly increase
outside this bandwidth.

The cumulative amplitude spectrum of the motion d is computed for all nano-hexapod configurations,
all sample masses and in the open-loop (OL), damped (IFF) and position controlled (HAC-IFF) cases.
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Figure 6.5: Change of sensitivity to disturbances with LAC and with HAC-LAC. Nano-Hexapod with
kn = 1N/µm and sample mass of 25 kg are used. fs the direct forces applied on the
sample (a), ft disturbances from the micro-station stages (b) and xf the floor motion (a)

The results are shown in Figure 6.6. Obtained root mean square values of the distance d are better
for the soft nano-hexapod (≈ 25nm to ≈ 35nm depending on the sample’s mass) than for the stiffer
nano-hexapod (from ≈ 30nm to ≈ 70nm).

Conclusion

Based on the open-loop noise budgeting made in Section 4, the closed-loop bandwidth required to obtain
a vibration level of ≈ 20nmRMS was estimated. In order to achieve such bandwidth, the HAC-LAC
strategy was followed which consists of first using an active damping controller (studied in Section 5)
and then adding an high authority position feedback controller.

In this section, feedback controllers were designed in such a way that the required closed-loop band-
width was reached while being robust to a change of payload mass. The attainable vibration control
performances were estimated for the three nano-hexapod stiffnesses and were found to be close to the
required values. Yet, the stiff nano-hexapod (kn = 100N/µm) is requiring the largest feedback band-
width that is shown to be difficult to achieve while being robust to the change of payload mass. A slight
advantage can be given to the soft nano-hexapod as it requires less feedback bandwidth while giving
better stability results.
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7 Effect of limited micro-station compliance

In this section, the impact of the compliance of the support (i.e. the micro-station) on the dynamics of
the plant to control is studied. This is a critical point as the dynamics of the micro-station is complex,
depends on the considered direction (see measurements in Figure 1.3) and may vary with position and
time. It would be much better to have a plant dynamics which is not impacted by the micro-station.

Therefore, the objective in this section is to obtain some guidance for the design of a nano-hexapod that
will not by impacted by the complex micro-station dynamics. In order to study this, two models are used
(Figure 7.1). The first one consists of the nano-hexapod directly fixed on top of the granite, therefore
neglecting any support compliance (Figure 7.1a). The second one consists of the the nano-hexapod
fixed on top of the micro-station having some limited compliance (Figure 7.1b)
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(b) Nano-Hexapod fixed on top of the Micro-Station

Figure 7.1: Models used to study the effect of limited support compliance

7.1 Neglected support compliance

Let’s first neglect the limited compliance of the micro-station and use the uniaxial model show in
Figure 7.1a. Let’s choose a nano-hexapod mass (including the payload) of 20 kg and three hexapod
stiffnesses such that their resonance frequencies are at ωn = 10Hz, ωn = 70Hz and ωn = 400Hz.
The obtained transfer functions from F to L′ (shown in Figure 7.2) are simple second order low pass
filters. When neglecting the support compliance, large feedback bandwidth can be achieve for all three
Nano-Hexapod.
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Figure 7.2: Obtained transfer functions from F to L′ when neglecing support compliance

7.2 Effect of support compliance on L/F

Let’s now add some support compliance and use the model shown in Figure 7.1b. The parameters of
the support (i.e. mµ, cµ and kµ) are chosen to match the vertical mode at 70Hz seen on the micro-
station (Figure 1.3). The transfer functions from F to L (i.e. control of the relative motion of the
nano-hexapod) and from L to d (i.e. control of the position between the nano-hexapod and the fixed
granite) can then be computed.

When the relative displacement of the nano-hexapod L is to be controlled (dynamics shown in Figure
7.3), having a stiff nano-hexapod (i.e. with a suspension mode at higher frequency than the mode of
the support) makes the dynamics less affected by the limited support compliance (Figure 7.3c). This
is why it is very common to have stiff piezoelectric stages fixed at the very top of positioning stages.
In such case, the control of the piezoelectric stage using its integrated metrology (typically capacitive
sensors) is quite simple as the plant is not much affected by the dynamics of the support on which is it
fixed.

If a soft nano-hexapod is used, the support dynamics appears in the dynamics between F and L (see
Figure 7.3a) which will impact the control robustness and performance.
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Figure 7.3: Effect of the support compliance on the transfer functions from F to L
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7.3 Effect of support compliance on d/F

When the motion to be controlled is the relative displacement d between the granite and the nano-
hexapod’s top platform (which is the case for the NASS), the effect of the support compliance on the
plant dynamics is opposite to what was previously observed. Indeed, using a “soft” nano-hexapod (i.e.
with a suspension mode at lower frequency than the mode of the support) makes the dynamics less
affected by the support dynamics (Figure 7.4a). On the contrary, if a “stiff” nano-hexapod is used, the
support dynamics appears in the plant dynamics (Figure 7.4c).
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Figure 7.4: Effect of the support compliance on the transfer functions from F to d

Conclusion

In order to study the impact of the support compliance on the plant dynamics, simple models shown
in Figure 7.1 were used. Depending on the quantity to be controlled (L or d in Figure 7.1b) and on
the relative location of ων (suspension mode of the nano-hexapod) with respect to ωµ (modes of the
support), the interaction between the support and the nano-hexapod dynamics can change drastically
(observations made are summarized in Table 7.1).

For the Nano Active Stabilization System (NASS), having the suspension mode of the nano-hexapod at
lower frequencies than the suspension modes of the micro-station would make the plant less dependent
on the micro-station dynamics, and therefore easier to control. Note that observations made in this
section are also affected by the ratio between the support mass mµ and the nano-hexapod mass mn

(the effect is more pronounced when the ratio mn/mµ increases).

Table 7.1: Impact of the support dynamics on the plant dynamics
ων � ωµ ων ≈ ωµ ων � ωµ

d/F small large large
L/F large large small
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8 Effect of Payload Dynamics

Up to this section, the sample was modelled as a mass rigidly fixed to the nano-hexapod (as shown in
Figure 8.1a). However, such sample may present internal dynamics and its fixation to the nano-hexapod
may have limited stiffness. To study the effect of the sample dynamics, models shown in Figure 8.1b
are used.

Granite
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(a) Rigid payload
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(b) Payload with some flexibility

Figure 8.1: Models used to study the effect of payload dynamics

8.1 Impact on the plant dynamics

To study the impact of the flexibility between the nano-hexapod and the payload, a first (reference)
model with a rigid payload as shown in Figure 8.1a is used. Then “flexible” payload whose model is
shown in Figure 8.1b are considered. The resonances of the payload are set at ωs = 20Hz and at
ωs = 200Hz while its mass is either ms = 1 kg or ms = 50 kg.

The transfer functions from the nano-hexapod force f to the motion of the nano-hexapod top plat-
form are computed for all the above configurations and are compared for a soft Nano-Hexapod (kn =
0.01N/µm) in Figure 8.2. It can be seen that the mode of the sample adds an anti-resonance followed
by a resonance (zero/pole pattern). The frequency of the anti-resonance corresponds to the “free” res-
onance of the sample ωs =

√
ks/ms. The flexibility of the sample also changes the high frequency gain

(the mass line is shifted from 1
(mn+ms)s2

to 1
mns2

).

The same transfer functions are now compared when using a stiff nano-hexapod (kn = 100N/µm) in
Figure 8.3. In that case, the sample’s resonance ωs is smaller than the nano-hexapod resonance ωn.
This changes the zero/pole pattern to a pole/zero pattern (the frequency of the zero still being equal
to ωs). Even tough the added sample’s flexibility still shifts the high frequency mass line as for the
soft nano-hexapod, the dynamics below the nano-hexapod resonance is much less impacted, even when
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Figure 8.2: Effect of the payload dynamics on the soft Nano-Hexapod. Light sample (a), and heavy
sample (b)

the sample mass is high and when the sample resonance is at low frequency (see yellow curve in Figure
8.3b).

8.2 Impact on the close loop performances

Having a flexibility between the measured position (i.e. the top platform of the nano-hexapod) and the
point-of-interest to be positioned relative to the x-ray may also impact the closed-loop performances
(i.e. the remaining sample’s vibration).

In order to estimate if the sample flexibility is critical for the closed-loop position stability of the sample,
the model shown in Figure 8.4 is used. This is the same model that was used in Section 6 but with an
added flexibility between the nano-hexapod and the sample (considered sample modes are at ωs = 20Hz
and ωn = 200Hz). In that case, the measured (i.e. controlled) distance d is no longer equal to the real
performance index (the distance y).

The system dynamics is computed and IFF is applied using the same gains as the ones used in Section
5. Thanks to the collocation between the nano-hexapod and the force sensor used for IFF, the damped
plants are still stable and similar damping values are obtained than when considering a rigid sample.
The High Authority Controllers used in Section 6 are then implemented on the damped plants. The
obtained closed-loop systems are stable, indicating good robustness.

Finally, closed-loop noise budgeting is computed for the obtained the closed-loop system and the cumu-
lative amplitude spectrum of d and y are shown in Figure 8.5b. The cumulative amplitude spectrum of
the measured distance d (Figure 8.5a) shows that the added flexibility at the sample location have very
little effect on the control performance. However, the cumulative amplitude spectrum of the distance y
(Figure 8.5b) shows that the stability of y is degraded when the sample flexibility is considered and is
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Figure 8.3: Effect of the payload dynamics on the stiff Nano-Hexapod. Light sample (a), and heavy
sample (b)
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degraded as ωs is lowered.

What happens is that above ωs, even though the motion d can be controlled perfectly, the sample’s
mass is “isolated” from the motion of the nano-hexapod and the control on y is not effective.
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Figure 8.5: Cumulative Amplitude Spectrum of the distances d and y. The effect of the sample’s
flexibility does not affects much d but is detrimental to the stability of y. A sample mass
ms = 1 kg and a nano-hexapod stiffness of 100N/µm are used for the simulations.

Conclusion

Payload dynamics is usually a major concern when designing a positioning system. In this section,
the impact of the sample dynamics on the plant was found to vary with the sample mass and the
relative resonance frequency of the sample ωs and of the nano-hexapod ωn. The larger the sample
mass, the larger the effect (i.e. change of high frequency gain, appearance of additional resonances
and anti-resonances). A zero/pole pattern is observed if ωs > ωn and a pole/zero pattern if ωs > ωn.
Such additional dynamics can induce stability issues depending on their position relative to the wanted
feedback bandwidth as explained in [8, Section 4.2]. The general conclusion is that the stiffer the nano-
hexapod, the less it is impacted by the payload’s dynamics, which would make the feedback controller
more robust to a change of payload. This is why high-bandwidth soft positioning stages are usually
restricted to constant and calibrated payloads (CD-player, lithography machines, isolation system for
gravitational wave detectors, …), while stiff positioning systems are usually used when the control must
be robust to a change of payload’s mass (stiff piezo nano-positioning stages for instance).

Having some flexibility between the measurement point and the point of interest (i.e. the sample point
to be position on the x-ray) also degrades the position stability as shown in Section 8.2. It will be
therefore important to take special care when designing sampling environments, especially if a soft
nano-hexapod is used.
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9 Conclusion

In this study, a uniaxial model of the nano-active-stabilization-system has been tuned both from dy-
namical measurements (Section 1) and from disturbances measurements (Section 3).

It has been shown that three active damping techniques can be used to critically damp the nano-hexapod
resonances (Section 5). However, this model does not allows to determine which one is most suited to
this application (a comparison of the three active damping techniques is done in Table 5.1).

Position feedback controllers have been developed for three considered nano-hexapod stiffnesses (Section
6). These controllers were shown to be robust to the change of sample’s masses, and to provide good
rejection of disturbances. It has been found that having a soft nano-hexapod makes the plant dynamics
easier to control (because its dynamics is decoupled from the micro-station dynamics, see Section 7) and
requires less position feedback bandwidth to fulfill the requirements. The moderately stiff nano-hexapod
(kn = 1N/µm) is requiring a higher feedback bandwidth, but is still giving acceptable results. However,
the stiff nano-hexapod is the most complex to control and gives the worst positioning performance.
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Glossary

Notation Description
fs Direct forces applied on the sample
ft Disturbance force of the micro-station
mn Mass of the nano-hexapod
ms Mass of the sample
xf Floor motion
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Acronyms

Notation Description
HAC High Authority Control
HAC-LAC High Authority Control - Low Authority Control
LAC Low Authority Control
NASS Nano Active Stabilization System
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