%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); %% Path for functions, data and scripts addpath('./mat/'); % Path for data addpath('./src/'); % Path for Functions %% Colors for the figures colors = colororder; %% Simscape model name mdl = 'rotating_model'; %% Nano-Hexapod mn = 15; % Nano-Hexapod mass [kg] %% Light Sample ms = 1; % Sample Mass [kg] %% General Configuration model_config = struct(); model_config.controller = "open_loop"; % Default: Open-Loop model_config.Tuv_type = "normal"; % Default: 2DoF stage %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/controller'], 1, 'openinput'); io_i = io_i + 1; % [Fu, Fv] io(io_i) = linio([mdl, '/fd'], 1, 'openinput'); io_i = io_i + 1; % [Fdx, Fdy] io(io_i) = linio([mdl, '/xf'], 1, 'openinput'); io_i = io_i + 1; % [Dfx, Dfy] io(io_i) = linio([mdl, '/translation_stage'], 1, 'openoutput'); io_i = io_i + 1; % [Fmu, Fmv] io(io_i) = linio([mdl, '/translation_stage'], 2, 'openoutput'); io_i = io_i + 1; % [Du, Dv] io(io_i) = linio([mdl, '/ext_metrology'], 1, 'openoutput'); io_i = io_i + 1; % [Dx, Dy] %% Voice Coil (i.e. soft) Nano-Hexapod kn = 1e4; % Nano-Hexapod Stiffness [N/m] cn = 2*0.005*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)] Wz = 0; % Rotating Velocity [rad/s] G_vc_norot = linearize(mdl, io, 0.0); G_vc_norot.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'}; G_vc_norot.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; Wz = 2*pi; % Rotating Velocity [rad/s] G_vc_fast = linearize(mdl, io, 0.0); G_vc_fast.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'}; G_vc_fast.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; %% APA (i.e. relatively stiff) Nano-Hexapod kn = 1e6; % Nano-Hexapod Stiffness [N/m] cn = 2*0.005*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)] Wz = 0; % Rotating Velocity [rad/s] G_md_norot = linearize(mdl, io, 0.0); G_md_norot.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'}; G_md_norot.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; Wz = 2*pi; % Rotating Velocity [rad/s] G_md_fast = linearize(mdl, io, 0.0); G_md_fast.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'}; G_md_fast.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; %% Piezoelectric (i.e. stiff) Nano-Hexapod kn = 1e8; % Nano-Hexapod Stiffness [N/m] cn = 2*0.005*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)] Wz = 0; % Rotating Velocity [rad/s] G_pz_norot = linearize(mdl, io, 0.0); G_pz_norot.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'}; G_pz_norot.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; Wz = 2*pi; % Rotating Velocity [rad/s] G_pz_fast = linearize(mdl, io, 0.0); G_pz_fast.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'}; G_pz_fast.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; %% Compute negative spring in [N/m] Kneg_light = (15+1)*(2*pi)^2; %% Effect of rotation on the nano-hexapod dynamics freqs = logspace(0, 1, 1000); figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(G_vc_norot('Du', 'Fu'), freqs, 'Hz'))), '--', 'color', colors(1,:), ... 'DisplayName', '$\Omega = 0\,$rpm, $D_u/F_u$'); plot(freqs, abs(squeeze(freqresp(G_vc_fast( 'Du', 'Fu'), freqs, 'Hz'))), '-' , 'color', colors(1,:), ... 'DisplayName', '$\Omega = 60\,$rpm, $D_u/F_u$'); plot(freqs, abs(squeeze(freqresp(G_vc_fast( 'Dv', 'Fu'), freqs, 'Hz'))), '-' , 'color', [colors(1,:), 0.5], ... 'DisplayName', '$\Omega = 60\,$rpm, $D_v/F_u$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]); ylim([1e-6, 1e-2]) ax2 = nexttile; hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(G_vc_norot('Du', 'Fu'), freqs, 'Hz'))), '--', 'color', colors(1,:)); plot(freqs, 180/pi*angle(squeeze(freqresp(G_vc_fast( 'Du', 'Fu'), freqs, 'Hz'))), '-' , 'color', colors(1,:)); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 0]); linkaxes([ax1,ax2],'x'); % xlim([1, 1e3]); %% Effect of rotation on the nano-hexapod dynamics freqs = logspace(1, 2, 1000); figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(G_md_norot('Du', 'Fu'), freqs, 'Hz'))), '--', 'color', colors(2,:), ... 'DisplayName', '$\Omega = 0\,$rpm, $D_u/F_u$'); plot(freqs, abs(squeeze(freqresp(G_md_fast( 'Du', 'Fu'), freqs, 'Hz'))), '-' , 'color', colors(2,:), ... 'DisplayName', '$\Omega = 60\,$rpm, $D_u/F_u$'); plot(freqs, abs(squeeze(freqresp(G_md_fast( 'Dv', 'Fu'), freqs, 'Hz'))), '-' , 'color', [colors(2,:), 0.5], ... 'DisplayName', '$\Omega = 60\,$rpm, $D_v/F_u$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]); ylim([1e-8, 1e-4]) ax2 = nexttile; hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(G_md_norot('Du', 'Fu'), freqs, 'Hz'))), '--', 'color', colors(2,:)); plot(freqs, 180/pi*angle(squeeze(freqresp(G_md_fast( 'Du', 'Fu'), freqs, 'Hz'))), '-' , 'color', colors(2,:)); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 0]); linkaxes([ax1,ax2],'x'); %% Effect of rotation on the nano-hexapod dynamics freqs = logspace(2, 3, 1000); figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(G_pz_norot('Du', 'Fu'), freqs, 'Hz'))), '--', 'color', colors(3,:), ... 'DisplayName', '$\Omega = 0\,$rpm, $D_u/F_u$'); plot(freqs, abs(squeeze(freqresp(G_pz_fast( 'Du', 'Fu'), freqs, 'Hz'))), '-' , 'color', colors(3,:), ... 'DisplayName', '$\Omega = 60\,$rpm, $D_u/F_u$'); plot(freqs, abs(squeeze(freqresp(G_pz_fast( 'Dv', 'Fu'), freqs, 'Hz'))), '-' , 'color', [colors(3,:), 0.5], ... 'DisplayName', '$\Omega = 60\,$rpm, $D_v/F_u$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]); ylim([1e-10, 1e-6]) ax2 = nexttile; hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(G_pz_norot('Du', 'Fu'), freqs, 'Hz'))), '--', 'color', colors(3,:)); plot(freqs, 180/pi*angle(squeeze(freqresp(G_pz_fast( 'Du', 'Fu'), freqs, 'Hz'))), '-' , 'color', colors(3,:)); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 0]); linkaxes([ax1,ax2],'x'); %% Compute the optimal control gain wis = logspace(-2, 3, 200); % [rad/s] opt_iff_hpf_xi_vc = zeros(1, length(wis)); % Optimal simultaneous damping opt_iff_hpf_gain_vc = zeros(1, length(wis)); % Corresponding optimal gain opt_iff_hpf_xi_md = zeros(1, length(wis)); % Optimal simultaneous damping opt_iff_hpf_gain_md = zeros(1, length(wis)); % Corresponding optimal gain opt_iff_hpf_xi_pz = zeros(1, length(wis)); % Optimal simultaneous damping opt_iff_hpf_gain_pz = zeros(1, length(wis)); % Corresponding optimal gain for wi_i = 1:length(wis) wi = wis(wi_i); Kiff = 1/(s + wi)*eye(2); fun = @(g)computeSimultaneousDamping(g, G_vc_fast({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff); [g_opt, xi_opt] = fminsearch(fun, 0.1); opt_iff_hpf_xi_vc(wi_i) = 1/xi_opt; opt_iff_hpf_gain_vc(wi_i) = g_opt; fun = @(g)computeSimultaneousDamping(g, G_md_fast({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff); [g_opt, xi_opt] = fminsearch(fun, 0.1); opt_iff_hpf_xi_md(wi_i) = 1/xi_opt; opt_iff_hpf_gain_md(wi_i) = g_opt; fun = @(g)computeSimultaneousDamping(g, G_pz_fast({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff); [g_opt, xi_opt] = fminsearch(fun, 0.1); opt_iff_hpf_xi_pz(wi_i) = 1/xi_opt; opt_iff_hpf_gain_pz(wi_i) = g_opt; end %% Find optimal parameters with at least a gain margin of 2 i_iff_hpf_vc = find(opt_iff_hpf_gain_vc < 0.5*(wis*((sqrt(1e4/16)/(2*pi))^2 - 1))); i_iff_hpf_vc = i_iff_hpf_vc(1); i_iff_hpf_md = find(opt_iff_hpf_xi_md > 0.95*max(opt_iff_hpf_xi_md)); i_iff_hpf_md = i_iff_hpf_md(end)+1; i_iff_hpf_pz = find(opt_iff_hpf_xi_pz > 0.95*max(opt_iff_hpf_xi_pz)); i_iff_hpf_pz = i_iff_hpf_pz(end)+1; %% Optimal modified IFF parameters that yields maximum simultaneous damping figure; yyaxis left hold on; plot(wis, opt_iff_hpf_xi_vc, '-', 'DisplayName', '$\xi_{cl}$'); plot(wis(i_iff_hpf_vc), opt_iff_hpf_xi_vc(i_iff_hpf_vc), '.', 'MarkerSize', 15, 'HandleVisibility', 'off'); hold off; set(gca, 'YScale', 'lin'); ylim([0,1]); ylabel('Damping Ratio $\xi$'); yyaxis right hold on; plot(wis, opt_iff_hpf_gain_vc, '-', 'DisplayName', '$g_{opt}$'); plot(wis, wis*((sqrt(1e4/16)/(2*pi))^2 - 1), '--', 'DisplayName', '$g_{max}$'); plot(wis(i_iff_hpf_vc), opt_iff_hpf_gain_vc(i_iff_hpf_vc), '.', 'MarkerSize', 15, 'HandleVisibility', 'off'); set(gca, 'YScale', 'lin'); ylim([0,200]); xlabel('$\omega_i$ [rad/s]'); set(gca, 'YTickLabel',[]); ylabel('Controller gain $g$'); set(gca, 'XScale', 'log'); xticks([1e-2,1,1e2]) legend('location', 'northwest', 'FontSize', 8); figure; yyaxis left hold on; plot(wis, opt_iff_hpf_xi_md, '-'); plot(wis(i_iff_hpf_md), opt_iff_hpf_xi_md(i_iff_hpf_md), '.', 'MarkerSize', 15, 'HandleVisibility', 'off'); hold off; set(gca, 'YScale', 'lin'); ylim([0,1]); ylabel('Damping Ratio $\xi$'); yyaxis right hold on; plot(wis, opt_iff_hpf_gain_md, '-'); plot(wis(i_iff_hpf_md), opt_iff_hpf_gain_md(i_iff_hpf_md), '.', 'MarkerSize', 15, 'HandleVisibility', 'off'); plot(wis, wis*((sqrt(1e6/16)/(2*pi))^2 - 1), '--'); set(gca, 'YScale', 'lin'); ylim([0,1000]); xlabel('$\omega_i$ [rad/s]'); ylabel('Controller gain $g$'); set(gca, 'YTickLabel',[]); set(gca, 'XScale', 'log'); xticks([1e-2,1,1e2]) figure; yyaxis left hold on; plot(wis, opt_iff_hpf_xi_pz, '-'); plot(wis(i_iff_hpf_pz), opt_iff_hpf_xi_pz(i_iff_hpf_pz), '.', 'MarkerSize', 15, 'HandleVisibility', 'off'); hold off; set(gca, 'YScale', 'lin'); ylim([0,1]); ylabel('Damping Ratio $\xi$'); yyaxis right hold on; plot(wis, opt_iff_hpf_gain_pz, '-'); plot(wis(i_iff_hpf_pz), opt_iff_hpf_gain_pz(i_iff_hpf_pz), '.', 'MarkerSize', 15, 'HandleVisibility', 'off'); plot(wis, wis*((sqrt(1e8/16)/(2*pi))^2 - 1), '--'); set(gca, 'YScale', 'lin'); ylim([0,10000]); xlabel('$\omega_i$ [rad/s]'); set(gca, 'YTickLabel',[]); ylabel('Controller gain $g$'); set(gca, 'XScale', 'log'); xticks([1e-2,1,1e2]) %% Maximum rotating velocity Wz = 2*pi; % [rad/s] %% Minimum parallel stiffness kp_min = (mn + ms) * Wz^2; % [N/m] %% Parameters for simulation mn = 15; % Nano-Hexapod mass [kg] ms = 1; % Sample Mass [kg] %% IFF Controller Kiff_vc = 1/(s + 0.1*sqrt(1e4/(mn+ms)))*eye(2); % IFF Kiff_md = 1/(s + 0.1*sqrt(1e6/(mn+ms)))*eye(2); % IFF Kiff_pz = 1/(s + 0.1*sqrt(1e8/(mn+ms)))*eye(2); % IFF %% General Configuration model_config = struct(); model_config.controller = "open_loop"; % Default: Open-Loop model_config.Tuv_type = "parallel_k"; % Default: 2DoF stage %% Computes the optimal parameters and attainable simultaneous damping - Voice Coil nano-hexapod kps_vc = logspace(log10(kp_min), log10(1e4), 100); % Tested parallel stiffnesses [N/m] kps_vc(end) = []; opt_iff_kp_xi_vc = zeros(1, length(kps_vc)); % Optimal simultaneous damping opt_iff_kp_gain_vc = zeros(1, length(kps_vc)); % Corresponding optimal gain for kp_i = 1:length(kps_vc) % Voice Coil Nano-Hexapod kp = kps_vc(kp_i); cp = 2*0.001*sqrt((ms + mn)*kp); kn = 1e4 - kp; % Nano-Hexapod Stiffness [N/m] cn = 2*0.01*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)] % Identify dynamics Giff_vc = linearize(mdl, io, 0); Giff_vc.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'}; Giff_vc.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; fun = @(g)computeSimultaneousDamping(g, Giff_vc({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff_vc); [g_opt, xi_opt] = fminsearch(fun, 0.1); opt_iff_kp_xi_vc(kp_i) = 1/xi_opt; opt_iff_kp_gain_vc(kp_i) = g_opt; end %% Computes the optimal parameters and attainable simultaneous damping - APA nano-hexapod kps_md = logspace(log10(kp_min), log10(1e6), 100); % Tested parallel stiffnesses [N/m] kps_md(end) = []; opt_iff_kp_xi_md = zeros(1, length(kps_md)); % Optimal simultaneous damping opt_iff_kp_gain_md = zeros(1, length(kps_md)); % Corresponding optimal gain for kp_i = 1:length(kps_md) % Voice Coil Nano-Hexapod kp = kps_md(kp_i); cp = 2*0.001*sqrt((ms + mn)*kp); kn = 1e6 - kp; % Nano-Hexapod Stiffness [N/m] cn = 2*0.01*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)] % Identify dynamics Giff_md = linearize(mdl, io, 0); Giff_md.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'}; Giff_md.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; fun = @(g)computeSimultaneousDamping(g, Giff_md({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff_md); [g_opt, xi_opt] = fminsearch(fun, 0.1); opt_iff_kp_xi_md(kp_i) = 1/xi_opt; opt_iff_kp_gain_md(kp_i) = g_opt; end %% Computes the optimal parameters and attainable simultaneous damping - Piezo nano-hexapod kps_pz = logspace(log10(kp_min), log10(1e8), 100); % Tested parallel stiffnesses [N/m] kps_pz(end) = []; opt_iff_kp_xi_pz = zeros(1, length(kps_pz)); % Optimal simultaneous damping opt_iff_kp_gain_pz = zeros(1, length(kps_pz)); % Corresponding optimal gain for kp_i = 1:length(kps_pz) % Voice Coil Nano-Hexapod kp = kps_pz(kp_i); cp = 2*0.001*sqrt((ms + mn)*kp); kn = 1e8 - kp; % Nano-Hexapod Stiffness [N/m] cn = 2*0.01*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)] % Identify dynamics Giff_pz = linearize(mdl, io, 0); Giff_pz.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'}; Giff_pz.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; fun = @(g)computeSimultaneousDamping(g, Giff_pz({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff_pz); [g_opt, xi_opt] = fminsearch(fun, 0.1); opt_iff_kp_xi_pz(kp_i) = 1/xi_opt; opt_iff_kp_gain_pz(kp_i) = g_opt; end %% Find result with wanted parallel stiffness [~, i_kp_vc] = min(abs(kps_vc - 1e3)); [~, i_kp_md] = min(abs(kps_md - 1e4)); [~, i_kp_pz] = min(abs(kps_pz - 1e6)); %% Identify plants with choosen Parallel stiffnesses model_config.Tuv_type = "parallel_k"; % Default: 2DoF stage % Voice Coil kp = 1e3; cp = 2*0.001*sqrt((ms + mn)*kp); kn = 1e4-kp; % Nano-Hexapod Stiffness [N/m] cn = 2*0.01*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)] % Identify dynamics Wz = 2*pi; % [rad/s] G_vc_kp_fast = linearize(mdl, io, 0); G_vc_kp_fast.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'}; G_vc_kp_fast.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; Wz = 0; % [rad/s] G_vc_kp_norot = linearize(mdl, io, 0); G_vc_kp_norot.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'}; G_vc_kp_norot.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; % APA kp = 1e4; cp = 2*0.001*sqrt((ms + mn)*kp); kn = 1e6 - kp; % Nano-Hexapod Stiffness [N/m] cn = 2*0.01*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)] % Identify dynamics Wz = 2*pi; % [rad/s] G_md_kp_fast = linearize(mdl, io, 0); G_md_kp_fast.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'}; G_md_kp_fast.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; Wz = 0; % [rad/s] G_md_kp_norot = linearize(mdl, io, 0); G_md_kp_norot.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'}; G_md_kp_norot.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; % Piezo kp = 1e6; cp = 2*0.001*sqrt((ms + mn)*kp); kn = 1e8 - kp; % Nano-Hexapod Stiffness [N/m] cn = 2*0.01*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)] % Identify dynamics Wz = 2*pi; % [rad/s] G_pz_kp_fast = linearize(mdl, io, 0); G_pz_kp_fast.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'}; G_pz_kp_fast.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; Wz = 0; % [rad/s] G_pz_kp_norot = linearize(mdl, io, 0); G_pz_kp_norot.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'}; G_pz_kp_norot.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; %% Optimal IFF gain and associated simultaneous damping as a function of the parallel stiffness figure; hold on; plot(kps_vc, opt_iff_kp_xi_vc, '-', ... 'color', colors(1,:), 'DisplayName', '$k_n = 0.01\,N/\mu m$'); plot(kps_vc(i_kp_vc), opt_iff_kp_xi_vc(i_kp_vc), '.', ... 'color', colors(1,:), 'MarkerSize', 15, 'HandleVisibility', 'off'); plot(kps_md, opt_iff_kp_xi_md, '-', ... 'color', colors(2,:), 'DisplayName', '$k_n = 1\,N/\mu m$'); plot(kps_md(i_kp_md), opt_iff_kp_xi_md(i_kp_md), '.', ... 'color', colors(2,:), 'MarkerSize', 15, 'HandleVisibility', 'off'); plot(kps_pz, opt_iff_kp_xi_pz, '-', ... 'color', colors(3,:), 'DisplayName', '$k_n = 100\,N/\mu m$'); plot(kps_pz(i_kp_pz), opt_iff_kp_xi_pz(i_kp_pz), '.', ... 'color', colors(3,:), 'MarkerSize', 15, 'HandleVisibility', 'off'); hold off; xlabel('$k_p [N/m]$'); ylabel('Damping Ratio $\xi$'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylim([0,1]); yticks([0:0.2:1]) legend('location', 'southeast', 'FontSize', 8); xlim([kps_pz(1), kps_pz(end)]) %% Computes the optimal parameters and attainable simultaneous damping - Piezo nano-hexapod rdc_gains = 2*logspace(1, 5, 200); % Obtained simultaneous damping rdc_xi_vc = zeros(1, length(rdc_gains)); rdc_xi_md = zeros(1, length(rdc_gains)); rdc_xi_pz = zeros(1, length(rdc_gains)); Krdc = s*eye(2); Krdc.InputName = {'Du', 'Dv'}; Krdc.OutputName = {'Fu', 'Fv'}; for g_i = 1:length(rdc_gains) [~, xi] = damp(feedback(G_vc_fast({'Du', 'Dv'}, {'Fu', 'Fv'}), rdc_gains(g_i)*Krdc)); rdc_xi_vc(g_i) = min(xi); [~, xi] = damp(feedback(G_md_fast({'Du', 'Dv'}, {'Fu', 'Fv'}), rdc_gains(g_i)*Krdc)); rdc_xi_md(g_i) = min(xi); [~, xi] = damp(feedback(G_pz_fast({'Du', 'Dv'}, {'Fu', 'Fv'}), rdc_gains(g_i)*Krdc)); rdc_xi_pz(g_i) = min(xi); end %% Optimal RDC [~, i_rdc_vc] = min(abs(rdc_xi_vc - 0.99)); [~, i_rdc_md] = min(abs(rdc_xi_md - 0.99)); [~, i_rdc_pz] = min(abs(rdc_xi_pz - 0.99)); Krdc_vc = rdc_gains(i_rdc_vc)*Krdc; Krdc_md = rdc_gains(i_rdc_md)*Krdc; Krdc_pz = rdc_gains(i_rdc_pz)*Krdc; %% Optimal IFF gain and associated simultaneous damping as a function of the parallel stiffness figure; hold on; plot(rdc_gains, rdc_xi_vc, '-', ... 'color', colors(1,:), 'DisplayName', '$k_n = 0.01\,N/\mu m$'); plot(rdc_gains(i_rdc_vc), rdc_xi_vc(i_rdc_vc), '.', ... 'color', colors(1,:), 'MarkerSize', 15, 'HandleVisibility', 'off'); plot(rdc_gains, rdc_xi_md, '-', ... 'color', colors(2,:), 'DisplayName', '$k_n = 1\,N/\mu m$'); plot(rdc_gains(i_rdc_md), rdc_xi_md(i_rdc_md), '.', ... 'color', colors(2,:), 'MarkerSize', 15, 'HandleVisibility', 'off'); plot(rdc_gains, rdc_xi_pz, '-', ... 'color', colors(3,:), 'DisplayName', '$k_n = 100\,N/\mu m$'); plot(rdc_gains(i_rdc_pz), rdc_xi_pz(i_rdc_pz), '.', ... 'color', colors(3,:), 'MarkerSize', 15, 'HandleVisibility', 'off'); hold off; xlabel('Relative Damping Controller gain $g$'); ylabel('Damping Ratio $\xi$'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylim([0,1]); yticks([0:0.2:1]) xlim([rdc_gains(1), rdc_gains(end)]) legend('location', 'southeast', 'FontSize', 8); %% Closed-Loop Plants - IFF with HPF G_vc_norot_iff_hpf = feedback(G_vc_norot, Kiff_hpf_vc, 'name'); G_vc_fast_iff_hpf = feedback(G_vc_fast, Kiff_hpf_vc, 'name'); G_md_norot_iff_hpf = feedback(G_md_norot, Kiff_hpf_md, 'name'); G_md_fast_iff_hpf = feedback(G_md_fast, Kiff_hpf_md, 'name'); G_pz_norot_iff_hpf = feedback(G_pz_norot, Kiff_hpf_pz, 'name'); G_pz_fast_iff_hpf = feedback(G_pz_fast, Kiff_hpf_pz, 'name'); %% Closed-Loop Plants - IFF with Parallel Stiffness G_vc_norot_iff_kp = feedback(G_vc_kp_norot, Kiff_kp_vc, 'name'); G_vc_fast_iff_kp = feedback(G_vc_kp_fast, Kiff_kp_vc, 'name'); G_md_norot_iff_kp = feedback(G_md_kp_norot, Kiff_kp_md, 'name'); G_md_fast_iff_kp = feedback(G_md_kp_fast, Kiff_kp_md, 'name'); G_pz_norot_iff_kp = feedback(G_pz_kp_norot, Kiff_kp_pz, 'name'); G_pz_fast_iff_kp = feedback(G_pz_kp_fast, Kiff_kp_pz, 'name'); %% Closed-Loop Plants - RDC G_vc_norot_rdc = feedback(G_vc_norot, Krdc_vc, 'name'); G_vc_fast_rdc = feedback(G_vc_fast, Krdc_vc, 'name'); G_md_norot_rdc = feedback(G_md_norot, Krdc_md, 'name'); G_md_fast_rdc = feedback(G_md_fast, Krdc_md, 'name'); G_pz_norot_rdc = feedback(G_pz_norot, Krdc_pz, 'name'); G_pz_fast_rdc = feedback(G_pz_fast, Krdc_pz, 'name'); %% Comparison of the damped plants (direct and coupling terms) for the three proposed active damping techniques (IFF with HPF, IFF with $k_p$ and RDC) applied on the three nano-hexapod stiffnesses freqs_vc = logspace(-1, 2, 1000); figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs_vc, abs(squeeze(freqresp(G_vc_fast( 'Du', 'Fu'), freqs_vc, 'Hz'))), '-' , 'color', [zeros(1,3)]); plot(freqs_vc, abs(squeeze(freqresp(G_vc_fast( 'Dv', 'Fu'), freqs_vc, 'Hz'))), '-' , 'color', [zeros(1,3), 0.5]); plot(freqs_vc, abs(squeeze(freqresp(G_vc_fast_iff_hpf( 'Du', 'Fu'), freqs_vc, 'Hz'))), '-' , 'color', [colors(1,:)]); plot(freqs_vc, abs(squeeze(freqresp(G_vc_fast_iff_hpf( 'Dv', 'Fu'), freqs_vc, 'Hz'))), '-' , 'color', [colors(1,:), 0.5]); plot(freqs_vc, abs(squeeze(freqresp(G_vc_fast_iff_kp( 'Du', 'Fu'), freqs_vc, 'Hz'))), '-' , 'color', [colors(2,:)]); plot(freqs_vc, abs(squeeze(freqresp(G_vc_fast_iff_kp( 'Dv', 'Fu'), freqs_vc, 'Hz'))), '-' , 'color', [colors(2,:), 0.5]); plot(freqs_vc, abs(squeeze(freqresp(G_vc_fast_rdc( 'Du', 'Fu'), freqs_vc, 'Hz'))), '-' , 'color', [colors(3,:)]); plot(freqs_vc, abs(squeeze(freqresp(G_vc_fast_rdc( 'Dv', 'Fu'), freqs_vc, 'Hz'))), '-' , 'color', [colors(3,:), 0.5]); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]); ylim([1e-8, 1e-2]) ax2 = nexttile; hold on; plot(freqs_vc, 180/pi*angle(squeeze(freqresp(G_vc_fast( 'Du', 'Fu'), freqs_vc, 'Hz'))), '-' , 'color', [zeros(1,3)]); plot(freqs_vc, 180/pi*angle(squeeze(freqresp(G_vc_fast_iff_hpf( 'Du', 'Fu'), freqs_vc, 'Hz'))), '-' , 'color', [colors(1,:)]); plot(freqs_vc, 180/pi*angle(squeeze(freqresp(G_vc_fast_iff_kp( 'Du', 'Fu'), freqs_vc, 'Hz'))), '-' , 'color', [colors(2,:)]); plot(freqs_vc, 180/pi*angle(squeeze(freqresp(G_vc_fast_rdc( 'Du', 'Fu'), freqs_vc, 'Hz'))), '-' , 'color', [colors(3,:)]); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 0]); linkaxes([ax1,ax2],'x'); xlim([freqs_vc(1), freqs_vc(end)]); freqs_md = logspace(0, 3, 1000); figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs_md, abs(squeeze(freqresp(G_md_fast( 'Du', 'Fu'), freqs_md, 'Hz'))), '-' , 'color', [zeros(1,3)]); plot(freqs_md, abs(squeeze(freqresp(G_md_fast( 'Dv', 'Fu'), freqs_md, 'Hz'))), '-' , 'color', [zeros(1,3), 0.5]); plot(freqs_md, abs(squeeze(freqresp(G_md_fast_iff_hpf( 'Du', 'Fu'), freqs_md, 'Hz'))), '-' , 'color', [colors(1,:)]); plot(freqs_md, abs(squeeze(freqresp(G_md_fast_iff_hpf( 'Dv', 'Fu'), freqs_md, 'Hz'))), '-' , 'color', [colors(1,:), 0.5]); plot(freqs_md, abs(squeeze(freqresp(G_md_fast_iff_kp( 'Du', 'Fu'), freqs_md, 'Hz'))), '-' , 'color', [colors(2,:)]); plot(freqs_md, abs(squeeze(freqresp(G_md_fast_iff_kp( 'Dv', 'Fu'), freqs_md, 'Hz'))), '-' , 'color', [colors(2,:), 0.5]); plot(freqs_md, abs(squeeze(freqresp(G_md_fast_rdc( 'Du', 'Fu'), freqs_md, 'Hz'))), '-' , 'color', [colors(3,:)]); plot(freqs_md, abs(squeeze(freqresp(G_md_fast_rdc( 'Dv', 'Fu'), freqs_md, 'Hz'))), '-' , 'color', [colors(3,:), 0.5]); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]); ylim([1e-10, 1e-4]) ax2 = nexttile; hold on; plot(freqs_md, 180/pi*angle(squeeze(freqresp(G_md_fast( 'Du', 'Fu'), freqs_md, 'Hz'))), '-' , 'color', [zeros(1,3)]); plot(freqs_md, 180/pi*angle(squeeze(freqresp(G_md_fast_iff_hpf( 'Du', 'Fu'), freqs_md, 'Hz'))), '-' , 'color', [colors(1,:)]); plot(freqs_md, 180/pi*angle(squeeze(freqresp(G_md_fast_iff_kp( 'Du', 'Fu'), freqs_md, 'Hz'))), '-' , 'color', [colors(2,:)]); plot(freqs_md, 180/pi*angle(squeeze(freqresp(G_md_fast_rdc( 'Du', 'Fu'), freqs_md, 'Hz'))), '-' , 'color', [colors(3,:)]); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 0]); linkaxes([ax1,ax2],'x'); xlim([freqs_md(1), freqs_md(end)]); freqs_pz = logspace(0, 3, 1000); figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs_pz, abs(squeeze(freqresp(G_pz_fast( 'Du', 'Fu'), freqs_pz, 'Hz'))), '-' , 'color', [zeros(1,3)], ... 'DisplayName', 'OL'); plot(freqs_pz, abs(squeeze(freqresp(G_pz_fast( 'Dv', 'Fu'), freqs_pz, 'Hz'))), '-' , 'color', [zeros(1,3), 0.5], ... 'DisplayName', 'Coupling'); plot(freqs_pz, abs(squeeze(freqresp(G_pz_fast_iff_hpf( 'Du', 'Fu'), freqs_pz, 'Hz'))), '-' , 'color', [colors(1,:)], ... 'DisplayName', 'IFF + HPF'); plot(freqs_pz, abs(squeeze(freqresp(G_pz_fast_iff_hpf( 'Dv', 'Fu'), freqs_pz, 'Hz'))), '-' , 'color', [colors(1,:), 0.5], ... 'HandleVisibility', 'off'); plot(freqs_pz, abs(squeeze(freqresp(G_pz_fast_iff_kp( 'Du', 'Fu'), freqs_pz, 'Hz'))), '-' , 'color', [colors(2,:)], ... 'DisplayName', 'IFF + $k_p$'); plot(freqs_pz, abs(squeeze(freqresp(G_pz_fast_iff_kp( 'Dv', 'Fu'), freqs_pz, 'Hz'))), '-' , 'color', [colors(2,:), 0.5], ... 'HandleVisibility', 'off'); plot(freqs_pz, abs(squeeze(freqresp(G_pz_fast_rdc( 'Du', 'Fu'), freqs_pz, 'Hz'))), '-' , 'color', [colors(3,:)], ... 'DisplayName', 'RDC'); plot(freqs_pz, abs(squeeze(freqresp(G_pz_fast_rdc( 'Dv', 'Fu'), freqs_pz, 'Hz'))), '-' , 'color', [colors(3,:), 0.5], ... 'HandleVisibility', 'off'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]); ylim([1e-12, 1e-6]) ldg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); ldg.ItemTokenSize = [20, 1]; ax2 = nexttile; hold on; plot(freqs_pz, 180/pi*angle(squeeze(freqresp(G_pz_fast( 'Du', 'Fu'), freqs_pz, 'Hz'))), '-' , 'color', [zeros(1,3)]); plot(freqs_pz, 180/pi*angle(squeeze(freqresp(G_pz_fast_iff_hpf( 'Du', 'Fu'), freqs_pz, 'Hz'))), '-' , 'color', [colors(1,:)]); plot(freqs_pz, 180/pi*angle(squeeze(freqresp(G_pz_fast_iff_kp( 'Du', 'Fu'), freqs_pz, 'Hz'))), '-' , 'color', [colors(2,:)]); plot(freqs_pz, 180/pi*angle(squeeze(freqresp(G_pz_fast_rdc( 'Du', 'Fu'), freqs_pz, 'Hz'))), '-' , 'color', [colors(3,:)]); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-180, 0]); linkaxes([ax1,ax2],'x'); xlim([freqs_pz(1), freqs_pz(end)]);