%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); %% Path for functions, data and scripts addpath('./mat/'); % Path for data addpath('./src/'); % Path for Functions %% Colors for the figures colors = colororder; %% Simscape model name mdl = 'rotating_model'; %% Load "Generic" system dynamics load('rotating_generic_plants.mat', 'Gs', 'Wzs'); % Effect of the rotation speed on the IFF plant dynamics % The transfer functions from actuator forces $[F_u,\ F_v]$ to the measured force sensors $[f_u,\ f_v]$ are identified for several rotating velocities and shown in Figure ref:fig:rotating_iff_bode_plot_effect_rot. % As was expected from the derived equations of motion: % - when $0 < \Omega < \omega_0$: the low frequency gain is no longer zero and two (non-minimum phase) real zero appears at low frequency. % The low frequency gain increases with $\Omega$. % A pair of (minimum phase) complex conjugate zeros appears between the two complex conjugate poles that are split further apart as $\Omega$ increases. % - when $\omega_0 < \Omega$: the low frequency pole becomes unstable. %% Bode plot of the direct and coupling term for Integral Force Feedback - Effect of rotation freqs = logspace(-2, 1, 1000); figure; tiledlayout(3, 2, 'TileSpacing', 'Compact', 'Padding', 'None'); % Magnitude ax1 = nexttile([2, 1]); hold on; for i = 1:length(Wzs) plot(freqs, abs(squeeze(freqresp(Gs{i}('fu', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(i,:)) end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('Magnitude [N/N]'); title('Direct terms: $f_u/F_u$, $f_v/F_v$'); ylim([1e-3, 1e2]); ax2 = nexttile([2, 1]); hold on; for i = 1:length(Wzs) plot(freqs, abs(squeeze(freqresp(Gs{i}('fv', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(i,:), ... 'DisplayName', sprintf('$\\Omega = %.1f \\omega_0$', Wzs(i))) end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); title('Coupling Terms: $f_u/F_v$, $f_v/F_u$'); ldg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); ldg.ItemTokenSize = [10, 1]; ylim([1e-3, 1e2]); ax3 = nexttile; hold on; for i = 1:length(Wzs) plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{i}('fu', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(i,:)) end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [rad/s]'); ylabel('Phase [deg]'); yticks(-180:90:180); ylim([-180 180]); xticks([1e-2,1e-1,1,1e1]) xticklabels({'$0.01 \omega_0$', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'}) ax4 = nexttile; hold on; for i = 1:length(Wzs) plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{i}('fv', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(i,:)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [rad/s]'); set(gca, 'YTickLabel',[]); yticks(-180:90:180); ylim([-180 180]); xticks([1e-2,1e-1,1,1e1]) xticklabels({'$0.01 \omega_0$', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'}) linkaxes([ax1,ax2,ax3,ax4],'x'); xlim([freqs(1), freqs(end)]); linkaxes([ax1,ax2],'y'); % #+name: fig:rotating_iff_diagram % #+caption: Control diagram for decentralized Integral Force Feedback % #+RESULTS: % [[file:figs/rotating_iff_diagram.png]] % The decentralized IFF controller $\bm{K}_F$ corresponds to a diagonal controller with integrators: % #+name: eq:Kf_pure_int % \begin{equation} % \begin{aligned} % \mathbf{K}_{F}(s) &= \begin{bmatrix} K_{F}(s) & 0 \\ 0 & K_{F}(s) \end{bmatrix} \\ % K_{F}(s) &= g \cdot \frac{1}{s} % \end{aligned} % \end{equation} % In order to see how the IFF controller affects the poles of the closed loop system, a Root Locus plot (Figure ref:fig:rotating_root_locus_iff_pure_int) is constructed as follows: the poles of the closed-loop system are drawn in the complex plane as the controller gain $g$ varies from $0$ to $\infty$ for the two controllers $K_{F}$ simultaneously. % As explained in cite:preumont08_trans_zeros_struc_contr_with,skogestad07_multiv_feedb_contr, the closed-loop poles start at the open-loop poles (shown by $\tikz[baseline=-0.6ex] \node[cross out, draw=black, minimum size=1ex, line width=2pt, inner sep=0pt, outer sep=0pt] at (0, 0){};$) for $g = 0$ and coincide with the transmission zeros (shown by $\tikz[baseline=-0.6ex] \draw[line width=2pt, inner sep=0pt, outer sep=0pt] (0,0) circle[radius=3pt];$) as $g \to \infty$. % #+begin_important % Whereas collocated IFF is usually associated with unconditional stability cite:preumont91_activ, this property is lost due to gyroscopic effects as soon as the rotation velocity in non-null. % This can be seen in the Root Locus plot (Figure ref:fig:rotating_root_locus_iff_pure_int) where poles corresponding to the controller are bound to the right half plane implying closed-loop system instability. % #+end_important % Physically, this can be explained like so: at low frequency, the loop gain is very large due to the pure integrator in $K_{F}$ and the finite gain of the plant (Figure ref:fig:rotating_iff_bode_plot_effect_rot). % The control system is thus canceling the spring forces which makes the suspended platform no able to hold the payload against centrifugal forces, hence the instability. %% Root Locus for the Decentralized Integral Force Feedback controller Kiff = 1/s*eye(2); gains = logspace(-2, 4, 300); Wz_i = [1,3,4]; figure; hold on; for i = 1:length(Wz_i) plot(real(pole(Gs{Wz_i(i)}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), imag(pole(Gs{Wz_i(i)}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), 'x', 'color', colors(i,:), ... 'DisplayName', sprintf('$\\Omega = %.1f \\omega_0 $', Wzs(Wz_i(i))),'MarkerSize',8); plot(real(tzero(Gs{Wz_i(i)}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), imag(tzero(Gs{Wz_i(i)}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), 'o', 'color', colors(i,:), ... 'HandleVisibility', 'off','MarkerSize',8); for g = gains cl_poles = pole(feedback(Gs{Wz_i(i)}({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff, -1)); plot(real(cl_poles), imag(cl_poles), '.', 'color', colors(i,:), ... 'HandleVisibility', 'off','MarkerSize',4); end end hold off; axis square; xlim([-1.8, 0.2]); ylim([0, 2]); xticks([-1, 0]) xticklabels({'-$\omega_0$', '$0$'}) yticks([0, 1, 2]) yticklabels({'$0$', '$\omega_0$', '$2 \omega_0$'}) xlabel('Real Part'); ylabel('Imaginary Part'); leg = legend('location', 'northwest', 'FontSize', 8); leg.ItemTokenSize(1) = 8;