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An important aspect of the Nano Active Stabilization System (NASS) is that the nano-hexapod is
continuously rotating around a vertical axis while the external metrology is not. Such rotation induces
gyroscopic effects that may impact the system dynamics and obtained performance. To study these
effects, a model of a rotating suspended platform is first presented (Section 1) This model is simple
enough to be able to derive its dynamics analytically and to well understand its behavior, while still
allowing to capture the important physical effects in play.

Integral Force Feedback (IFF) is then applied to the rotating platform, and it is shown that the un-
conditional stability of IFF is lost due to gyroscopic effects induced by the rotation (Section 2). Two
modifications of the Integral Force Feedback are then proposed. The first one consists of adding an high
pass filter to the IFF controller (Section 3). It is shown that the IFF controller is stable for some values
of the gain, and that damping can be added to the suspension modes. Optimal high pass filter cut-off
frequency is computed. The second modification consists of adding a stiffness in parallel to the force
sensors (Section 4). Under a certain condition, the unconditional stability of the the IFF controller is
regained. Optimal parallel stiffness is then computed. This study of adapting IFF for the damping of
rotating platforms was the subject of two published papers [1], [2].

It is then shown that Relative Damping Control (RDC) is less affected by gyroscopic effects (Section
5). Once the optimal control parameters for the three tested active damping techniques are obtained,
they are compared in terms of achievable damping, obtained damped plant and closed-loop compliance
and transmissibility (Section 6).

The previous analysis is applied on three considered nano-hexapod stiffnesses (kn = 0.01N/µm, kn =
1N/µm and kn = 100N/µm) and optimal active damping controller are obtained in each case (Section
7). Up until this section, the study was performed on a very simplistic model that just captures the
rotation aspect and the model parameters were not tuned to corresponds to the NASS. In the last
section (Section 8), a model of the micro-station is added below the suspended platform (i.e. the nano-
hexapod) with a rotating spindle and parameters tuned to match the NASS dynamics. The goal is to
determine if the rotation imposes performance limitation for the NASS.
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Apply previous analysis on nano-hexapod model:
- Compute optimal active damping parameters
- IFF is less effective for the soft nano-hexapod
- Coupling is smaller for the stiff nano-hexapod

Apply previous analysis on the NASS model:

Figure 1: Overview of this chapter’s organization. Sections are indicated by the red circles.
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1 System Description and Analysis

The studied system consists of a 2 degree of freedom translation stage on top of a rotating stage (Figure
1.1). The rotating stage is supposed to be ideal, meaning it induces a perfect rotation θ(t) = Ωt where
Ω is the rotational speed in rad s−1. The suspended platform consists of two orthogonal actuators each
represented by three elements in parallel: a spring with a stiffness k in Nm−1, a dashpot with a damping
coefficient c in N/(m/s) and an ideal force source Fu, Fv. A payload with a mass m in kg, is mounted
on the (rotating) suspended platform. Two reference frames are used: an inertial frame (~ix,~iy,~iz) and
a uniform rotating frame (~iu,~iv,~iw) rigidly fixed on top of the rotating stage with ~iw aligned with the
rotation axis. The position of the payload is represented by (du, dv, 0) expressed in the rotating frame.
After the dynamics of this system is studied, the objective will be to damp the two suspension modes
of the payload while the rotating stage performs a constant rotation.

Rotating Stage

Suspended Platform

Payload•
•

Fu

k

c

Fv

k
c

i⃗x

i⃗y

i⃗z

i⃗w

i⃗u

i⃗v

θ

Ω

Figure 1.1: Schematic of the studied system

1.1 Equations of motion and transfer functions

To obtain the equations of motion for the system represented in Figure 1.1, the Lagrangian equation (1.1)
is used. L = T −V is the Lagrangian, T the kinetic coenergy, V the potential energy, D the dissipation
function, and Qi the generalized force associated with the generalized variable

[
q1 q2

]
=

[
du dv

]
.

These terms are derived in (1.2). Note that the equation of motion corresponding to the constant
rotation along ~iw is disregarded as this motion is considered to be imposed by the rotation stage.

d

dt

(
∂L

∂q̇i

)
+

∂D

∂q̇i
− ∂L

∂qi
= Qi (1.1)

4



T =
1

2
m

(
(ḋu − Ωdv)

2 + (ḋv +Ωdu)
2
)
, Q1 = Fu, Q2 = Fv,

V =
1

2
k
(
du

2 + dv
2
)
, D =

1

2
c
(
ḋu

2 + ḋv
2
) (1.2)

Substituting equations (1.2) into equation (1.1) for both generalized coordinates gives two coupled
differential equations (1.3a) and (1.3b).

md̈u + cḋu + (k −mΩ2)du = Fu + 2mΩḋv (1.3a)
md̈v + cḋv + (k−mΩ2︸ ︷︷ ︸

Centrif.

)dv = Fv − 2mΩḋu︸ ︷︷ ︸
Coriolis

(1.3b)

The uniform rotation of the system induces two gyroscopic effects as shown in equation (1.3):

• Centrifugal forces: that can been seen as an added negative stiffness −mΩ2 along ~iu and ~iv

• Coriolis forces: that adds coupling between the two orthogonal directions.

One can verify that without rotation (Ω = 0) the system becomes equivalent to two uncoupled one
degree of freedom mass-spring-damper systems.

To study the dynamics of the system, the two differential equations of motions (1.3) are converted into
the Laplace domain and the 2× 2 transfer function matrix Gd from

[
Fu Fv

]
to

[
du dv

]
in equation

(1.4) is obtained. The four transfer functions in Gd are shown in equation (1.5).

[
du
dv

]
= Gd

[
Fu

Fv

]
(1.4)

Gd(1, 1) = Gd(2, 2) =
ms2 + cs+ k −mΩ2

(ms2 + cs+ k −mΩ2)
2
+ (2mΩs)

2 (1.5a)

Gd(1, 2) = −Gd(2, 1) =
2mΩs

(ms2 + cs+ k −mΩ2)
2
+ (2mΩs)

2 (1.5b)

To simplify the analysis, the undamped natural frequency ω0 and the damping ratio ξ defined in (1.6)
are used instead. The elements of transfer function matrix Gd are now described by equation (1.7).

ω0 =

√
k

m
in rad s−1, ξ =

c

2
√
km

(1.6)

Gd(1, 1) =

1
k

(
s2

ω0
2 + 2ξ s

ω0
+ 1− Ω2

ω0
2

)
(

s2

ω0
2 + 2ξ s

ω0
+ 1− Ω2

ω0
2

)2

+
(
2 Ω
ω0

s
ω0

)2 (1.7a)

Gd(1, 2) =

1
k

(
2 Ω
ω0

s
ω0

)
(

s2

ω0
2 + 2ξ s

ω0
+ 1− Ω2

ω0
2

)2

+
(
2 Ω
ω0

s
ω0

)2 (1.7b)
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1.2 System Poles: Campbell Diagram

The poles of Gd are the complex solutions p of equation (1.8) (i.e. the roots of its denominator).

(
p2

ω0
2
+ 2ξ

p

ω0
+ 1− Ω2

ω0
2

)2

+

(
2
Ω

ω0

p

ω0

)2

= 0 (1.8)

Supposing small damping (ξ � 1), two pairs of complex conjugate poles [p+, p−] are obtained as shown
in equation (1.9).

p+ = −ξω0

(
1 +

Ω

ω0

)
± jω0

(
1 +

Ω

ω0

)
(1.9a)

p− = −ξω0

(
1− Ω

ω0

)
± jω0

(
1− Ω

ω0

)
(1.9b)

The real and complex parts of these two pairs of complex conjugate poles are represented in Figure 1.2
as a function of the rotational speed Ω. As the rotational speed increases, p+ goes to higher frequencies
and p− goes to lower frequencies (Figure 1.2b). The system becomes unstable for Ω > ω0 as the real
part of p− is positive (Figure 1.2a). Physically, the negative stiffness term −mΩ2 induced by centrifugal
forces exceeds the spring stiffness k.
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g
in
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ry

P
a
rt

(b) Imaginary part

Figure 1.2: Campbell diagram - Real (a) and Imaginary (b) parts of the poles as a function of the
rotating velocity Ω.

1.3 System Dynamics: Effect of rotation

The system dynamics from actuator forces [Fu, Fv] to the relative motion [du, dv] is identified for several
rotating velocities. Looking at the transfer function matrix Gd in equation (1.7), one can see that the
two diagonal (direct) terms are equal and that the two off-diagonal (coupling) terms are opposite. The
bode plot of these two terms are shown in Figure 1.3 for several rotational speeds Ω. These plots confirm
the expected behavior: the frequency of the two pairs of complex conjugate poles are further separated
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as Ω increases. For Ω > ω0, the low frequency pair of complex conjugate poles p− becomes unstable
(shown be the 180 degrees phase lead instead of phase lag).

Unstable Pole

(a) Direct terms: du/Fu, dv/Fv
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(b) Coupling terms: du/Fv, dv/Fu

Figure 1.3: Bode plot of the direct (a) and coupling (a) terms for several rotating velocities
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2 Integral Force Feedback

The goal is now to damp the two suspension modes of the payload using an active damping strategy
while the rotating stage performs a constant rotation. As was explained with the uniaxial model, such
active damping strategy is key to both reducing the magnification of the response in the vicinity of the
resonances [3] and to make the plant easier to control for the high authority controller.

Many active damping techniques have been developed over the years such as Positive Position Feedback
(PPF) [4], [5], Integral Force Feedback (IFF) [6] and Direct Velocity Feedback (DVF) [7]–[9]. In [6], the
IFF control scheme has been proposed, where a force sensor, a force actuator and an integral controller
are used to increase the damping of a mechanical system. When the force sensor is collocated with the
actuator, the open-loop transfer function has alternating poles and zeros which facilitates to guarantee
the stability of the closed loop system [9]. It was latter shown that this property holds for multiple
collated actuator/sensor pairs [10].

The main advantages of IFF over other active damping techniques are the guaranteed stability even in
presence of flexible dynamics, good performance and robustness properties [9].

Several improvements of the classical IFF have been proposed, such as adding a feed-through term to
increase the achievable damping [11] or adding an high pass filter to recover the loss of compliance at
low frequency [12]. Recently, an H∞ optimization criterion has been used to derive optimal gains for
the IFF controller [13].

However, none of these study have been applied to a rotating system. In this section, Integral Force
Feedback strategy is applied on the rotating suspended platform, and it is shown that gyroscopic effects
alters the system dynamics and that IFF cannot be applied as is.

2.1 System and Equations of motion

In order to apply Integral Force Feedback, two force sensors are added in series with the actuators
(Figure 2.1a). Two identical controllers KF described by (2.1) are then used to feedback each of the
sensed force to its associated actuator.

KF (s) = g · 1
s

(2.1)

The forces
[
fu fv

]
measured by the two force sensors represented in Figure 2.1a are described by

equation (2.2).

[
fu
fv

]
=

[
Fu

Fv

]
− (cs+ k)

[
du
dv

]
(2.2)
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fv

(b) Control diagram

Figure 2.1: Integral Force Feedback applied to the suspended rotating platform. The damper c in (a)
is omitted for readability.

The transfer function matrix Gf from actuator forces to measured forces in equation (2.3) can be
obtained by inserting equation (1.7) into equation (2.2). Its elements are shown in equation (2.4).

[
fu
fv

]
= Gf

[
Fu

Fv

]
(2.3)

Gf (1, 1) = Gf (2, 2) =

(
s2

ω0
2 − Ω2

ω0
2

)(
s2

ω0
2 + 2ξ s

ω0
+ 1− Ω2

ω0
2

)
+
(
2 Ω
ω0

s
ω0

)2

(
s2

ω0
2 + 2ξ s

ω0
+ 1− Ω2

ω0
2

)2

+
(
2 Ω
ω0

s
ω0

)2 (2.4a)

Gf (1, 2) = −Gf (2, 1) =
−
(
2ξ s

ω0
+ 1

)(
2 Ω
ω0

s
ω0

)
(

s2

ω0
2 + 2ξ s

ω0
+ 1− Ω2

ω0
2

)2

+
(
2 Ω
ω0

s
ω0

)2 (2.4b)

The zeros of the diagonal terms of Gf in equation (2.4a) are computed, and neglecting the damping
for simplicity, two complex conjugated zeros zc (2.5a), and two real zeros zr (2.5b) are obtained.

zc = ±jω0

√√√√1

2

√
8
Ω2

ω0
2
+ 1 +

Ω2

ω0
2
+

1

2
(2.5a)

zr = ±ω0

√√√√1

2

√
8
Ω2

ω0
2
+ 1− Ω2

ω0
2
− 1

2
(2.5b)
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It is interesting to see that the frequency of the pair of complex conjugate zeros zc in equation (2.5a)
always lies between the frequency of the two pairs of complex conjugate poles p− and p+ in equation
(1.9). This is what usually gives the unconditional stability of IFF when collocated force sensors are
used.

However, for non-null rotational speeds, the two real zeros zr in equation (2.5b) are inducing a non-
minimum phase behavior. This can be seen in the Bode plot of the diagonal terms (Figure 2.2) where
the low frequency gain is no longer zero while the phase stays at 180◦.

The low frequency gain of Gf increases with the rotational speed Ω as shown in equation (2.6). This
can be explained as follows: a constant actuator force Fu induces a small displacement of the mass
du = Fu

k−mΩ2 (Hooke’s law taking into account the negative stiffness induced by the rotation). This
small displacement then increases the centrifugal force mΩ2du = Ω2

ω0
2−Ω2Fu which is then measured by

the force sensors.

lim
ω→0

|Gf (jω)| =

[
Ω2

ω0
2−Ω2 0

0 Ω2

ω0
2−Ω2

]
(2.6)

2.2 Effect of the rotation speed on the IFF plant dynamics

The transfer functions from actuator forces [Fu, Fv] to the measured force sensors [fu, fv] are identified
for several rotating velocities and are shown in Figure 2.2. As was expected from the derived equations
of motion:

• when Ω < ω0: the low frequency gain is no longer zero and two (non-minimum phase) real zero
appears at low frequency. The low frequency gain increases with Ω. A pair of (minimum phase)
complex conjugate zeros appears between the two complex conjugate poles that are split further
apart as Ω increases.

• when ω0 < Ω: the low frequency pole becomes unstable.

2.3 Decentralized Integral Force Feedback

The control diagram for decentralized Integral Force Feedback is shown in Figure 2.1b.

The decentralized IFF controller KF corresponds to a diagonal controller with integrators:

KF (s) =

[
KF (s) 0

0 KF (s)

]
KF (s) = g · 1

s

(2.7)

In order to see how the IFF controller affects the poles of the closed loop system, a Root Locus plot
(Figure 2.2b) is constructed as follows: the poles of the closed-loop system are drawn in the complex
plane as the controller gain g varies from 0 to ∞ for the two controllers KF simultaneously. As explained
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(a) Direct terms: du/Fu, dv/Fv (b) Root Locus

Figure 2.2: Effect of the rotation velocity on the bode plot of the direct terms (a) and on the IFF root
locus (b)

in [10], [14], the closed-loop poles start at the open-loop poles (shown by ) for g = 0 and coincide with
the transmission zeros (shown by ) as g → ∞.

Whereas collocated IFF is usually associated with unconditional stability [6], this property is lost due to
gyroscopic effects as soon as the rotation velocity in non-null. This can be seen in the Root Locus plot
(Figure 2.2b) where poles corresponding to the controller are bound to the right half plane implying
closed-loop system instability. Physically, this can be explained like so: at low frequency, the loop gain
is very large due to the pure integrator in KF and the finite gain of the plant (Figure 2.2). The control
system is thus canceling the spring forces which makes the suspended platform not capable to hold the
payload against centrifugal forces, hence the instability.
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3 Integral Force Feedback with an High Pass
Filter

As was explained in the previous section, the instability of the IFF controller applied on the rotating
system is due to the high gain of the integrator at low frequency. In order to limit the low frequency
controller gain, an High Pass Filter (HPF) can be added to the controller as shown in equation (3.1).
This is equivalent to slightly shifting the controller pole to the left along the real axis. This modification
of the IFF controller is typically done to avoid saturation associated with the pure integrator [6], [15].
This is however not the reason why this high pass filter is added here.

KF (s) = g · 1
s
· s/ωi

1 + s/ωi︸ ︷︷ ︸
HPF

= g · 1

s+ ωi
(3.1)

3.1 Modified Integral Force Feedback Controller

The Integral Force Feedback Controller is modified such that instead of using pure integrators, pseudo
integrators (i.e. low pass filters) are used (3.1) where ωi characterize the frequency down to which the
signal is integrated. The loop gains (KF (s) times the direct dynamics fu/Fu) with and without the
added HPF are shown in Figure 3.1a. The effect of the added HPF limits the low frequency gain to
finite values as expected.

The Root Locus plots for the decentralized IFF with and without the HPF are displayed in Figure 3.1b.
With the added HPF, the poles of the closed loop system are shown to be stable up to some value of the
gain gmax given by equation (3.2). It is interesting to note that gmax also corresponds to the controller
gain at which the low frequency loop gain reaches one (for instance the gain g can be increased by a
factor 5 in Figure 3.1a before the system becomes unstable).

gmax = ωi

(
ω0

2

Ω2
− 1

)
(3.2)

3.2 Optimal IFF with HPF parameters ωi and g

Two parameters can be tuned for the modified controller in equation (3.1): the gain g and the pole’s
location ωi. The optimal values of ωi and g are here considered as the values for which the damping of
all the closed-loop poles are simultaneously maximized.
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Figure 3.1: Comparison of the IFF with pure integrator and modified IFF with added high pass filter
(Ω = 0.1ω0). Loop gain is shown in (a) with ωi = 0.1ω0 and g = 2. Root Locus is shown
in (b)

In order to visualize how ωi does affect the attainable damping, the Root Locus plots for several ωi are
displayed in Figure 3.2a. It is shown that even though small ωi seem to allow more damping to be added
to the suspension modes (see Root locus in Figure 3.2a), the control gain g may be limited to small
values due to equation (3.2). In order to study this trade off, the attainable closed-loop damping ratio
ξcl is computed as a function of ωi/ω0. The gain gopt at which this maximum damping is obtained is
also displayed and compared with the gain gmax at which the system becomes unstable (Figure 3.2b).

For small values of ωi, the added damping is limited by the maximum allowed control gain gmax (red
curve and dashed red curve superimposed in Figure 3.2b) at which point the pole corresponding to
the controller becomes unstable. For larger values of ωi, the attainable damping ratio decreases as a
function of ωi as was predicted from the root locus plot of Figure 3.1b.

3.3 Obtained Damped Plant

In order to study how the parameter ωi affects the damped plant, the obtained damped plants for
several ωi are compared in Figure 3.3a. It can be seen that the low frequency coupling increases as ωi

increases. There is therefore a trade-off between achievable damping and added coupling when tuning
ωi. The same trade-off can be seen between achievable damping and loss of compliance at low frequency
(see Figure 3.3b).
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(a) Root Locus
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Figure 3.2: Root Locus for several high pass filter cut-off frequency (a). The achievable damping ratio
decreases as ωi increases which is confirmed in (b)

10!4

10!2

100

M
a
gn
it
u
d
e
[m
/
N
]

du=Fu, !i = 0:03!0
dv=Fu, !i = 0:03!0
du=Fu, !i = 0:10!0
dv=Fu, !i = 0:10!0
du=Fu, !i = 0:50!0
dv=Fu, !i = 0:50!0

0:01!0 0:1!0 !0 10!0
Frequency [rad/s]

-180

-90

0

P
h
a
se
[d
eg
]

(a) Obtained plants

0:01!0 0:1!0 !0 10!0

Frequency [rad/s]

10!2

10!1

100

101

102

103

C
o
m

p
li
a
n
ce

[m
/
N

]

dx=Fdx, !i = 0:03!0

dx=Fdx, !i = 0:10!0

dx=Fdx, !i = 0:50!0

dx=Fdx, OL

(b) Effect of ωi on the compliance
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4 IFF with a stiffness in parallel with the force
sensor

In this section it is proposed to add springs in parallel with the force sensors to counteract the negative
stiffness induced by the gyroscopic effects. Such springs are schematically shown in Figure 4.1 where
ka is the stiffness of the actuator and kp the added stiffness in parallel with the actuator and force
sensor.

Rotating Stage

Suspended Platform

Payload

fu

fv

Fu

ka

kp

Fv

ka
kp

i⃗x

i⃗y

i⃗z

i⃗w

i⃗u

i⃗v

θ
•

Ω

Figure 4.1: Studied system with additional springs in parallel with the actuators and force sensors
(shown in red)

4.1 Equations

The forces measured by the two force sensors represented in Figure 4.1 are described by (4.1).

[
fu
fv

]
=

[
Fu

Fv

]
− (cs+ ka)

[
du
dv

]
(4.1)

In order to keep the overall stiffness k = ka + kp constant, thus not modifying the open-loop poles as
kp is changed, a scalar parameter α (0 ≤ α < 1) is defined to describe the fraction of the total stiffness
in parallel with the actuator and force sensor as in (4.2).
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kp = αk, ka = (1− α)k (4.2)

After the equations of motion derived and transformed in the Laplace domain, the transfer function
matrix Gk in Eq. (4.3) is computed. Its elements are shown in Eq. (4.4a) and (4.4b).

[
fu
fv

]
= Gk

[
Fu

Fv

]
(4.3)

Gk(1, 1) = Gk(2, 2) =

(
s2

ω0
2 − Ω2

ω0
2 + α

)(
s2

ω0
2 + 2ξ s

ω0
+ 1− Ω2

ω0
2

)
+
(
2 Ω
ω0

s
ω0

)2(
s2

ω0
2 + 2ξ s

ω0
+ 1− Ω2

ω0
2

)2
+

(
2 Ω
ω0

s
ω0

)2 (4.4a)

Gk(1, 2) = −Gk(2, 1) =
−
(
2ξ s

ω0
+ 1− α

)(
2 Ω
ω0

s
ω0

)
(

s2

ω0
2 + 2ξ s

ω0
+ 1− Ω2

ω0
2

)2

+
(
2 Ω
ω0

s
ω0

)2 (4.4b)

Comparing Gk in (4.4) with Gf in (2.4) shows that while the poles of the system are kept the same,
the zeros of the diagonal terms have changed. The two real zeros zr in (2.5b) that were inducing a
non-minimum phase behavior are transformed into two complex conjugate zeros if the condition in
(4.5) holds. Thus, if the added parallel stiffness kp is higher than the negative stiffness induced by
centrifugal forces mΩ2, the dynamics from actuator to its collocated force sensor will show minimum
phase behavior.

α >
Ω2

ω0
2

⇔ kp > mΩ2 (4.5)

4.2 Effect of the parallel stiffness on the IFF plant

The IFF plant (transfer function from [Fu, Fv] to [fu, fv]) is identified without parallel stiffness kp = 0,
with a small parallel stiffness kp < mΩ2 and with a large parallel stiffness kp > mΩ2. The Bode plots of
the obtained dynamics are shown in Figure 4.2a. One can see that the the two real zeros for kp < mΩ2

are transformed into two complex conjugate zeros for kp > mΩ2. In that case, the systems shows
alternating complex conjugate poles and zeros as what is the case in the non-rotating case.

Figure 4.2b shows the Root Locus plots for kp = 0, kp < mΩ2 and kp > mΩ2 when KF is a pure
integrator as in Eq. (2.7). It is shown that if the added stiffness is higher than the maximum negative
stiffness, the poles of the closed-loop system are bounded on the (stable) left half-plane, and hence the
unconditional stability of IFF is recovered.

4.3 Effect of kp on the attainable damping

Even though the parallel stiffness kp has no impact on the open-loop poles (as the overall stiffness k is
kept constant), it has a large impact on the transmission zeros. Moreover, as the attainable damping is
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(a) Bode plot of Gk(1, 1) = fu/Fu without parallel spring,
with parallel spring stiffness kp < mΩ2 and kp > mΩ2,
Ω = 0.1ω0

(b) Root Locus for IFF without parallel spring,
with small parallel spring and with large par-
allel spring

Figure 4.2: Effect of the parallel stiffness on the IFF plant

generally proportional to the distance between poles and zeros [16], the parallel stiffness kp is foreseen
to have some impact on the attainable damping. To study this effect, Root Locus plots for several
parallel stiffnesses kp > mΩ2 are shown in Figure 4.3a. The frequencies of the transmission zeros of the
system are increasing with an increase of the parallel stiffness kp (thus getting closer to the poles) and
the associated attainable damping is reduced. Therefore, even though the parallel stiffness kp should be
larger than mΩ2 for stability reasons, it should not be taken too large as this would limit the attainable
damping. This is confirmed by the Figure 4.3b where the attainable closed-loop damping ratio ξcl and
the associated optimal control gain gopt are computed as a function of the parallel stiffness.

4.4 Damped plant

Let’s choose a parallel stiffness equal to kp = 2mΩ2 and compute the damped plant. The damped
and undamped transfer functions from Fu to du are compared in Figure 4.4b. Even though the two
resonances are well damped, the IFF changes the low frequency behavior of the plant which is usually
not wanted. This is due to the fact that “pure” integrators are used, and that the low frequency loop
gains becomes large below some frequency.

In order to lower the low frequency gain, a high pass filter is added to the IFF controller (which is
equivalent as shifting the controller pole to the left in the complex plane):

KIFF(s) = g
1

ωi + s

[
1 0
0 1

]
(4.6)

In order to see how the high pass filter impacts the attainable damping, the controller gain g is kept
constant while ωi is changed, and the minimum damping ratio of the damped plant is computed. The
obtained damping ratio as a function of ωi/ω0 (where ω0 is the resonance of the system without rotation)
is shown in Figure 4.4a. It is shown that the attainable damping ratio reduces as ωi is increased (same
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(a) Root Locus: Effect of the parallel stiffness on the
attainable damping, Ω = 0.1ω0
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(b) Attainable damping ratio ξcl as a function of the
parallel stiffness kp. Corresponding control gain
gopt is also shown. Values for kp < mΩ2 are not
shown as the system is unstable.

Figure 4.3: Effect of the parallel stiffness on the IFF plant

conclusion than in Section 3). Let’s choose ωi = 0.1 ·ω0 and compare the obtained damped plant again
with the undamped and with the “pure” IFF in Figure 4.4b. The added high pass filter gives almost
the same damping properties to the suspension while giving good low frequency behavior.
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Figure 4.4: Effect of the high pass filter cut-off frequency on the obtained damping
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5 Relative Damping Control

In order to apply a “Relative Damping Control” strategy, relative motion sensors are added in parallel
with the actuators as shown in Figure 5.1. Two controllers Kd are used to fed back the relative motion
to the actuator. These controllers are in principle pure derivators (Kd = s), but to be implemented in
practice they are usually replaced by a high pass filter (5.1).

Kd(s) = g · s

s+ ωd
(5.1)

Rotating Stage

Suspended Platform

Payload•
•

Fu

k

du

Kd
Fv

k

dv

Kd

i⃗x

i⃗y

i⃗z

i⃗w

i⃗u

i⃗v

θ

Ω

Figure 5.1: System with relative motion sensor and decentralized “relative damping control” applied.

5.1 Equations of motion

Let’s note Gd the transfer function between actuator forces and measured relative motion in parallel
with the actuators (5.2). The elements of Gd were derived in Section 1 are shown in (5.3).

[
du
dv

]
= Gd

[
Fu

Fv

]
(5.2)
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Gd(1, 1) = Gd(2, 2) =

1
k

(
s2

ω0
2 + 2ξ s
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ω0
2

)
(
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2 + 2ξ s
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ω0
2

)2

+
(
2 Ω
ω0

s
ω0

)2 (5.3a)

Gd(1, 2) = −Gd(2, 1) =

1
k

(
2 Ω
ω0

s
ω0

)
(

s2

ω0
2 + 2ξ s

ω0
+ 1− Ω2

ω0
2

)2

+
(
2 Ω
ω0

s
ω0

)2 (5.3b)

Neglecting the damping for simplicity (ξ � 1), the direct terms have two complex conjugate zeros which
are between the two pairs of complex conjugate poles (5.4). Therefore, for Ω <

√
k/m (i.e. stable

system), the transfer functions for Relative Damping Control have alternating complex conjugate poles
and zeros.

z = ±j
√
ω2
0 − ω2, p1 = ±j(ω0 − ω), p2 = ±j(ω0 + ω) (5.4)

5.2 Decentralized Relative Damping Control

The transfer functions from [Fu, Fv] to [du, dv] were identified for several rotating velocities in Section
1 and are shown in Figure 1.3 (page 7).

In order to see if large damping can be added with Relative Damping Control, the root locus is computed
(Figure 5.2a). The closed-loop system is unconditionally stable as expected and the poles can be damped
as much as wanted.

Let’s select a reasonable “Relative Damping Control” gain, and compute the closed-loop damped system.
The open-loop and damped plants are compared in Figure 5.2b. The rotating aspect does not add any
complexity for the use of Relative Damping Control. It does not increase the low frequency coupling as
compared to Integral Force Feedback.

(a) Root Locus for Relative Damping Control
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(b) Damped plant using Relative Damping Control

Figure 5.2: Relative Damping Control. Root Locus (a) and obtained damped plant (b)
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6 Comparison of Active Damping Techniques

These two proposed IFF modifications as well as relative damping control are now compared in terms
of added damping and closed-loop behavior. For the following comparisons, the cut-off frequency for
the added HPF is set to ωi = 0.1ω0 and the stiffness of the parallel springs is set to kp = 5mΩ2

(corresponding to α = 0.05). These values are chosen based on previous discussion about optimal
parameters.

6.1 Root Locus

Figure 6.1a shows the Root Locus plots for the two proposed IFF modifications as well as for relative
damping control. While the two pairs of complex conjugate open-loop poles are identical for both IFF
modifications, the transmission zeros are not. This means that the closed-loop behavior of both systems
will differ when large control gains are used.

One can observe that the closed loop poles corresponding to the system with added springs (in red)
are bounded to the left half plane implying unconditional stability. This is not the case for the system
where the controller is augmented with an HPF (in blue). It is interesting to note that the maximum
added damping is very similar for both modified IFF techniques.
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(b) Damped plants

Figure 6.1: Comparison of active damping techniques for rotating platform
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6.2 Obtained Damped Plant

The actively damped plants are computed for the three techniques and compared in Figure 6.1b. It
is shown that while the diagonal (direct) terms of the damped plants are similar for the three active
damping techniques, the off-diagonal (coupling) terms are not. Integral Force Feedback strategy is
adding some coupling at low frequency which may negatively impact the positioning performance.

6.3 Transmissibility And Compliance

The proposed active damping techniques are now compared in terms of closed-loop transmissibility
and compliance. The transmissibility is here defined as the transfer function from a displacement of
the rotating stage along ~ix to the displacement of the payload along the same direction. It is used to
characterize how much vibration is transmitted through the suspended platform to the payload. The
compliance describes the displacement response of the payload to external forces applied to it. This is
a useful metric when disturbances are directly applied to the payload. It is here defined as the transfer
function from external forces applied on the payload along ~ix to the displacement of the payload along
the same direction.

Very similar results are obtained for the two proposed IFF modifications in terms of transmissibility
and compliance (Figure 6.2). Using IFF degrades the compliance at low frequency while using relative
damping control degrades the transmissibility at high frequency. This is very well known characteristics
of these common active damping techniques that holds when applied to rotating platforms.
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Figure 6.2: Comparison of the obtained transmissibilty (a) and compliance (b) for the three tested
active damping techniques
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7 Rotating Nano-Hexapod

The previous analysis is now applied on a model representing the rotating nano-hexapod. Three nano-
hexapod stiffnesses are tested as for the uniaxial model: kn = 0.01N/µm, kn = 1N/µm and kn =
100N/µm. Only the maximum rotating velocity is here considered (Ω = 60 rpm) with the light sample
(ms = 1kg) as this is the worst identified case scenario in terms of gyroscopic effects.

7.1 Nano-Active-Stabilization-System - Plant Dynamics

For the NASS, the maximum rotating velocity is Ω = 2π rad s−1 for a suspended mass on top of
the nano-hexapod’s actuators equal to mn + ms = 16 kg. The parallel stiffness corresponding to the
centrifugal forces is mΩ2 ≈ 0.6Nmm−1.

The transfer functions from nano-hexapod actuator force Fu to the displacement of the nano-hexapod
in the same direction du as well as in the orthogonal direction dv (coupling) are shown in Figure 7.1
for all three considered nano-hexapod stiffnesses. The soft nano-hexapod is the most affected by the
rotation. This can be seen by the large shift of the resonance frequencies, and by the induced coupling
which is larger than for the stiffer nano-hexapods. The coupling (or interaction) in a MIMO 2 × 2
system can be visually estimated as the ratio between the diagonal term and the off-diagonal terms (see
corresponding Appendix).
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(c) kn = 100N/µm

Figure 7.1: Effect of rotation on the nano-hexapod dynamics. Dashed lines are the plants without
rotation, solid lines are plants at maximum rotating velocity (Ω = 60 rpm), and shaded
lines are coupling terms at maximum rotating velocity
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7.2 Optimal IFF with High Pass Filter

Integral Force Feedback with an added High Pass Filter is applied to the three nano-hexapods. First,
the parameters (ωi and g) of the IFF controller that yield best simultaneous damping are determined
from Figure 7.2. The IFF parameters are chosen as follow:

• for kn = 0.01N/µm (Figure 7.2): ωi is chosen such that the maximum damping is achieved while
the gain is less than half of the maximum gain at which the system is unstable. This is done to
have some control robustness.

• for kn = 1N/µm and kn = 100N/µm (Figure 7.2b and 7.2c): the largest ωi is chosen such that
obtained damping is 95% of the maximum achievable damping. Large ωi is chosen here to limit
the loss of compliance and the increase of coupling at low frequency as was shown in Section 3.

The obtained IFF parameters and the achievable damping are visually shown by large dots in Figure
7.2 and are summarized in Table 7.1.
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Figure 7.2: For each value of ωi, the maximum damping ratio ξ is computed (blue) and the corre-
sponding controller gain is shown (in red). The choosen controller parameters used for
further analysis are shown by the large dots.

Table 7.1: Obtained optimal parameters (ωi and g) for the modified IFF controller including a high
pass filter. The corresponding achievable simultaneous damping of the two modes ξ is also
shown.

kn ωi g ξopt

0.01N/µm 7.3 51 0.45
1N/µm 39 427 0.93
100N/µm 500 3775 0.94
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7.3 Optimal IFF with Parallel Stiffness

For each considered nano-hexapod stiffness, the parallel stiffness kp is varied from kp,min = mΩ2 (the
minimum stiffness that yields unconditional stability) to kp,max = kn (the total nano-hexapod stiffness).
In order to keep the overall stiffness constant, the actuator stiffness ka is decreased when kp is increased
(ka = kn−kp, with kn the total nano-hexapod stiffness). A high pass filter is also added to limit the low
frequency gain with a cut-off frequency ωi equal to one tenth of the system resonance (ωi = ω0/10).

The achievable maximum simultaneous damping of all the modes is computed as a function of the
parallel stiffnesses (Figure 7.3). It is shown that the soft nano-hexapod cannot yield good damping
as the parallel stiffness cannot be made large enough compared to the negative stiffness induced by
the rotation. For the two stiff options, the achievable damping decreases when the parallel stiffness is
chosen too high as explained in Section 4. Such behavior can be explain by the fact that the achievable
damping can be approximated by the distance between the open-loop pole and the open-loop zero
[16, chapt 7.2]. This distance is larger for stiff nano-hexapod as the open-loop pole will be at higher
frequencies while the open-loop zero, which depends on the value of the parallel stiffness, can only be
made large for stiff nano-hexapods.

Let’s choose kp = 1N/mm, kp = 0.01N/µm and kp = 1N/µm for the three considered nano-hexapods.
The corresponding optimal controller gains and achievable damping are summarized in Table 7.2.
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Figure 7.3: Maximum damping ξ as a function of
the parallel stiffness kp

Table 7.2: Obtained optimal parameters for
the IFF controller when using par-
allel stiffnesses

kn kp g ξopt

0.01N/µm 1N/mm 47.9 0.44
1N/µm 0.01N/µm 465.57 0.97
100N/µm 1N/µm 4624.25 0.99

7.4 Optimal Relative Motion Control

For each considered nano-hexapod stiffness, relative damping control is applied and the achievable
damping ratio as a function of the controller gain is computed (Figure 7.4). The gain is chosen is
chosen such that 99% of modal damping is obtained (obtained gains are summarized in Table 7.3).
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Table 7.3: Obtained optimal parameters for
the RDC

kn g ξopt

0.01N/µm 1600 0.99
1N/µm 8200 0.99
100N/µm 80000 0.99

7.5 Comparison of the obtained damped plants

Now that optimal parameters for the three considered active damping techniques have been determined,
the obtained damped plants are computed and compared in Figure 7.5.

Similarly to what was concluded in previous analysis:

• IFF adds coupling below the resonance frequency as compared to the open-loop and RDC cases

• All three methods are yielding good damping, except for IFF applied on the soft nano-hexapod

• Coupling is smaller for stiff nano-hexapods
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Figure 7.5: Comparison of the damped plants for the three proposed active damping techniques (IFF
with HPF in blue, IFF with kp in red and RDC in yellow). The direct terms are shown
by the solid lines and coupling terms are shown by the shaded lines. Three nano-hexapod
stiffnesses are considered. For this analysis the rotating velocity is Ω = 60 rpm and the
suspended mass is mn +ms = 16 kg.

27



8 Nano-Active-Stabilization-System with
rotation

Up until now, the model used to study gyroscopic effects consisted of an infinitely stiff rotating stage with
a X-Y suspended stage on top. While quite simplistic, this allowed to study the effects of rotation and
the associated limitations when active damping is to be applied. In this section, the limited compliance
of the micro-station is taken into account as well as the rotation of the spindle.

8.1 Nano Active Stabilization System model

In order to have a more realistic dynamics model of the NASS, the 2-DoF nano-hexapod (modelled as
shown in Figure 1.1) is now located on top of a model of the micro-station including (see Figure 8.1 for
a 3D view):

• the floor whose motion is imposed

• a 2-DoF granite (kg,x = kg,y = 950N/µm, mg = 2500 kg)

• a 2-DoF Ty stage (kt,x = kt,y = 520N/µm, mt = 600 kg)

• a spindle (vertical rotation) stage whose rotation is imposed (ms = 600 kg)

• a 2-DoF micro-hexapod (kh,x = kh,y = 61N/µm, mh = 15 kg)

A payload is rigidly fixed to the nano-hexapod and the x, y motion of the payload is measured with
respect to the granite.

Micro-Hexapod

Nano-Hexapod

Sample

Spindle Rz
Ty/Ry

Granite

Floor

External Metrology

Figure 8.1: 3D view of the Nano-Active-Stabilization-System model.

28



8.2 System dynamics

The dynamics of the un-damped and damped plants are identified using the optimal parameters found
in Section 7. The obtained dynamics are compared in Figure 8.2 in which the direct terms are shown
by the solid curves while the coupling terms are shown by the shaded ones. It can be observed that:

• The coupling (quantified by the ratio between the off-diagonal and direct terms) is higher for the
soft nano-hexapod

• Damping added by the three proposed techniques is quite high and the obtained plant is rather
easy to control

• There is some coupling between nano-hexapod and micro-station dynamics for the stiff nano-
hexapod (mode at 200Hz)

• The two proposed IFF modification yields similar results
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Figure 8.2: Bode plot of the transfer function from nano-hexapod actuator to measured motion by
the external metrology

8.3 Effect of disturbances

The effect of three disturbances are considered (as for the uniaxial model), floor motion [xf,x, xf,y]
(Figure 8.3), micro-Station vibrations [ft,x, ft,y] (Figure 8.4) and direct forces applied on the sample
[fs,x, fs,y] (Figure 8.5). Note that only the transfer function from the disturbances in the x direction
to the relative position dx between the sample and the granite in the x direction are displayed as the
transfer functions in the y direction are the same due to the system symmetry.

Conclusions are similar than with the uniaxial (non-rotating) model:
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• Regarding the effect of floor motion and forces applied on the payload:

– The stiffer, the better. This can be seen in Figures 8.3 and 8.5 where the magnitudes for the
stiff-hexapod are lower than for the soft one

– IFF degrades the performance at low frequency compared to RDC

• Regarding the effect of micro-station vibrations:

– Having a soft nano-hexapod allows to filter these vibrations between the suspensions modes
of the nano-hexapod and some flexible modes of the micro-station. Using relative damping
control reduces this filtering (Figure 8.4a).
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Figure 8.3: Effect of floor motion xf,x on the position error dx - Comparison of active damping tech-
niques for the three nano-hexapod stiffnesses. IFF is shown to increase the sensitivity to
floor motion at low frequency.
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Figure 8.4: Effect of micro-station vibrations ft,x on the position error dx - Comparison of active
damping techniques for the three nano-hexapod stiffnesses. Relative Damping Control
increases the sensitivity to micro-station vibrations between the soft nano-hexapod sus-
pension modes and the micro-station modes (a)
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Figure 8.5: Effect of sample forces fs,x on the position error dx - Comparison of active damping
techniques for the three nano-hexapod stiffnesses. Integral Force Feedback degrades this
compliance at low frequency.
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Conclusion

In this study, the gyroscopic effects induced by the spindle’s rotation have been studied using a simplified
model (Section 1). Decentralized Integral Force Feedback with pure integrators was shown to be unstable
when applied to rotating platforms (Section 2). Two modifications of the classical IFF control have
been proposed to overcome this issue.

The first modification concerns the controller and consists of adding a high pass filter to the pure
integrators. This is equivalent to moving the controller pole to the left along the real axis. This allows
the closed loop system to be stable up to some value of the controller gain (Section 3).

The second proposed modification concerns the mechanical system. Additional springs are added in
parallel with the actuators and force sensors. It was shown that if the stiffness kp of the additional
springs is larger than the negative stiffness mΩ2 induced by centrifugal forces, the classical decentralized
IFF regains its unconditional stability property (Section 4).

These two modifications were compared with Relative Damping Control in Section 6. While having very
different implementations, both proposed modifications were found to be very similar when it comes to
the attainable damping and the obtained closed loop system behavior.

Then, this study has been applied to a rotating platform that corresponds to the nano-hexapod parame-
ters (Section 7). As for the uniaxial model, three nano-hexapod stiffness are considered. The dynamics
of the soft nano-hexapod (kn = 0.01N/µm) was shown to be more depend on the rotation velocity
(higher coupling and change of dynamics due to gyroscopic effects). Also, the attainable damping ratio
of the soft nano-hexapod when using IFF is limited by gyroscopic effects.

To be closer to the Nano Active Stabilization System dynamics, the limited compliance of the micro-
station has been taken into account (Section 8). Results are similar to that of the uniaxial model
except that come complexity is added for the soft nano-hexapod due to the spindle’s rotation. For
the moderately stiff nano-hexapod (kn = 1N/µm), the gyroscopic effects are only slightly affecting the
system dynamics, and therefore could represent a good alternative to the soft nano-hexapod that was
showing better results with the uniaxial model.
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Acronyms

Notation Description
IFF Integral Force Feedback
NASS Nano Active Stabilization System
RDC Relative Damping Control
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