%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); %% Path for functions, data and scripts addpath('./mat/'); % Path for data addpath('./src/'); % Path for Functions %% Colors for the figures colors = colororder; %% Simscape model name mdl = 'rotating_model'; %% Load "Generic" system dynamics load('rotating_generic_plants.mat', 'Gs', 'Wzs'); % Identify plants :noexport: %% The rotating speed is set to $\Omega = 0.1 \omega_0$. Wz = 0.1; % [rad/s] %% Masses ms = 0.5; % Sample mass [kg] mn = 0.5; % Tuv mass [kg] %% General Configuration model_config = struct(); model_config.controller = "open_loop"; % Default: Open-Loop %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/controller'], 1, 'openinput'); io_i = io_i + 1; % [Fu, Fv] io(io_i) = linio([mdl, '/fd'], 1, 'openinput'); io_i = io_i + 1; % [Fdu, Fdv] io(io_i) = linio([mdl, '/xf'], 1, 'openinput'); io_i = io_i + 1; % [Dfx, Dfy] io(io_i) = linio([mdl, '/translation_stage'], 1, 'openoutput'); io_i = io_i + 1; % [Fmu, Fmv] io(io_i) = linio([mdl, '/translation_stage'], 2, 'openoutput'); io_i = io_i + 1; % [Du, Dv] io(io_i) = linio([mdl, '/ext_metrology'], 1, 'openoutput'); io_i = io_i + 1; % [Dx, Dy] %% Identifying plant with parallel stiffness model_config.Tuv_type = "parallel_k"; % Parallel stiffness kp = 2*(mn+ms)*Wz^2; % Parallel Stiffness [N/m] cp = 0.001*2*sqrt(kp*(mn+ms)); % Small parallel damping [N/(m/s)] % Tuv Stage kn = 1 - kp; % Stiffness [N/m] cn = 0.01*2*sqrt(kn*(mn+ms)); % Damping [N/(m/s)] % Linearize G_kp = linearize(mdl, io, 0); G_kp.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'}; G_kp.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; %% Identifying plant with no parallel stiffness model_config.Tuv_type = "normal"; % Tuv Stage kn = 1; % Stiffness [N/m] cn = 0.01*2*sqrt(kn*(mn+ms)); % Damping [N/(m/s)] % Linearize G = linearize(mdl, io, 0); G.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'}; G.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; %% IFF Controller Kiff = (2.2/(s + 0.1))*eye(2); Kiff.InputName = {'fu', 'fv'}; Kiff.OutputName = {'Fu', 'Fv'}; %% IFF Controller with added stiffness Kiff_kp = (2.2/(s + 0.1))*eye(2); Kiff_kp.InputName = {'fu', 'fv'}; Kiff_kp.OutputName = {'Fu', 'Fv'}; %% Relative Damping Controller Krdc = 2*s*eye(2); Krdc.InputName = {'Du', 'Dv'}; Krdc.OutputName = {'Fu', 'Fv'}; % Root Locus % Figure ref:fig:rotating_comp_techniques_root_locus shows the Root Locus plots for the two proposed IFF modifications as well as for relative damping control. % While the two pairs of complex conjugate open-loop poles are identical for both IFF modifications, the transmission zeros are not. % This means that the closed-loop behavior of both systems will differ when large control gains are used. % One can observe that the closed loop poles corresponding to the system with added springs (in red) are bounded to the left half plane implying unconditional stability. % This is not the case for the system where the controller is augmented with an HPF (in blue). % It is interesting to note that the maximum added damping is very similar for both techniques. %% Comparison of active damping techniques for rotating platform - Root Locus gains = logspace(-2, 2, 500); figure; hold on; % IFF plot(real(pole(G({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), imag(pole(G({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), 'x', 'color', colors(1,:), ... 'DisplayName', 'IFF with HPF', 'MarkerSize', 8); plot(real(tzero(G({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), imag(tzero(G({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), 'o', 'color', colors(1,:), ... 'HandleVisibility', 'off', 'MarkerSize', 8); for g = gains cl_poles = pole(feedback(G({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff)); plot(real(cl_poles), imag(cl_poles), '.', 'color', colors(1,:),'MarkerSize',4, ... 'HandleVisibility', 'off'); end % IFF with parallel stiffness plot(real(pole(G_kp({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp)), imag(pole(G_kp({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp)), 'x', 'color', colors(2,:), ... 'DisplayName', 'IFF with $k_p$', 'MarkerSize', 8); plot(real(tzero(G_kp({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp)), imag(tzero(G_kp({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp)), 'o', 'color', colors(2,:), ... 'HandleVisibility', 'off', 'MarkerSize', 8); for g = gains cl_poles = pole(feedback(G_kp({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff_kp)); plot(real(cl_poles), imag(cl_poles), '.', 'color', colors(2,:),'MarkerSize',4, ... 'HandleVisibility', 'off'); end % RDC plot(real(pole(G({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc)), imag(pole(G({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc)), 'x', 'color', colors(3,:), ... 'DisplayName', 'RDC', 'MarkerSize', 8); plot(real(tzero(G({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc)), imag(tzero(G({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc)), 'o', 'color', colors(3,:), ... 'HandleVisibility', 'off', 'MarkerSize', 8); for g = gains cl_poles = pole(feedback(G({'Du', 'Dv'}, {'Fu', 'Fv'}), g*Krdc)); plot(real(cl_poles), imag(cl_poles), '.', 'color', colors(3,:),'MarkerSize',4, ... 'HandleVisibility', 'off'); end hold off; axis square; xlim([-1.15, 0.05]); ylim([0, 1.2]); xlabel('Real Part'); ylabel('Imaginary Part'); leg = legend('location', 'northwest', 'FontSize', 8); leg.ItemTokenSize(1) = 12; % Obtained Damped Plant % The actively damped plants are computed for the three techniques and compared in Figure ref:fig:rotating_comp_techniques_dampled_plants. % #+begin_important % It is shown that while the diagonal (direct) terms of the damped plants are similar for the three active damping techniques, of off-diagonal (coupling) terms are not. % Integral Force Feedback strategy is adding some coupling at low frequency which may negatively impact the positioning performances. % #+end_important %% Compute Damped plants G_cl_iff = feedback(G, Kiff, 'name'); G_cl_iff_kp = feedback(G_kp, Kiff_kp, 'name'); G_cl_rdc = feedback(G, Krdc, 'name'); %% Comparison of the damped plants obtained with the three active damping techniques freqs = logspace(-3, 2, 1000); figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); % Magnitude ax1 = nexttile([2, 1]); hold on; plot(freqs, abs(squeeze(freqresp(G( 'Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', zeros(1,3), ... 'DisplayName', 'OL') plot(freqs, abs(squeeze(freqresp(G_cl_iff( 'Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(1,:), ... 'DisplayName', 'IFF + HPF') plot(freqs, abs(squeeze(freqresp(G_cl_iff_kp('Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(2,:), ... 'DisplayName', 'IFF + $k_p$') plot(freqs, abs(squeeze(freqresp(G_cl_rdc( 'Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(3,:), ... 'DisplayName', 'RDC') plot(freqs, abs(squeeze(freqresp(G( 'Dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', [zeros(1,3), 0.5], ... 'DisplayName', 'Coupling') plot(freqs, abs(squeeze(freqresp(G_cl_iff( 'Dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', [colors(1,:), 0.5], ... 'DisplayName', 'Coupling') plot(freqs, abs(squeeze(freqresp(G_cl_iff_kp('Dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', [colors(2,:), 0.5], ... 'DisplayName', 'Coupling') plot(freqs, abs(squeeze(freqresp(G_cl_rdc( 'Dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', [colors(3,:), 0.5], ... 'DisplayName', 'Coupling') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('Magnitude [m/N]'); ldg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); ldg.ItemTokenSize = [10, 1]; ylim([1e-6, 1e2]) ax2 = nexttile; hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(G( 'Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', zeros(1,3)) plot(freqs, 180/pi*angle(squeeze(freqresp(G_cl_iff( 'Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(1,:)) plot(freqs, 180/pi*angle(squeeze(freqresp(G_cl_iff_kp('Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(2,:)) plot(freqs, 180/pi*angle(squeeze(freqresp(G_cl_rdc( 'Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(3,:)) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [rad/s]'); ylabel('Phase [deg]'); yticks(-180:90:180); ylim([-180 180]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); % Transmissibility And Compliance % The proposed active damping techniques are now compared in terms of closed-loop transmissibility and compliance. % The transmissibility is here defined as the transfer function from a displacement of the rotating stage along $\vec{i}_x$ to the displacement of the payload along the same direction. % It is used to characterize how much vibration is transmitted through the suspended platform to the payload. % The compliance describes the displacement response of the payload to external forces applied to it. % This is a useful metric when disturbances are directly applied to the payload. % It is here defined as the transfer function from external forces applied on the payload along $\vec{i}_x$ to the displacement of the payload along the same direction. % Very similar results are obtained for the two proposed IFF modifications in terms of transmissibility and compliance (Figure ref:fig:rotating_comp_techniques_transmissibility_compliance). % #+begin_important % Using IFF degrades the compliance at low frequency while using relative damping control degrades the transmissibility at high frequency. % This is very well known characteristics of these common active damping techniques that holds when applied to rotating platforms. % #+end_important %% Comparison of the obtained transmissibilty and compliance for the three tested active damping techniques freqs = logspace(-2, 2, 1000); figure; tiledlayout(1, 2, 'TileSpacing', 'Compact', 'Padding', 'None'); % Transmissibility ax1 = nexttile(); hold on; plot(freqs, abs(squeeze(freqresp(G( 'Dx', 'Dfx'), freqs, 'rad/s'))), '-', 'color', zeros(1,3), ... 'DisplayName', 'OL') plot(freqs, abs(squeeze(freqresp(G_cl_iff( 'Dx', 'Dfx'), freqs, 'rad/s'))), '-', 'color', colors(1,:), ... 'DisplayName', 'IFF + HPF') plot(freqs, abs(squeeze(freqresp(G_cl_iff_kp('Dx', 'Dfx'), freqs, 'rad/s'))), '-', 'color', colors(2,:), ... 'DisplayName', 'IFF + $k_p$') plot(freqs, abs(squeeze(freqresp(G_cl_rdc( 'Dx', 'Dfx'), freqs, 'rad/s'))), '-', 'color', colors(3,:), ... 'DisplayName', 'RDC') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [rad/s]'); ylabel('Transmissibility [m/m]'); xlim([freqs(1), freqs(end)]); % Compliance ax1 = nexttile(); hold on; plot(freqs, abs(squeeze(freqresp(G( 'Dx', 'Fdx'), freqs, 'rad/s'))), '-', 'color', zeros(1,3), ... 'DisplayName', 'OL') plot(freqs, abs(squeeze(freqresp(G_cl_iff( 'Dx', 'Fdx'), freqs, 'rad/s'))), '-', 'color', colors(1,:), ... 'DisplayName', 'IFF + HPF') plot(freqs, abs(squeeze(freqresp(G_cl_iff_kp('Dx', 'Fdx'), freqs, 'rad/s'))), '-', 'color', colors(2,:), ... 'DisplayName', 'IFF + $k_p$') plot(freqs, abs(squeeze(freqresp(G_cl_rdc( 'Dx', 'Fdx'), freqs, 'rad/s'))), '-', 'color', colors(3,:), ... 'DisplayName', 'RDC') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [rad/s]'); ylabel('Compliance [m/N]'); ldg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); ldg.ItemTokenSize = [10, 1]; xlim([freqs(1), freqs(end)]);