%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); %% Path for functions, data and scripts addpath('./mat/'); % Path for data addpath('./src/'); % Path for Functions %% Colors for the figures colors = colororder; %% Simscape model name mdl = 'rotating_model'; %% Load "Generic" system dynamics load('rotating_generic_plants.mat', 'Gs', 'Wzs'); % Modified Integral Force Feedback Controller % The Integral Force Feedback Controller is modified such that instead of using pure integrators, pseudo integrators (i.e. low pass filters) are used: % \begin{equation} % K_{\text{IFF}}(s) = g\frac{1}{\omega_i + s} \begin{bmatrix} % 1 & 0 \\ % 0 & 1 % \end{bmatrix} % \end{equation} % where $\omega_i$ characterize down to which frequency the signal is integrated. % Let's arbitrary choose the following control parameters: %% Modified IFF - parameters g = 2; % Controller gain wi = 0.1; % HPF Cut-Off frequency [rad/s] Kiff = (g/s)*eye(2); % Pure IFF Kiff_hpf = (g/(wi+s))*eye(2); % IFF with added HPF % The loop gains ($K_F(s)$ times the direct dynamics $f_u/F_u$) with and without the added HPF are shown in Figure ref:fig:rotating_iff_modified_loop_gain. % The effect of the added HPF limits the low frequency gain to finite values as expected. %% Loop gain for the IFF with pure integrator and modified IFF with added high pass filter freqs = logspace(-2, 1, 1000); Wz_i = 2; figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); % Magnitude ax1 = nexttile([2, 1]); hold on; plot(freqs, abs(squeeze(freqresp(Gs{Wz_i}('fu', 'Fu')*Kiff(1,1), freqs, 'rad/s')))) plot(freqs, abs(squeeze(freqresp(Gs{Wz_i}('fu', 'Fu')*Kiff_hpf(1,1), freqs, 'rad/s')))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('Loop Gain'); % Phase ax2 = nexttile; hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{Wz_i}('fu', 'Fu')*Kiff(1,1), freqs, 'rad/s'))), 'DisplayName', 'IFF') plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{Wz_i}('fu', 'Fu')*Kiff_hpf(1,1), freqs, 'rad/s'))), 'DisplayName', 'IFF + HPF') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [rad/s]'); ylabel('Phase [deg]'); yticks(-180:90:180); ylim([-180 180]); xticks([1e-2,1e-1,1,1e1]) xticklabels({'$0.01 \omega_0$', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'}) leg = legend('location', 'southwest', 'FontSize', 8); leg.ItemTokenSize(1) = 20; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); % #+name: fig:rotating_iff_modified_loop_gain % #+caption: Loop gain for the IFF with pure integrator and modified IFF with added high pass filter ($\Omega = 0.1\omega_0$) % #+RESULTS: % [[file:figs/rotating_iff_modified_loop_gain.png]] % The Root Locus plots for the decentralized IFF with and without the HPF are displayed in Figure ref:fig:rotating_iff_root_locus_hpf. % With the added HPF, the poles of the closed loop system are shown to be *stable up to some value of the gain* $g_\text{max}$ given by equation eqref:eq:gmax_iff_hpf. % #+name: eq:gmax_iff_hpf % \begin{equation} % \boxed{g_{\text{max}} = \omega_i \left( \frac{{\omega_0}^2}{\Omega^2} - 1 \right)} % \end{equation} % It is interesting to note that $g_{\text{max}}$ also corresponds to the controller gain at which the low frequency loop gain (Figure ref:fig:rotating_iff_modified_loop_gain) reaches one. %% Root Locus for the initial IFF and the modified IFF gains = logspace(-2, 4, 200); figure; tiledlayout(1, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([1,2]); hold on; for g = gains clpoles = pole(feedback(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff)); plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:), 'HandleVisibility', 'off','MarkerSize',4); end for g = gains clpoles = pole(feedback(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff_hpf)); plot(real(clpoles), imag(clpoles), '.', 'color', colors(2,:), 'HandleVisibility', 'off','MarkerSize',4); end % Pure Integrator plot(real(pole(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... imag(pole(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... 'x', 'color', colors(1,:), 'DisplayName', 'IFF','MarkerSize',8); plot(real(tzero(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... imag(tzero(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... 'o', 'color', colors(1,:), 'HandleVisibility', 'off','MarkerSize',8); % Modified IFF plot(real(pole(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf)), ... imag(pole(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf)), ... 'x', 'color', colors(2,:), 'DisplayName', 'IFF + HPF','MarkerSize',8); plot(real(tzero(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf)), ... imag(tzero(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf)), ... 'o', 'color', colors(2,:), 'HandleVisibility', 'off','MarkerSize',8); hold off; axis square; leg = legend('location', 'northwest', 'FontSize', 8); leg.ItemTokenSize(1) = 8; xlabel('Real Part'); ylabel('Imaginary Part'); xlim([-2.25, 0.25]); ylim([-1.25, 1.25]); xticks([-2, -1, 0]) xticklabels({'$-2\omega_0$', '$-\omega_0$', '$0$'}) yticks([-1, 0, 1]) yticklabels({'$-\omega_0$', '$0$', '$\omega_0$'}) ax2 = nexttile(); hold on; for g = gains clpoles = pole(feedback(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff)); plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:),'MarkerSize',4); end for g = gains clpoles = pole(feedback(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff_hpf)); plot(real(clpoles), imag(clpoles), '.', 'color', colors(2,:),'MarkerSize',4); end % Pure Integrator plot(real(pole(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... imag(pole(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... 'x', 'color', colors(1,:),'MarkerSize',8); plot(real(tzero(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... imag(tzero(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... 'o', 'color', colors(1,:),'MarkerSize',8); % Modified IFF plot(real(pole(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf)), ... imag(pole(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf)), ... 'x', 'color', colors(2,:),'MarkerSize',8); plot(real(tzero(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf)), ... imag(tzero(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf)), ... 'o', 'color', colors(2,:),'MarkerSize',8); hold off; axis square; xlabel('Real Part'); ylabel('Imaginary Part'); title('Zoom near the origin'); xlim([-0.15, 0.1]); ylim([-0.15, 0.15]); xticks([-0.1, 0, 0.1]) xticklabels({'$-0.1\omega_0$', '$0$', '$0.1\omega_0$'}) yticks([-0.1, 0, 0.1]) yticklabels({'$-0.1\omega_0$', '$0$', '$0.1\omega_0$'}) % Optimal IFF with HPF parameters $\omega_i$ and $g$ % Two parameters can be tuned for the modified controller in equation eqref:eq:iff_lhf: the gain $g$ and the pole's location $\omega_i$. % The optimal values of $\omega_i$ and $g$ are here considered as the values for which the damping of all the closed-loop poles are simultaneously maximized. % In order to visualize how $\omega_i$ does affect the attainable damping, the Root Locus plots for several $\omega_i$ are displayed in Figure ref:fig:rotating_root_locus_iff_modified_effect_wi. % It is shown that even though small $\omega_i$ seem to allow more damping to be added to the suspension modes, the control gain $g$ may be limited to small values due to equation eqref:eq:gmax_iff_hpf. %% High Pass Filter Cut-Off Frequency wis = [0.01, 0.1, 0.5, 1]*Wzs(2); % [rad/s] %% Root Locus for the initial IFF and the modified IFF gains = logspace(-2, 4, 200); figure; tiledlayout(1, 2, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile(); hold on; for wi_i = 1:length(wis) wi = wis(wi_i); Kiff = (1/(wi+s))*eye(2); L(wi_i) = plot(nan, nan, '.', 'color', colors(wi_i,:), 'DisplayName', sprintf('$\\omega_i = %.2f \\omega_0$', wi./Wzs(2))); for g = gains clpoles = pole(feedback(Gs{2}({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff)); plot(real(clpoles), imag(clpoles), '.', 'color', colors(wi_i,:),'MarkerSize',4); end plot(real(pole(Gs{2}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... imag(pole(Gs{2}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... 'x', 'color', colors(wi_i,:),'MarkerSize',8); plot(real(tzero(Gs{2}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... imag(tzero(Gs{2}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... 'o', 'color', colors(wi_i,:),'MarkerSize',8); end hold off; axis square; xlim([-2.3, 0.1]); ylim([-1.2, 1.2]); xticks([-2:1:2]); yticks([-2:1:2]); leg = legend(L, 'location', 'northwest', 'FontSize', 8); leg.ItemTokenSize(1) = 8; xlabel('Real Part'); ylabel('Imaginary Part'); clear L xlim([-2.25, 0.25]); ylim([-1.25, 1.25]); xticks([-2, -1, 0]) xticklabels({'$-2\omega_0$', '$-\omega_0$', '$0$'}) yticks([-1, 0, 1]) yticklabels({'$-\omega_0$', '$0$', '$\omega_0$'}) ax2 = nexttile(); hold on; for wi_i = 1:length(wis) wi = wis(wi_i); Kiff = (1/(wi+s))*eye(2); L(wi_i) = plot(nan, nan, '.', 'color', colors(wi_i,:)); for g = gains clpoles = pole(feedback(Gs{2}({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff)); plot(real(clpoles), imag(clpoles), '.', 'color', colors(wi_i,:),'MarkerSize',4); end plot(real(pole(Gs{2}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... imag(pole(Gs{2}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... 'x', 'color', colors(wi_i,:),'MarkerSize',8); plot(real(tzero(Gs{2}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... imag(tzero(Gs{2}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... 'o', 'color', colors(wi_i,:),'MarkerSize',8); end hold off; axis square; xlim([-2.3, 0.1]); ylim([-1.2, 1.2]); xticks([-2:1:2]); yticks([-2:1:2]); xlabel('Real Part'); ylabel('Imaginary Part'); title('Zoom near the origin'); clear L xlim([-0.15, 0.1]); ylim([-0.15, 0.15]); xticks([-0.1, 0, 0.1]) xticklabels({'$-0.1\omega_0$', '$0$', '$0.1\omega_0$'}) yticks([-0.1, 0, 0.1]) yticklabels({'$-0.1\omega_0$', '$0$', '$0.1\omega_0$'}) % #+name: fig:rotating_root_locus_iff_modified_effect_wi % #+caption: Root Locus for several high pass filter cut-off frequency % #+RESULTS: % [[file:figs/rotating_root_locus_iff_modified_effect_wi.png]] % In order to study this trade off, the attainable closed-loop damping ratio $\xi_{\text{cl}}$ is computed as a function of $\omega_i/\omega_0$. % The gain $g_{\text{opt}}$ at which this maximum damping is obtained is also displayed and compared with the gain $g_{\text{max}}$ at which the system becomes unstable (Figure ref:fig:rotating_iff_hpf_optimal_gain). % Three regions can be observed: % - $\omega_i/\omega_0 < 0.02$: the added damping is limited by the maximum allowed control gain $g_{\text{max}}$ % - $0.02 < \omega_i/\omega_0 < 0.2$: the attainable damping ratio is maximized and is reached for $g \approx 2$ % - $0.2 < \omega_i/\omega_0$: the added damping decreases as $\omega_i/\omega_0$ increases. %% Compute the optimal control gain wis = logspace(-2, 1, 100); % [rad/s] opt_xi = zeros(1, length(wis)); % Optimal simultaneous damping opt_gain = zeros(1, length(wis)); % Corresponding optimal gain for wi_i = 1:length(wis) wi = wis(wi_i); Kiff = 1/(s + wi)*eye(2); fun = @(g)computeSimultaneousDamping(g, Gs{2}({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff); [g_opt, xi_opt] = fminsearch(fun, 0.5*wi*((1/Wzs(2))^2 - 1)); opt_xi(wi_i) = 1/xi_opt; opt_gain(wi_i) = g_opt; end %% Attainable damping ratio as a function of wi/w0. Corresponding control gain g_opt and g_max are also shown figure; yyaxis left plot(wis, opt_xi, '-', 'DisplayName', '$\xi_{cl}$'); set(gca, 'YScale', 'lin'); ylim([0,1]); ylabel('Damping Ratio $\xi$'); yyaxis right hold on; plot(wis, opt_gain, '-', 'DisplayName', '$g_{opt}$'); plot(wis, wis*((1/Wzs(2))^2 - 1), '--', 'DisplayName', '$g_{max}$'); set(gca, 'YScale', 'lin'); ylim([0,10]); ylabel('Controller gain $g$'); xlabel('$\omega_i/\omega_0$'); set(gca, 'XScale', 'log'); legend('location', 'northeast', 'FontSize', 8); % Obtained Damped Plant % Let's choose $\omega_i = 0.1 \cdot \omega_0$ and compute the damped plant. % The undamped and damped plants are compared in Figure ref:fig:rotating_iff_hpf_damped_plant in blue and red respectively. % A well damped plant is indeed obtained. % However, the magnitude of the coupling term ($d_v/F_u$) is larger then IFF is applied. %% Compute damped plant wi = 0.1; % [rad/s] g = 2; % Gain Kiff_hpf = (g/(wi+s))*eye(2); % IFF with added HPF Kiff_hpf.InputName = {'fu', 'fv'}; Kiff_hpf.OutputName = {'Fu', 'Fv'}; G_iff_hpf = feedback(Gs{2}, Kiff_hpf, 'name'); isstable(G_iff_hpf) % Verify stability %% Damped plant with IFF and added HPF - Transfer function from $F_u$ to $d_u$ freqs = logspace(-2, 1, 1000); figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); % Magnitude ax1 = nexttile([2, 1]); hold on; plot(freqs, abs(squeeze(freqresp(Gs{2}('Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', [zeros(1,3)], ... 'DisplayName', '$d_u/F_u$, OL') plot(freqs, abs(squeeze(freqresp(G_iff_hpf('Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', [colors(1,:)], ... 'DisplayName', '$d_u/F_u$, IFF') plot(freqs, abs(squeeze(freqresp(Gs{2}('Dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', [zeros(1,3), 0.5], ... 'DisplayName', '$d_v/F_u$, OL') plot(freqs, abs(squeeze(freqresp(G_iff_hpf('Dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', [colors(1,:), 0.5], ... 'DisplayName', '$d_v/F_u$, IFF') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('Magnitude [m/N]'); leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); leg.ItemTokenSize(1) = 20; ax2 = nexttile; hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{2}('Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', zeros(1,3)) plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff_hpf('Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(1,:)) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [rad/s]'); ylabel('Phase [deg]'); yticks(-180:90:180); ylim([-180 180]); xticks([1e-2,1e-1,1,1e1]) xticklabels({'$0.01 \omega_0$', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'}) linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); % #+name: fig:rotating_iff_hpf_damped_plant % #+caption: Damped plant with IFF and added HPF - Transfer function from $F_u$ to $d_u$, $\omega_i = 0.1 \cdot \omega_0$, $\Omega = 0.1 \cdot \omega_0$ % #+RESULTS: % [[file:figs/rotating_iff_hpf_damped_plant.png]] % In order to study how $\omega_i$ affects the coupling of the damped plant, the closed-loop plant is identified for several $\omega_i$. % The direct and coupling terms of the plants are shown in Figure ref:fig:rotating_iff_hpf_damped_plant_effect_wi_coupling (left) and the ratio between the two (i.e. the coupling ratio) is shown in Figure ref:fig:rotating_iff_hpf_damped_plant_effect_wi_coupling (right). % The coupling ratio is decreasing as $\omega_i$ increases. % There is therefore a *trade-off between achievable damping and coupling ratio* for the choice of $\omega_i$. % The same trade-off can be seen between achievable damping and loss of compliance at low frequency (see Figure ref:fig:rotating_iff_hpf_effect_wi_compliance). %% Compute damped plant wis = [0.03, 0.1, 0.5]; % [rad/s] g = 2; % Gain Gs_iff_hpf = {}; for i = 1:length(wis) Kiff_hpf = (g/(wis(i)+s))*eye(2); % IFF with added HPF Kiff_hpf.InputName = {'fu', 'fv'}; Kiff_hpf.OutputName = {'Fu', 'Fv'}; Gs_iff_hpf(i) = {feedback(Gs{2}, Kiff_hpf, 'name')}; end %% Effect of $\omega_i$ on the damped plant coupling freqs = logspace(-2, 1, 1000); figure; tiledlayout(3, 2, 'TileSpacing', 'Compact', 'Padding', 'None'); % Magnitude ax1 = nexttile([2, 1]); hold on; for i = 1:length(wis) plot(freqs, abs(squeeze(freqresp(Gs_iff_hpf{i}('Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', [colors(i,:)], ... 'DisplayName', sprintf('$d_u/F_u$, $\\omega_i = %.2f \\omega_0$', wis(i))) plot(freqs, abs(squeeze(freqresp(Gs_iff_hpf{i}('Dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', [colors(i,:), 0.5], ... 'DisplayName', sprintf('$d_v/F_u$, $\\omega_i = %.2f \\omega_0$', wis(i))) end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('Magnitude [m/N]'); leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 20; ax3 = nexttile([3,1]); hold on; for i = 1:length(wis) plot(freqs, abs(squeeze(freqresp(Gs_iff_hpf{i}('Dv', 'Fu')/Gs_iff_hpf{i}('Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', [colors(i,:)], ... 'DisplayName', sprintf('$\\omega_i = %.2f \\omega_0$', wis(i))) end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [rad/s]'); ylabel('Coupling Ratio'); leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 20; xticks([1e-2,1e-1,1,1e1]) xticklabels({'$0.01 \omega_0$', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'}) ax2 = nexttile; hold on; for i = 1:length(wis) plot(freqs, 180/pi*angle(squeeze(freqresp(Gs_iff_hpf{i}('Du', 'Fu'), freqs, 'rad/s'))), '-') end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [rad/s]'); ylabel('Phase [deg]'); yticks(-180:90:180); ylim([-180 180]); xticks([1e-2,1e-1,1,1e1]) xticklabels({'$0.01 \omega_0$', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'}) linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); % #+name: fig:rotating_iff_hpf_damped_plant_effect_wi_coupling % #+caption: Effect of $\omega_i$ on the damped plant coupling % #+RESULTS: % [[file:figs/rotating_iff_hpf_damped_plant_effect_wi_coupling.png]] %% Effect of $\omega_i$ on the obtained compliance freqs = logspace(-2, 1, 1000); figure; tiledlayout(1, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); % Magnitude ax1 = nexttile(); hold on; for i = 1:length(wis) plot(freqs, abs(squeeze(freqresp(Gs_iff_hpf{i}('Du', 'Fdx'), freqs, 'rad/s'))), '-', 'color', [colors(i,:)], ... 'DisplayName', sprintf('$d_{x}/F_{dx}$, $\\omega_i = %.2f \\omega_0$', wis(i))) end plot(freqs, abs(squeeze(freqresp(Gs{2}('Du', 'Fdx'), freqs, 'rad/s'))), 'k--', ... 'DisplayName', '$d_{x}/F_{dx}$, OL') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [rad/s]'); ylabel('Compliance [m/N]'); leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 20; xticks([1e-2,1e-1,1,1e1]) xticklabels({'$0.01 \omega_0$', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'})