From b5e07eeedcd49809b9e257f43a5cc808df2c02c5 Mon Sep 17 00:00:00 2001 From: Thomas Dehaeze Date: Tue, 30 Apr 2024 15:25:20 +0200 Subject: [PATCH] Gammar check --- nass-rotating-3dof-model.org | 354 ++++++++++++++++++----------------- nass-rotating-3dof-model.pdf | Bin 3550823 -> 3550710 bytes nass-rotating-3dof-model.tex | 334 +++++++++++++++++---------------- 3 files changed, 346 insertions(+), 342 deletions(-) diff --git a/nass-rotating-3dof-model.org b/nass-rotating-3dof-model.org index d1b358a..f316b55 100644 --- a/nass-rotating-3dof-model.org +++ b/nass-rotating-3dof-model.org @@ -114,31 +114,33 @@ Prefix is =rotating= | iff | IFF | Integral Force Feedback | | rdc | RDC | Relative Damping Control | | drga | DRGA | Dynamical Relative Gain Array | +| hpf | HPF | high-pass filter | +| lpf | LPF | low-pass filter | * Introduction :ignore: -An important aspect of the acrfull:nass is that the nano-hexapod is continuously rotating around a vertical axis while the external metrology is not. +An important aspect of the acrfull:nass is that the nano-hexapod continuously rotates around a vertical axis, whereas the external metrology is not. Such rotation induces gyroscopic effects that may impact the system dynamics and obtained performance. To study these effects, a model of a rotating suspended platform is first presented (Section ref:sec:rotating_system_description) -This model is simple enough to be able to derive its dynamics analytically and to well understand its behavior, while still allowing to capture the important physical effects in play. +This model is simple enough to be able to derive its dynamics analytically and to understand its behavior, while still allowing the capture of important physical effects in play. -acrfull:iff is then applied to the rotating platform, and it is shown that the unconditional stability of acrshort:iff is lost due to gyroscopic effects induced by the rotation (Section ref:sec:rotating_iff_pure_int). +acrfull:iff is then applied to the rotating platform, and it is shown that the unconditional stability of acrshort:iff is lost due to the gyroscopic effects induced by the rotation (Section ref:sec:rotating_iff_pure_int). Two modifications of the Integral Force Feedback are then proposed. -The first one consists of adding an high pass filter to the acrshort:iff controller (Section ref:sec:rotating_iff_pseudo_int). -It is shown that the acrshort:iff controller is stable for some values of the gain, and that damping can be added to the suspension modes. -Optimal high pass filter cut-off frequency is computed. +The first modification involves adding a high-pass filter to the acrshort:iff controller (Section ref:sec:rotating_iff_pseudo_int). +It is shown that the acrshort:iff controller is stable for some gain values, and that damping can be added to the suspension modes. +The optimal high-pass filter cut-off frequency is computed. The second modification consists of adding a stiffness in parallel to the force sensors (Section ref:sec:rotating_iff_parallel_stiffness). -Under a certain condition, the unconditional stability of the the IFF controller is regained. -Optimal parallel stiffness is then computed. -This study of adapting acrshort:iff for the damping of rotating platforms was the subject of two published papers [[cite:&dehaeze20_activ_dampin_rotat_platf_integ_force_feedb;&dehaeze21_activ_dampin_rotat_platf_using]]. +Under certain conditions, the unconditional stability of the IFF controller is regained. +The optimal parallel stiffness is then computed. +This study of adapting acrshort:iff for the damping of rotating platforms has been the subject of two published papers [[cite:&dehaeze20_activ_dampin_rotat_platf_integ_force_feedb;&dehaeze21_activ_dampin_rotat_platf_using]]. It is then shown that acrfull:rdc is less affected by gyroscopic effects (Section ref:sec:rotating_relative_damp_control). -Once the optimal control parameters for the three tested active damping techniques are obtained, they are compared in terms of achievable damping, obtained damped plant and closed-loop compliance and transmissibility (Section ref:sec:rotating_comp_act_damp). +Once the optimal control parameters for the three tested active damping techniques are obtained, they are compared in terms of achievable damping, damped plant and closed-loop compliance and transmissibility (Section ref:sec:rotating_comp_act_damp). -The previous analysis is applied on three considered nano-hexapod stiffnesses ($k_n = 0.01\,N/\mu m$, $k_n = 1\,N/\mu m$ and $k_n = 100\,N/\mu m$) and optimal active damping controller are obtained in each case (Section ref:sec:rotating_nano_hexapod). -Up until this section, the study was performed on a very simplistic model that just captures the rotation aspect and the model parameters were not tuned to corresponds to the NASS. +The previous analysis was applied to three considered nano-hexapod stiffnesses ($k_n = 0.01\,N/\mu m$, $k_n = 1\,N/\mu m$ and $k_n = 100\,N/\mu m$) and the optimal active damping controller was obtained in each case (Section ref:sec:rotating_nano_hexapod). +Up until this section, the study was performed on a very simplistic model that only captures the rotation aspect, and the model parameters were not tuned to correspond to the NASS. In the last section (Section ref:sec:rotating_nass), a model of the micro-station is added below the suspended platform (i.e. the nano-hexapod) with a rotating spindle and parameters tuned to match the NASS dynamics. -The goal is to determine if the rotation imposes performance limitation for the NASS. +The goal is to determine whether the rotation imposes performance limitation on the NASS. #+name: fig:rotating_overview #+caption: Overview of this chapter's organization. Sections are indicated by the red circles. @@ -152,13 +154,13 @@ The goal is to determine if the rotation imposes performance limitation for the <> ** Introduction :ignore: -The studied system consists of a 2 degree of freedom translation stage on top of a rotating stage (Figure ref:fig:rotating_3dof_model_schematic). +The system used to study gyroscopic effects consists of a 2 degree of freedom translation stage on top of a rotating stage (Figure ref:fig:rotating_3dof_model_schematic). The rotating stage is supposed to be ideal, meaning it induces a perfect rotation $\theta(t) = \Omega t$ where $\Omega$ is the rotational speed in $\si{\radian\per\s}$. -The suspended platform consists of two orthogonal actuators each represented by three elements in parallel: a spring with a stiffness $k$ in $\si{\newton\per\meter}$, a dashpot with a damping coefficient $c$ in $\si{\newton\per(\meter\per\second)}$ and an ideal force source $F_u, F_v$. +The suspended platform consists of two orthogonal actuators, each represented by three elements in parallel: a spring with a stiffness $k$ in $\si{\newton\per\meter}$, a dashpot with a damping coefficient $c$ in $\si{\newton\per(\meter\per\second)}$ and an ideal force source $F_u, F_v$. A payload with a mass $m$ in $\si{\kilo\gram}$, is mounted on the (rotating) suspended platform. Two reference frames are used: an /inertial/ frame $(\vec{i}_x, \vec{i}_y, \vec{i}_z)$ and a /uniform rotating/ frame $(\vec{i}_u, \vec{i}_v, \vec{i}_w)$ rigidly fixed on top of the rotating stage with $\vec{i}_w$ aligned with the rotation axis. The position of the payload is represented by $(d_u, d_v, 0)$ expressed in the rotating frame. -After the dynamics of this system is studied, the objective will be to damp the two suspension modes of the payload while the rotating stage performs a constant rotation. +After the dynamics of this system is studied, the objective will be to dampen the two suspension modes of the payload while the rotating stage performs a constant rotation. #+begin_src latex :file rotating_3dof_model_schematic.pdf \begin{tikzpicture} @@ -255,7 +257,7 @@ mdl = 'rotating_model'; To obtain the equations of motion for the system represented in Figure ref:fig:rotating_3dof_model_schematic, the Lagrangian equation eqref:eq:rotating_lagrangian_equations is used. $L = T - V$ is the Lagrangian, $T$ the kinetic coenergy, $V$ the potential energy, $D$ the dissipation function, and $Q_i$ the generalized force associated with the generalized variable $\begin{bmatrix}q_1 & q_2\end{bmatrix} = \begin{bmatrix}d_u & d_v\end{bmatrix}$. These terms are derived in eqref:eq:rotating_energy_functions_lagrange. -Note that the equation of motion corresponding to the constant rotation along $\vec{i}_w$ is disregarded as this motion is considered to be imposed by the rotation stage. +Note that the equation of motion corresponding to constant rotation along $\vec{i}_w$ is disregarded because this motion is imposed by the rotation stage. \begin{equation}\label{eq:rotating_lagrangian_equations} \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) + \frac{\partial D}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i @@ -278,9 +280,9 @@ Substituting equations eqref:eq:rotating_energy_functions_lagrange into equation \end{subequations} The uniform rotation of the system induces two /gyroscopic effects/ as shown in equation eqref:eq:rotating_eom_coupled: -- /Centrifugal forces/: that can been seen as an added /negative stiffness/ $- m \Omega^2$ along $\vec{i}_u$ and $\vec{i}_v$ +- /Centrifugal forces/: that can be seen as an added /negative stiffness/ $- m \Omega^2$ along $\vec{i}_u$ and $\vec{i}_v$ - /Coriolis forces/: that adds /coupling/ between the two orthogonal directions. -One can verify that without rotation ($\Omega = 0$) the system becomes equivalent to two /uncoupled/ one degree of freedom mass-spring-damper systems. +One can verify that without rotation ($\Omega = 0$), the system becomes equivalent to two /uncoupled/ one degree of freedom mass-spring-damper systems. To study the dynamics of the system, the two differential equations of motions eqref:eq:rotating_eom_coupled are converted into the Laplace domain and the $2 \times 2$ transfer function matrix $\mathbf{G}_d$ from $\begin{bmatrix}F_u & F_v\end{bmatrix}$ to $\begin{bmatrix}d_u & d_v\end{bmatrix}$ in equation eqref:eq:rotating_Gd_mimo_tf is obtained. The four transfer functions in $\mathbf{G}_d$ are shown in equation eqref:eq:rotating_Gd_indiv_el. @@ -297,7 +299,7 @@ The four transfer functions in $\mathbf{G}_d$ are shown in equation eqref:eq:rot \end{subequations} To simplify the analysis, the undamped natural frequency $\omega_0$ and the damping ratio $\xi$ defined in eqref:eq:rotating_xi_and_omega are used instead. -The elements of transfer function matrix $\mathbf{G}_d$ are now described by equation eqref:eq:rotating_Gd_w0_xi_k. +The elements of the transfer function matrix $\mathbf{G}_d$ are described by equation eqref:eq:rotating_Gd_w0_xi_k. \begin{equation} \label{eq:rotating_xi_and_omega} \omega_0 = \sqrt{\frac{k}{m}} \text{ in } \si{\radian\per\second}, \quad \xi = \frac{c}{2 \sqrt{k m}} \end{equation} @@ -477,9 +479,9 @@ save('./mat/rotating_generic_plants.mat', 'Gs', 'Wzs'); ** System Dynamics: Effect of rotation The system dynamics from actuator forces $[F_u, F_v]$ to the relative motion $[d_u, d_v]$ is identified for several rotating velocities. Looking at the transfer function matrix $\mathbf{G}_d$ in equation eqref:eq:rotating_Gd_w0_xi_k, one can see that the two diagonal (direct) terms are equal and that the two off-diagonal (coupling) terms are opposite. -The bode plot of these two terms are shown in Figure ref:fig:rotating_bode_plot for several rotational speeds $\Omega$. -These plots confirm the expected behavior: the frequency of the two pairs of complex conjugate poles are further separated as $\Omega$ increases. -For $\Omega > \omega_0$, the low frequency pair of complex conjugate poles $p_{-}$ becomes unstable (shown be the 180 degrees phase lead instead of phase lag). +The bode plots of these two terms are shown in Figure ref:fig:rotating_bode_plot for several rotational speeds $\Omega$. +These plots confirm the expected behavior: the frequencies of the two pairs of complex conjugate poles are further separated as $\Omega$ increases. +For $\Omega > \omega_0$, the low-frequency pair of complex conjugate poles $p_{-}$ becomes unstable (shown be the 180 degrees phase lead instead of phase lag). #+begin_src matlab :results none %% Bode plot of the direct and coupling terms for several rotating velocities @@ -589,20 +591,20 @@ exportFig('figs/rotating_bode_plot_coupling.pdf', 'width', 'half', 'height', 600 ** Introduction :ignore: The goal is now to damp the two suspension modes of the payload using an active damping strategy while the rotating stage performs a constant rotation. -As was explained with the uniaxial model, such active damping strategy is key to both reducing the magnification of the response in the vicinity of the resonances cite:collette11_review_activ_vibrat_isolat_strat and to make the plant easier to control for the high authority controller. +As was explained with the uniaxial model, such an active damping strategy is key to both reducing the magnification of the response in the vicinity of the resonances cite:collette11_review_activ_vibrat_isolat_strat and to make the plant easier to control for the high authority controller. -Many active damping techniques have been developed over the years such as Positive Position Feedback (PPF) cite:lin06_distur_atten_precis_hexap_point,fanson90_posit_posit_feedb_contr_large_space_struc, Integral Force Feedback (IFF) cite:preumont91_activ and Direct Velocity Feedback (DVF) cite:karnopp74_vibrat_contr_using_semi_activ_force_gener,serrand00_multic_feedb_contr_isolat_base_excit_vibrat,preumont02_force_feedb_versus_accel_feedb. -In [[cite:&preumont91_activ]], the IFF control scheme has been proposed, where a force sensor, a force actuator and an integral controller are used to increase the damping of a mechanical system. -When the force sensor is collocated with the actuator, the open-loop transfer function has alternating poles and zeros which facilitates to guarantee the stability of the closed loop system cite:preumont02_force_feedb_versus_accel_feedb. -It was latter shown that this property holds for multiple collated actuator/sensor pairs cite:preumont08_trans_zeros_struc_contr_with. +Many active damping techniques have been developed over the years, such as Positive Position Feedback (PPF) cite:lin06_distur_atten_precis_hexap_point,fanson90_posit_posit_feedb_contr_large_space_struc, Integral Force Feedback (IFF) cite:preumont91_activ and Direct Velocity Feedback (DVF) cite:karnopp74_vibrat_contr_using_semi_activ_force_gener,serrand00_multic_feedb_contr_isolat_base_excit_vibrat,preumont02_force_feedb_versus_accel_feedb. +In [[cite:&preumont91_activ]], the IFF control scheme has been proposed, where a force sensor, a force actuator, and an integral controller are used to increase the damping of a mechanical system. +When the force sensor is collocated with the actuator, the open-loop transfer function has alternating poles and zeros, which guarantees the stability of the closed-loop system cite:preumont02_force_feedb_versus_accel_feedb. +It was later shown that this property holds for multiple collated actuator/sensor pairs cite:preumont08_trans_zeros_struc_contr_with. -The main advantages of IFF over other active damping techniques are the guaranteed stability even in presence of flexible dynamics, good performance and robustness properties cite:preumont02_force_feedb_versus_accel_feedb. +The main advantages of IFF over other active damping techniques are the guaranteed stability even in the presence of flexible dynamics, good performance, and robustness properties cite:preumont02_force_feedb_versus_accel_feedb. -Several improvements of the classical IFF have been proposed, such as adding a feed-through term to increase the achievable damping cite:teo15_optim_integ_force_feedb_activ_vibrat_contr or adding an high pass filter to recover the loss of compliance at low frequency cite:chesne16_enhan_dampin_flexib_struc_using_force_feedb. +Several improvements to the classical IFF have been proposed, such as adding a feed-through term to increase the achievable damping cite:teo15_optim_integ_force_feedb_activ_vibrat_contr or adding a high-pass filter to recover the loss of compliance at low-frequency cite:chesne16_enhan_dampin_flexib_struc_using_force_feedb. Recently, an $\mathcal{H}_\infty$ optimization criterion has been used to derive optimal gains for the IFF controller cite:zhao19_optim_integ_force_feedb_contr. \par -However, none of these study have been applied to a rotating system. -In this section, Integral Force Feedback strategy is applied on the rotating suspended platform, and it is shown that gyroscopic effects alters the system dynamics and that IFF cannot be applied as is. +However, none of these studies have been applied to rotating systems. +In this section, the acrshort:iff strategy is applied on the rotating suspended platform, and it is shown that gyroscopic effects alter the system dynamics and that IFF cannot be applied as is. ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) @@ -636,7 +638,7 @@ load('rotating_generic_plants.mat', 'Gs', 'Wzs'); #+end_src ** System and Equations of motion -In order to apply Integral Force Feedback, two force sensors are added in series with the actuators (Figure ref:fig:rotating_3dof_model_schematic_iff). +To apply Integral Force Feedback, two force sensors are added in series with the actuators (Figure ref:fig:rotating_3dof_model_schematic_iff). Two identical controllers $K_F$ described by eqref:eq:rotating_iff_controller are then used to feedback each of the sensed force to its associated actuator. \begin{equation}\label{eq:rotating_iff_controller} @@ -803,10 +805,10 @@ It is interesting to see that the frequency of the pair of complex conjugate zer This is what usually gives the unconditional stability of IFF when collocated force sensors are used. However, for non-null rotational speeds, the two real zeros $z_r$ in equation eqref:eq:rotating_iff_zero_real are inducing a /non-minimum phase behavior/. -This can be seen in the Bode plot of the diagonal terms (Figure ref:fig:rotating_iff_bode_plot_effect_rot) where the low frequency gain is no longer zero while the phase stays at $\SI{180}{\degree}$. +This can be seen in the Bode plot of the diagonal terms (Figure ref:fig:rotating_iff_bode_plot_effect_rot) where the low-frequency gain is no longer zero while the phase stays at $\SI{180}{\degree}$. -The low frequency gain of $\mathbf{G}_f$ increases with the rotational speed $\Omega$ as shown in equation eqref:eq:rotating_low_freq_gain_iff_plan. -This can be explained as follows: a constant actuator force $F_u$ induces a small displacement of the mass $d_u = \frac{F_u}{k - m\Omega^2}$ (Hooke's law taking into account the negative stiffness induced by the rotation). +The low-frequency gain of $\mathbf{G}_f$ increases with the rotational speed $\Omega$ as shown in equation eqref:eq:rotating_low_freq_gain_iff_plan. +This can be explained as follows: a constant actuator force $F_u$ induces a small displacement of the mass $d_u = \frac{F_u}{k - m\Omega^2}$ (Hooke's law considering the negative stiffness induced by the rotation). This small displacement then increases the centrifugal force $m\Omega^2d_u = \frac{\Omega^2}{{\omega_0}^2 - \Omega^2} F_u$ which is then measured by the force sensors. \begin{equation}\label{eq:rotating_low_freq_gain_iff_plan} @@ -816,13 +818,13 @@ This small displacement then increases the centrifugal force $m\Omega^2d_u = \fr \end{bmatrix} \end{equation} -** Effect of the rotation speed on the IFF plant dynamics +** Effect of rotation speed on IFF plant dynamics The transfer functions from actuator forces $[F_u,\ F_v]$ to the measured force sensors $[f_u,\ f_v]$ are identified for several rotating velocities and are shown in Figure ref:fig:rotating_iff_bode_plot_effect_rot. -As was expected from the derived equations of motion: -- when $\Omega < \omega_0$: the low frequency gain is no longer zero and two (non-minimum phase) real zero appears at low frequency. - The low frequency gain increases with $\Omega$. - A pair of (minimum phase) complex conjugate zeros appears between the two complex conjugate poles that are split further apart as $\Omega$ increases. -- when $\omega_0 < \Omega$: the low frequency pole becomes unstable. +As expected from the derived equations of motion: +- when $\Omega < \omega_0$: the low-frequency gain is no longer zero and two (non-minimum phase) real zeros appear at low-frequencies. + The low-frequency gain increases with $\Omega$. + A pair of (minimum phase) complex conjugate zeros appears between the two complex conjugate poles, which are split further apart as $\Omega$ increases. +- when $\omega_0 < \Omega$: the low-frequency pole becomes unstable. #+begin_src matlab :results none %% Bode plot of the direct and coupling term for Integral Force Feedback - Effect of rotation @@ -886,9 +888,9 @@ exportFig('figs/rotating_iff_bode_plot_effect_rot_direct.pdf', 'width', 'half', #+end_figure ** Decentralized Integral Force Feedback -The control diagram for decentralized Integral Force Feedback is shown in Figure ref:fig:rotating_iff_diagram. +The control diagram for decentralized acrshort:iff is shown in Figure ref:fig:rotating_iff_diagram. +The decentralized acrshort:iff controller $\bm{K}_F$ corresponds to a diagonal controller with integrators eqref:eq:rotating_Kf_pure_int. -The decentralized IFF controller $\bm{K}_F$ corresponds to a diagonal controller with integrators: \begin{equation} \label{eq:rotating_Kf_pure_int} \begin{aligned} \mathbf{K}_{F}(s) &= \begin{bmatrix} K_{F}(s) & 0 \\ 0 & K_{F}(s) \end{bmatrix} \\ @@ -896,13 +898,13 @@ The decentralized IFF controller $\bm{K}_F$ corresponds to a diagonal controller \end{aligned} \end{equation} -In order to see how the IFF controller affects the poles of the closed loop system, a Root Locus plot (Figure ref:fig:rotating_root_locus_iff_pure_int) is constructed as follows: the poles of the closed-loop system are drawn in the complex plane as the controller gain $g$ varies from $0$ to $\infty$ for the two controllers $K_{F}$ simultaneously. +To determine how the acrshort:iff controller affects the poles of the closed-loop system, a Root Locus plot (Figure ref:fig:rotating_root_locus_iff_pure_int) is constructed as follows: the poles of the closed-loop system are drawn in the complex plane as the controller gain $g$ varies from $0$ to $\infty$ for the two controllers $K_{F}$ simultaneously. As explained in cite:preumont08_trans_zeros_struc_contr_with,skogestad07_multiv_feedb_contr, the closed-loop poles start at the open-loop poles (shown by $\tikz[baseline=-0.6ex] \node[cross out, draw=black, minimum size=1ex, line width=2pt, inner sep=0pt, outer sep=0pt] at (0, 0){};$) for $g = 0$ and coincide with the transmission zeros (shown by $\tikz[baseline=-0.6ex] \draw[line width=2pt, inner sep=0pt, outer sep=0pt] (0,0) circle[radius=3pt];$) as $g \to \infty$. -Whereas collocated IFF is usually associated with unconditional stability cite:preumont91_activ, this property is lost due to gyroscopic effects as soon as the rotation velocity in non-null. +Whereas collocated IFF is usually associated with unconditional stability cite:preumont91_activ, this property is lost due to gyroscopic effects as soon as the rotation velocity becomes non-null. This can be seen in the Root Locus plot (Figure ref:fig:rotating_root_locus_iff_pure_int) where poles corresponding to the controller are bound to the right half plane implying closed-loop system instability. -Physically, this can be explained like so: at low frequency, the loop gain is very large due to the pure integrator in $K_{F}$ and the finite gain of the plant (Figure ref:fig:rotating_iff_bode_plot_effect_rot). -The control system is thus canceling the spring forces which makes the suspended platform not capable to hold the payload against centrifugal forces, hence the instability. +Physically, this can be explained as follows: at low frequencies, the loop gain is huge due to the pure integrator in $K_{F}$ and the finite gain of the plant (Figure ref:fig:rotating_iff_bode_plot_effect_rot). +The control system is thus cancels the spring forces, which makes the suspended platform not capable to hold the payload against centrifugal forces, hence the instability. #+begin_src matlab %% Root Locus for the Decentralized Integral Force Feedback controller @@ -941,18 +943,18 @@ leg.ItemTokenSize(1) = 8; exportFig('figs/rotating_root_locus_iff_pure_int.pdf', 'width', 600, 'height', 600); #+end_src -* Integral Force Feedback with an High Pass Filter +* Integral Force Feedback with a High-Pass Filter :PROPERTIES: :header-args:matlab+: :tangle matlab/rotating_3_iff_hpf.m :END: <> ** Introduction :ignore: -As was explained in the previous section, the instability of the IFF controller applied on the rotating system is due to the high gain of the integrator at low frequency. -In order to limit the low frequency controller gain, an High Pass Filter (HPF) can be added to the controller as shown in equation eqref:eq:rotating_iff_lhf. +As explained in the previous section, the instability of the IFF controller applied to the rotating system is due to the high gain of the integrator at low-frequency. +To limit the low-frequency controller gain, a acrfull:hpf can be added to the controller, as shown in equation eqref:eq:rotating_iff_lhf. This is equivalent to slightly shifting the controller pole to the left along the real axis. -This modification of the IFF controller is typically done to avoid saturation associated with the pure integrator cite:preumont91_activ,marneffe07_activ_passiv_vibrat_isolat_dampin_shunt_trans. -This is however not the reason why this high pass filter is added here. +This modification of the IFF controller is typically performed to avoid saturation associated with the pure integrator cite:preumont91_activ,marneffe07_activ_passiv_vibrat_isolat_dampin_shunt_trans. +This is however not the reason why this high-pass filter is added here. \begin{equation}\label{eq:rotating_iff_lhf} \boxed{K_{F}(s) = g \cdot \frac{1}{s} \cdot \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = g \cdot \frac{1}{s + \omega_i}} @@ -992,11 +994,11 @@ load('rotating_generic_plants.mat', 'Gs', 'Wzs'); ** Modified Integral Force Feedback Controller The Integral Force Feedback Controller is modified such that instead of using pure integrators, pseudo integrators (i.e. low pass filters) are used eqref:eq:rotating_iff_lhf where $\omega_i$ characterize the frequency down to which the signal is integrated. The loop gains ($K_F(s)$ times the direct dynamics $f_u/F_u$) with and without the added HPF are shown in Figure ref:fig:rotating_iff_modified_loop_gain. -The effect of the added HPF limits the low frequency gain to finite values as expected. +The effect of the added HPF limits the low-frequency gain to finite values as expected. -The Root Locus plots for the decentralized IFF with and without the HPF are displayed in Figure ref:fig:rotating_iff_root_locus_hpf_large. -With the added HPF, the poles of the closed loop system are shown to be stable up to some value of the gain $g_\text{max}$ given by equation eqref:eq:rotating_gmax_iff_hpf. -It is interesting to note that $g_{\text{max}}$ also corresponds to the controller gain at which the low frequency loop gain reaches one (for instance the gain $g$ can be increased by a factor $5$ in Figure ref:fig:rotating_iff_modified_loop_gain before the system becomes unstable). +The Root Locus plots for the decentralized acrshort:iff with and without the acrshort:hpf are displayed in Figure ref:fig:rotating_iff_root_locus_hpf_large. +With the added acrshort:hpf, the poles of the closed-loop system are shown to be stable up to some value of the gain $g_\text{max}$ given by equation eqref:eq:rotating_gmax_iff_hpf. +It is interesting to note that $g_{\text{max}}$ also corresponds to the controller gain at which the low-frequency loop gain reaches one (for instance the gain $g$ can be increased by a factor $5$ in Figure ref:fig:rotating_iff_modified_loop_gain before the system becomes unstable). \begin{equation}\label{eq:rotating_gmax_iff_hpf} \boxed{g_{\text{max}} = \omega_i \left( \frac{{\omega_0}^2}{\Omega^2} - 1 \right)} @@ -1012,7 +1014,7 @@ Kiff_hpf = (g/(wi+s))*eye(2); % IFF with added HPF #+end_src #+begin_src matlab :results none -%% Loop gain for the IFF with pure integrator and modified IFF with added high pass filter +%% Loop gain for the IFF with pure integrator and modified IFF with added high-pass filter freqs = logspace(-2, 1, 1000); Wz_i = 2; @@ -1048,7 +1050,7 @@ xlim([freqs(1), freqs(end)]); #+end_src #+name: fig:rotating_iff_modified_loop_gain_root_locus -#+caption: Comparison of the IFF with pure integrator and modified IFF with added high pass filter ($\Omega = 0.1\omega_0$). Loop gain is shown in (\subref{fig:rotating_iff_modified_loop_gain}) with $\omega_i = 0.1 \omega_0$ and $g = 2$. Root Locus is shown in (\subref{fig:rotating_iff_root_locus_hpf_large}) +#+caption: Comparison of the IFF with pure integrator and modified IFF with added high-pass filter ($\Omega = 0.1\omega_0$). The loop gain is shown in (\subref{fig:rotating_iff_modified_loop_gain}) with $\omega_i = 0.1 \omega_0$ and $g = 2$. The root locus is shown in (\subref{fig:rotating_iff_root_locus_hpf_large}) #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:rotating_iff_modified_loop_gain}Loop gain} @@ -1067,18 +1069,18 @@ xlim([freqs(1), freqs(end)]); ** Optimal IFF with HPF parameters $\omega_i$ and $g$ Two parameters can be tuned for the modified controller in equation eqref:eq:rotating_iff_lhf: the gain $g$ and the pole's location $\omega_i$. -The optimal values of $\omega_i$ and $g$ are here considered as the values for which the damping of all the closed-loop poles are simultaneously maximized. +The optimal values of $\omega_i$ and $g$ are considered here as the values for which the damping of all the closed-loop poles is simultaneously maximized. -In order to visualize how $\omega_i$ does affect the attainable damping, the Root Locus plots for several $\omega_i$ are displayed in Figure ref:fig:rotating_root_locus_iff_modified_effect_wi. +To visualize how $\omega_i$ does affect the attainable damping, the Root Locus plots for several $\omega_i$ are displayed in Figure ref:fig:rotating_root_locus_iff_modified_effect_wi. It is shown that even though small $\omega_i$ seem to allow more damping to be added to the suspension modes (see Root locus in Figure ref:fig:rotating_root_locus_iff_modified_effect_wi), the control gain $g$ may be limited to small values due to equation eqref:eq:rotating_gmax_iff_hpf. -In order to study this trade off, the attainable closed-loop damping ratio $\xi_{\text{cl}}$ is computed as a function of $\omega_i/\omega_0$. +To study this trade-off, the attainable closed-loop damping ratio $\xi_{\text{cl}}$ is computed as a function of $\omega_i/\omega_0$. The gain $g_{\text{opt}}$ at which this maximum damping is obtained is also displayed and compared with the gain $g_{\text{max}}$ at which the system becomes unstable (Figure ref:fig:rotating_iff_hpf_optimal_gain). For small values of $\omega_i$, the added damping is limited by the maximum allowed control gain $g_{\text{max}}$ (red curve and dashed red curve superimposed in Figure ref:fig:rotating_iff_hpf_optimal_gain) at which point the pole corresponding to the controller becomes unstable. For larger values of $\omega_i$, the attainable damping ratio decreases as a function of $\omega_i$ as was predicted from the root locus plot of Figure ref:fig:rotating_iff_root_locus_hpf_large. #+begin_src matlab -%% High Pass Filter Cut-Off Frequency +%% High-Pass Filter Cut-Off Frequency wis = [0.01, 0.05, 0.1]; % [rad/s] #+end_src @@ -1167,7 +1169,7 @@ exportFig('figs/rotating_iff_hpf_optimal_gain.pdf', 'width', 'half', 'height', 4 #+end_src #+name: fig:rotating_iff_modified_effect_wi -#+caption: Root Locus for several high pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). The achievable damping ratio decreases as $\omega_i$ increases which is confirmed in (\subref{fig:rotating_iff_hpf_optimal_gain}) +#+caption: Root Locus for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). The achievable damping ratio decreases as $\omega_i$ increases, as confirmed in (\subref{fig:rotating_iff_hpf_optimal_gain}) #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:rotating_root_locus_iff_modified_effect_wi}Root Locus} @@ -1185,10 +1187,10 @@ exportFig('figs/rotating_iff_hpf_optimal_gain.pdf', 'width', 'half', 'height', 4 #+end_figure ** Obtained Damped Plant -In order to study how the parameter $\omega_i$ affects the damped plant, the obtained damped plants for several $\omega_i$ are compared in Figure ref:fig:rotating_iff_hpf_damped_plant_effect_wi_plant. -It can be seen that the low frequency coupling increases as $\omega_i$ increases. -There is therefore a trade-off between achievable damping and added coupling when tuning $\omega_i$. -The same trade-off can be seen between achievable damping and loss of compliance at low frequency (see Figure ref:fig:rotating_iff_hpf_effect_wi_compliance). +To study how the parameter $\omega_i$ affects the damped plant, the obtained damped plants for several $\omega_i$ are compared in Figure ref:fig:rotating_iff_hpf_damped_plant_effect_wi_plant. +It can be seen that the low-frequency coupling increases as $\omega_i$ increases. +Therefore, there is a trade-off between achievable damping and added coupling when tuning $\omega_i$. +The same trade-off can be seen between achievable damping and loss of compliance at low-frequency (see Figure ref:fig:rotating_iff_hpf_effect_wi_compliance). #+begin_src matlab %% Compute damped plant @@ -1418,14 +1420,14 @@ The forces measured by the two force sensors represented in Figure ref:fig:rotat \begin{bmatrix} d_u \\ d_v \end{bmatrix} \end{equation} -In order to keep the overall stiffness $k = k_a + k_p$ constant, thus not modifying the open-loop poles as $k_p$ is changed, a scalar parameter $\alpha$ ($0 \le \alpha < 1$) is defined to describe the fraction of the total stiffness in parallel with the actuator and force sensor as in eqref:eq:rotating_kp_alpha. +To keep the overall stiffness $k = k_a + k_p$ constant, thus not modifying the open-loop poles as $k_p$ is changed, a scalar parameter $\alpha$ ($0 \le \alpha < 1$) is defined to describe the fraction of the total stiffness in parallel with the actuator and force sensor as in eqref:eq:rotating_kp_alpha. \begin{equation}\label{eq:rotating_kp_alpha} k_p = \alpha k, \quad k_a = (1 - \alpha) k \end{equation} -After the equations of motion derived and transformed in the Laplace domain, the transfer function matrix $\mathbf{G}_k$ in Eq. eqref:eq:rotating_Gk_mimo_tf is computed. -Its elements are shown in Eq. eqref:eq:rotating_Gk_diag and eqref:eq:rotating_Gk_off_diag. +After the equations of motion are derived and transformed in the Laplace domain, the transfer function matrix $\mathbf{G}_k$ in Eq. eqref:eq:rotating_Gk_mimo_tf is computed. +Its elements are shown in Eqs. eqref:eq:rotating_Gk_diag and eqref:eq:rotating_Gk_off_diag. \begin{equation}\label{eq:rotating_Gk_mimo_tf} \begin{bmatrix} f_u \\ f_v \end{bmatrix} = @@ -1440,9 +1442,9 @@ Its elements are shown in Eq. eqref:eq:rotating_Gk_diag and eqref:eq:rotating_Gk \end{align} \end{subequations} -Comparing $\mathbf{G}_k$ in eqref:eq:rotating_Gk with $\mathbf{G}_f$ in eqref:eq:rotating_Gf shows that while the poles of the system are kept the same, the zeros of the diagonal terms have changed. +Comparing $\mathbf{G}_k$ in eqref:eq:rotating_Gk with $\mathbf{G}_f$ in eqref:eq:rotating_Gf shows that while the poles of the system remain the same, the zeros of the diagonal terms change. The two real zeros $z_r$ in eqref:eq:rotating_iff_zero_real that were inducing a non-minimum phase behavior are transformed into two complex conjugate zeros if the condition in eqref:eq:rotating_kp_cond_cc_zeros holds. -Thus, if the added /parallel stiffness/ $k_p$ is higher than the /negative stiffness/ induced by centrifugal forces $m \Omega^2$, the dynamics from actuator to its collocated force sensor will show /minimum phase behavior/. +Thus, if the added /parallel stiffness/ $k_p$ is higher than the /negative stiffness/ induced by centrifugal forces $m \Omega^2$, the dynamics from the actuator to its collocated force sensor will show /minimum phase behavior/. \begin{equation}\label{eq:rotating_kp_cond_cc_zeros} \boxed{\alpha > \frac{\Omega^2}{{\omega_0}^2} \quad \Leftrightarrow \quad k_p > m \Omega^2} @@ -1472,14 +1474,14 @@ io(io_i) = linio([mdl, '/translation_stage'], 2, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/ext_metrology'], 1, 'openoutput'); io_i = io_i + 1; % [Dx, Dy] #+end_src -** Effect of the parallel stiffness on the IFF plant +** Effect of parallel stiffness on the IFF plant The IFF plant (transfer function from $[F_u, F_v]$ to $[f_u, f_v]$) is identified without parallel stiffness $k_p = 0$, with a small parallel stiffness $k_p < m \Omega^2$ and with a large parallel stiffness $k_p > m \Omega^2$. -The Bode plots of the obtained dynamics are shown in Figure ref:fig:rotating_iff_effect_kp. -One can see that the the two real zeros for $k_p < m \Omega^2$ are transformed into two complex conjugate zeros for $k_p > m \Omega^2$. -In that case, the systems shows alternating complex conjugate poles and zeros as what is the case in the non-rotating case. +Bode plots of the obtained dynamics are shown in Figure ref:fig:rotating_iff_effect_kp. +The two real zeros for $k_p < m \Omega^2$ are transformed into two complex conjugate zeros for $k_p > m \Omega^2$. +In that case, the system shows alternating complex conjugate poles and zeros as what is the case in the non-rotating case. -Figure ref:fig:rotating_iff_kp_root_locus shows the Root Locus plots for $k_p = 0$, $k_p < m \Omega^2$ and $k_p > m \Omega^2$ when $K_F$ is a pure integrator as in Eq. eqref:eq:rotating_Kf_pure_int. -It is shown that if the added stiffness is higher than the maximum negative stiffness, the poles of the closed-loop system are bounded on the (stable) left half-plane, and hence the unconditional stability of IFF is recovered. +Figure ref:fig:rotating_iff_kp_root_locus shows the Root Locus plots for $k_p = 0$, $k_p < m \Omega^2$ and $k_p > m \Omega^2$ when $K_F$ is a pure integrator, as shown in Eq. eqref:eq:rotating_Kf_pure_int. +It is shown that if the added stiffness is higher than the maximum negative stiffness, the poles of the closed-loop system are bounded on the (stable) left half-plane, and hence the unconditional stability of acrshort:iff is recovered. #+begin_src matlab Wz = 0.1; % The rotation speed [rad/s] @@ -1608,7 +1610,7 @@ leg.ItemTokenSize(1) = 8; #+end_src #+name: fig:rotating_iff_plant_effect_kp -#+caption: Effect of the parallel stiffness on the IFF plant +#+caption: Effect of parallel stiffness on the IFF plant #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:rotating_iff_effect_kp}Bode plot of $G_{k}(1,1) = f_u/F_u$ without parallel spring, with parallel spring stiffness $k_p < m \Omega^2$ and $k_p > m \Omega^2$, $\Omega = 0.1 \omega_0$} @@ -1627,9 +1629,9 @@ leg.ItemTokenSize(1) = 8; ** Effect of $k_p$ on the attainable damping Even though the parallel stiffness $k_p$ has no impact on the open-loop poles (as the overall stiffness $k$ is kept constant), it has a large impact on the transmission zeros. -Moreover, as the attainable damping is generally proportional to the distance between poles and zeros cite:preumont18_vibrat_contr_activ_struc_fourt_edition, the parallel stiffness $k_p$ is foreseen to have some impact on the attainable damping. +Moreover, as the attainable damping is generally proportional to the distance between poles and zeros cite:preumont18_vibrat_contr_activ_struc_fourt_edition, the parallel stiffness $k_p$ is expected to have some impact on the attainable damping. To study this effect, Root Locus plots for several parallel stiffnesses $k_p > m \Omega^2$ are shown in Figure ref:fig:rotating_iff_kp_root_locus_effect_kp. -The frequencies of the transmission zeros of the system are increasing with an increase of the parallel stiffness $k_p$ (thus getting closer to the poles) and the associated attainable damping is reduced. +The frequencies of the transmission zeros of the system increase with an increase in the parallel stiffness $k_p$ (thus getting closer to the poles), and the associated attainable damping is reduced. Therefore, even though the parallel stiffness $k_p$ should be larger than $m \Omega^2$ for stability reasons, it should not be taken too large as this would limit the attainable damping. This is confirmed by the Figure ref:fig:rotating_iff_kp_optimal_gain where the attainable closed-loop damping ratio $\xi_{\text{cl}}$ and the associated optimal control gain $g_\text{opt}$ are computed as a function of the parallel stiffness. @@ -1738,16 +1740,16 @@ exportFig('figs/rotating_iff_kp_optimal_gain.pdf', 'width', 'half', 'height', 45 #+end_src #+name: fig:rotating_iff_optimal_kp -#+caption: Effect of the parallel stiffness on the IFF plant +#+caption: Effect of parallel stiffness on the IFF plant #+attr_latex: :options [htbp] #+begin_figure -#+attr_latex: :caption \subcaption{\label{fig:rotating_iff_kp_root_locus_effect_kp}Root Locus: Effect of the parallel stiffness on the attainable damping, $\Omega = 0.1 \omega_0$} +#+attr_latex: :caption \subcaption{\label{fig:rotating_iff_kp_root_locus_effect_kp}Root Locus: Effect of parallel stiffness on the attainable damping, $\Omega = 0.1 \omega_0$} #+attr_latex: :options {0.49\linewidth} #+begin_subfigure #+attr_latex: :scale 1 [[file:figs/rotating_iff_kp_root_locus_effect_kp.png]] #+end_subfigure -#+attr_latex: :caption \subcaption{\label{fig:rotating_iff_kp_optimal_gain}Attainable damping ratio $\xi_\text{cl}$ as a function of the parallel stiffness $k_p$. Corresponding control gain $g_\text{opt}$ is also shown. Values for $k_p < m\Omega^2$ are not shown as the system is unstable.} +#+attr_latex: :caption \subcaption{\label{fig:rotating_iff_kp_optimal_gain}Attainable damping ratio $\xi_\text{cl}$ as a function of the parallel stiffness $k_p$. The corresponding control gain $g_\text{opt}$ is also shown. Values for $k_p < m\Omega^2$ are not shown because the system is unstable.} #+attr_latex: :options {0.49\linewidth} #+begin_subfigure #+attr_latex: :scale 0.9 @@ -1756,12 +1758,12 @@ exportFig('figs/rotating_iff_kp_optimal_gain.pdf', 'width', 'half', 'height', 45 #+end_figure ** Damped plant -Let's choose a parallel stiffness equal to $k_p = 2 m \Omega^2$ and compute the damped plant. +The parallel stiffness are chosen to be $k_p = 2 m \Omega^2$ and the damped plant is computed. The damped and undamped transfer functions from $F_u$ to $d_u$ are compared in Figure ref:fig:rotating_iff_kp_added_hpf_damped_plant. -Even though the two resonances are well damped, the IFF changes the low frequency behavior of the plant which is usually not wanted. -This is due to the fact that "pure" integrators are used, and that the low frequency loop gains becomes large below some frequency. +Even though the two resonances are well damped, the IFF changes the low-frequency behavior of the plant, which is usually not desired. +This is because "pure" integrators are used which are inducing large low-frequency loop gains. -In order to lower the low frequency gain, a high pass filter is added to the IFF controller (which is equivalent as shifting the controller pole to the left in the complex plane): +To lower the low-frequency gain, a high-pass filter is added to the IFF controller (which is equivalent as shifting the controller pole to the left in the complex plane): \begin{equation} K_{\text{IFF}}(s) = g\frac{1}{\omega_i + s} \begin{bmatrix} 1 & 0 \\ @@ -1769,11 +1771,11 @@ In order to lower the low frequency gain, a high pass filter is added to the IFF \end{bmatrix} \end{equation} -In order to see how the high pass filter impacts the attainable damping, the controller gain $g$ is kept constant while $\omega_i$ is changed, and the minimum damping ratio of the damped plant is computed. +To determine how the high-pass filter impacts the attainable damping, the controller gain $g$ is kept constant while $\omega_i$ is changed, and the minimum damping ratio of the damped plant is computed. The obtained damping ratio as a function of $\omega_i/\omega_0$ (where $\omega_0$ is the resonance of the system without rotation) is shown in Figure ref:fig:rotating_iff_kp_added_hpf_effect_damping. It is shown that the attainable damping ratio reduces as $\omega_i$ is increased (same conclusion than in Section ref:sec:rotating_iff_pseudo_int). Let's choose $\omega_i = 0.1 \cdot \omega_0$ and compare the obtained damped plant again with the undamped and with the "pure" IFF in Figure ref:fig:rotating_iff_kp_added_hpf_damped_plant. -The added high pass filter gives almost the same damping properties to the suspension while giving good low frequency behavior. +The added high-pass filter gives almost the same damping properties to the suspension while exhibiting good low-frequency behavior. #+begin_src matlab %% Identify dynamics with parallel stiffness = 2mW^2 @@ -1817,7 +1819,7 @@ end #+end_src #+begin_src matlab :results none -%% Effect of the high pass filter cut-off frequency on the obtained damping +%% Effect of the high-pass filter cut-off frequency on the obtained damping figure; plot(wis, opt_xi, '-'); set(gca, 'XScale', 'log'); @@ -1832,7 +1834,7 @@ exportFig('figs/rotating_iff_kp_added_hpf_effect_damping.pdf', 'width', 'third', #+end_src #+begin_src matlab -%% Compute the damped plant with added High Pass Filter +%% Compute the damped plant with added High-Pass Filter Kiff_kp_hpf = (2.2/(s + 0.1*w0))*eye(2); Kiff_kp_hpf.InputName = {'fu', 'fv'}; Kiff_kp_hpf.OutputName = {'Fu', 'Fv'}; @@ -1890,7 +1892,7 @@ exportFig('figs/rotating_iff_kp_added_hpf_damped_plant.pdf', 'width', 700, 'heig #+end_src #+name: fig:rotating_iff_optimal_hpf -#+caption:Effect of the high pass filter cut-off frequency on the obtained damping +#+caption:Effect of high-pass filter cut-off frequency on the obtained damping #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:rotating_iff_kp_added_hpf_effect_damping}Reduced damping ratio with increased cut-off frequency $\omega_i$} @@ -1914,9 +1916,9 @@ exportFig('figs/rotating_iff_kp_added_hpf_damped_plant.pdf', 'width', 700, 'heig <> ** Introduction :ignore: -In order to apply a "Relative Damping Control" strategy, relative motion sensors are added in parallel with the actuators as shown in Figure ref:fig:rotating_3dof_model_schematic_rdc. -Two controllers $K_d$ are used to fed back the relative motion to the actuator. -These controllers are in principle pure derivators ($K_d = s$), but to be implemented in practice they are usually replaced by a high pass filter eqref:eq:rotating_rdc_controller. +To apply a "Relative Damping Control" strategy, relative motion sensors are added in parallel with the actuators as shown in Figure ref:fig:rotating_3dof_model_schematic_rdc. +Two controllers $K_d$ are used to feed back the relative motion to the actuator. +These controllers are in principle pure derivators ($K_d = s$), but to be implemented in practice they are usually replaced by a high-pass filter eqref:eq:rotating_rdc_controller. \begin{equation}\label{eq:rotating_rdc_controller} K_d(s) = g \cdot \frac{s}{s + \omega_d} @@ -2041,7 +2043,7 @@ The elements of $\bm{G}_d$ were derived in Section ref:sec:rotating_system_descr \end{align} \end{subequations} -Neglecting the damping for simplicity ($\xi \ll 1$), the direct terms have two complex conjugate zeros which are between the two pairs of complex conjugate poles eqref:eq:rotating_rdc_zeros_poles. +Neglecting the damping for simplicity ($\xi \ll 1$), the direct terms have two complex conjugate zeros between the two pairs of complex conjugate poles eqref:eq:rotating_rdc_zeros_poles. Therefore, for $\Omega < \sqrt{k/m}$ (i.e. stable system), the transfer functions for Relative Damping Control have alternating complex conjugate poles and zeros. \begin{equation}\label{eq:rotating_rdc_zeros_poles} @@ -2051,13 +2053,13 @@ Therefore, for $\Omega < \sqrt{k/m}$ (i.e. stable system), the transfer function ** Decentralized Relative Damping Control The transfer functions from $[F_u,\ F_v]$ to $[d_u,\ d_v]$ were identified for several rotating velocities in Section ref:sec:rotating_system_description and are shown in Figure ref:fig:rotating_bode_plot (page pageref:fig:rotating_bode_plot). -In order to see if large damping can be added with Relative Damping Control, the root locus is computed (Figure ref:fig:rotating_rdc_root_locus). -The closed-loop system is unconditionally stable as expected and the poles can be damped as much as wanted. +To see if large damping can be added with Relative Damping Control, the root locus is computed (Figure ref:fig:rotating_rdc_root_locus). +The closed-loop system is unconditionally stable as expected and the poles can be damped as much as desired. -Let's select a reasonable "Relative Damping Control" gain, and compute the closed-loop damped system. +Let us select a reasonable "Relative Damping Control" gain, and compute the closed-loop damped system. The open-loop and damped plants are compared in Figure ref:fig:rotating_rdc_damped_plant. -The rotating aspect does not add any complexity for the use of Relative Damping Control. -It does not increase the low frequency coupling as compared to Integral Force Feedback. +The rotating aspect does not add any complexity to the use of Relative Damping Control. +It does not increase the low-frequency coupling as compared to the Integral Force Feedback. #+begin_src matlab :results none %% Root Locus for Relative Damping Control @@ -2210,9 +2212,9 @@ exportFig('figs/rotating_rdc_damped_plant.pdf', 'width', 'half', 'height', 500); <> ** Introduction :ignore: -These two proposed IFF modifications as well as relative damping control are now compared in terms of added damping and closed-loop behavior. +These two proposed IFF modifications and relative damping control are compared in terms of added damping and closed-loop behavior. For the following comparisons, the cut-off frequency for the added HPF is set to $\omega_i = 0.1 \omega_0$ and the stiffness of the parallel springs is set to $k_p = 5 m \Omega^2$ (corresponding to $\alpha = 0.05$). -These values are chosen based on previous discussion about optimal parameters. +These values are chosen one the basis of previous discussions about optimal parameters. ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) @@ -2319,12 +2321,12 @@ Krdc.OutputName = {'Fu', 'Fv'}; #+end_src ** Root Locus -Figure ref:fig:rotating_comp_techniques_root_locus shows the Root Locus plots for the two proposed IFF modifications as well as for relative damping control. +Figure ref:fig:rotating_comp_techniques_root_locus shows the Root Locus plots for the two proposed IFF modifications and the relative damping control. While the two pairs of complex conjugate open-loop poles are identical for both IFF modifications, the transmission zeros are not. This means that the closed-loop behavior of both systems will differ when large control gains are used. -One can observe that the closed loop poles corresponding to the system with added springs (in red) are bounded to the left half plane implying unconditional stability. -This is not the case for the system where the controller is augmented with an HPF (in blue). +The closed-loop poles corresponding to the system with added springs (in red) are bounded to the left half plane implying unconditional stability. +This is not the case for the system in which the controller is augmented with an HPF (in blue). It is interesting to note that the maximum added damping is very similar for both modified IFF techniques. #+begin_src matlab :exports none :results none @@ -2449,7 +2451,7 @@ exportFig('figs/rotating_comp_techniques_root_locus_zoom.pdf', 'width', 600, 'he ** Obtained Damped Plant The actively damped plants are computed for the three techniques and compared in Figure ref:fig:rotating_comp_techniques_dampled_plants. It is shown that while the diagonal (direct) terms of the damped plants are similar for the three active damping techniques, the off-diagonal (coupling) terms are not. -Integral Force Feedback strategy is adding some coupling at low frequency which may negatively impact the positioning performance. +The acrshort:iff strategy is adding some coupling at low-frequency, which may negatively impact the positioning performance. #+begin_src matlab %% Compute Damped plants @@ -2515,18 +2517,18 @@ exportFig('figs/rotating_comp_techniques_dampled_plants.pdf', 'width', 'half', ' ** Transmissibility And Compliance The proposed active damping techniques are now compared in terms of closed-loop transmissibility and compliance. -The transmissibility is here defined as the transfer function from a displacement of the rotating stage along $\vec{i}_x$ to the displacement of the payload along the same direction. -It is used to characterize how much vibration is transmitted through the suspended platform to the payload. -The compliance describes the displacement response of the payload to external forces applied to it. +The transmissibility is defined as the transfer function from the displacement of the rotating stage along $\vec{i}_x$ to the displacement of the payload along the same direction. +It is used to characterize the amount of vibration is transmitted through the suspended platform to the payload. +The compliance describes the displacement response of the payload to the external forces applied to it. This is a useful metric when disturbances are directly applied to the payload. -It is here defined as the transfer function from external forces applied on the payload along $\vec{i}_x$ to the displacement of the payload along the same direction. +Here, it is defined as the transfer function from external forces applied on the payload along $\vec{i}_x$ to the displacement of the payload along the same direction. -Very similar results are obtained for the two proposed IFF modifications in terms of transmissibility and compliance (Figure ref:fig:rotating_comp_techniques_trans_compliance). -Using IFF degrades the compliance at low frequency while using relative damping control degrades the transmissibility at high frequency. -This is very well known characteristics of these common active damping techniques that holds when applied to rotating platforms. +Very similar results were obtained for the two proposed IFF modifications in terms of transmissibility and compliance (Figure ref:fig:rotating_comp_techniques_trans_compliance). +Using IFF degrades the compliance at low frequencies, whereas using relative damping control degrades the transmissibility at high frequencies. +This is very well known characteristics of these common active damping techniques that hold when applied to rotating platforms. #+begin_src matlab :exports none :results none -%% Comparison of the obtained transmissibilty and compliance for the three tested active damping techniques +%% Comparison of the obtained transmissibility and compliance for the three tested active damping techniques freqs = logspace(-2, 2, 1000); % transmissibility @@ -2576,7 +2578,7 @@ exportFig('figs/rotating_comp_techniques_compliance.pdf', 'width', 'half', 'heig #+end_src #+name: fig:rotating_comp_techniques_trans_compliance -#+caption: Comparison of the obtained transmissibilty (\subref{fig:rotating_comp_techniques_transmissibility}) and compliance (\subref{fig:rotating_comp_techniques_compliance}) for the three tested active damping techniques +#+caption: Comparison of the obtained transmissibility (\subref{fig:rotating_comp_techniques_transmissibility}) and compliance (\subref{fig:rotating_comp_techniques_compliance}) for the three tested active damping techniques #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:rotating_comp_techniques_transmissibility}Transmissibility} @@ -2599,9 +2601,9 @@ exportFig('figs/rotating_comp_techniques_compliance.pdf', 'width', 'half', 'heig :END: <> ** Introduction :ignore: -The previous analysis is now applied on a model representing the rotating nano-hexapod. +The previous analysis is now applied to a model representing a rotating nano-hexapod. Three nano-hexapod stiffnesses are tested as for the uniaxial model: $k_n = \SI{0.01}{\N\per\mu\m}$, $k_n = \SI{1}{\N\per\mu\m}$ and $k_n = \SI{100}{\N\per\mu\m}$. -Only the maximum rotating velocity is here considered ($\Omega = \SI{60}{rpm}$) with the light sample ($m_s = \SI{1}{kg}$) as this is the worst identified case scenario in terms of gyroscopic effects. +Only the maximum rotating velocity is here considered ($\Omega = \SI{60}{rpm}$) with the light sample ($m_s = \SI{1}{kg}$) because this is the worst identified case scenario in terms of gyroscopic effects. ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) @@ -2707,9 +2709,9 @@ The parallel stiffness corresponding to the centrifugal forces is $m \Omega^2 \a Kneg_light = (15+1)*(2*pi)^2; #+end_src -The transfer functions from nano-hexapod actuator force $F_u$ to the displacement of the nano-hexapod in the same direction $d_u$ as well as in the orthogonal direction $d_v$ (coupling) are shown in Figure ref:fig:rotating_nano_hexapod_dynamics for all three considered nano-hexapod stiffnesses. -The soft nano-hexapod is the most affected by the rotation. -This can be seen by the large shift of the resonance frequencies, and by the induced coupling which is larger than for the stiffer nano-hexapods. +The transfer functions from the nano-hexapod actuator force $F_u$ to the displacement of the nano-hexapod in the same direction $d_u$ as well as in the orthogonal direction $d_v$ (coupling) are shown in Figure ref:fig:rotating_nano_hexapod_dynamics for all three considered nano-hexapod stiffnesses. +The soft nano-hexapod is the most affected by rotation. +This can be seen by the large shift of the resonance frequencies, and by the induced coupling, which is larger than that for the stiffer nano-hexapods. The coupling (or interaction) in a MIMO $2 \times 2$ system can be visually estimated as the ratio between the diagonal term and the off-diagonal terms (see corresponding Appendix). #+begin_src matlab :results none @@ -2828,7 +2830,7 @@ exportFig('figs/rotating_nano_hexapod_dynamics_pz.pdf', 'width', 'third', 'heigh #+end_src #+name: fig:rotating_nano_hexapod_dynamics -#+caption: Effect of rotation on the nano-hexapod dynamics. Dashed lines are the plants without rotation, solid lines are plants at maximum rotating velocity ($\Omega = 60\,\text{rpm}$), and shaded lines are coupling terms at maximum rotating velocity +#+caption: Effect of rotation on the nano-hexapod dynamics. Dashed lines represent plants without rotation, solid lines represent plants at maximum rotating velocity ($\Omega = 60\,\text{rpm}$), and shaded lines are coupling terms at maximum rotating velocity #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:uniaxial_damped_plant_three_active_damping_techniques_vc}$k_n = 0.01\,N/\mu m$} @@ -2851,14 +2853,14 @@ exportFig('figs/rotating_nano_hexapod_dynamics_pz.pdf', 'width', 'third', 'heigh #+end_subfigure #+end_figure -** Optimal IFF with High Pass Filter -Integral Force Feedback with an added High Pass Filter is applied to the three nano-hexapods. -First, the parameters ($\omega_i$ and $g$) of the IFF controller that yield best simultaneous damping are determined from Figure ref:fig:rotating_iff_hpf_nass_optimal_gain. -The IFF parameters are chosen as follow: -- for $k_n = \SI{0.01}{\N\per\mu\m}$ (Figure ref:fig:rotating_iff_hpf_nass_optimal_gain): $\omega_i$ is chosen such that the maximum damping is achieved while the gain is less than half of the maximum gain at which the system is unstable. +** Optimal IFF with a High-Pass Filter +Integral Force Feedback with an added high-pass filter is applied to the three nano-hexapods. +First, the parameters ($\omega_i$ and $g$) of the IFF controller that yield the best simultaneous damping are determined from Figure ref:fig:rotating_iff_hpf_nass_optimal_gain. +The IFF parameters are chosen as follows: +- for $k_n = \SI{0.01}{\N\per\mu\m}$ (Figure ref:fig:rotating_iff_hpf_nass_optimal_gain): $\omega_i$ is chosen such that maximum damping is achieved while the gain is less than half of the maximum gain at which the system is unstable. This is done to have some control robustness. -- for $k_n = \SI{1}{\N\per\mu\m}$ and $k_n = \SI{100}{\N\per\mu\m}$ (Figure ref:fig:rotating_iff_hpf_nass_optimal_gain_md and ref:fig:rotating_iff_hpf_nass_optimal_gain_pz): the largest $\omega_i$ is chosen such that obtained damping is $\SI{95}{\percent}$ of the maximum achievable damping. - Large $\omega_i$ is chosen here to limit the loss of compliance and the increase of coupling at low frequency as was shown in Section ref:sec:rotating_iff_pseudo_int. +- for $k_n = \SI{1}{\N\per\mu\m}$ and $k_n = \SI{100}{\N\per\mu\m}$ (Figure ref:fig:rotating_iff_hpf_nass_optimal_gain_md and ref:fig:rotating_iff_hpf_nass_optimal_gain_pz): the largest $\omega_i$ is chosen such that the obtained damping is $\SI{95}{\percent}$ of the maximum achievable damping. + Large $\omega_i$ is chosen here to limit the loss of compliance and the increase of coupling at low-frequency as shown in Section ref:sec:rotating_iff_pseudo_int. The obtained IFF parameters and the achievable damping are visually shown by large dots in Figure ref:fig:rotating_iff_hpf_nass_optimal_gain and are summarized in Table ref:tab:rotating_iff_hpf_opt_iff_hpf_params_nass. #+begin_src matlab @@ -3000,7 +3002,7 @@ exportFig('figs/rotating_iff_hpf_nass_optimal_gain_pz.pdf', 'width', 'third', 'h #+end_src #+name: fig:rotating_iff_hpf_nass_optimal_gain -#+caption: For each value of $\omega_i$, the maximum damping ratio $\xi$ is computed (blue) and the corresponding controller gain is shown (in red). The choosen controller parameters used for further analysis are shown by the large dots. +#+caption: For each value of $\omega_i$, the maximum damping ratio $\xi$ is computed (blue), and the corresponding controller gain is shown (in red). The chosen controller parameters used for further analysis are indicated by the large dots. #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:rotating_iff_hpf_nass_optimal_gain_vc}$k_n = 0.01\,N/\mu m$} @@ -3028,7 +3030,7 @@ data2orgtable([wis(i_iff_hpf_vc), opt_iff_hpf_gain_vc(i_iff_hpf_vc), opt_iff_hpf #+end_src #+name: tab:rotating_iff_hpf_opt_iff_hpf_params_nass -#+caption: Obtained optimal parameters ($\omega_i$ and $g$) for the modified IFF controller including a high pass filter. The corresponding achievable simultaneous damping of the two modes $\xi$ is also shown. +#+caption: Obtained optimal parameters ($\omega_i$ and $g$) for the modified IFF controller including a high-pass filter. The corresponding achievable simultaneous damping of the two modes $\xi$ is also shown. #+attr_latex: :environment tabularx :width 0.4\linewidth :align Xccc #+attr_latex: :center t :booktabs t #+RESULTS: @@ -3040,14 +3042,14 @@ data2orgtable([wis(i_iff_hpf_vc), opt_iff_hpf_gain_vc(i_iff_hpf_vc), opt_iff_hpf ** Optimal IFF with Parallel Stiffness For each considered nano-hexapod stiffness, the parallel stiffness $k_p$ is varied from $k_{p,\text{min}} = m\Omega^2$ (the minimum stiffness that yields unconditional stability) to $k_{p,\text{max}} = k_n$ (the total nano-hexapod stiffness). -In order to keep the overall stiffness constant, the actuator stiffness $k_a$ is decreased when $k_p$ is increased ($k_a = k_n - k_p$, with $k_n$ the total nano-hexapod stiffness). -A high pass filter is also added to limit the low frequency gain with a cut-off frequency $\omega_i$ equal to one tenth of the system resonance ($\omega_i = \omega_0/10$). +To keep the overall stiffness constant, the actuator stiffness $k_a$ is decreased when $k_p$ is increased ($k_a = k_n - k_p$, with $k_n$ the total nano-hexapod stiffness). +A high-pass filter is also added to limit the low-frequency gain with a cut-off frequency $\omega_i$ equal to one tenth of the system resonance ($\omega_i = \omega_0/10$). The achievable maximum simultaneous damping of all the modes is computed as a function of the parallel stiffnesses (Figure ref:fig:rotating_iff_kp_nass_optimal_gain). -It is shown that the soft nano-hexapod cannot yield good damping as the parallel stiffness cannot be made large enough compared to the negative stiffness induced by the rotation. -For the two stiff options, the achievable damping decreases when the parallel stiffness is chosen too high as explained in Section ref:sec:rotating_iff_parallel_stiffness. -Such behavior can be explain by the fact that the achievable damping can be approximated by the distance between the open-loop pole and the open-loop zero [[cite:&preumont18_vibrat_contr_activ_struc_fourt_edition chapt 7.2]]. -This distance is larger for stiff nano-hexapod as the open-loop pole will be at higher frequencies while the open-loop zero, which depends on the value of the parallel stiffness, can only be made large for stiff nano-hexapods. +It is shown that the soft nano-hexapod cannot yield good damping because the parallel stiffness cannot be sufficiently large compared to the negative stiffness induced by the rotation. +For the two stiff options, the achievable damping decreases when the parallel stiffness is too high, as explained in Section ref:sec:rotating_iff_parallel_stiffness. +Such behavior can be explained by the fact that the achievable damping can be approximated by the distance between the open-loop pole and the open-loop zero [[cite:&preumont18_vibrat_contr_activ_struc_fourt_edition chapt 7.2]]. +This distance is larger for stiff nano-hexapod because the open-loop pole will be at higher frequencies while the open-loop zero, whereas depends on the value of the parallel stiffness, can only be made large for stiff nano-hexapods. Let's choose $k_p = 1\,N/mm$, $k_p = 0.01\,N/\mu m$ and $k_p = 1\,N/\mu m$ for the three considered nano-hexapods. The corresponding optimal controller gains and achievable damping are summarized in Table ref:tab:rotating_iff_kp_opt_iff_kp_params_nass. @@ -3274,7 +3276,7 @@ data2orgtable([opt_iff_kp_gain_vc(i_kp_vc), opt_iff_kp_xi_vc(i_kp_vc); opt_iff_k ** Optimal Relative Motion Control For each considered nano-hexapod stiffness, relative damping control is applied and the achievable damping ratio as a function of the controller gain is computed (Figure ref:fig:rotating_rdc_optimal_gain). -The gain is chosen is chosen such that 99% of modal damping is obtained (obtained gains are summarized in Table ref:tab:rotating_rdc_opt_params_nass). +The gain is chosen such that 99% of modal damping is obtained (obtained gains are summarized in Table ref:tab:rotating_rdc_opt_params_nass). #+begin_src matlab %% Computes the optimal parameters and attainable simultaneous damping - Piezo nano-hexapod @@ -3365,11 +3367,11 @@ exportFig('figs/rotating_rdc_optimal_gain.pdf', 'width', 'half', 'height', 350); #+end_minipage ** Comparison of the obtained damped plants -Now that optimal parameters for the three considered active damping techniques have been determined, the obtained damped plants are computed and compared in Figure ref:fig:rotating_nass_damped_plant_comp. +Now that the optimal parameters for the three considered active damping techniques have been determined, the obtained damped plants are computed and compared in Figure ref:fig:rotating_nass_damped_plant_comp. -Similarly to what was concluded in previous analysis: -- acrshort:iff adds coupling below the resonance frequency as compared to the open-loop and acrshort:rdc cases -- All three methods are yielding good damping, except for acrshort:iff applied on the soft nano-hexapod +Similar to what was concluded in the previous analysis: +- acrshort:iff adds more coupling below the resonance frequency as compared to the open-loop and acrshort:rdc cases +- All three methods yield good damping, except for acrshort:iff applied on the soft nano-hexapod - Coupling is smaller for stiff nano-hexapods #+begin_src matlab :tangle no @@ -3386,7 +3388,7 @@ load('nass_controllers.mat'); #+end_src #+begin_src matlab -%% Closed Loop Plants - IFF with HPF +%% Closed-Loop Plants - IFF with HPF G_vc_norot_iff_hpf = feedback(G_vc_norot, Kiff_hpf_vc, 'name'); G_vc_fast_iff_hpf = feedback(G_vc_fast, Kiff_hpf_vc, 'name'); @@ -3396,7 +3398,7 @@ G_md_fast_iff_hpf = feedback(G_md_fast, Kiff_hpf_md, 'name'); G_pz_norot_iff_hpf = feedback(G_pz_norot, Kiff_hpf_pz, 'name'); G_pz_fast_iff_hpf = feedback(G_pz_fast, Kiff_hpf_pz, 'name'); -%% Closed Loop Plants - IFF with Parallel Stiffness +%% Closed-Loop Plants - IFF with Parallel Stiffness G_vc_norot_iff_kp = feedback(G_vc_kp_norot, Kiff_kp_vc, 'name'); G_vc_fast_iff_kp = feedback(G_vc_kp_fast, Kiff_kp_vc, 'name'); @@ -3406,7 +3408,7 @@ G_md_fast_iff_kp = feedback(G_md_kp_fast, Kiff_kp_md, 'name'); G_pz_norot_iff_kp = feedback(G_pz_kp_norot, Kiff_kp_pz, 'name'); G_pz_fast_iff_kp = feedback(G_pz_kp_fast, Kiff_kp_pz, 'name'); -%% Closed Loop Plants - RDC +%% Closed-Loop Plants - RDC G_vc_norot_rdc = feedback(G_vc_norot, Krdc_vc, 'name'); G_vc_fast_rdc = feedback(G_vc_fast, Krdc_vc, 'name'); @@ -3555,7 +3557,7 @@ exportFig('figs/rotating_nass_damped_plant_comp_pz.pdf', 'width', 'third', 'heig #+end_src #+name: fig:rotating_nass_damped_plant_comp -#+caption: Comparison of the damped plants for the three proposed active damping techniques (IFF with HPF in blue, IFF with $k_p$ in red and RDC in yellow). The direct terms are shown by the solid lines and coupling terms are shown by the shaded lines. Three nano-hexapod stiffnesses are considered. For this analysis the rotating velocity is $\Omega = 60\,\text{rpm}$ and the suspended mass is $m_n + m_s = \SI{16}{\kg}$. +#+caption: Comparison of the damped plants for the three proposed active damping techniques (IFF with HPF in blue, IFF with $k_p$ in red and RDC in yellow). The direct terms are shown by solid lines, and the coupling terms are shown by the shaded lines. Three nano-hexapod stiffnesses are considered. For this analysis the rotating velocity is $\Omega = 60\,\text{rpm}$ and the suspended mass is $m_n + m_s = \SI{16}{\kg}$. #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:rotating_nass_damped_plant_comp_vc}$k_n = 0.01\,N/\mu m$} @@ -3584,9 +3586,9 @@ exportFig('figs/rotating_nass_damped_plant_comp_pz.pdf', 'width', 'third', 'heig :END: <> ** Introduction :ignore: -Up until now, the model used to study gyroscopic effects consisted of an infinitely stiff rotating stage with a X-Y suspended stage on top. -While quite simplistic, this allowed to study the effects of rotation and the associated limitations when active damping is to be applied. -In this section, the limited compliance of the micro-station is taken into account as well as the rotation of the spindle. +Until now, the model used to study gyroscopic effects consisted of an infinitely stiff rotating stage with a X-Y suspended stage on top. +While quite simplistic, this allowed us to study the effects of rotation and the associated limitations when active damping is to be applied. +In this section, the limited compliance of the micro-station is considered as well as the rotation of the spindle. ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) @@ -3621,7 +3623,7 @@ load('nass_controllers.mat'); #+end_src ** Nano Active Stabilization System model -In order to have a more realistic dynamics model of the NASS, the 2-DoF nano-hexapod (modelled as shown in Figure ref:fig:rotating_3dof_model_schematic) is now located on top of a model of the micro-station including (see Figure ref:fig:rotating_nass_model for a 3D view): +To have a more realistic dynamics model of the NASS, the 2-DoF nano-hexapod (modeled as shown in Figure ref:fig:rotating_3dof_model_schematic) is now located on top of a model of the micro-station including (see Figure ref:fig:rotating_nass_model for a 3D view): - the floor whose motion is imposed - a 2-DoF granite ($k_{g,x} = k_{g,y} = \SI{950}{\N\per\mu\m}$, $m_g = \SI{2500}{\kg}$) - a 2-DoF $T_y$ stage ($k_{t,x} = k_{t,y} = \SI{520}{\N\per\mu\m}$, $m_t = \SI{600}{\kg}$) @@ -3637,13 +3639,13 @@ A payload is rigidly fixed to the nano-hexapod and the $x,y$ motion of the paylo ** System dynamics -The dynamics of the un-damped and damped plants are identified using the optimal parameters found in Section ref:sec:rotating_nano_hexapod. -The obtained dynamics are compared in Figure ref:fig:rotating_nass_plant_comp_stiffness in which the direct terms are shown by the solid curves while the coupling terms are shown by the shaded ones. +The dynamics of the undamped and damped plants are identified using the optimal parameters found in Section ref:sec:rotating_nano_hexapod. +The obtained dynamics are compared in Figure ref:fig:rotating_nass_plant_comp_stiffness in which the direct terms are shown by the solid curves and the coupling terms are shown by the shaded ones. It can be observed that: - The coupling (quantified by the ratio between the off-diagonal and direct terms) is higher for the soft nano-hexapod -- Damping added by the three proposed techniques is quite high and the obtained plant is rather easy to control +- Damping added using the three proposed techniques is quite high, and the obtained plant is rather easy to control - There is some coupling between nano-hexapod and micro-station dynamics for the stiff nano-hexapod (mode at 200Hz) -- The two proposed IFF modification yields similar results +- The two proposed IFF modifications yield similar results #+begin_src matlab %% System parameters @@ -3763,7 +3765,7 @@ G_pz_kp_norot.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy', 'Ftx', 'Fty' G_pz_kp_norot.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; %% Compute dampepd plants -% Closed Loop Plants - IFF with HPF +% Closed-Loop Plants - IFF with HPF G_vc_norot_iff_hpf = feedback(G_vc_norot, Kiff_hpf_vc, 'name'); G_vc_fast_iff_hpf = feedback(G_vc_fast, Kiff_hpf_vc, 'name'); @@ -3773,7 +3775,7 @@ G_md_fast_iff_hpf = feedback(G_md_fast, Kiff_hpf_md, 'name'); G_pz_norot_iff_hpf = feedback(G_pz_norot, Kiff_hpf_pz, 'name'); G_pz_fast_iff_hpf = feedback(G_pz_fast, Kiff_hpf_pz, 'name'); -% Closed Loop Plants - IFF with Parallel Stiffness +% Closed-Loop Plants - IFF with Parallel Stiffness G_vc_norot_iff_kp = feedback(G_vc_kp_norot, Kiff_kp_vc, 'name'); G_vc_fast_iff_kp = feedback(G_vc_kp_fast, Kiff_kp_vc, 'name'); @@ -3783,7 +3785,7 @@ G_md_fast_iff_kp = feedback(G_md_kp_fast, Kiff_kp_md, 'name'); G_pz_norot_iff_kp = feedback(G_pz_kp_norot, Kiff_kp_pz, 'name'); G_pz_fast_iff_kp = feedback(G_pz_kp_fast, Kiff_kp_pz, 'name'); -% Closed Loop Plants - RDC +% Closed-Loop Plants - RDC G_vc_norot_rdc = feedback(G_vc_norot, Krdc_vc, 'name'); G_vc_fast_rdc = feedback(G_vc_fast, Krdc_vc, 'name'); @@ -3975,14 +3977,14 @@ exportFig('figs/rotating_nass_plant_comp_stiffness_pz.pdf', 'width', 'third', 'h ** Effect of disturbances The effect of three disturbances are considered (as for the uniaxial model), floor motion $[x_{f,x},\ x_{f,y}]$ (Figure ref:fig:rotating_nass_effect_floor_motion), micro-Station vibrations $[f_{t,x},\ f_{t,y}]$ (Figure ref:fig:rotating_nass_effect_stage_vibration) and direct forces applied on the sample $[f_{s,x},\ f_{s,y}]$ (Figure ref:fig:rotating_nass_effect_direct_forces). -Note that only the transfer function from the disturbances in the $x$ direction to the relative position $d_x$ between the sample and the granite in the $x$ direction are displayed as the transfer functions in the $y$ direction are the same due to the system symmetry. +Note that only the transfer functions from the disturbances in the $x$ direction to the relative position $d_x$ between the sample and the granite in the $x$ direction are displayed because the transfer functions in the $y$ direction are the same due to the system symmetry. -Conclusions are similar than with the uniaxial (non-rotating) model: +Conclusions are similar than those of the uniaxial (non-rotating) model: - Regarding the effect of floor motion and forces applied on the payload: - - The stiffer, the better. This can be seen in Figures ref:fig:rotating_nass_effect_floor_motion and ref:fig:rotating_nass_effect_direct_forces where the magnitudes for the stiff-hexapod are lower than for the soft one - - acrshort:iff degrades the performance at low frequency compared to acrshort:rdc + - The stiffer, the better. This can be seen in Figures ref:fig:rotating_nass_effect_floor_motion and ref:fig:rotating_nass_effect_direct_forces where the magnitudes for the stiff hexapod are lower than those for the soft one + - acrshort:iff degrades the performance at low-frequency compared to acrshort:rdc - Regarding the effect of micro-station vibrations: - - Having a soft nano-hexapod allows to filter these vibrations between the suspensions modes of the nano-hexapod and some flexible modes of the micro-station. Using relative damping control reduces this filtering (Figure ref:fig:rotating_nass_effect_stage_vibration_vc). + - Having a soft nano-hexapod allows filtering of these vibrations between the suspension modes of the nano-hexapod and some flexible modes of the micro-station. Using relative damping control reduces this filtering (Figure ref:fig:rotating_nass_effect_stage_vibration_vc). #+begin_src matlab :exports none :results none %% Effect of Floor motion on the position error - Comparison of active damping techniques for the three nano-hexapod stiffnesses @@ -4059,7 +4061,7 @@ exportFig('figs/rotating_nass_effect_floor_motion_pz.pdf', 'width', 'third', 'he #+end_src #+name: fig:rotating_nass_effect_floor_motion -#+caption: Effect of floor motion $x_{f,x}$ on the position error $d_x$ - Comparison of active damping techniques for the three nano-hexapod stiffnesses. IFF is shown to increase the sensitivity to floor motion at low frequency. +#+caption: Effect of floor motion $x_{f,x}$ on the position error $d_x$ - Comparison of active damping techniques for the three nano-hexapod stiffnesses. IFF is shown to increase the sensitivity to floor motion at low-frequency. #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:rotating_nass_effect_floor_motion_vc}$k_n = 0.01\,N/\mu m$} @@ -4254,7 +4256,7 @@ exportFig('figs/rotating_nass_effect_direct_forces_pz.pdf', 'width', 'third', 'h #+end_src #+name: fig:rotating_nass_effect_direct_forces -#+caption: Effect of sample forces $f_{s,x}$ on the position error $d_x$ - Comparison of active damping techniques for the three nano-hexapod stiffnesses. Integral Force Feedback degrades this compliance at low frequency. +#+caption: Effect of sample forces $f_{s,x}$ on the position error $d_x$ - Comparison of active damping techniques for the three nano-hexapod stiffnesses. Integral Force Feedback degrades this compliance at low-frequency. #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:rotating_nass_effect_direct_forces_vc}$k_n = 0.01\,N/\mu m$} @@ -4286,25 +4288,25 @@ In this study, the gyroscopic effects induced by the spindle's rotation have bee Decentralized acrlong:iff with pure integrators was shown to be unstable when applied to rotating platforms (Section ref:sec:rotating_iff_pure_int). Two modifications of the classical acrshort:iff control have been proposed to overcome this issue. -The first modification concerns the controller and consists of adding a high pass filter to the pure integrators. +The first modification concerns the controller and consists of adding a high-pass filter to the pure integrators. This is equivalent to moving the controller pole to the left along the real axis. -This allows the closed loop system to be stable up to some value of the controller gain (Section ref:sec:rotating_iff_pseudo_int). +This allows the closed-loop system to be stable up to some value of the controller gain (Section ref:sec:rotating_iff_pseudo_int). The second proposed modification concerns the mechanical system. Additional springs are added in parallel with the actuators and force sensors. It was shown that if the stiffness $k_p$ of the additional springs is larger than the negative stiffness $m \Omega^2$ induced by centrifugal forces, the classical decentralized acrshort:iff regains its unconditional stability property (Section ref:sec:rotating_iff_parallel_stiffness). These two modifications were compared with acrlong:rdc in Section ref:sec:rotating_comp_act_damp. -While having very different implementations, both proposed modifications were found to be very similar when it comes to the attainable damping and the obtained closed loop system behavior. +While having very different implementations, both proposed modifications were found to be very similar with respect to the attainable damping and the obtained closed-loop system behavior. -Then, this study has been applied to a rotating platform that corresponds to the nano-hexapod parameters (Section ref:sec:rotating_nano_hexapod). -As for the uniaxial model, three nano-hexapod stiffness are considered. -The dynamics of the soft nano-hexapod ($k_n = 0.01\,N/\mu m$) was shown to be more depend on the rotation velocity (higher coupling and change of dynamics due to gyroscopic effects). -Also, the attainable damping ratio of the soft nano-hexapod when using acrshort:iff is limited by gyroscopic effects. +This study has been applied to a rotating platform that corresponds to the nano-hexapod parameters (Section ref:sec:rotating_nano_hexapod). +As for the uniaxial model, three nano-hexapod stiffnesses values were considered. +The dynamics of the soft nano-hexapod ($k_n = 0.01\,N/\mu m$) was shown to be more depend more on the rotation velocity (higher coupling and change of dynamics due to gyroscopic effects). +In addition, the attainable damping ratio of the soft nano-hexapod when using acrshort:iff is limited by gyroscopic effects. -To be closer to the acrlong:nass dynamics, the limited compliance of the micro-station has been taken into account (Section ref:sec:rotating_nass). -Results are similar to that of the uniaxial model except that come complexity is added for the soft nano-hexapod due to the spindle's rotation. -For the moderately stiff nano-hexapod ($k_n = 1\,N/\mu m$), the gyroscopic effects are only slightly affecting the system dynamics, and therefore could represent a good alternative to the soft nano-hexapod that was showing better results with the uniaxial model. +To be closer to the acrlong:nass dynamics, the limited compliance of the micro-station has been considered (Section ref:sec:rotating_nass). +Results are similar to those of the uniaxial model except that come complexity is added for the soft nano-hexapod due to the spindle's rotation. +For the moderately stiff nano-hexapod ($k_n = 1\,N/\mu m$), the gyroscopic effects only slightly affect the system dynamics, and therefore could represent a good alternative to the soft nano-hexapod that showed better results with the uniaxial model. * Bibliography :ignore: #+latex: \printbibliography[heading=bibintoc,title={Bibliography}] diff --git a/nass-rotating-3dof-model.pdf b/nass-rotating-3dof-model.pdf index e9e492b2d69a689d1bab76a1e9f159ffb776c0df..14bbeb67c57dd1136a897af060758458c0dc17ab 100644 GIT binary patch delta 227416 zcmXt;Q*fYNu&%?2ZCjIMV%xTD+s+r;w(VqMTNB$hW@6*~d!KV|R@L+Ns#RTmv8uZJ zJ>6OZecD_DZD@i?Z^UK6Odf|pRwFHxyxNA0&Ac7MizZW`wms zZe6~l>7qR+$2eTAD_3EvE)gHBdOdV4D~XV8|e_ow-@iXOD$=))P-I>{TPMU z?B!Pm0jHamKXo zx?v|J;*fN{mKT8aPk|*w0Vp&}`x&8EQkpbb`{ZG|p(*zHUv5M85hh z;Xqzb9vdd!7By2rZ6jG9Y5yXvoz#E(K~@S68!I)+7Q{W>6iRwsovt5q&QXH{$--uh zUe5Bdsj0oaQ9NZ;QibnqK4t-Ur_r{4H;~t!k)7+tCtpAZ+TJd*9eEKNLiLok|3)M^ z{e%Mz3M06UD$CDmMY~KDOWBwg+*~@}%gv|e2IdRtYS(92@F7Ju9)(LIOxdul;eO>o z&Ek(L6;GQP!Qwh%a#jaJJS651-Q{j)Ce9fKbLG%|WzAHPT^btM-s-JKp~gL^W`@)fYBR#XlYUHtn722xR{>&9X<~i!ffgVGVK17 zU&f&h@mh53R(abuJ#bqHzu|9Eku`&_yfp(b-+|?2H$&{9?vO@h7L%9)keHYVp~_c% zzKm<>59P=dy7*6Yf>oBIwMhL^THy?DKko$ih;cK}ix0yCI%--HB;EY`D3oYfvEq0S

XbXV2e= z>Rx99>()Fjo%}*$7;*R-q0N`=&HlqqRzuR=abu%m%jFqufs}V3193D{E$WS;;{fuj z3-?-te@uRJtXb?DS$|XAGd$-r?c=}Cn9uf$T1@T4g_J4nG1vyX&|%m~FS-a{9(Z+3 zFxa0xzeYGx@`u+!`_cYd?nym|>9KiYz)AhcL+K4?x=6Sy%2fJtvx?@{Hd-)e+bCMD zOw>y$Vlpy3(RTzjKHa;c$JxAq)2#=w@WwH}+KiI9YpsIwuo}6Ms#>zHVO7NIt=Q-1WXGHa2CETv@KRvq@N&JT|-BW)+P!`-Ku% z6E%u0IuJ=h4-62tU=oa$>>U?B<`f7tw>EIt93zkS-e0K|Qf=&KxT6V-nH}pHTx_t< zy!nNBTZOUIe({e8eEqE!GZd-4t5yh0vWi%8S}d$$u?ti6HZK;6K!V%81IoL zOd~fx9H%zc^pHgHhn5@{`z=C-cL!*)uF%z>@d|5vdMSCtjt{!E%TLPuCAy8r)v9w9 zHY%Ou7Dzq&25q*fT!3G&7Oel02U4#S)Iu7VH<9Byd5uydhEycB|0=b4ovtl)VSO(8 zQ(6nl3F~(Ov3TFoRNR~`{nb1lS>ku259lh19i_tB+Rq4b$x*M{a@ojnS?v2=tjdZw zHCS~DkQwbujk>3)3wGMFcIaBK^sjc>R?v0_?taeLVHZ({FF@pTdA8w*y$4jdk`ZE^ zFBFTfu#mfN@tBRQW&S!#AGF??>&Rn8C$7R-+eGa@u4T~NqCz8)ob5i$T6^nb#25_y z%j-v>uA`D{7~ZKk7MN8fbk#@55ogEEQ;G-dDnkN2;{_{lGVSJ{6!iwWN?M(U+AKJ{ z&DC;eP8dXbBtVH*$gvB9dwb!NLCp3>cg=lT) ztWW?<;uRQN11;^~jkkH?r}%>va&(`U8ER~TlmoTn!^T%)tRiA*Oqd^qd@tpvz&>IR z?=a-P3O>^7?P4^`ot8hhC<7--3W3L$qpxPfpg5a-;>Ak_d1%ri6Y%y>w0$2BByRwA zU8^p>fV|o9Y|CEB;&ko5+{iFwKg@v6@LR5puA@t}=)^C=QHyGLNG5;rlP;L^*9;Qr zllvYbkDX~`v!Vzkq^`C)=jW>&D2acB`!RRwM{j#5D;0(z?&i~YUNx!OKb06?zT1o4 zW;TQ~I#llWOi#MDn+N9mNRpf9Y2uw#Fxb#BYp)EqEo{!(jz z1Ff0x>=x`(AVV^=Z1>v3CFX3K@_!BSrW~@A_w)XEW5iLlXJ0*-Lx_eR2fkk^ekE!n z)TupClZm7}N$JMHx(7*tpUGYG&tGFaZm+NHJBId@qJmt_@hU`0crRZ2rPU{s;&bKHjN|2VBIy-F>(SfrgQ&38V+ zHVR6SrWKz5q;Y@ncWh)|+eU%&(o}@H9JM2UjR`Eh-I~ve&1GBfA1$EF8ddCG0&GZ7 z?_=d-CUw|8&FAf{k708 zj8c=<61Fb_td$CLCISN&I_)vLt?2YyT+g-we(9_*^O)V687*NeTeY} z4y{>?tWOs)n%0J83&-~S4l!7*sZFlxe$MAvSmkbwG8wPr+__Fj{hz;Lav4gP)$rGB zk0b1KUOXvTxPYtb^amaR{|xU#z^%F6MNX}q`9^3Ktq)crLZjnn*Q1mgnt?i$+3%uZ zUH8A!rc9+@L>}*M>9;T_7{RqfZM8(8A@E>~jOm5yESLb^W)xl9tzVxp;WKXyo!WWS zDqJRug`6I;hTe)gybBVf*xiOSW#Dai8R=k?Mv!i*cC5d{@}PSV1N|viC1WTYw6`G=lB?LSY!S7 zemB;(t12D==K@Qr+2B1I0=l2eAgj3nZ$K6pA{~C(e4Uc{@R-y)+$O8UJ}{oQ{qLmOp|v52ZsK+AaHSK4kI zxEca_KYz1}ArpGKJ=bD`O1J1}Pl2M5LS{PY>%BwZp6c;|sv(N&z196oiVdCX)+v6h zsuVgvje})<1HE<8K<%cGiY6)Qw9{Hx`OR2zf1VN>bFCDb{G50lie@L$KX>(Z74P5e z!w}F`UaVl?r>~_%0{y_FUNp>`ty6sh35^b2Y6xXUw)7_%ip}zsfh@w-^SV=J!H7Gb z>Si`O2uo!`=67WYReyK;ZpWD^lLs;V9Eo$$>~#8{81pi^W(Dp|lFh>o&SG&c^EZe* zT}d~zRGP5V2~_qja)RS}3FYZ5{9E5USQX&8q#0$#&6DVx7<9*sI0Foa2LB9Ya@<2k zRU8h@7wNH$HlmyOahpW>UtWL5*z7@kITq|n1|M|s5dLp&5ExS~PQr-bqWN46KpGlJWAxr!HsXqMclw2CqWq`{N=yxIhzm8XFS;yTX_L zh01{)RiW`*PYGuLdm&{OHBs;sXq1K?Og4)~K@PDTjtJb3q4MuR?Y%t;o}L#m0f&lc zf5t7ZBFJt9-zuiBCMG41z$?g9-yMLL_!u^ZzyNLqHJ7U+N#`JS_^HXt7KK105l>!s zty7__^AB`}@)Qc+vDka=IH1Z_qWE%RJKJgHBv(9nZH4^aPG{dj z$^NT?=<5;QsKP%^LkoE6#p&Xbhe`fG+mb_kkpYl>{X@oo`8lFjGVI;SsvVFnY>-@` znULtvLC~lq?!FFOajzDH3n8$P!qStfYln}ZoS@3_bIFGpPM}*pT0?c*5NF#IJ^m@> zgm4Qp&xNDy2K_fj|01`HK>?=}9b!)A`?3X(Y@%@Kdq~QprbgV%i zhqY))X)9DD&cGNOh1bDZp+*1D(_>z6AZfrlH1W zn>PhN)yOukgFS)W;Vo0* zr0pt^>FBD*GlG^-Q;RBviGX04g0TH37DR#uo@CzuyIR4)#6v>-u3witVkv5b^)M!Z ziFs>DWa?v4%sk&K6LPVGjQ)d(b!6$6Zn}NrL-h>@m7*tK;ABVEvG!J%Ge_F8hbz%FZd745kC$@&CZbdt zy_HqoVaB2|JS`^09oKz}#aE0f7kbj8OSk?yLKvmXgVLK~yrm!5X;F@ix)h$hIW$PK zhZ^?)Az?K&S}|?ApJgM7f}XD$yR%Y&E@g!MNK!8iZQ1{&Z30wE{OT@#G_cVI4MCDo zCQ(1Nm-@*Wc<7}^f>G&9RPy%EYz~qY>`|U-g#?TB7=p2-c*D$$XREp{UAtxzN)ko z#O7~dYEh`;%474FiItMJmbA%rE@f%pB%hUg8FAZ+oc_ zdDm;4JuV)N9Bk8!X=jYk1|DvY*K!TatU*|ceP$DvvpjG$OKz6K$)h4Bj$PD@*HoWV zNqSF;BuJdb>He8X_zd6ETI^`OT9`9e$`y|DTa1$ft|gDGKFT0xM_V>Wpb*DLuiJf< zZPl^a&Q6d3Swq>)Bc)1a(Y!phuxmrSTVj!2J5y6h%|x_7rDOV*n<1bo4e>0yv`AC| zRRvPy3?A4zP%*(d@r@@-H?mO;jDV|>XmO8}9>uPa(ES6U$i348o~WUR*5+x9ZrLxL zE&5NP9nai3rOuA0So~Akq0TGCUUjYP*%qX5%Ee2J8s`b$z>2n!(4ckO6{knFs#VCW zOJ@0wJ0myFJ=U6juwnvPqwNt=W=ys+)^({eZ3XyzNaIOlezrYrK|Ho5sc@evEM%3j z(uh7>iizvPsV*(=4PC+Trxz^bz2>$tJ7uWmZsM#yC|P*ww3|;=UQ~DfV?{9UJRM%D zW(HkiBjep$+$&^*Cm+t4L6av3vU%ZY^6QD`jthP$tm$zsAKwi`NV3^Zxe=ENXBQz% zpc`PLD53lgpen(aNThmyI~;mO8oXcq7^yZo=fJ3&#riaR_&n4R# z56PHpjo*3Q_b}9%t^=y&tVE^hHRbZX9VG^7oMFylMdoV)`m&KMsQhiKcINX@iT`wn zTYo_~t@;j>%2;a1;>-H*O7!`@hE?e;xdZOcKU@n8*gDV?{_PpcV$XiwR4k)D+4`oJ zHBBhAFt{Dc<*Y--*RHFmH#+p$+U3Krd2FqNnuVxsR=%a@U?k@TR?4?E)*oCL$|f#& zBZ_N;q#9NiAC!|B9qUy~aE|(-2i?8#EH*Tsj@Ej83Fs>nF6m<<9a`yj0 zL8#m`qu|PODDy6H>#wZUSGTq}8-@h~+1OyfKE=TmTa_l@yAo z+=%hPJgx?QeB>&_%1o@AKV7#|V7Qgw(APylks#h}$c0DHRwiatcoRC4ebayonk*CM zoX_-*P<0w-5xx`_feCMdLJF0*%8O{eF*`~_Aa`+@pss%2irmS@w9zNCu-8EUV-A}k zt3-;b>g!+(6xCS@^RI|;43JPaq=e07DBx|?b4a*Kpd-V@{}lDPjvGtH%GA@VFqwC? z`}hI49RCa`FBxzJ)AT4X7AM*NMK1oMN&YP1quF$q+IeaNKk9XFC*V%_2gioHJh!-m zII8;*i$~jq%;>^)T1c<8c*CJ4mhL8dg2`!#?)z`MuBg6GQZIe{9)O!WHn2MBbp3un z&UPbd@(E?KwGIFAo&7HcVHB10j*b8CrR{`EbDR_~q%=tVq}z@TlQmU*y@VCH0i7=2 zR8hh&k8Ju4g3$d-tWpVtXmz58wLc7J7tl`j7PlMl;%uqDh1Tqu2`PcEh|?_t5bJeu zVV1T1*`uhcJG5;kW=dUDK_==XZQpFg84`e<$=Q!Gvc1yu(YsE6@%X=rJPWJ-^zZ~D zw_!jjl>wS|vvM7RqT^2NrdyZ0I5s@ek#YFWlFlf0nIO>);TN3S!p=Z4Xf0YBH5X_i zC?zKsF(a`uF@vI!tE-u_Juwp(-DST)j zp2%4^k{aJi2===L1K)KNE=rg-8VcsR2u+f?q-9PB`(F~Hv?c*cWoWGFY7EAVrmxSw zal>HJjrxA=ExVE?K-JA6r5VpLsYTYkDm6^(+aN?v>-!+iNdcy$?Lr>pF3(9HBo)Cy z$|*9ah0?76CPnhI#0Ld6qJy|7N;00*T9{iB&-BT%K+bzQ8N`dCTRfE?Ruu#7#*6j_ zOp^*V6he^{$5=67__$c|SD`K{%^7tNDvfs=CiI7LloF{RV5!A8HGmAEtw0PDfCxH9 z4LKXoZA*x9EHye8Lh@cH35G1Woq@VmjO4O-# zj#H34R(ehvF~AR^u3)U6rzz)8l0I1jTH#SgGK#bzQemp;9CnB<;y#|O7&YiGY#DKI z;=mSDc+-G(AjL`ckIQ<3$gl7ZT(4i**x{#5k%g}rA`#%=6F*Bc{SnRHpcBosW7JvT zh!rD9enCyHn59rVkRaMrMCyo*Bdn8_+t$I57!zvQN6*XdI=y3e9Q(#?nrjVr=(P9E z^ViWhTbt%FO6bK@1Uq$w@RtwQD&#OYtq(tB*5^eW0yj`fCkZBTj^8daJr+|_B19~y z)Mw#Z~d9i9SEg-$&3O zB*xqTYWLKm#^`cV0s+UT`F0MPTNfH(lIz!VM__{p!G-O2yl#9)-X0y1rT(w-bPy$D ztXhm=z=#{^JL36yH=1YupsbQ-E-SS!3NuJSyj>KV4z{&q7e93QiPFf2{ ze@DZi-Y|ZB>m7dA&wV2ue#d<}*e`v@>6CW^xtCvBOIleOvz}azc<1d!Q*t3DgvSJK zL#WDa7{B34>}znET^me>G9$Jmnad6rp$1;U;eJS6r#vAA-4bI*2PH-i*Z{~e@0c-N z88|YMpSh{=i6y!6)giSqf$v@KbqkSC4x_K384Rr^42ym@=3mRzIJpzcsjfsHn@|M6 zZNtHB0oj)@x3DV1f1hDM9C@{nE#CBn!mP_ttD4TE(a<)ZD8^!BL+jC&J!SFYtv}1Y z-3b2g^@q2|iREp@&hFh(jfyXwpa@9zcx+JIzrQpBWG{PT?~ zBd3Hb&F|?<5n`PF>d+}T)NSFds`5p^oEM!Qrr~;Ira6y2Gkuf#4u6{NQ$}iSj#-S> z$OP^URiv6@x?D{*`j&LD=$o`m?Q&=z8X`IO)-k=!f$K^dPuD7&mfoEr-{n~Cr(3CB zU4V0F6N9R6;Q<_mLB)&k2-eSD#oN%R|B+B(Qxz*hgelN}7AnGoN>i%}7XtsQ4GU9X z{%ll?43(x+H7>j}iaX6@OSoK&U;Oy&6!^%MSZZI5*;LZ&snJ(c@Tep>*qr9~AdAMw zX=a|VH0;i%Mk|@{N$OU6E7WE%@wXr5-4Li!AeK(*r8&IfcO0fhcpJ?oM&n+ie!)Nn za|nbAzLLgIrmQBB$|VK@F{QDgH)yS1R0D6Bh0-*L=Lv{O$j~4pq3A{KaBytKFeIn= zNUchTDdSiS!l4t?klfq@eJfl%)8F3UbqZEr%&0Kt}JBlO z!}`*ZOVwWeB-guv=q9#An1-eU)k^RcHG)j~?~-O^As>R4)eT^k+YHjIDk%#EKW~{E zrAU!SkJ`_?Ab9`FEaF^LQc~&?2PS0X9)~PReeowb0d%CC5;v@{4MpJrlOH9q&O|a| z$nXyaJ?TM9T7rZ%>=F;Bj+8Y-&V$+q_I$x4De$yp-x^yQ5nC)_etmOK&$@IaCs zNr!{~@`8>Gqz44`&&D?h%L>Sd7poIo8AEF0GAv%O(clj<0=={+P&Wgcg~K7v7-MgX zQqaac2CG0qBS5_Fve&2c~ zhWWPxyaYT!CCjzQc%rB{qg4r^UZ(lQS?8O3@^5xK4j9X!zXOXAFe&!p8 zQNsCp;~cKFV^p!Zl8~>Ex2vjPvyQS3Rt=a$7nX>jS&1ioo;>eOydvag|y%TQ=OcbWY?_C2G zS(6WSUPi$TU>0ksb$&6%It)X7nW7rLz5Xo*63xB-U*g!DAuzMd4Cr(gLlXVB+7n5L zuC%kBdGSpmoai7*4eP9$l;peaV8c!Bvl>-nn9z`*|F^zr2Bter5)yL%fy5AlMD;XR&e z5h#~{22+3Rv=>+lnpEY;n)qr5m)-=t~oNFbWy zT`{M=ns=-FqQ}q4a!Q|^xJ0Yq1zR;#efOsc5{ukn4lM@hezjG<*0D^Ydr3-pfSLmD z@5Qn2M(?8~h2iJm2U#xNgNK}$(|<&lhvw%QLV2f;PQZ;8uXhiPb0_g5g7S~YebKd~ zV<{!<_*$id#*=qB$DG#m?SDfbV!6`$gG z1l(`5Syejkc=MuXgjFwRX3Mw^wx1qTVx z=HRI2wWiD0Mttq)y*v7_JlcCvH8vjt#W;z`ILC|vf*B`LAo>ba`21@LO0tg%yp ztH+DOg`IA0j@o`*% zYR;123Uy#?I?WA}8){ca>-iB=H4>{0tp@D{_ErBEugu7EH-c2FNZ-aCNsM6x*FRq5 zt+3^-hyB6F@KF34H%I^2g!STuzu2l5scsFE< zdEIp;?da1$4z0Ka;E%CuZQwfa;_eg2)ppRL%yCDJImf^5dB3>%EZC)`5bw@U1mGi3 zV$oM{&3&LjVhM_Lo(OiaOlhCPWwbD-Gi`2~?0ELHyl(!%bZMMP6LwE09)sk6=bHLL zJ#oZw`2geZdw)##aKK^=r$|_&7;o75)qc)0Rbn5IdG?e6?Dl=`Z!co4t}owvN*N4x z5l>np)^SHCOe}T3N1oF^Zrp z(;#5<-9_&NKr16bnOyYZ)eCsFZ($|vcZR!8Mkflm)Nuan?(=&bvaqukf~cn7+3|mso=3VX zv&ZdD;NQvtC8_P|@dMtMp$xje9ye$8KaZ}f1c?aqr7f!wWdoSl^JrLgSCk`U)|KSInoqHI==~9)QS~Dr58Kf zyU82Viy_JPLAqQ3NiJ+9D~0gl`VY*4pyI}gqV+*(pjXi^BhiiEg*0qGfgQXbg*W|3 zsR0EYh?~98VpUkW6h_x>@R4wQ+H?>5mjG0eW$<@g5O`$z%RfQvewig_^z3t);X857 zO%dZkg(pRQgCxZS^!O);X1iJ`JT{*hnGcBL5cs(h3!Tq(1l*Mn>Cfe1ucYPyC0xNWzm#hUaWDZHw%fUFO5@N`~9In zOF6X6u7RhiXeI&G68p|0FZFwn>VJ@ryrcs1zr^1Jwup$RJ1D95%>MpCyGZ_|DNduR zl~=$;;~=LDGl*#EQ@oq)Dk0ArSv~hHd=c)L>;6~{1CDjdiB_M}{?KnR zw%ginE6Vf-(p3zKrZm$(-^LNB#+>eA#Sjri)KNkDdfk~pY$XP$I2&C1q20uLVG)p& zuj29wZZ!8rtS%1rU~M&?6zy2{kvq!Gn?;YMweK*9@WtPrW`0+0B^Y*m?r zKDzmQQOF7tdp}6O5(yf*&Y)fr4_z_?OpP}=R0ep}{@s{AhDQS}^AzK(Jq1)!$aRrA zhThfQg*^*kJr&Y8gVc_dU#fBNC9n^AJqej9EY!c*H8|l)066qa-F-SsEnUPbeWoC=|l{9W()Om=-*K6u_+rQXD;kK&}29vJn9!Y)0B%5ignDt z*N0V^vBIVRDG-mU9BG(94~$<#^3ex`zA*pATH-jF$4LD(WG0mn&J#Up;Ca znz4g#TV2ofFHmIvb#I%6Cr{V^>HQ%5@h(ps(DP)~X2!%z21jb$*`_R+ z_crC}urTx1f0XKG-UBmv9B?U5Ub}e-K7d@Q+D~m4`;i+wS;(~ z4hT}`OLwzyO?0`Alt!a2FyDiya36R?^u5M?xOfzX{76bSyMlIkw|i)h|e&KV{{NVMQEDu^+J|g z+`MS}`*eLa90`g{P1`L|a5Gr}u88ISiTf+{c4~)TEB#lE2vILi=|~yyV*N_M_(R zZMMO7B{I2+siuE&k?7`chQU|P${0J#1$C}oJ~-`t@lYZ(*qD|nt?7XdQ9`8PZX)c| zi(a_5I%%^U!b8#y+CqQ%k{#nYbcmWdg5xUEb{W>XM2tGQ1xbH%+!JqxvC4kM`}XNl z!&zfOK5~`@DHZFpdqmB?6$59Jq8qt4J{F{B^qcw>9Sm1xPtQNlFlkcl^3?B6wmmw2Q?W;= zrD=|oYuL;saT9v5Z%Ty)<)ff)Z;)xG^1ki*d=1wr(Edv*j>ekJFNufqSNM^R zUJ7%3Uz#E1T9|BvqONGQJXx4bVIYfhPv+cFOYoBXLwwZe81~uJM5Bwlrko4brFc^D zs}@i9V&#pO(IN6_H1}t*x3rz(zzq2nrN{!g%Xs6>tJ;f_yX?r%T_oBlUVOV4K1GmG zm}ut*GZhmKj~y)liF~5EOVSB~l;|Z1^YG&5-8y5e26bH6-JIdCTH_$cFVq2g4V#;v z1Gz<=x!^a6V0ET<99lrn0NOlGZJHuhFA#!=^QF{<@ymTVrQIlg>}g~ z*l}<(xbiPR563Jytcq5?mtcvSAttz(*NmV~zId^UQvz~jBrw{w4vLCJR9^DVqyN8V z)}_3Dd>7@fucX8f&HHe*qM%gW!pQnza&^WU`@!Hj%>A&O88bW7$Ml0C_79oy1OYZP z+9tBkfuvF363iHtxIxVvgwVd~hZ^@zE}r5;lTG)LIvrL6tiF6V&#Zq4ZOxHbw>kx_ zMYN;Olz|bYSPwdJ=r5MBp*4ux-l&x> zX_6y(PL0sBaTOC>L{bCTDTV^L^`dF3+-gA;oG>?l;7=AbcMPg8hPj|2Z+-?K5Az7g zWXrc;F(SvK# z%H)tR3l}SIoOOKz6df0svs25JtbFu6A1^i#>|`QOuzyrZHuHz}%eFW!*%@5umJdOL zT2ef%{|()iD)ZJkN;;-DJFj--2ZM3~Ua#~!JIol`aK~b0F{*(avH~fZjLwQ94Rd3j ztX?~M)={-Cw48H8a-kIBg7cU^dREHjmTM>4?9Ff_jE1D7QzPSwJ_*ULcv&ick|QcG zf7AW@QA4uAOZQg>>JjqxHRkk4$FnCaIfftQ&lv8oSIBYE&~-?4m7m(cFh9j$QqF>9)G<#?H-3PKeD74MTsDJIUSUo?C~lOzAtNkP_jALj|~3X~lV z7O9Elc9_@W!mqnoKG*d%j#i}8d`?S4cBj1T-Ig?}^+%n;fV>~UfzuY4^-1I_XHu`E z(2}SSBDfAZzQXv)Xw!b=J6coLJstG)3G-SDdL(yC^K)PZ>$uPXkfH6Q<--8Tk(IbJ z)zv<%{R|VS_SCw!B8sqUT})rB`zz;#?^Q{9YQj)=aaYc5m6f#QME>N2&n#oKPGb@B zwg;7*4K^OD(lo{aw7dG6@=Ab3+)7G}#ND~p+o5)nD|_VtW^pyNL&-wCr~>Lo_=mF; zF-&{@2y3{3ta1B!cV&XY<_v&oSNcz-u|~1OOFvsbk3~8qyuWQwZUNTSF-^CKDgKXN zRzybIvu0GiM=WSo=5}jj^Xr_mpPV>GkLNTGSZCGvlqSC(3K2Z;?1cKXGS?wUCaiAz z^We(0>2w1b?Pp5JGuaXPY9v#JG-lUR?iL~&zoUDjsbYEenkQIWH-7;}nQ66!^7tcE z0_1#Va#!@XF(ZfI|2ABTLYXjs(&;l4?ycCgOiCovM#m)N&`C$77}XX4o1Ns?hmETK zaT0dnC~RDooF3~n`y!uV%Di&=ozxhFb<`(9(9DH{)+}A|I10Op_y!k270hWf)KSN@ z)NVpMofsQ7M3tUJ?S{ZqTi@rwBlzxZ^9WzzHm0&uf#F0Bo?7LM)1T5*b-`)*$4bvs zx5f!qB(;-j?@(jp8CTQ#^r?=}pIpzoZ1M()F+~XF?F!N+drRA@n>x8@ppTh}RIRO+ zs>3KML{~_)i&p&ly+gCNnX41iQ@Y6lE;NqbHof}}`T_x2<91{h9%{}y_^-^_7HP|F z7q5*5Vo9QuiWa{mdtpS6UN|O6__O|Zas|qfUZBE4lb%4piUo}5%GGbTCvLxMY+V^c zD3EAxZQ?I{PKT)+i&})%{z!%)AV-xD8MiIK}>i@;-^{ih*bW83dYy__3`qxy6g9G zdr34Wx*o0K8A`L=kW@p;7&|qEaZeMvE zCYI=xFuI{d79NdZ9dFh5P1IIeWHr4g^W~I@4Ggw8+1?&shJRNQx(FX~b$Hei0dKEE z&jJVO`8TIXNR7zdcWp0Mvq(LbyflR0pD)iyfUZW-KVYR+g;^$HqV_wrOs2`EhRjzA z$zr&ubkbhUxZQtp(b&)A_`8&H!(?=CoO*wT_%KL-=*zF2--#jPpJ?EK=W@;fkZ*~@6njG^`Z?zDQ z?ZsZ^8nfK(QjsL=J)3ScIaUNfR*pp&n&}?p$9baX!+F=K=U5pC!pN|lZB$sH*MBP9 zEyr~>ym2haBIGfaVr4=+D%x)-B&*SCF5W<+0!-7p#MT-qr;>8TeOd5#8}6dY#%C(d ztjp2+jb|nh0~oQVCmJG%^TphC>O=Z%{|ge!Iv@2@9$f4`74Cap&Xxo+Qp~*{_Dx#Y31R=kC5w%lvA0g+e^p= z$VgRgVX5bo52VQmlX1{@!FQ@MV-Ql1Wm*-THY|`V3TSXPUSWl0N67Yr8MD6CMr4Ns8#a)DrBG& zR}9@+Q~z)xM_tx<1r!YDBu8y&viz_J`8TVQ9md`WNAMYyHGzA#%$V5yd}fr3jn~ z84rmF_2MbG`Kt9CtS?o`e{*{48=0 zlN>HJmd`uL8;pT>wRh{Z+e?vB`K8W}%5dH|QT7f&^N03eP$Qq|SaJ&li^R>}vb2U7 zx}9+zZLlL0vHjGvhKN4g%3&9vC8UKvEErFFQ2W>4j>NPEM4kD~|A-q#4EGC^O{pbk z87dpz;H|z=kY*cRmG32MGQX>H@6WLk7Hov9D$KsZ+8oUd>AG&Mg~BW_7qs zDJooUZpC1xCCs1$v39Rn{b=LZSv&;3KRDmdcYA4#v%$gNhI|)(5LYp_jny@HaajOfX1f-ECvQ&4sF5k~p(kQ}0N6ItK(K9vV8J>X;Jb zsr=(0(aL@0nD}>yyNf*Ld^--qslJ0JPA78mU$0kP5g~w$cJ*djW+z#sD2)CVu)tIWj>Fmrx8)tOE`~7_&?)&`jW)E78^X8<5xdD>r7%t zFCLCmaOO!IiZR<{a|ZT|Tw&zxX}5>7qJs%cH?HLJB(y%%dmc#H48S($@R{89e|S0z zphlLzYXghBvp6j7?(XjH?!LGNUEC$O+v3jR?(XjH?ks%V|9ih%m89xSI{oV;Q#JGS z^f|M$c=mpac7%6n3cz}V3UHkbmMJDS!OXYNN#*V^B6`dtUTMCTMQeo^>DRmdfy0=d#)ZEZ@MRmw?zoxQOLx9@J?O%0Jg*FiyUnlmw z{M~Zx5hw1*)atZZ>rbcrB2Fa?o5`oLWz`b>M3S#7fmW_kF0tBZtnz0GI?AiSbLP1@l^SwG z(uMqBrW<1qu;-c%6 z75Q6ts{?Lp(zi_}bfCOsK4PBpYnzUVSnNn$ZXXPaItdI-A$>l~0w)Z5jbuHu{k9to z)C=P)pk&%Vq-K7>vHp}#B?`>rn2S6yuzgTTF5`jvA3T1p0CPMiwdB?ZtMv* zTZ1)y&c86Tj%E*CU76&n`+MCCEneA|a# zlz>`G;8tMPRz zmSIq@NCZHNWweg(h}@z%)Dns)|0_Bj1nTS0SDy3_`U8D%pV(9Tz>S1hXM{2gf8`%^ z_W6pAyEjHwgq0zx0I;G5X3iDtW+y?=t^FeC!{(zNkK9W~|EbPu@rxEJ-E_EagjZy- z(w@oGY6VZkx?6fq?-y-}hu-fRA8n_@$T?{-Qcb|_wN){+I%w}Ee})59c5+|prY8NPe-wf( znIC_^;&WWpy=7?5!td`CQ$>)c1bR{rR5GCz&3DZ=b4P0Q6Z>!Y$*?ussg=CV!~Bc+il1ainV%gv-v<;}>2lmJ zV>ZB5-$mX2{z?dwCV9X6IRf1!IlKmmJaA&GKyQZ5rJmiHkg3G2{NDe$y9?gpI*Y>P zAo0-5-v}gG6{)z7UY@Fo!TBj+?WJ9m4EUL|D1R%&$jcjL+20&wW~Qy>11zy11HZMy zL!H_Wn`%1Hahp(yz8fjk>pfFwtI=?H;GfKm96HP~7%IZ}4i@-({Tevd21)(uzx!sC zT*jBj1Zob!!C_y}y!(gwstQB(Olc3Y;>lOTcAl7eIlT2*FvO;z3|57%iO!B83$QTG zaf|DrwVP3QBi1x#fj2quv-a)-8COC6e24S!uX%#rP!B@L-tdjM;p(akclF!d4*@`* z=Whi>{;uzGpqe*dMucm5m77+H*s`P`)mtcyqS47nrmASb49+IW#u(*|MyGZiS0y}s zqYU%Of&6z-yu_u__#9)6>Y*bMbHJ=34J5W#Nad|&P1nHlq3yTfrC5f-12O7?O1%aL ze=hN&!Npoh1Rk9dNaMXz?uFwEG19m~H|9*D=Kv3ne?+ak ztuRD*Zqg}QYug&jxTklv^nKeMd!+)J?Fys(hB3~VxyA^bGlqU9t^56TbFeBm8_vk^ zO{)TAoqn(3!6K)A*Ik5T^%?tA6I?hwiWC6>?IB$YptlFHgo#0K5A%ZYx~wCN92m@J z4)8E=D&CAhC-Fi6|9%sWF$UObzre0k@QdbG^9GZ2=+m2INNVFtZTYJn?`3l}S-JA| zF~;3-8$QWa`U8eR0p`g7$`Lyy7(FS!a5V6uF)J}j>BYl#`g;~4E_t=;Ek3Lrq6OaL zS_@6G4_pFZ19iOFS7%X!MyiT`WG6<8LvL)Ho5l~Pq}KgX{Wc5t%nR_U%7xQ^bs@Z8h9oI(<71aXbfgwA)wW^7KsnH)Sg3+2-ljYaQu3 z60=9kJ`~j(seAw_)e;SAr4Ll$nl%;;_Q+~;+uZ0 zk*sWEu%WC;ZnP_B7AFHlnW*|%*Wt9kRjMF#j!V2y|02_pdu^SsM5Cgm-#nN8t0{cQWfJox1I({saKUv-Q@7z zu*Hw{b?XoOB@G_x=V}8e-DJOuuy=8`l<$65TT!q(7o(nyjEZ`BJ){XTjJ8U1l5#(~ zq@3O>*EpBi54h@yX)F;we-_ViZyFRo>c56V?tKF4g_O?{QhPO*j5(|1eYzy z8%ddW{GBiBdp+=s!fsx}Q3jW?hn|w(c%h3bU7{1q;d&|>qO0`)TC$4-v%j@Y!%4y> z^%H#t(jVWiPF;+>r)r|cJHy6L9=d(Wj~Y1;bKmX#;VyJSRL@Hf|7z+LdX$~hRV!uQ zdcRN~8e2`@guluSIeqF-TOygYh@kLZM=D>U_~>q(8_e0=e?fiMw^zx}HQ-GX0Xis0 zq7fR!H!db7VEif=7J$cLjS+eCFAXPo5cXz}1ga!Lztfj}2hPE+1akr%oof2ygFs9= zh3qAdG>9m&eaYQ{=gu_KQ}++c6%gWh4V!U$+4#p^!7}CH(B1Cg9!uK9)xZ(Tl2`Me z71%V(L};=4w??eJfdrAg5ZXF@zKrVTNzW_1^)nsyE%zK|4uJemsDpgg-A!%@O;Sf) zx^SwTpIj&<3fBACL2or@#N?_fBAlY*^(cv957{NiBw1pzN*ggo!xOnvt=lBN_4!8= z1P*Z=9y{h|K~mOmuupa{wkyByuqzC$<%p?H>#^&oBB0fLZRgLTW4+3nJq+>!b5N0j zQ$Rv*Z>k{O^Z?yNl_}pHWcs;M!s_qRTy$iuIuhilD(E2E9+wy`mZi{=cZtVxAF+Ky zhhOl0qf9?|(@ZoB2zZE&mBPgZw?DeyyiX0OZsN4>^0ikr|BM`SqhpD7<@+GzsC4 zp(hb-3T?S}hLS9z3g8D!$sFP6MMmD!%4>gIhzO^9iMF5y>fjevhQdPGfH!hyTur-y z_y1-VDtYO3H0)pCfb#Gy`-8mfm5_JBuRo7M{%X2}o)EoC8o&GtyhWyymNlgPu|jtG zZAG`y_5mQsQ^tVrx~`%#Yo=Cve!|ISL}WEI9@f))4k}{YQv%AuKM&o4+L<8U(r27O z`@pVIWLUirE?XvL%JtJ=VqpqLU}m?L3S3}24D$iHhYAWKrE94qDR)jfNra5BiK3Ax z4&y4;GVT7maD)D@%fSh$_b~1S^IQp4Vk5()t~tQ5lwQ=`w9T0`k&3oCIyjf2%{BrC zu?0>3f|HRHvZowDI%T*FJ93se%wNWC_r@bTX&DDdr>-Nmu^}4iASR?3?3Nx+IT_v( z=G5-l%yGjkbK;%&_Y4=@`sKcR9s|ttoHfi!E zlwp9NtlV8{v-D<`0U4V`kov74zcJu^@gQIJh&^-+?@InmU9t0(MvBV{YjVbra{a1a zmi)qmgmNfFYJ|t@yYkUP`SQF0InA$!G-*Ep+N3s&>k!Q_7qyuNo(Qvbz158NJGN9^ ziO7(qt`JuMlCi{teunPEUS00wN=>UExdUoIquc1R1BYBTdhy(mz`!e;EikVR7af!h zD3pWW2)qV@kpoY)!G3UYvHxp9V&-5XV&>xbPceTf&i@q4m-^TKB+ksvNyPG%cd$ew z3SePm`oA_3D$HLS|Fu0ysIYvAe{D|^Dy(1PU)z&}3fq_X*Y+f#!u}=x9e{)i$CvoG zzJ$s@CH^fhp~Ceg{;e*d!o*0#^7Z_m6$|rAGJVPa2Ep_-3MOV?z!fBAv$!r;G%Oes z3($##2pyEAS?C0Z2o#Kk3HZ-aKQI>NW@1Y)Qcxfx0uuU{0y;s^QveNzVGx0FR$%v_ zOh6;;|1|>|9Y9e675AZDL0N#r`7~(Xh*(&FpyGs7&F?l~f}p^-VkAtUBODGq7z=B& zp&ghg#8<-`4EnDctiXVD0t%qwH8C!5<_-!2=qN{s0LlvNsbHpT)>nlOg9Q8PYsM1{ z9T)(PMhWzXAjJD;3lka&I#9q13=wEVMoHQ1>IFsx^-rf?>leSVuyO)xmtZJ?8v$Ur zK;nHC3?PyO1j0YXzD7#XjC&7t4)Ko?8Y95~IuR360Ug4?aKKoZfJ!)!Xu#|+FvJvb zLdxd(FfedLAc`vdKi}wU$KXey0%8HdegLaXKoNkn-tf3!oLs=XLR>;{W=?i?pwnOE zFE5(Hx+Lb`$?DSBaPj2_Kgoi4=-^58?wz(z3;DlCFg!OlDMwXO49dl#VXz^derhs&|(1(1ZPg5=YJXE6(s(MKV9m9!~K zmKlX1_7)rJEH#IC-chd{6X78try3dA3;{R1Y}D;DTJhK7G&5)`HTtCRjp5Gu)04qp z(+=E)!$ZOp0~i&IsOXj#!Ah7!4OrsNF!;f>I6*fo^rf;nFyPjOj59`2O1*{P{r=|3 zJ#a$#3qHiDhLw;OtgRIiKyi)YIZ;;LR$0_VnO;>(PDTjm3WacRXxs{eIl~}?aDblv zvgL9}vdKPeg-EewP)|4mgb7|+J_!!waf1m-ZCpy?nfd(oPcccA9h z-AJgm^KsgWT6i7_VxgCY=;kJvNdS;~f670WOGH#Cfr0)+wa7x90jm(Vy@FTWWYTl_ zpzn}Z(Wor&-|>oew*AGow<+_L@iM0!y(R>)3#7kSB!y}1ZX3@d<2DG3R#{)~9_O-x zV|{Z4*^P$TWsGxDMmz<@rjV%wL1$f02c1fwP?d`Yze7N$5o3h69)z^$AqNzaVryd1 zf%W{5PM{TO1cE!{;!AV4_X+YXN7!_IP>(h*0h1}4Lxa4^adM(wfe()J>!0=R0ofKh z4hCJ`pJU}48~T5pK3{h|Jowdr`c`wdabG#@dtTYn+Oiz1)bD6GQ7#5p@d-&KgKdB+ z3!okhJ{RK5BmY7_Fu%GrTL1{WX~GdkQ@)r#R??)}w5U8yzER)?)!)G?TpM;((feUx z-fcG54;THsGjV7zSlE^F^l|mmUr@k>U-KQGGptAV-fiAmL<|WciaiYT<>$oCeuT2{ zaQf^EwN^!tFJm&Kp;#^Q$6{%#u{c}E*bp#iI=6~rI6yS5lV4Lt%?FSPn6KZMcANa! zyE>Y5^HhEuQ!x8mTjqUmbP7&NdrLjx0Rg2fsFy{R;Mjvz^JEDd^xz6g2nN0w+?$8g z3Hl1ZrOrCVI4d0$%t2{bw~DbcJag7K2>+*ceT+hBNciAo&?d&MDK}r*^NtWt1ZC|r zX-~xO&biMeL~9INs}Mj7;t}@a4b?D)`}%jd;C?05F2(h%18=b0zHE|5 zLSVn-AK0q7>0nL_)VIK~y`+)#hJDHXuwV5ft0^Sg*7}hhj7Q%COg=uNXw*H4LSR(L zxsCK}ZX>kK<$3sHMXg0F51{KUa+EJP6(~kH=JupV*nXV2C$IuYP8F--2(#b9xCUuP zX-%~bAlRC`V1mNGWokg(1lePXQbQ;yZ6QwP9X z8&AED4#Vm&JQaYqm}PJ#4vpw=p8ZP2R)E_%t=&y28qa3e+fdITT#bo?#|$p5t1;#b zq+hmYsslD3|6xh0_ipvjj| zQt(p*y3@iSiQ$(+s32*!&vA}kbQu`t13II6a6h;vr!!9x+yE;$fj<`v>VmK^F#r$s z75Oj#jr96nEMjL(vaGAh%N4*$l#-mU1ha{Xs&pTe-3V3@5{}YNjTUlXdC!|pM~|JJ zs@3_qrvT`W=w-%Ea%}s97$-d5aQ0}KAwhyg2PR01U5Rgu#7MG68zu4|$@}?pXfeL7n@l*j+uIFbD_HDhjpKcS@g)KtKAJQWN7qqHV#d zYv~Vf+4n?TOuCsLQRH6j933bf>2^hN$u60Z{lDFf^M-L3!zUJ+m!|biyzR(qMQy9f zI!*zPt2GyvWa21!fbBm}WQc+J@tV4P$^!FkNNf>TqCvZ8O(rFlilSH*wygzPzx#6S zw8^U^^N2_X3NZ%u!8d-g7B@>Dma39+1r@|w&=3-W9eIQ}($4Cf{9!AA9r1?FbmEPjv6L~hf_V_{=q>zV0Ip{E?AsoCUKk&(SjtCH@7m7c|MlP z{X=83&*?3h-1rV=Nmtv253cKwnSYOfirqToXDcLo<+AwSYF1i%FV}!6&!1 zeB30Jv70nAi4vTc%LeX}h$j{LX%|=^MS}pEr?@U1IzZJ=c8C<8agkJ~t)5-Qx+bcW zjILm=sCrWfWt5?9m-^J=Exh-9>H%rq=tz|91Ja#^OOQ#VD3MLjJ)?vE1An^|kbH=M zLYyWc8VBdHY%N;vgC|O#7796Z)kxW|*k^|!w{q-)Xlck@F7dwb|$xr{<-XsA!Z z2LZOSnN)|?#EGoR<~}SQowkm#w2$!j9Id+-TZF>4{Fob4+++~n&{ugs_0&1)kF3P z&wBD^%J$+&l3HwMY%8$8O@U?abugu!SWVC<5UX`WtBkvL(*K4CC}DB$t@K!)GL6-- zn>cZEMz$Y+UunwpT?rPdSFxAxcuT^K-uUoI# zLq2RnYdZEggt()!L-D271BBRN5jOioDG*dUpjb=jE5dL_Rc zh}9~liJ2ZHplzwXk!z>iRY`?jVsj!;Hl^}UbR60@W;XW!SWJ?Z?f=I@{DWaEZ2vzO zf|=usXW0Hjw12>hjpLt~2oV4a+kbfUPn-Yn=!?AA|D~hOByI|@Z}eLEN} zXjhj-J7@x)kdBvzlQJq9LAAxu-8gU4(65TP-Z(VOPkr!rs66;|$|STw={yV^GS<8q zVF^}bHXJyN4D7RObO&vQ;qG*VUT%WeUa9*m^hv{YsvTZ{t?@Wbs-w7vCTmP^Y=wo` zG%?F$__pR$B&8NZm}CW(82t2|H05u@Y23Vq0B?e9WT6FbH<&B0+_3)9c!*J1LsG{X za6_f*0q|TSF*JDads(79J5kC&Gf+j6Z14~YkFua&J;$2|IJW6}6 zF{Yx>QnjwKk`Z!5+eyVjwvtXz)d>;r!sC?K2#TU^QZ{{nXJWM^ZV-uKPV8R=Mu7z} zPD1D8H~syNtla3cxPcYw*ew3E$_kS3TB4EN7(WLAHB8V1d$#j3#c;A7yPmm6@z}ei z5RX7m@G+J?^)T+f@xUKbBGZvEzB9ejqDjMo+fK`Mv-R%knjy=`&N@yWC^qH7w;Gxg zsohTH__RR>>Js9)!EEPn9#&}v!MQq<-vaL058(K3Q#!5{j622ep zIq$B2hbBy&kYaBOUd_47PIcmuB+NEcCw#BK9pt;_F(9QCC5)YNBHwFt*OMMfOL3bT zk-JLR`b9L10iWJkoc?GKnW?H9nbT`ojMZ)c`c_6($k4X8J3LPTJ|@o~`FWe{L8 zw7_9vD6-g+2=P_;BhZybt$(m_?$yAmG0M}44Cz;BP6=UXsKvl}xB$(2A7|Itqsyt@ zIz#$T=8Dfu*zDu>_Dal&cm4LW*y5#w>|sDw>?qgV%?7Y%fFL7%V(`4QG|Bu^hM2*$i~?w@H#&db&S?KP`SF!Fjf zr7Wh(3tb1$#Ele+OyJ3p91Sks_PX^{Xtl5H3$P5NLDvz|MEh^)a}*Zh!4@<7>a@6z zx~|k;g@HmJx2)Uko}PQ$OcAj~5xz74wMy*IW7vYdT{mJzCw@wE3Nu&lA&)!$t0y^S zZTk|2q)LMYKI{*8hxU&u3ATRI!x#-GdAl>)CkraCpP+)SDkE<%&hDepOOwxyre3(|Ir$fSX5cT0c2nYWFvntg@hw?W zd>*9z_>--HY8%y93#Z>eWZBXHMhBm_XR|x=eq3l%fVmF~y@Z#a_1wjL)tCfkm5*as z>iTRN<&6|lUc-`D#U03Y@?K282ba$krbKa|4ju{qh-VZgZDW*HKT}7*S+0_Ea5j;e z;OH5dB$YSVN$7C@B4biWxbGIxT`2Tjr{#qROL2yG)Js=O`E1O2%HI-lj-hC~5Nk z6_k%Z_{w=o5@jfr)CMUC7|}K8{_q?yk=OTANIvIiim_+O!ILPW`y@3nvWAv~ykP{X9pyKD|Unghf9COq+ypH3Hz`mMiEIIhIL|=!`{r&XV^| zS3&@44(sBWaLbw3{7i)LqR@FvU)Bg#-xMUfvgov_A(B~qnoH?;V{#Po( z4-BLbe&L*#_a4dc)W_spTAT5dVNt~~SJcdrFcPbI0Ez17v$zN^a;&+|y}F4@KL53J zw%Fsa0!t%l0f*XE-fiK4aHD&c!CwKIb3tDqGf%YKeEZ4Po&4y03Vk}b|5)yhjIx|- z>e=ix@>hUO*1Avi=~MU9ZP=GH7rx``<{q#frj%XlI(Poe;y1%_L;h9e6eg#|r{}C} zgBS?ofWRK{2gPLR4@vTC*N;WDFdaB3xH8>zVh|?-GcXVo{lwe4s2wj#A%i5p?I$NV=>((R#CKQ zD8H_nWdQT+(JWsuv+ppudR6cB8I!3T5PV43T$D#-kQ0(jxKbLDAourhuC%Zp_Pi2Y zT^tW0o;fg3Jl5=MPivvge6JgyUP=hAr>(=jO+M?W-sv_$K=03bHUXqU%s`!0@ufl4C?HUDoEwDL< z){ymiPJRW#^{RQbrH*J=RmHck*+1gv!YDa-$KSMngg(zz`3QWwfv-atC_aKf1O%;& zrF-*D^%K#qhvCsqR`2Hb$q{(B+GbGGjco=X5v8Vo_dp%5T4VoX6<$pqF6^0hep{Yo z7e3-IhyQfdE;=^at)9k4@Eet8%cF5oB-ZzW73Qf)DXp_55jGUBkhz-&S8 zMQ!FWI?kGW?OCLufwkiStl@|Z6F@aZIrbGlO3gUT^sMQJLLTTGYYxr_N5)|keY+2> zlZ>L;g|3wVLp^kd=^QWp8=9DH!Bx=8Lvci6GR>_nlFHU=VEu9S(5_HFt*grML{wL% zs`@W)dMVcUQ7z_$bWYiQGFvnT@_d;ev-rkI?)Qfj=dbg38XfuFIZBglR{(95j?@Vc zEM3wZnl+sxtNfqp7~`ITYH}tDwS$D+y36xsbF?X}HZO_U)ZghI--AW3? z(CGNaspTZvqih8vPhTO9-iAeClR}EKI(22~yZO&mbT#T*dBG1hbo&>nUl>NXhVBTu zFm%moB(La1kV2A2hX+^twt#LW)VXceRx&#|DISectx>rrS+hd)LEqH!&89=;0cC?` zH*xeWPP5C3>qQxAajhcGpUrtr2~sL2nch|!@|KhncW5dbOjqUIk4Z*)${3jOmazOZ z65wPF8oX9`5Ew^~A|_X+itcsjnNxNAmx(O`Fk`D*2%6x*S>qOXrstQFeHel=x3%+HHSV5Pd_V6vLg^NGcWa7ZPkZbo zZ&YKrzDLslemYQ2*flmu#pau=X?f~-Y0_y)x)C)od)D+yH*ZxGZpb0XAhav3h&N)| zK@wkeIONnv9ERewrUQs_)^%H{pl=o3$~yksAvfuWbdI_2F`8UfxXnhgn&CCHT8wb^qLvIX#-kGs}w zbOgJHg29Ig+Z?9L*>mtVqmh?<;7E*^?IX*`8g@tvJW!9VnE_tZB{%dst;*e7BSIu( z#x69nJ+ty-!(EQeDM?OYhT_a|Qrl|8U6=5QM_2$6uX@<)qVb4%<+vNAK`!f}&Ct~y zLVKRyI-cdu$`J#IHhDKkU2?#?1Vv3sii+2*jGzK`z_E*AUZ6?KG*VvQRy7_g98T6e zY820)Vkt-xQWlEBM52@ims z=&NScb$Wu~5Na<|iY_pI_fDGnLw%mP;?+t&jWndmyBf8R;gr=DHKb3E!v$>PtM{b!&`1V6+`~00Jv=@=W zl1GkH5Cxzdo@>mL=6Qsht;e6LD7J~&VxdOQfbuA<5PDoVm^yfyh(j-?>!o@briX77 z`0jQQ6cL!oX2N-1<9jUu@ua(C1y-%?-7-1OCcsmep5pK;r17uQ=4J=gscXhzc)G7j z55TotDwMJ}j12Y}p&7m8ttk55CJ6NIZH*(Rw-Nwng^mw9$GIUmOj`m5mM&=0gKVHf ztd9M3Fo~bi%|q+8Vl<)wPr>_;gQ{p?k8-vGVAni(rG>sP-|9uYk)_K9eTS z&}j&y)U(*tn-Vk-%W&b`r;p4;A^@`rPLj_ZMAzq-lZmDg?Bsx63G@b0dYH`jh0n;L zxp$K~A2Vr?%F3E6#ixb9#K9_9&1eyd(Y6oe!Czh)Ih+jdF~#s9(E@#H@@Ot>MH9ex zT*;6qy7PCiziEWMLAE1vdmZ%9-6`nhNE{}XpmX#441Eoakx1kqLa2(e9W_#F~9n!PHW5dO(W0A1@$@jx#R{-{S9Hs*Kkzwz(`!xsMS9JAp? z#n6ZWKLN(6X6rV;8;ihi#G?7!V3{b{mgT;Pho>pRk0$)k$as4!+8raU2Sqc^CmgE8z(xVM!7~D4 zfDH#{rhG2XPR$HO_Zv5;kA073v*Ol;2wAMsxJX>wnQlK(C!)O9`5jV$+VSp%x6;^? z2U(I!Y#IPy_~bn_j+05a0Ht4qHoG4_Fd#%?iyQOon(^mnEtJl{AGbw2oohaJ-r@Kd zk>_1WDhJ!MgA24W8a?t>w_gH4AsTAq3(55!%*=aaFCLI}tG|41b)&r+BPu86Y(Xjv z=CZw;A3A1?lu9V}3@S$cEmaO?txVXNSb6}M9$WOl7JR$3bO=)h)1Rp$& zWS=Bm-miM1^khvp&{J}T7)9ePLf`$R02BE>*D`A7_B)TEKImSt6h~ZAihk)#z5wAj zDqT+cO+*zx=kae~tEBLTEFV9|MQkd*_qL^9LPmu*>zUo&&)TO(N+Qz zkw-tE_+8RLfqBIcXw7LJ5b`A7IGO%k7GUSR#*X@NX%G-Q;v$TE)h$cm?8nu1$%d7a zr8|3P%Gw}1)-GKbQ#kvl>m!?tSgX!VN6MwcrFcXWWcc8AW#G~nE4PVCCao!uDpZ`g zWQLMFShPHi(PfEohfjN~u)z{PG3A(7<+mVisE0foOv zy`2PMQB4Gk1cjpm3kY2dizVj6MW7fkq9c7e(G)f8q6)X_9G3P5LXssitGvZD|7`^ze z3y$-nmJzjv5oa-8m=DtYl=OVaa2wrxwL2H@q&rT`Dm9%rF`tXYRE2y%RS-Do)hOb8 z)Lx{+Sgxuv#K<6}{XIp4H2_dU>%hi$koJ^)&S6Fz(rJ|+H19!mh=|{gt^#^?!?OjL zdd|qOntV18Xq2$9Tg-3k8k-db1JxhU?|j$(0Xl{WYX2TuxSCDyLHe3_9D9lI>0Q=W zW{bTwmfn8#*A@8T%klDH%$PZ^Ir98*)01&}{JgEkZub7n%&?Ze- z4&`65Tb{39I4=_6=Jp3AuxSrZQ%l3|vfxKw zy*LyP{Vg4mx~Zg8<|~xs(f~)r^0uK=PU8`#uRR+COp(8EYvg)+doNI213=9>kokvH zmWJ4zAjDO~*kfyAuJ@f0(`Q0NV8u9@LF( zQhIurcAXTpwtawx0LB4><3vQ}LFQ@G{kP8m!n?oDGYG@=zvxI)#7Wb^!f#;~=t?C} zLn;;ur3CSwyWO>p!YrZ))f}jyN3+@LBg>6h%kM-&4koqlcyf@ z3X+3LrJoWYR)(VEY+5;<;0`DP2L*41_kAeX&B=e3r$1^NSq9^RwqF8-X86Vb)ElD@ zvZkx^nPUa9T3!p*Z>+hMVVw`P7lio-?G9qLX0~d!uC{WvBm&qkBf|>fe$=-r@%j(v+BDrm##8jeZhe*Oy`bJh&8O2!|oU}j*hi&k~>CPUd@C3L6Dlhte;OC z4Xfk`i1pkU$MGjP-20ei-+@eXdHaoG4=vRk|N5EbTd^T!{Y`A3-()07nqp&-Lbw?Y zu$7Go;UnpiagMkn?XHzbloRpH(R&63oo&YQOjliA?0#q2+J$-Xz<#8A+CL{02$Yh> zJ&kCHV5dy2`Z#Q$De^}G%_(k=L}d3z`&}zONUJ!^`>T0^#t3qufsXuJ|C>((n70|s znM;RU!PjcSqg?&(-|#ncUu#_m&<8wR0F51!8O&I2alj=lu0P}CbNP6>(RT_1Vyw~p z*>qC%a>tNvQL0iTX345ansp{E$OlZvU3wPD&`4$P<&8ciiZjEft@U&b@-7yd;i7fL z%HXU|rWjCN8`c}7m2%1=N4ljs$J=8i;m+ou4s@CC0`(PiWk1g>hv$+J^cKWJ0p2)d z_R^N%i$43GUG+b~drkbcV6IS2z6=K~NfD#d6FYOG@$NR#+InCel-^p zrO9$TFdtObR`H#M!^Lq%k&PG!)Gf?4II7y}WSCZy>^A(c*EVoG)R#vg_+>~tU#}^@ z#NtD#i5ETGrG>~Wak|P}>L2w1Czz2v4D=i8KTnE{Pl}9x|NAicZMM5SSc@S;w&dc% zRw;p%WvF!W4gxXFD8RR>Bl+jOt!5w(>vg`>uO>(k@DZ^T`ogS(Pk3tK<)umJn^ z{mpwcQi}Stc%ut4Tw%vW3lCZ~yM1lnrZs4LlW5e)RSI{><;OZe&r_v?4o-KRsyTzk z%DKTC%0a)&7pbAT?(y~9{HIbhZahD{S8Z(#2*R2Un4LY-6x}W6-TG?^BLh1Q|F^rg z#QORr2^8lpnO90vU!*#NnR>lm+e@RSC#JTkq4!t9H-XE)?SU(NU@Kc8=jw7I^g@UV zB28AWFL7Vtpf?+UkD2v2!kL;ZLKZqJ4+#5KK^qlMsLCwDO4@>jvze-`Xu$GLE1$dX z(S9C}SMHRPqWA0&S9Y)bdPuWlUNXXKO#>B!q2w9I!4CSnuMeaYho+!yMEcY-jKF~f z?;eo%NW-Tej{gu%|29Iwa{_ns7Q4&SuPp>=XTq+uUQ-aj=KQz1_L;3TD=Q_u_w^S% z=|==Q$G|8VO}yyb5+{tWLr}lhCWodd$;7RmaYfI-P__)IiZH{*#qTy7klejx2Ez^I z$0xQ!ZIh8jSs{>SmlCYptEaB9HAA?$ZK#0-wU`J0l(;*3?rg>i^Yh#M4uRp3ovXQ#2x_;avRzbh%8iY!|(lKKoI;$HT{&4c-d)4msrH?wk8J$pqL zLts&CH#pS>?TWVhuJaM&v5}6q(6P789For3Kot9(`osu*Wv1dHd3rJBX8o!zp8~{z z>#C3&y8xw5CfFojJo+`+YAuq@QQRj2zvi`phj$iAGxlfLd1IMIBOB7iCj{c(5@5U- z7FuY1F+_8HF{CKf*R}5dWr8xX{(DDhys;S4=8H~)87cZUXz}<`4rc7`ixnoroP_g< z$B|#rr20g)JK)1hq4VXU$`(BI%vW?)WhuJpT96^v z7T-&$dk~nz|NRx79o+Zj=51`IyvwI44~@k563PWHJ~a#rI-p%P{tVUj^P}e5}c0I5!~v7j+uz`h_Xu zI_*UENYU0rQqJ{4eN{_VrpA4r{bXasTZS2*kqxZT?Dh0<6S{|@FzC_L89+TeRwW#Y z0zD#uL&$O%*$*+pK!wXft0#xM}{5X=_5-8k6!BE=Wi5Kv-wtT~c z8YFoVKC(bkiTidd_gO~`3*x+@wDxi7xd!fIrIytwHL`Lr!GY-bjw(%!GQ{}oKzdqu zj5_V~R(X}-`{>LXw|kDu=CtGn@xHS2L{$Mfcv+4_OJMl$B`JWA^sdytyhe)%YOORH z!fMd8zL*(OUDPW5!f&&fG=dmlA*h`9VlVh=w<=05Zy^`1H?fL(C<#VFw}xbltulVQ zzCyhsMmv?P$g0fm_Q5%MUut5h8p1!(dSY*J|AVA~4V+}fOK6P>aJ`uoX%DPVO)=ca9rtvZsIo|%tE>OnWW%~|e&90%wqu;?f z+u(%Uc3Zw`L$pMBurUkgO}GicV3{CzChOqZ>-LIq)Hz&6Wet$E+w&s&mgR91ym@$`fekU@enwYS>B3-nZxOkuZZ8YJ^ zD?<;UmKiz-&FG6!XH5ILYaXa`YMJC1%&$5yin?8hDqd6~hbA@W2v{a24+3h@M&mm` z1))di$)|pBxm^QP6I1bzVUUGc6uKvUyJ8NiOjwL|cMoV*Zr*V>8&w;2fkvu9%-W;) z(%aQufzi@n-g27k2ZsFF^G=M6QfNRM*SkH0m2zd+yqwso$ zg}K8|3#xQm$zKT_AyBwBPN2F7E72P$_?^YPM@MZBYRo0;7IgL^D;RcWrkKM(effq#HgpeO-IS>rVJx;2;DLKHA z4uB32jOz9ebjJE-M`Em~`hG0b9)<%UY?D`cdgJwWxzN?*G+WpjH%HXY26Wi$dcC#r zxug5=jZqgIa(q$1dHWCs+oSt<>pQ5f{>U8Lgo0kuVnTyfJT3p!eAOols?m0is{*XM zh++p>BEfYSU`C-+;^7R1r07unm9-6Z@Ce>GUHSg zZJrj1a$Ei)EJtlvZ{o#|jt;;{2l}^+WkwP1y}lRX^mO(Qm$SPzek}I@>V&urQwhEY zn40=ZN!{}6W_X4!q-|B%lLTuqs{#&}Gg8w;ghpTx(?wePUW1K&r2~i&%}BDRtAx`* zJNW~$iq@9Xg?p-)+tsu$@4x$l5=sLUe#to^`#r6yHmPnhLjGam2Qyk zP(X0#mhMhzq`MK6?rx+crCZ)}@BfF~wch2@#dZ$5IS+eW&g{?g6`S4v?a9HgDv@}x zZmsHQCBO@n78#Cyr`C|Q`=aA@<+KV>P&xc%4qK@L7s)G^OHk6ftvWqArd-K`+2;x| zeCiLmoFuH6%&BV`&*%3f?an&k)V3S(%}`eHzUS5-Ifv@RrL4*n@`MV8@(sawI43)+ zc$53z(s`c{Tw85(e|Y{9!9{}(b@A#9!lN6;;Z_t1UE)3~{IVr2Vz*Tk02xW0^Wj&s z_xaFkZbnNV%%oRBHnKaIO8&-F;3T;n5|17Az)u14Q=#T{6leIWO zMfc10I+9_4%ul|6q)-aOjSXePkHHM36F0P3#bT45EKq2*d@~HKB^{?9xUY##+en5q zMBJkXT73wIGf|X6A$u2J<5Yz0og07l(~hEa1sP;8%;KYNUZ19o8_8_H>+ObwhA^l* z3dwoD0XtN^Z9WC&V#XxISJyYr16m1$dNk5 z^}2e=4^5pywp?RK<>2dQ7q{?tP)m(;QO+oY9{BTaF{FN#RVV-cb8##8VZaLbA01P~ zdpZiE56U!>`xeBRx`Q?YJJ0eNdHkGNK(pT6&pS;>OjNdgBR=>eBgQBq{Y=1yjVh}l zIH-Q`#uiVRGR%8ES%wXp#jPoEI7bnH90#kNS5*nay(Nj7#p0hy1usY$};z zQ7e1?w7$O>Gk#-qWo+;@*LJe)nH?i#zLrxg20NR1RoA9mPS)&;-DZC5&-0psh7ftc~TDj6$yM^f` z2iI!ZSPUyBu%0o#vfP&uG@03%Pg{awpKpYxN3d|hQDl!3$GpD%ss~Ga`~G5reDCev zqHa>U)~R@L8*5@lIR12ol6&1LTw{jOQqew>9T9R-nVC&_>g<_XXNw-F!A6D?7Jh-@ zdU7NcA$OE$4%074y&=Af`E}`MGu(=tRWaK|W1&3o#E23D~auX86&JEbYpa*V$cY#cI%_`AZgQcntA1uq%?$NnqT2J+Lmq2 z-=jHgLL~o~*+((7Mtwu`R%lh0>S7VTG|4Xel z=(^pCm!w6sduQ6;hvb3UX6lJ9TpS9K-wt-PGr8^gKHS%mrT2rbyRJc<&R?w~TgrPm z+cMV%ovr9CzGJRT;o7*b=NA?Db^r8E$eHu4 zJu6pVz22f)@e!5O1f$@Z5$(+v&v|<`526oBJ&59X%c+)xrmKVxSJ-Y_8l-$RIQ5_P z_H1zziui~W<=eWbA-KHld|l=Cf$x0rHGSjTyjtJ~NQ^)Tj%O`=^V~rQeuA50FAm( zEjyY;bM#~GFHS$IAp1>BjB_q^TQWg9}X9@aK^n? zHt|NsL%UbS0G&uF_7%|AYH4DgPxJ|>5ZQh}!-k1Z=w2g$GAM|TOY^F-`s?_< za5|21oA)X0%jYuAt(F{}w6M3MAv`hA`K|#eAUr>{>d98zdH39?=sjA|IW~z0!_k4_ z_`deIvYPO(22~6G!-+Ta0q-v@t=jvCQs&{7z7%zH`+cGKr8_oBadqozAeCk9X{D=F z96Ld9W@||;AkD691)XkJ{;p!vEE26)P|@vEBdnb!Fd?SxQjvn|>NSeGdV}suUXzl$ z!m6C1ZCPh{_5y)_BOK$Z?YH2f+`=KwWHjFyTCE=8T{*3n5F_8}A=*b&$tJBU6b_r_ zo)npO5@myWh8u_*>dD@_c6Jom{BNARyc62*XbKbS`ERff#-Z=@OXion{ksM@6|9a& z;7_}UtS<+nwn5nDLhtpNdK6bhweQMCcSiZDjD`-pe{%j&_ue8c`xVS4^*!SqDFr5b zdftzHcc&W!0u^L`ZVFZl3>ZL}~$zNIvwok*^kZJV9=@ z10%(AMKq}x2x$rFq&=2Q32<--Z#!0Gs@U4s=>$0^?Y;;uCD0FK<|#!iir6~c?n>)7 zGT*U)YOk4mFH?I;B0hceXuH0bhPSR&f@@kh3+?Im0~v^ZKlr^cgmm{ovAeu*)>Ysl z5@a8NSx1!vb$(v=J#*I~-yu#twN|}hweI`&!R^NvW$~)5-6bEd){aSIre9e)h|hsv z?Om#pu;s_9!s?$>9R2LZ3~wuFzKdHX@sOZhuB51+#1%_2L=>(UUB<^gD+pd*kfTHX z99hc8gj4+^^Fv~d1&Vm1+`z(5DL!oK*c`ZrMmd@$I`Ar)?^4}9Bd3gP|E z40Zh(boaJ)u4S)_>FhdCgA!fO4+Ex7RK#{$-)jbn14e|Q85vB?UB(Eu%58NR9?rEr zr?L%#jHVRFYj|3{2_$J~GME-YurqWd8IDzux06&0W8z)Xq&|GGh!a9RMFG2vHIaX)6> zC$<4-TzJ<{MUK~gwU&~cX`n<~(w9m14M(sViJW;Aak%9c-h8YHhgV#mU-@X8yEYA| zRKdG?#8#`5e=t^hiwpK4|5L*CCVG6_$yScm3n8|TY0Fc#yvJj%9}n4@^R7~t8bQv+ zQDOyJn~%|<7f7^!aVZ^n{TYYLYCtKzqo}_C+79(t?rjvwdkB+zPbArER8|gR>aX{_ z&nK-Xs@v=JGS$0!m^rJD(bhjI*Kt^Xwg-zemQN|0%nE3eM_u{FXp)IZ5;@kF{OZmk%=v+)mpDA$MK7WQUf|X#;tUb%8XJE4IJ&F1X zfkwNZ#F$A5?>Gm3VZ>vwfz6(BC}YoT8#I4GsqHnmw!rIajyEEbm$8E;?6TFG7u&5q*DC20%btWC<&7*F8h^JWD3Jjt1otDe60efnif#yP z)0YNjwOav^)F@Fu@mvl0Zp+dS#bD8m=Ldxc9iww`%yUz6Rw=KI_Iczu^gS@ljG%Nm zWD9kck!gAp`XLLSf2T@os2hD$=dycN3!jz}7^;ulS<|4>P(as+5T0*9W$ve+GrZ~q zy#B~)%L2y9*B@>c(W<+bA9{5Yk=x2@7D2Af#ok&rtFVH2HHqFzGP`|$w;?Z>r~p+F zOq8-}MqJ`9%Hibczd?yYAN*E{=?=|-x4@KwFR6XAqnlJW*TXKpP%OCF8u^kZyJR=W zzTmJZ2*!M#dievnq(d3$iFtGO+XB?*@;yQm7wxdg^(wL^<`O}E{ybiBm$SbcwYU>e z3~_sM8=rKZSZmHK!%qhqV28O= z|7UboOD#nK`4#SXrP!R};8YKK!k0>2f}LPvcqH6Po)BrH4=hWgNr$NwA9BCDgg=yz zt)oVtB-ow*n3U5RGM|oi`6LBn>wQueuthv=@v%p9MoAXe=VUp-xq;-5G`!Tsrh?mG?I2ADg#}xyL;*L!1nS{9ck^ zmubh`>>Q5RSbajc{j~Jf8;;k^+bl4Hb>R~C!`lj>qU`5OAurJP)~Kp?_kQAnFZMgIpwo&G=_qzb63#JM$U=i=CK%4x z7W)a$z9mYkTBeD#v$P3z3xQUWxSM#@MkxN&HyKCw)ANgpRZhphQ>g6EGst0hu{T`l z9z6TJr?*6W8kK)Sgtw;z$^E0ROOR{h^6L+R zbA~j#+U`y|r0N{LrHw|g+Rs91W-PR;Kh#Js)qgQ9tmC^RyG@W#ypoS~-AZXfHgig5 zDH&FwGZ+vDYm8Gdg_nkm;A_{unve7{5tP>cesVhZtqn(t zTmYO;bizhEt3@(v{zt6t-(4%f>WvQE=aNu<&|j_(xCHp5 z|B-h*fcVSx@dDy6*T)Blzg!9}0 zZotjsA>6>e8Q`uxp1=(#zzpQC8E(J~=ZXQ?S02^)qGmk5A0L4WG;{1DOc(?)e*9;F2p#GZS;RV#+JHx{V zsK0lHhaXUX?+kD#IOu6R4iB&*0Q9sUhX(?v$6KSu%L%Bz2q-UL=5a#~z<>f~o)+Zr z0%m~0{qI|c7cc`1?ok0|fWbW~zzi_BM+Jfc^6#8@0W-kl9v=kE0F(Ql;seY8lY3Nv z8DMaa3NQl7 zJu1Kq&tEe@fI-0E{`VM=U=T34M+KMx2KT4{Gr-^;6<~%J`qvE*V-PU8#|Hs3ynoFA zK?d>uH3K9W#QWC_kYo@rxc_|~5M&T=JpH2r%m9OXRDc=2zh;0SgZQ|ie;)+g@clId zBpLKbF9U0v05gyDGN1r6kMuI205g1l%>Y3LJt53MkU>ujGZ19Z6T}Pz83a(w(EoV@ zk_>v{n1LjNom-hv*z$XPT`)B3S}Lv# zWli7JK#c^resH#LHIZ9(jE^`z)L%W+kEv!%v+JP7@%gm81tB@2_6|{_X@DX{N-eJR ztJ<}2{9duqWUBDXmo_<^Djw)DoPEZI`4!y8t1%TMi2{+tKWP!=HIY__k&J}BA&aw! zFFlx&Pj4*M52$3d1By-pqJMFWgU(}F+f zEZ%~_HY`S2Tn18G5R-8B-}2_U#7==j30e5|LyyiP!l%w>i!PfO zi7Yl?3w{U%bk-M2hmY}#(;*}98`T^}rmt)$lJ9-@;3V9`=qMD9)a02kOoD>I_^$RU zoe{sAJa>hsw`GjnHJM};Ng%v|*xUAF7}nPa5L;B7AwolGUIbw!LJGQSLpvs2v)pbJ zzi=tRf<717rVUh&NEWw0x&d%&s5>JiX(0jx%m(%?Uuvow^yRYJkFzB@JZ}4{-F~dx z)f#nogrWp={dmSuJj(h= zY6lbEr~R`+XlHm#)3{FF)rq2#^Y?V zW5Lp~rB*i;y_8kCFa)XmNuZT>59PQcS!D@6QObUqej*=7DRnIumnn5E6$ho}b9+7Y zeaM0pvu6Yrs>pOOH=$pE`z1)Rm;dq$6cD=oi-R97LGc>2KmW~zCz4d9S zUEnLz2mN!#t~x>+`$!SE?Jqc~B&9IO@xPpz`pfzpg>9;45(K9N(u@$L{9cBo5gzos^Jgb6pFlrwD~36B?2 z^B>xW%;9og)U*xVcy$KLQM3CoWwmHsNvaN|*|yu1Nanxh)Z-+KE@pq%-}yEwM3zH_ zNd$KoDvyYO)`hS|H5ls)Npzq^);?p*qw|!%UeF4?k%M2IlP0qs9?nFcHxHA)D&Uw$0HcvGbg$iQ<1VN(|dhpc9O^2 zXuSk)_!?9G%)EYt}nslG&RsobU&dS8Bd(>EMO_;I1-2xFmI?1|OvXovRHp5p{hY??T+_ z{XytqDXYEs^wwHb{rgMI<-4|L?mnp?u7%X3R_zWU^EU_To%=_Yud2&slmkr>|$)Ob%L(_7mFK+#)b%GH_|DZ9~zm3-iNt33!~5T)T4*SI%(M?{TXJ zUz`r+V6U5eayR^>Mc+2Qz_2~FQCi~MgjxXIuP+BBm)NP78z%&KHzNneS`#yjb(Dq} z?X0!+R(yh3*0=qrZWP$6lzh0r@yhVj>0YxCu@s_2e~=s|`mD5jjKsj^uK7pxFkX=I z%^&K1FTCL_1X?noXCN`8@8$@oz0w?ecy*D1rxlAhzL${an}<8+$lsoezAleYM7l45 zI_mAf!koyYZPGZm6Duwgd$@TBHyeiGI%cR>dlwxBsy!SPTOsBeNt;XuOZ!n9QkE*R zTXJ{lncNBx%;qESeS@_FzX7umNE~W6(-6!{eLV%(@86x6VG8A%bFBWxGsr#O^{b`_YV`m9I%j-oODozU&L=O61AhQVTvKoyK8ze~?;lzI>2=!_Im$9&B4BO0J)tX<%NdGmdg-iLFBxofoV*Rj*$~Pf)W~wHycM>$4FeLEo(n zAR+`slo*fwKyrkfydYqU7V*-=4-+R#*bM}a-|l$wiZql)Sda0uSO2N7#?A1udykb; zTqLz{@3Mq`GN>+poo+6x1+CCzWtTyewP~W@5*tlBB39eYcAU&-=2h_IQBx5)Hmb zf;2BOHM3fads(||%fBY>&D;b6^Mg#Mwb5CUQQNMhnuos=psrrQiu=gztR*aL z^~!N!+*nR)7L{s6O!OyMLP+1wSlsz77yBMYu&YUrl5>lOkW3T*M|Mh(8?B>tO%@s?1JC2j#4=dTX5%njhl0(p2o45= ztHtx1HB==5glU3jC{Z)a5u(%qB|)_EEM-J7%<{$N}0!e{Ho6(s*| zcN(I4FYqc{qdV%b=lLec#BH9~m=9fLDN<}DU~S%cAf3&}c%Tn2-wV$J_;C{mig9gnCaIWOP{l|Gzr`0`Von0t--q%{aiC9bgkrH|;ghPQ-43#e)Tb6QfH= znG!iOSuhf*ej=SFRuxj<0*`VP{d1)`ELP&E73}^$*NLHFYq2sv`%vH}85eeVrY4DP?1e}FI30fC*VJ`NMPWZ_@q!2X?tD`Z;W z1bE=h5qzlDf*mR7xz~)wZ!R%x_Mk*+6nJS{7I}DH!f%!n)5!2z%islBZ82?-V|$yq zdJLN&7fqg}VNDg40~03J_TX=R7hV-&d<9kZoFB{{_CJGj&mj7IxA;qowU5pU!zoYmi*eI70v>~PlKL>D5&BSzx%?31MOrAvYt zr$?qpVwaF@BM)X}4W}rzeO8KekdXNyG!2&=i`p0-%XGy9?Z>h+BP?2*(-p!GnDAUA zCuAZT=rf3^OVH3aP60$J9+Ti_8y1Eh&#KUg)(Atff57|*@kU2>qx?}3qKe4vsic+G z{c;%Hl;IsfJ?-egIYnc$;QEA{y$Uuol?*d{;~&OGPvsov221=!6RqM0u{gm8(s$_% z?67lvdCzS35Ex=4iQ!&FP z68C?`85l`rxNZb{wc5~4)XU?+m9vlA^@Hj;IunohbKu-BW-#ppp4x0KQg_^{5eKaU z3>f-c2p+v3SM>uqZrH$-IG*cueQR{GX3Cku${zI|FX;ZT|JFG>H1{<2OTf$KGkl?i=?Hcxfdb^0(#o_vqK8(-+c2|F*@p+2(~O&5 zZ-p{56Hcu>z8v0ry15u+nN>SNV7O13T3hqqE;(_fXjFg6sK2z&)i2JuC3$zOO`Z$3 zi^XgF-rl)Akcauw3RyLFw>&B|lXjDC6Xu08oBqs<{I#NptNp(2(dHN!w_`ungnc@YtiR@K28ydh5pFb zfy!6NcbLsg>lnL#G@h9`L##v^?iO?4pD6E*6m%OWn@O$&vhcZgFgN44-(Fjfy z!Z_N?Ia_5~y2utX41o*%KFkZ+B=@vgfvRZV3Y8m7t(F|J4J$3Hn{S`0>Ui$7+33t% zOnt2joVBpuJZIW9_(-K@n@Qg^|3=_5P zFSL@k{ggH|aEj7pJ)V_}RS?!`u-T%I?tqyViAc*kh(uYuwFIh(dp&+q+ENu?I!0#6 zVnTSdSM4;0uB1TrdicA-`Sz-aRJfCe2!(-Ou*ew0_aylfx&iGBxAv@vTfg4oCH3?) z+a)p~Yd<*$1#&?n;qq;n>NRNLn}LZ&H!hnLCy}=$-M7r$n#&RDA0Wgfj7rygVTMW+ zSJhe?MEK3+l5f;^gs%&H4D>=jR?TZ9mS+UC9Ks0poi@=t=rxp9G_^>3ub#$=(xn+I zKx6Qmr-~LcS7(g~+4&3x_o8jCzdvsl9?Uo~nP^(G{~gik^nd>}CR!Aep~HcBIDzvE znBaIhLI1vE-b&h6PFsI0VvxOP_FO2XbRAU)jYum2W;@Q*u1-nL20j?85*z-<$>XH%pQF9VU5>-{fXD0vkG=xHLJ57J|#?y8Ih0SRlS zez@926G4}U0HP*pFnk^5_evfQ^8BZWH)g?Ho{ z9rTAu8gxWwKBQip-61TsoAD9LR!oe`S4B5D;y2vwkx5iyV=f7u=)&UFjvQ(2x4&KK zxiz!%AX-RWvO|(NL*6y^8(PWy+}pvnTX>QchUcNytC9}!*1Iu^pM0p$@*|>n1Sq4y zh``~FP`DOu(ai_$rQ{FSa{kXDDOCL}%Tc=fwW1^3<{ZR`UqiRWd?^w}i5Yd=GU$9i z^Jx*7%T`gp@WJ{@%-w`6QI=giXjpScw;q4oSFxTU`_^OYv>-Su4V#OL9Eoo*EsRrk zJ0ZD9`eG+9k6-ZtncUsj`#9=adRl^{*1h!Agksf|{!J^4y4fj)Z@@EnBf3dVIjV_y zm=v^j8^|?^rDx_?UtiaLvh|%vESA6J^(4dG%rnPhJtBgn55Z?Qq{d(66O5~Wr0mfU ziiT3OjG{49hBVqOqPNPuH?5N4Njm7!`~(-iSS!+LLHsqqBvgT}aa@Pzv#05lFkh+{ z+yha4630-ddSO(ybh3NGTs&9dP3rW;$(};xs`6a)JqH4lgtOpj2AiSbZ1bN(^jG|s8?um8E?ssvDn@!+oH|UG zhVJC+MqgQHJ2N~(_`2(4vmGC{@C@;JCL@-uD`Q&CIGbl?db;YTlekPpMq<6Qm_%N~ zDKYan{vfW3a4OMv`i@ru;)z~xjC9v|R|e>9TKrOh&(MeogxC?349MJZmTI-uO3MSF zP7%I>KQL5&YaN!yb-v0DpYNsgJn(ZtNgjn@uT0W@Ef+VTjimVjLsOmGggYw1G_cPm z)8~xqsTV1An`Hk&DO%8MMI1Y%PK&1&{goDQP|MlsI(lcx9S0*XB`EC0bYWgtG8+j; zI}ROC)*mTWPf6D@{caA@Bw)-+d$z5F7*2&Ebs!Ly$gj~SAi1r5n% zux~sj(4_FCii#^1-O#bzXqFfpMSTgfxw*a~Vw1|+0g>k}w|YCP$)LROUGfLkRTgN0&S8Td~!RzJm97(JKsGkpj`1hC2zgv@oHm8{kE#~ z@Y)(GWQpy$cv(L|xpF6xcqB-N10CH_jAKl#!na@0pXxSF&-;wXTMr60?W7sbL5G{WhjMfp#@}Lq=jh1{l2IVs>zXrF*5$8r|qXK zkg*k`;!^YJy+o~alz({MZ0NY)-bunk=`3!}ZTViX@GmJ-^o%#$Gns#!ZlD=+mCoA8 zT`WXOx0mg8->LJ5hwsOK;)te^MBdu31;xK2jPu~#s0qGj@Ygn;8sG6W^?Rd?Du0An zCh{Irwh3=kbd5~e8s-hL&?ea^&Pa{`xgZiRUK%d{4c!TWU--P=4n3gHI0%~6Gj5dsSk2+RkjztVoKbLcl zsu;F0%wl|j)7FkGOTC3n#KYI<)4b6ZT@xSEsL1k4BOAY^sD!hYuRG+*cfLHOb3SIE zuAwlk@x@)nM>MtCH>U}cMfVSv5o=y7Bu8)5vFhCTz)tVVPr5G8rD&a??J=_c;?%ik zy$m#aI*at&jQJtTL?~W)Gn;{>3*=MHWj{{xL#t=PUy7gfJ_EDZDM;4u&^wneQPuIA z`5H`Lc!i)_>eO8q^w*(-66G@1@TVCW=eK?J2ApA#l)7 zcctxmjz4@2P9#4@CWZR(ks42V&b26W<(!9$=hGqcrK6PM00rYdYfy+4*iu4&7tq@8s$%qSHb%2w?8ZLzT4 zRZV4osb7kP`o-~XU$X}K9#uGRO@I{(5*B`UV2p-p=~~?F6elzp*YVw=YXMnZiWAx_ zSsrFQ@%mz{)n~2VYz4FD9$zl{QxH0+eewBOguX`Fo6J;N_2;`%9*{d@%D-N}{xh3o zlD&GzlmR8<7GReW9e=nuU0CBvktf_fyGi0p<$G7%`Ezh<=NEVCR>HeaDds|RTIObv zdreyQn#dML10e;_Vu7-ECNDnAH1CFHbdV{XAmeXQ=sCU=JLk!$NoCx1Blf*y3>M0Q zw*aY47c{&xu168wkyAbG-3WX+jH0*7I?+lwB^0aSoH#Vt%w<1dG0UmV_C1IGcfq;N ztjYZEZx+0TQ?iX2Rl`1`2&mB7+LV(h>w>tl#up>K?{P_`p++{=?`ciM(hT4u%RTY`r0cc)NB2wB~hzxh75A8JgM@c~HkAgEh8c~Q7E{m>tn7zZ?I;pU$ojS+YNi-@2o6m@C9WfUV zR{B&4!x_4FrBIY~!e_c3KC`J&okM~j@Yo{w#mOzfd?DSo(#ga7no#|Pk;@4Mvif9# zrgVtanAFV5vpET>_^#3(J$z!l9`1T(w^IA|I1|M4!aWTbADsJ7tEnox_N;g<+t$*b zo_%^Zd4{M-KC62}ZjJRuOWWP-Fi7Fe3x)ORpF2E}IN?x3$x*9k%BdlH?-{e{ZC=ic zL$d7Pme3;0M`V%%L+{@fD-saxS-O1LizkSYYVD5aSY2$5iDo%gQWa2D^cNc;s{S=U zAmCP#q_N@v7+`~pBl?Iy}bz)ZAi4Nl5z8{)=0Kay`$V<4u-Ho2F zkoL;+$l`%^l_XnFz4R_}Uh?vv)ZPK}+~kaNR>ECl`~bUNPVgZ;obd&LMLG2kG}qDU zI`B93{kEzumf*YYHgdnFTra8e(N;;bfv>OaqYW84C zuP`jeY^+pMBl37-!-BFgZRCA6-6HsYuu@UwbnPvn6Xu=urcA#Dv(r{LB~uI@1bs1Q zsn4>7Vp6YgR=;vqj`3sx#?%!jvC*PpCS9;^QL*;YUX18PTIVG97zM>~)5|%d{X1{^ z&X4WTJ=e=a80GmLL!sZp7zmNSvWx~CIdFaP`h#G;f6O(LSBk6k&nj^15T^BRHgO<* z-DFf@TfNS0Atyibq7RW&JC(1#Lz^*ymp3~n;QM%p&lFKpn%xBCdpCEEqNo$&GkW?5 zSrW0%DXWoiWrx@CuvI9TO|FPGktc_FMBXjlP~x5&wz;9>9em3~m!IseOj?qO@kVj1 z>ORXkl#-)&yY2?0vHD(=qhc{)kHcW(P64*?hkAq(D2|HMR0FKklm?A0f z;x1FV=;CCbDIQ*a#VYzJL8bV`W$%sIKA7@=6keu1irC}z^i;NLYO#|wff2=vN|Ol| zRp<|Tv@olz{6^o}%TcN*RT!#RIPxzc12IN%hp0c#1}n=C9D{QU8Z4HAO)f65Fg@@a z?Mqy&IW`?x4dh<;mHT~q^I=d$`?K@KPlwq1$(&>f{h{~csnnOwslllkiq z8Rf0#*MCP_ah2WBP0=(OhSFKl#{QI}ofC$-Tcv&I0X7*^ee~nI&5#RyQ4oa(cY}LK z-@~vRIu|wm;gq|&KDcaNY}X9bZfAl}C$FjY)f=6@f0*rpR{L#B^XA~Q3q`w}IK~pj z3+2K$(?ZO~pkXHo8Xc-KYA?$Rm@XwmkP6#uoA{GxOp>jl|!Yi~kVcQ0tvQ zQAb8IdvUYOZtC^zF9S=)-+w#Sq%@J1lCB4TWw_|aSkA%lGinN2{A9yBbTlw=VUn#7 zyDA33I8>C(^*%4qpWSS7~;upY4qUdQ8NHAZb;{rDmJWzQ0=ao1-XsxzfBzYr7+vV57#eInZ9D0>EqZ8gMH7it& z3ZwO}6=94w4B`78ME&OzwKI)OMkfxL+3*r0DT`tTW~A8Lh5KSxLLWE?YoDX;8CB|| z6c}A^*B3m9poDUqe!VJ0AHfp2-%M2)WunX<(h}=E~Jgu z77^>*YYwkhXr!x|^$l0a<83W7_ch~P+PA`?eri4OJsehwf^0vM*oJ&WrqZ^AOPxyQ zF6Eqe!nP3eVN0-Au8`P^eorhl0ZbU4_m{*jVxv5RQlrdhW&hEn{oDbDm>iz~DQ1nr8cYU|Kq%4RNMu}d_9nRlHGUEwK#Wh?=W5OHb z-0P-P?UWH|diee7hF)}wuTBp(o@%?7@6X+_gAOmOMAo_5WFNc!?`p^X%znJqtlx^U zA^K!x?btDQXgcPeYN{+~Z!I*u#*7r7yG7p1;td`%H$tKiU}Q=!+b*q@?^(iLYi@s`k+0}nsmzo@3C;p0OSbrnZ>LK)rvVnPwk@}b zIKS>(tHZLIvnm8VSFYvV?<_RnEM~3LlCgPx;9xp1FoqgcE^6-^@lD4%Jn3%K1%Yh) zr0k@yt1z+A&`z5*wk~^+(rmv)@1lnHs-TCu8OfYp^VhZzrjIxjwb$K@iIk?{V@hYb zd|xKMPRZ0aYh(Wn71H~7J>w8*m?6`r)tR7ndh46J=!thNSK+*hZYU)vbJ}xXTxx%0Ay3(J8VR zy)4@(va7+^>_y&!f=^4e-D8H%(DiSejnpA+^ylz8o1ivVLY(UZy;3T<@Y8)KpKJIJ zQ|d#u#C}+u88vDShy9{iV5xcA0{!>qOvw>c=C~BNc-^&jhNS7nqIcA;FEW(vobb9g zl?)5jxsELskEb`w$%~E49Oj1uZOl4EPVDsvOTyAz#wX#S^JlIiZ+6sby6%&WxSX3S zG)sTmk$$4E6tn9fS9M|M6(&r(S2V|4l4USwP@9U`? zMzF;(R{iTa=;7u8D*5^Z>|i;(eg>iNuDUdNAQR?6*{&@NrP*TPa2r}R@$+O}j24L{ z@Z`zh;kkX;pvyj1<>_^F%9;wHU2!nGVEoo<#h9^6TB}E1ZZMHjR?iom`rAL^Um+F}L?diGokNX1nF6 z0%;kiE4x)$9v#lEDT8M;aXddjx3!^%+)=ePiou_GyhW&ae9Y6K69@ ze)K~X8_&#^^t}K1pf%Y%5H0P?n)mIOy2kn>2@p4AGc7QI%-T67^LLZhpTTmhiGnCr(M< ze8ai;EYDy;SQ4eSK{!Hd#PE%EsJ~N!Ip?MStEjI&XhvTdBqYBX@JYsOv1=r`q#&ra zwy;C-PZjwJ7E@;4N)p#3hgC4IeJP=aate%@vFu=OG1j+ zgfKi&j5HNAVQYu0axN7*M6=Lbf$msg+!{yd1YkaZ%BZ_JO2^g<^I{I zcyoMBn^wf~)z zS(;S$Zb|aJY6f3l!|W>$9ET3ehVT z70A*GFVS5uEP5FjEp9$MtP0ASZ8th&U!GFrQF}Fi2?{@-oLk)Na|pwy#2~bBUES>( zD+P*rnr|K1>hSCM zy(x_Hqw*vMS)}@)EW}_r^ADCcw#4T|(E}9s#L-?dl|*h-6gkrWwQGSEKNl7FvC#T& ziyxerHNzqW1wWm~!%YQ#>ap?w;%}#x7Z88@y?lW9Tkquu#8bN$5KnztK>Y3YLIClf z{wfvt5gquy5oKLG?l6&(CT5CBzh@DoA+RKdaj zVF&;-j|_p#za@U~6GH%W!NE@q0nh~pKQRPA7aaV=5CC0p@DoD-RKdYd3;|FD2R|_c zKouPP#1H^gaPVJ-;NKEI_=zC^y5Qg^h5+b-gP#}zpbHLuVhDgPIQWSn0IJ~NCx!s1 zf`gwJ0-y>GeqsoKDmeIwA^4}n5B?8B0Nk1Gd145FDmdhcA>ai{{E#Px0O*24{=*PJ0QL8q2IzuAo)`k43l1FZ z{aAqJ1I#=z1V9xW^287TRdC1?LjY94Ax{hePz8rVo)`k43l4c=2!Jj)5afv=03rl=VhDf?0o3cGQ6NN+Cx!q>5d`|g5CA!XJTU}7kRVSC0gxof ze;5M5%o9TZL<#c55CBPnJTU}7k|0kE0gxof6GH$b3Bm*Y8*3m+kSB%!h!W(9ApoKT zd145FC_($u?hsD|2xR4GKvB?$m+6!m5z+z5@|Y0m%lcUMZoB;c=+do?^&WrHy4tuyHw)kOOGd^I z85Mk0!nC|~8YA@G90EqJhB$Z=7uL{d-6DPl#x24*OCR#;Fs@lxIKyOQdcs%|Qx`5q zC$803<xAeE;kLih+1#;lyriOxVo9GDKn(sv~f!+nvAOb|u14Qrae3%?;-`NqoS1w568 zuMu?-iZp`LyF?mT+9Wzoe-%UIC~H>~T}EFMMp%W;-VnSW#?WYmmjqOd9bwOs;i3?J z3<82jBZ>Sc`#p+@i zIN=-f@)ad}9AAdQM{jnFSt4^f;7L(|X|_p_r5T7&5Sf?=I8}V2ji~NWwK$EDa=T<* zbEv*U4Ffq|B1Wn0geUvhh?|gUU@H&9o63IXQ7s!KF|Saw8Kh6fib6Zd!v4Y68zN0L z1B3Kq${|bD|2fzcho9{AY(z;E6N`AkC=H8hS)3kbRuT9mCVJp=F-%xfWNw)bmYO6J zL~h@Jv}eS=aB5T%v&2=-h$-1PMCg7#=uHqYC}t??fX%yD??H&-;ga)E^^8WDb;fIh z)s=gxnR>l;@wf1C8)`E`wi;pQPSfRqRYW59vl$}=SOi}eD|r~1I&t4Hk_pE+7;C=r zZh$?&M7wCR<1$Pz`t!OMRWshc7aYMGVM*prb_%w8S=wtWGnG3v=520y|;4TG_#AL;ferg2Ipirvn?B2*x==-OL>OW zS0oSJP6r*8Cmh`1$W6Klq@SNAevo6Kh7uhI;#ZsR*pjLzPQ05Dfi4F&8M%7!>6LM| zq-C-d-2d{dZRl_iX>Iv`R9yvBRQuPJk{-HSK)QzR?hq*{3F!uD1O^ZU=^jeDQ97ih zLApy?QbI~e`R@4Mga5Z&i#7Y+%dovO=k9&Z`9+#%QQ6AOOUMF8(bAslTzkT+uY2f= zvN(RK9+)-HKD(yIbKLp7TcMZkzt{EVdfMYG)$GNid&nN*_%iK1z62QkldN!d5xkV%Ki##(*Zr?c<1dxQN?|DQV_ zcN+GOi@)H(**;3u#iso;QKHnjOltj6oz4N@Y?>&+5#y$gninXYt;68$H`UW}a2=;^sDNUK?PBAgm@OdhLJAZZaH- z)}K^5{l1DFWM_O1;g7p;t{J^Csu?{?9TuDAPZNzA{?NOnW~NzGRWj+WxxyNMoIhtl zZb5$DS|~2_r!aosOoB=E#laRd^v$pB^g;1aH7jV@td}DXR`dM2?{cg2@bB$au_I&1 zH8Bg3xV!7km=HyS4QOHd!K~zd4=qBtS(m3kBgECWRQU4Cg#D)#_ zgbm%~97nZ#3_YI(t|FKNt^$T-QbO_mP~t+7=TLE=j}K588pP*NtMQ@Wb4-8-Kd=>| zGqABE#{nuGFy<2H7H6@6;}CUy8a9Fxwi*RI7dMnBT_wh8#xgHA|ww*6JQ} zwNAEK_EPlQ@5zBqifRZdw4rjbH+M8Kbqe%)$xEr(IWrpQ1M)K)HI&PbMQ>^+Jr5t> zotwOi)rx$3YJ_wAbJOqlZ?zt5!=a5OGfG=vMt4!x3MN)jyGQ%_QF4eMSJja{IY)C* z%{EQxchSBz$cZ~J)`Us=XMg<3yLW@vKNo9eMr<66Tz-d&v$yx#>c2clm{@-KNo)fg zDoXForGM={TWIhy-duSlPU(|I67DdT0U89FXrJ!BL#k|Pa zcI>Lx%ua?E0u1~rsEvIM&#dz4J80o&KFD|EK7D?budTGfWMN!A95t2h%GFFG%P?Y^ zXk_=L_mhKDuo(8vtGlX_?(!1#pMIL}PYX3d1#5$xjKPebgT&Om%H<{aQ7n?*uvgZF zoz$?OL$oi78?e;~uBLw3(&q7(l!sES75x54A^E}ztQtw^o4#wPm|Fcf0P}OG^(N(b zrq{)`!)M+z?>!rGc%@x5y;C8UP#2G2o=V>&WaIwsc$4pD9q;5>Ut0<37?K4c+3`nv zeke0(oo=)pnGv4Vp0-xN6_l*o&4@V92n}}|q=L+n2bmYKYceOyuy8*npkehPGs~hD z_sZ~#cC4qw6{|A3`>8bGorV0Wxmp(s(X2?8^V}hKU!%0zC}8AE#^Oh% z>GOj-CILKcY)50dkXiKTk3o_8BjpQ<;>EQurg9nAu^;DVi?}HgL}YKMPp@BiDYG|) zYVkwt_l0Q#eV>86W88{(x+FUs5nb(Kp5ECqkR_5J+H&hx{U8z)k7pDi+z z^OzE6VsGphmS@KGc3;Gvbd688f(EBE1e-VFj%SBx7r<*g>E5MBHp&VZ^|*+Ld5Y)` zjpa5x`LZqS#ihYz_zHM0pd7SZ1VgaGL!iyC0*Tx4 zvp*$YR}@56Xw<8nA_i{U_>KzmJbPXi@Dk%taZ;Km#tXFvqnyjcQm6P zD&JCkX2Fd;cbzfoc#Tu~!T(w+P3h{`Y+SX4?NYUjEJ*eb5=)jJ*8g;$pnF^xj?ma) z0?*L;0knqt0d!GoXf7N_J+uUjp~(DiKK(a=7yK`8{5vUM@V~V2Z#pk12+f&gk%0(4 zB#eOF{-1mi0QY$a;I$vJMZju5B#VI4e#jL8qy3O70zUg8Q3O2yL!JnvWxx#8f9C2! zIR4Jc2k?D%24rRcyq`M^q-FrTrvl_=0KCsafaDB-_vHm3IRoH*fdRoNL2{Rr8V&(C^LGUx)ic8S}G4u@1OO=IJ3(PlV}nrSn2&NI&5$ zSk&t5bel3n9$U9^cI0AqGM~trIv5SIOQK!0;HteHCBspX`XTdrAGx0m0|z40sgf03 zPr~f?6mB^?7?eTIgQ|eJs+es2CBfuXba*gaj-rG~aKV6USfLL`{2F#QgIVx%rNDr5 z(i&W9;)EN0uq3h7lQtPs-$!t}PfIbR&?~L66;m=$AF)q3;}#g;bs)^@p_{&6uBoJl z%XSwkw~>8fLTG5xT4;L4`Ed|}D$SG-FkAgJE?9FcLG#@TZkxHln62-Cz5p_bAQ?95 z@)s3flpsFAQSE-C&yNBGk+BVX$t9g>*3^j_<4NLawXA(Qd%i15^0gwMbta5*8c6yC zk*i~8eWFLY?Ab&sZqbO-LJT>0#2nbE5%jgwOj{DJVm4DKd+~<~#R7^G1jGFi_>p?3 zN2h@-g|4#`g}e1mWtBo8s0f|PP2iaWsgPluRW?F`qGagy)8~&i-lC0}X4B$dSMCwB z0)>DyFv3aoCLm zY~2__5EG9%6&Qu*SM`VtAA)aXVilMRVs$)A^<9o<&Qt5o9$JVX%Dr-S(TUjGg#MZ~ zT6B_hbV8$#dLd}~o{x_*7`5S%VGQ17w>#~u8n>-%-E`KJ=HBL0h`+$?_RrrPyWior za~75l{H%=*el4Gk%GABlidisyLsQy%+EpL+MPOSalc}{eLeU`WFd8Dp9~8bk+t;Ni z+=e~M7n9a?)mXe79kX}r?8chu_ig!&+H)%_hI1ym4Y`%M6#eNkhPTH*KRWbo&S11__rTOg(?tdljhVzHMU4SnZllTClLNE5kV)>YAY)ONsI1A}3rfR2qy$BU_r=h0q4Se!l+;+bD?1?nKbnkXsnB=5A+ z6W~N;3&Ydqm^90l>LFlq`{?Lrw%|ik0{^GSmIA3?ma^W-A5bAdWS_Tii*y8SniRHe zc22Wh)t{kPwg^@JurdYB2~kG78-8rLG23n+%Rv(P1zr8ZhaBD79O#O^dV`S>nhV){}O_!N`QvY^iG4$qjcbkw>L@9HQI_kl%(VXRkGW zdx4z?DxIBntZS`+D2Il6jh*z{&?878I@Ou$7Ug~awEiIp!vIvO`h4Ujv)G82igXo! z^yzkJR%qY$hQ5ADf&U1e{{dQ44KGR-eI8Clf_Zny&lgwNmNTDBq8gvsxy5E4Te)e_ zmQV627_2LC5WG4m*h+ch4vNQ3#mzHe%UPmB|AD#TmPq{ie^%u66``xClX7N6Sc&k5nXCjrA0uP1EqLW>}gZsBlR0!{QqKE=`w~8~A zBzz)Xa7)?%4}-CYhqK?INl?OD^cZgLsiQs2KCM3OAy*gICJZ**@kr$ZU6CZ}>+6cGG zP2}2^FvInt8wS0scXJnEAvA*olq=a*XXi;qgReYd)&z7b|_ut#u{q1uaS8b#eDP z91Gx3{I|9(XiGq2k|Lqo@;j2MIWP z&*!h-{C_m58>#yJZpELpHHy;v(zkc%}RRH<}z*&G6g!=Cd06GK!zQ0{SivWQ4w16G~ z0PjCUph*D0dm9XN3Ah0F{$KqcXcGYNo)*w20O0+H2sD@gcz?HefVKsI?>|MLRRF;I z+XeIr0C-OeXchqQo)*w$0^mI@V96l>-qQm5Ok4o|j~38q0^mI@pwk2(@cr69K(7hF z_q>2+69DgN0o^75-qQlwO#r;71+<$0cux!HHv#aT77%p+yr%_poPfW3PYVJ>AAs+9 z0pSP0``ZP?9{}%Z0RafWds;vQ0`Q&|5P|@_rv=0y0Pkr5K?uNmT0j&6Q1E{3B_Ilc z|NlKNAPNC^PYZ}b0N&FAq7Z=hw16lC;5{uM3ITXe3y4Ah-qQl25P<*Df@lI^2;h5O zKokP-{&oRT2z(Crw16lC;5{uM3ITXe3y4Ah-qQl25Pq4I+Ch$HHz>&e&9d^^yV6cL>@-Tt6%~=A?YWWi(h_{d+!8IO8|#USaoHN_ zDLO)54ee^u5XF%Xo%9V#aRqZI>>9R00RehgVyGpVOlec<;p}nN#EMVw-uI2~kUv%3 zC1?Kx8569oRoiBq_%QOk;Drz}$NL%DR+Xb2aYwTHe5K#-kl1P&q{*a7S%*=qIV+W< zq$?Sod}jE)2LG-vtjj@X!a6q87?~EU9VAEMPl0Z6!F7X(pWL?_v)6+F9o)F1g_B1s@mst*QByJ!8?r}vxV5fc!4zgTXJ_&IYk|v$wlAQ&j z{@Ad;-^3h*Vkz4~Orp@GOpicz_VwK>|7-!faN14Yenu0-n6%tVN)bD96D&|+=kihM z^Dov(7(7!3F>m+7;SP~QL&2?Wx1W=C=OM!_{ce9QUy(HUrkD%O?>Bg|SoPh!al74I zzui3lLnxXuvNf1qwsa#|2n8lu%(FGb7_Sbe^Phsy4OS~d=_<^9nwE?mx66iG#_Tzq z8g+UXgaw7Jrg_w2dmq~v9#N*qwK7Cq9Pp^M7ai{g>earf-Vq;M-~VxP<2%n9TO`~U zpQ+n1-Uny&b|#y5XB26Th2N%cbU>W2uHF(;|L;K#KRBY^Rq=v5ZflAXUTe&&^K2)b z!uH+-xKDWSz?b}(fE^D3cu+&(il~^N;w5Ak@LXI_xD6u>t!G^9daE zcncRF9=H-HzA!d8pJT=Xi%{HP{#RGw5@-M_Aks+CFE^M3(2W~RmVc@#4#*$^=rruQ zcgP?HXv{PSsR8d6(+~|hi44Mno*{!+pr2r8v?)Qj&@E)(haDw|p@9ko#777<9Y6(W za{aR;Mm#0xDI6D6GK-=P>PQ7rqWU++|CSE{Ir%rl|FLphf?UuJ*g~FM5Bd)a^#756 z7`lHF!X7{ml|tC#=Rx{mPoD?nhdq2Agdg_odC+~}(F1;veOT=f0)EhaKx%>04^J9^ z5BNd%VO|dWAp5Y|A^1V|VO|dWAp5Y|A^1V|VO|dWAp5Y|A^0EJhy3T|zz@0)^K#$^ z-G|itIq+ZE|HsV2yd3yJ_hDWR z{Gj_VF9&`Ya{}{n;0M`q`!FvDevo}09>C0kA9Nq)<-iZR z5A$;1d)?QBc{%Wd?8Ceq_(AqzUJm>q`!FvDevo~bmjge@KFrI3VY2_PnT2^d@PqEd zyd3yJ_hDWR{4fXw=Hq`+N`>uLs?Sc{%Wd z?!&ws_&?p3*MxaF@Pq8byd3yJ_F-NQ{2==tgF=~JPYwq&V#JD%GI-w3G)@= zOIzeE)d+hYrn(+|5VniNQerXl)#5wJ)H-XiGGz6K%Ui}?jlbXv!_9H1RDzFkscIsY z-&7@kWd1qF<-3;ZJ4Tskl){`2^xHXD(C(E@!#dG8u6uM0s$sXfi$Q zxJl!PiC-gCy0tB1t#Y>Q6RnMxCE=+8vnAg#Jxk62 zNq<+XM7BWn`^TX~@`#|(Y*Z;)%E^E)I3F3{<-=C7F{6vQR|07@8m*mWz7k<5;Jzk? zIMbCIVF+kE4TY1h|NbS24*4~4sJZoP;=-P|E<|cM1&otOVmx|k<9)FDQ?jsF&=nqn z)(wr@3?W1zv2G|%BD=09E1)a&5eP2yv)yldo({-{0eCX-- zpR3NS@{*Ou;pB5}Bgn6*bJ(3BC?1*U-`*AzP&;A|di@@oo|_ZE>ov-R@X8T=;Tis%*4qW7e(C2-qt~Bu|iv z>PW|Z#w|g$`S3;hOaAG-ywVYN=L+^IqHk^4+qONK7X)`PWkP|aq@{!h5zjXdH7%Y` zQGOaQlYg_H6o5%Smt5(GWJ@8mIfmMfkY4=#MXvJ2O9is|sKDN@#aEcE*kuKf$B=I%PXGd+Gr; z9NEIe>{IA-LZn(Km;T1FU~~705yIH*wCJtb#<Ue=maZZw=vAe$nKSAUWhb z$n;Kue-f33E2j`K1#l$vbW>LM7PH7}3kBxX;J|+^89W!bp;D6a3DEii1J(`Z$H4#i zG3Y@YK2}5Z5C{YZ8&eVn54a{URMLQpvEk1!=q()d#}r_!V9SL8zbXLj_z3=Qy)emX zz@M2<11{|EdSO*70MwZVF8;a#xG=!3(W60$R{<=r`j1mXhu*A!$e{ygz%gdn30OM~ z>KDt3(qOj=G6IIEJbnULO7P#+%9x-i=OB7uhze{_3RLGDL;@Ks2SzL|U9(uGW>=QW zw8HgCQ1nSQ+pWHwl#P3$hfm~}bNfdFONrK7&b3GZ2eB;^hkoy8tWe_RnZ^1fun)Os)C~~>b-?YTo=rs zyXDZqolWdX#zpT$K-1Y{zqZP>Rz%iZ>qKh&$y<(dpIaAV?JgE1T)<(mV4&CE_tK*4 z5%0IO-|9u0B&go096CWneMPI7@I(%j@GpFs0wXpwR@1WGA5Hh?KcB8>s^JvV?c_QPVJ{lq{?d&@ zJ(timij-teKLZyS1*b zuTBSRf9-W$;C=q% zhrQ|3xAgKtOS)c#qHSxs8^xA&0x(LelkoDJUX!9y7Vd3;wW zluw|duoz+@?WSOr>fHJ~?W-*0k2gU&mRR8hM0^iZP3_Y^L@!RuaWZMHtHv~ z99#OJK)co&&oA@I181J$orPi70ZAa62Xi+O=as zGz4jZR8IJ!yp`GAQ$OI-$@)WDfqz9j`RQ!fi$nr%?9+g5j4~5(aQve$Qgzk~P=Y?X z@}R&S8tg7&#SrG@ln>-RnyG^7Z1ND2BNSl_b`NK*S43|^8aH=-k)l6BeT`&-8J*O*2Vxi}QDW0UnZ z(qwzzlc}NE{PHTOTBm^{tEgYFmI!%7!LqX+E@Kd882?*4TGCp;&4KhpbR|h2KHcdU zlDm4kIY95irlu*xobFS+u!P;A|8-u|b5yBQKtZs^P)SA?B1*Xp7ZcmU5TV{qjK$< zK-0fUEovP+@)xM`@HqO+r`)LU^L!!?*VWfu{F=*-iNCTWwWID_S#iIR(w|As=B-SF z=c+ARq0*}p|iIVVRqY7r4?4mnsR%l%(wF9*vIx&KS-xnKjMNTJz1__z&De?aW$e=9l-m8e*O2+-U#;As0YehfTNwxr2r!E3N7 zL5hS&0IJpva4+DD5TL6hSOg8IACWE)p#0ug#0}It_!7p@H}8R$>fTsv*wEB;ECQ&L z1_7uc`#shr4m7S1i?E?09cvv8dTd5O&>-PXV4#S=&C3m}=*ED^3p7anS<+2(u$;cZ z<@z!_VF_hm%$y)=>;m4Ew+%i+JAR%?9})F?h-kn*H7K^?8G-SVdBW2E(0iiJ)Ws#b zi1YGS1oTu8ul~N6BlACgw^ApBFEF=l7 z{W<_~1v&Wl3govWlU+qNX7mgQv-ZvdjZKL*Urgc}E`t^&Qp=*2D*7=CE9E2TiCc4+ zPD(cNqG*U#UhE0y*W%NB_M!ok0 z&&?vkU-j9-(cq#$0_%^T)?O@?`9~jo;h?jj4JQOK8`_fzu{2v;n^7UP4WH{(oNHZw z?vv3SL~p!-T5_lTIhbsRthvYFz2iOH=B+>{Vb0|JOhakq?069~=YcxuQa_9EOD;bt znof;if-v^$Yn-GjdY9y6+7XTTl;@Y0g}=o!m1;HQynHsTi#;4eAOzO9Hm(8ucnCP& z*UVh$#~f6(GjZ*-`x@4=nqoV%-ox$7Uh(hRZ`QcpoR5k-+L3W&K*T@3+}zUCr!CtP z`pRUQ_(MJ}*ut8`!}9KosKrsG<71aOD?A}d;h~~c)m-lh|B&r5KR2r>Qn-Sn@gWj} z==(@~60qM9X=L>Apjl?5nHx=YCt}}CnLqJ5$$&_4_LkQ&x}VPpei*L+7_SH$0Yo#C z#+r8~A4aQ_fS*me2+^W%nZf!YscRR}_{h)nJ*qS=WwQD5JCQx8Yr66fnMjlb9C-2D zU6UaqDj2=frmp@m3U!aEjb?TY;l&TnqHE7uJSxyN|Mo}(e=T;`R)}_vyHT$aW)Kc& z5ocQnv!D>Cg$y1?C|zV3lbQbKQ?}=E>88HQgAK0zkE|(OLm??G;d%39wnm@gE!!nk z5jhgOn0QA;Q$-zoo^5HKn-}V!^9Ghs>iFP9>Q(E1FAIFSMO!tk;~xDh_7uPI<5#yb z9?G4$ITCrJ9J^3INE>d>%RHOV;vGe~hTj=WN%E!{Z6Q&QI=w!JV0wH{eJ#qjYFHBs z4In-=K}f_O@j!tD)ABvlf9EBwm`h5mVdISP=&2+DHj=ffx_Qh=+MV9mAypcF>H39* zc=tq+h>TNwYV2_{$I+h_gs=<`Eol-$T?IJ5~*eVH=1x@HlpE&(r&i)Qe`L zn8(EMWesOh05LOvCC{Nsb&W8i>zV%K&)^p*4D_JLy6q<|BTdoH^>N>SWzu}Z!J~=h z5~~VT$SBp1yt{40c$}~LBU6F5=>v)eH7IYVo`}w!Nu^&mX)BtuYIwqai``mT?c-|B zXu$#B53oZV1cflFE2Cb4Q%T2fuy*r1Qng`i?d_vSM{7??B;H+9zw?r0P-D;)&ee=? zQ>}T&iz&yPZoh&y@+1ET(DDjvkQ2yyHHBzuLHz3MNt{eP$)_>4;df#vZ?_69rC;ls zO4j5Qr63H|G`5d4siB@w!H0qwzEQCb^Uc_sh2+tPutC035{xi~@Oq=}D`TCnnbXKh ztE4oeY=q3oM_VtjAr^g;@X=SWoTK6A$)A>>sSV!#I>)yQw%~1iMmi5TrAwglVkTS994kWVOfeo`bi!_X)wq26ccHbEt};Im5e+j7AdvH9ev zd%?oXJ>hRu_6CqfecwpUGAJe=2UYIpud7g&s^7ye;G>vyB`N{ISxoQ)0^<6+* zpPsrZwrsmSbZxIXdw0lO5YJX2O}$Y#Rb84rh$G!_Fqp6Gqm@*;sa@)rWk21WjY=v)YAW-1soELJ4#5Xt;d3>XM$g_dhN=HZ8*o;kFbkxJxb>UK1+^M!F zKkSbUJQ*`64y+}gCdx$JxO@X4d=FWa(WT?Eo@x4mob~t;!Heh*F2ffQ!HstpU24;W z*i?@it9xrWRaadu} zDcJrkVYC^QmSUUswZ1yP_ivLFo$SXScrj~x1q35DK3jUh!keT7BV42GGRt1Om0?=JYlb#ICIc%*Ci3y z+=Y{>pYi5IP;f&3%Vm>AaYA`sM&$d~9>FI}VoaQ-#(u%$=!4mjm2`L%aux74+2{I@ zV589SezoXkb3ZXkm*A4^>Oa79fdX5v=Yo4io^HRYl&tEH%(M%5l8R?omiUvyx(RL2 ziSl!vBTWi{b&*baw3~fH)M%nt$cbG$w^BsE(v*Yo)h>!G9#_+Ft@{z!ZT$O z%VAkejDX(9)^HNpA}dOF$Nnxc_?S=*af+LY&f0hGfoKSISlLE9Stk~E#S zCe7ngMiHW$c*<6S+K$&reBEkFR*KYNK1;>A6C|b)vZd;K`J=}JyeMAiIn;h4ka-*I zt3f6yNkN)pr@-eD*k4>;H*2siXPG6Udj`$AMjj3ZyzF&mB}@KXCjYEp?G5u!&6k6~ zKAyXKv!~0vv&GxsJB>2?hS|moafC?>ei9L@NvD$VnTqo_jniUINaq{#UoAI03qEJH zYggZT(Cx-^FKEjOw4alA`@iEiv>IQdkrsP zIvIF#Zw+^M+DC5O`Y&l=7!_Z~zkj}Bj$eJYSlC<7x9XaL8~5OYIRy0jr95q(_4tbri|;?h9lBzia?RynKbr+m@9mr zC@*W6X^fM`dL8(77jgQ$DKv$Jz15ydQY3!<8reOVG{V8?A3(zJE3gd1w;gSsK9AYJ z@y?QBhj?q@MVAsz_&FnwYgRRel)ryDb>NQ#Lxe8v)4Y7=UhH3@L^2+&kTl!0pPn<3 zKW$ikg)c?xY&iU&wX6Cd6Q9*NE-=E08Ms@5^+TSA9^51X+^RS?b6T~(03@;mU?!XrkF!fWe_-*`b<5hif z+LMo#{p^ZhP;{gecy!2L%?pCW(t*?brFvs7MiVZ&=WDuh6Vd$C#;@d-&wG33Wr!83 z{OOB4c4x=fp*2apUlmebzOkv}cQ>qsHyC|M{A=m*j0%D-);_0o*XFmcuu+%_;^UqP z(#TD&ooazQ(rOa8sJ{x>&kL;Ry+t4uuUS3DJob-QnrqvM{5}1gM|A=stz|I(v=kd5 zB)jBG?Db&}DkAs>yLGDzuiz^sufz>&g9_MNE&HiB ze0`u8k31EWmX?~%c?SQ!~p*7t-PFx z;)gaod#2~YX;c4`+8C+M;dRJ-nzMXmr&$9p6AvCHk0))-n}D7mh%>pxlGu$Jq=)Vs zdTC6vK$mCc%bSzVt_bcJmte+)ZAVWbjoDH<6rpxVU|l zH4`!_UmMmqt#;umfy}U;_%Sno)*U?2X0F%!QL$Y=*b`rES&}tM;jvmlI%QjrF?;&+wk}ajq!vDvK_N@F2|h(29ix~E2LMn z-ZoTiK4u);K?+>E-b@*^rsSVM2(lkxjK`YoVh0JDz;s;tCyo zgM+u#;aEHZ6XAGtGSel|sE!1b$DNH)nHwpzi1^z!LwEgwLfbmw#|824n>dq3HPd zX98xnfkz^PEgOJh=FgIeMR#~<2l++LYQy6xspTWN{3lJ_i1l{sH_=XM8U^!TMTrP!K05`LyK-wy z81*b#T52F`Gv#T6M;J=_WMCMn>Z1-qf z>_BqpdwwhF9Kxo;DWY4p_4TbqC8;0w#EP_8cEC4}elI;q+Ld^m zpX{W(b6!a!m^{66Jyc`5_zojO8IKLV3783~-$9N=@?AAzC+Bld4#?Fitd)@k-18s; z-AlFdMT&0-R7?yunn{a&ju{BuS+6(7?MFX+Ghm2dcn;E^TTH*0{nM%acC^eT(a;C$ z_E2dlX?o*AF4elN`T3>3Y7o|s%@T`>=`HsCn^k&k-~7CHZ*S`a$~ERcdHByc2RrN6 znYuu<>P$^hGzS6%TlFz|70C|M?UV%NEXX+;aU-D`(DWe{>svS#_dQ6#?0Kv_W@sO7 z<0~K2W(EG_uFH|^Q+={-=@&DlZ9c=LewPM{-;;$Bq83U8c}S(nM$Ju52L&RY|02g5 zJuW+;TWWimsgrhn_Re#TO3?J}{z%)|lpGjR*Mv4!D2cTRLiTip=(-tg*Ry1FvsBA((KXG9Uzvz=-n63R`2Bz{``8Qqi-WPT5OBfXV z=tD)61U193{T6(6g9T~ry{tX`f?w+;^;A65ng>~>&QxFDeYTh1k`OC>qi&5PjP)W3 zIc@FBil6uI_JQ#4XwVJhCklj(Cf|Qc?=eyoXq?Y+MY=zG@%~9qI=+FCn9=vmGX9hAn&Wqy zvM*ckA20PFVrTz6fj)Ekb1sL7Cl!XCCcaSypG?(qeU)$mg+f{`lm7@y9jCa6@F`@9 zw|IL(YOdC0D|N01L$m5PK}cVnxn|H=&NsV?20dReMa2P|LS+5g4aHjFt#n@59*2_o6t%XDBeWtOpP1mo)Hk%im^CVA0)FggVl!jI;TVg+vMBG-v zdZkV*)Ls=$98dj62Uy9l8js4y23Zb-)pxH@86xNdL3Ymskoy^pj!wJE7lOEFO5bBbR|EX~5iq z>;f_5l^=3a^&f0LA^Yv^kA5l0stT8g|Mjd^r$-E5*@TiznOZFH#+A+Q5subQm7$_A zy_m259$)qo3U$%%zcnNS!J4?^=x51O5~w_Sizc50-AGlHk#l6@S}M2oYT`tU)ho>M z&^t?JtHvh}9ZfbSMeV01(C~}~4Yo4<(@HEe4M$Jn^_p>~H+l}T#x<}bT zc4B-iUA{yt9KpGNd|kIfr$3HC&9Iz`uLrKtj~z``(OL~Qi_WHrjg^?t8-c%tQZXBM zpvwY=z|&}Ag==nBJSNCb0P`2pz=v_8gc>CAh+o;y@>=B-jSxM?8lHZGekpG)a@v6` zsH_UUab~Qj8+`N{VO8bJN&AU80rEsRw`YdV5(#oWcR2#w9InC7#vc9UjB&&nb}5;K zykoP=fef_ehShaEm-@OQ_|2P)C~ZTmi_oi-nK$<9OHr(Rv0`u}?odP$rJ??=KpOPA zkjKg5W@EC(=0XX-R6+}D$Z|)j_uKj*S4v{u)#BEwf>?*YUNC(>xy)6oerogbbnN6n zrJ`00>-+G?MRkYy%bCS%wIlw0*=j`8=b>HkE7D3a-*X38?ECyj@`>O>%>?B>?bn5; zzUNc;`aQyQ&}YUiw^|l%6IgrXe9=Q~^EGdPdSm_Wg{xkVb2j&cf|XZL{>`(+8i*Un z$gvzDN><8a@l#!%Ovq^x(y<{y%`6Y_EpnsDHJrV|hb(+g+?NqER)W9g|xXxuT z*7s%SdX|XcqAS7sMQAN@y2rEUYYtlok(6A!6r|I=o-5tIhcISaY&YI)$-RIacoL`g zXVq8Ff7Ano6qe3vj=zrDowhWx>ZM+rBIcW|0;5?(W>3|1L0;j1Rm!0!3oWpB;0#A# zZE2nqC1fW5()h{wQHqpLZh%(XTYEI*F-=?qw1PkkIaEdubmeBGl3)sA7l+q4)~T7V z8`i(pTql?6YTXpZ!8G7zH2Wz zuK>^Ui)^~5xxiy2>(2~wwgDOy{<@9lqs=Rh`6RUqZ z4sLr)MD-1&V3oN5T@ZFv2>J=^x@DXQ&v6NO1dv*nR{O(G1l27f!yt)r%tqs{Yzw+Xjgs-k9hcpzC{+Ab8zkB1l z7xg%!FtPM9`PbsjtSpb7+~h|^uvD}{>)wKfCY>Gui8yhi495)+5GIZ;jLngPC@2nf7LqNU_%rF z`FJ$9QSv+?!vAQaB7; zH-1gjt%bWcFaIcq9Qn|tNx>n)o%`gMf!;QSvcVnNup$#9QN?E8 z#-Mu9ejD7!aKRIX@o)uNe==Dkr9!AV1WV;!5Qn@(LAzehhaC7Ve~mvbrRKf*nrzUG zwKv7~{R(MH%jreFiipSxi*y_P3PnAB*~M$0Zs)N-CRBCPWiHbTb_9IEg^~%nF1f!Y zO#*-$)_~W_---N;TI(ZJ`66q!mB%stI?ifdW7c*wFnjw~SB%|B3n4h=MOrgMrhMRqH(N`aTmP1{2R|#ZR8G3JQO$|4H|32`z=q%x6VH&; zdfO+@Y1EFw()YiI>Qspw6*q;~wTkRJd6n{qiP7>I)ssUWnM{F?o`y4m*w3PliMlaWy!{p%)-Py=m*;5P1_CflHN?I6mEjfQBu*wYoMPwazJ zs{E$3G@AVO4ffvo5zqP02R&k1mUcWBNV2qA=54x{ur5XBkrw~BOcwsIEvvPipeT0o zk0X`yu|!&dsB~-P+pfHvXb7=PxQhQ1_&8L9E&tiS)lj9CwZ zgZGZdrs?FyvR6Omg>+9OOQo>(pzQxqb>8t*{civ-gpf`4-g{iGSypys6C!(MXRB*O z$X+*F_6S+ody^f?7P84IBlSB+<9vVrd|y8Id*XC-pZobd&-?v6s*=WL$!#fAD$@w( zDD|(_&(%x!B5SHYbeqCA&SHWcbC_254u0X2h#$`o5yL(vZ#MjI^XxmvnsN=}YI+$_+_w=s9KaiV z&WJ{w-iyK>k3#d{$1aBVKI6rC@PP=8{Dq_8S?E1#PDQWN^VMO;=DXPu7)M|3k|S42w9ek5{ zHVQaa7?*deJ?7?BCqg^8TQ$}(WgR}vc2F6eIQL#zSQ2*@#@e9g3uQ~a(Nrl~+aPG( zS2g2Qbr*OYA~a zbmOlco!YBB(d=(I*xq4No^IRu(q=69(9mihuc`Jx!AN517MXvABsXiITzs&Yi z=mUK5&%^^5d_l+|2B{cGAqEJ1LC7Em85u|*200kW9|o)dLC7Ay{89h>6Tk@&gxq03 zh(Q2aC1eHyPJkdJ4+BOFu!L+K@P;6J2-I@~A$MRBqC7Hf&E2| z0GAr*Pz$X8iIkw81N%!G{Z_4Ee{rMVsx=Ifh(J9D21!Jqo&$pT)UkVORQIWWi~0`(jiXc7H3;z2zJ21!Jqo&$p5M+B%^!=N4!K+FP`|9**} zY7GM(+2wcsqgunDCJ~@&4TG9QfT}eNY7zme*08^U9niGF+xi>WftC@VY7K*$L|m%Y zFet!Zs@5L1yf^83g^}mM(_B{aB|3q-G@d2>@7r?;I2f+H@ zV*^_s0BcdCKj3oLyr95O|BRGwWn@DU1%wJf<3<$(eAd@Gf+UC?eLF`YCDMy@V|7|- z#`<|)o9D!_*UizeQ(D^}6PKjsT%T9kezS8W$+%@r%j2AcRTw|QGWS|n^W4LSZo4Hu zj%fxK_AozYGEa2nOeyTzGN!w>Yte@#n)=+UZ)-U zGTu?%hBGVYJ`5&CoWMAhjhK3F$^`hKOWVa>@5S%M`?VYNTl<3peubzoD;S}l=OSIb{t zII;@=TACRU`cw<}t|Ho#Xo{~D)lX9UDX$Z{2|jq4Y1qnT&KcnFcu{UqD!LJq$I083 zl)e?8LOFP(Adjw`$eJ>XQ&`rKANfuCxp^UZ9#J$`RV$PH!zWeJa&aH8zo$rheM>lW z9hEz1$~0#|?*$wYo1M$&SY93_$k4{g_8?|GHk!&;+AiF`yU(ZjWfXB(0)NN#z^^p9 zT58u~G?Fw$9w-+!UXAL1S2YkFf;WyN!RXkwAXzGz>>u1JtFKLwY4X_e)G9ID;@8U}`31h$TRm_Tss8Y%y{aYbBIifJFI~FgFz<@?j0z~YZjV_;eu?;Wc4|exFmE^^vwH)Bh(6=E+l}#} zVi0lr;WN?Gsg2bWbmiW(i@BPPweyBDZ(W()jEO)cgbU-!(s5tT6aO_|8(YLDak9VAf+ZdgG{}O?8A54^7jIsPFsI(o&vHm80;S!y}tO z+ZvjT$TQuzr2-{kWh%_NbDD*NCXx0jf?15+fI^Y(U-|c^Y>sjCk25DMe(`2&>*Xfg z>0Zum<+B>;*pV>9+r8hjpgNPLGc#%||LF;`LaUT5L=lm_CdRgz)P>*lW2@9AeryuH zr?*nFA^GDD1Coj&3DH=7RmC$H#Lc^qf$W+1YhSH7LZTbeTV#dxY4C7j32-}&{#$LX1R z@S|nMH zd*x{#Pr2S9?&{ks??1>^iXM9&Ki#Bv<|(uiJKnAV`iXZsqcw9rgm5M{&8Q=&(q_A(#IAY7q8Tt zql24iaUaP=p)?B3$#Iw5j^a~Hitsmd+6WFi5eapI9?6=o;+||Ve zxG^QNrNoHw*cuYHiTW=(4c)Isb#bu|>*q@f6;UOdD-9NA*En92>v`S@Yrw_f!x$SI zOlCaRPJhDG5Y}k_S~S(glb?#(==h%9X#GaYytzgcde(L6(}AhJ!ww}!jh8HnGu0tx zJN}i?{YZD8tFvOoyC^oIHImyVN2&GLTGXj0-%$DxRoGFII_Ny_ZmL$=>wJ`@$@mr| zl=U=)bL7Po>#w{(g2A86C+;rxvW79Yr#DDMbCQkx*}Wxqz6@G>_K!#e)B>ZO%3AIv z>Mp{YTuZY?s81iM3eWPmV;p;WN{W^A+>qt@ZZu(aVHD>hk~jR-{f**cCCRqi`+0d) zPWq~xd<5ELZK2xqtkVZRFQbhi)1aQ30N!?Ie^0lc`?gP>X%JiI;}veX{;Im=`SWp6 z-;XtvvRB=Lj+ffBri#)5Zoos~PjZa~mM|?l)8Zh=h(RMs2 zRQjkt_hN>3dD7;p$EzM{hvi64r+mkri)ZIw_gXG0{KV%m#Cbd9Cxr24-nR+cGJcdt zh;LgpI2yN{kF?)vtdk%&3g4@);jh`=S@S>ln*B!Vu&lHAZ6Wf!qrrG#PhyYi{8{G` z>E~<12%W=_W&2K>Yo8k__H7+pJ@84fmJ@65(Tj6kr?#_9oaoWiAc}rQdU7v)SwxRv zcTuEw>p=EAvXYNU$g10yX`vU@i_Paib@Cuv0{PU7o_AFWcQt{kuROKa&g;;#J4COc z_(3GLsP4VaFXJzY9y>doXI9Me6_}ofW|2O(TtevZUH4EuAR%?JFP`nAp~|!u{Ph8O zqf{+dCoEy9|JL^^n}@qs{p`xdi6`G!9L~}ki1XpT5Mws0`V=ScFYj6QSIoaSx*#cfKw4Rrs?sZb=Glu0d<} zP({SU@Er+#h4=Ti-cfH@e(ojEOE9GkJ@dJfmS%<~{+@RC#dD9xBdL{oUn;7?r{U#; z;z_Qo+!O3 zV$!(#;%l8M7u6VJ(AL5A7hL0;#InOC`UIt6-$h3)P$yj?wfnBVUJ3jhG_NOr#S~+1 zru#drDKWt)1uypXcQjoF?k};UNhFc*Pk^3hsT$%B9_* zB34Af^{u`!rjMVP9&aCh-OMW+e0WU5@Gf@FPeQ`xUWDhptQ7lNS~EEPf=$vC^4QC< zkI%vKRmjRCVZj^noN3$!Um9w(s5EaIGFoe{URfAct!k@P{v_Pn}lrr5rY(w@Jfqyikd-%MUQ=>dVd1|os5A`Q zl){&z2`h;pJI}Pa;VZDgPKNzVY3d_c_?D!(11d(_2lq#c)|D;`SH7%VZL=osB$&M( z=tC16Cs=98vZZjv-tP+ZN~NOT@3Z;Q7)7p}bK} zW>Yglv)ohL?~y^Dux-L0;d;Cec$-i7jh#KbT7Ll}-n#6sq~x-JsW$-^6l zCWzN{&IK*yMhYjqvmW-YFqNT%K~&ng>2KT*Flnk!(dWdu+-GgD3nny%D62fK;d-!M zv6u9X#*Yx_r}rcwUAnP^s?kNuWdCv232FLZhBimcLp`}6WPpLbUCgn5x#G^}j*ecD z9h}v}?eNI7y3$I~JPS3}`<&T(Oj7C#EK&&iUu;*yOwzB^Mef!{?w&;MqAgrsBF%r` zoSHfLBhOanx_e8v*MaF0ajRQ??%h!DN!d`*9OlTAH|1UX)0#J`zbL3tw(@;%eY$T zkR3M&h>(Qm%z#w}69tuOHY7ND;P(n>f`bZl)`I9&mP(=8V(bFiTh@Dq=?TDrEgZEBJ z+_cbY>WgkmKYtYw8;BYDSz3-zusp}WG9Url>6*&&ZcmT6c_-W6LFE#z-yKX4DI zVdH2sAmpX0jPE6g!?)JDUOr|`XxlEQ{XSeCUnL?q)Px@ArpIl60{Z;MI40ZIG0fe~ zjf!vXWh+-mWh-rpNi!qdsG}>#SzoP`5*db(vb_koAwRFA!GV0iCFF#Bt$0`Nkq)H? zSu!lUqOeNU0!5pB5Fe&7!#5%0{4zXw6Fn`O%~6k(S9+mX>ad^&326(M2HsIqWh)~Uz;6zcl9%z9WndJ2ql~^Xif&G~ zW|-ntsS;icFQ;DY(7im|TSmMr-uHg)<<4>TG4@?p zLHez~T|y8k>#1;5ClEtxtToMU@wHFa)MF?9d* zyYo%eiJc zG9~SKP8ch)La({2){}FOuQ4uG3+ow9OV6*CZ13QLQi2I@H<+&nBHbU~Sz#Dklrl+=#@lo&o*eb<~cdii3E5_zb~~d=<3pYP|M$DEIj3 zk2Zuk(*r!Q*F$EXiX7x_@s=2}HnIEPzS5m)RRMHhAVH>(5&UkTfGi~=;P}%%e4mVf z1W8Oz@TYl#G9$1=CkHMxVi6mjzhqT1ZIC+tBKIpVmKm}5@mzY(qo{HnLFn;s7Zb8ioesJoN>k@j% z@9;$MG_S zlC*KebmPco#1XgQ_SHinOy7lTv(_r*Pd0bh8Q6yx)1m=BHBADo@P+AGFsVP~{i9arwoKYv(#ouroJW!-D$f^`MFxeGcj2N#Z@MRd}U z0ttRk)3-sd^<0W!w~R^2b0$$pFw|U9I=l8SGBtkcBO95I+yb$C<5B8)=wCm@U&2c} zN;^ZKaA>7OV`&!`$QnONC5B_+L}&;5HhdNa-~s7W+nTXK+sYIN8G1LS2^ov}oBG(n z74$f)*-Uau4VVU_)r-WUPA=?)k5VKJ*R(2q(%)KZfBn)=#G4!W^2V1t&rH~wg6z2- z%Dv%8Fe=E&*23d*ThOiRZ0*X)ir@}_pG5^CJR5#(dy!>pQlM9RAe45VbMG<4B`b1$ zh@vJ=MC^JHam6?jcUL=``;B&2Tyx$C?qd07<*-#RVH#EWaCkT}qesrQWM_(x_+~Bx z%U+lLR1|8k&r0mU`MsQ~@|9ep_PH&GNQR2<(Ru}5>Z@TYs-dET*$-ccX?@txVSOjy zfRK^k+4!uIH1Y6Rhk#h6vCJ`5PrKKnuv7N>^cH5K0ZgGC73*&=r|yKEi5xqwBpzoH zvMR47FxR}RMk{ezJzJI>yzTS-owyCxs-sgj(SYAf3YD;EfIw=$RCWm|&bDO><5B!J z$yrRrvoeD4!&^OyYWLE2o-%2^G*9`VHz0?=zo(-!vo@MkmqaRSNel6+_M=rQw%&VFhdtrjgj>0DYvJFO zABE4v;)V3<`!FN0DH*^@wnuuawkNG26W?8$C#3@C=YxxM{{O`9e z4svCmqTMhxG+4^OxXJaw$iJoH)9KhLSG~7mD@krFp1FuuhzV zceoDkSd`VbY0`bTb2m5-n70!T$ckj=QwZUc{I{)nq(vmCBDN;cG%~0gd#O>x5iMRt60MRMkx`-^w&AM~dV@>jpi?pP# zzh-d8Zgi^C06|zYSeK&OfEy#mxx&EJU5c}mI&E#uFnzR4g!kL(LcK~G`cOs7aJAdi zr@M4_%~Lmt$EuTrZmln-OLC``48>`aBKVz@@y`$p-6macVp#`v=U1J`Z30GL{OI@a z6O(d!mC~5fwj=H;XyCl-fXguEa923~If+LNLi6C}7i{;_(n^K*)I(Rqz9qN+G)v#yH zfB1_2z#!0PNIE2bSebZYrxKiLQuU1ES(BL^%}5rDg@PQz|yG@RIdR` zr$YbgHJV`QROqr?WBIR3wGdRV0ZXSsP`w5$oeDwq8nARK1l4Q6(y0(suK`P^LQuU1 zES(DdZTe=OLugNcM0v%0x#{*xreUwadq+rj*%XrmX#NmWOv#2+TfsO3_UV87F9H4H z2q@TU@@oknUPYQJkPxB*-w^3U56ta))O#HldB2`;AKBYYNJz*}2UMY9biAq-4pvXB zfvZHpv0&^q5e!w?RU-n%~=p+Cf5+Yv3RJ zvoXjRB&0&tEC5$V642oRy_^U+YS4!W%L$Mai-d$|mp`I>hld^cZGn&piIOWocscO| ziMB?_@eYS53>^g+b#^&h1-KXIYdpWFouC12boszW4=6%FXHW`3QbdB*K;#S`PU9Nq z2LqqCGBMsL(td+tJktjLv!s$F*5xlAjs9wh|Ikq;c1$YWu16Kwy`q@;j9o1Q?=8`d zUjYIfu`DuoMs4jrM4c~vmu5xAaewIwF2nBO^^lurp>Ez^Bk<7eYY4q?5vRhq&#}28 zdB^QsGz-;?j{P80_Vath!=}_Lsi=IzR2Qe`JH^DyI?e*gk57s{uh5}MMK-T_+6=En zdfjJcJW3QCa#?v}!SoQ#gly?GoiE1&D}DRc3I=itie`Sj-he3-`>_}eBDMf?RDuL} zn-bjv+mL1lyb4LjA0H}+^SpIqw5};ykTn3!Z!BXch~LXh^x$RKB9zqb<>Sw0J@2c& zI>4;1ppv^Hgxr3x>z$(KJK|r=9{q0j_EUw1X1k-g@L#k;vZfg>FLXKxw&-{C@zO?H zwYNr%)`rA9$nI}_vh3)>+8QQb(i|w=(bgG=;~RWX;ZdX>q~81q!}(1|U;9#FGSyan z!KT7}ZMjMBBu>ITbx*__Id>##P{-Nb(3GXx1TFo#wfN=50OeWRBljg;n3zi#pKbFq z+x*j!wW%z3t<116FT2DI)6f$`R-0Ltr;1`HLJgm+F}SB=GIB`n-ua1FIl96EH(wv{ zb3tWBopacHl{VVDL?^g7F^_iX)IGYeS+$2K|pAa%2EOkEPudtQ>ytQ`pl|dk0?xFBV z;0?Vu>4k+wnh!O#A7(!slDWQ;2crl6xmKqu&fQu$o}eT_6(KFW3tLHz4F z;p@w?btysDVg2IFU#~n|Tr4x(_K$kQQJZ>g6?0xxtz2R$XyW;oB^m4*sTVIZ3Ei&L z2%)W9ou#1IyE>cvzT~UEo?Rj87k$dY4%rusu)WtEqKM6}BTIyCp6h-YuYng?U4E9| zy2(C5z;%l91nq33=we0%~*KBN+IkW-H*%{-dAaft4%1S6I$sLU>#Vb=6BiEh_%%0s1LHNT6&b4%UcgUp~mQepp0jmukeLmyhF8?lxm=QBQ?{$>yYqJ z)6%t6DJ}5uOl1w>M`aXa^aKueJ|gH`$Y<{Jq>%G zAyAQs#`wTFQ-&dz%A+PIGg)@@sR5$MU$1c!FIl+=5#Bv9!R)mD_0Iyh^dxNbHT_(MyUJD(TmFt?R_! ziwUzEOgBt>MxJUM!MTx>a3)%^U&ZoT?^+W68x~8E2~4XjRW?4#S7zy>R5>n%#6DM8 z-7Iemj%5Zg?5Ge4e~t9faaHTd?SGsS%XKW~jUZR)$TJu4CUQ*_wu=(5Pt9vU{90>a zGa92$VqInCocp@@8O8By$@T-4Expuol>)@~a)W%P^SZmI5kaEXBO{wi*L=V4E9kya z7-m%eyqAD$$B;vbYB#dWwa*y(;pXv)(}ykHtihN$yr#UuZdv}p*N)9Xj(90XnxXF` zs_GC0CkWc7Qr7kn|f@CUG?_U5b0yDW#6s?K7+T80U0ybRGQPrtZ#p5 zAGvsM@!D}}-83Kjh{jdjI_Zip3l_a3(SVU?mre8Y7tcg5BGeT`Fp$aiA64lRAAg$* zIPIw268XC>%R}&1+ZTfllKIBN!s%rjJpAmJ@rcfa4;bh+JHt2m>z$)IP zG%=s#Vf>PGb?~im#_ON07*=YxtxId>m-^18maf1#nlm+Nt5>(*y!fm|w5vW7d6P2n zq9O)CE)F*cz41oTLobHbzH4`|2+=}PiL_56QNKMM)>OzVJQr)d%hypVXtrnz_sCm&G{(c3=A8a(=oqb3n0Yp-%o+bgt3~po&jKa)K}Q5y;JI(&fvV5r z+VsT&XTBdA$oB8$VzikT&7@`ThBwDItJi-b+F2qtzD$%gyeMP0h1D1EJb0j@} zFQ8#FK5Rwv=oT_8c!=;=(z(J^ZH}12a3oT*^gYq@uBS9B21{uW4nQHtaP$nEQ&eh`i&M z0>rB6386&7k^RixXMI9zM=HU*|;UfZfAGPiSs(D#_M3P+uTwt*8%_ELAM3%qhTxQZ=i^RR< zUgec|iiSHM%!o+HUDZuxyCIk}I>taYg@|fx{w6P?t#Y1fMw!iYdrpL`^}|4&>{u0N zU%2V{Ncr6)>aUa^P`@y#Y*&gZ^$XNJ;q@VhUwig`L?GCS_m}Uz&zj^a7kA^rSG~H% z441!rMd6jcXU9r&pURHu^>{LQk8%FZ_42A4?!rxcKO#k`sU+OJ3F6PTju`TL?())z zKSMYA$@XNAT;$`-aBJH%YZSAvMA+fWFFTeeti#O0!i=*f^1fq_Ob_=J-)`V?9(=Fs z{1v!yzy74?N}PWMF^~@gyXd3x3&Wr$|G-M{vW5U`>0v;^u!vF^iS>#GC?Ei@|1KZ^ zmjeX^_8N0kBFx{-|E~%oO_#_7uP+XW(nW6hy4Zw;i+?HDW|W!WhV5 z3gE>(3gE&L3L*wz9wY`anvj5?FjAa@NU(;2lISKLQb3Cq{F@0QF9$6;a1b%02=e`& z5TMLSq)hu~>-1;i`F9@EpPi;K{LfAk;_SdJ6olDIrxSzhimA-?W%rwQ?Ompje>@O9t~{RgiD@8~~t9e7Lsf$P9~ z`VU$M-qe4{I`FQ3gLVHV1PDW5-Q`Xb;_5DUnh;iZxzmI=>dT!bgi&AaG$D-oa;FJl z)F6T^3}Mul69R-Gjv7Reg&~d_*uMhHe~$~C5FiY3)F6T^42@y{5oBQqqXrRVID}Dy z2r?YPs6hl7eu+^-69V86M-3v#@V^HYfPDsT3;y?@0xW^sfoNWH@+i`Oky^ICO3S5o9=YZUGTwICO3S5o9=YZUGTw`0sNIIBo(& zkm1m=1w@eH(6I$Xkm1m=<#Iv*96Gmv2r?Wxw}1#T96Gmv2r?Yvs6hl74*cH#9Na(z z84h98Ac72sFlrD%hC>)Nm`j5L81-KU8+fM!>whdMh#-tWNrAAAc=dxArGIdIw&9Lmdq z2r?YX%Yg_o9KxtU1Q`ycEr+xgLDEwj+upqD(j zhHeo27=S|`1K>|iq&|sy^R(i(%Dy{Y zB;(szZ{tG=n;pUaic%;2rse*G8X?=A3QSsmKQ)xP>ITV&4<#i9?-Hr1=_ftPa*3JB z$@-d{z>nVgxr7O2mihjpgf5I$_ANnwwiMB6@72`3D`>T@zJv+eKbV*`!YgCt%<>az zo~$Fn5B$4_3NvlC886INDK`aLvU7fiX6 z{uluh)4N%>tt(jKCYC?($Y+G0h|pn&P)Vacn7$?}hqy|P-$Q^&8FC$4MsBzbmA~qW z%NAoc)?!GW1gZj|3z}1o+%V>#C5xDxlld?Kf`CeNT<~E1iAl$M5o$7RxvU7wU>(R@fKSi!tNx7fvAu~2Qn*YrU5dE9E=qBXfsD>sGUy7*E3JIU2MGE= zMud-xxs&;j&IkQa`Hd^&bWEhZS-mh;BXK%X#mK`Obi^1rb9p zZx(qY>PofUzU4j@vhCr1)KYv@Ho27=oj5-Jt0X4oO*!kU?1}GsO@`bC+Q;29-YM;RbAKSUAZnkxxnjZ-yNGG zYJa%qDjt=l3(dH@7N)!97r#8KE1Gx6JI;GB^q~^(V$`)>zijOoCEfX1TKaAl#fO=` zyazSKgS$^gHq(mG*J^dvHW_(nwL85d^m;PB{;DmSPbj)`Xs*>KTZHyv)uiZ5P3W0^ zQTx-PTFS~fC;XlAecC(+r(B0a^UmBCoe1?0$30nW-}e~3v5ko88TKxAn-(IL2m;1k zZnIDJrFCw1sqG>tc{hD-avFd0F6PC=TAK^)GD$4=^sM!5pE>n>cPGPdJAA5a%ko>2 zO!2O}OdqVMw=+ecisId}m*57E)nRflW6q&R0DRE>Wn&tA{F`fNBYw-{FK!!)2RsO+ z)PQ;m!MuS$25u^z9iZDClGJ^_yl>I#q81i*N-#DOF&|^;n4=_NIK5-hz`BEWF%fFP zm^HfS!s{tTb>2wn#Wxez)8H7tw%Z?P=e4emhxD+U+bx!LMdacRP9sW(7PN1cPLRWP z(%u_m6V#d!CT8wa!>Ve(AnY~aK9;z&n+muim8<4Lt30liHffFBy%R4i0&faE3)|QV z%nV75BoIiof3Tsn7tric;UPxl2Pm$8)7pR)5S0Mp3k`Vr&$zbT z7~txpFtoZ0)IxfWh4`mAls9P|D4(|^MGX) zcpWe&guP}jnV1qA>5xZEgpA4qt^uaCT}P_t5z` zS^(T)iYBx@k?5NoYvgjMZk1U-$Klud=AMq8o|^2UoP5eyWtzsF!VRe|{5yAP@dzF$ z$(mNwzd_@SPM}K&T%(Tj*o+fhPJV##$gR>QX}QQI>CjyNwf!KYmyV~`EB8AbcK$tY zY|y^Ae;)tYoI0InHaV!uS|qG}J24EQZD;I}RP&;4su8Wq`y~MV-OdZD+$KI>jgVyc z@JXfo2T9YamY)oAhgvkDhATny5xH%#HcGsjRZ!%_)BHaA2>!{J{HNR@`)jETpKPQ* z3|lFf9XvR)2iYCNSW`iA9p;mOzjcE{YK&liRn#ko_Xh%NbcS*DiGlIt1cS1QibKZe=i`mi;vc-cs44LDqJ zHac95uuK1*OH>j6xSk}E;dX`ucb(FG0-6=AwcT^(hcFihp*sXIvFH?d^UCVjScQs` zBTYBo-c>i9h%=4D>Z{RsR&SvF-Y&@U^~b4WnXfvzm;;ZUnrCsMRqw8DPcb2GCCC*! zD?F=j!CZ2t$vH6M31*kfu?$;2_s_^@$?#jANX;Y7>$~b=oX@U#I2c~bb{iEghwS^56|Y?>4RYh!2(^yTjcld1lRW1eJb=ijX=tN=of7{ znkX5de;wetWHLl_bBeN_5lb}?@iLgg=c5MqVwy`Jwvty(p$?t(=N$v`7MpzCfop7b zuqruY$KKHXd~E(N4tVslZ1=XqEB#gWfkY>%=Q~1H#Jrw+5GY z2g1EHULC)lAzJ==KEB(bFnubAaAbGp>so5@{T8~-QW-<@i|W~26EEsd62ww_g6~W8 z8WEBRUB8joAD$g@WvUh2eRx~cWQC}j;%@%(-YBe;!Duo}bvDCu8O2UU+=i%kyQ1TQ zt`;g9I!jr_zYBi&!y?~wzT~!-($G{8^7d_i>U)To`~_n_PSJ*&U(U(DQ<2@&!N1W! zuUcDt+kcn8BegE(>)G2c93AtB+;<}t--CUYp3C+#OKrav&qaNFhd$}&CL7w6dWd4* z!=G9{9!BIb3Tv^pBj{U%R%x_o%k~tXrC4H%$?$|#HLflDZ_ufU<7SyzP3k(G;h^QW zsWCrT=-7-d$awE!SaZlnizxae7D6QJ z`c2!3T;X0E8}Sv>@|6B7%9=L@y;?l=cDT{|WJAlu>T86nNdsqDkZ17LN2!(F+eB=H zmafw2EuKMXyyN?K?r`N-N%U*`dXr75jo858SN&5>M+Kx*Hi&DC;~yBskULTN+|yiA z%@-E(uboDtpz~*x&^z@UNkXu;5t31lF5T(i$X=4LUiR}koN4<`xgHMZQ2*takRWi} zvnyfMD|25ehq-8Zc3ywxN|SR)&`%gGvo`C1a&8$3MXe&^s$n3d1^O*EvjSVL`&!)(df~1cXX&iiuTyg47P?xz_A=03VIOeC^A8!N1uYB7YCxcRZgc zXg)D{VgYRb|DM31K^%Yy>9$lr6gJeWKY`FjkP2afu{>i2Qu z)-5_-WIqu;eho0Pg98Tz7&#A+*=&hh0<@Piv*?%UNfCMv?}K9mfkTB^7RNVWj3B!V z3LrP+NJl5W!_@A6Or`rXwkhZ9p3l&Bav2NCF}+NTwCCRTyyRNCxJUOazk0=3zg%%b zL?ZAgdo8KK(&STg1}wK3)7G1ZAaS=>=0YSQ5+{6v|66Vp_%61rWY9NIfy z$R&sFi!1j{dR5gtO4luBd#NxRL%53!wT<7ejrffpo@VPwGjY|Go9s?k8#TV7(C7`Q zk(WhWyY_X6@8gv#YYZYXmbb`x4wr+d2x!wyIx!Jy8GX`ztq(#{qgtm-S5WUpk|m=h zvs??MBDm5Q&1iWq!HzaZ6*o@;Ta-{rup^?6V>FoxQ?ZH}BTw&%|NU343J8B zqLdb>{WV-+)Regut16Q*RQsNq-dif}W`9$sb`2#$YmyelVu`zN8AMP_gGof@YOStb z!+vHFiiWm9brU6*fm_aB>!ygs^|GV)&vO)6a57_zI=d#hqPXi;1efZX&8dBkU@4Zl&pf=Pw^wwA?*zKFR z^AJJzHFb~he*gN4Np1pKV(=B))$(CX&b7=p(s_1C}h0Mg` z15>TKvcd{$gGTGs(E;x#cK&mcJ-I4o;=IEME#DCiqb6X&U`jysv#-b{Z}D%|4heveuy>gF(~r;E5HFE>oxDySkk zEK)oogWVpMd?}hc-D@67-mWsBsXM#sBW+uFcD2ELGDW&oN*Fc0Pa~qb$Wk;bUzC= zDG_HI8dZG!*;c5iUvgpA$N1sB;Jf6pT~-V1lxc$0))K7KVI-t7=R4)_3|_3F$`k=n zvr!m5s-7dxCo*?482%dbHgiSqPpc4~{N{KWp!&yt+MwU!q?4FrFVK>S*? z#5Ijm#8Id~ISL$fSYtdxd=K@qm{rp{PaKVc6ga*?RAXCs?Ij8lbDfx^26crP6AdKr zNWl3%E$RsG?zG$?ce$42Oen6M^qDhWBW1c}*OU%DsJbymOI3OWYI< zchl6tvf3W>ze&HibMa!P#fME(F6ZMN@asr%Tkf z)+YXP;l%pV>YTlW7izX+MLW8uQ2~Va1#yk&j~I;D`WSTlcx~r6&~pig+St3;@OfSd zCKoonOFmtH)c!nB>aD!@^#_7V+|{A6?P3A^Vw>94cGC#in;f>AALXPoN0nC0WJp_6 zL}O#3sicl$7nCI45*Lmt!Yj1O+?lElk9uz$1x(tcw=F7eHE;+iNB7H9 zl&EgJ2$&onIi{zidb}*_rgD=p%jO7=e+M_FZ) zE5rCSBKk#E1o-kv4_^klp%h@}2Sj(mzn7nkabk@Pk-rQ?#iHsJhJ{r;Gk0!pP@_6w zlg-%0St9rt^yNm$o3}UDaRc&m8+3MGZHH6@_QWLU+(HB!7K!EV9~$bONt8I|)GEo6 zZTKwsMBhgdSNn2xoE~dfU8(pzV>)AAh2^zVvvfgX$F5$7Nbe8wiZ?vuFUGdKIPr;; ziY*HiWN#_G;NSG{92%)`8W6B8btx8n7QrW-5yqNII9ZC%pGIECi*1tetGmNVZy;t! z0OviD5GM$c<&GgKN!-iY`FOK*rrh0|=6a{dP*U232-O`GWY!vL`)I6_&Cye2?GtbB z&}0;yJ{q5@PJW{&=odmvc53X?wDb>dTsI~%t=f(o@z9`PWcEJGxqV(2zlnY3kYRb< zMroKkh!1m9+1o)fI>SSE?9d_paKnq$okwy{PM*9Fk&(Mr?4|Q~c6G&WJ5G|VE(1Yd6{ zU5v4_t278INou^}742gR&XoJi)uY)@?~gGS5bhbaTAg24LR{H#kc^^Hcz@%I#K6=& z$~oUBWQfcwWh{zA6!)Vg^vAGIgB)VA3&uQ^tCxm2-=w7*zs~IpwF2_CO)>T)7lJvKwcN$+R%zn*Vx%9d=tLZ`8Mk-zf`S8a2Az{ z&5R0-m8CNF3%&}imKP#?CM~WqJ8R$7HjWx6>s0eoDQ%u2Z~5oFhw-azNW05-+I_n5 zjYG137^fkckX9AoO&K_s8yry4^XC zWS6c(*L^BU|EYL9+gN^Y?hfveQOY|N6%ysqGbH30&kk#U*mMv%iCYcSc1zr?B*GSHaUzV3@q&Zkb1U&`oh5?QQb7*x-sWWekI3hg?-0rNZ8m-g zG+6tP$q>A{;0V5&L38-H<}jQr;-j~>+=dPX=lz4ClO=X>MTcYz=dtM-p+(s+#I#9wL)qKuHSD7aN~S<*D4oD z9Vz&xdoCJXzct?bGo|L)3-Qdr)C#Fg%+~JvUMnw$h4kp04)u7e&L1|t+7g9~!P(bS zjEq&qb^9DI^HFQ3Y&0|Rqr0>}9^4Xt{j6l{7a>-XMf z&E_VVx0k=OE4i7b-$2`x@$1P)+5n3VjdHskr^^rTc+n#pW7vOD&o*v(T#b>m(Tl)1 zq@kQ_;*NPfl&!J3dFHzRM-Mz%k#hOKniJ zTSJlLJLXH6V$`AQ$iKCD@G#~>@WPh8kJ4P@P-(~uoZPojw6b8XW*<+G7yqc1wvPNt zRoa@$=2Z>WF!n*@!@-^YWb6s94{0J83yJ4f9{iH{I@4o;8<|`(*K#P>IQXm-d{2u% z)mDeIXUJ8luQOjU&+L@h7--NvuJP$rh;CAEU8#ti&-MMgE;8YX1wwbJ8tw^gQmC?J zoeKYS>Y2YNn+j>GGaWl=w_Jes=?fnta85nH!uN=s+bFKtQh{XD#zki~Ed~cyIu_H< zc)B3ux`{GR|1pkN?OmJZ?I;NzZtzY-joZvpW)-JsORVwh=4%JR%aOme+Gf9>l717L zuX9tW5&vU0?gw;D2ooK?jrzhJ#(;~Dlk<2KaV(n8=6_G>T$`~!=c;SK+3($2q~}B| z8Y3i!x=rK8H}(2^6khurAHS#2lIVk4Oz!8qd++5gt9=uWATifTPMrBt^tM7K=k`!D zPiMf(VF8|QLFpUVFQr*c1w9L@8gw+X8$?APnGc>OkzQAP7O9sRP4(!Z-HW~YrOJ@+ctM>@`mq&>-8m7K|amE$gqaM$MEm^CBnAltPVtW6$x8jHFk zOoM-yeBqnuDo^CVO|{v!@iQx?v#w*U-CkGQ<;SiIhJUE!LbP0NrFTzG`Q~ct!DgqH zZ@T*YQOz>~>x_kGjpNd($+e%cbJcUK$uU>eS@z5q3rKRS4LdU`4tKEC*!WdiDnr%R zg^TXT6J~5JcW6d!M@H_diK>IdZjXUFzR<`wEONzf_Clozci+8TckQOY;tbWW&o%c2 z?Pg|j*gAr*@>UqU|FNruwDr>+Def%yyNJ|05KT=hHd!9;9v?B_t$)THS4T`>DvJ5& z&>9r(!XR`!XW1yS>fw}6()~$|<_VF(Qey5Cllpsh>7#Zy$UHq8{GQmBy)6wv4(%U3 zW4OcCf*jPFJRX*YfrA(IUgc4=ge@pJY*SNdjQTq9G$|*O@0Witq%m(J`2KU8^E7|b zD}T=k3BiZK$~TE+r>I7Qa~;*6Tw^+o+0A+IEa&u{m*p3(yqLu^`>u9vwwtNxY>b}A z1Xlo`wf?1x#$o!RZ?+bF?C4#Mm7;I3|5z$D=yE=zFX(;c8)g2Ohyw#p(RPI;XXz6E zD?S+~Z^JtuTzkDtCk;9x$O7EI1#+I%Lr~?)AH`nUyfSj(Rc(gDaQUxgW`*^`kSB z_eCJEZML-Rh0Q|?@8>y7F9fx&q+Na_cwh4e5|QJ*E~#@1>96Efa)Eot#RSU?d54LY zCfJ)7>%dREMPxPmTmUtr_s(XT*@?C5 zz6AQ#Jj_U&6J81nBaI;bXquP)5@9+xad|t7-Q||u;0v)Gjdg5I$&TJ)w%Og9>CNo|wuE3sF;y zkaiX?qUcw-$&NC)ugZMLT;=79=z}9rm+u_m6oBl*O!LDC# z#a44wSDW84OwAAASRNPuN$|rr8E@V!H?)6I@M6tjQq4yl!B>wW$G=N$Qxx|MV}7Re zt^QKt9WQ3ExfCAfbm!NPA8%Qtb=;0OMk6pc#B$c#!rVPJUW{zWwI&$jpQlzk{Bis2 z+IVH&{?F6bGK0zzVkvy99thnf(xi)KsNgRx9T%2(y}I$^mu+>BJmHP40laR(^s`h` znuUIp?3MXABV!}DP0|D`)AMn^3M%_ZKWd1jIbAOp+&hE82R+hhV!SgkG!`J`V8zAkjJEhjo|&D z45LCn@8_H7UN&i5DI7WMtJG)ryZC{mq-xeXAbg~LveI=m{a*jd*OJ9;^OA+O<0ElK z^EHmN1C~s@R%MUsZTvvdsFb!x*|>s+R~~DNr*=k3V86zUE-eXle>QzF$24}~26ym~ zbn<#lw*=0SCYtxz8U9==D`$u3c|&wrcH1#F)4pRg^aVD>Op(T+CjLEjuh;(%|IsSZ zsIdHLBK+S{ME~s}{NGYU3nTw;DMC+({i!*DdIS2OG8%+V$`Qb8M8j1y&}%@$O*G(G zqTwPMC|#i89vY}zpy3u8C|sc7658+QVbE|34QeT(;T9THSV6-rG^nqFhFfS*T?Gxd z(4e*o8g8LMWfk;456?iP;1U{CRYCt>LOW?GqTv=AR8&F3Ei|a7f`(gYP)!95x6q)L z3L0*qK_wM5+(LsoDrmTb231tha0%^qOA!sX(4c|}8g8LM{S-9ZLWAllXt;$2wNub= z3k@o#py3u8)J;Ld!#tsC3K}k#zL{ zAVdppp+PN0G~7aiT8e1+;ZUfhh=xmOP)iXFmC*iaDWc&P8f3Ji;T9TL2;fN(2(swW za0?A;DWc&P8q`umpR~~Qp_U>VE}=m!MKoMO``uDR!!0zZrHF=GXi!TL4Y$ysmLeK1 zp+PN0G~7XhT8e16f(Eq|(Qp9`YAK@O{u$I#M1%U-zb!>HTt9$%b z8x~jx;7OqiYAK@O!Wq<3M8kbEsHKR8>t;|(5iJ2viiKK=Xt-?#wG`2C*$iqaqT#L? z)KWylRWqoih=z-1P)iXF_spP{A{wrlK`lk}Nz3g2mLeK%nL#Z@G+Z(R3lYL_#|*3k z@NdNo8k7nkTrdL*0Y0g~K`ljqPp%i#QUv(qg8gnOf&(XiAEA~az;H(otOfYwlMl5N z0fswzU@1Zv-tD25BETp7pq3)QFhQ^sV3?o?XeojNFhj5wV3;9T3ouL&ECm=Q2$lj2 z69h{Eh6#eD2;qNrey|i^m>|?r1P5S-U@gEfL$DTLm>^gRFia3E1sEm>mI4eD1WN&i z34)~npAh`rQbY*D_W-D+2r$eLtOXb*2$lj269h{Eh6#eD0K){qQh;HCU@5?V31WV? z6u|+QAy^CW2}3Yq9bouw07jid7$yjo0t^!bO96%nf~5e%1i?~({}2R|g25bV=m5+R ztOfWlLvS9tgz#MfOe}^lOb{$Z2*dXUFqs#^FhQ^sV3;6S3h@5~B|)!T1gr%IV1{5V z!0;smYXOD{f~5ebyu2;QTSK8uGq406Y-RH&=1w7!q&=U45WoVXuuQINpHrbZTm^%F zDU~!{Tk25}DwN$@5he2a5))>0w$gfJlNA}`y0Pq`bz2-sOc!3{Eo1$5cEYe`=}G+> z-}2WS9eM7Q(Aay5G-7mQ7KCfqgn~JoaW&`pH+;A&-O?KR#T@i>9dDfDb(@={)JcsD zyWn`RAWv^im8M_z1`~=PZx9xF_>#3~&`yBx{#iAw2Qg$xIoQdn^wH?c^s@GW9GRkT zlwH+Ktckj8AD_Co>X3Mofs%nIL+fJP`#1CoFSUYl2n4)GZj$E9DV-)HAu0z8) zOHY)8mrTvGihG9NUCKW6NtA;-}xh36~~^X;CT@nJ4bgjZjwAb1L9g1@mYE`T|AQ6#9ZQ28@zhq zLBwvPXAp=(HpZ^5)0Ye=lCp_YC3qOb7)kl`@o-Ns&>*tjXR+I*as=xpVO>2v%Y%bY z%%vMXeBO8o)#}_bh>1Z&Q@Z348w*M((D(b?3_=Ll`Y6$#Vs3a!{1N4|rx}j*Sv@J} z9@#}ZS!*_q?z^WIP)ReaPkn6hvd9+e#^jXCld!x=dG+ve&g-nCM-dc@k9OS9pbQ z#ce$1wuAta+ZYyxDRvCw6O_ZIm@d_PCU@sh;>_2|_jGm(@3&TLBL~uLvZD{ThH%Ja zChu(Stw^!nF%)&cPnmtX=vXpr-aN~96Zb8}&8BFn$+pKgzJ$jxNBiHne%!ul5#e9+ zT)A~t%DQ#0uxv;)FoN^b&3MC4EmOf0m(Km{J3cs^+oT=E-0Xa1wa-{Kd|O7Or?%Cv zcDD6almC9tjjMfreT`R#7rEx`x}526H3mt%cog}xk!d~Q)5c+(v)MFt*wZCXA+w(S zt;MbTJ{QE!C5(kzzwyjvWuIlf7PosV#-oC`t9a?a_tM2n%hJ3_9*kXf^3`IWGBRSF zt&;FHFC9^DGcjP6M})trJ~_y8Yx8#3UhTm#c}r>1L%Lx=GN&3lr>Heom+`jFf%^V_tSPx2~Hj{ z3#ILKOMTt>(Hh}rq#e7AcIiy2z)`9q?a{3Ye~)jjtKohPEiax8?8zPRU-B1bgg~sOZM%V-``|jtgMQCkv2NWt{D>Iz3*2=y_mpK6&|81ctT7+nBV|s8D9%r^xit zU=r!>s|GQPm9ne`LkUh-vOw%N1x&)+lxSy4veOP}HWUxI3-Q12A-C=dJ@Rd~bLQfW zwzZ{=@u~Whe~B`^I2BDBIHORKCB`J0&^6#p!(^XN-q+|))-A9q&WqK#u_n*2g>O$= z6r`!q(O4UEQw8%hDlcu#?7SYWjf2W^j#ccZc%))biDGB zbe7FJ=4`sy{q~1pl(dh;_HS_v?Iab23GP%Aeya@1HxWSLqYxe$dm~WObIfxtnMUa z&e8hv9-G}WYf4&hf63fHBHkodcRa8hwUTiy0R53f= z&v;o}&nv)8^4r$KKQII(QbBzQQ`QeVAb@%jmh!0&svd#*tt@v%$gbp zYmex*>@A0Omv3PLO^X*K1w5H%X6!FzhF6x4y-;w|;u@L@-b{EpG8R*JwsFS24DW1yyL>25#5*i>D7@}--HQ=YU zkDo{(eq`?&*6dZbpn<@;LDB|m$)H3|OTDJnl|v)eZ5CQX3^GIOlv1F+uq12RY?Rx% z11jhK9|oUri22ewZ|_SBcX>>cMaOg%)e`Pl3G695tV}w__PyB5dlIN$ERn=x-^(1S z5WT7E5?J-o4mH7fd194jXVtRlsTN5_H%~yn*wN#x5L2H$!S5wyDje~VS_{%%A?NZ0 z26dG+^?q(%H^9ghPMFf(tTLk{VK@kqPp_pVNw6R6e-eAWWvzO&D8}pb+4A?EsK-nh zS30W}R?GYiaqv?kkGzg@eZBe(&X#M_F9^L%s=}cv!4$|Yr|(ZRVY&J-xT+nWX%$D) z?vYCC?XUzW)sIK5Su{@HzoEA1jCYu{yyhe^wfywBznuVM?`<~aQQVk5`A9P^O?5it z(^L@csHI!wu>Y`=CZ`6&Gbb>v9Ql28bFn>oQ9u8Kd8Xwsck2tm)1KZtsd$9wmf{xo zu1WiMJ0Eke>dM=OK_a`Z{n8i{U`%SxR&;V0P2 zr|D*A{DkWx3a?swl4@b_JB;vcs=3a1;Ggklj8gjARje5_1xAY|`P=%P{MR%>?Nw3t zapB=~Epzfw*H)AD9#Kb!|KS-sH(L)+cRTA8MqD03po+50Sg652$_!X|Q_Aws?PG&6 zEKs`w9Ah;H$H0hD+?pIk+S6G7KTV7P=YLNr1=Vu?8Zu?t8(7%jiQ&IpHf%Kd{{cZO z#^%?dF5A!2+Biba$u$3Ol=8CGvj(J2tmpzd}x9)k`pKR#MaGTn1Cjcd8?gb7LA!W#FwIn}%jgy?aex$`C< zlP@QKd2aSNNp)^1mx@mT%+M=T(=;fNbIx^dcXCLY?=sKxdQYsm9`!0POY$xAtnRm) za>JA@iZ*P)Tu*V*d@4Fxjfsb`gH`S_lUu+s+>f`t8ozXzZwqP>zlk8;X@jcDB*XT=0j87x%5Ohljv{L8S3o*oUE+ChPtP&UIX5E6MVYiUEKrn=OTv#%Q6USTh~~^C)mU{> zl#76oEMG&v zthbJ=mxOy_ici0gt@I>tjUAe>zLxfLEAkB00+z0VXk>7z^Q=;qVog{3=ZhDw&6hiR z%Z?$|WLpHPd+)mB4%2HAI*RIIcc0@OaVV3w3&qPh!=<1aJB!1~QL56HdHLt6-w@{V z&yCF=&Ik?s=EMiJETWPEb*vXG&Z*)L26?gumU0Ae&t4&!E{uz&e%n&BZF8O}uLqo9 zg3fO-9kd6SrrKmfMBa z(q@;%cMq>QQq=bPKhIxrbbrmbhne%)o-lRXs?L1x-MVA?B)VjT_E3Lu%B6H~B|tQh zdrg~5o40CAV2?AY-P&hg_wmlFo|OP(QO!QLJok-UsY{)WQYmpC1CyfhKSbwmTmCri zdmj71Im)1C_oh(!~B&R zlk=I5FPiUInxAj*31~QqzB|=}+}3s0AwI8AFLhPJK`NRe`H9<|rEeA50;b~Q=H&q# zw>`hey{cj)9cn*tuS^&8qu_RY?|>gXx;aU5Ng~toY^G_jeSnzdRsb^bu<^5tgUpZ6 zYRYJu!Pcjf=G-+omn!aJ<@|cG7V|OeM(E}C#x|T4ql?UkJw9GC7QgtP82bA(ND<9> zNxqAJ6yXAX+?oVU+C2P}G(&K(&JZjFvjK2Zd<|(?Q*2$q zu|nvCpDQhQ%~wO(yR`q0C_o5Hq{vB=^Q7ds(sE*>g?~R^f-UjqjV|E%k{j&e#Esvs zXxw-e!9$_+`pjsvUxh_w4NYCuCF+G7o?z*t<7_|O9D9__4ISJd*BI6H_i+q$0Vd#G zymBSd7cP)$U!kUne`6|K)^Ko?^@Xyopgmibo`x|)Huqu5=-ju&q>&7kn51>afcQZk z-gOEYUG?qtBExaES%x-@c0pfeU)*@T{%$VQp7d7B}Q}YaZ&Gil9c&DjYmEY9xl`o8@Wq~*3
4;vjF^Bg7@&3=fafQZjnEV_g+_lF{1 zp5<=pQbX$NN{aGzisgKMjmsf}%2v%YMc&g5r5s)_&)3q$;}G&$D_{a}Uk2Ax_^%zY zQlvf!)@pl$Jhw5quX1zsaR7$r$?*AA2HvJi(mkeZ1JN8yzo_ycT~8y_5dWaoNVx3ko;^%L3EsD4L>t|uS=O7~6+6 z2hppX5}M5nyss%{!r$1=1aMR2#l|9QZxt)+9@)Q1x>P_+Z4o6>~V_TUpU}KiOcFf!^Zf;Ze@?A-+I(U;kUsVy_!}6YAEQXx%M}Kyl(E*D!xA>+SaqOH#UDX|RKHec!Q^s23A-hhepZzU2KM1+TML6Wk zG1ojXY-sG;o0wB%+ga{g^xlKanXxxsbd71Q-EcHNeALbC4PC4fS9dz5J46)B>M4CR zRy+Q4px`S3mJ$AZ{0;8jDAnP^&&)n~w>qjAd1;S7FFPE4Vll~ef2 zdt`XqUn*O)1BJtH6+CGY7}H2t?$f?t{w;nw`ED!$9LxvQy< zi{Em~(4AoY;!~TQhZf2hNiKYU%Nj$|*cxy8f+xn*WRQ{aY?9zu)2hkfbR`Fqdp>WK zrbptVG(>U?W8Memun*V2tQT8|UcEo5)+zOk={9a-XMy%8&&C#s^Znw$TpVD64!q&L(T2hjB5q*h zLZQeX1Z-R=68VFG%M1dMzX*8DP#W^*9B`PSi4A`c@Ry+^4}ua743vZX z#lTyJVvxTO;`2{n0ulNrFM$~S6PG}g{z*$9PXA;j5UGEn5{T9RNy*<(8{iXOP_7{Y z2PIIfAp++lP^tk9X!yet3N@hl41Xa+3(iQONJ9jUNT5Um8qV-{u{bLR;FF65K&TDi2`vz619>oc|qagPRe2 z09-q86M!+ecwqO1F+}j6Z66A?!F~guhY0?&@k60D_zMP~hY0=?lK&31!Ds4Z0krvp zUnY#f?-pEB7()c%?H}6Q0fq@ep*HvrydEM5-vOZQ9pIBI_j8v(S<0}K;{LT$v!t>90njre^t_jo5Al; z8v)-9euvs%2;j;8L+E~hfbR#;ZVxbg1))$I0pAgz?H*i!KfmI?p*8}(DL^|uSO8x_ z=&pc(?+U*|Z3KKZViY(w+77LP#Xc?9H5;a{6^pp zArxvO;JX8~_X7+QgzgUr`2GOx{s5o+j-l-zV3;6ui$MH;iy(rgwLv!kaNu`J9)Y+@ zSA)1pubTJ!J-J|JM|?apD-L+?K+4RJ5DjKR>zoQ%;B@Iir=qT3eSP7L1iO3pUkY-b z!B%k()~OVrEWej_%M1TB7#96*RbF65_I#T{Il+oSpV27VyhiAUki%@WcU@|iiYR^D zmuMg9b^=RUp=c_e{bmP|gd};HM>Vf@>V1x@QY@&V9dPtS9qgM!_S;S~$`|Ey?Uhu{TPO-PhxW=0&_6 zKjAD~YL*Uf2|3l z$nZDOWC~V%4%Y~(soC%@nV%P_efH|2_9}*7n_~;3*%q&8Nr{6BX7_)9%}c59f{;C) zRZlL7&VrTtn$L~kpKY=S!EtSOcR%xs1fXsrMFN78B4>iKFS5#GsoewrLR^PyrO1X? z9Y%ML{4P1a2w8djMGlLW zi8Xdai?B#m5hqv>LXAsEH%y7+geepy$Kj|Nk(7%(z>RxhecqSi`g_VXt_v2a^ONs8 zM^IAcqojH0MoGqwZSl=j@uBZK_cy(6ed#~*$!RmscjEiwu3F*ux>Ahq2=%mG^+`g9uRTv3iO z%8p3;(H9rlF;>xH+q%r2?4_J`D+>c2^tz z=`T#=)KVku6_jI&cqTznr7h(m*(u|9E!;1}%ngsFt5qJUwT39;8Sf-oUB4E=D`vmN z^$aobmVMz@{t)kD+%q-%Yht*(ZLzD!Cx^@X`iL|8ASq zzCffNp|5TFPniRWdF)S?I@E-Ht4po;9(%sGi^=y=8R7-0@Aw+CFx_J+Fj^i!unf{} ztfy+lM{kt*jXVfc{J>Z862JJB3yu&UFJTe0Jxjle?~IHQ%a!ms&M^L#Yo5CpgK3oi zVZ@zV2e%}zYZ|*sW{@m+KVC1KD_ox0UKeIEWuGM)I=3|`jQ8vAXk5uQi4L8pi>>|j zaRHsa8g-7wfio9xTU_uNo}W0(7!uo`+2muS*R-w(8AZ=mZ)4Yt&40wtU>J4os+d3Y zc4$I)zujHoT(H`>%5IG&3HB=tz|<}{bP7_wMt_o#t*RVteT=zMzgqFAB6S`+l%I;KGn^>x-qf2>siwjuH>v_TiCf}((l}Ilr%yk+*(#lihMZlE_%Pj zQB%wDrqagN1;q}XPs75Nl2q%SV9EQdv z0}Cs`;ls?NBU}U47N*~cS;`0=16fLr84D#e|Lvs#c$LTRunh5kSOy(rGY9YJGbdmm z`x}&jbH9T!*<1u^O+6t)HdabI8N;8^xgW_G{*KONBxj&bktS#OW0H^3Gf<@nlY@n@ zN$yI{;6jjsW&j6SQ4F{#<_rwnDKrcW>?tHDaO^U4f&<0CT@%W{5JmsTBnPvZfJx4q zqKRVQ#DWvLlzJ2cV~Wrq6+WgmE-PvkJiSE7h9=Culcg$xA|)`?Di`J7y}V=8e%$yi zTJsUEP7uE00N2Lq<4LJ+pFHf9ccRB_+at%HeW6&>O87Q;zv`hJ*)lSOM+_gYOW*Ep zXSQ&2t|IPOq=#E*Gj?pPNjoF91NRgq+J8N*>lD$$F0?v6{6MP*&3du9nqs$Uawsm{+{i@~X62;srH8k6hT z>JZhXUvMi@2YKE&$C8?otU(MCq!eC(*F^Lvn0%!yGPq1b#q~BD0Q2LdZrUTZD@G7b48IW1a@d8;8pz zy;JA9W(EXl-Ep5$apK!CeIhW%?hw8pq4>_| zPXV0msQYRy^_uNG zzWS!x%EG#hlf|ldF-m(Hv)z|>Sft`3NwbN3_K?_6`w6j{!eBg#(3Q*{BQE z;w#lx-_Nxa4lOFkyNccSBD59ZS<@LddG%__>(QOpms~zXo2hzu-ShY0ExqM0NVwmT zl+)01j46~1dO>d>_-akr@F~*1U44bpQn7q3VV|D4RGY(RQiP$$|+N`cWT037o`}VZj$35;;AAH(ZyIC)< zZLCIpGZ|w#db+rDaB232Q_+g0L(k6B%Mll}wMN!h$4!0P^q+m9Zs(8{|8{>Y0Nu(9&h^0$YTD!osen?0m5Uu3B8y*F9uyuNld zO>*2FtmNJx3&1*Q ziNg*_$ex8cwS7KC`(?J$cMOZmJcT40M*O!Q4!fH?(BUFZkNnEbs&==58|fX@m6uQZ zX^5Bhk&oHwgq>uJXb7Jt{^In-w_Cl2b^PN9{_nkANSTNh0bivQtA`cW-w57ybJN3_ z5=mAWZuq5boSadeTSzKq8A8Aj`0KJNZ3Yw4RCh!*bO3-V&ue=Yv3AFOO5=lRa3JpOSErACxFd zc-wsDyY_Atqg`uwFgt$8VYz3*Fq0kDQGhJ8eLmu}GM!}Mq!~r%>To(<%cvitwg2^H z(=y2@CDMa!)*C}VuvRbOJm>wa)jZgHV^v=Cnmb3U#&$)Ce(F44x~S*v+Gjqcs}eS% z#rs?DWUgzNdhds;KTy~H7GSxSY{SM!ZhQIj!|0BN&pR0nK?zr`eb7bSQhC@NxfI$U zE=B$PM^f*M&c^JxPX=@0bpCY`yDp;Ho*JpG2>FcMaH-Z?mqID=9-fY#o{cg#&THL~^_yaRlas3wyyYi8y zs`ZIFiqA|%xF3cw3~THXR+l1hyh_)M8I7kGD@B;<%!N6xr+c;9@t-HR@SLLKD>x@` zKiq&&n8yNTO0`RU_o@oHkuJXT8KP(FIEvayR4SZ26V$%@J)w;~LtiT7!fl?r6Uwp- zzR=^i020&^;zAA+=S&BM3x1&#wn~>r@dQ;j!_DoxiSp~oFiLMy1-0#Ncr{?x*t$0} zFjjp{I3Jr3j{UGIQ~Szm0h%*J8m`i`IJWtOr<*|E^rrd36 z4>8`cvq_`&PPKFX0pt5)OVPsislS|<-NSe5Z=2&>*tC3mW}CK@y7+o{^?i=Gci$ZR z)I-9uJx=2!7WQBo{kjr7{5n|7&WqiR^PKnl*g+yuW;2R4CsKp`H@aCBhe$_;PA3bwM$j5Yv##BkzN|`pkt^uC;rD z)3Nm|NBiQ@rFax^yl3?eAMS0c>a(q1Bg(!-AhJsD_D|6_6Nmm-4Uu)^EcJY|-AYya z#FWnATCTH%uV-xpzwty%dRHuQPZY|#T7TE5PQW_-)f)Y$fB*|$cbs7<*N)=A(sdtO zM-}A*3F5csISMh4x;{11L|%Q@UX{0)rgkxN{2{mCyNtbw4lBl(o4q9+R`*|AI^*tH zgr9<$n82deQ0J8Cd1s+lJVng$!l}P$-~(1Q=Zz@J#=T)dbb(Mnh-uY zH*^-H1l00VYg4pDCalk%?+EeGSfccljS);$AQ{(G!86?H!NiCfWhdro(6X~s$1ukz{+*;eLGz8hL5o27dF z;C|E4v+-#6^?K81H^eH0GY_cwOFt3m-VGd8CHhWhIuw+}&~YDe*L$=~MDhL8_1ElG0HZn;$v8BfnmF_|RIg;0)vTR3=8l33lx(pQ-KqSbZ-u-?&7;Nen+vzLa-oekC84^`Ul!9;wDiyF>8KlZ`e=#?B7 zv)k0!na~@o(oOs(csou2a@YBnZ2N5HjT%_rv9IYQe8_mCu zVo4PzJ<~lY@r`NCX{RI;%&hgrJbg@4j-f6K(IMy)zxY7$mwUZ`zjLLqdf%2qdx1r@ z(^JjsZmC?L%>5I?M&-7Dv{4wY<6OCqWh@xOh8_J_@M)ufNVA zPaUJAvwo3V<}YxVqr|5yFb}S6rtm1QEu-%2f1diW5;AKO!W?TKk#d&mvC)}a?9N{v zKRND>aOZuZ}pHaQ5QW^sF&uCjQAhEYJ|eceKJ_~PnNEy4B&xp zJ(qD98&fRg85BtW_=^9BhTz2>*`xf57+^1+_=&(OL&AnJFv^gyT?}k8By1J~lMD%4 z#lRv%!bUML$dIs24D2x^Y!U-+4Ec{k3^FTVXTs(ja2JvP7{m~tfBa#H&_DJt#ONP) z7^3u#ISg_7#~X%7{o@QntbQBA|7T{v69)LicZGaoB)0`X?5IX#EolLbU#g1tD7h#DWklI2MFL zL*zfHAVljV6~yR6p&=5E1);no7k#H;sg@#Bt7KB1WMC+ee5Tf-@EC|s;r;wqA_-k&cGDv0o zw*OO(z?%+mz!QJqTOu{)q4|wj1G4b7P5ya`(6YXaHTGhor7K=nuysZ6SL!J7XlhV9 zt{8ra+L_*LtX9Cvp0v1y^?cm+`=;NMG&HiaO01CXrPx)%YnnR=>xKp>I^DB5oHJ5U z+fRs$1Zb=!Zk6=^_~QQcsY!ze@_P0?`d*i}37Xlu9R75@biA_7r!cajL*;F_rX)02 zy*|1Zm58uD(m5&Vs@j*4#cziHL=+`CQtOs(6%kC}=bjGlv*n>{NyxSeRmE##I76?2 zkVM4ibtr}hKS(0Ref~Bv+v*vcACYpk?PmoK*4E$$MD#S#U%JYyl2q|#I^wNO__f0| zix}u>NDSUu4Kj4yG}gg997hKjtDk#3t{U!PvuJhp8sZ!+1-%B|@Tu08=cFMdBmp9c z5@ga;B8rkftP~Z}BP8^`U!)Tm;H{D7eeGkGXU%_!j#ow4IKzcLzS9PsAg3l|n-$|i zAN(~hNf8fQo18Fw&I*LJ z+ny7nA4?=}`Js-dciTo(M^W)IUOLfwJk}M~1oD>1aAFtcC*15o-BXlHF6zIj<=j8Fyhm);0$tTuXtC1P`r9%73o~nXdhH~Fq!n$+Hoz1Czb$%JMMc4(NmwzX}BtE&X zwdApT?fB;A=FX1wsKLuY^`@lJ(se0C50VteU)WvAA6V}E(oHD5h~W}{q@xs2L+b5a zeh~VJbR(%!oi2>FTjXo9%5s2K$xDOq)^>rOZ<98(eCJFqBwz0}{7jr(@bP<7SFZH( zYW?JwS?9?}#>_gi?ZArb?XfAeafgqTnwA&`X2L&gmaIf<^oj7Nw#bR8WYRu%IVai9 z{GF$r$>p3O-Si@MzM(XxsBE89uFqG425D|}>UOY|$};Kn@Z=<>t-vCueyC|(BUsFhSv16j41oiAoC9*KsdIA7{NLWY963q83w2V2&diQLE;ew>o7<>qF@~ciANNy!yxg9g7bJtJfdJ328l-$EW;r2h=OGp;EMqmR;>^( zScgI45e4foNIaro9R`U<6s*G_@rZ(D7$hE1undF5BMO#bka$G>mSJ$?3^`&QP!pgTx~W)?tu% zM8P@?5|1cYhe6^I1?wbHO^2cI!qsGoS|SD1~tx5undD5XDC>PLE;ewWY}Nz42ee+tizzj84A{6fG~h3 zIt*%@pbHO^3QI}2)@p=Y4T(n-T+V{TqbS_Xg2baJ z{52bDoQcBUv!TYBDEvhmYMhC}-?X8|nJAdLKn{sX^chB(bWkJtJ$2#rkPsv%q4&Q4 zIXU4*r2^#SAypuue6OeXwyylc5qzr)1QbN;r{xEHyp5H|6TR@l0{0Ivq}AuHUHi%t zbRTO>A8BrAX?Xi~Rq?Ze%JPJSgf0i8ftj=_M2DVmw~w=JA#o+E)g;~-IrNo>6wwz? zn|@Q=RCps=v=}OujCjc8-0K75f5c0ev5=^ z@5ZADDkP_H4lj+BqIMr%bfgPw&;x-4Pnu|hHx*W2=WN&W@-w!9oPhNQYS*TqxJY>JkHY22vs_UjOCv%=y#4KI1Y8;M;{+kr3jjh3 z)xu>&f^4@ftDGl2{ab}7+pOGvq-`@+eK7Gk@$XXf9}%6^O31q{?(*2J>%x-fFq+>( z=}k`?YO82xzF2y1JzB8z#p5_&Wb{&7#l68M<5Ca#zKo26tDGUm8p_Tx#>-<~LxoF~ ztLbv}sXwL@w^^<<^^HzqF&RD9?3;GU)b6t!kpj<@z0bR`AM(OJvt;iJ_Ht#e%+)FT zh>{y4L+>Ms&oA7raCvnHqZ7w3@!bKid2?cvhEM8%j*{rHN}dxj?>TH0FS z1-*~l8gF$TV=7;F_4rz^V5$W9x@AK&&Sb51FZl6uWW?QRHO6XuTXk@&d&c4Fyri?C7?A7;Gx zSNDGDc70t1Z>^7C{bBUoTf^tBeqyH|LS8Fr>RftZ;YFuhVD{R7pt2`UKwfllUI0It zFX5M-Mxm2s>G-Z~g_)>9M)rp$U7s;8CTG7fp}jcHr`UH!N*I{^-=*lux@iw>h9r@y zo(=i2ufKoU;Zyf_I!@^hFz$Bti**eqkiF(E+9Q$agPUDv4Zi)i#@=2_2M3pGm0bdF z?jwtS%=LpuLh~wted~=M-_;Q9th^VIxP#TRGNE}t3~!XPBrIF|vfh0Lwl^jb*w%s% ztEBp-FIk&i37ov+K)1;9ri+wh_WREKG|TDAM*1)jZ>9BV^Yc#!3s8J9>N16c$27+( ztHxWpP6iCg%DK9Wa_SgtwUUURDcR+WR9JsrX$4wuNJvPsVPT63r_7X|qrwt}UT7te zB9qC#jtx3%>reQpphuM3*!gSf3mFrzQmV@t|ESBi<&1y36~q;c)F~G#82@xD-qZti zX&KK+nlf4s)_?~P!9)$_S743YE3if;m6IvOt{*_;EAYc0wOQlxit&Kz_mFuU(6xi) zEN@DFKO<*~PCtSVJnr~AM=fS}>t<88zFOKppll^(B0%#ts8jZX^Vx*fQ-pgD(^^?W zwyZx3FmX(0erb&K({{!WXS)|yRkp(??fc6;K7xh$>z41q!H=1u1FUDP*fZdtUa?IVV7D4u}On6PcilCG~#b_)$)&jTVr_|Ae~{oh>tN1IVIJ#yk3(} zEQe1qu;*n<-&)wi?? zZ@zPy`+$%jmhupaeHG(78BJ_NXrtV6>4<~+qDY~b5A}akop(Hy|NF-?L&)BH?|sg3 zgzS~Q_uhL`=#V`krB2zBy&_pzk-c{$BUA_x$w^Zu}4Yl1npm&bQR0^Q~hkTe;S>0HZoXHc0K3Ma(cDW zZKyI_+-=rZJ3}Zpvpak7F|@>alb84r-;KTHtcD%E=Vqu>iFTbXWA*-yhqgwn4 zA1U*DwX?5f14nBoNa|#!$}(`BEJ$y`nwz99=qSidnh1xD)WsSM6%NN?FY+cw%}cYT zrZiKimQ>os=IG2hm0wow@QTLfj(J|Z=2^hU1UgeTue0q}EzYSkuRZy)?_2pQ;HJ?! zO(`~BDxU%B=k8U4SQYb^G`)B3<(emxl6<|MVeBxYRJv9n)NYOQIO3XgiO`S8(GUHy z4)19)G%9&~iw=Ypx@SlG4@N%6)O@8hV#w<(i7B9J?qh4<`F@R#zA$I}<g!jpV~q)vxZ{#2jd^r$yc7d@hiWR!(hKQB1h9ik16) z(4odppmkzg&KaRvF&b6T43} zR(Xp4t@fge^}H@A8M2f2#XZqPu|Fchks}cU{d2*&xMOjAJ8ChE`teFy2q$-Wa$_&DODUrTS0Actm3t@c9(w<>34Zv7O7JN?sw9wVR@$M|It+`KBTKYK;QF)c zdmax$TLmyQ2(Dh-D9K2wP%aMipzpxxR<^5iqE4cqXC_>fcx4(wXY3y>#>9fNQe|7* zRK;#BRuE!@d~8J0$gzHJEjJT?C&q1K{!Tq(K|>#@02jPvQ|a9r-b%4vtqCEE;leA| zO&^~uBnl&thDsB2egwa>x$_oG!Rr&Y9GRRuyvZ_M%Q#V%H$)Vv{O+Aom497Cv3}hb zJ}P>vjZiZaQs7+zBi&BcaC&xDb(5v@?ER1B0P)kQ?~g~GF%_d1)^3K4s_;H3Tnip^ z!MSkZF5_QqZ5!7jhR<=}zSMJLv`JSexBDdO7m2F3!t#A3^r-kvRl!8)@^h;3kQ{=? zH$U7nX>o3-n#CHb{pA|hnA1{3>gcy}wm-K+QTEKYx9`cr=?f|+%xl%65;sZ+?@gU3 z_PwPZWnC%Z4$4b!%l`1<26D#mQJzvyaN)iCnis+cYXZV4M#ud+*GS+5g%6fdjXAIP zp9Z}+N2P4uKXz+%eVr|(_-a{QZk2@xb=S$Ij+8a5Q|sHpfIJ}_RWuMnU_dOU{rM)rSLEmB;%qVUgI4GV2d@02~V&0_<2X@tpJ9xSvy2(}W8nYQ5MTp){OoDb*B3(-7kEZzgPIk3oPK*GBGa*#CWS~Qun3LbJ?&~{|L9dqwW~ltqZ2vB8H#TcAt)J2cBJo3mTa+o#7(w$)kUAJxN|H#;{uxAci{4u>+!Y7I+1 z%e>=kw{(zMNuJlfO45+4?%y7>|;{8^fpk5Vz|QZrFLy6@R_eElBd`+N#bu!hkm{PyFtu zRJHKs#6#A_w)Eh&yL|YQBxjiT?KKh(JcVB_ly10=Tc#0p9x-KFE&7tuA5ADq7R;mM z*{Hj3F<{sIs!njV|01D}k8l{BPVb}qp5lnIcaJ&u&UzdrnMy17Y=KKLGpt-M&Q2Ed zUUmIc!g}USfnn@U04K(;@J`A zqxSSz>t00Pc}cL*@QOW)C-hjG^S0!RglaVTpj&n5!p3^tjoY)l%d^D|Vd$N~jW*oZ zPG>3BBU)62@Nyp^!Y{!(GMcA20UPvr9fj#BG>X=(x3RJ-Z1%oc`L(U=RWFm}790rX z$jN+~P0rtSx<~pwWTr}?_!h7W_rdOt>2*{FwGq-7U*h9zE^JB8;xpZ`f1PBla==FA z=75)QTipAmfZ6)OK!we@T_VX3f{2ySUqqqyA!i%xyXi6CqFcZ1AjobhWV5gA#OQtvzME{e`Y*~D;*XUq;0d({P0Tcte>%aO>I2xvM{Ott)I+ply6vm z^ETSOm!Tc)yhyJ|@;~4BN1DPU;D4kk3~FJ5_xk^sGjR1+ZU6!T26;2UKfoYu2IvPE zWX%Bi0E46%=pGKv7^KWVX$pgs8DMvToi2Y(9w<#= zkTL_MDGX9(fZzp|kd6hb`qR1mD@|dLG6SV43{qyGG=)LR43wrYNST4s6b30XP@2LZ zWd=%97^KWVX$pgs*>7nIgOnNAafd<543wrYNST4s6b30XP@2LZWd=%97^KWVX$pgs z87NI*kTL_MDeQOW5|XAcNST4s6b30XP@2LZWd=%97^KWVX$pgs87NI*kTL_MDGX9( zpfrU+%Ivo^g+a;;l%_C9nSs(21}QU8n!+Gu21-*Hq|88R3WJmxC{1CIG6SV43{qyG zG=+it8UK-{Fi4q!(i9FUGfZ;gB)|r78TM=@g(WI5eID zCkN_+Ljx+HG=-xlh}rlWU#!qubOJZP6H0=r*uWOz-`likP*cVf7fUvN*Y6ZB9RIYw zQL4W{mLP%4Ci3>Fy9POVE2m#Zllj@+vGkm``YQ#g7+hvd0@;SNG340I4p$3P*4Tzv za;~pi%FkPI3o_V9W9!nDSPcUeuHoOVQeSD~S6d-wz9Z5_6LzUf!SaJ&7oR#C-VLNS zRaaR1ogXwO8nmc_`eG3$b-hG?U5_aXox%Hew3g@-OwuX71lbykJ}G)ledTrm7H|1@ zy5WcDBOJjHmHS=PVz~Ox)m0PF+Ub}~;r{tBWm+uWmV8A_iZTxMXciKiuZ-9?AD2GB zYHfVhNo9CS#ulw(zF(PeNSaSm#Gz~Y!_uwW#hPY^XBsyYB{EO!LR+zEZ4r5JKC5o` z*-@9k@E~m}A5$>kYrDx|Ml|srMWE#8uj%)5T-5GUe8!XAmsi!aQ)1APz^4j)BbRpT zGfzS{t99}7`W{8qWGu|e>6AFt6ek6I_A1Q_72is+=~ed9eDioSEz~O(d9$s~D;4ZP zELN3z)1-tvswhS^We-)YWk#z;c>v#k)QY3B}7(pzd z{kOJw2us(A97*aHG>#LJJ0Afz!jG&LkC zvR@2qr8&xdr+Aj%t&aM-p4h)^S*4MFz0EV1D9aD);2F1L??STeHK_&hh(z^yg>uaK zUpdXEM|Gqp`=JI6(^E{p&g*}iou>`h2gEK8=-`(4Y`H{FQLjDhzdYqXZ#eR>Kc4!N z7FpEs`J;nCR13YeSEj$H>FrV+$~GaFnPM}WMAbI82y0oYlcA$}OOv4|p@-ice>{F_ zTye8G(s4MkuyD3~%3s{fq@vimQOhD}j_rCxyvK!hiZ5+qq&1~(h0Bju^fRKmcca|( zeu|WyN0g2m=@s06c_HV>%~*GI6-(eY6^(_~@i!qD3XZaRJuxWXwR|MgYd*BSutym0 zcr4(WQ$6wcFn8?al{S72GQ&J`Oxiq1L_7bA%{3#34ayjT}D?el)dX z^8{`y-X+yFB`U;J`t%ccQ2pzK*pR-8PfoBiHPwx_kr*L%18uEV^}LVK&eAnpZ5y7} z_x%!l&ow@vlwZzw?(LPkeG@IvN;;cq)qJHjA@zh+fZm%(Oom0Gf{A!1*veD>+8a+9 zB?P&Kz5jS}9>yopP4AT`uPaP@?ZiyDQ;eafbh(MUt6#k-``}WJX7R*lUB6OC7nNOV zCU~trM}Ls(i9`)!;EGdSZpLY9w45C=R{muv_)9^j6lGS-{xMQ|DDPABx#P1*B9B{> zm+J1qliv#5X?WuDS{=>n8OW0|T-Y>vkgFzR%X8pzltri8Q#jId67L>dD;|WdP9snfeeMs7imJsgzvKTv`70UO*cw3aM3Sfe=t0M?oe(AIZZbhOvd*=Z*2iPl zwKBurdf8u`?b0Q5dzf%tJzS(iAy6x+SlRl$d@@<( zr=wfI^GG!&C^stnrZTpRK0AglJX?4)t!2lzU5H8j{3K*+*SrFfO z(msXKLLRJ;G^7nT5-nd}?Dew#d!(Zm0s6cP0}tqpPjsS- zh8DFP8mE_m0)6`{>s2&eF9RRiDv^=1vHUrM6(ySODL)xD_)2u`ju0=p=75*2Q6`TO z1A`3yU*GxH*)f3OmG?(To>DDaX7HLL*ufJ0-0;B^-2R)d#Ws96nOWuaa*c#(x# z)!;Q2>QsZ5Sg29`8!O>Zry9gcIMk^Iu@Vk7szI!TLyc+>E8$S18pKLC)Tjor5)L)0 zL9B#BjcTwL5C7As{)?4xs8bDMCHx=S2FrqQ8^lUD#M>ZN!Xe-Wu@VjuH;9#R2)RM5 zghR~z8!O=ub%R(5hp-#ON;pK_AXdU5>IShA4pBFVm2ilIShA4pBFVm2il$fcAGX5_!_Hr5d8iCA+pagot@=anuJOO_bh$n8e z4=x+W@7_v*JY54?ZV@>D@idQ7<^SK2B7kFOe~o;5Ur;Z!AdF0QdzXpjmC;_ltl=gMeQz0vZhhe!B?ZP5!^B%-_+0fQEy>=s-Zz zL11(spz$CuIuOu&5EvZ@Xg~;z4#YnbLSRk*3gy#S*F0p%_j9SA6Q!RSChxeG=I0?OUr(Sd-17mN-B6ue+`AfVs{qXPj2FBlyN zD0ji=KtQ<*Mh61QT`)QjQ0{`!fdF&&pXfk9!3#zQ0t#L*IuKCsg3*D1bO#t62q<^K z=s-ZZ3q}V5%3Uxz5K!*IalpEOw_=bWU!(Lh#;1?}%nMte3$kGXQ-Bz`V$>)f1K_BT zv9l|U@1IwSf;y?>NVfU2cG+^H5m>sbvMYzeG>M4cR2gW z{FAnnF*vP9c*A^5R|(BPIMtdZw(o4yI({qu6N^wmI0?rk)_#?Uhoq5<-)Q+u4VEvn zaVE(PkaDsu96TxAP4cs@z%4};mWW$N`C}3scHL)_%+FuJTTz>tzm)prv;HMjZ9<+% zcIsQyovgW!up~K5_*Zxu2BQkG2bFy(3M{eXr7ox95#K%JyrXy}!p^iIj=r{j<_r%} zIf=$I5E`d0N3ve-K86_tj?A@+khb58o+nCWz;|a&XP4*TK{lo2GH9BjD!K33^3AZT z>E1|Z2xP}c*1cyUyH}yKQYugF?^v41ts2)4r`N3ILAthM`#V17Q%EI*1xaMGJ|z?p z7Z6-0ak+D}PC}7Tq)6*-mqqkUyh(S1?A|>hRjPXeY#2#K)t4yi5;G&cT0Ej?+=W)~ z=w9n}l45n=@l6O6?7n+X0L9+54?I%0D3bjl-{sUVf%Laa%Z3Ps%*vuDE?2d?0%b>H zDbqw$u_nCn`pHVe(w`W_HQPd#;qVM&%saslD@nCYZ>=;b7THk#)6DTXHgIZ!F&Yhh0M|zCe(ax=0T+CJ!2FsXhq2JrTY}=^3>5y4y zAf09KjVbL|MVIA{#zkbuRn?%#(zpcoqZw?@5S-ZWwq{GGyhGdeBUcgyQ-aw(3fF!5 zTD`JVNcf-|CfuB#s%-A`W1Y$GhrkfCMNaVe8a4hA>yp|Q<*)72l2z2rFqaA6Z!5O@ z_!tH0-=&Fl{nD{FyVscP(+@6;YLn%-gXl%jHyeR#)4h`=+UR8oS!F=^mBC=&#AXAx~`zm z)CeE7>{zOB>0pJlW21$l0PcG71^gZF5tKEb9_}yE`J7?I&G28*YPH0Ly~l`Ix7#VT z)v2B~A`21m4mpE&U#kw~Ipo~lcF5T}`ut|$orBf+ai7${#!{3^5QzUqLJ)}GC)5K30gRXZhbN5yo&dKp_!>-qra*wN zO8!eGHX2Nn=sOxr|05H$EfWPg5Pb2ARba}aN`q;e5<~L8?<@I-OlEDFz)53Z%RC>t zz*w9LML(3v(74}jGl9f5WsGC1_#pwu3avM1m!(l_MZ7D)CQVVo&%SZ{x=}c6VApQU zRS>W0iQNlRo!Ml|=5X`%gZI%4vcff2_iPMJGpI@h1!{hU>K-Zxx%-*B(o(rR91p(v zv-SLtqi9B-PA3ojZ9q+({jftq!aX{J?sKzR8A^7%`uY=QL@FDZ2CzmF%6Hs1I@$g6ko?vvrQvY z5#?v5)pDCNv=ZWo{e~a z`w`z=1vi+#KK6~I%t=@Idm|wnw=>sXXot2v%&yX3&DkBSnPr(&`-Gnop+VnE`0g$z zV_*2Kr1b9BUA)9er(%H{unwZfB zvtcgOE=~UnVW%B?OCnZb3v!1a1Xqj_3wJaqMvdcRtJCS&l|139fmUObHxH8)`1SV` z@rL+mSn&*l zvn_!~=>!K+2dopnmA`%wu6Y(0Lujeb?3<_wWHlE~4{e@|2Qem-rB;4_LQMk*LFb)!Jc28X6MgCrfo7SqU{sDE3uPHMs5!u4`>q zdzlx#Sax=+5x??<%ks^{{by2bYkR^@Gi5p^!HO;e+m=~rek$x^K-;V+#Y*kT!>&cO zZ}%E0t^?0=__4*U(QbuJHeu4Ge}6N})@X; zR7nI3mpVVMFm_NHH$8@B_%6lQn6(%>KO}V?fq!|F-K8*6=<@nX6ocpzP3!4E2)3{f zD(rLN3QmR@Jqrmh;pw}lXzF^+wAe0cvuTGE{#~AG8V<3e=be7GwQq8mzA|A`B`J?) z>SZ@NA4XZi*EjAcvExpsPmbeeaJYVin;^OsE-N5A?PJw5cnpSpAnA7&~sw6 zCZT_eep)5gBRdtRf5})ur0Ygd{y9Ql6?K2kTl@WOt|&tx^F>{>c;bU}hpU$aKaLwr zeZ654Fe0FYW%7Ew;#O{itC$_;w$@GHgTRbZ&u4n?TVo5qu#dhSkrnWKktWkPb}>BT zx`aQzUDBH#4-bY9#2{45G_up5NG;4S#HJSa+3Iio>^qTFoTP3^&&h-<8Q=QoJ&5XN zTjZ!o3JPTIy)qq?{!GqC!IogrH80?m5(jGj#^-(k-WNCvh(QC>o~&X0Z&L0Q&ak03 zOTz+dDU-Stl+O_!x9ePzCa>UZ3w`xaG(ijDdj}&QSy?BTCVwjbDI3y!DATjG+@e{s ze`~I`i@@wwO3`xSWy9yOFAb+h>fjhCg|YX|#U-^Co5tB(eI%Zr{en9RYzs;&&Gwo< zm5v(S%(9vNerxn%i3vaDX+N_{(L0}zoDMx>(}w=r!P+eGA1OG~Fe#=v-!-HXH8#~t zR$PbU9ZR4-d>Os-L5(@53mrGwIXV{?!$41ngqwR{utGKQ!RR}qv*o7Y_`#}#|sX0Qm%w#4S&v(9c`&>0N zqH|e0`{)sFlz-59b{(bCCjINvs_-GoM@j!WUxutZh*w7ObgZpa!40uJM}O4L7FNl#SiT`1(MqZdQyV8Jm%b&i z`2Mgs7*TW2rIf6$JpSA{bvP1FBvK8g>M+1#DXhr%T>Da)vj*ijZ0)Tm*~*$Ws=Q#? zmh0oVCc%ArBAiOH)X4%y#Z|AHwmd65vHKxr1iBgeON$P?Bovf~x90Re@+ob?7u(ch zTS><6_~;hM7~0AE7ZSik@wX=b}sn8v5e8oi` zyRuyR=2)2H>9z^!y?2ofON~urPf@(+zFJS=opb&iPCmbMTIM;ORbj-owmDiQD35MG zYq7gB{>i?r#IfwuyKHwIi|gU7JGZ1#Qz;|61EQ&%o?4Zs7Jy}hm$|do@V>UrzVfz6}l1e7>{fv$QpEl0ndR={tmh$Wud6h2&} zpyMep<#$67pN;T-*@|=+(@Lbsrrp1igG z-Yfrp9|@ij!9{U{pl&O3?c!|>%&694gv{M<$vSE$X@vAK`yU=K1sgJL)}R;%80=aq zJZq)jyH<9vbM6I^EnK}@`(YlT4Xb9{v*eDs02_HW=* zRmB&1lXk|2wPJwEJ17<+?nEygVFpeA!uXszWEbF?qoPrdoa0a39O>0~zWr|RIN6MQ zG^hnR$`+VEt+=IE*fQlf@(pD>1*@i7)mNEgu=JtNHpvm1k?4Sxq#L$*Fh^igT3Gs= zA6{uYxhAtLd|zLx@mzTHXDd(N&%o2unhjMxdwVN?nGK~|$}bar5lqPkl)MD7;UDm_ z947c>yYM$|aRiLT6W~bAu%85_Vn?)Io3lGn;>6=En`wIZ3a^UV@Ov-{?-dOxtiFa6 zYyAXHFkwinMTuz;>#Faj{`nL2fGI1-DwE^w^b}#u{h6ms$(e<#7Zx<*zKJdiWP7(B zi*)IFEh;n`Ei`_5a3E^(W*SqPmwIpf)jemHYXm4?6||G;%Nmnrdr8}*Yw3paAuJ&x z%8%Yqjmz~#V=l}x^Iz6P+L#nPl5UtRcG5sq_7TKu^76Ni*xL;4d$h1MJdbaV=GR!@ z$?+(7Vg1;fI)Nx5TePrJ{AIzV9b&~(JsevV6BP9Q8Q~y!>k|O_8`;w56 z`~9lFGa`UVk%WvKAS@&yBM0~jNyx|nx@Da$rIK2syB#e}o)Z(mz5Dtmz*i2Nv~5$o)P@6|CxykNfNAB>xd| zKwXmm2syBp1qnIO&q@9x z-POnRa zjb1RDtxmKH$wtp_$yVpr<-tZT+{!J6%D8gBpG!fWEsH~eMNCDHbe@ltF};dPlx&_Z zz0@gkeLc}LM=h~`_6jFaf!8I<1fpwp60f~5of3CBO4UN;_^T54Rvz5lAl9DX{bp8> zQXug7sb;>&Wm;or+5YFVigC$@C94dMl3H#|V%h9T@q}m|q6I!5o)N{kV~IXR71X`y zc}11}-Ix%=gp7}@?C$uqvZ98Iq?cG;2w|`xT1487^`b8YwT*^fI*JP?)C!zV$`|d6 z-RiAmW+ZKsolGrP9wU#Gqv74;B0JxQI>X;e$n6jOgF@2o*m54w?>5x<&$Qik6KuV2zF~uM zac?JDV!0W!onyb3_?PyOEx(Q9KYpb$!#O zAGF2YWJ$}FCf&%&a^f5;VSeY*9Xx$UdK=%&m7Dy1h`+zBlnCQvV$EgN2VKfZ6*@mr zmZ{RATEyumLfywUO`}=L{DV^yEepCjVdux)=QS0}ecz6V1``iF$5B(#^oKSnkDfAU zmMdE{BAzl>+q|U3++MsPouk^Fg$lA5xtx4_H$Q)Frrx@-f_}dg;Z|MV_cXjY)3D-} zC}rAGE)g@idvmr?0863db>zJ3OwH_?QJZJhOmV`44=;Jn_Pz=(Cte8`!mcoSq>29V z>$y?Mb9d|tWHvE`^(P_gCj94sIIhTpw3=@{uWi)o-XzcKN0U(pB}vtwrDoX_U0_cs*kr*3;Xt z@Qdo)dgeMxv#&R0D*VYw;Ka^9Q00%vMRhtQ$Uj^ZNBH~ing$adGkP>=k~MNOo(ebI ztf#oP-5J~`mD)bpa`+?&&(?)8Qz9ZGHT%ZrZ@W~(Z9Pxj_87h~Z};S>WyHB0-+8y; zbkfR@;X=)KHFUgB&|rkZ^Jygl$Gn5)iql)#w_OEotpZ_eE2QRJ)9A3Awy?t`jn38gV)26+;Z)G{=+_)Kj_0`B1*CT?4>99J*p*thv zieEIkWebGq;E4}i^J|4mW=pSByo2fvO$W0U~0WCRGqkNKoeFH`R9<}OjhPq zwEqwQegB(-{U7xGH$nM7==*Pi@_*2W{9jX65}KU^FNDyeAi&ErG&l)B1M;7_NpJ<7 zCIqhj?tccZ%t&Zx61XrUp_xhGx{UmfMZt$p0MLj04@QACaA8J5Jz}sai-eFAY|0{` zE-~1YMM6*tHf50zm4fpeNC-;-umqO>Z%i2Z2TcD$9}+@Suqlg#*c5EaA|W&do3cm< zO~H8%B!s45Qx*xKDcF=nLTCy$Wswk?{%*=5AvOh@vPg(cLFhw5y<)H_i-gb=Y|0`b zGzFWoNC-{ArYsUdQ?MzEgwPa(KICsSg`f`!u_@S;MM7)}Hf50znu5@WgwPah$|4~& z1)H)+2u;DJED}Ofuqlg#(DZjx774K_*px*=Yzj7Ikx;J~Y|0`bGzFWoNC-_q=tDwi z3N~et5SoHbStNv}AoL+YH2nj8s$)z?OyC>q3BMYeWgM3pwPQNqO|MGQ_KpA4m0hScC39zQm666$;8Z%)rz=bmBfPbl!n=VNiE6g#)HShtmL?b4l) z-Kp(Gvv4^s6%KTTiH#x&<|TP4lKeRJb=TVBSsv3o#H4`fedUT7k0!BA4OUJurF-P6 z!Ht*X4_0wl zv!1?5>TxX{bgw^sknK0Ce+_5tk+eQ`&plh|D9_3A%YhzP9NI4)Dg<+k(#{*O8O9~u zL)pDmQe$7!(ReeKNH*cVP9RE9!s|joXJk)N?mB~2ZJvsnBzoC6=uS(FtC~|;Tvma5 z4@tlIP=(xbpi@pvp)}VWF7K{uE32k#0Ar1FUsAx_B%r-dsnKs&PK)#No`1ocE#Gu9 z5&y%sE%W{xAyIlXM9Q{USQhVzB(8Et6;ui;%iuUYp1x^_Gjzi$^35rmU@hSTOtpJ- zwvy9H4vFdID9PE!Y%?Dei)!vYW;&WxvrV18rdBDA6M-)vanwm-oN&t)?}nDlkX|B2 zA7|a$X)N}-1>g_Svm^|4fk5R>4kvqTTSw=pmz+p4EMj$MI!b=^ByQZ<`x#0potY-~ zEF@j3YMr`|((L7xw-Ye(U1Mp~2zvHEZqU3=m=u5{YlCL*|m&wqK>f_Ql_pZ+f%I6!l8w4pG)7WI*w&}YFA%2xgwE}uwwhYfYB<#MI`fQ4`;VRQJh+M zsX^A1H_BJ0Wiijvs?ktdu^(0R)vw-^rQuVd-Emu8X(xB#b_0CiCh)+MvYj7Kr>P&B zFXS$KEVn6n^yuOtrhC(Mox6?~-Ostc-5qc5j+ifZ-TfLve_)S*yZc`e{y=X1EWY(E z>=gJvMLMbNR#I=U@H61q@-OR*)FCS@I3Eb3332Sz>7U0DPQB!5!2=W4tPSs8-W?FhZtzmi~o3r>*6oZ zxLy3_86<#7GsJReIUMHSJVS;y!(rzB!!z07=Q?nhfAb6zx(>MWK<66*tkO%w%-6Vu z!#r>qeU+G*3@uCyyyhzrGc($P6zGp0at%T7kK%BHm!hHA85}Cc=3U@tbo@ZXvYe8>G==0esc}*@BhbJ|Kl2H$I5T6 zfvD>@*Ff0yn`1OhLBN`U2G@&c#?SpG#XfJ%TRh&g{Q>j0Jj>%T|h09XPn z|IWk#SOP5no=gZ}39$V8%p-tGfF(5RD*-P5{-6LV0Zw%NyGaY65@7kaEbzclVEwl) z084=7U;F~F1X%tp3&0X!`L`?pOMvCyvH&UpmVe6vs03L4EeoI$VEMN!fJ%U)Wr4E( zH){o839$ZK7l0+e@^4uHmH^AYWdT?MEdQ1TPzkX7TNXei!18Zd0F?mCzhwbb0xbWQ z1s*sGtpC;pU(N9e{Cx1surx=MW9>^FWOJz7O)mK>yMN-v7XT5DA(}i}}CNb5kv5 zN-W?zp!d-tyl6QsW_q-kA@HUr4gg-KV#xfzd!b}Q;O|x&{>csobe<)!1hRt+-DC-z zIR|7%?`8BE_(>+KKiR>6R`mszKz4vPKn0{M+>I8*%sVOBBf&mDA03Q1R1_%ch z687i(B23^eDg7Q3GjO{EoJImZ4r|_=-SQzO09x=EEJU|48mi zq1jrcuQ7S(-75~`n=M%_8hnv3Ch^`F|4}gC~{gBRR_1I6$(7A1sXPrpnR;v35jque3RYXWA2wXkx$1`^ti(wAE%zM zKF*_}MXZsK%RpCcPgV6goe=4I9}_tq1i#E1bm_x%#^XE2D*nJ0n$L#z{irXkh!jkX zdU118ul_ipTB$Q}W77v=)Ra_WiJf-#-WbGLYvNx$+b}N2y&HXL7MhsoRYk5{8^H01 z&=}J}#dS2Z=N{5$6K6N7KMJnK!8$5KC>q-TJ#J(=I{ZjA@2h(E@YPq@E?E2PXz z>5P4pDRI|mji|^S#f|!OXCf@hhYiXJ=PrvU_wZfKD!*n{n$=G0w~O>6w&?0sb|TNwL;gCTVJT?C>`xt5rPXr z$JJXeRia{2;u5xa29yD#zNyg=u=Vv+{T{_dw{<9&axG zzE|N9&pGcynU9?98N!}*C8)xsrZLUK$8U*+$NkU!3=5vFm$`^md}KSbiXn6ncV^B_ zFgLV=T)YXH-M%5LE3$5_h3O^Kr(ma(IB~>GS1;E*Z+6(=tMF%8tY@ zqpmLX;tRApDZwgPG!eg&qkcutpgtV1FI#)P-%xEwy=xgt3y*H9LNlXI_yR*t_K$t= z#?ym0RJp91cACy3$vT7tJ;ydKPrnJe>E}3}E5`(Na!?4PyNgD-{xZFLThX0f z{GH`gM=P&TQm|imm48%OnMuIt*4yV~ihNGdQ+j4ox^dr3U<&mgid_@42c@1$GTWrG zntef)loWknN6rHTKg${`6>5flAk|TIf5}E~ z@fLB;1KM={>5S=(%!aS8$wUxoSMlE9$w!aGE_3_a@GZl=nD5P0XC4C&lKjqD_+xV@ zF|R#hrTf#-RQDP6s{eJojhxu>)FV;`vFdy-%bvm zNtSRQqN+ca1!v#L@8Cy$`apkLkLI3^GgfyUC%Gm<+QbjQtI65_W7X|>wO+W?!IhXK^KZUb_@NQY>ZP+ucxYZ%1DKzTAX!v z9$_*?NH?Ic=9*@i<+!_6I2q&mbiP*HbwS%uCbV$!bg)&y#o7%}2M5@22G)qOuXMBh z#Sal3lX?7Na~&hk`F1+`-!jr*IxKf|W)yr5QVt}HIPZIfU7(YRj5aepxQxdmh zf1`tMFC@WHX6B(%HW1pvLEbH_k;DJ;!Yf@dqa@Mi4q=$Yt;8ZldxoCl11e@2rEDp8BC?M6C>;jQ_-iPF-RT_-Rj3^%;g^yA374};aFWbnQ3(~wF^^{TBh|Pk9&4nt;()t_OdzGf= zliX%zjqc~B3BK8W4r$}uiR`bxn4iwFH)gEQF;-5Y8Nb6LP#RT}N{Uw>DIt4%gJ|b8M4tUHBMcUe5%&JWTiKqx00_`_4-g!mKg=GZZ^w)ofn#agX#2vMXv2e&_#9p;XNEh9bxCZQVBvIjG8V;Bbpg+r$!rG7}2vS8&t@#+w&}KLurpO5tO7q+~ zk1)!K(vZ+_-j$roZszex$*dkB^UqLmT`nOZf3ck!a$6?Td*{YwBGCsUe5s;3V?H;H z4uuS~8LG}av9Zc{%z1-i8Yk!KG{$bevW(*`M_m)JaC%%MHY~v4X{~EEXgH?31jZcGG(`x3?87 z7nR31ub5r*ybDJ%vYb8p63+i^i+Cxy=hJH)*h@E?t>~uZ_xYQExXRG^clfLqD zD`-|(>1rx&If_r5PgEPwkrlFj*QPQgT%qAMU1W9TOMlFUKq<*cz||F+8yXYe$$0P9 zHp`IKat2iu+sB!rM*TgUMqe6aMSOcJ`|W#ij5g4;L%lj?)z%Ci_L69#Fw*k4cK_S0 z4x6x%i3WZJ4}~>~u?ak?vFB8FAKEP&fB3_G}u70uT?l|AjTeW5eCjGQ7aTv(H+fr9X zq_N4($eBv_To;u>Zbaqan`&WoJ`7N8Ir7L{Nr#={w&H| z))eU*9tV^dht00Mp>k<;$D_mWQNjYz5M2X_i2@WXD<-t}#zu~oSkN8z6i+7VG#oQ3 zQS9?Np1V~$8!LtEN8hQR8*B&?ZUgK1R6SQ2KFB`FK|n>5n*8lbwrDHb!?Y+!v}pigj7EI-p)qa zp_l6Q>AL$e3Uq|T+Ouyjt`3{zlPU}Gvg@KeMHi>y7p}d0)Y%NQMU@VXd%Jp;5)E(*r-w;>rSn@Ka5?2R3u)T;SRi8b2BLoRmiF>R6R&+fn2RIKGvh{QUL_S2lsw3#>0JOlQ8qG0bwWiG2rC zk5Egjm&mrguAaOLvdn)Hh;`*eY7T>!=E^mvGZ*61pu!5TC-gD1+?*9nRd&72ie$d` zl-evXKMQj_{7G+Tf1b#e0L;!EbtA*6zg3CiKoCpE63x9{!;poR*Xo5%wO9+cp>1jZFy z6_hcY%=i0ov{s^BhCNSU2Qy6hwQ;oi>9Uyb^6b%-%$ijr+#6SyeqB(GY<}O1zdnv) ze}roN&bu1welKRn!p-AQVAf4bQ zE_N$!#QA`}F2 zo#t6%)nw5n&^^Wx-QD{%@Uy+BoH0vB#V6Fot$1hHW5DS~2EpAo&s!4Xs#GJpEG z9m+B#eCg`-$*hja<&gDbq7Cg|L>@MZ#@kKL_I^qKOk{BLO}#;z&PFf7JtKc%^NRW1fozGNyx#3Yxj;OF%@A?FALCbiu1)y9*I0S zyopg*)HPsxwJmBqt@XiF7V9Dp>(8-E{iK2UtGoFv#wYs+N-&4dB+WniJGAGnWPK1# zO7W(qq=>EeWqgBCoi4jT9IQw!ofVPc!vZ&ajo({veL0RRG;||Kk@T`lM11k z?=VxL>TVdc7ha8jI(%W%rRT3U+*?b*+WqdQf#i|C3)gA#afVV4^RUd^yIpwDU7yuv z-nLiIKJ=$8b(-2ITc1v3Nj(2rh@icl@VxON?X1;~rl)h1s`^9m6Pi{R-yBahib^6s z+PA|i2eMAj`Z|4KkNd2`tm_}PORSB{S$%6r)AC^x9hD}+0+uA zj+q(!;I>__W)hiks5aO^90*J25Vf)Uaag%zs=JjPSnx0XbS}91OrtBvq5{2s!2QZ8 zl|@&?THCJN2pMHEzi_*e^^LW&`;XAZ-4G)7D=E@V8w=)vrUD1lEz(9Y((LKQ2U}_9VAWV$`2ZX6Hz<@9{1{4sc z#sC7s%os307#V}V`3NzF_%0OVXd?t(p%9l2#9g7&u5hps;;vALgN+b(g+d%`1bi6* z+x37iBVb|-_%Z?}#(*y)4v8_$mk~#hF@z=&N02d;7UBpp25B8Z#vrXD$QYz`gcyUg zju2yz7EFu}`7#1V#(*y)U}OyVGU5m_25B8Z#vrXD$QYyr8}@)NBaRSbkk%1m4AKI` z_y}J{z{nWzWdw|j0bfSI$QbZt#1Ui+(mH~SL0U(MF-YqOF$QTJA;y3&BaR?rkk=7p z3_dOx83VqIfRQoa%Lo`51HO!a4ST?s5wKwo_%Z@E>;Yd!KxCZizvt?qiA*SlHY?d8 z5o+Lz;htf~(wR}v5reDHC=4`B(;%DA&5QpZKt}urmeUKk&GErm*9-*EC5R~tH;5E* zkB>W*usBX0;V=B7A~-3G7F3`08%Fw{aW(NGQd$-iWopcZ<8 zr5nP=3bow*(4p*J23LD!(oqlvM>-Q1K|hGFR4Ro&cYNU?TS_z)aN z{5=<3VHonLuFpvc5g??o$(%?gY?7Eb5$2r?Mcb;y_eMErFt6AG!O4>{E8G-KF!%mR za}m?XBg44eiS|n-)COPt6^~gF-Eq6mFqmjWd3ucg^y`JrwC4AJB-aL0_{s%!Yvxv^B7hDPle zDmJw&4(*k!%xs&&u^_x0!4?1|EO7y)l2;Vy7Ji57t?Obi@50A-)ajB-xo8a zZJqd}ZkoJR<($vGk@8vVLfhH1v6d>Oju^w@9p!e`oVr$3&7hT8Bdt5znORLtLvNfJQXh>^h*BoyEIW20QGZ`;@y*<=6%ow2kIZ~t;f%eWgrf63L(areHH=l)8f|;W zWom*=EvE~TjMbVW8Cu2qth7$vQB;v^+g)h5gtst!C4s*}X>mRL0$%#|s^VAUitaNh zX>@{>cbj+AD!L1W871i%zdF{tpI0x7YpiezXcpjX$S-GzUH)T#yN>V_o)_NY_HmI_ z%yoyr2(gFH*TS1$-rfB0(axxRt~P_QnDKgjpaJn?Mq$V3J1Hj}W9Htj4A?617hIq$ z)4;d5m|52oJwcUN|C1{osr9(dB+q(AJmG7(b$Y|2lF`=1dho$3<3|0LwB>7M1v87Kf-z2SKV(xYH;qS9J|&&V*b1QlyAEf-u&??&3cL{ z%MFaSRFpGo%4Op2j~8r_OSR@Z<5B~IH;(K6Q-;D34$5*vqTvQRshc>1oTTR@t zSzK6Y5IJN|1N&%34gt=+2tF*R@hUo5ryybM6S!zWQ>X;dXCo#+!>{ zS*t4}%Tn!MoqbJ|Idtjw%6X7RNgDIBl)ll#`v3-4Q{-VykiF()cAl5$Y zHgR?ffgyu`c8#=TVrZJIw(?-30Ah`Up|4tedYbL}sKtb2`9$@($Mz3=I3bKd`TLRm ziACP-NX^*F%3gFbMaK$bv19&I`_b^rm74PNjO%T9=K3o4rcXEBSGl$)7jtgM)#?7C z>SIi#BzuO6SxI4k)^Gs!Gf~aX{ju)rpINy|g}n+EVyW&1`8#^Y_cZl{esX*7EGV_F zg;nr-G8UdnUvcgs9l2QAv+H=S?`xdNodk2OJ<%i7X zHXec@39}6MYd}g|^AbWs z{fB3XSh^W;=+GUER(?o)!nf!BEyy6*hb2D2`^>53EH5YCx>J`G%0lTjq_k+Ow&7bXdI;j(is?7a%8f?m8KmMgNWC!Q3{cZcxvJ|GOQD3)Ze+>X~jxaH1jPiDQ{lf-t$o-EqZo=l4XA#x$6 zQ_@n0g4|r@oE?Q%6brID!2W!dxN&%7pb<}X$96c2_iJX6dYWVDEL5&BJr93gjp?k? z(V>X8L(mdFUZz_$`7ljGN&4-y+}VzSTMo)i7{w2S+6X2VuCB;GJsKf)?qny&GM#g% z2WI6jC<~uv7yCA_Y<78_T-XXv_tHH%x?2qOM5Q-Tv@D*I=Xte}BK{=m5AoL5m7wRg z^Z0wKC8hk?PMoEVO}Q)EB|RhQ$m?*%s4K=n=?2+M-9Dq!!gk5-PP2~JO%~4TS6cMmBcgip+V4$Xyls~>T29QXZF{g# z$~$;X;+f|-Nuw@(TNf|;Nd3Wn0eN~ze%vM2n=95{T5aQZL%sdgH5?X_+?)*}FT7)) z`t=jD^~a36dizR`{9AcB6*=R5bj-d;wyj>5iGQZ7%{9)(14Q+&^0#m5hW)U6XLHmW zYZcFVY&M?l&nMqam>cQWoG$Nu@woj&Wk&hhp!X9$8McNY$_Sgpz!OWFv*95Jk1^FV zi9gTjwLZ#tu$EtGTF-y6g|wQ}6{E$3Jhy6(#dw?bid`G-vhUPn;&U9dy~6Q_z;US>D#c^C?Ud}H_ZOp|ezjm1C*3-8Me)Kt1g1HU@qk3M>(Uc@@^c)ahLUe7ujFq$ zYxFP5C^vMhqb&BSE>$5@!u>DAf|sK^fg!7iJHH~0tt5gyuCRPzvtg3Cd9G61iMgQ5 zsyuv^!yx3zji8*>kf0`oACl#a8=1R}nR~Tk>*MdocdA0lGI9cn?N>g3z?QdS`ptZN zeJ8SOoRRfc3zV5SYd@9cj7D7^E=-#K$k8s^tjAm%iyn*e8l~rWnr-{k*#7J;9Z7%IgOqUu6^csv z&Zy0kh0pyqy%fGFy*DoPGNpN`#Jl_MkL#fqvp90<>Vl~4elXv*SO}*2^V&z}cfUNE zF}O(K+UygGxNba++Yub@Wp|86LnDK*UxF7DvRs%J@BjMU8fVdJV6f#$)Yj~W!KQeR zDBZ52cKV)GuHP8iDd)Asc5C_~{~ojTu!Xg#=#2UfyNOIob(F=RnoQ54j*5Ql6s=%` zBj$NVKIiBw#Q9Cy%}j;Md$W&fKT611)*mm=(>ic3SN|gx#qz{^Ixw9~&5cS5*{C~S z_(XE{@xHodpY?0!uZgvmL7}m7X_(;cAU|35Z={z!Ya_-Rw?b7qPJZ9vAieKxtM5avabCI5s}oeE$vX3{k8{%Nq*v18 zzwEKn3bJL-g@vW&w&?JsRY`s9i)kz^pZ+Pg{i%Ff^ld}El|)=+VCHR8|K=8*xN}aT zL!=HBFPk%#FFv2``Qsw$UG5i9AmRMrtzRl}N@vd>w@{nOt+LlyU1%SqqR%f1Do%`Rmb$fr6_Kuh;;&JNmh3qtE;2^f%*g2@ROkdp%7b z2}tV*IRRNe4!?M!yz~q1&N(P#u69VkuG$}Ta zmWKhFb(6x{2?&W`m4><5p}i0hSYt79Ap+=`YJ531MofW)LE`dXesJ$$j5eRJzQ`3q zSDBPtB?h6S3k^jC3*GiVRsX1*HKFdm!QoUGr*`tmskS!goaUEH!?w}fGP|7(DSv!D zHDdbuWRosybZ=E=Vq{L*@eM#z$3KjvOUR8>+U(iRVBA8J+k^0TQC*=F*IQh(N8>e+ zw^^4lo}ym%_13o%-%bIGc@GMbdbw};E(s+9@v~08O-JQ3Dgfh?`~9B-RjI_ zxS3LIbV=pOSB(WWb{f3^OKM|!Yq*olKvpZ` zw!_Iip);}Exxe>ZXX4%Ba?l6#q5cE z`DIzuHYTZDAjtzi$>>Y<4a#UG?bM>v1TLwJKRSwzSL(WUwrWTgNA4Xg<@qOd=^e|J zibqBDITVkbp&J|bdfNT`lkDKa)AuPBZ!Rh_c#x`@8{maVHYM>eY&@C7SNG|ez0DN) zh{!%jO~*u{U-T(9;@(=Bmv%-;Nc)!cDu2^(hc{N@ zmS-+UnR7gSbVrM5=JW;8nbxzxE<4YK?k8DVY>`EIf4O6*B;$T+)^SkhPq6hP<8*Tt z;b+^T`^}@nq5*fC`AVmUtuI{Mypo0$oE+L%R7ks=k7@hTbOYM3Es6c7;&M}l=CCI>r<7YL9r&v74f>p`hh~vBF$owW9f@T zudted_qL}dB%;~#E7YEv%(M!|P2RqV7%RKnTf3C#PdN02!^hz!$8_ORL*+)d6~=jR zmhRoXjmIh`V*J!MTk@Wh{%~)|V7`4j$igc1M9%ZoZ(9n1Hra;pwQs)_Gj~mYcHfe9 zZ4b4?Q1_lFT4W8FF!hjI9T}UD8lc=5ml!JMqV7NSf=^sNHRS*km8*;$Pb8torjYQp zVToMx_&yHpZTauz!}~bAm+#?y{GTX-HdzH}{S!q{2-1SL z@;$tdACX2NEm#{J-p65abZA6Cn;PK$VvrZCkAM*YJ&F47)x-NZtdI`xF_=dOQgg5I4qG4@8dus9lejk8tL#p4r?S}L`cCJ2^bO3BO(9NI=qj=8tL#p4x3Ad z_irpa+3lom8ojtil*pds#m zAuuAOVTlBc2*`B9y$byjA=3+YHZU+EAh!wkGDr*7NYK_0P>4$l+8P21acMzYLqH)e zEoePKAucUwK|vudEoenSA?}|%23k{4jLQpJR8WZX;-FO}4N19wX+g^h3UQwnw635K zmlm|Jpb(c9w635Kmlm|Hpb(c9a3i7Bh57fbp@jv-xV)f+1%r2FKA&wA@1XX78VrZ(t;Ki6ynl? z78VrZ(t;Ki^qp~OLF)<%ai12nuAmT?7PPLQ5QEDLT3As0FE3MQVL>4-EofmuAucUw zVL>4-EofmuAucUwVL>4-EofaqKOinGXk9_!e`#TKOreDZ#kjnng$0GUw4j9rg}Ah! zg$0GUw4j9rg}AhUZ41S?ynt^D#kjD>lKELsWkJ##rnvn1{w&VI%ug+{+b&2H_Fz8>?(^I<SZ3x}>YFVk`p~gt zg~^D^oPAq{sFE={q1W7_xBL7nGE7&sD@$}Vpi1tyt%Q|`b zXrJ$z9@cczB2lvjy3Z^rHOaikq%EW=6CHf+nBKl>g}u#hUM?6!SyV=yk6+}Pw1YP~ zr>av=svXlq))6D8iqA4mOQ<||FNU^}2Z?x-VdzkzHm|2g;n1Fv&Jxp}5olUV+4xC4)Xz2_9G28DRD4BL6XQNHpsuihAZK9l8Z(?YYd z9|!I2V$*t6Q%+XJ<%<}%zA+cYjQRe1M=VC=*&nt8<&3c+-R&xSoZYnKGfgS1&VtmbAM4Pq{mW!*%|=(ggXRFy^H} z8;-8HT90Ge!5sTS;Z@@(dsit@a_`Eb33areb^Ee?U?1czh7>lNMJGPXj=KIsaAOs$r^&o zs9RDq2277_G#Lzv?`igYoopWa7%dXHb+hbg;;Gwie@I`P=Pl0L&nT`A;$53%*}|8+8Zx ztkS(1j)?e4PO5BtU*cqM&iVVOnW1Bp!;@cp zW+kYN%-WW^*idg=3dCRjjJ!#C$GlB9W5njv_wtpxkFhNjq`8=2^Y+S4GsS)6gRIID zK88wC;Mtcdjt8agS*?_kJr*WmzH|HvjJI^oIU%nGUBEnQNP4X7s}c>MkMev1EODhj2*mDq%BZc zW#(diJ2kg#u4G@5rK-5j%UB{YvMKh{Uv^2H+(Oj%wsv!Z$5x3?NE@4Z@Rd0&v$n^5 zlXlHiAF>Q821rj{IdM`va(OBCT7`X+m9No<-%q!vnG>D;49WI*pEO^gkHxg_tui+S zwZ`0-@!m@H)o)h*{Ml+I3`01+?+R@iEeakBrfDHyB9NACs8)lDH-R*?J4-Pa1b(Cs zw|M@0vPFX`nNT?Nn(SZv1094z3B5rMi|~;=JlBGQ7`z4;(Bb972aL~d^KxJb3Z&@3 zkvO#Y&_mJ?F9L_+2sOOk<~3zJoCzUv$Ws2kJcUnar7PqF=O)P2ye%%g5V>eNc|V;c668Xw=s0#;beEqOf>aw7mDlodhSXN zcYZ#doF%Q5mg{{^P+)?UP~!AJsUAwc6r1rOzQbw_I`J&P%H`(J&h)eVYj>_cCTVhs z6sbd}_QW5&EY>18OX~RZtPR7361=nlJgW%)?hdkWis3RrRuXM9sicxV-6&H2b5e>d zg9BlY3pJxKr2Gm{G@G*2Iq-CfGd|bB_9VjG!Cz9Jm#{Oigt(*#6(GXsb*Iku?1+S| zul3h%*ZaH^kUY!bjo%;tNz!1XK;8TfYiHl1CBmpN4lg2pSt&ji-lXt+ zF$SsUcuWcLWZLl#Jf>28{ zA|*UqT_Yt~DhNxFkzLX`=#@>eTQ%(9aPh1_#NbsP{%*4iK66TwCBwEZQ*K(`$F;?a zj&*oTI~vt3(&f&i$!3Ojsf4vwG8B zzqP~yrqrl=V^)%zM?&yzTm1*;&fhy?F8pEiXO||p>%IMz zE4*W&jaf=XQ|=AxGoDP*OAoYtrno=t4lh(K5<3_#qzlRa8Nj!gF)SvuC)ONq)>D!PvyKw)k??a?6 z%b2T=dp*ZoUL1J2iU=AdI_|FC%%Hx+_^tE%+~>WoK7X!GZolpA-KD29N%NW%Lfvy1 zuKHAA@wFG+8v^+NM}EPxOBy$ZM5Pb`GHk^Z6Fh24RTL`Oj0xf8xC!xgzaDAZ^N3B@~Kn* z>zMx9J&S}} zWJt^+;STu_upr?U8HjBp+#&<5jf7idAhnTjiwu-D5_S=Q&_==?GSJybxI+dq8wq#F zKxHEjJ7gHJAmJ7n02U z0Sgjtk-?-V5^j+JU_rtyG5{<{xJ3ql1$kut5~Kxp$N;b);SL!979`vu1Hgg=9r6*t zf`nUS09cT4iwpn@5^j+JU_s(qWK#fGkZ^|#01FcCkO5#p!W}XIEJ(ORKHNzF3Ae~# zCjlhfB7>a-kZ_9(COwgGiwq_`kTVw!OkpEg_=nN;27Th5Nz=DK3WB^!@aEA;43li>-4*?4j zZjk|CLBbs}04zwjK?Z;Y3HQeUupr^?7yuR|+#CbIf`ofx09cT4YYYGjQU=y02U-nLIGew!Xy*`7Njf&#}WWwLBc2$ z02U;SLIGew!Xy*`79>nU0boJGBoqJ^Buqj9U_rtp6aW_FKN9*MU_rtt6aW?^j6wlm zLBeh^04zwDgaW{V{8!h()+`_|7=<1J79?EY4*?4jF7bZ>3lgsKhkykM*ZD)hf`Tjk zAz(qlwf+#Wpx|nM2v|^Xy*~sjs3R3002b7dihl@LP)BM$DEg=)MITgs)RC$W%0B8y z*#~tWb)@ct!jC#q_(A1I9jW}F^rH?-zX=cI)M9UMk?=(CQ}H$IQ}I79!{&wyh=7A# z@Sl@#5kg1tVUu4GFk&{bMlK9$G`(9t7<`x?RIIPByOV`$F6Wevr^LA4)w(gDIZr#% zu-Cd)8l&DpmeT#jcYkDm%Da75K+X?)LT-;QgIp^{tEl*{=~?7pw($1#h*?v*8U06Z zdxcN8h-#(VZ<2KtXf6qA5e(DtCM#&A6|0TsI~RU1Ax}Z+xt+$GOS^LVTnf|asA`{+ zr3S0T65DNrPLIC8sSTkc`Pi8at0)MEKX|0>2FT4#_MJYM9^k;4A^Q45boug4-VMAP}e5O zd*ZX)c~zTa_soT)C5$aHJ4%5?DP_raN1tSL=_);8XXr$bw!s#+$N*0!!bAHT1dgros8o)8zQZY8dkwcxg<=C=DP!#nQ-RV2{Ezb9uJ zzkK=~91*E>vX377uKcvbZglDI;MPp$D9(3;GxpZ|LV|)Ag+A84mv-@$7+I~~BMh4s zrdfZ^+gP7!CjRo{alX?z6OZpvuTE!Plm4A}^4F`Ao8J#Gcr#D<9za*z3P!wpH(?{*@@qoo%-?&?;ht9z zO8)N#{#TWvq>OdM z!Ajy#m!e=P0dy$}mJ)|03YHRw6$*y!hXo2&5{LB(RuYHh304w^)d^M-hsEhoNx-@k z1xpE_OHr_t0J;j1uy_EvR0h@# zK$ptE(gEmF8CW?0T`GeU4u5s23@jXgE|vLDH$Z1~0$nNtcZ@)n%D^2X(4{hP#|U(( z4BRmST`B{2j6j#lz#Svdr7}{`@Bcqx4s@vu+%f`PDg$?nK$k)XVgGwG(4{hP#|U(( z4BRmSU5Y#S8glkPT5!h*bSdum>;H7=kpr-SE9X$*i7=K4k!v@CR(c`dz@ptq*Y+(EyJrElh ze@9Qm2D0+D2AOvQ1*`;iwz#%gkoGz1fJi7j7QvW z6+FNR#klSRJi!UYI46_k(D*xYI5v2Q6M6&kuMv20oxkDY`UzcV3J*K3DJF!qQ>A6b z+U^S<$9@VIV8P5eb3iAZ&Op1s8J;cNVwSu))w`=KOH#?H#6o}W)osNpw67qvxo?&! zKe<-2*peWrw!KqHbLqy5$0eWGxSeVEm0t)ce|>O*w5|5Mi!ej=qqD{K9q~M>UU~G}Wb3f0!h|VDLz{E>b-W!*Xqw?e>&u)m=rOvXoRZ zyHK1=ec9mRkE(-c!G7$4y28^h-!j-anB?n8u;o$*%8B?wKS)qqzIN zxb)?P<9^?HMuo0%_s;4fb9f#%ORi@LR!Ah>{ZxEY*orC!OYIO5{q-px;T!Q{Os9qk zvT;fMQPG>#Tz-r;p7v?TL(?6iob}WTAhJDCD5`Di@E-clJ5>r6A4_SbaN`&IWbwJi z8XeZ-#o_U#*(|gy=95gx%y|KMHREIgr&vZVc6D3XpJ3t4RTFeGS5nNnB7r|IP$;X` z%l@Q^ zDW_!8cwQw$G6StV6;8Q$j)SIyYc+DaX+ueSsh~5a zbDK5Rol=2o$E8A_tihR?iSMZXSwW7r!&>L z=A5WhOiXHj`IyJ8{q|V$1K($#y7$@q1RW0u6nNhsx1#l_*{!oPQn&cps2A|rIMJiR zbQcZnSmvwr3G*T|EO&E}e4X=;&#$@QDdqFXi;BvN!T7v&QyO)_k3U$khJ2tuhy7Zr zlterGW7lWSI^;@H#^Ax-rCbw@6I9+V(wnQppKjE&Sv@h!;$>_%^`G3_i}?}I@IghC zoH%q=?1EdM9hv0h%x+eUJihbQETf{`%Au#-A8D2pdJ1?j=?e+?zeyTyRrn86Is3i5 zz7z3rBEt3fmt9_1EYL3uyuP0ItBPIFFXa!B#Ck((2lE?3n|LK} z=(pNu)Pcy#o1iR4iX`Z(z~=cMww7&Kmc9)E7oP8`GO2C zp(4o~QD{R<=rVY282W<@Ho25txZzcdKove#wMO9Z08<*QS&hJd8)6>5=f5}q-Ak7U z8lRBF8nZ#OeLspsA-hTjI(~@-npl=B7Ih*ekcJK}NIFFi%@srYT3$eiU}q~u*}+vi z9jFB%uM(vMff_BFP(#T*fizYE=+pwW8Ue_)0()PE)CdSd;|^d18SD5BI?%b^N-xm? zMbWlb>EEBN;YjDiY^e9Ou#lD`Ni~GYf+iJ9nYyRENW$?h&0^eJ0DZ&y|bXj`SD;yZi3a@bwdTfT*&~@kt;O*xXjpF zbGb0z`nlY*yXhb3yoYY^UaxBSxHCOoG4;S-XP`wikDZIM<(>RQ6l*8R;5rzZMV2p5(~jkxN9Et!h>w8!+-X(Z^p zg;ME!?p4m@Yu7uL+Ge$1!89*=hy=;wncY~xLyqtr8;=$b5vi(lY`vCH_@@5SVB-N* zk=~fhsg}9!+%1~)@1Jx6nxljQ)?F%CuH?|YexOctImOUo*~jp%u5-Osm4GGYLirTB zw#O+pDeR1%+?(mxPxNkIR87vTw$RQrOgD7)tF)q(E#xSc~>5aQFLFV%l1srC2{Q2q^2`V!m zhPyp;9CD4_aYSaga3AMr6i zlr~n+@rqB>x%6YJE)Qr~-jKfkMzZ;Pj*)c4KV)Rw#NC3kPDAjsPjsl(w}+8EMW<$a zt*xcxZ+yf5BSqqQrtFthE~2#;{oRn+noJz2|3>)QPw`&*qEz1$H(@)5s~Qp*N0XHN z8DdeJ#Phe+a|vfY(j<2WOQG+S38%l&c<*u?I~Ovm_jFuD-`H|cdoH(N@uDuh^L6KA zk20#W_m7J+$K_pkYO61Iqm&@F_=9rFg=nfT_lW$5rULW9Kbe(j*H6C=D%Z=9z9d?7 zk9POYkja-1hTP>p#CzUQyc-HA3?8)RT{S_`@M$btE&Vp5bfPIbKJ)PNv7R@r4=`tT zxt6Z=4eqfg|9)WtkNuYx9q4LV6qogj6zBv!o2PZV?pGZ%NaTKf zF+cRzM~U29k0mQW7N9hMh5ifPkUp()NWH~oFEI7O{0opj>`wbA^Hqd<`W!vNT>vJITyBkjC^T6Q9VED>;1>B zvAMZQmclR2mMKDjy31Osd*sEP_uh4Jn3olt(+%94bfzhjZ!gwSr(|AztvE1!)_KhK zTEAPS<65fECx1iYC-anxn_VmOOTT@HpFNG|t^TrO;uocemr}>nO_xM;?*;2=%*Tjh zqUOWa5-Vx8CSgzSzJB@(?=*?r<67Hw!5rbKC!>6VMpaIV40M7Pxs#tX-x5`gKh<}{ zQ2!22np8XUj^mwo8CTttN)y9tSJK$b6$aL#qFeo+pL(Q|HS|H;c$b69RGzE-UNjdA zsj&5p#6my*bSe}1?3c@rLqx9fALsS1v6Fmva3jCtGXCjJp`EAk?hKRuRvhWr2v1oP zeMc57D%(Ctge2Vgm2K2d%BKa)bEqeVeg&9)BPWmb;t4~O4BAf_>Mc`+MnPy}%+zS= ze&X+V2R5!s~=R$9h?gK+m*@PB}pAGm*tjoP__j8`euE>v76>kpRjW|=im*4 zJ{{(d^Q&|wCvMKJ?UW-5oA-4aQfOJY&1xxK>&4E0&TtJ8#OKE{m3W)~&&s!3Lv!fq=gcL=nnB zJLTKC5wN9Ded20h{w+{~0(bo9QbN#(3j%tyo&nQprRO2gK-;!qvGaM2hsv_Ie6u<% zU}8X*iiGaNmHpHXWug?GVY^>jrWa!`)Hdhv$+A#n@0{;_rOZ?sdv~}p?qXYe3bdE& zw@=-1R?G#&&g8=z5`M8v?{b-nBGWhCmeIWuue_Abt)hQhsNl27tBvJ|8W z{Wk_QI=RT~xFNHs7h3)8T9M7xAH81je(Y;z`TZU5;BpP6%{`>JO2g~<4hN)I(3Mak zY`rd<`eORCtKPBaS{!C%6qkbb=Jmr|)ySfv^0_cJd*zgiWNe?^)jk*B_xR?R@Dk~& z&e>MEsD<4vvx(>B(s&&2Nz}wKlrQ9Fce;=M#>*NjJA>SqtF%_MnoK{vZK91lTKZQm zwTlNCU=G@Z9;zOz%Og1Fr&`vNPDLF5A}aVYLp%#oW}jYCn5(rH@rF#R#57;Kgo<<= zWvA4HdHbrr;B{-0^sgwHkcgT1_`2nNYrVCbF)uzmIH~q5IF{+wH$fWDq+c1qcen3I z5c6z&@ENGlscTK>D`t8vil~~)l5Z=rx?QYR()u2ZZ(S2D9@V(> zYjnEv#2$2bii6S}H3l1()Ztz_IeAS{KkxXo%(v;jPg+WT)D@?ma-QgBelJ=YtT*Vs zg}uwtf6q$r*Sf*!@X{Ej+}@5=*Q&By>(Qx#6J&Q1Ro?Airw(B2UH_dhuyK3I>q6`f z3!$jWH2*BuaGg{s&li3A?+5HuR#wJOZ;-t%WXn5mgQ334@3|7=RbzCMU-v8GO)%LN zx3>?z-`B==-AZFg#=B+b8Q5_tcY)2%_kmN%HNA!@GfJH*wf7W0WH;R>Z&bb~WXzfo zocE7yCg%}adRmbhyvD(282AX!L(|IWqSwV%^@@jYG99} z?^H#vwoHK-X53*RtvOq{yheOI%3i{_UQW2VR4q?tyLu>=xuYm|wr`p>Gt*26JmtUVVzeDb+`^J5Urq~c0m4VTC+nOrmP@Z5P`nAB)^#L+8 zG_-uGgn2?iWV*FVR2=i;#@?7hHJ=Fgu?+5Iy4n>9{V=(hJch!M0Vysv z-s@$y*FV1)y|Ck^P?^t|I>$t$;d-`7BqjM?hx)wl5T%gNf!Nm-kG=cdV%lY+_rtqQ zhgWZF(HpQ~94;P=o(dEpDo?Tv5`Mj4x-+7+$X()e;+Uz@D!RXmB8HKK>G7T3^9${T^R{yDG4iLhLf&>JaaXUX9`pNh>}=Ta>pLFm z$Nj}p(H?5Y%k=%FLZVWaX>z^UHx?Pyz0ZW*+`IKWD=G;SInSbQsNLmxQSR2vB#pED z#^}9j?r z1?3Bwr6MAd2$sbyYRRYTYuc{Ity40+%FU#W4UyKfxn`!3Hx$9|#;& zaN;RA8D`mmO#7jGzcu0IN`F>t=QB$RRKXLcA48{J)J-^sdp~VBWplieK)m>BH_^hd z#NMr$;f70zk(hEG}O#Z&ybs0i2%DLn{wP=G0 zKelWhIwT|0%jTQvA-AX`^@SpP)Ro9*=>N#!UoK8bc+r}L!PEA3dP~N0lBAU0FTVS% zz?`y~pd`iKJ@sGhZ)rM@Q-@MVH;!H^@?`9Dw;NDhzcPJ>YoyFtWom6QbU`fDZ1ZI) z1z*-r*{()WJdVT{O}v#7pXSK9SBbWYH(G>iO$I9mSULL<6^djg(XwUFlX$;u(KA#E zy^z=CrP=UNqQz*>M%6U37H~$K7uN57X`n!I{j{;Z&#CqxDU{vw5}o_RJztY6ZrF)7 zjKBD@Z*}T;&U(T8nXy;V)t}SEABrYq+Z{~%nS2mzTUKv>kd@GTkUihPWPOc$q1BN} zLUrGqq;JWbG^;YYW89nVYq z(RQ8BgydZojqP!aYiVTu$ELaU>{X^xc5B%F4#M%bd#37|6)3|8n?+Y?4P3PklE+@pW#0FBwNR z&0QV&Ben8wGym!EljI6&l}$0`BATF4xogo!WW2NNENRf>DMT{ygJkThhVGd?mW~GZ1!1|Fxk1os|g1xV!*#M;|ewL0YgA4IEcAY()dd6%BjQz;Q*xW;AeI(Xbm0 z99J}KM?*gx28wa~A2_aP*pUW~D;hSWf#ZsX4Qb%GqG3ZCIId{engEU~8aAYX2Aq=Dm#h7D=p zxT0Z08l05~#W=$RIId{ekp_+{8aAYX25up4SB>!2?U=k1wJJP^$MZ>dgz;Q*xhBR;a9m|!LmD`)valfy99LPK zA&ohF)KV69q=Dlqi*uw+f#WI*8`8jWm4yvy;JC{EtL^_y0?NXU^r7P_3m5o9$5j?C z@z5r@(E5{wtNh_4pe$VH4<`X-;Yxov2`CHK`ol>;S-9FCP6Eop_5N@YQ1(d02ac=k z(TWfL{mUMy`Jm{_9x3{u>dPLf`k?H~9x3~v?#mvj`=Id49x42w^2;8n{Gjy9{+m96 zJ~2}0hlMWu=djjlo@}Vq6dY_IkU@ZhQ-!d+^C)g21hm@0L0ili+*6hje4pH3yZaT8 z4XTpqKG#%Lzi_Lh`{H2z6KZH*kb{sMr!6X1o=(FOq4Fxn*B>`Owv2uJxUOi*M=w8C z_xz3#f7a6Eabbb*i@M9lWO-W!-b9+js?rRR;7QSoyd$bo-@wOvrZACabua!_0c~GW zO8MPa`h!e8zY4RShg`$v5F6q>e3Y{{Oe>S->8M- zh3jOekaF-^Yjcq(X7N&!bB(5u_M}x2`JdOiL_2mfn)=<9PJYe6dr7=jjHlA#YuJO!lE&g>u`Vm`{m#>Lp$&H}AF(`xe99+L zb~6+C;4)=aF()5)t_FE@SWUc}YKNEE7~*^D>Tzw1Dg`0N{`=}(8lmo?uzPr{j((Do zHOs-QgXWaQ#Eq8Kc5ZFQ-e-CPyuc?lACyh~-Yy>d zjiI#-A!je%_Qq`GX33a)@lWJ!d_8%$LviMAc5Gf=W`OCL-NN>noAFe`!_JG(+oUw#;?M0O%Aa4#%^80F1M`>>HMfq;{4E*#bW9}O zkvcSd^Qww=Y57a)+Hb_qauD)uUuBtSqup2URjgLWiLFgoaR~ZzEGb@}wNmh|rZUct zxOM%jZY^g0j`)lVa_zx*n#>+W`@_o|f6Pt~>6k{PWM+O76iU!oYf@k3^!#!|mNwhY z_u|FTPR4183g2PO`WJr6`&6s^8L7I$a@T3Fg+Ydh3hnN-mBtfqY3IL%cc`Iqx+Mgs zw7w#oX;`<+mZi7~f;Who8ePBh^)Q=_3{06{7|kS}n!YY;Z6TBGU|qN4lseqnW=egP zeEs^4&-xPC)3WT8)B5=i&(?YYG2&@wPEi%zKf@9HlcDJb?|7(B zFyWUwtgU=)FGR*$Mn20gvHBnTKeEmQ9Ll!seo!-nZ*n9_TtBy|S~Zo0h?ctaO2mF=cJ zlAeQ2nf+qz&!nEt3m)=cD}LOp(Xdz6YBE=x+^eTP?CASepVMc0^`;vdjDJRNWF(MQ`SE}qhVATpQ#qo(o6xa61(3pTj&?C64Kh!nSK zW%nOu>w3>K3&H{e$@bFKm%bes{1hH|s(Yq;K>rFKfB)q^MscHcuMVvt4-HMhe(n#Y zZ<5{BvU*CNb9dI@9E|3Q79BqNC48w{C%7+_ylkoL8Ea&IBNKPKCs2ajzZBnV=DzlG z=6YJl^7mUydHD9w*M7l;PF`Plg4LpY3-UuYlgKv%Y?`wznhDOxv!_QoZ-Uz>O z^1*dOWxe`J{I1FU^fRZ@7^TJaELZPdbX6RrF0|(lz=amef>y<6P<^?q*BEU^OP`nvH{++}(N0 zBlbRoMZS7MTR@8BBbB`dlLU!t{RIE?ExYe0^;B6$ap_pcZ`VH$SP2-vO8!ibw~o@2 zh&NgL?m?wAZproguFS;QNYx*O7NN%({fAol79Mz(Pc(?0E}M8#F>yhHYG*&i6Pj1j z(;C5(`vWbLHr{rvFC2^i`Q!li^QmUZ#MjEk-Y*^xEZh)^y~E<*TlLmji++VlYSZD^ z{*O^1WM4f0u&kTXJ9#+zUi5J~dx74G5Xvk`OAhynE`z7uZT#np3Uh^waNX(&N_NLUEQnv5^HIuxJy ziSCc6cUBw7=ZotNcc0ngY_E6FUeZF`Zp&SVQntS$l$)oiOH$rG$;|FhVwjU%jw1(8 zv7=pVhM`_ql8#=O*-`L6U244&9tut#0d@|a;N+?nR|yLJm}*f6d_Dz`#R~5a z1N%n2TsS^-UMyN2~1XhP_YB=XhrZDElpM_0^9~op(-yAm6E@# z+a>Nlkpv6I?*0v>W0C3>(kW8hLN-O!wlG2urDKu87E&ov*Fq*m%34UINL34Q6e(%} zFXKT>k|v-;f<>xYA}u3TEfJPsRlDmLaeNW7GE&qMQ5h*}iKL7awM0-xidrHk6N_48 zC>@JbwNN6#B2_IMO2;BqEtE*GNKp$V5-d{GLWu;66tz$y!6HR1lt{2hQA-?3$0AiN zlt{2hRSP8&EK=1%i3E#`Swo2gixjm`BEcd>EtE*GNKp$V5-d{GLWu+mi(1rBIu@yF zp+tg3s#++KV3Dd8N+ejMsD%;<7Ab0>M1n<%S}2iVk)jq#Bv_=VB@U%yk*XF-Bv_=X zg%Sx4scNA_fsD%;<4k>D(M1liF?Y2SyB@!G`)k28` zhg7vtBEgZWTH;VT4k>D(M1n(#S}2j=kfIh!Bsip~g%Sx4DQbyB={TgQg%Sx4scE4^ zfHSG7D^;I%>NFhl!X!r z4k=`zM1n)=SSXR;kTMoZBsipsg%Sx4DPo~Sf+N+i|Ax|WNDT`m5*$*(LWu;2h?h_z z!6D)$lt^%hcnKvE93oyqi3Ep;mrx?XA>t*JNN`I3JCu$?)JrIl;1KZ=N+dW$yo3@7 z4iPV*M1n)aODK`x5b+X9BsfI8gc1pETfF>lC>@8Wmrx?XAyd^*BEcczC6q{Th<4|ipT=a3MMIWyEIMk{SB@!HJ*@x>s4z=#X zg&&7n_~FWrL#_O9>Bs%2XOcEca>`29a>_~_%OzL(&-fs9l}&_P9`o<~DT|Q=b})PX zvEs8n%dnBZ$;ZRmdjsXJ2-C7feWTD$8WehE(A1?Ux%%DrD6WiavXXXMBy1=}qhGQA z(pU5B5^viO`GI%O^^d!pPVNdDJfG#Oblp4mHOnXZhQk-)SCkoDLh?-Jd*<^>LG6^#ME*V9=9tEo zx#QpB&HN92I(Al5ftR2~$F(|jD2`V9`Bx^)u>m?B-N1+&?6X&ru86!47|D{nG&O&J zrAD;OAnukOox(Adu_{WcnueEc2I2Nr_KvACEMoZ{P2gW%55@G#&$=xewBiS~88}|k zn8Y!}CB`I$vC4qKefwQ{)OxSlBvbcj$33gQ)+YHBYfd4tY}K2yLu^juN~&CH^vNqN z$HS@O^6pt)5lMKw>k8qiBsqiBE8WWObv_=W!QC^W2Ho@uloNuNOeu41c2mEcl2Q0P zNufY_IYl#YF2ah>FIlb0H z5f*3D3o-uRDD0m~6sb@ebC~mo?`9}r)Dot4jo?z#e<*@|kTcAptX?p_ zq&c4vaY=ddV}8G|YICo}sL*+}cw=oOzG zs@bYy4*u&G@7%UIb<#XDo5j7c!+%%k$zA0NS8;4cjt5$!Ej9CPx27{+h~RfSzql8^ zt`=hUPJL}|eeg>OPMS}1|ACJolp+kJ$8S_gU=JPrTO05sOIB@H{)4yk)rGbVE=eV3 zst%7oo3mcqIeIF7!Ixll_LgV(e?qg$0Hf z_wpNhUg6vQt@ika5zasDc3#N6JNRbCeNpN=*O@=CjRnN zWyf73+t>KV+TlYC5JpSRG3p4M2U&zeTZ0+fuyA(^q_$xe{kw$QD@fwGe=t+H< zBbu(8uK2O!c9#=dQTrw>9~g8zSUr2%DB|t7686u_WFbhT;9`|}l2hTdf5zJn|Gm^l|aBPeKccX$GFbdS7?C`WB7Wi|qkmUAeRPZ+V zb?|d`(=?KBFRBD!d|-zqAz4pIT$0k+wT*HAHlyOUG43Dt<8TXLv*00@z) zKoN$>0f$O3BxMBFe-I)MFclb*>J+g0gOJpL1B*X6)dgln;(id5@&fDxLQ-0Qoj^!R z3$POiNofJ@2O%jffKDJJr3KIlgru|pI)RXs7UX^qlkx)W1kRTs-7UaQAS9&)*a?KB zv;aGSkdzicClHd-0_X%nQd$6=KuAgppc4o|S_t=pn3NY_ClHd-0_+41x*??n*a?KB zv;g;mkdzicClHd-0_X%nQd$6=KuAgpazBVkc>#6;A?bDjb^;+OEx=A7B&7w|37oh? zN(-P92uW!HbOIqMEr3oSB&7w=34};z5U>-7NqGTu0wF0aKu#ber3JtVgru|pHi3|o z7N90@@DC|108Jnyr3IJ?gru|}_k);}7eFQul5Q6uCJ>U+0>A`9Qd$6)KuAgp&=Lqq zX#rRQAt^1uO5gw@Qd$6&K!|h(0V;u*louc+5R%dYpaeovT7dgONJ}oPt{b{o{TRlkx(KEC@+yfmIfSq_n^?3r>b2r3Kbm5R%e@n^8eb$_sKo zh)Ib-?gud`Ga~nc7f89m)+mTc_Y87Bh)Kyo?gud`JIMVYCZz|t9~@Oh$`5ish>--r zq6=aqLCF2!1tdeb=))|w)g7?zf*451f z>Jf1>DtH0O5H9|}&-CABRM!ouTGtKf&fA2WPrw#2cqT2OSyn-W42WroLfmAQgq!Jm zcjM>2AMdZB)HU1J(xY`yGEA}mZAIzWo9@70&(#$sV^=2Gze^hiGTYx5i?P>vXkhQV zyK~Y;Tyj!$fb)4nZv3eqnv6RtYkn4SKTJKSoAOdQX67J^1op7&O%{5sRMXBfT~Q5b z(}ZiUS`K3znV6Vv;sOlQUuj8LW1@HA5^;yR@R6@X480whtPYDSUMy26NT80nLvRga z>&n-8m-;Q{iE9q3)QCz1R__DapcIL=Zt;OL;hDz5R;lR;^}Jq3BODAO)iNog8NMw!byDC5VA&*rjmi%;r!tG1ZByH_iI${;@DkPf5Eay@_NLM-{z@~?vp zSKal07@eu)eK#Otc%eW}Qj)x6UmaFBCrqPAHtBjxfX*3Hq2GrY1+;#r|9ZbvlE7z_ zN9{f?Uc%)*E-76~fAtzmv6g>6-M`JI58dwKw%#=Jtt1OAUX+}1;Wj$^@Wu`NyH0nl zM=Vo#_GevETH|PM2FYD(y+Ot=FH``TM74bLnU87a#w~ z6&GJMwczH<%4)%iLk5Z&4@<%J(*oWt?;%V2SH3c9HiGdLexdaO_b;E>89DZF$z#y7 zVrt0iQPcVCBTIhj=W0jYWqUQV60(!stF3B|$m8>i!4}ZqO9KmqBOY%nYB$Q;JJsEK zWW79Pr^GyjB__ZLg-w61Zbj#-X_>PhdKfCLl`B)fNAkvHg`BFo4XMxi9_^nk1<6-F zkH)N-{dyIW+Q;}hs%s(*JCOP=&pV+%!M}%nqheX%dtjg5nLQjDL$?dYel{oI)Ax-8 zt1|Avn;acD!@{CgAr}4U`e>+j<`P|XY*z@4lcV2*z)`=YUZZ1*AB@vw`IOBkb7U{* z{c-FwjxJrxyF0;icQs|)xOPNjmV2~p%O=0*nOwcDwYpuciTumK<&g0?imNln14CT# zBe+^ob?x;FDBJedRd^f5PuY#?pz-k9>Tm}13lX;0B*4oL+PW*vb ze1OfU;*=nBVhe10JOo%i!0`|+{C6-P!m+u~JQ-?aKJD@G?`bJ*3=3O9VT$%}jcyUf zi>$Q$(YIK(zZ*SeA_{KDOs|Tb;%ytv`ab$9v$o!4Ea=m9o*(V}-q&1GrUD=3l~5ji z=Rz)*L7~NRPDYD^pI(d2T2zZ`_QQ^xD+vu@G;B19ff$?Yzm5E|Rw2FhA*5r@)B^H*u%BZYlH`_BbY-zAoX*a7;8^%Yr`LflWE# zodSh~PlxtfWe19>t~(r($(p(112+%k?p86~@$gN`Z;nH^OTAeo%^1EEpZTHHxh zeYG#Rf;BuL=3?I%3oI>T!{0?7WaQwNWVL$L>zI31kX6~PopV6Q;YgbiZimI%RSK=! z%P*8HdfZ+Q^U;vceH}e?t4((}e1eQ6Tu`Y}oQ3VyWKrymQm62Gslob6(|vom4GvG< zJVY0+MV@e!Vvkay{e(H2K)4=WF<{+%c#yDkbl63BeU|1=5zPnQ>u%?trfHo$caFV= zZkX~y_}>bxudyvF8JacVM68CPEnlrn+(UR}%Dyg zKR$VSQh40Y1;6t9+uGlSmwh(Ff8Kfw-`F_f#ylptl0v?+wr}lxqgtH}etGoy-(T}a zlD|sS`Q^#?}FX{W&oo2@sif5J#{mGnvJ-4mF$^or%y#+}5jRn}l%XRmlJZ(~EI@_t zn$}!syIxHJU8uwL&+2{2H2iyKe-GLI_!$^ozFG2lV6B(Fd8X?0meP~YO?8d|zQMuE zWQBcLO)W9G=hosG2S*o-^<0h=<*nzh#d?JJ^=Ln8ou)hTA}955L(z>#8-MVw7){=z zy}Jb|nB{Gn*%}1o2s{MUPjCM=s1-d6{$$uu&a?1!msd>v9pQp?vipIJ^$#=WoV$nF zFHV~*&Tve7aP0lV>3ja=fnlBZ85*ZU^BXrGH~L)YJy%!X$RF!6D(KvvqP{t}+&GF` zN>{%(xM25=>BT|cXDy8OUTT$d8+g{%FBbm5z z)!?RK?_+o4PkDrbM-!)S8^`-Dde|o0B<1@_{^s=FHNP}8$D8#cKY6LI;X9Xc&@0Q9 zc>jLY*@+NW`KZA_JB?2xb06OZsA~q-e$M#tKKPZ6v0I%;R7H2YS8S(p2#r-Tp1&aA zi0FdmPJ4=5^Or<>@^90ANw~JUQD$JkXnDu^)XwtbWSE)AAchM9xYpPXI8#Q9iNBA!E9fw={ z5=yb6Z50LH>Li1iqFwFgEgNptxLuXR!3zlakoANI1lpQ-o2AYJROud##Ssp zI6aB!(A2!#Vsy9Ajdh<*csk z$I;G-rNxk?1;ccS7`v9qpPOIw`l4*!P2QIm;&w^#@(8?ab@{T~bVU8e@3rW|JuW&d zr-mlV0&gCp_#<3k&V1|?UP|IM-y1%mPwS(n&l&HzkaOmX5^yK>&pt50VzQWER`Ye0 z5FEGHKX}pU<>9esI#zU6j++VkWAXI5663|!FTN6qjmwj%nPr^8|4Mf_worWH{50PE z82H`(hR0nL2?p#q{o1EGv%~%-?cH`}hv_M<#`-QheN8jBoH2?lB zZz_vk1(q(wKJ71hJMZRkzNVtJjd`1-?YcQCRDJHcyd#avBt^tCX{B$gi87}LUkkOZ z@4eIaD2KguCM}YCUvf01w9iZJ>>h{BU+uw-n@fR1!|QI07vnRS;uqek4eN_8+#AX@ zW;tA+R6^HMk(0KhP4)hb5q{&bvsP@*GlS_XxlSwnl~^*togRIoeSD7JZs5w!@ky*J zcS#rQ?I@Zs%n4`JvS)lJyYJjrE*uli?3}LTnE|Eg!!^5|kG9=R^QzUW6i9yD?oyla zEv!7~aTU+)REnK8FWbMSx{KLZFch$fj1#yb5>Dm4Ff5QcM`bK=qv_L4d_SSns_Wd& z@Neh#31x6#YaHqF~!BPcfuC#l; zZgHuYqd_6oE&@zj!uJ(U#f9i`$#p76J|MU>_H}6&Th?tPr@xF8e96c0;)@)^n>(kz zb`)m581uE;rE9jSa^zuyu!%2zv&wVK!T>XPXl`)zqJ*Y{_LXaQy9Jj#MyP`|tlwQP z&y{MtTjUt}F^YbPH%Oth)Eb3f{bsf!8e!~OSAHss zU@tNzXnDRmVdu2&@!`l`0geFI>9)X|fe)(1uEy`?*Grx6XHit0nk;*j&yEkhu_V1a)!#hI0l6Nh7{Z>ysbdQvYczU+f z%C2_(RQoM8mq&#S74imQG`Y9<=F20@pShm;8s^>@&3=P7ljXcrdvC|=3-RS^IowLA zdhL~)%RWmh@w8(n2~0|7-f|_U;3NG%Hs{zT;72zNz*acTdO6H;eBwoB@!J}lcBP?~ zSMG9Jw1)E)#Z}a*AAiuZ`)$nd(PFKg?mK0EEZi8;p5WqJ$Wo+;beCIu$z5h1CO{>mE^0JUovlaKmR-HOIxZ$;u#Bp^LAAQDPi7?_j zp+LvJV^5jFVB57|<)bG%`6;L-=d&|b#ZB#bLnTa~_7zOYUFTR-Vhiv!EI4TTOzf!G z^!}?Czi3n~NYg&_Ev7h4mW$`q=K85en-q6d#FqD2YblH9^b^GyHrk|{qdcK>R}H$D z=x117EPYAf$Ya?|+2z6bgoz6OqVn~hYvpB^YKA_W2hU$xxoA53rQ0y=)_-A^vFArY8evI_X_E^zd zXmWb-c>0RgNo-X}vu+><@M>Y^^d*yQx$zX zb@TOI{sdMlPw!i2udbS;URio6qpkQ+s8rn@TZCbq^-5>Bp1!f1a}xVAjXGL;<5taF zdna3snyFfb8pn?#X2F3b4!fTG_(S=JR`yZvjs5O3g7{He5nrJ@nm_7JcdU|O0#%z_ zgAO#Mi3?pS>mH_P=D0uDcJ;_ZaSeS<^TU_h?MB||EIq54X2v$&x&Qv>chQeb5AMYT zUY|70Unn6gm!9!Gc0a`F`j~q-%awMXlJ|FltRL>-vY|L0^{!xxLUvg|3Y`B48D5D{ z3HKFg4DQw4wXJj!m2_}i_J8UFQAr0O@N*-VJA_w2G%l!NkR-0-P{BY1E~sB1`W93# z5P1t~7l^tAl?#-(1tXFU0%a9M+JdSIUIEdzh@uKId_vSz5NV4jsUXr8QBgspEux@; zNLxV421kG+`V348k+z_a{-3Sv_8ub;lhhfamV!uIP)J8v%R(U?(f()`CL10-|a`Azc9xwV;sx&s&x#2|*!U0g<$z zkdCsJg+e;YS{4fF|Ey(6dyGI#x?NC6#~^AJ6w*=NvQS7zdCNi}9c3*Gg>;m)EELjF z*0NAYM_J3lJw_lV$yiWGM|sOaAsyu{3x#x)w=5LWiQcmRCaR#2j;m+EELjF-m*|g-}aUTCl5j)9fPzmppcG1S{P7B#~>{X zD5PVM*%P?O2*f1e4+`lRq=f;6bPUqMfI>P3X<{XD5PVM z76ug3F`$F7JwXJ8bPUqMfI>P3X<{XD5PVM76ug3fgSF) zlnI4&3^IEH_ZWegv_e239fPzmppcG1S{P7B#~>{XD5PVM76ug3F-Qvo3hBTfcl(Q> zkd8rG7*I&ZC@Y>KU50rfEet56V~`dG6w)zB3j+%2z!7u%vrtG!*w=&372nsReK&rqH5Ac#Cu(XP;5iC4qIH5SpO~@_a7yUP^k#@%9gC588k82!D zX+_d^9xt7_o@mE?Oek+xs-zohNvbXPh3CV2E6gTFX0v|C8s4SP-TyEpa3U@=6z|{j zp~~;PxYYgg?@m81%KBkuW#h9OJKbP9e)Iu{7S(YNUCz+QH_Z=+NIRxbF{c%sV4B(S ztSF0DK$rJ|MoQ#$Bi`E>yq=3R^ECO1E7Dm!DXe|wbT8Oh6wP;wxH*+ci1HR4)FW^8 zrZ%$65)%uX5ap#~@a#0OTRny=QPE6JdP=LUM=s_yOsy)$S_Ew+=FH%_4Q3hQncjE_a03{Rf2Ii*gG*|85SGNv}vZTN$^UXu3?rJ2ZU zCD|2`bByXzOAMseQR@0r6}P2?P&3Su^H9eF_&yj%>kojcwRbdz9a8Jm?2Z_4I})WIB-pih9;*}O;)}z)h_b7=W)e|lYJ?XyaEN$17UBQhT=~S{ zJ{7y@GbLYNRx}rXW*XvSo6l{vS7KgS`Kl)D!mAWM2^xO)YqGph-}sE`pVaR!lnUz0YUg!oi(Wpoy)FE8+WqnyO;NF2 z%?+KFy|Or8T1Ahv`#OA0>i)i(9vP1cBH4AUXa;S5o_)aLCl|G$ivO5mVUe4m@nPAi zGxpSpJxdofKHxNFKAOxmd*IKM)tUszncwTqvn|h1ud6yFQu_DH?3qQ!jbf__z3!vK zkCpG&#y+v?$-L9`D9!B4gJZ291%poT?vZpzzzmdHri#ejI*YH1>ne|1NI6l*U9z}k z{=ByFm~ldiX4^t9om_$f-j#tbqCE$1&2rh@ZS%D9R(Fv%Sx1h-zn2w0<2OFpVV^bz zRNl@qsTf|FeapPmUHj>Se}~qG+3Ht&oRorxmw&G}tmVsOGs(`?_doi6=UwI}r(o;m z6a5_?R{r}1o7R-l8=XqJXPQngt(LzWq?q~CQfYl*{n4juUMpXC?bms?N_(fpo<6*O zx|D~4>H2=@%Tz2ImbDP@z@d9xbnIkcLmVBSbS?8?8Ft`Au0r_1Da%2Q0h1hh!cwU{ zO!S0ZMRI=#?nW~1@YSS3=6^?tgVjeBJ*5pp_)%ao?gfWGp5_Yi5Z^+X))#|%b4 zyb~q%*3w4r>!c<08OngK!Ty`hmgkbCCU7S16C|)Tkh2jECGKN|!{WKDyY|#xPTWUe zBiJ7nVxt5LA<;c+58+t;zCB^hiGuF7ya;ItsU?nipnPf}ouYhdA)TUpY9XDXd}<+`qHJm* zouX`NA)TUZY9XDXY-%B$5^ZWxV;(4b2&fu5_uvXgsU64+Jr4cEFX(7A?=@dBnkgmeC5Z;1x3LI-lS7BNRZb3Q) z4lUbPiDMqX8f80%bPC)|NFhuM;Vnp~z{!Jj6{dyo7Nk>P1wgtA(?W0y(kVFpo^%za zrTjl;!yqQ*1?dzVv%dXqNT=X-qo}mFT&I!Jtg(j5w-&bRFeglX~VTsAH5(S zpnAgCDx{w596B@t?%KCvL{aT72jH zbn~;cop??}g`K1I(;~a6r@WkTHg!H!`I7g;%|sQ;?QXqzAkA~ajWaGIO-rWT`iS0r zQ!)lJ0je;O0p9O6QyR>i8Yu^>d|H$^ZWY;y%wIjM^!AvOWS6;}0h75Mr9P41yuMJ# zaMI`%=uAG1Nn%L*jCYWraND5;t~mkTOCO7+5Tn7EHuXj_Fza~(!@+lqEkC`Iy@leW z3j*a!%4hSnenv`b_1U&WXjAc7GCXjyXwv=?RLOpbOec#qG&Ni|QiD=L&z0T$$}xW` zhAu~19<9+xW43p;WMW12|}TcDP|{)E4!NL!E6VV0Wx!B>x~^A@A=tCe3p+VXmmw8RADBt+kzz=%>e z?1|XrasSGzhoMgmJS@35A{2SgXFt^tqZ1avT;&(#z|P!T8+6I&D`wDsQp z%*gO9IpV(*Xky1T%W+<3%waR$`}8x4rG@F@!Db__`S^H;_W^YLwS&KsBJ}l3dkqAF z=Xc!8D}Eo(JKLs@k2`HVV}0HWi?wR@s9)QY(HB>HeE3;Tl=$h-?`F!fZ7#k2;d8kk zvnY_drS}62F-*+ss?Hs7Tc*D}WczSk^XBcO5Tgsd{92xsH7B!A5C7Gyvm7R4Dx+X- z&3fKa<-5=~$u@S*e_G_*>A;5do}ZJgKi>cWI_%Eru`%kpGlKXhGlgnd%UeO0*3Mp< zexw#nSSw1{Kb9rd^w`Hs%(MCZtbb;z>OA+x<>s>{gtz^1BfmTbg&W#m^=~*uhjB$a zKh_AYsT-m!wy%W8lt*;H) zzxE&MX#X2GP($m~UY30zsf5%HIr{?NU4g2<+f z2tgx;9CYx3`6;m#4~GZeov&oCE-?OmOo9kybw+li8+K@Dgz^A(2*pTgwO%?AO8D z^%M6og6w|W0T!&GiThI7!2C1oH9@fZ5Ln&8v4(%RN;sG%|Cqq$C8H|>MiT!mr~hab zi~??l@W}-x@cxOZVCHRm)dj087%|(9z}gSyxwa#)^n)>l?Fg*=C?`a)@c%PHB&vE~ z*+_S`xG8E}5 z%n2FUg}4f27t&Rj)jz$9B&MQV5FxIjTo56yqFfLmt^$nS{#_7P0ltz#m=>aUL0kp6 zM!E{qLimd)rUE=6U50rf00watJdU@oLR%9azTV*DsVyEz5x(dQ6`8`OhuU>LR?is_=_l}qFfLmuA*EJp_qztL4>%9 zazTV*D&m589O5d<1QCj>6GSMc0uw~Ylv1@Lmt?G?K&dYh%&>>h_*NF|L<8Ccjt{u@S=f5A>vM#z zRHW&frYyYruy)H-e3oL7LigG0{kzO@%L8RoazoafTN`&2=MH(h8;s{h4rrD2E{r{% zy|bZEeKgPP6z-aZ;Z#M@=heAe3Q0 zP0y~U(Z{^_Y&0mv+UNA*MGQW-wCozsL6sK)bceV)6|k!+eGZXtD`T~S4n}n@@qV*^ zcSu|OP(o4J!A%MBdm_6s4^mPM6I>Ea&2fy3s}vZ%P8Y9TWCPCS@)lOCL3(u-^qJl- z-f$+;_#{Z~;8cmJ8j~ltDO;J6A74xt;1X!L*%~fJ>2u|So-vc-pq{ipo=ZRhzQ*fw z(yM^2kxKvYRONVQszB;P+9{Uql0+R-uI?-~t@KM>ENw9gQ!F%7ogzY#NfhmGoG5HX zR5+n(g^lJxx%z01sNpf#+O6VD`2zUn*f^<4O-*cir{hUtv^m!}ho4pCK<;)*$WS6m8wDJN_4kog$vIi|EIUij&T_qyazfHVpyA!>^ep_;-IZ_YC1W0z z4@+bZJd}%?FQVH2eea*@-)S0g9bdjMJ3HD8>=s+udeFZ#op+*t$o07Y=Lfyb*)#al zTPk-vAMu2J4e|Qnw`TA4!@cHMzuhsp;lj}p_tlO|);8lBgKx5B{9ES>@6Sd&|9(U_ zPxW`rP|e)^pf}n3D(3E$1U2ICyqj}YIAJn&n>qVUzq@kj>|)&L#;=;#uX$r}gWV;z z<@L4}rK%-Q>YjOCx;yr1w(2W2^yoxePC7o@V4{G>o@~spX{g!9F!of+`qDh73Sk+25iukf z*s!4&__wLSOUz``(%i#y$3ltD;J0@Z>R*H{xxbelQT@u$bSda@bcN}c^mna+u0a-C z7kWISQ<;BL1TRn9H)MGkdEWawC1D}^QHHOfNI|=PX6RaG9E)_;g+$4Qxx?Q3z3KyZ z#r>HHI>a-v^K6?ZlS2ia5UcLGHpiMN$5uLXQhs0GXV+i(p^t=*_$sOK3C1VrZJo<+ z-Vu8IBQ!V!4Q?eO1#*HxcH$Wo*#Z03;A>Et1h$GqptB*D6(S?BT@!@rqcYeK>q-s| zpty@+sqLhYjRXM7&MHC)9+Qf-W@EBCROH|-KW5lKZw8n(646h-LXMB{`k5F98`u}E z0-iB)Mou0s7hS<`Qy{dIVWetpcgiNygKq;fuN6G3(u6B@7+QiVmn=Uy7@H+Jt+;T> zvJgbu#P-zQ;gU7x0#mX7DYs|Ez|j^`GP1jY>e_7@B4+ zSFye^dZNXa>il-qLmcyG!?=9U1-n-TOBU)1NB`YCCa3QsV10)p)++dXl4$ddTWj$G zO$~_kC#Z zmdAyv-r#Sg#tCxu_o`c3@N}LGPbQ|9>TC?f7@p-kMe1SdvC#2S+~(#_ z+e(${fh*c0?W+^D9p_tmBWo>8_GKOX^uCRjInn5{+-{|MIzEw>n)-&|4-s#fe|jtI zmkCttKXv(GLppWBIeXFmpDNUmRWeb`+1P^t0W0kKfBEhYx=($2`I+S@o<9G#;HA82 z_uIFO)pkQsYTJWfQW2E+^^B`ZXslkVDId*rnAAeYAlb|0PHJp5# zF7or6AokgddI_yJ%xaXML&=!q@wX^LoOX0y!;61xJ$r+xb>uZ~Ld6}Czljsmm`v{q z7Rso$J%4d-8=9*|;=K6x$;)9Xmm?l+>UD7F+laljo-7TsOJ-W~Vmvol&u-1vm1^O9 z#3*%eZv;U={Z)I<6fI{!xjlY0>+xiA=1^_t{SP%I99aUHiC)L{B;%X@u6X0=#BPa) z?5cb2`f86Tt9^&By@;4DO?h^M{0?oeopC#ScjO*)owA=4H)Ano+q$ISee)>K;)ThV zZpl96&s2+zGaU_C#%A|xb0061f9q~X|N10W;Zvmwr^PAHX%YL#Yd=eWQnGdGpHCp` z>Czd(1<+DO=r5a;yk_00xS?^6lNAr@a@OAmxpkSo#e~l1n-1?coVRGEYjQYr?+ClN zb&rh0an3_cVN0JMm&CsgP--V!e$nU`-KgAWxO}wy!ksGxp|Vwxuf{*|of1pF=g1!t zKmTop*DT}`p`=sur51~5tXT_{%P;3}>7b1etK?Hn^T|F&i)0*P)rHIKSBx~r@IEXO zFMA>+E2v++J1fW`(C#9YH0^kNZ^3cp=&hNbj{}scG;tsj+r^i77X%C(yI2POr|yKjr$uX=o@pm;-?O5G{rt4xaM zTj#@05k@1Xdvyyh6oGKY{jN#jA5Zb!RJtok2Di22gADg+Ur1=Xock!OP4t~gBKX$f zeb;Vl&uj8oUgfJiX&3m&tmv^vuFCHNd){T0&tA|EJP6JuC+umfTgGhcmRnP=muz}n zol|MN|J-D3%z-;LB5YR+%U*7sW<6u~tYd?I(9F8v+gC#kr;id%$9|5qal2pcoGdjA zu?opOn@ith9HQ&%g9|)Y=%)XJ^Y{YS8GN$+Yt=T;LcF;$LVnKUk-1PnrK!XVnaSAZ z7WN-0ca(e!9!oU6ej56=dPurSsjWHKsEsX^tCu`nmwhAQ!5aaA{U#&l)*nemUkP5d z+a1Lg+Tj+ag~;^80v&B}3-dyBdRU;N9ByHOj&it#{Uo%*Eldk36JddlcDRLUAu>Je zC;fA{MGADZ#Vx#DsJSfPjr9< zI@;kDriHX&VS$czxP@sUWg;xlQ4Y7TKu0;;5({*+#VyPW>BhnW9qn)n(?a^Ous}yU z+`_bwb}TH=(GIsDEwsZeNDDgLq6>7C#Vst*fyM3i4S)qY+Tj+Yg?6|FX`vl%L0V{s zTaXso;TEKYa=7(`(@toMTbLK31i}Ix-c%AimNN2w7@a+O>G5eUt>7K)%GKlvS$ipe#r91QX?eynqyL3h3=nlK~ z-s2iubh~=%W;o{?N_t@Rw<{p`RvydM2T9r-(rUC-ET`s}D6dUpHMFa8j=ozJ(Qe~& zyN&-G8T;ipN7DGCL~ZGlgws5ED;$A z<1VwqK|(i=oS~3-m8fTS{Z@_XgGE6D>U}>P#3iMTtqb;E#hf~RGf`X1u!XMXp!<{7 zoFB4h zyhz+HK72l`)K+VTkEbWGf-Gt$mAug~UHSRC=c!x=bvFzcSl)@O_3jYE+CROf#?|)p z@|U7(VYIK4K9sdoCbm`PoH%L!dPw)d9Y;rd4{KGeJa#dKeW{iiJd25DcX+toDv7n- zEIF#)nS*~5#*F9QuM-aC&xM@o zrD)Y}=M+;B|Nf>Xv0<+2pwZa$;}|!M8`BQMC+a9$(k*@@-t-T>a;sr3zY-J3{US!o z{wYK0O@G$U782jXOHOpvWBqm=Vh~{crmnye^xnaK98Xhkz#yRUja|WOxpGh2(}{?| z3$tD9NzIR~QbqAWwg>p%wen56S#qR@+ma~+goK!`cN}Irn}q4Ym-Ux&J?u1zntPCR z$8T*mdM%sK96vM1Z)NAV_09Nq8GhNmjw29nBm31YRP1LI+XW*ZPt`k={P>;tTTnT=x+0@2W9^8aSdP1O!rHNSz32UUs%AdaNSV)>xPy4t|7e{ z;B(A2f@e5eERst!&nsxU>f%@?(0|QK4*Q9l}P2jUt@#Hhv}}{5oY(=&)&aMeoYDnRhHk4R;xYGc$>l}Q!uZ@iKZj; zoZqoAr+X^j3a*#1S4EroIetE=+4mtt^n>lblJ$Y&zur$)De!^0lV%$ClCQ^Z29EWb z^g8h^+T3s#($2^HD#J4D-dTCjI@|CU*Vy}gIgF1x>qV!-!aB20cuJdc-q1AKV_AyX znSS{dMRRge(-<4GqYd?=)I;eLY?av}%V(4hQKcK!wMh{aEORz`Ui;t#F*ok~IIS~a zNwBsy+U;rW8zs?)AFAE6^hd5a{A_!vvE=!gMH`!L=j@;BvtN&WiThL7qEvH{xp=Q| z^}FBm#W&j3mW;2D9y#Nl;&!#rOnRq5w)%R^n7hS&>X#Em98c1Jxt|=Ib{82|`&*22 zn{1S^r<_x8dvq^{#>nl|2O%%>m`t*-2hB6dWK+yMsq0$Ynt4U=A3gg`)lbP-6s^d~ z;b)!MYYwP>k#^xXX3&WCP@m$wuYA?_%>5G9-dS8*wNT#uhVt*J)0VAtNA?DYNRV=ARtvg7U9Sz-{85R6>?1E z@H(`Kt!x#hsy#3zYfT63ZsE9^iV|$&NfC&hx$${f!GEWTdOU`o0w<8_ft|>pHAh=( zx*)s2_HXtKybii~(uB)oa^eIHK1@AC|3kvtt(Je}Px1`^NB-b5&`yQGa+N_E4;l+3 z%7G74grMQG6ai@XC`I@gK1oqiE-)hXe&FLBVQ2VoM@C%WvmGI4fdAn8kr5Y&|0)PN z!_5vVNQVXDzY2oRaGXp9nQ(#l4~41i(;*;pAQLVS|5cC)7l{8V#0eK99cjR{_nB?ddX@7DCPt|AE&q=_*VMnQ$SFlc^vhE^wSo1=%(N z@m~c&XNdnQNQVXDzY1u6{P)GMKc|9_GsJ%tWWojZ=Ts1KhWM`nH;$mj$y5+@hT~)^ z$j%YipHl&Bwf#*nEr`zlZ8CsqZBH)hABXs_f{-)p5AM83Bka$qAXAJG|5cDNM%bTILC6{6zX~$Q2=QM9A!pd1QvrjF+w=>^$$+Wj z_Wvi?p979Wq!6S9j@>1NAT4l07byg3sUjz#!2X;nLe3EXRgsM&5dT%TJLmexiQ{Cd z+pTl`rLHtKqEWHGQGH=`hzDpQ`Q%hpuzcG%v4n z`GxD-%MIU_oB;>Ipo^zwD z(tI0Z@0*jkPzlq7Y;IFsXX^90>f4Bv0Qzd3i^sI+{?S(mg2e5Z^!f8xH^Y3IgTmcQ1Htux@Y zAd9N4-0$KY_MG$dS*i!&hh$A>K1bl|roNu!An3%C$JrRLN_am{%CDI8r6QNCBcqTm zGIQoMwMoK)G)$6y3NxEWIvYb<*bN8`ooQR%wKz^HDkyd=1(?F1&m)!8vpvuli?P64x{oS06;cJHCYYhM725<1a2=UiI`*sSZ5^4&T34SO?X1?^ zQn_8bB1Ca?VP2+rm-nw5>P(FGS}Q59F(J>st^GP5@rauKsAa{-!Z*d|uI-t}UufTp zG6*R;l9_)wXzX?Zx67=I;GV=ye?HGA-PFTE{?&hdyPL?Hzx9j^GYo4Pq!!QP#_?Zw z6zhiWe>mbYLH$thVupHvYHq7;K339S4!5j2_-ouRLMZ!k;+?U(vlXA+Ruf)~s_jr6 zIy-3dptYICq(}CH6L-aXE2YW&@cH!7&KcJAkMceflK%lwirh)_N;~ zgQh5eg&QHP5L_a19+5A3$jDU{|2tJiRf$l=z$!`D>So#r3DcE~knu_m918=EkRex9 zCMaBzm#k%`m*l4c2NeJugoj2dsS?kO2kkilp#I7e5tA8o{lG6m2=f#jIe0%ja|UFi z4Dizn%!+M8COMWn2B;rgP4hOOM{q+a!Z4liE>MWn2ETh9fz1nG)qIN%qX`sh?yw2G^jG8+|u9} z7|JaTs>~>}G>DlfuQZ66Sn%g>8}DFR$fzSxWkwmLLCi$?q(RI?*`z_tM7g9v%tV=_ zLCi#Xq(RI?S)@VCL>Z*PF)-+lw$0fPGg1C%P-RBhqe09>xuZeMM46*O%tU#kLCi#1 zqe09B#%S9&0FHrSkx@tD7#J3rb%dCSMP?l#W@3?9M~InN@aONpn+Y)!i|jRln27~{ z{?@prY=^9SevOZrwM5d#yu44f$J=@MPV*96DV=WKV@-LOs&{O_h0kh8z>eqs zp#qxLT>_u@uiE@j~va*zDLGQ=m| z+4+A|odr}>-PguR>F$v39)|8NrMo+%OHvpqK?y~W0TDz%2@#PRI;BKX0Ra(^1_>z% zf$v`YzcAl&Ef>#qV$aAr=XdwsXFnRuYHGFlq%mq6M!QL#%~}srz4Ru9E0cM!)M_=C zKKEk#1is>J4#DjxI?#K3p1x5ISR6rcGx~{|Axl8B{X9Zu{ z!Oq^(`%xJ0g01HH`CV4#S0a7~RDUXi6{+Gg+C9UUNheZuyZw#Lxy)^d3-zamR}`x2 zh*HKJpOn8UG5bx#oE?P-9~tp0igdGE-pn05Zp`hUJ~KIa^Fmm}B}iG(I`25B*h#1- zVdKLSP_sT#{lm{Y2}2*-YBjkgl~r(}s3BDj09c}uM5UUkrc&cjm$*IJfjxbsghS0u zhVIN=|Lc-JnfTv5Y}XoAN=i3R`Zy=-n2-4r{~q5tU)l6oICe=C*S{-S7uI@Dv@Q&4QQ|ICLgn?v z+gSAPLM=bD&`?d1YyTJD#ycCwcE3*zNLH<7y~H-d-sT=~_D`SGm;Qj2a~?F9-yW+X zf_JXq*H{d!OR^MrNXl8$ zKZaelJn*>VQ*iwbnE^>TLzN7y>+~pf;O+40L$WF{{$I=WzNqaiEu4Ye^0`i3vCG~r`Baw}Mhvc@@YviN`tx|h#$ z&C_}(+xxa+RnLe53PF%j$vXQ=EC{*^RP3)j!>JH$VKrSUV| zT;i`9cj`2&i*3770v0C+VWIYE~Bf&UK05K*U>4u;An}TxPz{%bE*SFC8?N6 zO9jyka1pvZv?`HN#K;4`Yybn@hJXezbP0g>K7{fCr|b6#FcH?CLbRyxT}(2t4-7CB zy6OXi1ASmbh_7BkL8$QWa3Ruva||^2AOxd?$|!+n zfJs&~;5}@8fsa6!DFiSkK+u^&7mWW~hX3KE#DBT8e|RYYOftM|Vvs;eq5&W6I)?_X z)z>LBaH+n|pn)s(bpj3CKd$p<;P!EyJ_9$k>+Bi0cYw*W|JfD+dj|~3@(09AB+DNV zFOe*NK)gh<`~mS2$?^xpOC-x55HFD|e?YuMvit$@^3w8$$>0hvkt}~eyhO760r3*a z@(09AB+DNVFOe*NK)gh<`~mS2$?^xpOC-ymOT0v~`~mS2$?^xpOC-x55HFD|e?YuM zvit$@63Oxh#7iX09}q8*EPp_}1TBC58~zS#?|{ByAP_H+EPp_}M6&z=@e;}M2gFMx z%O4Ogkt}~eyhO760r3*a^5+sSkt}~eyhO760r67u8qGkwM6&z=@e;}M2gFMx%O4Og zkt}~eyhO760r3*B{JBcwf>}%?%O4Ogkt}~eyhO760r3*a@(09AB+DNVFOe*NK)gh< z`~kC=*Ootqmw1U}`2*r5lI0JGmq?aBAYLL_{(yLiWcdT)C6eV2h?hu~KOkNrS^j`{ zDGB`7A>$>Im;;3)&Z?FU|Ym!BKa zkt_7|F?etOA78>}1t1JC@_Q4ezZ|1GmbP-6(V|d~pQ;euiQ+0@jLv()Zo-^Lrve;S zZGrMmR#?3ji+;0%?v+XZ)YWzH#SHsnYhkrJOHV&&u?zuRImsQPjskEccC>IGnTqo} zc8yObx1T&4Ky7npXF*3nm)aH9OZ)c7Kjm}nFj>eFL6(=^kF-fO*b+3$%b@)!O+0Zg zpM|Qn3q<3|X9wdXCrbU>RBa`TeS9{rRa|g*EQLEQ37s+u{W+?foU5PEda9}WODlh2 z3#Kgo7KE0rMbBe@>rfz{!yq@Boh{{l#h7ZpC5wBA;_F9uwi8H2?7lX%HASF2`Yg^Q zz?OoYfS1J@&6zLocN$iF%ZiOhmrS1~YD!(%qZpy;K8#W_Q1ZRAnpQc3OF;v>7u9*0 zzM0e`>lVI3)Mu^|4gJK2X_{~dx@uUAv0t|mx*^vf1ReV!FNN0d&WqLbym@rd3a5{* z?o2AtdaR191Z34eX(AY&Q`^mSVv5ChvCvo1v9;B_m34`(M1;Xefpxq10W^{^`0fo;vN{Xk zlzwb`2N&`G6wc#Xv2UyX@2Ezkjyp?ZV$xMI&?dz9%KJ8pIf_I4GZmLLJRX$V~2$w z(WCGo_4;$?%Cg7aRB|%XmasU;J~b!hjGEd@x)GGf?k`w1OrWdJ3{CbX6A|C}5^bi)4rE^GVnNmyQ4(q>zZ=w&Yc(PgTyc09!?)NR!t7y8xJG3YwV_o;vRHt{Qb zRKg5Hx3}Z`7NtL5V#|lMn3KE~!HeJeXJ7Xfhh$fMc4C)mF8fS@gQ*}6f=yE&0P_3a zh-}G!L!H2@%+>%8M(#nVfYLf}`Ckzo{NcYMI?#*dj0)$qg#1f!!rL(c9K6hLf={PhQ760PVz~WxZXUS1C4?PFdA?Glt%a*uK{Ofut8xBgP09ZuxbwItGEE(1mxA%1@I;yufhU&6OdP70lX=S#}MN=&QH@-UQ^;*9GtHv{X1bdVI15O~J3EcDp2~8>(I40%Z#QSeO7;)ij@Rtg93g;U6@zn}1 zz7i?w^^SK*ww>G$R9%40(rEcPnI+mgWfvcPrmW_)^xj{_mF&>f0H!LUr_ihja$FP*z*~U%HM#I9 z%Q#m_464>*w^IT~sINlqFU2U~HFQ3|l)qf#<@fV> zY?xA9u#Bj9c}X_VDNGVSo9T$Y{*jnpE|uaxX52rYSNbZ&>VD~39Nr63fAX@5_qC2) zUrlEd(To=osR%^rRz;0AJ}8SAZQEyduSY1Rm^F9Y=Llg;QcPL=f|AgPy@bY$1^dgY zltM2|;_oz!&WsgIOYA=^#nijPPK+!3jZHzrTR6Zs^_?@Jw?AEGXTF9d@E219Dn=Ax zKRO1)J#!%6_uai}vx$4X^Iplygto`@{znd}G1(jvdmW1Uqr6kzBpK5*a-nmSMY-# zz&kr5hUMHCtBFofW6A`N9J&I2!&1WJULK6nC!224<`5q5ec2yMoE0p3ODALed|{+7 z`#5o=@9l4;=OcwV2i7pwfk{THh}UfrD^G{U-d1HB&+4dG5e3-iPiz_^VC!)4T_=ew z+iKm{$9E;~z-NAG{|{cOmIrpcL}pKmBl3%XnXi}LJV{T5$RQ^xWl{mX&+ zrp_Mec|*4OwOxi*;FN20Da1&-aa+y!$7`))k*)%)aC&Q_JN3bM-!O)Io*SHY?)a{SBl3qeqQ($b>jAAd0w%4L z|H!K@ehd%#Bjc$l-G(<1^;VE1#NJFAVQ8g-7s*RxZ@C+Cki5I!B6DG$d*d`DG?=ix zR_a%7vef>_MSX*>t@YnB!uQtRdN&3eg)3+T*~AE698a6K%GNdAVK~~7%dsBhlqp4U zUd*w(49*Tp;a3;?RE3Hu{^W2>$E~DD>i8DM9Td4Fqt`t%aF8JU*Yp$itW|f8_D%xN zPt#J3#?o&HvD3VW;TGt{pMt|%RYX&SCwMJxKRn>C-e8i!6}73zF~Btk1jm0vLV>pZ zOW-2|ez+t%E(B~3LIaquhoX^T0M`Ip_U{6s2%xNNhYBC35vG9adZ7^kkCp_dq5M}w z2cHZ+STC_tg$#T$$tgSe<>kw)C`g}ZqN4CrOGp#^ zgjQIY;eSi=C4B&9*OUg5 zC*+#aK=OoKQyNH~kZVc<$rEx-X_w>)xyCe*JR#SZ29hV_8q+}Xgj`b^NS+Yj+W*qV zAbA1@ov$Pq)-|Pp|+YAf+LZC*&H_K=OoKV;V@F5a8N>?*xW*O=%!`Lar$d zBu@x%?SBsj$rEx-X&`w*t|{%3JR#SZ29hV_8q+}Xgj{19NS=^uN(0Fga!qL%2?4JCFD#HeA;7i&5`7?fLas3lBu~gSrh()M0j~Y`WH792N(0Fga!qL< zc|xu!4J1#%5#+z;g5(LgrnF1)gj{#8faD3e#x#&TAy=4Y2$Cn{n$ke>gj`b^NS=^u zN(0IBY9c+*2?~aFO=%!`0(0q+`!xZ5^*axeC(>wokUSy4wf}tqAbBDUrw7Rsc{)89 z)^&{pBu}LI^dNa&52*h~o)Dxu2^berp#=Q8t}7)Vc|xvBB_Mf1fNTE?3nWhnaP2<{ zhV|bqI52Gm4C}vJa6p1#NeEmm5x^}sps%48{JO4h!-1P_Kmr9UaQezGCgHw&KoS6n zQUTLkWJ;X_(xb8h^?%XO(9gAg#)~MV|D#k@Nd?;{3`vXY zRn#U_xnVY_LO4RMzWC(!LlwfwbR{Qjs&R79>IBjc1r=`5tfsO4p8E;H^Q-`;9+BkM zDWJKLnf4N=k!)*{K=U;S@AbV23t=urrPo|7S`lT6e+0h|m(kaIk}f3%Yd3_K2wJMd zmD**;_^YLm?4c|@Euc&Y?34B-Uwqa^;!8%NPCk@i@yNfnn7o5ztdT@Nr{XEKzHMK3 zBD*mD9w8a^NB?L;TBZ(sUN5S|*9H4GBU$o)JB%GEtYG>_FlB#BNchp|wZPiU+4Q)C zC5Ck*T<5;77U4Wk{vVdPUf8}C27T5K$4KIla1vkgFhR7G^_LnQ9aW2Mw1$>rw-nR+ z=F9X8@1y7OMA4gl;fbRs^cWj4^fN0S;d`V)$o3XjvceNG0t|Gy zPdC@b@MSI&E0vaIvSLKUM8;DznS$t+f@4>V(eP230 zTv?yo@t;9deK}rFX7N$N;Ju0h*>LyQ>eE`Lv)Zpt9>-aPpFMO#m$l$>ZiFq>ddbR}u87<> z91Q3d@1Z>2c=1PuPBUot$AkwxLUbs!*>R5G-N9e@NLh0*@6Pi4{7>GG1&!YW+-~Ci z&?mL1*R7MjsXe~xJO9(|xM7pS)=eXzq9srCwtMf#G^uLIP4zEZKkekQYH!nb9NN+} zt&Mveg^wqn3K~bSM^0+PEDvWwl1p9uOQ&+F9Gcrk^I>6k5Pv$8M-PV$x8_ap1;s)h zPD%v(_>sIPnpk4qR11|k?cN=o+1)h`mFxY|-&lj=Z4y6L^^S0x=pyv)lFr>O8{_!p zS%Ob(CA{c;=v_}4Bu){{kgU^3>Bw5|dR1dBj*`)~Mbu;`P zf>DBE*;&kF>GkJ)QHEvV@MoBnS}K-Poll0J2Z@Yg984kZN0GzC)UV552F7z$J8@AW zwlkc@itlQdtcnH!20`yZ$k70|z0|jK|6mmj7?6Uxf<=Z2tVf_x_~HqV(s<$zVauHm!4J7#%6{of1pGz`V)$6GX;cPKW!#WnA@smsV6e(Lw33O!zm zc@b&T8hJEd{u8s%mypk@<$NPX%V$y5x`{-sJ2BCQ`n7;kJO3ru zwg{nQIaDw0PP@gv7dMWA9-)2iG&i2Xe}*Akl>TR;;oW`Msih@<5YY%HQQ)p*|3j|(?DsDcFJh9syvQr+0Uz`O=h8_H|eQv^2;u!OMtWt=n z;c;z;RCAKfc_mEKm9>g@Zl&C(CfrZ|L!C;zm?fsmapgi7eV!sV@uvum(rtn%x5KNH-Wpr>f@47)%TQa8ZDJshaw)CFH?008!*z%)vAkVlxezg z(6AjlxLcAb=$8ap(wOxYk$&VJ2pqEUK62wR&H8B7&T5H{@kY-|YUOSOP6& zKm}d|jb9247P>W2LCBLHA<3yW9p`V%DWCAQk6n`XwsX3ZHH$2scfGZ(z4M)#)5&*l z^?7%&o#vPTMvXR#Re} zf6r6?1!(#unyX)-O;>KTGyb)6Y#kUlD{$#zb`i*vK0LQ+eW_c1q%FkZdZ zGEB#&eZ1KZ+enukak$N+ib^?za6kD7e>~q9L(TOn;xRdA?~Nj}cD)N+{EZ0)tKa;= z25ST}_ewW-5H`I#nGiizorss{?KkEN7=!-qCd25lr@03c$+dd8Ti=*Oxvb?(GiQw# z4HI(Qb*JF+T|Xc%RW-};`(#ZK;Izd<9K6I;;cf=adlkLX?QfH3z7bkpW*PJxVOb>m zrF|^*kN60WboHl9|F;VmY&8#R*q*RH#ovF?(NNs`l9&Rr+_5L)tM^x7Rs&aSK$LTU zmAwTvu=A%}QRIHYoNK{)-8)5t0iK`h(F?R6F?h=YJqVOE^W%3L4x(UsJ}Zp(m&hx9 zbU!vNEz{h+{mFxpKi0ZHazbIr7K>Znw8Bb#nOc*bdi9us@|9 zwrLi`0&(?sM3#@NLPE!~8P;)qsaT=VZ!Ynyu=jB_$%on4>7>W`D@R8i&4ZiS>J1am zPToBAP0lFSv|&qKnf# zEZj{@o(c4`JCb}-{as02{fCfaXuA?4TIfblQEYO?pT@FaD=B$lvg2f-n(bTjk@uud z!<=BXtXY#yp_}H*8W=6NY~}pZ4`eWda=Ee@Kf2_kgjEE1djE};tZO(eeCK3s%GkJa zyMGR<)q=}1JN|orn$@4d^<~4QK_9LO}M|W<5sT7 z`Sh}Bt4JSL{~TS_*Q7LWuW){dZ#I9rIo>!6Yv*P)=o5Q**9C@Il>a1X0SEyKea!DmAj|d)G zQ!nGWDjn!)i#%O-a#&z?4cwX&G_-}4J0yA#wQLTL>x>!pZwK}%<}gS2MjQIS z$o0vl)wW*U$td=AWbrDgNLx0lHp9o})h&JKi};&g`zh47$maM!X{OHHukFrV&Q_ni?>bkg7d5FVQ7>|949rcLr4%5$Z=o0zK(%W-eH-|0i zTSffTbyLHWGi|Zyte1b%bC>l{**n6cCIJTVe{&*4%o-R1uUvcn0J>wfl&+pFzXWC6 zjC~gNqk8;w=w1>jM`mc?Y25&IxAn*h>wbGQUAUX3ey_~xA4G6NszC(j@p6dk;qNU) z8ry||5%G9FvrHWkDngDyB@ev1m`qe=Z9K+}9?3(L3$_r=ZD+N|S%-5hdLH66(h{(s z>a>|<%s)Ay?SnYhL^u%z@!`9P-=zLjyO(0~zn(iXUu59j!p4*tGgy0ORk2r@QQ}J& zz|_9Q*T*%{J!?NAe4!|vZ>22Oz^k4k55IQ_{}YMO+6i<)FY&&d4^pWx!9zy zM-p4({o**V0EH<|)V?+_MV{Xbw z4;iWmvveFeeNt+u>+0y-vm1eBNfA35c7~FmPZ{|uq*~N)TaWAU=*^vJ;h&|VJ9vL} zvKQRgmT%uBFW|>I|Kz*Ql42V~Z=K~PT}ay4*7@9el~=bl-UBM_P|-&lK0a6_AACx1 zfN?<3><1;=Yj&Cuc5wI{oD0_}KKG%5`R;nw?Ehut+!QG?n=5Pm$kZ0Z-@^BjcVy@# zK%DZ1?k41L<~?EXIF{l%HaEJ280h{=g{Ynuz91x?dx@=RMH+c_*a<^n3qP8@Bz$zh zi4G}?0Q6y9dIFex`OwvqoR{0SKgM~ax43gt0>k%Lz@S0^)yF#l@9fDdn^uZz*p)2` zez$J#>E-7iky?6T{E_?ipt*Bq($%JyhR`+Uz=VdPjB1JWy$<`(Thnn1QbqHZnkvo# zOsVM!PkObKnDx`sv012>UeMjIxXz9fK4F# zPV=Kqh8md+4wvr!qJncrr=Usf5sqA{0xFJ9suGS~my|jQcg&;oRHjb4PrXm(Wu4ms zB~pZio$kkz!<=FjXoxYgxzWoXJWNkzc3g|ar|C12>($5|#eHJf6|>^W%^>`!2j6&F zh*vND7iOE8TU^yQ-h6uMBkb~M>uQWzYR zuo|bYR7*#ZMG$}Qq)x|t^!OmxQ~-tC2qo^$pYi!SB8#vzY@RyQ;*Z8oAw&&qW#UAz z=xFmgES>;OKhZD&BfSs>f;_y8tOBCg4%s&({WrkMrlStqsu?X@`SXEwQ^s3yiO|<Z{nr@=TBgqb>n6^|?e%UZvJxRy&b=@%-uZh7JMj@7GqjEp^%6 zGg;^AwviW`aKV?ExmSOJI%7MA>=-LAe9Ai~t4%vi3sez>k>3}FUY4In96tU%_LEZj z-1lO2?(EmWNPG534J|`X@R!KZ+0yyn1LiPW=A9SYq`K>?M?oXOrs`j2T^>dMxJ#9$ zD&J~6bU5hhIujuJ*E#aX0OuFHgI|KDJwrHmBO)fPQE4y_`r)_U5jJ#%$klJT?m6SQ ze3cfJIl8~G6C>5Wq{2=ouZ7kz4UD#V|VGU=v%$^557iGMJO4*T$wVZ zFkel-(AnM$%I)`jxfhD~E^&YPW0K7;R2ic5`U=)f`R;7saK;{Frp$c}u*#|Y?fv0p z&png3+D+N|OuIIg!l_FERwKo7WRJRHPau6$^~G%45+R)#Qs<$8V-ccGM>}J0CpoF( z9WF38R-;+fmEyu56~PMS5!yT+cF{{YUkQr$zi&O(kJZy*dIW z@S{dRbi>y@Ly<;f@Q&RciuxOgCj-advvpk0)SNCth0mz`JCo+a98er};^he*KRD&A zC8VBS$cdw+WCKZ`R9b~_WkIuQ#Q3m~PC`v{Dc79{>l;*ba5T&?ltG0mma?aqC z$LWjIRxNF;wvYA!6#K2`o7>pXO~0@K7{_YD#{Tl|ZUD!rY$HWcXl9c6N;-oR+^D*L zdM~_WpLkWFT&UCccJr4Ii#pXEbZR3jx)8V2DeM+|Sdp8g zU5XWVc*0^+BqL61^+!zUNXb)9D&9B->rk=V_iX$bto?ND)ZY>CPjkD-I=yABI~ev` zolqXKH^U2)ewj=Y%E?4TNMbQlbiVcGG$^n=nM_BaPVgJT>{aUqWmWcZoh4s5!@-a2 zt$V^2ZzxO2i5QWRBtK3F% zqv&ZO*0p7<5>%Y~vg;5`K*gtF`lGwW}}%F+BCKUiVVV6V#c z7iVXWj&h_hByo%zhw^0`)7#fFiJxF{>oe?Ve1F9q$4bzt*8ySU`(NDVIp4kipe|-#uoT2l zx;z$Z+jsgC!Cm+IVu1X+$Vm!0jNS=~d8@x_bhoTpX5%)iCu<=|ISGGEV@A7m|6Dn9 zK%%=~2(Ov%V{zYS2lVCAAtC82*vpALNKSgIAw}(@Jig0Nh>6_J)%>hW; z2TU_BtuQur8J@P2P(HexV?Xvhhvl9REK&sy=e3lf@fH;VE9vn}VaG5Me7xr`yYeUg zYV1o`NPM%Qm;W4MEw5m&yKItBn$G@dfomR9T3+7X`8~nlceC8E&?nrpQ?TIo=#TCj zbhzFW;-{A@j-7GVj-4@~Ykj5qy_+bgXiQImuiL1A<#)J!uinGbJX)B@je}1^-!shsReeCsL4IztfR)HUH#Kz>5&$i>?vf9Vst=(eaRbyw8dBRNpNqCw6 zVUx>80iBlVx}WlsicHwxwod_^IeBFWVU94C)YlH+5p9A!k|j5YILO{e)oo}uwqK%Rc}RJY)}*?f6`aJCl!lkLLH%9 z(G-dt&YUdxW?mnx!dTN&l(^p=l9NA+W?m9?c}6ilrzmX(6B%ZH=-l*(@3tiu-NOjJ z^kip+J3L{xQ}r?+W|;{6Epv}J|BvtKV^NsK9T^Q2y68@r&}`o3y~2L-8&tc0f@-!R=#>=rion0{O1DaE45_6^TPzRu_( z@=*&<&34G&yjcC`At_AeKL{YgixPL+6(4EtcGSfZEhpo7vTNDryBLv7KE_du<;Hlz zF7}$`Fu_di!3Pz-0`eJb=lB7BO?(@ON2dIbTNx!vsg-8){fixnhy%pPJ>v+*~jYqHGO==kunZB)bu zq1~c^Mz8h>y9j-wTfPyc_d_d)c=;^OrHgn-r$c@G+(Gz)|FKE_@X~2}fBW0^Dg=*gLc6|X=|{^Q zLka`vh7}13R+Y*k!_^)I7y0Y_%*`8()0sPM4;Wbrq}?0Af`ESKpN@7=M{I zw2FR29nNVSBm84Oh(a{RW;FW=Zc%ilsTD)zh+ZU}__Ssle2(fH0%9ys(n#g~OW z!Lh^zce7_ouW=v}nM0*U#aMN9bNjmPSasa$2io0YxTc6itO25}UFO{bG1U{XE<{g|oA0 zPq3o5xmS%1KRDmcmtMu}K@I!oykm)z2M(;BTy56RwY1Mp-uQ>#UGaUP0`rkve96j> z(=1@Pfto?(T9mjn`7k6~5&y7%C`~_f|L2`U->R<1FgbjxVcyaD#y_3XyMz~K(%efB zBHK{2-+I6Gc7>Mab3~qAY^|&nivG0k>x_+8waH>wk@+kJC))cQ5^$oKtAo38m#c4l zy{GwsI4^xr+Hskl*SXBfydZ;|bEns^Nw&i1{@U_q5#8Cg_dM~gX0zKO@qYCsu;=rG z{(+W|VAu`iS&{nqQ21WhbJ*0^u#B^;{Qx)&^Q>Zz$@3|97+#M?3UIRbFp1qRh& znl~A{)9H8>v72+DZy2Y{&Vf{9lb2n_-9TuL+d(rg4|GUA`#xvKPmTZ1_sz-LW zL(d!gY`U9c<^gfDFX>zLyiL- z=?$IEw2UDX#O}VfEFELzc;R67ZiDycRBv#4bEde|uwZCddhps01^H^rE?SFQjFDBF zmP4@W+`|LTcWEbQ;SqH(uM06T@1kGTKNdLdVpFM3wA;-->#luSt!;2-G3%cTi)i}% z`~0af<;E=TP3A+d{iz1s;4GO>jJ%~M$0B#uq%G-|3(jB4Fj(Izx0W})tG3>Ffp+{j zGVJ7CD|Bn%OXtn^sXYf=XzJx+1$I$DPJ zd2u)Y`Y?Yn-QQ5U@L;xC@FB^`;n9q@G9pE1V7LbL`FLx@v)NDcwi6GSv*5q~3X_8q zSAZH87d(#%N)NwvCd>w$ADCx?Dj+J(ge@>pMbqrbxDZfuC;}BUdz}Uzc^(I4fI~2$ z9B@2ZC_en&nXm`~jtRXWf%^bD&6A8C(Lx2ijfN&E1lI=&XmAl)s1%wc1nzexERT3k z3q3*yI>|t91H>=`vk5x%LV>^iEV15_I$g zczYa_`SSB(0AA;kmo>lFCgDcp6ErXFC$qfTygDk>f_+_{rdcq~Gjr%W>R`{YGTFs^ zGt*1$sm!auJGE0}-+dZkMHz&t-)5a#iLQZ@NAma$2LD4Mk>!WX4>^-FK2nkuhz0j9 zRp%t%IZ;o`&HWO-{5>mRCHpjDcKgq1OTEPMM&i7LoV=93<7c0zFnD(tr~BThNPkBR znX$X0_w&J1|D2u79f=*+Sf<-%_wkY*w`pMvQmLNa(m6RDluJy()Vw>(yoQF~nGIXZ z5tKt)I)9v~OC)+EKW{Cualw0gIcEOby`*+;M_7;MJwk^2ys$y95Dl|$h9gsd9jsHN zrrYA;z?F|Exle+b8-J-49Vh2X715TdKl9k zU17(Ef!AYVPhv)X$Wn_Mj&rLc$ZpL{td?v#j>5i+l*Gsn!y(EhB;tdC)q|dS&U?}K zaPPG|Yhv>|@!sD|D~CNjBoQQIEqwl0qgG@5(K+)=G@0-1c$T-1ZvV8(P2#`NbIYtS zi@7lVvxzH?wL{IX5{FdxLqYbnsc3@QW7^&KK_x396%5Xy!tX35*7c>LX8bZGF;{NA zijhdn(7btie=Ps=G+JQNgKC5>8qsDbk=e94hFu!kCVL+KxhBth*iT#TSkbLPU3oFg z{bsx`J)Bd;l!^g{euH%nZ+|sSFKz=Sl_qhhx9hDleaUWahCH*OKuDS_2;AA0@Go4b zqy6QqTm3SKV5I1W5x*l;qk4e!!_QFmgN^{()j?YZ2B}RKuA%WMh69hl4YP$FJ_|^` z8GTKFx_{Wk9SI^i7_4}9u-8>{Uy1pii&B%RVMf5 zmib1@xXAlHt=F|`eL)iN;-(Ecr3=>*S5+B-cL2Khy-D(6SyWyDy_LAv!@Bcjr8Bnn z?@B9$d2ww-3PWd53mUOnyE6D`2bBr+Rfm0WpbcI&?gqq6VzPV`6 z$b8Lb2;lMO;}047VI?k0`Fzwi!`Z$eCzUE1@oy>qDlx|eqN{7hVg7n+H@sSAQ5rR1 z@03x)r}a7EC~Ea_v&tTa@Ra|KanPfrd5YfK3RObtJhm7i%*B|?JI`OCBqVnx`K?E^ zvwzwOmKyeQw5LC2-=Pl6QXDXGB|HmM^Yq5?h?yn+D&lbKH7#s+v*D9dQ0=qtHn>@L@xwUH7 zGHYQJB`*D!<$$LQmV2sf2Bp@tK3k)gaa9nXIg_dgGm}grx0mm>{VOi_lY*x#Iur%E?3sBA8zE1bPLq{sxcD#Mjn3OjOe zi_Pv)^*y;rd;AK8{OG_yqb>f8PbUgTzD+8@PrO=T?kO)-9+;Fz_#O>Gw!CNfUaUXL zi)|Vgo4psF=d!XP`4Ux$o0B(wR;KT&t|Dacy-3_zs`=-BNO&(bxJESDSq1P*+->Zwd9iK4*qQEAE7i+DWe>d=k}h zzNogFii<#v=6qp)X#Sv_&0E^{!k-mzq!#fi3kd4|5qQoS&RL>xBpziDxDp;DQ-H%i zHS{enHZP>`FE_1>tLmr5A7?E(8l|HudLQ)1A4F0LuolI?DIc4RdY4fmv_1Lq{nu)^ z7^0ef%VBZVPMH}$xSfM4(vzB!=+<0>2De)9Va5b>J@=j~>@%}@F0}MFzq9T}iM;Z6 znx`JFJf%eUX&X=_tbWOkV$wTPsCMsay@85P)F-M1e1&MfW(sG@-W)qL&gGG}4Er{E z=V|>RgP8j>=|Jv&M}r$JV!|%)0mAee6KKWo>%7uTRYfOAvD9jDxwmYG1R+YeVU_1b z8<&LAEF(>}6Ko0ok)`dUNysr--)DbjRek(}(aAgc)N8N3Fz|iKw&Ulk`_aqpdM3UO zd#NbdpC*~-1Sy~l*Vwie(jfYQK5mm?nwF^O$jH0nRMgy3pYdVhcbj(SPM9dJkJD0| zwYU#waQoOz-$C-s(O`@w*_!kIEx?$yurTup1}nL(N(&6JkG&VVQvXNZK&PD6a(AOQ zmg_;jZSQJ{oBO8Q`qr2@?H|jifsQ6wUp$Fb$AxezDs!wETzCboL{xUDpp?D$=N z!`t0oZ+>_NYr$)6#C(0PEz5GEJjRk{qC|_CP_9UbG-HNB(>dH}>Dfc3$7;V-Oizz* zsY^S34c^i0&7nKi!s)BvS6>~nWu#e{JSW;j^rVx-lM6;C7<{;UMBYW= z{H4*snpn`s;npk~**2FvCZkAepOxfpeD1_*6r}Tu_n|LKh(sUDlDiC*VACos@*)KoQTzM=- zNb36&J1R%tD8t$3Lt`M_?ch~5tk$z2Q+8-YSy|rEUUO-fNifH3P`oeu08YpL!z$V8 zHwd(jpUv*keNJ8~wlQ0BC~Up@Ubf!`Y5ne}$dWHLd@T(RTsBDb5VQ|Go8HHzdfmzw zNf<8C0UN3?^Xi{@zjJ!}(c25_ZpjdbnSl8s z$J^Q}@y}<}Dwe$MJQ03$^<<-2gb`n?+OZsDdIMk_^S{CxWh0D4D|&tM(shhyHn(_M z9;F~|m_^eYI@z;TYqPhRoS?OjzKdG%toM5_gTj9?DruZE7&|BwnM_r{7HK*z{>avv zb+Af8o#%;*N*^sZcfyZe;0zd!WRVJ9Vc@V>p)9L&On~D4Z53JQb2&>^ZO429{Rbi| z8c-dLbYlIXP%RbNB9VyNe7+bpGK13Ww15^CT7$h8L9x=mH}-=U_KsA1-bqV0DTK(K zJEcDuk{-|OHl3#vTsbNWnevX7N9!SBfs^C{bZs>(d=q{V2UP}${}SM%A3)E@QN=GQ zzbG3Ti3ZyED&7>KK*;1mgP7nXM)(wno))MDJ80PJNI`)RUxeaFUJign7~K>}WdcY1 zP#{iZMVja?M>T@a9WWQEX9DgKm>cQH5!qoP2mv^%HX|9rxkO}(6E1ATNQ!VC5z)R0 z&$j}8{J15eA&w>n+|JP6Acu1+iOL{sI7DmcfEX`dfJ;eq3lx`c&u1graubf0$xe#+ z8!oEJ0Jr)riVsg7BE&&hJQqD?MHByD{O&EHDK~+enM=Dtu`Uw{M-?3 zF>0(Og6rpB-IF1o%(}DmIfU5f-!I+P;L+en>W+38HB7eG;^H%V)6^dAYGKBQ@n*i8 z3(GOC0u!^HPuBmbB(vFl=I9QcLE(1TO<8}1{+|hh&{ymP#Ce72=`z0g1mmHoWo^`Y zXm4JO2(@69ONeAdK}#fdS8k?REcpI_Qd4#94tFRCu9a}h;XmRo_p8oRba^O)Nv!Qo z&vxH)n2HOdC%qP}dl8>4&gD5Cv6Tg%=8a(7TaWHIV`PYMp~ek=7rL3J6QY-g0)xE5 zRV6*rL$Q63&CjJM*k3}ZAx%?Js27E+68u>!$_O)^Tqo|qIVE+cf!%mPcg?D|PWC!`v>G#wOb6kIL_s?}>h25Ye##lGt?LsT1)OwDI=Z_-K z?7OJm?&Mdls7@Oabx4Ydk&Ihh$O5YvQdZEZwpYqaRwQw;q>g{l@fUYqhVZe)(-)4G z1;hI?6tA*HG9J0H4Yt4VsL+3fL5nq*sP~BWJ}N3^d;lsXPn&l!_KY2a9%Ukjsu(Ji zFHbgb=jfZ_#eHLjvd);i4&QkMU!|)r8kVYdv>pHXN6xZoc{9hg`VOfPl-fTirtN zqVnPD$aqX^JM;X)IgrKrxx{Jn1{RVv&)(TjU~|6wd||e~a*SB;tWq%rj<w)7e zs(XxM(~G zU_K(G!%NYw?r}$bi}f`IJtAseKhX!40v!*Rq8&V}TI*tC98yaQfqid{;tVg^w%u(0 zySKX3xB5oDdYW@`Y%}k%_Kh>xTkbC(Hh=tB#lmm$La{`!*Adq-vyhdc+nV_Vhous@ z{;vJ=f5p88SX5otKCS}NAkqyYAYIZ30@5JT1JbGVNDUH4=|(!Gq`SLQ8brEehL#$- z`HfFM@B6&p_kM5u|JTKJ=ALzS9Oj(8_FC&+XYX1uPsCmilRT|DC{b};{$C4R1is_$ z2hT5!(;)F4KDU@2B+VfE?jifJ@_xkfnEQuO=A85u^bogNAaSr%LIovWTuqc@=h$7k z287-rMyemeey~J1(u7R4KRpa=ThM@k#IECyl=t zVy{5&yGi?SL%YvQg@mVLOUWnY+3&o^Iy*ZZx%VN}il)3|FQe)Hjm2c~l)(+V>@2t#sku02G5hVJ_m%6ZEH zSt3B>T{M;?8v1uOPl|3Z00%#Xyk8-t25whAAn>{s-pzgb7{|&?93}NmW%?2n^zN09 zu?|s9fd0Y@Jndi~nt`(rW`z#dnDy+OfW$Jldp?P1F}G#jaNfV0h@d8MJ7x4fKYN6s zqA4ehrm`m|iKbH7RnFnxy-r1vc74(@{>g%IS6QEMfpVu+Bjmc836TGirglqpu~VZ3 zOUn$k*h{qDXgrCi@NE+lXq&(TukdXRnr4$8xn=|5qMt?yGw5iaztvKAK2(xL{Z(>o zBLn;4{i4aSFE)Z6J61Zwi;V);d*zY#c8_bfbV`iEZxMMdaoSKv+e{J8@on|-Z819* zPd1u^bojAZ0%DC&ngON`9oEwa1sIkQ8Yp$u8cyr(LzxnTnU}kuJP+MGs6p$&tzdsv zO(}Ncc4YQ|?evLGfx-n9qX*`mOvJbu$67;M0e>FVdZ6*Wte2CUOTKdRUL+ZC?rmCgNh8??&D)^Kp=SNtF_4v;97I4hxq&1kJPA-OwMnFI#a(-W z8d+SH>}64-$Pa9D57?wos3cqx^f)rU9U7w4U(|^)p-Vsw>4yjX}@hULhX3sEx z%F(DXH`+rQrPG}|efCvIdQe)0rS^!xYxD4{s^hII0+H6IXfH{pN;)UP;?&V&%|epF zvbZU$w6Exiideyd3|Q*W+jd-KL8%YSW9@^_tXR~Xo|yr@y*2}(U(lFrHH(9i-oG%V ze^66hACkl?wZ>#iw7C#)y#pU}k?}_DCpJe~*wU-Qcna}ygU=9- zp^7`3Z$AL$lHBe*K_2tmcu^&-;bSgQ$D0-}A2-CYPSn)rrrm7=dG&NQkfcH7mWlO@ zX(nU(oCC=HzDy9UE~~N4H<5@C5*6q0z^>EII1l5kRY$^xh#ZH7b#j*(DoglWhCX$l zI6Yp#(TSvwvYQ>QzDKV1O5_zz1`edUO$~WKnRy(T+s!q*pd2Gzn%=nzBPt55BqE=c zb&+jG!|cqkc}&Gq9E_r;V@LNsmv0n8Q{(#3UNx3HnXt)#P=#!(t92V%MVUpS@3DC@ zIMZN~`n7M4QoHgdHo8BJbs~D$j4)J#o3O~JL#gL}J&#u4C!-gP6AJsxghHJ6_AHb> zR0k3RbOIrU?_BG7a60TINp%$R1}Ym+>=>w!i7^s|Z1ZL^NqK|l@>vE}+uvYI>R6O^ zFZoR=U}_aG)w}rI%seHl>y?eT+`{c3#Vcn{H+QDrqW7t!#sBS4m%cgCX>)c}+O)xKC z-d2n6yy7aDEv#lr-XL|6WlPY(ot~6*rbtIxO+%~sIc?mLi-FhujLPv zh{fc`x@ZfoyS;>de;I&Tpk23H`KGM1kI?R=>r`}%OMmm{z8GE875PG&6$N!MiRcDMl zg8>qy;Z7Q26s5O9`w4RdqQ}iL@^Vi!1kZDW&r3H(Vl{>KcipHMx0){qQJ;8j{B$uxj@jY!DIb%&xV$>~j7w=@!f|Yf-ZX0oqBf<0O8rTcH3e#Aw zX!eYHzy-Eh)Kms1jE1*y-_cFD!Ar~U>q3RX9EHk@hH=E2gzp5VI4U5I-it3>fzKn$ z6j;;Ve^DUUX|?~2X~7tgpKDVB$R{7j-8^VWS%LMBo-EN^2w7<;<*I482;1`3Q%)vc z3MVbWnl3l}(IY8@s<>I;I+}SPcwUwe%m4bI&eH zM}<#7O>?TYkeo_^clRcQ&71gXkiUN{(+4=4cPbW8F2ihX(~u$iF-K2jw4w^d`kxjj zA6<97y)kbR=lfW`fPJ}8zOc^F;I(R!7^b~It-ETF4kNi`ifj^+J}Fj+x}D>FeVBOk zbiCrb^OBCn$g_L_(CM2fcys~34!)ZA&b6M-vQ~LS?u<^ZTFv{hula#f zgr832w8lfXhKuX@1tvLjBFwuAa?uLn%N4YBcXp${SJQ_YNF@?m^jt97$&xjI$W#U* zzZ$E3Io;9jdmZa%+F>}dnAn~WGvSAes;p1Z_;5+rADgHhy+#mNdX{7VZ7X>Gy#C&$ zpJ~Y)L}EcGxZbd7cRB4~=(VOqyRu#QqDZ(bNqy|Vi&F+`8GaO>w+Y5LXm^C+#h4rS z%jrcfB5DrH@4wpibiY{Ic=@GYf9<~bZg`X!+J(ZBiW1K~o05Ap2{C({W4#9zupXMP zayhbz#8HC)c4;3P(Casp=O^b$xK_LvV3gQ~p3rKRqE!AGC(2VW@rWbf6$j2t|8?Cq zZmayh9Vw~2W2*RJnmbwyU1NxqisBP#+WtVKFw~l{_R(y?+R3d8Gz!+F5FJYcbPz7? z@PddWwJ?{SpZY63xG>DxlcVUuw#enPsaD4r83$!uhX#Fo6uJcrtx~J#XicOzlJy*5!=7Ovnq0`7uI*X`H@@|Z=Y13@HEQMS{8|MOq8lGeqm&$9&K}QA1 zQxdBvqWAmGzBjWs>eP5Gk=O~;i zqJ?s^Bj<~kAlm|#Va+e=PXp><4pl-|nsZz-qO6FQX(aVdFz2qFZkUsxsp!%V4gn%4 zd|;huxZSXj_>4Yg{)JUruaU5fikQ!4)?H}# z82v;7D*5>^lrUY@SeD=}hoVpc5rapW4CKga4lT8rn$h)qKR$ZH&GJj83Gaq#=O>7c zbF?h5=%vL?e-y2>c}IWp+h_Hthxf58qx3I0xtlPJP36PM5;pC1R7Q9V}^BA#2*dJsK{wOqY7;s({L`(^hut$M~Sc(F%snZ(=N1Dfoefyr` z5y#n&a3h#?UY?(*YhRsNTRQ&x9;qekJ>YjCz0j)nG*dLw9=$eYaXC^Wulg(J0$5*< zvsrK(P-{j+%kr6-yyMdI7jXg=LZ!;@C%P1>NlZVtx?~b&$L52e>Yn;le!Pc4o*xxr zf+Y01jsMvqQ>cf}PG$7ey^l*<-gc!!7+Xl$6-`}!TW`lqyaAVFIn(88nC>V3Vj-M6 zc><@J;a8yDtXo2+Gc~NoCK)jKm%H!E!mKtf#O;J^Mc&)F!Zk^(U8$RP3tQh(H^oe; zQgU{cqIlYN7a(zkpXnO%iv zM)Qiv@<+pdnJB<@t$F2kFg&swRa-8ssF^3_n|I^{YLL}4w%tPbA%?dVTerN<(x;wN zf4k<5of{rD;Wd+Q!WBCP^H(lY=IK|%@a1C#P_>~z-DGLu>GzsNBCPxt?nhTR-dHWy zP*J*k*Qgg}KG3^HrnR(8NzwTX^w?Ii^-l)5mDZma1d97n#wLegjl3r3NnQ&#OGt*{{bx!G5?ul%5-~0&a zmn#Aas3AF?kOc47b*cjCg{irx=2v@#o`_u4#{Id0=PBd3ar`71paoWv6hf>uyCJIZ z;0MVX+){zBj~f*kK(0f~!5T46U_y&wM+M=2`M^9ElDJ!X0j*$OB?BsHnR0Br_DS>S@KUX01&$;{rkj ztVN4PAIvyGQJgF!Y_|8L{m3KBy+&)oGBVRe+}Q7%Tn>a*ti{2*2Ip_;!^J503~t;= zmHYLG?To1ThhboFPKhYIfqmlp_+6J2-jr&sg4zy#88h`MUVY7|7=iv#+37fwKn`0U z;-qIuOg0NB;TN-A*`u0uoUaPpLBQAKbEV*m&g*Jd=Ys|CliI6;T577EI9Mfhiu2CF zA?HBbd?;TqPkgSMQ(UI({@@3=Y|P?QQhvJ{{s5?ftI6~!L&1jis#eNQuAs?mP+KmfQO6rl|B z6y0*;qrg3=?7ZpiFBRO18!IJOe#t-3GwPP}!SEKS4SoTcp$?Ow8;kDve6N1GNl`^3 zzI|eQ9$ikJw&C^g;hw-?|JmaZ(d3II$eX0sR4Mao@b#E80mI94p3z=# z@|wn;iO8yj0im}+z?J)?wh@5Au)BQ;_2v0&@}#kT%su7FS@(7^Db0+e4Gnd3?U+#* zDS;Qfr&0v=beiI`4QV}R4CnQRy(pWvTXO71=?P|T+TdtUmkfuQ^T5us#uIM7#$=cN zN~Q^Z>2;&z`EQ~Zcq-_G4qXQqM&DP>+z;CrvL};!Wujy1nre}>I+lQ1MUL+e*@GW) zKhhvtk6VMcUL+C3setL{Z-(ilH}HD^7s^frPxM=NGH##hp+QY{`CC3c=NMDnO(?kC zQsg{U-V>1Q(Vs9(7hpGjKLV}tkO|oo^C<_M_9gAI6#u=@r!2O2Z_nNt34VRXzur}N zg=Aa55y0`D>h{>3&%rjdz;ad?y-${A!Go)2|g%*h|d;k9U6Q$XMUMaJ@7oWHa(==l6TpCYLYstVh!FK7U$oZL& zl4i2o_=Q_ckLte6=!Zb6Dx8$xcdJH*By=;gm?cES5O(A}8+<1|3a?8kWF9am?~_*; zk1PA)C{e1fsVPJSEdV&Qv5z!fYc+$IN<*|XOSCv&o*cbJnXE5Ak0y9glp$p&(PLrP zAflR0Y%&o87H?8D5>WSSRPB}8){CqvDa0sZD(?Y*A2FG6>ewA%luuMBJ!KaXwaf55 zrb>BEy2&_fhIt#i}C z_Eul2m+XuE<(*sM4)hprrBD-kl@i}%r}4*gGT>r?28c8cH<>ive2jyhl50G zopo38k-xpk4p!kre|xnuh8M~1XZF0G1D{hSROV~cZV!l{QR`uc4U)@aSauI?q_KdIvlTxIZvFC zCu44^9Die2MM(N?QWKH-Zpkuq=b25`lguwx-uz9^*AxkxIl3MtFi?2M;jc|OTS?&An3dDc!OLo;OT1WC1ybrum`?Iwl zRBoJD`CJ}KSKni9@}tJ-O zF@F6yDWxJ*-k{R;JDsyNx?hUocvqh`B#Y@vVczjF#k`MPB=Oo?71%mvd!*X~LVSnw zKHGRyXU>L(W*L^Duprc8^I1I)vgp-r^R${q{Dny$^F5%rpxuw8PkM9qo}?>NyqWt{ z7I}?Qjw$yYy(rVy1dbJabrHvwC1qe={VaLWl_-!k~w~I*hyp_ z)}Z6#9$B_HvD#^uOfjq8mWQVY>-87AJ!W&1)u&CZ6Gl0QQlCrK%=ovxnLN~Ay zcpu{M(df}|sJ(t`M#KAK>k-ilULuoU7m1RyHMjdA{$-^vxo0#lX+*dsc_k&ENlWnX zB6b3h6o1AkB`wG&&Hb21lADK@pHp1)pDCgj7x96L8krlhAzPeL5Eec_Kkw?Ew5|8e zYW_KeML29L>Ep9$e6y+w=7MtJi)OoBqYbRtr|HpELf*G;XShEWeGyCaNKb(B>+!7| z$IPYNjtMpSJpXzLPbSKs4T5{wRXUH@DXmhzuU^5<=fc@~BRv<_BBCcF)$+c2Im=jX zjNG+;CX}hFphlVZwNM?+0%-Xl&nJe@FDdKm(xo9I>*Q{wJ1Co_iaCoOJQ7O3{UH(j z$kWBVyiQ~~nG|YnQC`=#+5=lHGSYW-d|PegG}gx0>PF2kqH<8;NI6jr6=xcfnOJ!H z=*IB_{ggM|-03iAOJ@OjIL8}`3WqStZWRje&2DvmB4Fg!Irx@8-pROHI&3LNjSm*q zgwb!^9o!O{#0MLGu{A}yoHoSe6qe_J_!)`8=+32F!c(Be8%JJqRPqY%&}pEpd&|%S z@lJZn#d}Dwt$!GBGYfWNbad|*>mHvUf!ie1))NagUy;K$MIQ<=jB*8r$vG-!nB1p~ zT91F$^HAuR+tIyeEvn(htr)6@E_Q0}&TO=P$CG!7vFE<0Wy`mHIBMYAt*YhK7Drrq z;>eNrh&%FpKtgL>#Q8yrEg!II$i8YMN@Pe&lujNz>P-*AK!Vg!ut@aWTy#OwStNUQ ztwRem(qSFLFiWTPQx3b}0$xzC)4CM(gb5Pg14^O%jpe(Z%Zw3Qnv~QY0k{nAP&@qV zL&tUtfKz{+!MdBsx{J@c2WP93-L!o``$iBQa@+{fA8(pNy4^D84_u8bD$qB7UGDc5 zKvrrN@%kj-#~RjQ(%1jf{)-C>8`XE(X0WlupJb#idMk>>t@4HKmbs>?^ij+STi73Su9@|#nnzsCHFS$`Kh`OCjr)z9 z9kdW?^(81u;zb3;t9LF>jJVqBF+1WcbY0-O;{}prp``kcR{3TWe~3sW4wm$R@cA7)zU?2R*ry zDY=_;+5TrehZkp0>K))}(8UXMTFk*`7CYJIq#G$+z_=&yTks)QABdfZc;nFU9tFqV z{gS=JSt2{Lr>N$J3_@I(dhwxx@xiWpLWZMvAY7%d@ERY0DoLJzys|()ZdMG)cO2wh z1@hNFG1^Xv$AuhH@%U@3SHQu_4DX?W)7AE0T9{{6H|y5@*=AM`5(T zsc3KA_45LHxabq|dQpB7tu={BgBytMM_fJF4O=n0&opq6URxiaP#Yqy+oqx0aWryt z#!oN2w#Ycl+K`Bf&u~MV9z&7YaJ}Ncx7I7lbAu1xxBbRoyTrHijeTdSxg(irc|gQs zRgh;m!F322a4=8dIhaf4%qd6~nYFooR<1C#UZbF2rl2`kWN9lXrH)-<3DM{%Ak%-2 zTDP3B~wx4m7H?2{eIGc}!d$Xc>^8fry}mgCFTK45Jg6b`Hj#SO{m=$nMKb^#AglyXz7VU13GtZop5$v8JCo!Kv+ zB>!Ikz(1_^mS;fhrUXt^Pq=D85l}E|be(l`Ps^qKvfm(p1(CF+N+_#Aqwy;k&oR1= zStjATG2bsYyDnNb>%a78fp`1Z)ra3i?ls}VC4AKhRW)QaXf=G*l_V1D+UA>SeNgZL z-`dSqtbu2Y=IMV>8%s15h}po>O4R&!Gg*VOVbjf*l0HF>8Mw zK|q_vsZ8rnmJ}GX28@bO0mtFkxO?})_ehlY2!7E3hI{ldc9eM6-T?)3eeQ$Egt+>4 zFAk4KDYnia&ai60RGS2AL@Wk%hcex$%@~@TR4g(K&SAxx`F1F z((BhV7O?C$+0i^%$xJfAdDBKqjGlagyE&?m_`SGZt8CxY!H1RC+ty+9YKT9w#4jV! zen9r)$5kAxmpaxqeYdi)3=xO9VYPzxc8=7*Mc#0xPx0KoOfiairt=NPrNApzi zv+8_N^p#?XT+<3(aD1}VBaaS<-CX;)G%==3eaJ!PrvJe7UJ>0?o<{9X!u`+DPqUG^ zokSg74CH*frs}{%@H>6-BcuFH_z3@(F6r@QEK4M7^{aDn(bfvUmCl3H>=Se}~(DS4( zi_zEFhx}Q;okZx6boJ^< zU&CBXz)+~34B{3i;0#*vZhy@RKhDeDAYhQIs@vtX?M?-?mbsxhr{$~;Jm&K^D zpR{O%Xzhd6&$i8V%_N8Yt2@WxBL~9Nfh@G4n6GtZVG?A-Uur*e`#xsRgde1@br>k) z&;fgNvQ+DCqRm9TEPE*}m+W8hud^vQ)a_wjt~nA zK=h!@hvC}xZbCk)a7heuttkYC$w6IHVJP}g!pKj3g?7(r(~x*L@ju4oj*`zKxAzc*9gxN{POY1dA5-AVLCUNu{JOO9^L7DTPb%8$PtzZnf!eb$C)d6}xMH z&)=Rz#-5<(Ll-!?RW7;xb+R~)1sG=yd>i3V#dUm16(!j{ZYw=3S_JU4wA#ORTm6UH{%um!ie$g*H!LqRIrM94zv~B23G+7V%Fkx9rPj z66PrssATk%RMnO<0~*@DD02iFjA>|UP1hN{hDpM$pnX9s4K%D*13{;}zGlR}S*b;x zN(p9WvD@ehVkZK1E2%d->L6!?0~@P%`7zb)*-5UmfKDbd0l+Us@V3*A9)&F$3Vpgp|cTO@q;b!f@DC}e| z>?S+K&ffXW=L}Vv3SpZH`uj;Aphgl1kQ4}^69_W-4E@L2Ot%Mn4q@^C?m&Jjg{sqr z!NDN#`3Y=O4iu4uuch1(Q~^+G{pthgfWR9smZNeS|awgt)N4sDsnpX zuVXSbB6qNWf^1;aC5h6gD~T_sy{}+W&2wYmX%ZY#`k*eFI*buqot>E&Y1u95hx0{9 z_B+kC^~PzE^$%3!UHP-<-vYqD*^pSfiAbATyz9)sn0X4{L1jYD_Qkc>(3W2wpJJ7f z2)3Hd)Cu|Ban4*nao&M)qeVN!*W)WckCtB`@CW=mG+*F6@JrwyXf#^I=CO-+?HC~c zFNuJEy8SuK0*j#lx&~@Z7pm|ARHLK9)PMqiqod}U?id_0p;zl^>E3=gWWybs(~C(M z1;h_aYBV`SVoNVm@ipfZrfPUnwCJ&89;<(OA;+^*Pg{6B*8>e}0{99=;SuVfsJABj zpG7YedggQ1d;&#<#Z2%}dYrOC+=W1;DkmdB1*rp(d$> z&HEdGElL0B`;QYm`rZ)w-%9)q0RC9}Z_fS8rzrUo!^o9-LbGAgY8*;UkB`25RX_lQ z;6Y;0E9Q&@0R46DEF4oewELD^la^r4(hcjlfPPp4dH<#`ncvor!-gaw1Myzzc1B}Af4Hqp2%9O*8)_qH7s_u=KxB7^&>Zabr~ z4;?e9N^gL?v^sZ2WW=~9n<)9j<8C#h?cEk0!ilRdNs)lV088^K`3^jStvBlw&~}gs zhy8Fy6wRM8)2Wh1^aZF(XL3J?!OIJgHT%DcpoBqMy8m-Cz(3uzOX1C@CoVJyi=%zU zrHRAS#vF99(-K%PG~(u{tve_|Y;N)#bg^*4IJV#YzG~&h(3TOpv1&}UYI2*%7_YwU zkC6}*8?3@M9mL~*4wO(?{ISTXH0JeN9N7L(bt4q0x{a zbM?ocdKxc!jBJH|GW~i}PW-<2x{3+KVt6#A2Id62%-4-vSS!yZ`%cGu*Twro#DcBV zbw5GL2q$xErMr0FqG-|PsmO)OTdJ#ms-Z~*RL(;BEYw9m?UTj~=ekR;@Gz(TohWgc zXV}ef^{Aog%GR!Bc6Rsp*rlCq^JF5|lfPhbaMPvYe7^Ad4D`+ycnaN zN_jU_%S36N@>*B72)jwFfxURbcOliyO83ZbVHF6j-RyX4-71|~hMrVLe|YWAmoOo` z;O*Sr@EslTlJwq7YUR^yO7pWP@cn9I@@f-QXJcaSsn91=!5&lLNb5bfaG>{aU}#|y zx>rBKc@UWP&EEy|YP||-{l3?}Ppb8ut^L)mgZT77ymElO=e5^skoR#Alu-hh!|hQ5 zVTs+ilxMl;Jep(^Aou0uy#= z5c~{ko<5cuC6H1hP*VBNf<~hA=lX#z(4!HTO&Qpx^t$jB;0AW$IqU-1lC%g^Rb-`T z34PUn1MURpL!OTk23C$B4()^Fr=dRny#=sl87uteqa>IwM)9NCjBi0+EWdyfiABb1 z5i0GgwAW&wCEM#GiVn;{F~Rb>)s3mDDVw4tetj55B}uZe``SSec*!! z(CMFPm0$GePwstL=nsGB=Wzq^LkybJ)om?Vs$3$7R8=cWK8n5y8_8e9BL3vz1!{mo z|40)7|IlXt7fp67^5(rkuvd7yUyFx@?h_nxizi_Pj1UA3NyT@0RYNc1$H8~MIa&lf zHFY))sRw>=lOKFMgU#+62)l&$o-dMcYg`=`zZ-~VcYxTFUUY2yl z;8+UfZlqN+XWnqSDn(wOGF>+IG)_V{Dpkg$mB@K*zW(0;@UK<-7i+lvv)*oo8n8g39! zAZhe{lA~+otaPoUUJwpRUUnrP(XlTso9j^>LuRaxp9`ioR@IdmiTJ*}C5#7o0Ack5N6kpvkU*J2aPN*4dv{|*`u}gBD z9hm(ga^^me$|JZV#EJBSkX&y^co=h~Hky1XHu_T&M^C`KV%ACUg@?0ZR}yo&?|cD} z&rYe$P(tRGZ?DysO|TF?pNB|_?ccc`|5yQcQ*Cwqrf<>w!N~uZSo{k+1o)FeMOYy= zr-PYNC^iI@DkIY30nt0+7i@vdzHnCAMN2VVb#Xo{#B z*i>ocn(a6qU8z+W`2e{c_<+U-xbP=g*ur8Sj|iQc4qh{xHa~H_E_b^jS2I!; zh}&b_RXiJ(0UqF_V7UQ1N9t225EYPGry9VO+7=Tg~M%z znoy41$0NybG7Bdcdh|VQj?nqa{>ylAdIiL-UHQhj{bd~E<)*qwnS38JQ$c27WcmLc z0RLLG|5z>HZ?D?TOzk<986MS2o3e=APe~xZC9<^|Ieh9^?ba9gX5-j8yZ#QS z0so$f@E0`DuPhKE_vWv8(jS=yPIIkFbL}>BZF+MZ9+0i+(?64>X^~5(_8E~zF<1qr zAo>nwQqA5{c|Qvi9E3&#R{iJmQUi%gX|`|x3N6fz9nvJ2rOMP*9uGJxa;a;itrW-4 ziL;S)E9H!%7xryVE0=-wf?knv>%0!4|A!X$$Z%tFmQpAdl9N0916e6W5J~4t6hj>z zVugR(vj+F?BH)*+`J?QA7A--PG`K13lH~pVmpX9Lpnp&%S^W!)U(>A-$nF6yEZ+Y3 z{7-)5xH(NdIaY&P7NR#8+m9c-8@&G=^ka^elNRC9)Z(vvmYe~Xu)J& z$j1x3H;_y5$Py(UZa}!_Dk@V7IBDcz-mT)uEDcv0pV*wdC~Zonrno;OG~+%4l(U78VLj zQyo`bixfNico+m?kGuF?*-?kE#C+u$5!XX?qWpT|>v3}!Cr5wt_I9sB;?>8+@Rmbm z*+r`1g2;OLP3F9U%;J9w0RLqDbE}loo;VayQpeKY$Y(z>G_G~KM_5DN;d&H@?}xob z_gqK(7qHG-*Tkv&1lHA3Q9U*f(v&@@4zI7;ek8-~-9Gm&z%wW->=HUeD5NFabO7tz zzp?GKB;Xp_nkL4_S^Fm~lu~;0krIBqgM9(8k!xMFU%OmM=x*a)++6GEo+-k_sVzhV zZl!LELD2j=u20-8?hgXjitTn-h+zD8bm}1n_k9_tYj~@{W75NjDeoVVLPU<-X%db1 zk5p+e=Cw#S@NH#z|C&!frG<%eeb*cdr+qPv#2pRrG#**ZB60W1L4-W^wEMg{;1~=~ z2yQZEF0nvSRNNc1za7#A!rhE+z8eIrah|3Nj9eJqXc==z`f*n>Y}t88&ONT7r6cDq zPd63m*Y9r8Gm(~jY2EEW@^yqS3GSH93siQPiXw`rF9ceGc&pn~8?KxZK(=96W7X&gOM&H@__1j}kEB z@qAZDJT7Tr-Hpq8!u)oW>;3t9i`bgiJ^K{dsrW5m-(2$Y6HRF+{%M4T}ImJw^Y#dmGfQ0ZiN}2r7Et2e2 z@Zp`F-9D+p>7D3Wui9gh?YkJ~fcQXHqnpXa_$>*88*65Y_0t6i(@rG1%hN19Lp6F;uAlDipX%i)ezuTM z#ph01$3{IDO-(kvI`Y{zfjb(1ytnu4G8HvU5I?E?{l}u^hYcwV$!9qbAwVV-T}4^o zTyfpiSVq8pry(*b`J%vQ78ABX;m>d=vLx`Bb|tWBiWq0E>0|QFPU=JV6D?>Uj4{6l zSB)ACb)iw@tUKud{f2AD6<;+a0MJ>N72rG!?dA82v=B%21gl&YM>Cc$wa$tW@Q3>& z-59VJKled`wUBBtO5V&w0JTDd=iz{h?nj&}T#nB1gpnH$7AQ0EIp85uJmhyB0lfT( zd36I}C?4{EKWG57 H(ir~_9o|C8 delta 227424 zcmXtYN+cr<^8qf4osR^3-2z9(< zI%s@A4o}s_Z^^wra6B%amA7)){PXulEF8)*q(}k}#X>y%%SnIFq)J_H%DLbR+8(^ZbfgdE5@bycSL>ZMLt+u;I3p;Gtj*mLZL8Yzd-&rv| zuTbTu-!I_jzj~Y0c09N}{R-f{;4P&8K)yCt>jJHBN2K2e=>9y^r1VjnIWXkc1b@v6 z|ICui_4x*6K;)EFU_4Vu#!NO?Gm=FHWseCWAOf~E4zWkPps!$?e@sg8@}3_o9LgD z;eL-3*oB}yJXWZ5Gv_vrlmU5~P+)8$u&V4!LNlO@OlENwx zr$F0mUa0?YOkwPO{Ds-NClg*CmHoEp3+PAMa)s&xu+}l#`~+?%HRS?i;*R^HQ<=M{ zl2#WuiDHCFj7u);P1#_#Z>?N(z--~bgAy&7<*tm-)x!S7k=|e?r`GHb)nff2)FP5h zrOLHknw)TPYn~E2Angs2MhmK*y}bUQe`gWZ;V+I})cyIKKC!%<7w}-$x@ohuwczJ6 zCFj}%^kFkons`+EQP`LsjizuOlNqks z5*u+(TM2non7WwYwt)runDI#JDA3S0WFGKYOvRlg$QPa1kC~itg`8b-dI+=(aQyis z-r1dW!V${_a|`S0UlkQ>Dw;K?PFnzOv2IfaNW{SNirw%S76qa4pH@XfU_m{G&-~0dxjHz7WKLu{z}Ch)wuY^yE;~rKZyy0NS(*Z z=ZYi@^RU{rT2Gqaalkndz>?U|&iIQo@SLA1-Jj(U7q6NS>B_~egL;Sl`q%;>A8Y*b{++c0_grsDl%;m)W2wi8c`qkPO-dc-*fq+L4E5p8a&a ztV`LEUz3h_!G1iHLw-axTSjh3Pvq>nGVZ3$(D!x?<7~HU9YPBffM=2lyvZqJOH9ay zqOgDs=4Mnnz2s#Mt)}cT;WrCeZ|J0jF5*R)Shs=7gNnks!^31!zL2j=v5}tv4nhg^ zk(%{yQn7^D<1F5ZkE3)lT8ukG;aFv2PYxx-2$fQFTystYm`Edo?L0^4(UN9&7idt^3| z7&N^iB+phM%Xnlu`-b|a+_-cB?(!k_KkjKCKE>?+b`M?KO+5IU;xeu>P%+}|YO?v- z^w1g{QT4fmDJYhUL1|3Jt^YZhN|M%OrZjwF@q|!AXmH9&PlCIKtF+Uq(CjC918> zEs;`DFUJ_Tb+wH&hE1$Ok(ArlL>fdB_Rn`A&-s#L2e|yDDadiw*P4taRpL~Q@qA45 zS+4WwR`_y*t!2|GzsLA+y-KyHuXS}ej3{3*`8G_w@_+;DLj9mEV zGBR6Ocee&lcX~P`q`NEuNx$qAvnR}fZ>qnSC$eno7w3oZBWJ6g@42atB9}jDoc(!U zjyZRxmW%Ru|NhC$gy|Nj94W=yS2=Ljy?2}1oXa4WakB1Uh-3rFUgQC}{);H${EmQz zS0J;S&skk#i`S$d@uROe_)$}9+bv;{gE=C;!V6Ax>PD@*O@`kET;qE<&Q`Xkbkt~K z88vI!fYB(ZJXO9l$}e`B3unT5*B>>(zi;1;)Z*noZVieqgNIqm@#!H$5_1-+4}8`C zj7qL|(X6txAp$^9EM+%*Lo)XuR`rsL)$>8>tk_D-u1NaO3xmc9As z|5kwOZ~tBKxZ`X~NO7EIL1~ByS4TOXjQ3YkqsUh?-}CJVKm|W%ADsbE(wWhf-RZpb zcY6DwXJh|0YcV;yTVUR>sF>W?U+dLts%NIEAkTLM_f{|hB$9i_V#K?ya4igd>uZt} zE#606h?Z~dFIjU2=ErJFxWK-BNwgA;rttd#>NKs)5abjm1M1=xzG!wQXTvE5Z#m;zSIJL7v1YW-))(*qnyxB&7TqGWvQwSJYgahD0FD2dz9Kb}c94ls3q_a7$O3r>Sh_!x^0kC=VCpO`ehbiU~Q z@=?@&A6qjU@cogMYD-xY7!e=YtSS0l1v5VbYs8II=|d$HJmC`XT>Z+5^8K5?S9$c} z7Xl_l%BH$*Mb7&RRpZj=)jq@;MEGqEPScAC2olt#3p(KO_#FES-{sg(Qvu!^#!Ih& zD2d+p&C71RZS+%rneHpgwzFJY^u2_p1MAIPG3b~L=d)VTQ0V?%v4trM^&P3x;yltV z*zoepJvbmALWtKqp5f0_JBr7_IZFM+rKEhW7s;_%1_+qqB$lv${0tDKy-M>LST6sZ z6NF6vEMFS?a?(_5R~}ZfADnm>b=bTE>K;Wt3l105*Ir&tak9GAIK4|%yVv+H>uh#I znCEXSN86v4+jRCW%Eby=-D>*GoQs>->>~&GcMPVoBDp9pVf_g4EZx}3MSY0!$HU;6BOjx(5!u1M3<&FeiV&GsbcW?pn~M5MFt3hSQveCQ8Xpq+n@xp%h>uGd_)Lz8&8>X^@Any%1sl;BhnfDDR=K4H z&fC`~!H4tb>vH}>eAbUnbecb42!%hABhEt$oONHcn_v>b~ffg=e%WM!bhoc0Z zmT<){gf)j#I*|kuN^k=~djkPb7%T`g2Uoh&BRm=a$0nYXb--eg}-}Bp|Kr0 zxi>aKv1A~Mfk>E=qKL9)fs6=<|KE1yL-mb)yAL^Nt~|@~P1E$Ve=V<{UsAb({qg1F zm-FMPRw#<35gjIH@7J^VB950bMR{o2foU*`cIEQ))kQP}6&&v#4%J1rnliUczTj_g ziex_E8M4w!O(EmQP*7b z(H;xFP>li_#>=Cw*G}KyvlbTfq|rM?LUd1nesrB)vLOjPTD51Ft|SiA3O+M*>URV%Q3Yz={TS}tG za&ryp*z1z(=kOO{b?Ae;OF|dPg-1KU;eB`+1ne=n7X#cw9v?>>FGjFG(HKI^o`-IG zxc?kMI#3$piKgwSxR?B}3%(-N0ZhxX`lp0Kg@`g~x|-=qf_pXsHOq%WGyyr z8NN_^qgZ6phKmD@R;ouCiZD6QLLbb=+9YJ|K)}K046ssjLdq07V8X_Ph~M{c=B9*B~_aqdD z0Z+=5OK(1r>XbcOl@p4V${_|snOVFpj3AUDZGS~GMWv@k@78@bz)|p2m(uTT(0Vt9 zn5@E#a>zDoU<-D?TY3RCHnn{c+`6(RFDRJt)yJi2J73+`o@WWqtr~ZJ+M#hs$JY zv>72qYxgz)O2C$uELth0261c-<}M2NDuz^HQI#Ul-M07r*-BG@6^#F`Vd@zVv2mFO zox^|HUP`69j|`&uJCyV5Vj&K`;fDl=uD?sIL56-*CFh_@*Cu@Ohry@-dy5gDu7h4b z(AixkKiJ@)r*YIG1Rw)SE|L4jI23lbvG4*|=R#IX^I-6<6?aQWiHPM=v_UghKM7Q< zi&=p+>$g?>b7_YLji#V0wN{Ip zaB@lZ06eM9xWJhwCnEO~DIv=mk#HkI7o*5360;*(S>6&12w&MRx1`i$uNB*9N|QR2 ze^@2L(1s&g74Cr4YVpUN7cxGs7vV<4$WFDgAyH3@jTOMQ=W^mDfd)Ks`mhq(3o-9v z8H7wGouuB4{j{hyA-?QX>BxDRRi9B`Gs;-wOuy1%3Pr;XaAG2+GU7BEb*f}pFCknQ zgsT2}jt3b^j4!puia~k)k`4+RCF0%BU7Bu?U>m;ztMQl8V34gN==h=N*6G_RiUy2* zh(};lO$k76HjAnO?V14g0j-O65YadOTwdAaG%D=Xjuait4S~F6R4hOiJ^F}TS0*k5 zg@7B`y&StOr<86DvfGx{+Y=uO-5Uwj(pi#L?P1diRn4E5J#K^QE)KP2mLndO0;@mF z87t)J&1$-%k18pHXDg>k&x^{=TN~L6r>`N3w+WDv*=omJ4F-0kM|s34Pd{9)!S1ij zwAt8hgBGbRW6;q<9SYt{yQ`a?~pq-$?f zECRIK-e$9wRbHQjNxXUO7Aplfd?^mbprm+d(D7URRU~%VVm`s6qrQj2*`z#Em=@}K zvc0UTV%w!xgR$mv+7OCkoYrQuTR7cW*dS_)k+|`)+HFgB##1>pb_7j~9h81v@xG~Z zQkUssLa27ty0rOx!ddG*8eBeZ#H_T=Q3i;0)J~^zpr$7((L znA6o!e-rE3Y<%+IPca_mtb%ols*-~hsF z^(}pb#h`GsI*h}|z8`&_Hd?z)q6A`xVMil;m;C|wUaeg9(|Nt~oVUV*jLOmi=cd5ju(c4$f4nZixDd7}_28D-nOt;CE^O^xp>L->BW5D? zg;P~KFvhoNFh=P6maoCg=)J<3Jc8sD;!L(7zNkgpZMDg+d-DtA>^V!F-P3HvHguX- zh;~6Z;)3q5YfDeX5xjllRRGf-c2^m2zR*v2wxvAGtaL~I=_r`AL<{^lN8p)x2WVR2 zQf^~I>zWKjkGr0j%OT&Ur}e+>s@uM}E=^&Z`Oa@&{VY;rsb`9RLlPW!4%qElmBBmrh)KmYAxll(l`9_&T{jxxRdQ%6( z#2H>)k0>VLuAc4;%C z6aN;{+|x|CdaZE!yW*f%TlHc|ZHzc#)BL}Q6A4~rg7$W*MEzfQW4=0EjC!{OPazN*1nn6>|QcyH6^Og(ugG%9kyysnYt=xW7gV8k{hA+jsb+Z^=op_x>KYuhqmFb zhu?NB*;TO z;?hc30y!~Zh&{00#{u%A5wWX5LiNx}l+tt7D5IM+(t6?CI3E;f%gzP@rFe+Kq{aO3u zl-}p!vOd_1wKaVqR@w#67)*46Ggk~2+Bq2`j&SQi7}UChtSPnuyBStTAE3&jCoQ*= z0L^?sLbE9dzrwA5wB`jd59w;zT{h!D;s*heDIyhrctp1@PQ9bj3n-ShgVpOW20!sl z^THlH``TxqQOzcvvxDC$i1D>nUJ`ieH`!60-|g!Afda=zb|On+Y5d8U5JU)#uK_^r z8!*Y~2Vn3h?Kqr3i9ilqjD(DY%7hGxMy{@A&h~^%TulF8hhe9sOsneqp@DqiFSWTDIIpN>Z4+urz_yDg(B85aw-d1Ap5!>F47U z*UD}Uvj=fQc8eK`=0=*^+x5Q_r*E5S7^qd5f%;YtTU@akH#v~P=qXud+W;%2O+A`o zv9&qTVki#gt2zT}#ol71j?=?q9?UT#c^V^Ffe5%9h%uYHoQM&La297dQ#BoAIg7Pe zWW>lZS7&4}+i6JhGNWsb^1{24W2IaTF1P*AWl_mg+5~G7cB~*GJD2k=T(0Za~WYC12v-gDZ zhXM#uA|+a8u8#=aVQDi6A^)KxPSXbUhsIFcB0)wqk{|^Jtx7=#4Zue#Jp#ujDg{sc zGnMo~9?;~PrX3UkF}*-!i2OlX(1C1;ODG*Gy&xSG;D@X$6d&lZq)1P)8V1UP6dlKn z)d=|_*`jRC3eJ>m>v1qP&GnCt>CnwTbG2v!t{s$%&g9 z3pyK$I?TbSh)smLsL&`%z+@GHUZ^$#42jw&NewYIMs7>#(1V0i5vfg93F@qwqA?J`D{SegHj+!#O! z6PPN$eG^)IK(6UK@KAu|LRt@kHU)77DfQXly`c1@xm@`J7CtUR}uqmFr*Xn0a(g@gU zem-2H`NuM&Dzm@D`{^0<>|M~MH3y&#BH94*FF`75I{IxM67ZF{8;Q;)w-dP5^QG2; z=*P@WfQ(T1r6^l))G9~skSg7p{Cf~xM_M}+NlkdTX zU&CM`&Sqe=KM;eSh%sb?lB0iH1t7=#V8--jV%SQ4=B6ZEDr=(bhSo|4zIXjJ?6tl* z&c2q?8QM%VF8DoJelJ&J<^ac+(p?BYH^Fh9n)jXyNc#zKhNIDoS4agUlaz?tBF!Jo z(YTd%qxN3PN*)MGqqb8qlU%P=7w5jts&ZC3On#e{-ropKw>K@B@ZxOoWR7!m5s*(sYolU6cTRDj1M(RDCKuf zSS>kVTc1V&8Vj|<6Z|M%2^N>%sfn2S%py>hLh#<9g+sUJ%2+ERU2|}@j^%517`*-n>b@U^n)9<6HH|FNu1IETk9THr=1kjB*_4JhplJJp*;+>K0-9E>F)MMRgd zh#}>WZX>!7l$3?tk)BUM#-+wzwg7EX&vPXt9pkY#G1bPh4;%rV&xN}x9dR8%vglyB z07Z_6ZlEnUF|)xk?m|R1LG#GCZ*kp`VH~l#1-M#@EQKamZU8Sap-FBJqqZPVsNy8S zhczexJ;LJU1PS3HGg9bi8FMG7pCcmRl`-mvG|Wim#{{=7S>NRoabx2v^&_8S!x06R zBicrHY|)RXiEsiVR#0{Xt%$?@mu~?nz3#JNzi5e86bSzHV1}cS8cDkta~nXUG0c@B z2jFoznIajY>RAZQa~*PDU~ep3oZHqOv)Ni6nEm$-)<|-h)ulMM05?#oK)BizJCUV9 z*J7i}q=bRme~hQeR>a!oIDlVRCDV!}DsxL_h4OT!xK=x*+CCT}DRX0I2f|=}gd_I5 zF%KdVX!j~`8A?{xD^K6`E;uQO=GZ1ifU24xX7Zg(&Ej4=(Zv9z61fiwDZcpf51l#N zDmD4b&v-1cO6nJmY(Pt5jZw)2dN_mY0AiC$p{`m07@@1WogKWvx$({fB>ys$Q%|=k z(m+vM*?)I~NEi>XjKBa*Yb_f&g4WVr2(~Z9oSl0LgorEzdN?FmHONc$-GN2`h;H)g zsQ>*v59yUI8{|&&?dSEkN@RP}shOZR`{AZ(N~(*S(Xc?uXE31Yl6Fo{)$Z)-qdTLS zGw4vKVLc0Df+xlUQ8F7NSs z`FXvm{q5P>#K}z+p~AmYqc{r&I15kzBwt)#P!$EJ^-y17G!-DP)>?bBUc_4zOLZkB zbw|0ASjtp-ZWGwUmw%sz?_H<3Gr3ytuKqe_p%wYpeWI|E(Wkyxt!{%9c(|HG*rQmT z2Fp=#)0r&K7Q2pC%-t*nHI-i}yM{_t+BBAWCyonZpAxP79)9A&g$AwxJg&vEMxQE) z60*`9MRa|OKPXECiXgna_`F%J%lYuE(%Hr8ZWI=;=W`7_@^5~<)d2dgqtp1LO#+`^ zp4sltWfH3m8t@jXc^?vM)j!jkmwbN=6X(czF@}@&gZMOE7og*rb-7-LAJbY~=LB}} z3gBn~XxS@5%{kg0>$K_Ad1*&CRRCvhh24BLi~dD#|_k}Gmy6uZN0S)U9MpmWd6aK8&9Z!`DFTSe93U(s*X_Ing zdstM8l}>F&i&HsJ?GcJRQoEOtLFB3sy3t^^f6&IyJ1+@AHdt3e?VUnj_89p28mPJQ~AQ#8HfKldOR4YAHrpYHRf0@HArp$ptWFhuRVf;63uf<^7JgD{}@ z*p?wzxR{@s!^8gG%a)p-suWIIBefr|4Vw9}?}GzV&{lr{Cw@xv(J+5ZP4e&&(oEIx zQPrhikHX)-8AB=Ee{TQI@&Is-AH0vxR4Q8F+ad>cO|^%=%Wr6=LmLeo#8T6Omg4Yo zz%uD4!9BbF6p>MgJXO~c(6fscKwJkAkXzPm^V$LGiy0Z{f+7Bb=;?=<-B~>o)U|iS zPWPu)T+l5Vd3PTZmlhgUUO6<#~Ohf1xrRT<{b**klZyVVGu zExUA{wGtTI+l7~RtLF12K2{=Y;&UfHcBI_%$0){+CMU;1d(6#_Aa{DeX3yaG>SjFz zdN=lRw~3uLQLVNFm}ce;X7QMs;IZQ}bUoEv%l$S1Kq^J%hoNu^0{D(70Ar||KDFv>9`>=3c(jT8(a=yLOwIO?Dla z&00Zt8DDp}8GkSr%~9O`fO!YN@6Am%+02jkgmR5w*p2(7RK7{t19(Ph7vHIegTMFZ z)2JIj{TW%mH^@UOMGU02Ge&(&t>xCbMMLLzJ-&lR&X;m`{KA6t+(Uvi*Xg&R;bIce z7W4kX&FEm+K}q)otSL~T?6!3@aQ{~-UX={@$uaXk3t6kG1jf5%W?Jvf&&( zssG3spWLf+W>to41VUXH=au&oja|v*@d5s)%pUq_fzRW~6O-u^HL2JcM%y~-E}wG9>F4FrUli6i~snF*~u?gW+J zApLa)2&4Tk9Qa@8^v4|_%yxuXpi_i&_8TCycIaIoTEujw3v9IZz7hm&ssF|Vk+NB+ zL0FjoXNYcAPp6uU!`=VRpz&;W%vEe@3C#!otz$XNE4yTJ+7q%c7b|EvVIu~l^XJ)D zMy)DIRawf+K@vafrrD!5Y3-X@i}&XXG2UT6;^y&rIJ@7weujj0kh+?H;O9yF5aK=o z!RkagnjHoCEMi;{T5S>;H-f1NQsY{&rm+t{-I40r3C2$=-LMY<*4FuNpnn z)x^+%DrHCW)l4ZuE>*yRoFtcoj2=~(dmH6$4f3T(=_tuXHfItn);#Ai5*6YnTNU1* zN(P8s-0T7Xk%7oYi)F@BuTUfW*T}eDDglzcnzKHQ(J45&KS_eVE@-9bMwNSgn1pfx z%57mu>%2-Myov3MOWun^X_()>y&QPxl?q=8P!U;In39+xSe=|F)KE6{CWQ2ZsW5)` z?>dStg8+-b@V-%iL^P3KwDz3IYkS1WEWp?fAreSHs$#TS2U&V3cn%N9?lysx4my7C zh(fA8LeS2?Z8bkd7uH6&^yeW99D3=L`uqLiv0YjFbMvnLHKNxFnvCg~jp=aDc3RPc z!?JNuu`~E}UDlb=ipaHNMSnDU6y{ZCq5w>F{=&J{W_1}kPIRv@NPWY=uA#270FbJK zsw9!URh=-B-c}}jAW^Fc3mc#UYEir{@nb*7b4G}FCrcQ!Y;soGsFr7Dj-9D+-F@)C6*JemxTr3}F8_JENtuh!a2gXC&1oxw1t|wL~*awh8U7PU;M_ z&sC$UpeHEuNknZU-=~cFnju#W?Bx4Uu5_EAJ`&$D(bm+vYT*S}m{z?aqOOS*EdaEg zvxrA{97)J9FhiXH9Q#CgC^J%5;L_~%k*A}J`)=@Pxk5%4|uhJ!60 z^2R&C-jrJb%EZFlRTni$&JMmqK7Wb~3dt_)M;0>pDt?fUG1Pas+;?p1f@>2V4hMO) z18++9(~BZ36ha$dhbZij|K<0gbJTzFd{XNUtvE8>Q>QTD5LX_fo8LmsXC=E6qS*q9 zzrcIbbE@FLtN3<5AHSyn06f~ADz6+Sq^bJ|B zk8%AKM&$;7xAD!z*_eX;#AXEjW+rNVT8aIN&rj?`S^eQ$&%b~ET}3&XGBxYhNZRxh z-+X=aZV|0qN!J{O1_Ag<$rfq*~j^$PqF19+ggm42?Vm44`#XUAFgzkqVz?6X{n`P)WAFW+u6XwC_(MOqv(rtIqe{(Oy4i zTQt(549e)yu*6KGfJIP$Vog6YizIz8h=W9z z2@rdh;ncILDJWROOoTBWONAj}COe0wwBnyDhe#GDMKc)yGeQ-5M2cxjHi)reiy*ym zPhTrttf&O5nVsTW6QoOQ4-wD^Kkr)`D6Salh-ccZB`Mc2LOW{`A{HcuH21eJmYg+w zvglwRcgB~u8;OqKCdYz5lr0nzQ*x^dIybF2Bcv*21{ciiB3o*8j4UfAG>TED?D4Vc z3F@MNg!(9e+5q-yKhGD6nR&?`=^E1cNkSaE%EaENUWAr$cW`e2+*{2=z^XiPbUH#6 zoR@j!9|_t?8EotGL0U&+MKcT)Mi%30S_U?x;EwKvsR(3~bjxb_Z?jtIhV0PG&bWfZ z8$>f`ErGKT@Z;M(0Rcc-Epkp9A9~Q8-r!o`r?(NH{bw-e$E{k-cmlfhcPqk3tlr_^ zJ~h;@A?jt|>xvJNq7&>8H^(Id?=hVZ_u5mWU6RN~U%q2l@#=YkWGkb1e<6RDU_HuQUhsChUgNVlOHI7ivCRHi$VXrQP#( zwI~=sBlVenr7TZeYf4vKH#gpg7`^+V=GKjGkQk)P8uW`*6+M^|qn+)= zFHL$HQ>ip1%em)Mm^^|)`_YYy>_%h|FB67OSJRL0H|aF{zNO1lZPBu!x>D)sw(P3U zltAYV09EseV5L1DN&)7_@#j)=yI-#meI3ybZ)*`8x$GqnUaxVrv`A>aLP4dh+iC^i zHbmZZ26nc(L%fZlA-rbbBAyI-s}F=H^YLhY+NTEgKD0i(QsUWv=?PfX6eK;`Wej*D z?DzDnYFlJAJkZ=rmhxTeZbzr~P@>tkS3TQNiJwfrF{qP0_f=rOoKN&^ccWme9iEFv ztt%hrY^3lYGu9V17hRjJ<^e~0n^Sjsgnp`U-zZ# zq5_Q2^NAuGbF#?lrR`y8?2OY;zu=UH9N58WlEyXKgOK<0-bB!$P68ya?H^Vnc{)rys@wbS&R>OlUoy%rmi%9VUT zmaTuK7HSn$>J!yG9)D+0=d)`LRptMF%b_ZR>(sF?}!ogP$cp5vzKE ze2+r-PRY{wCtGIScp27DvT2W)rngm$x((h8$I!{$!WYTwvF~bGtQlQD+B&^X=M-G~-JwFGz&Qp%h$)iaNH|kx}!Y z*wcywO>^Ras)GWokQgK#cC|!JSP2n(h5y|myn{VmqxS56Y(KYaj9BrwxFH=v(OLXt zw6WK%w8qko<=Y_H@(O!&@>e^&T+MzgTyW(F(vPEskS=9fz4d}^W zwlSLJdZHN*6F~+QTWADQ3qwlIZ;;zl3@_y@a11XSNQO4R+ZNV7`f=z7YZ?86a-iLi zal+}@>mvJHHdVJ6p|;}XvxZh)mj(h8(41pfKh8?~gV2b&l{Llvdx=C?pQG=@yzImf z<6dw7NYNAx^y@*oZE|S|O>u!dVPdf&xtq232tff7kNO`xAptD9Eu|<#V-QwQWA=H7 zggBn6$hx^ui#(9PPM}pI?zE9d<@w+cjApzJLwuhpDe&`dH9(S$GZ?`tIQ;lp)Pnp! zuD!6~=}J+j>47|lDidH6&jZL<5LlE%VSd>DS<8b-3&EL?@Zy(l;*Zk4#t1r=jO95H zQJ;VVKcu0{X%gk7e@-ksZj#i!s{_f>YPlKx*w`==?$8y1h+`^5OARqFJx+Via=T^gffTa4SVk1Z)vSFp1 z6Vhm2G?=71XZ4DC0%1K)4sh)g6p`r0ws=TYkBcR9B{?I^Jcl+v{zG2Ea5*%>azMjv zg9RdCThNAqqDuO>BVRH?FghU!ocXVYPz=KYBYt8RRiVH2n^Adj^4U@GkCnZr57il_ z{~pYzCv0l~w%5TQb|Zv|^R#8#ic7E@{S4>SM2xX9%^2r|LX1;}i#2B7Qw=p998aT( z{8B{}@8i&SXsEV)u)=YXj*pgw2>=X98_U+tUwAEoyQxYti@%{>Gb^8%P0if$okn%w zm01GK_MC*I@E(v6h=9c7572AW6)OBzx&m?i3>^X6;vnnzcRw3WJp@$Pxfs#z~8UK@P8EtYI(fw2?}-yzF1sDWKcrt96sp zK%uFteyVuP=72Nb#z{>;U{!pXwmtoP34lQn6AV2xpN=1`CX@uFA?Dsrf^dH^nSsA3OR#fQXp z*7Rz9gq10w>eo%#hY#RSz@mfD(#79?8dZD{->4JPW)_Q^13(ODMqmsgJ>v1km9-neRhvq5d3qFy)UPX_zwvvNlp12kZQu*H z1alrSz2@VQfbZ|S4xn$uD&AkXn}GC)5UBmSQoM3FbNXpW}KydCyi z>P9*{e&zPYWpb{q=Sn-NAbI_><~uCl`;&GoXs=RUowR+J14zfxNb`+IB2Ba_o3T*T zJQR;;esc}Tsg4@qVK!@==%_2{@B#M85%J@~r=f?+A8?;_4{&5oFFi-$qEL}YEEzBY2Mi4GQ5s|mYrSQ11 z`&uaW*k^HIvRNmk$ii2nIm!?6vR zKG`m!7tQx6!3DID_H&q29o|s47FunJ-%_JQ2Oe*8&|erHl;fp_oNIR7)LuJEZfePl za~R?fbfYlKVsSU`ZBurtUa9RbS>a#>eF=<-D>S)&>ImI-g)MC}#$%jswBMU%rOo|w zOdcY^2H<;M{*an^%?JFoA=!l!89&n4DWN6|53}cU+ci`<(erd2mS6PUn!{trrQoV} zkc&R{n>RW-d7uk|hsE3f_%Be1yUq!!eJCV6-dSMSV6NkaSam^xr$S(ZH0tS3jlizkztD-a z1pHULWmzGzWyM?&*>a;FenUfFt+$r9A-njRf% zVt>^*CHYFArz~7Q6Y?Vo~r%q2@&!c%Sfkn-ZS(#Twj!11g>ubm(X?-a}ZgQl01JDGfPm7Clg)?Tm$f zt5FXe>`&3N-(V34D5ow*A+n=5mb zWEZ~t#hDZyQWSHf_+=@vL33p&rM>6KQMrW9SfT>Y?;3wq!~lRRR)Uw1B8Cqifbb&n z_f<#{Gix$bC{i?3`$MEMaoIy;9$e2H#X~6hV`SM|3rdtl)$z}gmy+bWs0vyAV`Si> z)ZniQ(#{@NyulQO_8Z(oq)t%J848?GAO7l8@u@g}Vyt!KVZ2)Nnz08KwmGBsc803*O&O`W6*iXX&~iJWG@aC z=$gM8@8+0aG9aZ75ZB}XxsYFiaZ1F9hJgk&iql)t6ZGrx^FbD(eRC1bJm2fX2r0y% z4q<z;2Jv{1l&K9e$ zzo6P+Jj%8}EzTrun3H8$twyLf!7!sYzemrp?tCl1r^LTt>G;pA;3syoeo90P2|h-K%@hHoHPI1BnWro6TCv)vs+7s|05XO z*@^*p8yzf5rjn6?k;h&KwHL*`MZPOaLqqSJ1P{N!sru>lmbW;sv}G^5)ABG<%^M3T z9r*_03d#0}PPjDY?G0%u%@0+s_Xs5X0#4(u9Hrbo6dXJ!q+}P1J7bD2s)f=!B)t>Z z`!2@bq{TiN<&Y-N8Nh#;nh!rWVIuc2vd{l(%=g4?}9z6Fd zU#)i2>vy$-QGao(1Tf+Odcfe6w~5#sS)fN_1-lx_OOfUvgBy@If@J*yfx!V zw0;7OfYI8AGR)eAAbrAl9U6DUd;S8vfVjZ(aD^U8wdj!kAD*r;I+CvICLPuyzif0y{m53Ilb;#z3#rX_bE=nI*!~2!1Ww@ zv9Kd*+;SB(Z;BHD)f9&eqd5q)Ov5-j^X$08Dvn7=Et^><{5#fcszM)!$3jDl_gEsd z*fO6ibP_T_rJudlyx`}T(Y_RO3d0HfFWD0ztn~;aFV!8=90^{MMkhbV6Gvsw3ya_F z4S~8^>voQm;4*b;3xIKPZuW}=u2KBGz8vxZN?f?2>fUkOZThJQ!oN4=uuj6$z zL#tut!qw0nJZRt=^ZrjsXR~LBCp+dq=U6x_OlarvQHMv~R$HR)`7($^fYKN0$;!1O zFx;rl1;y+7Be(4rf|C_^gtn?;uaTY#2+pfh))>m&oJ8;FESrw?JE=B)K3`3YO#9R z_9^3tgW7lp@gbRExokr8J;8no1K}@cjUSP!(07XMyx*T6I-4ZTU@2~>d?2{M>|l4- zp^+{6bh3J&ac_kR1%i>bVUq?wSNwdZUUmVbx7H8x%Orbpi4(c3t%|V0G&+p#3@BTY z{Mo6S+4gDz=x}GzS9S$CD-z;oa|8@cFBQX?7p8)<(yv+`ypF_c2HY#dK%F{OXq7|+ z(!$n-Z;P@5$f~%mF8Xr)n7v)-OqJKa&dX;r0iMQpGTzC#j%?NG!6>)bcdL$lymza# z_k~`SJ{x8R)1vfiOKUaB7iV5pffg|i4k3#+*|B+z_;a9;MZRM%tIEY^Xe;qE0nxFT8VCEN#%0llE15x+JyZP%2T5tH9QHM+FhLJAIYkn6Q(yme3 zFrK~iS}7t)?eU&!C|YX&3#;=z_3RtldVzZ1&9Zz>ZuP&@Zc>BvGLNW{N)7? z_^qA+>bSRG9Q_}cwAMSY>&p=NG7~WZMNwqV4uT~^YlsHqA&zgvz+uXsA#s>}z2+E0 zJ9RQNzrS>XpWE_{Zo~*GshW8%+{i`3v7Yc;yqp);2XrNeN*x z7gLrh(s8h+DDxtoVo(NuX)ZkySk8n-Jh0@?LW5F*h%Xv&9?%*q zQ&?b{isulkfH0u2z_@^$Defv(uEtu9RABU_`c))dI?fQ6YX89r=9g*$YXN;=o7Qf} z<@pT-vSY`^5-@rtY49QDmT=`#Hy-6+^{t(VnG~mVQet-DCjZRWvtvZv!=hdM#4`_G zlm9xK+Ql@Yp=|Wvx?K{-Mm`mjXMQV57=>3$Ke4`owcUncE8%Rdx#*X56DhI7qIua{ zdK;_R1~0?x_7RItK%uTZyYdH4_%j7LWMew zW_hZk9F@z-766{pVER1T$f5(f$9FA*2M;;Bq_xBuNgAI>2_kd57(XQQVRqcTJ;e@& zFNp|Qg6q3=hhb_5Cl$}m50MDc1g=;{jfF-DQ@f6_hfDjJ@7>D?JKZ~h=U=+!uAKSZ zwL3a_0bjm6H};RoiR2X&;aXTGH&pWx_-Ugv% z71S_hZd+71gMyHEt2Ma<9Xn*2I}3_M?iwZ}hgdS|+i=s#KUy*XCL-$#{hZ_gQhM#bes#y$_HEy8VF0nKkR z?i4Y`V$o#&2%H<}kNzecTxATg_(iY6<|k-kr&!T zjtm~Tsgg8#iAh8*j;SJUI2m@8fb%_>=TVx`R9+`o*zgRBsih%RY2Fm}H=r%$5!$c8 zIj`JQ_gh9z{0sJHv4)s2uNG#veuwu-9KYEW+3*yGP<=P~InxYfbnb3EOln)f_^(~o zW15X=p!_-AiWon;*Z2IQnEI>YB}4JrFoo1@VpQR+^48pZp-1KtinEibow8=(q3gJm zI&;80)5~(L@Bxl|j72rc5U|JMgPa95GVK=(UMd;c3pAMK}95;=du+= zMq$Da9KT}f)p#=`@mY`U=X2CR{ArIkIfVGUnYtv#@Es{pddjy3OcVY?f7(ys5j^Rm zEa||I@6QOk{coaK4f2386^8g%(9fke+bhJS%>Xf#Hf~lDHXiPOZ2)ZCY@dkde~A4P@%|Ta@sP0bvVguT z;EDnNYebM#{k-7676eJv&+-3t9!RQke1d9spWt8Tfut(eC-^r3NmcGo@Naxc z)qg_#8(vbC_Y?dZT~d{mg@m2uUq6H-mMSajC;Zn9@p+Q%6S0AMSutpuuMGjw@Zc<< zol_VLz$X=Ctt6lZ1&kuUK(MoLf^O^p7@!?^CYqEM^fz#JP%kbt1_a6HFk>l3dJu~} z;P2<9|0s9 z|3qqzgQFpY`aEOY0>A{YbAXIrS-*a&bT~o10AftgSkhp04)qC@Pil&q`b#O0}2fVd=BLO|A9`V zX#a`*nJRTN%OLtW)IXWrGy*WeIY8hlh%}(iKQQ@^`SYl90})L#FbV*H z{2AdNS<*jgvT7sJf_l>dWZ;}2Wjc~3kkBuH6a&Y9Z6yDc2|LGseI);s2|LGsjU;TJ zg~86j1u~{55d(7kZz}&8^1rEM{{;V=N)8fs&i~HjXJN2&{%;<+KEc0!mVXL^o%7%L z{}cv0=l_a{_Y?fDnEojY&i_`^{}%@5|C0EpFgSTYy*x~`&GjV!0i={ZaAc4?651CC z9$wbO9e84JE)cjFBMwl<))7M*`~A{TnOL~Mb?KEfT4F5tn?@oOC5tgtghtFfBy(+6 zE&sQ}r7PZz3(fHFiJqwKIuv>f3(e(Iev6&zvnmL*4ICn8A&c<#03Bvmvo9g#Lj_7> z0aDU=4GYIKd3M|3Xk)bQ6-vD=F&fB(@#DYQV9@5zO#O+0KNqVo3!lPP{mi)I(z1oAV7tnQ*f8zP+<1m6TasuYmGa0!i7{s; zmWn>`D9RhT0H>Bn|e0t{Rc^oeLa6lR9(0mKHx@?L=% zXB9nwjzSGk3O`*+Bc3Y1Up(&sk`rN%!Y&hA6R$lsD+h@Ee71Hbvj19O+^Q+(z4zCR z7k_E`;~e?g!t&~2oZAuj@^D?F+x4}JFf+D_O2&Z@3&gFduVUcFOx?GbbABEr6scMZ z^|~oTlwCk0%i=eW&n$E^>hvP1&^z zT(RumJkI~xG0^w!aTW2M^&AVM=La~4DmZhO9eH-Ap&{Yln|w6IXx~cL?Ok1b6D4%M ze1SvY+zn=rXyKlwtmW6MgZDR4gD&PVhrhMQfuWSzy(yM;BG)5E>{Dh=2ixoe!B%W7 z6~FNSaHv`sY$1TuvS46KZk;z`l19)RC8*c7aU3AXSpc&2HSVn5bf!2>Ej{&V;V;b^ ze3FszdXfwaczR%d_`~>t(~VS*cPRJ=&{7Bl1Vw(sO@cZsfsmAkBpV>wMvNaRP{tE= z9>e`$I4+P+l1svs77k*Q>G!h9-fkkjAszaP$`v{;xD&kB_RVVNsc)u9i@i*2}=i}lECLC?a@X6iLQbko?7i_iSRJpPmHQOvmX9dF!J^1Tm6Wm_+K1!05kr$!&MtUb@zw+t;Oi4OK4g>dao>( z>!4-XNrU%N{x9oC5^&1#t~=#jeexZ+00SeqV1Uc%_QO5_ANk(Y@+8u-a^U81@~eV- zjwpd-fv`slSGcwvh3@)Ma;Qv_2!1UIl3lv&oRneWk4&iA1{G{(m_c(7ZFp~{P_W4P z3p>O}b(f9C#ETs#HNeQEm$u-?DzSe+bkq>e;GZOLmFxrN+hE@(HFXrSuR)za;~^uq zNV7h2qmYp-KGh#+@)qFjZ`xgqkea;M&v&18qw8?$s}~UW9$D~LL8x$~9TxDvldkZ} z;HAiKD9SLrYzYHVt;bKIeX#lQ>vHiVQx~pcATWV&&FwSMM#()$w4UqyI$i91WXVQHjr?`V$54R=vNcUPZC6L;-cL5uWQ=7R!t4NENfKInn z51O@_at@ThgRP_p$Kpg%=MvoXV=xQD?2nA%Z)PwMlVeVgmkXZ1O#^tvJsgRfG<^S( zJ^L(lGSI{t|GefbEt|K=DllPd!(*?g(JA|Z92x1~j2y=yT`Ynh3P~4=NO~RR5{(C8 zUl2A{LamO)8);ra@!TTxqzA zw#ls_iO0;tf0khOu8<{PxvhA_=O~e9hxpzgSw9L^a6F-fB}`dg@{Fmfm!zfYdN!MS zNflb4lCn>LTu^m;qr08yh#Di##*lRcE=;x4L9<({Xrc;6V6D>&T%o{6QjBV1axoE0 z*(tBFH{KGseeSX%K_^PnGP6cS5izC0n)XyOO5@Txr=kqLV7Z+s0XH?4aQgFTw7wND z+>=be_0t;KSj$j)0T8`aXcaflYWz*+LM3$aHl(t*iAc63Vy=w>0LQ0^Q%@GQI+tHez`n%;3Kao$90ABrOVtb}uHc%%c2=-AH+Zrvyc4%Jz9 zA9^9qHg-K%Z8zJyWRDJ+)MPnCV*WbB`(Ww%#!EqHJDKI^^@pco>yEe9NN1COh zFr1Q5Ra9utdUTi2*TNjU_gusIWF8#$WEr8mmYk*4Q?mh53+Sx%T!nzdirl?HxSID7)g7=HmoD z@_y@n2GvE-iT8MuZ`4!aRZ@Nx$y9cPcHp8z2-1Y@5@6OwF!=?}dfW`LqY-?K0$q!M zy5R_hrV$(t`~*uNKp;kv$+%4Y2B8_Do{KV^&U8`e6 z-#L*q8ml%LyN#;BQXSv9lr*B-98T&TI&^c3UQehkLVba_UeF8MuncTtRFoxsmfV)E zo?E!DV@PdtG_hlv_MAMhVEm{Tu{b0DuoGtVrnt@1XhwX3%nH?o8brXRimh-u{Sx|e z3oZ?O>GKQ9+@cD$@~`hvyz18ec2x5R9jh1%2e;D*F)>h2jQ#XHZ4C}a&H~rxT zb2>b0_sh5o!g|TI1WVf*3z8@+241pQi zWmKV(9<`-wJ<0lz*}Ni{JtystV8?q=mIdQ$Lz4*Wl{;RXdBk^VnBfnewQe_{jR<^bg(pwTt2 zwgP0pL20d@T<01U4dtJ8{tFV#|8o-%=>rl5Xq$ot@;}@Jz|Q^Y`zF8y{pkT9gN%1z zXquUN0SwR}@Ejrx00}#2XN{Hy1RDNyhR1(8(?Ry6|GD4J1~Scm`3BFwIr4x4?TKkY zU4LNkJ|h}0(qe%$rvOL*c3zP1G#qtv^c3I*<&%c~^8-LvSEO{Hj!ghL1Uv61EUtC|Nh{?HW1?!%#OMfsVk@W2L8UW1 zp+eXQ*DkT*qSip2w}qLh<%%n>>UI9`0Cxq;5He)_$uf4W;p6sNT;mNDM?G^w@+Q zD(u?uVKI7+?V2?cwD*MkSt2BejZrHp^GF{U>F)U&TPdS-C)56G7JqKJ#ASK52`jNh zRL%1;poS>A>gza#UD)HEU%mAzIw#}Nm$ICa)wLyVdKaL!If*8Q{A`lCz8Y*DC?FE& zPrb0A_Y6iph(`AKD?JJKEHxRiIg*e@*yJoP`oax9NZf8#*Ft9io7V{8JFKHT6P=Kx zgL|s2H}NpcWPfnF3TI%;eW5+$t?{z4YM#3)kT;T0((wCGQTYG?L3Ia}+Sb;j@L%FB`$#a{Wl4J+7mQH8N1*#zsNS5();Do{Gej{pAMts;EqP$p`z5^RU1>|$Ddcy3w_NnC8!PFL*j@k&KOw6AHCIr?D67Mruo z^B4-!>abeXk3OgyXu$Z=ch*gD;lNMWsj{3UDUNa!`0wS=wy_4dcbJobOKs53IyeS^iwpFTf0};_^FvVscs_S4HlaxXpY11hrZKUB_Kp~msDCdFYl($v zd|ugJsYnYujB3P4$dpzkl-<5p?dYt5R&kQwUWMv~sNJP%glWZXYWgNOrY0xZ>-k?N zbSy*A7qyManJ9vW2jME=G?_VuDiK7e7bE&`OS~wf!m_!8MEa6L6pJly7-&0=$Twpv zQb{PZU}daSkb^9M;8&334csi~43G$Cfgv%Fl0l}VJ>=*TUTgKUwP3-sq5-U5AP`u> zr@t8;K$7n2USk4&B>d>{NV%Y(N4&-}HAaMuM#{4Uo8_5QG@3d3h+K&PT_J+S zmF)JlD9{T@0e4T%y;c6*B685;mv67XCYW_jqfvS%CQilx~ zhQ@nXJtZPdGcdJ4&AgMiIRgjGNu4w=3aAU*ba42{Eytq}<@ zAE=Ua8YKU8x{t^7BgAdGsKKQOQbPeZO%)P?55U%eAptJ|55ij9LPq|mT}R|^lyX9` zz7N?#ScC23cQTmMUmKZ`*XlxB+8L96CnYHuL|RV&wbXgHn2Rv^m8tG>^33(&!}j-e zzj?>g{im14Ir8HsCo{Cq>p?3G^sj}&$~9SK0)xzk7097y{U*!Xjh%yv%Aw%VtLSZ% z&dRA%pf-OeW^9vUM&fBL&8D1UxwRlKM(pMlk&uPz(NTd7;yBIE>FmkQ)pCn|Yrjpd zdA+G5Px^>Xloo8_0W>B_GLmO-sBPTthg^5CGRTte@4*2gP_0l&;+1z=vl)S_7i^sG z$}B7V7>%sOolMGK5ve>hvkBbk|01|E-DQtx0ymQhu3R^gKU!vPlAo@_ozovM9Fa?$ zm-*V3jmA6Baws)#-_M-&Hrf=toGgDmLmt(f*x{Yibwom|t(Zo|jMd|DDMFSC0JRq^ ziSZn31;4O4Yta3X^-VNngtq4`3tLO9S00QA3qMt4IA5yA>wC%*vj1v<`P~2Rt;V`> z4ZPF(PF9BfM7jlJtXXJmgS10<@EteevksLHJX#=}QF^ZK6}E>X*z)_*;t8SG27SZ@ z(_Ci(sx|&$ccYMA1AUE0O7~<{22DDx+O1LY_e*2lf;6%u~J5sv0YtBmJ9_!k* zlh1C~Du&C<>1oD7;bt~eW;WoAf<0Z!78_|FANf0v#(?7re;X^dtea`9$$?5mmVD2& zN{XKHE~67%4^CrPOzw~>KuU+fM`^@Y|4P11(lHZWC3v5=z#LL>LUS4uZ%f(36L{z2 z=gwNW4Dz{$%nFywT}cX>u!kV%FZ@m?U7X*{$JWl%`gq{qscd9}jL6M*(qcRZ_Z@sz zUfD+J5ovw)37>$mm0oy{vh{$KNycn^fF{iiXz4ifB0Vi=eiS{3xwr|8=6_0~Z}4Nw z#rxeWo0^AW|$Eu7m1ANAUl6AKHk}L`(ZQ{&|ug~5(-AHR21{PpNvSelZXOysh_%_mvi{p|N<4=QW zG#4dxYoH_seZlIttZj&=DR9c(DmTLKtXfDKwrMla)ymDOIMAW)qHfVLRzNh|#JKE- zDc3+&scwi6EclHzgy{_lU@X7Gl^A> zC&7NWrxOpg)kXApGFcn`2B?wEwGwU}bGw2g%noD{RSqoCIIr$Giow{BMLE;q*yO%^ z5(q&*X*zhHgO>oW0=Rd1s=(nTXwxJ_P!%Rh@nl?U586PdkcPoSY3E8BL6YUVJ_+h9e5Q14Wrz4^*#u~ftiRfpIJlm{~(wsH`0fYGEgVH4hI_tRZk&=hb2((&Wq@Axyr z-Sg~i>Zo0oq_*wfy?H_Y>CyJX_d@6z_z~;)F!|I=oczhcdV(c#j*RL@aUz%lzmDxT z*F;SE>(zmydVCD+Y2aGJ7lLN;elORbNYssT8Ak;!d<6U^Z)~y%M0QX);LPdCU_oaU zAGesQ9@+5b-atWmZ29NK@#GSwvVrxJPgf{MM?#Igd*jYxeE_G>IYTq$k1* z{!1B`woN#XW{kgF)DA@Jc~8=4iTA=M!Y4vWT_3Y|qBF!vMDR&}Ws87dI@|-Tpk7fZ z%;w#1P=++%|0?Plb!B78o6)+aKV3c8f!1|@p!cCPW=8^Doa?xUslRNB)`d|>-9D-M zVrrY!>*9;?!s5FnR+tEO(>d>-j7w*C0psVN4(`UAxv>;ULS2k@?w^}+LLK*|vpUcu zh7uzUaElajy0iWHWKTYYb+szHh7vnR5sLXq_}4DI-9^Bp)2BZIzHbuzu>}pUC0PEt z>Rt1&Erob@;T_Qa+dqi)7p2LgU;o@45#x`KR11ou5%ScVECs;|akxV;d6(~Z@Z)e* zn%KPzgb4Q`uU6Yy;LdGzP0D>4{N*NR!d@M}$bQd(P%ulcxXOn*)gWTPJlm0S)ga=Z zMPYQ>Kad2RRB?#X9|L&NtdBV@@yG=?ZXFG#54ao*7rlFE_f*~tj!p1)hUZcdn<+FxF;Db5QTl1i>)0(2Z{B|L`AkBK z4jbMtr0e=QIAP9YbqUIR#dJ~30J2Drx;He5hbbE99AZPfWfcx{K5G}bXcMJSj?$1| z9xrq|-=VWRn?d)aWIbn*ciKKx{g?ygPSRzYmNito&~XB^R2(a3l;>atTN3VDqDZ%4 zX)ekq%>{8Q8ffd1*s3~Buil39FKS3OYAN~i*4f|}crwr=xot3)GDp_NB?*=#3o_&F z^)Ug>m^T2@$6Zrf_%M?;;6|TqfGl8nKezlLdT=(G4$SfTxz#GdcM(QyK&8oZ$v7&) z2wRz3V;0|u#>n-+^DCj*m0Z00WYnv(>8ST3>kIMllCk_&P06Mgdn~=c;$?w6Rr^s zL5kZXI`wjH2wS#X->O)XFURF9RU+(;wX*07B0qH*Usb^mk+{>tUR2qHkmDSjiKrgb zMq~Pll^~j=xnWfhJ1Z=L2iY)dUmbFmz@yqqCVYKuW__)pF@&^II(3g-n;N6^MuNehrTKw+{`{Pp zm8clB(P@j{(N4U&UnQz7hx1M{Xnzn7F_Rbf?3}Bt@?(UKK&Hi3@&JkT;2Gj?Vmi+3 zvu5Z@*v>s#r&CgcTKfZ_;b;M^F~)$* zDS`n!9MfykiWHMskihmBs+nPOuc0B1+Cy z!U-(6HW(PY+`uLHCMV;;O;_YK1L8$MdI@@HzKmu;de9l z&JB5FT%I6xz*uPTC!yf=K-JRy2wqK9D;BD~gOG_Z!`?fzW7`6{;lTu8d~+N?ds@Y$ z$|~Y%6v!N@&2tN;;S3}j-Ebzgzwo;JxK`kdWoIl3%KT1L5-cH{vk?pibXk6!CP$w4 zQ{+QwQt}>f2r!Rt`Q2aZ8o-V6W2CNHp89aLP}jdwji{og4hqlN+{VUcdve0!xUlVQ zy!*kyUqK|D*zFidckP?)auG!BniTlb*m%Yyn(1Kwa%tib!!vYwCJd?{Dj%pYl_Wk~ z<-YncbtoKSiZprDCNN}zmY>nsph;#DASIt|eIMA(PsxCtynj`;hPq`0QL`AwsNW*j zd7Mf$yWH!0>m8i4|3|nqGnc<{8=A#_l7RCzu~P$Rk=Idm%{DtsFYv_!KQ>e% z_y;5QVOlfol$K~{ND*JmlT6fkf_3WE*vqoMJ0uUYSUp)wa-TfriB?ywkfRW(lg$(0u>jgDYMoB4oh9R(FX{ba*J5+!3reW6AxD~G}eHN_wc&G1tvI5xH*zM#Kn?{>!+yb()m!AEc z(|2p@RRkOztI|L1neO}LSZbLwKRk6PMR*%qk2rgy)1PJBcbLu`>XXU%1gA-G9ptO_ z9P|mjZITNGUss_g1N+%Aq%pfYg|+mtz(Z4D-E-f7FJUNdG6KA4oeI+{n6M(J6zzZ0IT2pK@eyP);zb|M-KRlgjZ zT!Dh@y;wEir>M1v3YtU?K62L@Za#Xtyb1A%{zko`yx8!(*k$|W3WjShlz?g-26^y) zHg8#Ek53HEyU+Kn=O{jd2^I59ErnMSK5)nt$or9c74nz1Zl(f^2l-> zU~qUXb?o^IUeO{#MJa)<%;d8+(LsLMDUFTW*J&g;R!Q|GW_t&=SAM2Oktl$cm(B)i zJX9=2g{mpX^xnY|!^1kugyTdKv*v91%qssJ@fJ~72|jn$W-Ed2(yfo$qr#PQM*T&S zxA;4pI#%U({YPZI6l94CQN}PfcOlRTP{pCrnULtjmB|zglDUV@-9WFOorT4sg$ei`3}d5M&&>3JQjf!*N^mc^eYRJtSB#w-7vZHNz?4z?Cnt z&p#U#XId8}0wP}d3{SrVmxp6Fy-;ob7_xK1h+w!LtCWdm!QA@n0l*>P`6t2=Ufrfh zNo!W#n{c+RJ*;@UGGIA&rg((yu<+pf^{E7PjX%M-1!m>)4Kvo?tFH{DrA|w$S;I(e z7)BRxsKjg@N#as5m8!xfk}fb>DnPhnRpn^4zhsqfP9wTb#}w|F57VY1%Ek}&+#$ci zT=T9U+C{x}pcz&kc%H|@3ZMfuG_(#Zyj2LDONHS;uxZX$;SaEzLfvnE{0fpgJNM&D zpd9}pobKHt7*{>Q{*$j>$4iN5tcBJ<{`cpD;oB`f{)_?6V7L|wot_vGeIN||1hYt( zG85<3wSW<*nO>O6squ~bi|Ow4!6*FB?&obEmeMP)ZMf0m{Q!r1Wz9rEZYz^@50+FlrZ!WeaPLEH(ieiK|q|K;POuOG;&2lBjUIP9q zoF$vJkdWSrF-J9viMxt-t@E+}gul=y+93(&c5Mu2&gMf)pdbZd@l9IL!|>(fMO7F=Qi|zZf3cFn86!8Qs?4 ze|u_(Qu)o4OmShI-;Plkj&{gdw_TBP$OA7!q6L+8?;LN9HQcl>n?>(0(MPDai^v!I zE_ov5g(h=`N>C!|*k2q}<)#CWa0(PgbB#Nc0{Q3mDVhd5Ht<5n+GR}w{k_VNmH0x& z>$0BiK!-3s->zd(=5bX!IRZ)OxXdA(@Ijn4h!Av7%hlU^h=*b6k zqiRE%d_j+dd&@T)4KP$=m}M6(FNEy3nyKB!W#l8Z*A54t6^WFjg>^Lj_Uiyp+DK{= zUKzMRHDXT@j)99WlF&2Eo8Eg7@0vh1FEh%Rf$qlOq5@>Icl`!)%4T#-aWX!KhuH6`$jo_P!gA?1RHi!S6 z$Db$n>jr4)y6TKCC%yjYl}(gKYEL2k{TB$^!)UZ4=!G!*2#J*=+p7*bYQ;s@rmR@`1y0H!OCtS2~gN_|k!Wv@wykPsy2X$Q9-_g#nSo8qqtl4SIgapbFv()gK$BgcAwi!E%{%2 zzJRHbOoOiTZx;s-P8xCk1yUvj@^+}}TW?MwUsFwMc_|5~IN zW12*gKmX%cJiK8Lo4Bj1T-d4@@0|y0ruTP9iG%ITjZ|~Faj)Av@vW-z+mgF`S?u-) zV9YnK$nZ!+|I3jBuVh<>UsIQBIkxkRHX z=!AG-e`~qFH3D;8tQ)_Q7ke!%c_U& zz%ArF#^_3Os&B(B45ckwTu2BQ@8)`|3M)NUWak)S7d$f@MSQ8s{(O~{3!-5Zv_lw7 zS-3aPkj&+%pdV?b;BMLr(#>BGu+E5tC_?L`MN)Tac<)Q~BU~d}cC&f3GQs;Wa76hG zyl5>+FHj&3MKeJa?Ni&%UNW?BZkCSZvglJ&P+@(mJ?hHc0k^GRa!kl3XiJP`cM35g zB#=?(&)Ngkd0e0s``Nk;i3msYIFod25bWV<5-S4bJ8LdkQ*7re&0Mnnxun#emp8+P z638Pbk(32do=i_f2iRDPg}C!~Am&D=U#imI+EzmAm^w5lgzzvyjRL@hGVzfcXAaU` z8>7rxsphkIyjy!3q|@jP7p%^p@@x)THJ-iN+Ma`bql4_de{&Wa-MsZTb?>F2t_z3! zfZ4_}N4Kr?u13GJm!_j%KK^b0e0;k6yuIgVbNptr6U%sgR>5x87ev3=m+FIf20$!8@!6w+A`1WF7S96X_ig*Pj^aU>zii zEL`)rde4h;juf0onLq$bK-$`x<_SG&IPxDpX-7Cx)JDhky*wGwx5Dy70crxoLZl9a z9P9pi+l!>%*NA!qV!pg&DuS_;PT^*wCN~B)TP6|GoiQ{o+J~Gj*=cCZTh}10oxAe< za^f$!lb+SRG>7tF#XT?=@{!pl%Fc;d_1+e`5gU%p$x|rxvC9I&`HomVbU+^)3tbjx zqdSn{)ad#BR?O5}26{cj^M02uaowGzh=Kq?B2@7gIx0r$P;C<3m4SJfr!7XDJ%Tm& zccX3c1l%#4^GBGN;Momy=anOf|df&}Z={&B@S4t>^ge>cf z^&n~zit-R5em@cFryZ z&S zvSWuxdJ34R0lXh;Vjf?l6ZR}TzM}iHI3_Zk&|2=!5s`9J4&N+})}qql_39R?tHro3 zXXu&MHN)nYXZ|8G{ur8aHrz$*)2QMkFA17oIqtx!&}>^4eP*ACMR89-ulid>7|z5E zCttPzF?aFwmGI5;eq*{ird(R17-#s|Du&@>o*g)TK!#P{w$cfJEBk)qvWS9tsxV7L zws7%fZi-~g*i9Iw;J&OO%S*MB5kc-SX@xPVfp;~lle>DW3uaYQ+r`aUkhglMG2tm# z;g-v4c@y5sBiPG0o;ww1u{o%fyKlPh?echk|3Nsml|R%6weB6#S#Q4Hu=iZ3_x$T1 zfe?`R?yURjZ^PX<{^2#)zULQbEpDVv0IwkOitO`q+*bGd$;M@GUmWpFjbX=-*6cOD zUaQzyQCH|9bIhgY>}vb$rr)a1#}C_S*Ne);i$|*rAwl7TpCeEnUQGfA56dF9FrTeO zXEb}`E`{y~i&3v$eHaKzNNPuIg)k&{wK9R>a(dxHqM>-Dweomc5rG>VTDqu8LM&};I6xA{M{d&2^o zIFM>J^$ZTfVK7A$bgw)IP$vgi&C!=b$!xzGqv6PHcga#o6v9!#OB@8_va=ck{0ZTP zlV&x=02<2d;CtB~e;;0|mh?R`RtmCjnQTSh{Nj&gzZ6NGI1DbXa>F+paIHJqGQ;{= z+CTc+^5@JeZ?^G1Cy&6H+vi)~?h^8pPcGc0s&>ipk4#}Ro1{3VVe`jhUQ@2#JlR?r zzG3;)pms+b(mAr-fUnqc>MkwzHGaVO200o3vy{aQqb`DKrY?dOp#`C-veN=sKScr) zL|DK^g7FxF=9{YOR0xPrBP&7wfr=uLE#th z0`B6TuIMGov`VqrZPju49P8sF;X`p5?5mHarjB@dtVbP{scdti3(abLcB-v`qsY+V zqyyA0cX8&C&QmwQVy(V_%oMZN>EqZIlQD&f8gVUU%=0T;{L-K;D;A z<{Zc2pJg_3Fzxo*}sG$&LMxpw+VVqhMR*NCKkQ^5EL z@nh*3>(D^D{Ri6Pqu~Y~!5D4oQwbn`nc19kb7HSkJ;$p8)4Rj3x5D9Ux5uI{1?{qiYAtK7RRIo^RyYwBqI){xI*s&~$ z5M-}sFG-7VEQi}k-rh2pGBs8F2Ukmy_wcbT7z^^u@2v(?6ox*(TbFiWT=m8Vi7Xei_=* zJgcQ+g3=H3Lo+89=ofWpD_Ow(U^9ckD)JVmq2a7JH_Q0(QoH+df#@+DuV#%mH zWvmyDv*MM><4E7!tkPH~v)nasD-h9a)=rRweqBj=W)k&Hki-!R`~@%}DId3v7-S)> zs|V{~rpYdQQ|v@q`NFdkB=#!2BLXBMV$KcA#>+kDaSyW87bM2Gy)FFF@N;Pp+tt`1 zkY2COSVEY7^tO}`ir+ZP8dgPFYD2Ebcw~M{#7Pw9rpfc&0^hbUt4laROFOi=;@a6X zA#s|XR7n_t(pUfu&jFaoX~wZm#ipAiM)Gwf=+}#tEW&AD&jEe)PI@voz~Qc~+J?Z? zRwyw?gFT}u$4*N@@n~V`C*?A-3MR)au-~SBM*-Y)2eCf2Tj{tH3)KT%IdoJ12tW*| z(%`RZm4Uj{iK%QC^@%<(h;Wxdebf@8drF0 zF)MXnR9gAKXM`UfH~80g&#J}Wt{$$1MUndHnk1M67&|ByC=v0M36+q5SgR#8Xc|_T zXm(60gsYux=c8%#T*)DhE|;~%cHH)yw?}`N={+Wob8Ti$jNpM(^R<7o8TOBq-u#RU z&B?mnxhn!eZ~z;1ydlANeDjt(WK9A^D8G~AA-2PNtW?P&n4?wWE&X38eqYBG@0l-J5aa;-%@3tE>60v8g5!N6bidtq`&^v@Wm; zafch)=pSN(2e;g5nn9}&Q6d6$B!m(ukrM{zh-5c;SO(8dsGIxhs4i-N{lG0$ zsC8d|B>BrEMtTfc0JxJjsxj4{3{?#4ecq}OeD3_{hhH0|EDTTVCs`b}IZ{mN2E;Ssb{id zrMtVkyIV?@4(Sf*Mx;BGP`X>XyIVs1-_P^=D$hIf4x{5)*4g9d;@s}+ea^XViOSp3 zZ6gifKg{M97#a1F36}j_@+vBX$PlU{>MI{OrkY*Ru3#iX2c9uqsb%V-M&X)F^T#Nr zfUtE&&{@8ZOBl&bxZ;}HQ<^BL{azzWW3Vwxo)yvU8M{9D1=KtrQXz_KaUwd7Y=1;^ z{Q5}HafkE!eSn5gpVOVA&cnJ0^d{reZP<|E>LXb5D;lcaJ2*D{qVM;ykfKZVNu+Wg zL=7h%3Y0AG&P!u$HWm5}6>bU}55fUn$~QYJ8vEaOlwQi)%2vf`uH40paQeUR%ReyV z&>Q+XV~YeFfucH6qZ65+eQ(cogh~K@D`GG`M0KW&pj^*){eVM5s4h@FXy9$a`}mTs z+S=&fZb5D{M5WCvcmqIlT4Fxu*gKEM(O+ewzP|3PR??2Htb^fexpxf_MUw<4^=f%> z8iy-fGk8P}uOL^IGx@fOVrVGusJG>mDc@4<5tQ!1 zRBqV9yVzKA6z9?v!iPNRIYYZy5PoYVlBAE_A)dA1%?-O~N;|gK41smQe{h^d@W5ew zFN9ub?QAh`;mRX5_$h9ov>8Sb4U<(WdGv&634a(Vrcz6pVnsAdnU73T9Rym@+hQq< zRx4TWcEYq1AI33DgG4R~mx!DsJ4jWp>pb?_s@u65G4Z&%9?K7Fh|;+q*=cbh^VKCM zfVN`FUr(`l4ju2BpQUh+T9dyBdF>=T#Ps=X$PDSzjd50yiIp9TRBf6+-ptUI-s6j` zFOuu>Z?bdE$-yECAvPkv_K|{X!u6fKc1)cEFMgG!ye@GmiveQ-8yUO8Noa8EM%S)Z_irRI5!@=cSPiI0pz;Yj5>C| zYbb(S%Oj)^-4pBaC|@LZZP?3Kt1hf-a^x7r4;If(DnP!&4ah~GoRIBqn1~Xv;{Ee_ zfg}wXq>c`}F5{*?i|1`c9ev-G_QnZ;eY_6Tja*);Lw3!&?X>jBpfqf@&ti1Wi3+_1 z^4b_O_JdOirya9*)gOyZQsy;v)#=N1u9MY6gBe%I_wTRFA46s?41NaCy)6(BetT+Q z8#j$90FkIyzYcqu=cq(Y;vZ{Vpm=zTpCtC-WvIj#;BpOH z86$|DO;zq84fh4ZsB(#n&Pth#Eu^85U)%tG>O7$IjlB=O65Zr)68cxVRw`2N+ta!8 z6l1*ZUZ79zXaS&Ew*Gf}gAoXvp3`gSKBXm1 zu>_COB2}Mpr1m*Rw(R!`?t%h4dX~l(&l9E@>L-u7KkiF~wRshOlb7Vt#U3Joq{Vb8NKVydwgX7s z-siLYEMJd>_;D)zZD|0MKCO^55A1TCir^qS( z=&U9gW%5m7m(a_UTe1-~KN(dd-C@YJOp^vNjKm1k-(t`R{WG9$#=$l+i)YdJd})4x z(z2Yjc$YWxPPU@dM^RL{=B95u!V$G>W{%uTr}tveh=J4%&1Lk}A*~0|zOdgs1n;su zN=E@Z-*2XjLsMk=mC0;t*9mo4zJ5?iuDD7>7-Ft%D&zE>6Pm7!(t*?ELa!zz@$$FPnI|I;JvDv5ShK55d7Hz_^;db*X z2ttz=dnzB8aKrYc=S@LWmN@O}5INNZi(x#2y^;bF-CrIGqwO8em-t56Q*hZ+4GoJW zhK|^}LE*h8AZ@W!gFqhd-<_YX4tidIN&AXgHJsiG-}M~XZ4VK`#(It27yD0KvM$id z)i2+XKDkZ87e!dnZ|9{u)iAFUqa516Dzm7R$)gQC9dE51%$#RCJo$XYf|Nvbwxk?O zxSdiHeH1&D2x)mFvH784WM7v(l+AE08Yk($GMwc16Q7cW=LH%1qe}D?41&CNqBlQr z%4P9qaWrK9aYb7`)Vh^s(Sj9$z+21ZNwN@5sG2~Q#*sFE?Hr7$5B{Z{xgw#9uwVkH z(Gm|&lyjW>qHg=6_{;=FSqQ;e9sjiA8&4(1hGlXJXnMx5N?aN-kxB9K*@?Gh+_3Un z{p9CK0iOqoSlJ3_D6I~RGCuZ)JkHHtYmM%Ui+1T;E4{g5^E4{+2%m0kvM{Hwk4mtZ zO9;(4AWm0ErYSm|P@@h>xwWS6bEzwK$z9}d7h<JVcIhE1gTHMMo+-jC(XX3; z3yoZqi=4auQ;c`Y3vVw~@-9CJ#|o~*Q#Q}#iD7%V<{IPL1W%aWv&Z7wsOLMvlXkRK zqwVOu%ts2wq6ZgzfB%xNlkaYj5h8G@{FVw z7hz6p3`JN$J9par$nJ5QA`!};LbLkIJ1UIsr(T8(oHxBJ3931ytS#$kynR;7dC$|U zr>@Pxf5B~QVc{~sDnl6(KlJs|U90bj* z?u(yp*L}(1qx*5Z)r(7FCf7Y}j@gqg_rDIX9`z@kO6gJM`p(x6mghfGf7tpGF$DQG zR?((1E?eFMe&c&J^lj?mTSd~SblJ)J!Kt6`Pn@D_wFS>SJssIYG!-4jqEr=v<^#&5 zlD43ldz{ljUAu-Kf&3@Zu{j6Q57Po{qKI)U$Q-z7rmqw$>3}f9!>9-`5{PS5%BwIs4DD$Y^Qb+x7HYF{jPK)q2NTE7E2GPpD~^tIpw z4A%(qdu-iUGq%T=hl+|%c>_ezAuleDyq%|i`IoNnBAza{HrbMV->!a>sakh|pQEFm zYvKE`#tgNxQp}Xg6M8CH#Y{|h6C}~wg?Fj3qGAALpVna0*)yy==o1y{emaOWMstdp z%q6id@5%{H-Np`9BU&|5$?df1(AW}EmYVVsu4H#MO;-Sy6Gcrsnx`j7LtwS`BdjeP z2ypNOe!O3VN5>H)(Ox?s2*pcr33+?8#t^a1>mB{eCAU%eivgz_FZ-`~yy$S=z6RNRIH zk-rw>P^(PFtk6S=&Y*Qbd?7l$H3Hke2gnc*DGtdsn+Va1bX%VW@8w&GwK~QMk)I$# zs}-e1cO*Z8U0<;%I?>z>=h>!tUwlS-ty4=Q!%y5NQf3iI(A)B)a!5|AVL`EgY`;l+ z@dS^l-<-njqdl+lId^zrFQ8M`&P+-jPvzdOj9HOYR2nM<;VTUV@*ad*{sU+aS#*;S z1&a-8!iG+B4o&e=oc?<@sq9aW-j1lBlQ0;hCE;^>nogK0VM+l42%hk&&>j-{ANsAz zCE=*sQQX$E_MR}5+HC|r7ozE%uoisvC`7G`K`1s}{z_t0w3cdYlfx{gaJ?7+c6j5I zD}qDc!pXtnGze{;J>3QoE?{I4*g@oyK+6EVc80onM@doDK`&h35hNkW0y>E9a(?Mq zB96#-j3DlRT4a#5D*Qk`xlx#rC(=|%gMEH@K!;`$aqZex*Vrza33 zQf?`;%r%=%zY&I+|GA!+-i@tDx|T2EBaQCc8~ON?V_kI|8f`5|f3pGQX|Z~UG*aWi z$Ja%lM8du!RxtaQ>q6%jlNZbd`pY}CdACyyY>Na8w15_`)D^srE%54Dyk@vknp2Up z6U_~)+PwzG(BJE*v-c6}6wNKk{9sgs@g)!)<8fJ;yN6qBp}75YOyp+L;DZ0cS@P#l z(RA6>SaVT0jGRs)M3X(HT)Q_{h@rsdD>X;Z+o?3Hp^P)3}(9Sza~Ml~ynA>>|_x!b@(M1Z(-2q{T# zq*DV0_DJ?9_6^2X{YB_Og+N9{GVV2^pVJVE@yo{6+8m~@9)jj-rSXaT(zo@d&iF|k z$2jdQ`dg--FvqnM_p`}~HR|F{(phD9j`K4xd}`ctpU<%WL_)Njck(ss4km&U5j zwu&h}e*5~sClm6)vaOFPV%t7jE3umqL3o*%&iD!?dTM&g+T-w@#vsw1S#fxr235(= z7IBYkx#VFlis8&G-G15m8`B1wrn7p@mHON`!iUR`nLc*|<`YVCqxVQ=>2T(Xg6?%( zGDjMDN-6~AVcLceN%c}gGM>NyVi??W)DK9senl9wGn)AInmH`QvFt{&#!Fhb|a|xhVD_^qZT(q z7cD!vkvtU2l-JD_>i8HgR2fTkwI_9X7L$CwfvTwAa>0kN5{oM1w;r#K(cJgzGZ!uC z;NjTta34Yj=vQs)C~Ub>ek^{)!gp~rEn?plYwFe_iAo>T^EA0ma2eL7T}==pLLuLw zWdhymEjO@VT9y+f$2I2B+U9=?&VH!9VP74InV6M*@FsJ%GvD-YB$CX#SgkqD`7rH^ z^tLILWH4w>;ZBF%d(Y;3Tuxt+(trP- zE@|6=hob*mEdZrK5{+0^?PvQPsF2oLizvV(4 z0Qg%j#0h}EJpLcmLK|LGP2`lz_LpPPkP0QA3pBM8ty1rX)_O9H4J z;sX6;!3xj-{iVSQ@Bsbg!3q!o{UyQ*FaiB#!U|9U{iVVRaQRc)1-u?W=1*-GP=3t@ zu=&&51$1%&Wd8Ja0SF-TXOlR905ageWY_>Q&-Gnw0Ga3hE;fM7bAcBdK<2r@iwz+2 zT;T;_1K2#5c(DUyo?E=w0W!}uUhHgS+<$AlRN2`9^p^~VT0Q9$qih~tEf5*fDkOAtW{@t+-^pyc*fHD3- z02yG6e-JxVkO9W{2XR9H_?Hb(dc_UQ@y|B_GQb@Fhk)8EZeWgo5I_c);~xZ& z0mk?T0c3zN{y_j4V2pndKn57&AH+ol;RfdT2LeX}%<&Hb$N+Qvg8(wX9RG*705ZTF z{~&-2FvdR!AOno?4+6*lWBh{vGQb%BAb<=6nByM^91SqXKL{WL%<&Hb$N+Qvg8(wX z9RG&^&2qE$1d!qQO9qfG_j7d_AYJa~?lM5S+|T7@fONT^+sgpya&xjm{;&bG%l%wn256W2 zKMiI8ndb^KK)c+}9cF-Zx&L;UsRGjFey%VBq|43u_hbO+a&!JY89=(+z!)L_I}AX( z++2T;2GA}y*WZ%?w9C!)cT9kGxw-z136L%~*WWP#(&heh%>_#M05X5Bx&O5A0c?N^ z@Bdzq6%a2s7nt`M1B9M0zpQ|Mxt}kXtWC1K#H26|n1I48k@C2L0)%a}#=6=7j3mgbP z%G$B5O!Eo7c4)Yg=DBzK8ad4bCJ&J{@U%XUqOkh&Pmr9r6~OYTb%$lD$f>;)?hV;*~=;0DYE@vuM~9tke( zyu`l#1*C!^9oOEMn`C=(=)FEB>cCG3rE5P=$RQ>ZFnTjJ+!Y zNxX0vaaEEv=Rp}{&D<3<;&B`&&mU0Q&47b@?K&W#%Bck1U{THFamJOuAOcU{)j#gn zsnRarE%}M`VViQcqS{bEnszFW=Dg43^LJt~*KsYP8C*G&E+mF5IOf1eixJat^lEDo z8>ESR+-XdeU=(kOGEkjJz(?RigLD=+$TVhhD9bcvjR$sSc!pMPN~yfgC3&upgz)=` zI3)7C&UsdE4pt{R3LO`i^5|Jtc|7nGT7CE^s1g%y_^4)TLN+QYdqPzigR(9x7BAf` zltzh6Gk`5rOx|cq%KS|fiZwQi3v_%gBX(^gi_3>K*OwFndh)pxhGPNIG;1maDa=}IHAhS?r1g4ZAqa|pw zaAPyoO$Z;7nNG}Fvk@mSwFJ&?e&}3gvf?J-|9sn$%&FWbvi;O+E5jT4Bm?~`8t7YG zSTqc~4SO8Bc{PPmDLX3lna!wN7`U9E4C17}`pj8F*6_+HRBG!7@uN=S%Z%C(K0Kij zv4{+8GvO!vn5oK$PYQO(Oha^u4c3uzR3`lyJ+mGJ0UDQDcGqVV7$6HsRf9<~f=Zac z53DSfN=`2^#=2tSL(2FC^w#$rDQOidS(#zXk(uD}NSPRn7QZ(w7PkDiuOSa%-lP+K zo<01?Ud(l7N=$WPH8jqr;JQHD!l=AHj_h*ijc*M(ewf>b%&85uIj>^E-ux0)Oj3L( zDY-5sA(}Hi7w(iz9?@P_BP*nB%Hvjk%Fvhe`hc)C@1zd&j$3 zGeKn+oyLl{T#f8@DBioAHcHOp)40C_5wN%0DpNy#rRZAD?BzOqN85&Yc&Ym_2qxzY zF>f0RHcB-ON%HDtMyWQKl?5)EWgW4WhVh*&~v3saKCZjhG+z+e?S97OR z9o>-<^9GBYr#op((rKYXP-Dbuv$2PTLy!Ze^7-$M%4*+(?3?YhI5(YaUw^p4CbAVd z^y;@2qt_A6r9nql7SQ|f_H^a(!owCpZ=TdZ4Tc)`>^ntNr7g(Eyh}4=*gS4Rr?OV+J>g4wgE54z3e-DO(ln0$<0vN zkU5O)NSh1jlCwt0WM;H0e5$x1+A7Mu7XF+dXWTZ%udf}~N85`&zq(%e>a29Xu{>kF z%zzflPBSm@wzTlVg0Ll2B8aa1nCJJrTqN28JFI-Sb2PcJLA{JpY0!nQ>ma;bmT0l*>JLtZLFh_*w)hCvgFZy)Wxm2k!Z{GjJv-*t%DXwfw=}?Prr(6 zg-jr8T`PvOl|->$%7n+BZwH*4tYaG6XUnXegJi6D(zI#wL~3tApHSd= zRGO!K53mtO`8IK5i*lH}>9K#w_i@0KMD@y1al&$-i4_mUGN?E5X$|dr)cRf_$$O*m zgs|;Pm!_rr+>1!s+jvkA&XrU33%NinqElwVw4m&MSCfLn6vchX@9U25=GG(ONWPB|+tvm%t4TS)MLFM&C$LbkxXT z`R_-e>qNHx`^@N?S{ce`y96n?n-tE`Kz{y~K_T3R+-ZkSD?3Cp#hToOAXq$!o8;?s zdCx{JgB@g^Y<=8Wn}Oh*j7dVEE1$Z%1Z~Jf`RrS}MHZH%CuugCBtq(pGvh+g(3S5G zVyx`<4j!l(pUT92?)MegGi?{YF>GwT*!CJ)abJKJP0k|v6^C7PvR5B{DV2e!9l`lg z8m5Y+jqL*U^_wr89oRpmQ)$!A-54=U5^;V6en_l?;HErX>~+-RZ7h9xu`3s5bPHWG zzgM?I_e!x>vB@~+dUwZS;pWr9jM_}D@Kdnp4D6^MKZ!wf8ukSjpXTw*n_r(s z#>}43H(stNNU8|13j3%>rv=Y*ncEO|fmXK-OO(F8Uw0SCX&-US`Q&qOGT*RRx!idC zR+^F_ACeeDziZEvVNHM$7h-+6{ELK5Mn{FEktKk81KcO#6xDC;(s&7FvR6p8wIAI@i#H+Tt^vp*hfoL51Z|r7Du`6mrH$&lcab z1shN;i_2J|xUkd})~`!4?Bi0bN5AOC$kg>41bm}L;USJ5bZ*~2RounM+WzCW-QI`*E`tA2OE zqru-N#>;O-{?@RaqDu(9ADu`i^FVv`&lhnB_Jw%Q=Cz>QfwS!sv&e542a3tma~yUo zAU$)gfr|~z4SFtvh6dhwt{0GE!El3sYUbaV9I2`62$!kGC4~Px{ol?rpfein-}YzV z0igQq-@gykEYmh_A$UQh0=)>B|CXykbAy|p{24^yQr~SOV5g>UBhaS`O`+nat{wo8 zWef=|_38kDuE}Z)$p$`^>kxQQ>kxPj`YaMr>d`p>|EW|B8Gpw$KN zoc5mx#Hs#25inB^ehtH2`H@s8#t&t3ijoc>F#NZvO;*GeB0j?6rxM$@ z&Cr$3eeD!oxwuPvA@~Yp`brC5S%DKt=FlZ`O}*3 zyLGqLZV;9`Bo3U_@{MD=C^@eq>3Ln1e!>(}f$uK6* zrdcFkLVYzW!w{Y79)l__d4cYxU8I6|qiM3&_qUsg#y$M;pRR^?H8JD@Fj!fM5jcl4 z-=3j@`_9stc4QN}+{cM<>T5;lb)%_jm$-JmZ(cWGLXf_67PKy=W+OQxq|4sgi!u8V zs`Jr}HfW~se>=`tXQ}nz+KL()Ho#;!y+xX1*n#Ezgxp%}y)$_Ax~P>VSvQ=cJzyr|PRl2yd}lSlN4&spRG&oJozg6Zh%WDdo*~-SjCbTAE+dk={C{ zWG8UT?n2yFqSh<*aZcIs^Sjz7wN?=3?#w!e7Tu&ajJ%WN9%l;^PzHY*&|5EeKA;>~ z!>gC1k&A@>*y<}qjbW+#oM`6QKC_4XwwAPHTw>Ix;N7mf?`^NolHa{C@BRL*p@uz+ z3exer1EW>Rkz!nwn*0+LofoBEsWk&6I13igN}dp#(H?GGAPmOkrT~|jnU)6Zp9WgBJUQ~-Y;Vm z2Fm`nG;*Q~%vJ>SABs+aQ)J)$v*6<1XTa+r(Qi64dfsn5Ci)s=yi$1Crh>>E!Y1$f zqwftwkw+^h6kJ-&sR%cN60|G_4ubJPsvB=XU!A5r4bkm0+&h;OpnR`N`cllx`of$v zF;~m#NSZE+ulf`^R^N2&7?Z|R*WJW=h^dXw$a1jUK#SOOSv7#8t_K2*TlfVR$5{i( zHlq>dk(Xn~W+glPfJlcZI-`4VaOn0(dl@226D1ee9_n~||qPmPA~W=ID1kjL{G?$rrqNdBCrSu)<^O>F&5 zpM2!n=GP7fi08F?d{DI)=6!8^y$e)C-&5rJdzd^>s>2OXnDHYJ@&Ea>#`4q4sWJ1E`un3fI3XC?kRDMA zSDg&Rkoa+g4`YAi2PKX5rMftHlxA{I&mBK_vKfK;W-|p z`l<8o`t|5GU+VoeA|WJ6-kP zg%8xy$zx>7X4A}x7KGsQEN!YjYrh}@ZfMtaU*7+;wPV(hZ)xNz_+mOL93joOnnUQy zfSpO&b9t*O(O0x5d2a~ur7-QUPGAg!~gE4JhE%$z6U*SDBjsvlOoq>%K39XNmo(ThcnNA~UQrF7f6s|=ePkJxw)M&nnIrdv1op$2^-_gI)C%;d zlg_Rql;u)SDDWnds@RO~`P#F6CB5dG(oDqdAk4Zuqbj-G9LK!Ft^Q?0bwG+rq0M#K zKmYDqXEJ7s5Jt6!ohtpsMKZ6cD7mQ0 zIjn=ijyVKd?$6TRW4J@RE*FmFjEtGrUoVJQPOVEh-9^=|o)AdJQ^lQ=T4?lWBPw}r2_8J3l5 z24tuQp-uUt2NF8MC?Y+EkdG)eSzN$R(g%_Nw`@X(WLwV9CPhRK=jG(%rugQB4r~SUNXl?+r+=4{>_wf~?C5Z! z8yx^!G=0iC#+@y$B#LZJ5H1Mg$j!@?Z@NB;y_Kc<#brROwV~_wwPS5Z0eLN}O{{6S zY_c`Xg&sGC$Oit4L{p9sH*A~lK+C(SU&wvOg#u`Fd(4&YYzbbDS_!{`Rj15+X=liy zJ~bkkqo=9m%3lyVR8VvD>e|AHJ1r|7+KP;P{0O0ZD{NCHK8b`}Y!gpN$Q6=j$=Q@3 z6hjOzRWt`3cu!l+^uOM%A#9qIU?PX2|gOm9Xa2aTgs9irt= z@*SvTM@YSG*i&&HG4nDp zLABu8CSOJ zMz$3;WzO2D($?%F5Y6)MMU!7>AM>Wve(Q>mbf9Xsh(@v~ru?Yce@(ZQ5F*YwKB?CQ zS@5w!$F8)FB$q{;S~DMDk?{<1_TJH&y9f15sOr@_d}sA}K-m2kGwN z)P{N=u?&{9<~*q-U9uD;5(jTJ*deTrw5&316u-HZY(3dO{Em8G-?L76ZK886eIV}A zg)Kd;K(h-YS?hB#4LbeM0_{uY6U6xd$(H^=R}zN}bB}dG-9uv#Gao5G7J1AW=b9PJCP~J_NG`04W#9MxaHtMf? zIr;b|eBo5tZ#rZ?pM$zqWsEVY&D=(&0#9Sb@zlV?UXIhgL|zh-)f8vsxFi`8jB?kq1mDezK@;@DUkGM2W!0S&#ijh4;QOd_QI@vHW(2;)(Ru)rBh8Yq8TYDTPT!H z$LEPp*l3PCYQaecmW;3$%HBR6iu}cV?Zdg+Vp{8uy<8U9qghDABpKO4Xc`@#36FU* z9<)=ORPiQBJZE+memqyaGrBAmR;W;4g2-CutjBqv{H&E=_)A3;1QI)PJj9F;#4e%g z$HCe)au7}&XJ;+Ez|D9NI+>FL^vt*YSzQ88F??;A?r$<5g+?i1V?cE00aIrwVX>L& znZ;7ZJKInPb{`<+ai2hkDeO9=6Z61VkBA>r7D1lI(nZY|CRlSg529HGXPiZ^RrE z_qf8ezfsA|2Ol5AqPKfScQ7aNyeK0o+}XA#-xib{bmD|jA!*oh_>THuHPaNL+0LrP z>&kNw1aa2|<>|GNYoNL>?xgk`-YoOP(7xbJhu|dR37Q&KE4&H2<|g4xmHxi1Rnk`> zZ2zU}(m8tmL6OjBBusb5<5$k5*ZKV2Ff$tJCp0qu{IdX>H<-A4rEP|r#|$}K(A$V7pITi(6ImwB?dLV8Z)f-5BzuzJ&4iyJP8m8)Jp5S#Tu++rgzBQQSO6KAv7?$EIshJ z>=1x`q(_exPJj;yc0!LlbCt_Wo;-GklCjR;o^8ESZSf3CuGr|=Ny0_H=J830 zuKlKZz|+nquY=x{QMl{gO}kIgs$9uz7F7=~YthKu8ge9N7F&+{`sW9qk%J?7u>MTQ z^v{Bab~}A-&5i|v3mKhZS4m->tZ_89mU>8y1A^_9U=95GY9kH&{IVf<;7~1r#v@fL zA+9Hf(_E!7L`{(C(1cUcQ=O>E{i{_kCId7hZ{m28G4zotS9!= z6@_T^i8Ui_HaZ;kewE#xUo#rEb2hofo&6fQt_T;b65@k_urL*;kIK4Hxc;zr!UE)E zYg`Pd`ate5@1^_xI(t$f!|2XIr?pcvOPGLats~2M&a%MW<^7c6q<31^Wq@lO3-La@ zE0g_v;})V5iE4?iw!yEPHbj3VU;D#C$u_MKi`3mb#rgqHGfa!@+ezIAYIh=1Dw^X; zAoA5dI`_qZK6ALT)Rg?Qh5Gy2;Wv!p2jewe!;fDgESk5ik`yV;! zp}y{<*TvuZGMe{c-MkY+A6KCo4MW2C<{#L*l|)y3QF#aM<->lju9@~l`fYB*ER|bY zLYzSJ854X+j`x@*9DS9W(GR6wdYV`U=ZfScuj2W8!fx*IuR%E%V63a^Ar4uJgO#0K zan%Z7d1b8kP!7(n`PY@Pv<_K?3sz>G1lIFVkIcDtb+1*Qh9T7#X(M#&j#d40x&NR2 z4`z-gHZMV(?Em-q9UI_&_{XLE8loc|tJm`C>ur^1OEemzY~gHf2~_G3F;x@NeaaR# znFOjt+~aRispCoAx6Y>Hs+F2Lv`nOeDvC_2xGj(C(%HWB_Z@oE8x<^2I9N$eh(oIo zzF!a0KYyA&g~tw_J+57nLTDS7eqUb^{%UHvay58p(S5vmy1E1g^^mi;<3+~t9jGuE0G{3q!W*oxGu}Y?r z(9H(*+xFCK)17i;(o|;uLf6x7%ha`K5oru!V9&pukfStYqSDKei?*{-xI$?KtBhlu9C+)SnPzDzdB7#Rnpi9O;U#wlI zkgeAjQ;s%s4lzn-euAi*F;PnjbtI+4-})DN917pRF!3^lv{es61UH(kUTvSAh3^8N z1_^F7?a_jWKFjOHA1jHlwR8{2t)gA$7Ez`IeB=oeRp#_}GLBZ|Y`5vX673BJU$jQu zNoCrb&T>qrc=CYn@G^3L5V<0#eDLEBwO zD4;_q@7wMSV`K~`LzkGZ=6&Td)>K7Nz$d?R=z_c6axyjrUQ-}?tU|VoOSo!fYzLLR zV=XB@OKzNm0QUrP`2&bBH&!klot;wpa4Jzg-otoOhKnpDxBk(eE?O-x;f}JHBbclA z$9z(V1qF(-{^Kf!nD*YW!JU-`YEfsYfTdwMFAEq3nHZ(ek(cQHjZn~ecil@#FXXpP zP0MN(L^V!mm&1rfWUj+?ef5{sgoTbi9I&4c^jKTKf<37XiJ$u<`&zk07H=k-Q2ArB zJ~*Y)_FHv9R2R@G5N5vLeRkK(e91W>+NRfiqPgBo9bE!D`p zr2jQZ8k=Z9so!E*)DIV*d_pqYC^Zn8heVo@0YP<1^`4RPZdhy8>IOymL216#WBTEC zanHRQ*1)89e9KxdLD2(?kCsaRc*bV2SFwM)AxH`>c1HpD3J7n*3BF!}M`V|M=CVcI4<7=;;|Tuc@gSy1LY#VQo^9fElCJj#dC@I$kqOHV z#L@v9JXdlGrAp;THYfZHBY^|+<6-ftj|y+0x>9HmQ!<7IE0Q+boiZEgE`L_O_Bfne z^ceS2Y{($?IE+k9VsbE*WE9aS)oZjNTxhyrE{1sWQO^1`y@JI0YzZvIn+RcqWplb_ zMnEaWA>7(nUq9T?7=<8kJ6s$(hoJ0*WO{&^;)P+v?bBvP*Ub~gevYOy3WR<^r*)cf z3q1{cf>FzX-RUZTq1KGOJCFO~Utcwp7m`ecJv;8@#YZ1kQfU;`O`UomGeca)6Sj;-& z8gr=knpz@xHPtLh)UU#}4&B7NpAO?}8j%POTE9+epAQT}g(V5uM%O9l!hG^9^TeB9YlS;rxNJOkHf6mNCIjMJunojEa z#m8=W!8m6z8~RCqru{x;1W8IaMZ{QWqLUJ?^3ABU9Kt zWMI<|qDwN&0!<>7Sn?PjuZ%=+mLQrT!19=X;_|T!_>g~{%(uH|b#wR)%Kw6{l>pM| zIP>CWg1~>TWL37mU>ZWd7HBNsiC68lo$>X(Ui7Czrx$f6 zOr4m4xWJwYn$-i2SL`PxSV!xA1iZ8m({{&-m&YQOwh7FFcT6v}6nk7m1t~(LhR&$R zIo*g48A&f?@b+}cIWxb28M`9W@Wa1+P3UH!DcQtM(RxF@8g)Cq`5v1=IrVe2E^{#W zn=b_8Qkkwd&_L3XpKCkBCDcNSd>wO(k~S|W0|f&^@bmq_ihzpH{S-r7|Myl*$T06r zri-nCCWiUA1!G-p@W)CEB+rU6>&MT~<*%=`ZQvP+Y^!yDGjJ9ZYQ0ISR-**F({WPX zZXEl5@IIrpmp0y<(kkz-^a%6V$T+IjD57q4c;FA_uyAldiry-QCwgyT6BuTLdeD3>4&b$B6x_eI5{C;iuL1V>Z7b9Va5 zt%V$=OQR-tq`H^*AP)!P0>IMAFZLr#qYtJxa2fMEoo(Jg>e(RC6%LS{>e( ztF?Wx2yIN|8}ty@PV5jdx5!w|M4lry;yC{)xB%S+98&}dc_lBz`b{zQ)1wb8y<0{{BB^9X!(gZO?RTQOU(xv6#dqW ztBSWMd;{d(pj+j?uo%6nt>MVr9Ldt09E7xGy_xqg)d780GpwuZa4|Tday4LmD$ZLG za^*+ep?`jQZCgvm&=GWM+SVi&+~3kfZb^V|5l#LAZY;N_ zcR1)dVF0+pLC+Bbz#R^H&KLmhaL|831^}5qA%p*O`GcNA27o;r^c*q(?BSs2kO5#1 z2R(-j0Cza(Ib;C1!$Hp>1Hc^)dJY)??r_j^$N+GMgZ_pLRR3}LgPubMfIS@a95Mjx z;h^V`0bmaY)+_%R7T^vCJ%n~`rjX4z#a~M4jBM)0skjt0FZeO8339AKZgte(SV;r27qe7&mjXqHsI%w z0iYZ3bI1S?4jA$rG619lehwJ`+5u9vf2IwH2mGIq0YK(CWB_Of{2Vd>v;%$)835V= zKZgte?SP*{27q?J?2x~*2E+q?4jBOA0Y8Tf0P%pILk56&!2byu0A!v+27q?J&mjXq zJK*P#0iYf5bI1VD4w!>Y;?KVj5D)k{WB`Z<{2Vd>!~=c~835t|KZgte?SMIe1@HfC zslR-MR8RvA0{^r8jP#!c?B@a0IFM9FMIvtW-qqETvmp)jFHh`^mW8zR0dZnB)YvLz zj3QQGuKluV+0z@9i{ppk69X#@+PNf&_s+Cy^NTGxq+?P1sFG}>)uyU!@T^^R#;0<_ zffFB-&KD3=GyCvfVHs0V>aoylzV|mp>alP~3$cB?)Pb&WuJbU|dWNWD2Dnr-%~= z*M&ot->Iwwy=4-NVMHbs$dLFB4!%o>9u7<$+Y>PqTAv16MOVmy1qn`r7DF2Re^i|X zSXA5B#%by9?#`iGx{;I+5F`XdT4@H5?huAXO1eQnI;5pRT0uIc8@@B%d*S~*`pn~d z&H-M=S^NCfTKnuBNjo6Vt2T-XZ}G{@4;>AuFK`saHY#3^DptD_-~Fkj|8J>bDXRb* zW-Rj92xquHIbqn3T`-l&BQjD|Wa8=|qD_%pk^1w; zyEgEqAz4|?-J9bRmOGy$(sWX=u8fi0v|^$i?-y>A+0qak-kv9uLqtC2i*7##t$e2H zS}tllm$;TBb4pkHv>ov(W%SC)(AcTqQ@!k9{SjEhy^B|;r5=HJfDvT66n_&*8o(%*Ty(!Q69 z*&na%v_UG74ORh4Y$jQj0(e30Cztq6M{&3_b{Zd4CQ}4NG3Rj^b zIe5~L=j*lDlbuo7dov0un0_;{@RBUwyKkmWfpjUx)g>1|llkvy1&`zQ zzSVUpu9#-2EuR>PYR9(K7#Jg)l?%V_=L&=Nz6;i6Itouhm>bqVw?%d9`zo9^$wOw( z)aEN3OVaf#(sb)hhRJTNQ+GnvUujD2*tbu7RSlRfgzy}t4r*I+!18!*k+yPwJhKHi zbVtY6&W98={ry`KQdAP6rbpG*?evvk^rVF)$J3x`{xqcT=RW=Is2ST-iIw-U_cL&7 zD0gd!|n>!rYN?_+^bazTn0!e2}C4yy_htdaKm!4D4!ehH)r?Q7@W1_mg)xcs0<; z>LC5Sx@ZB{#wyCaS>o=!gGtlmE^w&n*c6hQF)_SlQXmQYvYiYPC&iBkC(QSEGAFR9 zEPs7R0wpyp9I(yoVI3TBh96?4$iW8TehY^RDd<5thGdKJ{5=ev-C6&m7bO%H;;)KM z11k*4_T&D$Z7w+?#JC>?9|G=2`FD2bw_!j6vpcaN^TR02(Ak}KND#^q6kLeJ2yhKB zyORq~ZyRCB(58 z)uY~a7vEu}0vokPH$~A| zA`=>DEsZ*QQ2Ba|&k2`(N87)<=v^a<`>bY@_3_M}!KcSE`ib(9Y3V0 zCia$3SnPY1pgM)G4QKKrsV<7@n3Y$>p+NNC7)7e=X{Ee)7{pgPw)={;Zx_CG82)Nk!LDh^ zjakpX?99%KaZlE^IZ;}wyFKbQ`!R^)+dF`$y>L^0wb_*vW2a%sA{7XxeihM|mG!<3 zJ6B(|Vl6~7YF?+yPeZ%nb2gX(BE(#{If;yp<7ds`&v!#T4`4HDdkDnB#!In@2b=`@}F864OuCUhdJrzL$)iOUi6aLP&v9f-3jTe z*cEC_9%tiTX9o~{J`0Qgv!{lHs5h#B`m7GY^#gWOz|(IV{d5w7V1xe3@wj!7&NqmX zbrW*~)-kRHhD^(iDVbjS9MXDjAT@E03(X2PDeY;PYS?q^vIROMe60Isj2}r7&$Odt zG(0IpkH;Ch8$@3rlnaQy{2IoWO5QBBl8vk`Ljggf0}nKT%7%<4Y?12%|6IQ+FYK zJL@dT`~?l>ISb3h5{~F#xQ_yyTDuDMigy3cYTKq3Z9y(!b|w{MkVQtM>g3VMy#?(Y z$$%XJ=hCn&+AlSu{qkDnpGuvAp?R@u*ho2_#F$mq;x;F%IGbh|mm|II1U)f}k1;B*u8~DPE`+i1 z%Ja^1m>!sI5}%udn)&C`se^Yy50D%9d_QH?3 zBXG_Cq>h02pVVIXF>wT_`!R0>p!+dx1ep6VYXp${F=qtu|1o6*ax&rnQpSH$d*I>L zhXMnTl>zc0g$2?wKt4DD@-jd^j@*!6PGBZFv13#4bjL$(jLfcy-Q54L~=4UiAEfCLSY54L~|4UiAEfD{do54M0D z4UqrXGUoyo27vl{%p!p_4Ui8xEs&=H^1&96sPS+=CXzs=2FM3nK*A5m2U|d@2FSk; z`a=FJk|ES*@uI)PgDf8b&s1>p)&u+40~_1(a6^`FsqhhiXNLLefd?|^U}3o-{`XY) z@W2sB)iotkeU%crFzi3~aNug#d@h!HW)*Y;SV%S@4nE{lI0FW7EguB7fs6^d)je>} z_EkkEfMlzpvq7K8AcbscqW`^TBR~!oana$p`JwyLv(!J!q6|TTNNEArT4({+#%fZL zLx>Fk8D@Zv3!#;vVyf>nKu^YixIs0<0JsLYzav1>UZc}M3||AshJhDYzWU|Y=vX+A zWX<_!{5EG*Mw9Y)7-Vaa^t~2U95h1;8ZGUWtt>EZJ{pBF~OfMl6qeYCteXWLi&s?{?&XJ zrQK^P=1&FS80i-`5T5|-!ZaR2(I<#B9kzbzLpHJSuJP6G2`uh$bguEi9fd5w98mmt z#o(++!kYpYzb8GYxrra1o-e-v{rUM>OcBPsS(g^J4FzZ5&p7=ajjY+Gv9pqXndzvg z8HRK`Hp?6An7|o>H)bR-WopC*G_=FrQqst!5w7SW;4xZj6p?;yKlO0@97kn%Q9I$i z3r4h%Ww~Kxp(lc%&dqcMzG{D%ESE2ET%Xb@5MYL8(TMPK;@}a6&4bt4Q-&(Zg=K@+ zkeLmo#^i+HQNASbd^8oi6!SyaL3vNz;r%5EcNY@N)_$xkr;LMZg{u{SkVRv;T(?e~ zOj;ql0}kAHw@$3Du|yp0e+dT@ot^RYLKvyibMRdOUr!~Eb|0{MmVjtW1%&yR&V&IQ14yK|S8L6Bsi7H#3U;j4!XKGVc=f#uL+Kk%QIdj5`4iPBc zuV2oAdGqUB1RQpLmu-c}JAM*8UA9;n9`4Sq`(V}P%U=AW=7Xm|3T3#$fxvspiOK$c zO&|0@p|ULToo3SM<3l^=ae*4=YSu$}ovw5D=Lg?7DVy|V^&N$5&;Gax7ryf&g`GTH zZS_+Y^sk(BW?X$!0UlIKTDGjrj%`XQQHHOEJ z>}j}M3mu%4Dx=bPM`lKz>>Xm-UH2a8clli-Z#IVIkf;}qxq{&*&0u9Q6YwT>HX zvIvrHkRgr0y83HW9-bkmY71#|jLejjXbZT@mKGFwLk&~1fRjE3I}q*=sW3^B%h69S zJ(~NELdK38&gH=3xJ(#F@CgA!&5V#nu=&AziY|)0xdsvj694xz^QNRd=D>8(^hVq? z8g|B?i}h1nZFj+{iX!Y!^L9bMgvG^0zW#cXWwT?QC%wI89!xY?+u=J9SpK<;BMFvQ zBP&m4u1=QXH6=y;lHzW8$y`HrYOd867ZB->oVJ*Hg|{z8KIaHJ#p%0RVibf%41Z-jia9i;^ttM+$zg`%T`8;kh5-il@0vph!%z6EtL&5Cyw%!@aZ#b**RPz^AfT zmP%@C30xd9RX?<_215tGS&Y!m4N&4zclj~JpuVId-8DqZ(j*ej~oNs#Q(Rm1gHnNg0j{B_Lczk zfL2hl`rqynpdNS+idFxwzXS&K16KiP$HV>qI!u6k@bi~K|6h*@IQ!t}FNOZUE)#I} z!P8#~{eOKX;4IV?Sc@8xLLak-zZCkI zKL8yA;4EMZO#Sx_0D1<1et5fprU4)ypdIKM0P?{W&^7?%0~`Z=13*5!TR`K02VnUB z+66%W36Kx}i9qK7kPq(`9~hux0C69#27Eym%K5j^33Lwt`CtoJqX>`>wty}aARlZ2 zs}uq9!4}Ym0_1}&pb^Cb=>NVm(1`*h&%@$DKrafA559nA6d)gL0o^D-KG*`;U;-3kW+vKG*`n4v_!Z0z;Rg0`!9~AnXA7@OA-V2gnCoK-dBQ4-dA0 zumj|SEgTcE54M1)10?vt7Z7%U{?C^-5O#okumyx2ARlZ2VF$!45jVC8$xr9*LwfFDjl)I-1earwJVAlQuXZjEnempXoxL zRLH6*7HCf>=(2Zs8QuF^XG$lWeoQA-s7-qEgA~yl@**W?TXY@gVRThzW_U=BYPkWb zD>gpMVl=i+(X{Y*-U_0WqKZtV%Ao8Q`ZCSNqCl<26xnPLxDQ9i-r%cdBf(Z8u+i;- z4y8)QI0vT6pY}l3Z}3>(RkL+5213G8H6>&17T&A`zQcvXa(hBcz5RAoikfMBlacD= zPilzClU($cXay2aib&9j2=P=DPW+pER3^h>Q&(=o&l{Ly@=ZlD)F099xlxmBI%PFX z@F*7paAZZ5qriRNa9{FU$`0=p1Qh!FYef`^^pfUu#^*ilehW)$m4t=JTVhd2n}eZ? z=fVUJw;qL_9v5X>7!b!xf+}w%OwdzCOtOi>7KDzN>v$cGQlgH8YE>6+W?Cy7>^}w~ z;kL*n6{4ydh3RS!)e=UMudEE0)<2JXB43fWJf%&GK@EPE!bk2GgVZq_J|UD7Sr{9P zAu@o5MB1;35WURU&YFwuM(LMRX^jCIZA9+#YktiD-y{AScSy;3TG}neSJQVqZ|y7GCY~6y zG%u+i+qZh%z_B^}R25aVlae-zZ;qdu*z>K)DE~2`TGi6LW<=?7u)4bX`fYkg52=9t zd#qZ`{VGlHY|o_|Sr+AH&f;%c-_@0sotqnHlM&<*k!K9zRRJ$zl8ob%@))*87?yts zEISn5y)hUZV^>lckFTY_&8Pa+Nq&=X0%qjksH5jlYGc_VOK0wbI7Lz7!SW<5?-4?r z7-1>u{UoW7U=e^%KF}3$N5_NX5rhDR80LDOBMhMQ0<4$;9E9f)J)1U+&96z)Ke8~`mbf*v^lT4Dq}asUXJGXv;{u^L)p1U-TP6z)Ke zAOM9s&?5&xON^jL4uHZP=#c}UB}ULA2SDKt^vD5FxC22s;D6u_^auh_xC1?c02J;( zkCRlOa0hzi04Usn9ytICcc4cOfWjT%g*(tA2SDKt^vD5FxC1?M02J;({K6{#1sfFZK#v#zg*(tA1wi2r z^qA>E;SThe>OtWSB*6F2#GL|K%$aO>(7(ebMADa?6=E99a0wksh5um&NfAm~I3AvV zru68~+mb0^`<&~Yn0KyZ>~D)AeDGGv39+MAp2nhKujVU3-wd`&in{k5v6(gLpLw$! zVmebr@;zm1TjE`DNpVo*p_GkfWXu5LQbM@@c_dZ{o9QH)zb4}ZUnp+&TSsNMsKaF~ zl1{rgI&<1g*GhK+3{Cn@*7ydUTG@0Gsbz2-(~+!2z7qbhVr4`UZ#-R&WIvvzqoe=k zfHgfU?=QU*R|c~pS#uE%!wXI_h8~whbPR8VY7OmGi@rDwD|d$H+6tIYlT6l-b)*v# za9&na8*+R?lJ=UyCCI-n(~AWTld8|G1BXxesRjIm zdS$-=HzM|1%Uqf#U*_c%FcF4&WHHge(e$g8s``utrm$%s;Yv*bUX^ZtI^NSt?ExD# zOriZ+x{#Wus=Q9>!n<^FPmWgGk%T@YYUo7o!!b}>RkhQEe1bFkO_7J^508oK4?l?Q z-&N&^fU-e8p(!TR91CyemU&7uqd~+ctl`P2@BHb)$kYZI;p8dtd9d+2OO!|#&L0U! zd|!bD<9Uqk8nx)JbVgFY%o~;HeE@H57yFhK$E4Y`*d+0uZV%3G@AIgNR?oIY*Ns^JR#=TyRBhcr zY1}JQt3ZMSd;w^8*pk7!d2B^Mr|AID&=p*6Y^7z?~rNSJ~aDw@n zXRZ@D_fbqJTHmCo2lsqjZ^7#UmGiZ=7al@Supsq%t875 zjbCG?S`O_BkvO7}T{<}TYYJFbxs`Qj(^r44o%F|8LC7~IrG#q`37#LzWMn>`W974X zL-;pCD=y)B_vG+g^xor=KxCF3H&?I_RO ztk)-6ZHebECdf|ZTQnUev$$>@WJWGErE=SL;sUr>lbmJu=WfYIn5UV{Sx6H3a+ znIM%h_}KLW1DKew&^%^{3&1-Nr1F}Q8Df9JgI-TNgy{wgsVX3+fgaDk!uW5FOVW2t z0!ZU`fVF^r894-g0zfZ&=nKgNKxP2PA=Z~pU{a$(jDUmiz^M4oN@LAF*9dFd!#erpF z#sOv9W#eTOUu|(ATPI88-N}uy@K+he29r^k38S@KFaEBijf+N3+(6#X2!$r(F35$` ze-OITS=>GGyKLY;8@x!wSr zJrO~C(s8RNo3j8H_h{1oc_h)g!f!QnB8zf#Jy(`swBwv*kz5QI-N9}H-3m{Tufh}}vxyv*Gbe=jGP zb)v^QY5(>ao6$4_ll>CCJRCp_L=6=Di2Cz59Aqf%u=HZ`>nT0EIB#EsHtG?ro{J%UoXE@N~J+;SpE^Ff(CtoOBZ zhK)Cumb0W+%Q8GX7~CqE;xqc5+i_n=zjABlrCW`6GFyHEuZ&t>xcl2UE{DgNb<$S& z`ee{MN}&pmZ>x9m>{$nDN6O$a_^RXXzz!J(lQxN`n&v*ms@3)r)DRo+z*W|^D1Tl= zNfMQ0gCj0pf!l{eZi!0B+{I`7-tCi|8y)ZXspG9g5Sj+}+o@1Ju)yNC+3o3bQ^*#D z<=HFybpDJmaEl^TDwazJGs_dDoN9JmS+AA<0(~5~!3G2COcX4D3G)7N65lO)|El zPF@oKzDZBd&0=aKDZ6Yzu9zajfb*;{xB=@lUYkjh75qGm8cCUzxF%Y)^nFN~JJpX8 zd;&quj}Ere+B&;hd~Z4`tXT!L!fQv~E05te>dV=zhsV5Ge5v%MB|gutBJU4JJZ)!L z72WkTZ{D6XPmv?Xn&7id%v`o%xYLKbS8 zCn$wweM=8s6EaI0ak3kBqP4SM2*Le=aHg&7QqRu}s#&e#eYWn7*`dk0|53bTdp_*~ zJSdWfqpHZ8Y|6A1JI!sTkj=>!k^FMo=0gkv7SoGvkyj(KhTy1fRDK!f>Za(;8lIy8 zDMj-}bxJO+(xv&;@gAIld`s7sZzXqhPfk5kwMXs1hAEk@*co{eBQB_jLrUY=>}5m@ zcT0;1M?&RDou$C(K79J1j5*pzKKk7!e1A60KBDCHfh^fOsX6@%c;n zP;{k5(KyCVQ3kI(E*ESuqJ6kjR6L&r`mi11XnFu)=U#+TLE z$$7?o*mMZ5Z0U-aBNUnwa$VVY(TX=VxsLHPgF3!ZkSFSV(=go^{@V70K=RyivLLOt zi&5dn1l#~mVd0)q>`{)unp)#@QNoo$}B7`yYx%Lxk*?ZwmuQ3$#M*=!cyo!IW-&$q_o)44f&u@$^udS8WHs6-anqw%)& zGdRx0UP)&A6mh+ANZ?(#9a@6QqUEc6-8Y}!jrac^jrzV-uoCBFxhBSjQ@6LY9)L0! z&*RgYuST!>`(CgvEO1Qc*}^Ln2VRyYj=3bhLi3-SgK{ZiQ>4r@^zR6dn8-=}cnrR? znIwK}>|-`wY;+sv&#@_lU#BB-Ru>t-M>Gb#govPl>jRGfRI>%^UmCz>!NCKS z?7#DB>PMIGBjMlxW!3|4iDME!yE!R73M%>*Y^+Nd z#I)lxv&5h2lQ9)PDJ8)-^;Eu>SE7`!D6NhOGweee)WAY{H1;x~ba!+yel*x+g86D_ zs|QE1hhHNZ`$jP@TVgM|nDS12q%SUhV`b&>S=AXjpnP$7emzo9B9|?gjahPwFg=c1 z8|zU^7L8OxBF1hMIX`n#SFZ(S>Ul|aKv09z<`Vy`kgfGiP9A|2gWCV1$#65oF|E0p&91Wa^~<#0;WJY5OCsz)FiFLrp&KH*Y=C3Y^gSw#P_n`<~w%prW3sRx==ZygoMXHIKeNg ze6bfizZ}0Q_kXXM-qRzmBxQhEoADg@&T`6)DG27U6F~n&DDcBxtG$amnkVY&bm6O^ z32l^Vn99-3PZerKHr`s$lOLw-Nc5LIFqafI2H>k@*ZZXRD>r8MR|{%RsW69gH}Yp~ zhgv;X=*>&)0`S9iB&c%m?p#S$J9Y=|T+D01f-GV23n+Vr%B@)y=+vc~NGv4br=RoJ zP*K4sG&M8t3~3wG4AaMt7R-wjCq&t^BDz5QdW8ZSM`rY8go_L=a-1a0D`G4HWtGPT zA$Cmtyop~wj0>fjvlVa%gTGLm{T8OzLPLEgDvK1t<6gfp#F+x~e6ce)q@BdAvg1w! zue=v2y@cS19s8ET&M(r}h8H1vCb^J!1%m|~YTKQOIyp9y)vf*%pE`Lp2Rl+|yA3qA zC=(};Nd9?JW=LK!o8~<{1V+x{=4>bAzLZe5wUMSfj#~7{_ik-IBnzA^c&~i#s}PK$ z^z8oG#Tl80B7H;Z-St5X`05W9iv&5B(1>#Netyj8y=|3gUE@<%)MaWM@tk~28V+;t z(pa8`gAL(xe}OdayfNnFr{c&Zjt!nNNqA}z_NXPlyy5fU_@6a&3b8nu)`}DT_LwFk zevMXi!qUUxgtLOMhUXI6T~aM~`7%p|=2BnL%uXR6w?|#JA1?;w9X3NFK9fZ)s*ghY zj5W&_7qpf5`>%(i8@TmDo*4~_vQg`1U}d9^nS9A@GDhm!rm>O14OuY1=-9`f#AE+R zASMc2>GtQLldjX(lO+JFg^ii?-xy1IW}YC8^J~-!Pnu~*+P0B|$14yU=S3Bz`Uk2`;_z+PHm>O% z`l<(6`y4wb7Jxbx<7+ujx9=P^X$%VbUPJ*)aWB?ads4F|<4%rJ_2kJ1qbvQsfBI_P zfQY*@@P2j987~~az&$$979*HCw!2!d(s$9hK*@ocBCM&U6K8y*6}y`o><1nXTKl|- z+_IzjwR&OIsPE}1YW|x+wZqm4+x|O65!pA_7H1US?X20;jfO*QtAjUhGa?JW(Au5J%h&oli_^`a zHznb`4MunNGe6DZ%~=$QXn*Fo$$%oZ&_UxUKz8s6Tag%MIkZ!bG_kY*?6{AK>Q76q zmaW4pYa&N;OZvUe{CwN5!@xs9Q@=YWI4!}_g_cR0TSHJ+w=lQD zQp0;IUd#epv``Gc1%vNTLua#cz6|88vYBI26PmEHxO`-XTcG~UDXhAx6whh%$NBrq zmFL)^bZ4df!9AwW0)aV^V_}Sk=Zzv?xkma5=he9z14;$jsm3RGvZz$9^+&$YKd8yx;WG?f+g~k?b-zuE_DN+ z5|Wj_zi<(pkG-vPXGtBd8BinknY1%6`mt(MHNbM{)DjtpjES`|xX)ZR77 zCdP!{s|nZ=W2@qLdm5iQZjqv|mS6Y^U-ixV0!3>jd=vsmj?J9J77tyY6Sv?in=cGn zMZo8bPh(fzj+tzD=`*MoNOtIO&-ACF^uamXLRnjwsa7}& zY7}sTAVa(w6y-Ac*ezRkyt#nSbk~ zyo!I*j-E-XSd@p!U};QhTTm_C`*Dy;-Y;)&QPx_Q;JTo7oxa<#f(wKdB(4Pt?|@af z9Q(t|9To}y4^-giT41M0xSmLZCoHv_BRr@B2?sm9#8bxC6>7wod!2`Gw`F2DmiY-T zidf(FUaBqDXP%XtNCvg8P?HuZ%Vr$feWjF10@Z!z#Ly!j2oV{tlH}A<&P=cC~yyvl=2J$yr zk?)4!oL$nH;m*qLE=AYKY%)DdcK_M*>9A~%slYFWroq=Tu&x`uBJ91#bm*RM6g+vl z{Jqip8Vp;>y8~L~I(ixl8Aa(vBjVtjLmiN?!$DQSOW|gktRHCV;YgT%;YMFQ*o3w) zqnp#5*i$&Vz!tMAg~1seygLfxAGPTZ4*$SVF&ElBBh4b+@?s|SZQWfc#QnKe zr1P=e{mUMn<}bI95GP;(tb6P`S$#nWf@;3xsY&2sH03<#7vgf)vq%b z9xY@xWQbzvM1i~dYxVXYL zEU7|nSq^mx(bhY-ZshJ;3ZN_~&1b^z^DWxurxpRN-hrpRlYZ!8E>^Nmo>>a&EdQF^ zp!bQ*%qjuPnTF`dv;=<>R&-XA*;5dfAT^saPs6M0+fYy67D$bu-E&2`@EO!s8=w6p zGO*$Y_u73OUNl{0v;7IZ+|Bd~KGu=tazo@&Slh@j!$8NdSD68yQach$MIl$Pl;4Vk zCW%;~EGm+08O_k+K zYpgg55Aw(o1y9$0rKr1y*?pw<*-`j;!Y&3q_(@rR2$|gTF%LTl6B2G?3YPDT4AI{i zsiXT@-(@v18x!3h*8BU7TA#bdma-Qx7-mY4wk>Masr2)xB1}cv-2BlN)=KAjU0tgv zLAw14oTt$IX3}b}d^dWXtS$lk4CL@ ztxEXQcorP|$lL`bsHg?Qvgv3jrc5aMew~?5gR%L?@2#9n*eO@v1hbbCmMNeR+`RN? zurozROnzsFw#Gl5)5Z}!aXeNJPgb_=8*k*<^I>Usc8grb3PRF@$1+KqGPH&K(mgvP z=vkf9n@BOPQj{YcfwCzxOimqv3zOZSoTjK zH83j=3+F0caftbh1+Mk9t7=LH{178OJ*-`VePzf;Kc9Y&CcTeby3Naml3Y>ZZnCWI zJXn0ey$X$Ef7(0|FQ@%XCB0*kX;OJ#jRqw(kOw}G6IWh@M}KDMCv3V>&pKxF?(}K; zYo}8fAO6ba0_AiEo~rLj5_jGv?b=56+ri*wuHw?C+fqSIB13gG!*lk0#fV4dc2fH7 zAn)FA8`ImZh3MH)pJ~6VH8CnBvs8w)C0=P)@NkJYtvjyUpYOxX2h;UJ=X?FM^JJUr zU+~{9VlTFFrlku9w?x|usLIcYUaYSZxfb`0~DBAc~L>m6m3RoxzI+WV2G@1#_mr#e#56o2;KH-^DThjLdN9B#|gOBpK7{$j3T zbM7cu`SO%j1AcWaTm>;yvvND`&4FP*Sgn#e;o593Uol=(d2}$-`80zP=f~?>KCUJo zG^KC&#orvJYj4zH!v#Msdks;Ro8G>QNJ8!3s=veJASi+- z6POwWEzslfG9*^u+Q4h{F0UmPr4t$(2PGhriZ{pI;I)0w$W_KvP6>9d`*Cq*2>xu$ zGRW2#9vkVvs%^GVI7)a+t4W03Rll3PhG3*|kwZV-S`*rr(YUKq*HCzHow`s9zrZ&e zgEraq6kD^}9R*(4srrDmK#n#2WK9l5W*{89gw43rn?UR5QZwqW;`N7DMR~nTcwz? z|H?Cd9|?KO)6y&vbxh<$P=M}7BQ|{c#TpuZMq}Rgm}A7KznrvX?*`hC^cwgRx3cyI zyTv?jT+xxa&&!=KUi35s=kIDmP2@<=1G=bN^*){P8|eidaB>bIP9KWf^DDf6neJ%u zwZv{tjHhwIu5kS<;^%+^p~yGUhS+k=ua?Vd@7*2c7Myfms&c+LX5*VadA7BZX~?)f zTupJUGW*@VH(R8=WOqHUkE>q}yn^p4=U`>QarAHGc9&GHmI>QTsQ&C;uhnf=XP^RGf7!(0{)CY3IDUI4bE)Uz4lRV9Vtj_n#9^h7{_?Mx|NKdWoa?$`r9L#&}Tm z_p)DSN21n%$x;?xvP}Bj52wQZVyv@&UwJg%C>p#;b4i-qs>9n4?#o4SOFnh?tQc}f zS8mNqH@d-?Gv^7?q_bZ|t|8dB$SWOrYl_Hz(zSxm}%GD+Revk z&C>Y!okX`RL{~_qn{e@G&@9_tCCT`nw@cJghAw4c2t4@uwCf&LU-Y=?pPneMAooAD zMqYkkYTG}xMzZ;6i@HOfwj7T%-P#^bh(rIbBDxG+A6|be>@%s-9E-#>4PQy!*7?2P z6Li2L+?f)+Ypg$RSCSwxL>`w{QDT=mCtwdvBCa4QHy&67=H{EVi8OEvPDdd2O2Gce zMX}%7lPvJD(&gZw)V#Ho2FRt)TZd^rW)jv(qV+~cD1Egz&n{kZ(9l<4{P zV8}Db0aZSqyz(i7&s+hOr1xNZB^;)*wZt$o`cuE{EeeD?=R~cp2~pYJ>zt39mvtWn zCJRo~ngaUExmjG{0;n{^y>A6RV586qy_U!R&^dY;^{zV>;jkXgUxl6#d8_wW?1nl@ z$DzI!j05LLhedT)*}EF*f~kNlS2#KEX5HC!E#B#O;wXJ_oJm51EK87LmajtHW>@9c zO|~V`+-5%(+lo?g3!9pc32VI^nUdHShf7nL6l-r()6BesB}pRQMM85o>qw#4dUiJj8g#p<9 zRBc*d<_%_s{KUADwI)5+uE&`j{Rq+I&dg?j*UO$ET(oN{SUzH^In$N#34Lj~^^G4sd`g6cJN5h3|`rAbSajY9BbzHjP8|N$iavaka(^Ytu_!B;ymg&%8DxuGS(=G~4Wh`-7$6 ziq!<7Yxr1jw$H|`E^4E9YhgmEl3~3VADE4l$f@A`b?WC+59YTS4tx`kXnKF=~HQYo)ZfUaA^@srihT$f56GAwkmQcUG3k zE3te9lkHSydwX1|{5mgg_zyxqdFFNv*fm<-LBTvOwyfziDKS&%r#|+`6!&$vnSVI` zu5{Kg9oX}COY6<`@3qaTEYf=x6`W|Xb$XaC;_uWQsAhGQc{O+lftyvK0(GnFMZt_L z3klwxZ>U~dbH|fjCumX>N&IN3om1&*_RN-jM4x4r zWn_Y9h=Zkd-XBa`(6_?$x1aH`&W1P*hsS@Ywa!XfeD2oe{@iYJn*QgDv39BCeAV*X zqD3{*_@%7R@3(&-sz;HJFSNIT@f5N#re@OliSa)zXSNrqVPi`nu{ildJd$tTuyoN1 zDpTse8Y?5uNhSPgJgNJ<{3HHBZ2h1e`*hj|#Wy2X)53Wt{Y4V?MCjPL#&PvQEC@8U z++^^idTLeC4T2Yp2)!NkrOZ-%dnWjC%XZ(bCeAn6oGUq>*kHRn@5&|$0Q)v$gxbOV zx)!UP?9u#mnpeLoQl>6`Gshk`X;38P_}U-`egIS4-|ti9`pCmQzRaeGL~2+@khP;fNFV^_AZ!7( zWwd8R;h+Xo$no(N=a?*Yi8}aY!t7Viqi^|QwYo(rNZ(m3tTwYZFF0f%A9=;Mf@b^a z2fBunRz&p@7d00>rlb$~6+#SteV>sjmr-ez)Y_vW3$gXXJhqRz5X~4@cF@IMdQK+9 zMu>fFls~1*tz+=*lxVCmJz&}8__If%{fdK>89IEMF{l@XpKPG-gG36L?&^6zdE>L? zmMj{IA>Ydjo%5c!?s;A6C<<(YOtV<^KxVLKnriyO4z?PYPIGy_pbu+cMO1`4|mt}}zNzoz(@b4sN1 zz0tKT86jt*tn@A+cbuJXsg>x^aJ~6ySUi@0x~>+9f#o+Hnh0FZItJ_Gx zy4;+;E5;n#wZ&Ze5mBazzr#Xce2u8Xgn#O_*?hmqF*R9iV)OGx&d8 zodr}>YuAA3?(Xi6VFqcW1nKS&1nCfI9BGk8U`S~Y0YSPI5QCHyX^?IKK|=lKaIg3H z{cGKIm+x?7&YI=y^X_*)&)%2K6pOWvve+kqI>t8?_sPX@gsf+16tv03v|f&wrnX{f z)LhBZ(h_?I*2-3>FE+g+$KU5PYEQ&nm*VqxFKl+-P*;LGQ@w+-4_hT3yHj`N#SAB_ zZQfUtOCzJS(f%;W%Fv+Hu=8SqMEj@Fski&xZ$CzY1>duXyz$D7*|8p|fSeg_>b_&M z%=+}Z?x5O?kLhZ#J~;l9Hx5nf&%^O&GBp)M;x%kZY9kcYRASYr+&`k)nkYLZUGYV5 zzc%;N;l3`YhC9BnfJh>(+@GkY=7cJqnB%v%XoRN5B9H&8NjZ5`2J2r&iLf&E9NM_wKu;8U(q{fe3c%i8f{ec z%**ZHFG97n&{Wgy#W0y~i}tfo$jEy~yW5{vQhtUbvYe|z%3W%D|EOWMF{(Bojv_i% zDX;5YtlB;^rHZGMyTQzuNRmd#UTQO@&O7qTkCf$|@QWv(=M6io2D*+?HgMIt1dkgf zkdx(#W36V31{mW+AG9Rwd9bbh_;O=vwrIkyM0s?cKy<2aqiceh*t&l*M^E*2Xm&V* z<>t5Q?nNT~r+MOJ`4&~N5h#{6`27Tp^J~wG2aWJz0#G&X2&@u)Vm`CNUG;fO@|Y6O z(zD8}un9g%ZsfnPP0DKXauMM?g{S82@#tbCP>W}tkS%?E?LcSXru`7km3LfHy|DfG z197V$=Pm7R6Xv$yJQCdiHvAG@ydOpDXYyll`J0Q)X$41=bHCq}=5J0kJS~*}{qX!a z=U^;q7(M8?>`95)K3PapKA#3>$=5Jhb@5e<-!npamI18Q1QcLWkyR6NWD z6(7TQnH$KaF4&-NWStG!T>HDvO)#K8danFSo{HIg=`?#m;oK$E95k-q$ekdOFZL@7 zdhEA&!clRd_qG1Gs?*uPb6(p+{|29!VJ3T#-!cnZ8Eg{2^>ErImQUwh4z;Y|cj*UK z%=Kama9+pK^2*Hgg{lL!bpAI!vFH2IZTQ>~iJ427jc<>#Gt2YfR`020ac*lY4%AAe zM3`|c`mz(|^vQ{|;qJS63;(YC&c@pr?JlJ`5XMBvjqpdzhj~AkqE1LM zl_`d!N6#2Exd~~Zd(b?W4!r4R^^H4q>18kzd3ch>;6|C6dcfyJ`+|ztp>)Y{VAiT?FwDiBT+<9K0uWOQ|oNilYh$dVogkXmYNV*R}4s zR#X2)$z0;9>W~M&C)4_bTYA*)*-H#97tfabID;#h&8T7&dsTr0`Prs~){Pi(y4Hi< z8zgY^`6nL*xU*+B1#eJPqBm8|&QWZ(Vt>aAYK50gZzP;dElUkIFJ`yx&RRT0V>s~j z3KZ;||9MoRr~k4(5ieI-Z0AEFN&96zw}FShv{+Z)@~r0+osnU}?E@!`%c;%oy<24E zhiSap$y-4V=V3a&2K}#(c430F5{oaigOObc<$3(q`_ko)R&dX{IfbRie0+?a)ajRF zN9Rehbj^_aK6$+`N2z?SPdSp({G$2wtt@*TOWGRpoA#D^Z4oy4haqo{bRO|Eiaz}D z4P6Me!tH|j`Q(A@b-D+1&=e)ax%*EeB1}>e4WWO9!GH81@jpFvubU7dWy}BMA;23D zNA_B~ZbO9BF8{N2kV=3!=r{u?4yZUIg#dBTa0b8}P;ds|8_;h?N($nj-3+`JC^sV& z1#!@AzP5$L|7c7|BO9qGh=X!7U<-+ZE)!r2iGwl|U<-+ZHWOeAiGw;5U<-+ZJ`-RI ziGxBDU<-*~8%>}sgq$Dz$D9CcA#qS@0&F1&=rjQhi6EfU1lU3l&}jl}A;=%t3E5%@ zd0UV_oD*`1ye-Hdz6rSmY$3=W!s(xeM36s-6LN|CxFCNRr+-v%2yh zz-@s&EC3Z8g8T%pfBLTq4ncl|f361Z3v6NmsNfK=i3Om7L;gf|q(%Ob`oh&$A zk6g{Slu?+GnS*Gl5q>L?u_NNqEL1Ipd|@SzjP_uPsdx49aztZ5q%>b+jd-x%3V78cRG8%@Chpyq!}efuV#-U2=HgDi5aylfEx~@~6+2M-V*Iuq8t> zt{qKY{7Oo-Q4Q0l5Kh6W=4Yv-P}S2(?P-iWmcZo(b}GimIC$d0C-oMJ{&9g2aVE%N zS%H{W*nmo1PjFw?JEbEPJTF}VSvHPs$0erxs=~;w8yo?w7NiYD3H9XNl5K3-DH!uvW6S3y`$3A3so)gz z5LEqFGSM0+O1z3i{>u$%wxNXir4*8Mnpt(m0ZJd(Ty+FV%)cn#QFFU1i6CPeN@o&{ z-Nl!JC`KMx;Y{Z~!6d=CK`qaPUh#vzRy>^S!1gg;X@w+wT$xv=y(Cp$ThR zYlOVj)#&B>k9{i4^Q)%|!!gU1oq5fjw^`4$ce+dDTd9tgwgdE|-`qc43n;T>v`pgu z-nXzcpnIrt3IA>em!Y+abFwJ!{d&=we4twX{kgm(`G}kcv&@Dr0d%3XUK114oTpK9=aH|Eo=U#WSF%GFBYTK5h}AM)Y$!@e(iHy9JMy#f!-KSn)0(=r>{H+iQvCX74{Y@H2OX+_)lA(Zz!i@>#1I*K05@ zZv`H>381KYoC(={{#joGNt~n0|D@^0an5C(_R`05O!^?-jc|C_6)N)x|Cj2rJ6tBZ zTK>BZw@n-zYpt*S=W%wFaM`+DWM1BPikR+M9x<5(m0M zEC=P=gIxa-N>pHJbDs?+g))VV_3b8siD)~0f*s=Xca&@9=tk3hy9fKZ4cWXA= zO<-w+tu4|=HDg6AJ8;DokPd@lX(&4CM<^5S}}q0bk9U2h*|e{*`{|6p7zoH2tA0e=kZmO zrFkmXqgw&kgtAtI3@>nfiaDV?*i7?P|gl`1&LGl9)MvmgE zM_zXY{rpu9^E`{8?o?dBxZNUkkl-=$bJaN^=A!tU!zKR=i`Z(8b#UP;wB%BS#2ghB za?6OP%e=g*W>#qy%+bu)p>x%Np5{EC)jH0;&BJ$KuhG8EF08s5)Hb#eH(R_-_&y-8 zFA_Jq_>M7SDUta7Pv@Pbn%6(YVx$+ar3HIbWrlm8^|i<5wFyCzy9jCKh0v?H9=Vn- zNv3B>2aV06&AWR}VVAUX@8){kcgg1Vms^l9{P*$GN}<{VwOvovXK`*4aguYY3+6%ZxNNbZg1U~)s3d4dJzr@ zr@j!b#evX3mf$19siQcVr=fvD!mA2IYo!byU*&$_5Bzx*O{#YpV(|6maC)yx>(#|0 zo8kAPc37CPCPr@XSJTAl&)O+9dl;XFM8#UdXZif=u(9vW4$7^)Au290ev-aCD0kf8 zY_*U2$hBsiVoGaZz10Bg_ZwWvQX}tm^%n2T zdizgtMT>)1t8PBSi+yMlDO1cDxr-1a3=~?8O6ECb(L@|dT*cJV;K$;;c5&JNURSz$ z1edfhl0vBDNQ^(|O*8X<_0G$DY0Cfo3|BX7lxjb*$?C1C%`YKtn;mtXhrM(13`5um zBUtwuTJMv{SZn;lW*w@Bxcw|Q8CWFgX_+k_?yS6i(fVGCPlfo-y0)dd*n&*{osWr3 zLXk&l{`#>>r_J59jsBF)LTTn#-DtEUIg4-)mG=GDU%I@ddJ>fHpKSTTajQ`pw(Y4rtX|_fpO;^HDmsOzBp=X^5G*>R!&=dYJU zCjARXlRJ5qTyZ>ld~Ba1#vP!VU!94*t{+s5YF(&0R$pyMgICQkYEX@oZn(q^*4#G8LKu4}G4b?7y5K732RzyBgAUcye+%qzUryJrS2 zn)KY`ow>Z>0qdRHUkJA^xjw7Rct=>lX1$W^VXTYJS^m`D%{;qBPTz@;_H|b|(REZ4 zG~LT$UeNaz_=%HHpp}k(N51|O)>po}2h+OF{swd79(!JOC?fxOpwtZE-cDiDx7ntoI<0l~^{Zdy@1 zr1N@4lJLs3G=`U^cKXSpYZdl88BrQ|Or7TkEu)t|wj$8^n7n*9jf=nOY*l=w6LMZ0WOWA$RAJbW#U&DX;WKonxfCill6CW?Ju6+gLgY3633S(QN9!PxJ z%aC(p4nsWhJYF@KKt{=R-erucFn98fFWzJ~O^*ViDi0WpqX~^+&C_V|u7M~P@J!c4 zl9xZCbTERui-PaohuluIKz&sGv;S1kYDruD$ocO5n61QMcU0{a^|9^Kmv6q|-d4~w z;$M!4-hBI$#H(K7-N7`Gt@GC@caK^u!npF7Bo1l+lDKT3EC9`r#<7YAvty?eeb#-pI@v-rosvmh-qy|I%Pp|wO{cu}H z%~M%Mv*ReO>(k!yV~Oe;##ZPS;!bh}N?|#%O<|W2s-D@*!0} zi8s}y==n-;KG#C%9TNC~9E+1UUiw^UkvcBsu&7;FE|Zl;0)?3i2OCwzFy$RX`aJum zWxi7^g5zeQ>=@?cjAWgZy}I{a#+r>=EtBV+K5>3EW}`>GmQX_D!WFjPKgMBCn?PVc zk4IZ}SydpZ=|Hm=j7nfUjLE5epF2Y9P&L{vvpuX^&Pl9gj_d>cR;IB&OyyREgO@2g zt$^+WF|sNb_J}@DOUVq>^p6Vm5*T9o5o|m+X6W%~Z`s&$^o}lVIH;tFj={*GLfly)7&Kra$@>rG*gU5`DR!OpEFOnltqdd%`Mvu+|(3cB7BumIP}6@o&3mWU=e_Iioq6Z0hPTWpw|vm4rX!;LJ4^le0sL!a+&7m(AG=C%;^MpEP%Lg7wa~(D;kB{|J)x!=Kx*yl`f=+HLw;E7N}2 zK^8t7Gu!7k2j5*C{Wi266d+I!%gM2;Z)s0g^VAVy8h7dZB_^;efI2W+<09uK?@qPj z-MB3LDO!3%Ea!FagH!E=uSeETuz7#b{zU!#dw3hOuI;ArKwp@{8tX4!{sEzviZb^` zUalZyYMz)FhuSuApUKWKXx5#6rjnDaI1j}q=H~tFime3su{U|=m&AInfZVT&M%S(% zwh8&KSmL*`8P9m8*!-0DMLUiHw{>bP&mNv(8s3&iQ3$dAim;m}qd@SVk`W??X|Qk+ z$vAWbsG^7^JR!bjuXZ$gOvEe+DJ9|;3F*I$xm1B3>Gf2kWQbS$bpQ5p_(nyFi-#zB zPEU^Lp(4E=T7rR)W+i1oT(BT7bY~?cMgC6YR1{0mj|2To)Bl6`3sK>y#Qdw+ z_gl{Ef!{l|bDG5F8+E8_Nx7N(7rj*4rXRT*Ly5M9PO>v7AbOp8*ay6Iov3r70( zxhweeyha_!xCeJmAn3_;vKm9}cPnvfp*s0abJ$u0Mp?%xO_Z`vm zmh8HlJ$Djxl7c-H`3i@6l=p&AoiW3tv#)eD2OX5XhU2+3aH%)b8y$+Cs!I*XriOGi z8ikY7J?2tyeu*}|dZ`%s1G>1Po0X59sllh`tW_pNYoWS*4d@`=g}@y(=?POk^YhJ8~E z*mK1=*i7_;Z+GqQvc@y1*b4bRWd6l>;%#wQbf(PALB7%)=5RFf)gu~{0?+P&lvLQ~ zH?IPReT2r1{5*Zjzmu*9rWh0X+!No_#mGg(+LLkxYP5Y$4Pee7OMH1H)3NW!$R|u- zA*nB0rDn+c*wDof^(MuV$(pv3x(wU}*OuJ-h)3Rz4<7ezSE#sm$-H-S`g~W*(`G#4 zv)7Fj@~cbV3H@6V#wXGriyEn{TTwGI1ZJ%XaCUxfuAKzDEnr^o8^C@QCY3?jXV`e! zA6E9I-$(B0VlppE`+1dYO)+AbPqUA%jt0l5_q9gNtB$im0*SQJTxv=U9i^mH)y$tw z6^av&ZwJCH^m#{yUKp(>1~EO|U|&0Q=JF(&>US2%W3x1C<#>H*u z^gpGNHNl-tcvJV@m_>%D^d;YV>8oe38ET%irrA4waGm0HL!-JuJ=v;WKJT2l5)zZm z{ad43`xP=vCkHzx3zarqzIklvfsR)Jc$YE?pBybv{T?{lKV5f*oV%hJv`o0&4_Ik^ zG?V>2aLu6TWHlwU)V#-U;mc~Bzg3P_0nrmf)J|Hh@Z=9pUlZl>lWBm!$BOM_(fl=#(Tnt1Cb6lb+6Q(dZx*>TPUe#ZGU6j^um`a z5~oBHziEOpO@$@Y!(x|3&s*Obe9tWT_)IKSe$3Zag?{;5Aa%e|^5~9G{X4GAqqr|J z+Gal|d7pLc2G4-9IzuP5DZy-0?q=N%p#j8$;n8x7b~cE6z~zFt=D zB9pKs2LJTB#Unj?qRibS_P4P3EgSO3ez;Z@(jnM$X$)^!1YlIfoC67>qGnfQo2Ggj zz6mWWbHkr+8a=K3W%B0!yhNP;%Z-Tw$~2)?qK^VjeZ$c&C&v+G?r}^U8!2T%ath;f zMy+?o;i2ao`ZImn}S39y!fJZP5yOF776 zc8R|#Il$__Lw4j5y98LrK_0M6fMp!uox#p@*9BDxu!;i|R3*SF4p2~)0IN7aK~(~* z;s6Cz39yO-6jUX^Dh^Okl>nKiUSl>CH{1#V=E%_AVt02aZ_HmfodMACu0Tn+{isR zCGrQzF=!IkJ9Fed{hzi_$Une(g15Csk@FHd(@*2wlGA0D`0CJgt&q9n48zAFr?i(O`MT!VQzK9&0B7vOU zc0D+yah{9=;Wv-G5;9O2J-J+k4)o6 zmk^f#G7Cz0y5a4(Sp}f2l&0riH+cd?2PbSuN@%Y-d3Ma8urx;Z;+hrGJ^($lY^e=E{bs*@KM-D{NCeqVh#yS3_5`(@YdeA4@ekCI_;{yzP0 zCc87rj{MP)&-)@l`g+_4yf1b}c%{9FI8>N?Z!xsOD-i6D?xU<{Rm+FIewcn|j!#?l zDPheMHI$nu4m;RQ8>bJqY0pgA&^&Lf2v{VV50}(C&|XjyJmo{JAQ+#xnwrq8%MLfI zz4)XQw8s-d6ZMSryVD?>d!7Hi0)R`ZBxlb1YkNF*a zlx$iqQ#k3P9CWLFOvwr2H5t^12)>&a6#xFaNBz-IV|(V4ts`$ zcttX1*xoOC&3cwAo-kC}m=ZoMb5UIn>T=?kDL#Z}#`+@AqrP6;j*VFkNHbJzEl=y+ z4A+oxIq@qrQKCanqAOnCDc8;>4*ezIqK3&=k!c~WMIG0-(Wd?tx*RdewL-VxHW)#5 zTwrqifho}S?Gcvqs~VZ}bwZ^t=Bg<;4Ig^xA1wr;&%J8wwQnM$ZoSR1gX5IG^!8T* z{;_NhtrfG8=JQU09Pa(~U<(D|oJS$CSLm3UcUrEu&uC(j2)iPIMg;#RGQ9oUo%$bM z1o{VB_=gvP{(%<$iFQ!rRu^nbNJCn3;Loa*$yRw@{gT@_ z@#0AtjcQ}5#HOz`l{J_*DsO9h(Wcs-8$~w5&l!Kp0eP(1gX2Vw%bzRGk&7djddP-B zh$gPjQBTCism2zLBTJ%QVi_QY(MknQ*E`t|NZtELf(Y<`FOW`S1J!l02JTA+5qnUpf5 zk6bPCbL1VXH~tl-I8E4nw4?YnWUu-Zo;hnU>TN6S zNKv`5mxyiyD#}G2{G5qCYO(^qgNVW;?1rKq9YxIB70IZgGt7I*jcd;=NYjL^v1~q9 zKkfO_$p7$-Q`S@zX@v6wbxCsHw<%O@s9Z`9w$;TLXhdbju%l_+uAR`P?_77kqg z?QDJb7J)U-#cagK_7`$LXIQ*WU{1X*6BK1~oZh-+r)SySX2|qC@0pRqoac*UcuIiH zh~xLoll!4#A(ZiOX_Z5dP~&tO^6q2Oo2P!KmC?ldfrsNdvgAD%pPEqIQSNPg$7>+m zU5PF{qaJGDn8cKf{KeR3-x5R<84XUXifT*uz|u$IXvD~lUVfRZXCQM>xp zeGlC1pp)TlC*y)FBD$54i%)**(*EKNb>1>U@Z)#O9n}T*;fzx5bz5spshElWyP}BG zhW+LDC-H4qA@?D4u;c*mxwLQcJEOmq;jS{W6=m2b=ntmhpBHyL?NRK}7T&u|qqKcj zWeZ|?qWY2KaT*W$O@8HDkxzSnm61@?3txD?≀NU`@DFmb%US)cJuo5rY)tPitl! z?4ePT;;m8J=?VC2=ArDZzQfIdA9rRLjJO{dB&pS)#y)2%ZW4-!n&G+|Yr7Vnj!QfB zLVywvlR6@vccJQZcjd?J&>+$3lBdSo8x!vg=*y~D$V14pY=RtaI2CEC*AyoPsy=Xw zmZ&X%j$5L7zT}&Mb(io3igOR$l=sLBqPkYYDl)fJP7^g@xV_L?zNTtT@$i`Ao|jgJ zz}m#srTlLdyr)FV#Ibr}0|`RI!(QQ@cSp?Y1Wx8STP{L(d7e0&I=Vl!x9pA;)8Sic zPm*sd>Ku~vKK(UWNa)IIUqGml$N3N=<=dBlHhEeCeo#O?B>g% zf(m7N!&y_qUHI#`?7MkWs%W@+D_pCs$ zKaOa?&+K*ryn3hfEuHyW>4sZLQ+F50dwm%1A1+T&k#pgGbVne$?d_VeO_rOuLzQcvDDI_fZ;ug$^I2iQ+5e|QPLS(4rG zksY_D7jkNG*-hw*zrAv4nm5JsTDY%r=;=4_@8&0PyA=34ujB2{dp|#0x`^GV9L|a} zRFC4PE*~>>?j3Qmwv|J~NB4`>^2dyQWNCjDhdsl}o;^q(N$HlwxWK@4pg|~%=GB5L zA{dWQlJ%6a*b4^3yokyK-pnB$er5wl4p`%j+uH>bYsv71H{VF5i zXB|+zqsq;m$#+pP65WZON4FVgPF=#)l&=K}kK_ovot=^pt zvwB#Qx(cg~@pISMdBj}A^oh&t&cO@^@4)I<=Wgk2AsE(_6vSRMDI9VDMR55*C^{l2b}nB;0L zbA{I-d8M_v!0%PtY!enCp|h`16-Z7zwNMxx>|=4qUE+$-C6fC)=hQ(W2K~V&wouR8 zSBsgyFeoGItI|iwDS_T`WXNMhD5M!#P+&zx7ln%dTTejdHpqIy^{i$B1W60o9-?qh zhys}-Kq1J=#BXGF!HG(a1LQc~zmUnm^_WN(G;(#+>+ZJ5UnBv%#`EuyXe~PO&BoEm z|2-0=$0h%393(;%mz?+C%;G*S^1=*UAT>yk%XSiSGK4(|IX7bIs}N@MISIKW zHlhM}@goWH!s{NmJ~ZS^2-Z?&3PcGFISE3IhMc>3mWG^~7?Dhays(xAd7&^5IVZw* zgRBEV!b`5g{HN=m7yubU|ICp3cb^GG4vN&KQGz3X@ZZi7*g%2o9k71_(K}%K1d?~a z?g<3%fIS_^-2q#=KiHj`0kEU{3%UbV|0Uf2>@z{=?s}gILU-5u%)g*J;D-KU?tnY` z3%LVs=`Z3AxTn8(JK(1N!tH>&x~AwPB3Rs&oz6lANfxnw8^R|8WFpdefgaLG^*t_G$UKtZ?~;F6)>xCnqthJtK0 zz$HULwi@7)VIW%#aLF)$t^SKkhJkQ3z$L@}#xEkP+VaR_5{}QbL zmka~hYJf|IfowIvCBs0r8aPXXiA(&?h$dw%VSf(dkW1jUK)4#< zl40O!9Ka>Rz~eZ8ONN2xaR8SL`|m*RA1)aN9?1b*G7LPE1Gr?^Ux#wQZGoq90GA8{ zkL3U^83vxp0bDW+Je32uWEglV2XM(Si9Zcgk%0=hFYs6n`2|NV{{wOXE*SI26Mu)o4S zaJ~ThEA9ga46wffKXAeT`z!JTM+`6!v_`%^@DYNsA35CySc9ZB5dC3b^cMxfKMV~2 z$iXSV8k`CSJOE(e0{}TH1X%y~B}I<=0M>s7mcb2xv2n;3KolH!2*ALH05CTWxdtDa zz+(UgJ_dlvame+54{>009CH01LJ!Q2L$1La1Re#Fe;x&N$bU4z!$1-gZGic4$hBBZ zw z65sGd5I^GidSlx3u6~oZ##?_BnX<1kTs)Qa-iA|mzm~X_yh`iuCVIoO;VfVrmE7K; z5eqNI5G?-Uw52wdIqSj}bjOYi!rgc?ZSOGs4JyV{j+?9Lqlw2~6qNNtvhw1DNW3HC z6jB(3NJoj#!lrj5bXRaZAJYgWkxZwGE1{5d9%<96`FCO?`wKHl-pO)8RcnY(!B&eu z5q`uj`bq8)`;B3SHz{HkB%GyQf=e&co}u=@ONzuT6iOt}m(eqHofsb%(r6Ju`Xqgj z=h7+cE&{2nY7k2ypErcBIB&2?3iR&3n!Zzih7;M+@r0CNI2HXik5DRlH|cu#X{L3^ z@M8?3eD=t@X)LR^mT-U}xyDQTKCuy}d<5@bvA~@dsY@Lu844t~KDl(hzh@$JmL+&Wb!Y2wv7#<8(C>MX0JnbW8@@8D4hm!}O?(&?g2 zX|SQisMLnNSw4BtWA?s;h>ihy58oZkNEDWA$56u1@4P`ZgW}w%or7Zd6x6y6Cp>yl z_kobjE+rY=;7cw&YTw=a9vFrRL#?E>@j~zoRfW(StEwA)_(mPGFZqouL!50AX1wvI z4_+KOeeI_p%{V^(T}0Xxsm~pG>F}M=SlDF1n6lH`VDFO(0xmE3tK-7G?p_m5e33ju zheanH(L(&^7c|rE_L`#k0%+x zT8x_m#a4QhR(Q78?UU0k_a3>T=aV**!#Cz$F7CZM^nIh)!c4(_s%?83@?p>BUEKD< zox4so%@=6pUTJyD`^995YR~BNKS?u>&{?9AC@%zDT zvKP(7Z`iOWq~7UOcw-0Hx7 zb+9mhL<$SSR`-jf-{<%E;ptcWI-fu-fV68xrDG)S_vgMd2VXHM+PwIOAB5KoBz07| ziJ~9GogwkV-*`=uM^gH&eq$z8fMSlY$Jvo=L&o z{3?@z5g&0klY$%(or%2W&-@W~#7Hsn8kG{{|JI5ru3;2{<|ic-6_f~Z;6;NH+>)DwGXG^PhWN5FP1fLe<0)A z)8$_9u9CJsroUCWOu&9zFC7vTVxx6e`ul1W?B2u&&4eB^lR?983dUjUtc=u&eQtFr z%UZfj6fQhE-Jfh7AZhb;Ww|JxM@*9A**h@-+P?Dr)on?gmoYAS_^3MucI8B#wVi_I z5tP318Bzr0c`uxN;FSrZ(0kIp33)^2ycX`YePc^9E~>*i1pKU1oC^U$!B2m$@hX?x zde75(@^m+G%cjgseK|!VTd<7Xo+q5FAm%8I5Y31{YW*Ep2^B+4r^$gEkJ^m$;Rnh&#YC%0Wvn(el$n_&d7?WMN)QQvB9GeGw{y z4w22PzT7<)qdqS_;zv~!*@OR&|c07T?s7QO?I!B?u*s4p74@cvh zu46o8#@r8A_G=xSK8%U+(lXdW!sKHqE*|ue?9DeEI22#VGJLl2S(8iK9=%UDXB(~4 zJy;Ii3Rk@CYn4vko>#u+Tn+zR;PTU}G`Bc%YUdDQ9Dr#R>DfI_r;S&Kvly2V6u?H* zDA_h~)I0ye&Kh^fy@33@%^G6?f1*J-4tj2^n_0;4b^CS+JQ%{tc>0RI!SJmE-S!{-u8U7Qai9cyo*8DARi{Kjllq)GaMvyCsf*zeugOFx9)vD9VT_%RJlaG#=c zC`7~iv0dg49~@I!qqv+;??7zuM_lD;T0+uZG2rLw(j;%V-JVlJ%s167gyR$kv_s(Pr2ifU@W3Q*iZU1x%$Oj=(l{h=IdQK4m`M*O5lxj`vL!{i~=&6u*l92 zXD~|$TF16Zm&HMMJ z$BHC@f5D|*T(|MA*d4(?lb0*b)`t6($XkA@sq?oXS{%_%id{zCm)gL!t4+vC*cg!w z{`pBd){_YCS{P1Z<$?e68`e#jn*fIux?O6_C`)2XR>T`V?669Pl6$eCzYI;WhSxC| zEDabx<21G0PzxJ8oD%TQTT}e}AUdYmsbcWZ_Kmy|qmipqhDqjCJl7>|OKKYJtH6^v z9mh;(Y8A)tZ&kPKFo0;1`D!*8k3ms1gJde9!t&4~|=w`|a6VF>xt)6Xud-xh%p2A`Om|4)k z)b#p+i6$!aFs=zUa z$AU-^po#pOHXxa7Hgsfn0>ttN z1vT80T#X|1tR_>9q(^#@ne53b2S*7Tr$)gi)#o#kabNmR&3CkJ{|X(+Lbg{7R|r*T z@L>x+7@U(mdnWDg7@~%m7fHcK!>hSu5Nmrrag$f28|N-Nrmvb>H*U2Arf|b;ittY# z4IcN4Nd5&?v;RtNA)U*0`8F1@SDha1fRf5x zktE^tQJeztTs2+acgMO@u`h!NXq0TWYH_2<+)PzmnNX&%rVnFLO9`<)IM3kx@bP8G zfIn(erpGwUjedjsEkqE5=++EQS5m>YJ&7|r3Jc#1PVD`=F=3haB1Cnvp==7|^Ms=~ zf}HMeSOp2)Z4(;@4@r+JDcqGcYkeBR6z)+vvvZZ9x^v*h+Tn?mJSZa6EQUry$=qnh z@Nl73C4?jskFhwXYj0GOxk+ldqI??WpN1>grr2>r@Qy#DrQ>u9z+&t1X56$%Q*dNb zIMVEsd15)C+4&e(gyn4YYt1Y0$J_u*pdkZK9I^?cIBTJTZ)N`Pn0*>D% ze3x&Q;q3V^q071@<$A$QX3Wi|Jl5KoX`S%)KK5p~5cQ-J0w4SAEQgpSx+*mOrZqA{_U`m^!%t-N=aVZX{2SkW>vD(q`K)a<9u|6; z*L;5bbLXNhIKOiwI%zvF9XVkdJA2&p!TB>b|75!UL(eil_>h}ku$utGDq~awtJ)d< zY6ygROA$#OTKrD6zDl#6`6NCXD%}~3?~ub-XKx#m|8X&gaq1$}&)j{QH}3?_li)jH zSF-lu2KhP1vJzMBZ6$|=tBV{Q$HB{dp84sotsPk-@*ecR4Ru`HL=arhMLl=A%3kKt z9pm9wx(!N~)NJuDg+CFYaw0Wel?_dHU)KtL#aEtA7!|a6_Q5wBzLiGt%%z)9&}-6a80EM>QpEJq0pFC^74LMrTh!$q|myhwaRgHtnBC^ z-|~a*s7v?|5jOs-=Zw@OsRlt;OV?&hob_e?v^VK6ilN~PII?eNci}rOryi5T zFU6j+o_^Sn-*JBMumi5RuE?KZnbGS3X~5?jIjC=vIc(XFrV72zKHuG#|KC6 z-Cf`K7sI@3=MMbI6G1Xbf%VT2Cf-SkBy=Rb2aIt9CNgQFqe()q6R&2$If`U7L@I)b z92ne`h=%yqh@9Gl99fTzfv{di<~x5zH7VL40@f%f|DDG)s7y)IJf}k$PKtQ1LrI0W z=TA(~{K$@yh7@6KM@iY-RYGi`jw*==^Q7iQ7e|)hkWC4YQm~~(5@#dn!+aa>fLTg9 zdy{j%=oFghh#q=}MXF~Cis4mcWSl8SI|ggFoA>Jo^{W?Fl3v@cBjgy}QsYc{;=AS_B2X$ zY*FFFteV&Ukkgl-UBYC=0K?`0^fd0LUU4uK-Fu!*3y&&bD2fGLeYB4<*w!q_r=`%n zTEu)xzd;JhcqDVIXtlaR&JJD2iK>hJGy-@>A@L?sFgx;#xeE(g?(EOuJlkEn*O=Xq}K+82Y(X71!s>hhlt#i^9V14fP=hdc5V*44q{C52k-> z^JUfySS)A#PFgw$7nxe1|5f^#9&K5IG%KrT@#$}d#AUdA89f0{{Fkwz$E;h)MybIj z%2$$SkrLiq3H*LIHNLmik|dTnmQfiOnSMm3^`JasmGNpY9N}V#7i%ZQ-oenN*2ZLw z_1q`_)@VYpnkP<*jh!Z`>voUg?oXbTNdH2~Z+g*k^RzwewfIBy=4N)D1=2XrGWK2C z?d#b4iI~*jdfUS^Qu>p;N%D+j5cm27Vd*p2WzAP;gry>WK{;G?d1skf z%?NRA$nP|`scb$?dv`1LncP z)QNCqlBp=(8VJ*>c zW)%VLR?0Us@Fu5>%s^}E^1@swy)mD^fP?Fs5c)c2*$cVCUV0sp^BOF;;g-F6z;3Rq zSgb}ET1bWKKN^?oh$ea2f2q7M_Q>?2hGBV7;Dd{@Y#7!0`!ve+>+?;AB2fMwKIeLp|ajd z@>*z11lIjj=SQ2v1k~Q4w0P33x_9S8%{)UrPi3)8Tclk3)E-2br_*|!#(c)#5_~pJ zg>i4$=88{e%LDIn^!p3B9UNx!g-?vS-|VHUcf_7Iy*C5!2OIbZ2cSKRw% zp7%bS@zSy9)R8Y$9@6wZOqUXUR!Q$V=tcM)y>T~q_p@`}13vHMtl*I+zrXBJ3dk0E zZuVCEWP0TJDeHS4H&cO{#L7xEyQR6iz=B_ASMf}s)nV-{1M@TQ3_&BS>20g{5RuxV zn;!k4QYMb7gZJ>5&dXh_6P)ewH*saG$uzHi>T%gqKyWWTW93VwTY-$j*$i&#JwBO1 zAwM*|Qp#oC2W=PAt%nU4t<-hn_~pEgm`kJuWbX|1#c2?qt}3G46~~UmPFgbD_X^Iv zOmc{jIpq?;_sK;l;4C{$CNo{sYXt{J<*?b$tiD+$^_NZYeDOFWM{^^^Kc2ODRM&h+ zxYkV2^zobPJ3+(DpXF|%o9185mlr#hIz#(h(c9-fX)-C&zt8ux-Y(|pNyMOkgQrG+ zUpF<5z$@(@+^^F+6@gR@K6*%7BmHqY2HXAjc0m}SfX!r+qTkdnhF8oa>y{>&>k<_{ z<)KEnqeLT_WZk)sXk{K3qtFF(G5);8p*^2A!f<11>lXMa#J8^}CF2i1&zH&X8WMal zGK4-@T<0j0d~iFHg&@s^zGjT?7QM)I?JhkU4)r|yZ=00KdJ>bjG&NrnHDMcr~XzE&iBs z@2%Xhcc}1>#Ig@`x2(IgZs|EakZ}0yoMy%E+0M^8S`%_X&Sq!pzbN8X8goy7dI9Op1d&vcRQl%l=plftsRIT{5I1;ze> z^DVU|Iu>pP50-@&)di!pgd=h8(Z^XebCpvd(tI*}>ta^x zcRT~M)MC#aqu{Ijk-leE-_Q%^e7HP!VIb+}l*k?RWw*d@jdZQpg`W3hTCd|!ER(Is z%+{uEZVvmz*6Pk&;CJ-k{yNph%V1xs)qLsFJ&*1B+_XfWSY=;a^)@Ek+9uLR6na=n z*RTd(P^AQ0+zSia=pgLPo&Rn@9I89lS|IK$3Eo`ZDA-foTjH8zHD%H zRlo{ubj!G=R5VS=%sk(lw5qpVkn7Y3PaTVxpY1u)$VI(T_Vs)vz$ z8iE%}g;Yq@#t20yKocbnn8hZl1BgarGHY>L>GHa(I{I_dr%(KiTzpTWw=liZLQv}Kia4It?)g*pH*n}fgQw>c zQs_w~19QwQ^Vj99>EtxxIXxbmIW-6sCh=O(atBmManxN~Odohf&V(}de)}{qR+%tJ zQ4M|Z*=>>Yor9@CWyI*uHPjbU?hP2{$fk|c^3^!~I#^6rG)YKtAtLT7PvFUs5q0w;GCPT1{vT*nY0tY0?BfzZ%u>X{5JY zTc!<>OoGD< zTm@!2t~3n3_1f?46m6KQ^{Uit5N~tYbE*i)cw)!5+^Caw0~6s_^_9OlW7m0=t0y>v zapAMk4pn_AW?{81{kE^n?)`D&;TW@VopaxZIe4FYGB+QNnCgC6vj_^cy=L&BlGP;k z-TKIn-l5L<8&T3n{DGrhrtcT+HDgw{eFqTZc_jB9s2T~i7HXIokCpYHv2W#=X}<`} zWAxk1o?;KWIqBZ8@Xo2PP_=)cqFB6(=@C-_djFg~>U4Kc>4%?Ll}fi7$x0Iw3O!JZ z+jtl%$LP(>rJuRupE9H$2%&tFR$cqX^B+FlWdz=AW`j{mkgHMgrHCdA5N!&wl3~9|xrsRo&CrsLLzZ)gfn@qgM-W6)Ok4!P)|1gh9 zM%$eY^vw8>r)xhaITTpTU3l{{R$~W`PUnvXz16zy-{TLz2KGeHd7|krd&~9kO*PdP zxy^;m(%dU@&!tvyW+-J;V##oTT{oI8E`Ocipv&Z=&sx)jYxAuu zC)Eh&aY`=pIvl;Sd(rx1@9>;GO~EjY>n&rnk@7|A$6mu(_a8K^BuCQ8Z7I*CydprI zj~mc5Raeq|trlOr7&FFPo**{C^mK$W&@?0avl?N3nR5s6i@2b2RrLWA552r`^FYvo4h1gGF;W(Rd@3cgr_wq=46C zLvLLr`KKxGvo`s)x6Dr+TOWP$QFHWi4YYWEohj<5CNJ1a{F)g{y7b}tW5oA+N4+jb zpMpDT`_}AtW0%d(YMBQ=FxxqJ+gxKcG@tKJL2g6P?HoR`Q&dst&aGI_;W#w^t9hvX z$hb9R?B`82)2*2_MiQpCV;0`E_yX2co)IY}0xhmOA%VeB9PfS=kDL16Ai&rNZgl$v z%9v;GmTtBBb}@YOUePJx08aKJ=G!TmST^+3V(H_-Gz!R0s5^FYDfH}E?6`{D8%RFpx%_DX8?iSUDo3K=@*7l+ zM8V}Zs2quc%WqIQ5(SsvAcGxsTz)fz%8{sl*1Vb_7yx+O^!ZbcME$el!5HH8&yNQX zx?KMZc>p0={~UP$AzEX;PM+(jzqz?q(bFL6x@A-%8@AG@SiM4qTuoy*WRFVBuY~B|H_dlxb+5= zBT;ba4Jt>X;LaOVjzqzgH>ezmf*Ws8IT8i;-Jo(L3a-0Bx7?s|BuWZ>Tq1+Yktn$2 z29+aGaK{ZQN21`08&r-&9XH$zp>iY&?zchZNEBRegUXR8xZMVoBT@g#ZGX#=D7f4P zl_SC3dH+^ns2quct8HL_5c$_^`*Ub3fN=8;OaT7ZyaR{0ibDAKdO_t#fRC5>Kjld9 z!to`8%8>vcuk%nj5@5J_2SxxNvxCZ!0K?5YFhYpH>pfJC1Q;d=MgYSEp>ia60cHqh z0K*Ky2w<2X7y%3u1S5c9f?xzNOc0C!h6#cZLIkco|0zd;7hr~91~AMJi~xoSf)T(l zK`;UsCJ06V!vw(yV3;5n0sN2Pf8|K<0?ZK15F+p<0F@&Fh6#cZz%W5D0vIL;MgYSE z!3bcOAQ%Dsmmv83LFGvB0?ZK10RG1i%%MvN?*`!5b%5dR0Gw|QVVEEo0SpraBYCGb{$nbp{k7$sZY|!LjG%XKh%>BO z7;bQUjc!sipy`SI_;eX=9?2KrZ7i0=+x zXrPnEFF&1e9_OAtw`2H?o)oWFKdsPR%_2P+)x25>jw)0p%j&12;@BNUoOlroabsEx zCd6xkugkHw)GxR@rY;FdoX&1gWSUKTNSG}jc>lGN9>djVG&&eVDSZCaewW#}p|nr( zTxFcLq4kfjCh(b6obS>k+nd{}#AKvVT9+c6?v7S|L+O2xH?a;Vz%9kW)fATrqoa`X(+zkA6gGTpDk?JOL*3PTa!@cUBJPUaW6O`6TTy!hJEG~6ECg=X%*LN)^_vW z5WcX283!{Fz=MKX_CUHFtBt4kdJ-jxqf|HHeZ=*b6bQ$c_=>e@p(TVB5>*Q7W#1GC z+Ettbbk*a+<317^(erk9`y9lr5TXpT{Mq?6U8ciMPvW1BwZQL|?@(S}K?|GF`p!jT z@iJ;Nh!`R7BPe9vJM@OMtGMxUnCXQgKC!;%>wW3$lYzi-cusHq`*%&!hVWZgHp${t z)$SMDiQ0P$d9+>?S)=Q3#=Cy`v+Sa8Ztr>w=X|}Ka8XCiyTZh8Ep=O8+-=nJ!*;>g zxAJ=f<1bC^=+3l{HJe|=CwE8l&KME1w2~%f4+Um3p5Ex|dH+2?3gzOh%y9GKfe3?L z?UI?0ee3V7v(NoU{B1lpe4f{5yCP+8Qb^R^JmY5(PHNiJMcO&jK}tONiq!I!Z0wK9MGcJTbi#ozlA`{zGR=O#SvX)jBt7exyzn#4v8 zd35Ya%$0mqZDy^%byUG<@8o+lYHBGXH`0vdYn1!uu3O;fND(wa;$os;NB?X|j`fe?i&yS2 zuzs7cVfnTudN!AVRa99#YU+te=7$*)wi>$*&WrMgBYsIilTIVu|73!_~5T))#N%iDiRSm-UxXvGITDlaAKw%-_Ry7a*{rH-w6G7wMSnr zay<#Pm>}<)@(m*w`ilFpgnYu?jz(R@`+8>-$u`O7ZgVb}bw?)|vc0|H_L2OWC>_@Xx>rpz48*r@HjQrW2MVaopbO7Y_tUgy|6;-!YRY!7JWCrDadqHYQKM7 zqo$lcW2<~~;GtmKX`gh*431J|{?Umm-RoyZ+N+2ASy;Kq~lsggp6*%Dq!oMNTQN)K&f7N168B9v91( zjJ@amp6KPV)B7jBjGJF{+TMGBOrwZ*bzJezGiX_iE6XU1JI z*BPga2@d1;Q*OBN?bco8ct5&j)EB`@WwvSHlXhKiMZ0_Sc4JeoS9j=xWGnVFS-;sA zOxc7phZi1rqz>Kuxux)1z1_={WKAes{QS^RxQM~XZMIu+clK0*)9JPh4g)#7&{K*J z`#NualTOqq>J#3;tIaix6FxPuN!xzI;tXly9Ya-#Z$ABccUqojNoHJ2z*1;}Cq+~d%Q{+QIlpmU*MPRIH6&XJn1w`FUv}nm90=( ztc3WpH+)&>r)879KVuP0k#5+xwOzluL$+8(kygXA@c45O5{GFnQnx*I+gwiG=a7(I zH@w5u;dZX3(>9?TF&$sM?m{r;`;_|X#ev68Qn^^MHw}=|tl9Hjng@8+7iP1%GNhA_ceS3W)f=r0KGk&o3nc>{-J#kTX-ej+{uyU#t{tgXRfgI| zK|k#JPOjO!b{5`+Xth~ZH|~Ju&}CsXZtH|~jnp{P)ud}h1)tqF%B9OxCPI61%R+Ir zl>Liu2fl9}cPk_KTukCqZ`M1GcY1V2>3!4ESJhS*`Rx0uHg-W-KUxo6!h{7&k3Ric z8aBD5x^-Z9N6<6-fP|5M)IUaQx+(FfD36 zujZ~kDx%^h-9m2kHl#LLzAauBThh%n@J9z*vXDQnqfLs{E{et$q$f!+KkZk>FeK;q z*(5FLUcGRZX*APomqb$bUFFs2NyrK7?$>d^6E*6s=r)$8lh<)6YF=+IH&f;av-cL}=X7!M<6O2>-X zG68RPGzC8pn$q#q-#4WTp~DzLSj3YK591GB#8`ULaf5SFX7?$0F$az!?4XqY{wb(y ztY=!fF{@GBo!L3R`kq^A=<=|sNJP2=>enawW}WX>6wNNB?!21*m`kxXvz%j%$_S6w z2G5f`UoAE)CceC8INUBW@76olF>2I-_+jkz^1^)H50WaPyP+|{$)V9@2*QWeh^U9+ zqUv@|YJ`Y|lI&PKwOK1JJbpT!d_9Kj6?CbUk=-LN(dhJEE_DNb+)S!;&6F=CRtRqO zMFUP}ehh!7VS_YZa__JvpHYOFF~4bQR*6;E2aUy;_5t4hdreyFSuR;~G^W4geYu0) zsO7d38NVf@kXFOf?sSaOYBqNWZ=jD|V5Y~u8TFEojfJhZ+<6F>s}-Su)GyOUa3QKrBW2JC9GwMu0!dVA+Z?qnfk|$Lx~jZasRM;|Ith}& z4MS4yW$#95tgI}ZDe-!7y{hU>5aJ=b>u^ZP-r&}q%%@Uh#ACIeRi;UF+T`8(r7mOg z=q#P97zOL4IZy!^1NnSyHBw}57tHbyU*BFyw#p8iJEKCXET+#3HI(r$Q?fR#}GVU-|{@f^-XGHA;h^z~Q65PtLukw~5s*wiN29vh)dcn3O`+w+IH( zoM%(WE**ubeW`cItuPJqc|CNwHSvDp&mZkuPhw|;F->mG?*2UULy~KB^Fx@Sc%S*l z!QyWs-9B@ptx2?TmIDQMYSHoBqfOu(3sZFY-MrBQ_ZFtQ(XFdK&stVkG=I1T4SOy> zz9+lC=&+S(klp{#M$w$PsQ$sQOKa2QfMom4CiJ@ZmPO-`_m?K`z}P9vo`B8;;yKTs zM^7KyKhJtK>~(m>YEicVk=f66DQNh})t^W5YaMx))j>|f%4Dw1&gXfwRF~7ZhKndV zl!gC#`KK2TQ0_9X-ER+eZ@36PXm#hcM)Z`W{8V^&lNupT`n4hgZC3gvP!ivS_(#mG zK3%3G*~_~RnpFa}eg+(zBY1(~SuOaGm#G}#<6oCK;Frn8FE{o3!&~PKv)XI5O%8jR zACfy1nrfNIhdO_I)n*Ca$NlYUo zOHDHihxgC-IugtFb{_3r!1d65JA*S+W38WcIhE5opwvmXHkpp2TAJmi00$-yIp4E< zc|>RA(K>6#oD)$?fZbCXheo^K&yr~f6FXEZTRxXW(HVDI`WsoG@bU(`c+U27Danjq zl*J96MyY?#P*h#KF^SgwJc&b&+~&E8TRyJ#{0=$FK{u?MkRizuTc(=3kD!!_`qL=m zY$#=pJ_%5Q#*;ivh=$7NQ8YM zPoB!)Nx#tkS90#QF*ZUCspT%imY|~&*%x6y)aKY8zH?CP^-LsJ5+wYf&Yq~tMzON1 zm&b5gU6t2ajoJ(oc&J)T)y_|+S@&rNwf|F&&wwiN89fxZ|F(1?BTms(efSxT1N7^!~BJZ(rQ( zxsAu0MK7=9g^9M$>R*x$S0!-MOyn@G4Qrx18g#LBG1}Gnt+^bICXh)9xe#u2lP7J= z&edzrE5%P*u+Y0l#_cPUoxE@S<&V{0c@ZB2_@??i1YT4d^2$WXl#>G3Y8bg%#LaxbOQ%06m7Nu+nP z+A-lJg;-ymE=l`Ks^gnSX0*+aG4 zuEl=XXv;17SV?1F9K7nWtL^jR;^W{_ur2#H*_zc-ty7l*FB9Z>t0t_ zsCF6dON}-sY~(c+e|WEmObqEZ)4*2kTEmerQ06c?Ad9?SDfDt`?~pmwC1QNVVs4;{ zw1D--P=9|QdC{vSadgjqba0iwiL?4+qW8Uxd&_SYLKI6G8*FA91F;nA$vkSGZWCTp z*S_@S^m018q50@jzl6r;ch0YDP0OlaR5|vUc74+)dY{%C-Q_0TcI>H1c=5g9f{pA) z+NbrTbvI;urgI##8S4q@`|T}+bpw2`^X9CUTyKrO#~2dpd+s=+>#(1gxxdh83{uy1 ziwR{`7%O#2KRfxwnsa@wWd4gC{{cOBPuVD?ubc;InyBJLSrNf~k2~I2OrlL#7o*ub zM@k0Hidf^98m*7&q_{-hBizjmH!Z$q(DAX4DSl)0*_`pafN%FddOOb<@6!6c{OxnI z2FqWqrM%+W4>J{<6?e2uzo~67Rne4fyb!x?DnaUIiE(ybJNub<@u>JTyWxy$oIKN( zYp=bZC0{=C%Diy?jy>s9Cli&&X_yN9(LFx_JonN`bN}~omubY8)3Ut)R4z`8DW< zv6jnFwfFRdQVx$qU%wrLT58zaeofYL=2wB(Sn-Ap?)#l5ku2>q`xMi^%n}0JogewTMq~u2Id;eU%kXj%gkpuiZ)r7) z$-{86l-$tpxJ9qE6Opy7GV?apWuRpH;mm`^87z)alEH3DwPN3&_tDqgZGK$$@xQSk zHch~JPs(nBAxYG65<4Y_O5Sa5)59LS;)U}=Z4a5^vyShAi680Kvu=I4CeZPMXj3>$ ztnCGH!WP-1*2I_O%k7Wr11|I2=nVd~@3%ZG_+CVRWYivWBgwBgf8s@U{`9%cU-wFM zl!J3#cctEZTxjUw#;nQS!sy)atmz^7T`9&Pq7UoFhSWg=BFaN(lTODEf46HS=0+pe z$9n7lI{je`uRq=2$7{vu#OLnll8MIZ)20}NZ* zz<`DhmiRXYe4yy$AA|^j-|`Paj80@K5Tz553dHF|paPLPk*7ec{=_NA$v42qyrA$y z6i!p1>_Zd|Q=sSrI!xj(4=DM7&XV{CAzE;d0_7giNfQ625G^=Hfs${4k1rM!dO+t$ z{ChWax!@25iael0B>qmJ#6$ErLNSB_4=5%1H-%`y`3V$vKnFPzvu)6&=4&+IDv8wC>;6wW+>)>vXOrfq6McWQ1T7%F)t|N z01p{Gem8Wv;LHR{IKVSDkEakVI52_o4e$)fe^V&l0FQ1wh7c_{ErGHPC=of4d?Ub< zM~>eO(SoxQ5PAT3ObaC603Kg0kbDDpObaC603Kg0kbDDpObaC603OqVl5c>IFBeF@ z0X)83Ao)gsV_*N#0?9Xk$5#s^-vA!d0?9Xk$FxB54d5{?kbDDpObaC607{%pz5zbw z1(I(7k7Ym-zpZZxCI> zZvf;#QVe5o(LgQ>W55o?pfCpXK9iFa`t>Csus0egg~>{F8hmPOSM*@(p&O z<39jOzQHa4V~F61Wgkku!MX>}A%Z6sekl0{U+M51A_ynx|0Unxvwi#qXz>RhDj0)* zTkx+5V~8NU{6nib0x*W>5J7kYfR=NBVS-TdjX2%{{wCiDcn^S>9fPnW0Xt@U%CJ5~i2zZBp)_Z^E%##&0iigFIoA$X?l5c6VhgN-I#TOv17!5Oza(?yI z>?8Uus-{U)flQ)%3)iA=y!3u)rFY}C%hQYQIh#Us^Lr)S^ZGfIErNEOjC`os$hUF6 zg;+af)Mf8Kv0c&B^2JfmqMgll(0HWNQ)Kc*faZzHSuXcBCyll!G&x?roDGg~T)0Tt z?CtIXM*5P(DqYPi-1R#K-xcq3E^}})mRj)HdTPs3@6Pc&LEoaEnZ;s@XUQuUq8BDp zGx0s6E>iaLF5V)cVp1Mef!-?w4iy#anH!yLM(kNq?wUw`GJX`NhS`!9N#ip@(N7#U zY4mqI3MrKG3FplSCy-ks)#?)<|80WP_E)?xoQ;MUo9R z6}z8UrBv;YiQ3NKsu8kLw&N-VUfq28PM)L$ufOBl%P3AhLfxojdTjb?3fvEhTOEWi z%>p^FIEJe4&_^;y5nxzLl!;&RB37{rM6TgG~^h{4Gp`>5_zhcj=z~Y&wY@aNLfrV( zQs2yL>`82Ow6@F86WLBPx85HH%bi`i?OZ_f*d_}jym>_J;DxS=q5hC2nByK(gFRN< zV4*-Z+2^?1_r3j{P`NA{X{p`W(~j-!O;>BsA>D7c`_@#5Bg1(d=E86`6QW|yYR-*C z=k1K;n9EkheqF0^%r7BeddIiH^|bkdjd%3OMVAo0K8YIrj4S6gxRssVY&rBT^)ZQg z^AA!Iq?z=0R^%km`FZd4J(PKr4<^Ec_ufqFf6z|(olKS$=NR^z&ga7Bz=e66cRzDb z68%jq!OUyaKdcolbILZY{n+RqTONM@UO@PMoO|iFzV>}r;z4H9ik%e<`Dfz2fHRwf zTU9qll5Z=2;1{}gs)A!D%xm@1l^u~^Av(Piht>Pfg#|o$Cr_bi&%7z#FB)5$`4O8+ zK4k9p%5~_ykNoR3kq_~GVcE08JtAi)a%b1)s2xqFdgfDUMC@Q{b29uSX*+wyWX7CN<8s``S#bQZJT>d z3%{3oz3nDT?0T?$(c00yYO%q7gNXOp1qVt-nn7Zdd;Z2UYD0Y)m1_}oOc^=sqhuGa zVGefeMiMqgWLrIimxiVe31}}#uv^NhKD^@;>)~8m7s8-Z=J?EBpnuVo^YZ(woWV~q z3u87>arw_5+qU@d&V7D*`8Mj~?2M@?I_C)4WHD_Q?oQTdjz)`a2;JBvehHp^_Qb~C z`RKOf>quI|YgT7wJTWzOO__eU@q&RiR{}2I`1ye)@nJPFqv5;fSr=1O4`kyP4#nbM zh{t!%n{n=)qCLDo>yJP5Wu4wRdHC5Cs!4v2^g0d8!lNft+=@IjXSc^{>vU%RzSzol zKtw0p`{cAEW*e9B3<%8>@EK_^UXfhjh+UAm;er+P&mGQC_eeBEgtz`SJ|o3{i5pl+ zLwksL>w5_ptFcdpZHSX$TOc7L6t;m?_D|S0Ps&J*(IaD|!u%oyk2?cl+v)mLGDast z%mwI0Ycj^a$3{uhF|uIxXu)f4bl?Ytw?sVkkLVa<7%=7#mKSBj!`!9=e}tPT_~AHa z!%T`YGN9dhnRZoQ% z-R8ZN9Pjt`%QVV);GX#-^P%#&4rKPvH#HdM0J4W=c=|}{JDe8m*sE^{ucJ(Gm|byr zb((*0VBwz)jJ zz2SYs9AhG^(qk2troO~jNR6=98}7EM`JlXH@yG-*pEnRTo`c)_Nun6J9?&0x6E963 zE{e-WCB~)5-QR!;w|h41sK3FXkFA&>|Bg`Wy?hxP_0_y+S@Ys|Q6z)ZjMbZMk*caL zr{foT&=23KlblhAbt;O!5<<@thb5}pZF?t;k)Cs~kYFX5O`L=={a%(r0m8^0IiTPE z&L?h|77sTIo2TTalNuDp3nJo zMoKPqT*g}CGi&VUu$N0{<@Dy2BsVM?qlO+ENOI?Wyh)uW(Gq@_#Yzru*3j}45%Cmi zU!79jQtOgp>_=7xGPa^SJYl$qk2rJcn^kwy#&8X>JI)16hLnUVsSApm;rA94>lOxi z*Q^(!gARiOM9(_me)?=S`J>8$IOA)L^XrH9@2gkLzLV0rl#tDs?|Yc2jC?X}t6q8j zE>Q&7@MWwrGp%Q>tp%o9gUt%5}_}mUpwCE83?_?W=-Ez=H<%jI>!MZqeXux1>d& z_lPE^=Pfo{hOh6B4G406*{Lqj)wj(4LFG5jFtMN0><}K1SkJGh6QAmAgKHBuHPlKv zbt{14_u0gXgL(I1^w#^?{?yd|piGl=o?8k=VYVU+AEx%aBxaOoKEJKI_&s({hF~oI zhiP1z%GvafS1&j9h*%0$cCGC_b)Kaj+Chu8^>qd(1~!;kk#CHzWPjVU8>_FU{3=3} zGZ*{`--GU|;J$FZ-_c%!{dzPx{gs9D4M~<;4@5CBM_0)m{l8T22(OPR1s#UH$UC~S z^i@vQf6DgmWMg~c?9t@qfEAFh6`Ob%sTC=xWvQC&?dWD+NEAAGPy=RNoRJ7DPx{>~ zJb2Kz+|UC_sL?MhWD>z~a$h%0-CgL^QpIlJ+`-!DL8J(^`6`rQi5k!=7!>w;lH0V8 zdOb_IK^9l@)el8J5IaNCi4i8Yxo~lF*8BGD{p&Q>C{yx3R5c$Sa{eZ6iRx76Zm^7_ z)mmNLS=;K1_O6gJ9YI$vJ0Cqp&mAp?97fMuHD4EMJF-GcsT~oGZi~6jo3<7I_S>Nz zyhu}gBYI2gQGcIM=OoCT;933A>23p_`yZG4UNZ{&s^uHnIrgD!Y}7g6waj(6{=}CzI|)a zScR)^=N`wEpSgJ{`I3VKy~SB&CB$Q@o(^s%_SXK&XjQcL_YV$?_v}eIz+uRe6?dD3 zuFHFMa>?`#@)xf5&gC#qY4}fW$9x)SjD1Pd?;+^t%}P1di(Tv59V$Thlyby1t~Lg* zezUcBQs8iC{DAYp{yh${#&Ffv<)V~53!Y*7&x@ns3srVnSMbO7mkNsKUmp%omvK8K zDRw=P=58%U4~w-HOI|jQ(Z%syST*qaXx8#*B{wE*vUymb@NjJK{;P>R$GPbi?Q0rM zq{S*;A5anLA39r-l%fm?jC+c{2rbWdg3u)?L$mGXzD>-Fwus2d~hOfvVk>pw+hWSO60lHE%F z7FFj==N%%c_mB_8xOz>I(||#vNk;7oRXnXiwAtEbX7ZcYhXI`9!Ip{gbb?7lmBsH= z3<^mni0mZM)_kv@%JPN;cJ}l0^cS!`R2MYnx^T((u1+`mFG34Wi#xPl8ziZN63%9e zxm4B9G|Q?{3Xf;+(40xFo0O&Jck#Yy5%v7rC#BlECCbU(XEfgwM16{xWVJYyC=2p% z54%n^!&!LuNq9`Vp*O>~+mpKA9g4@QEAvG-Q5{?vZ#2=*5oHopY{#EGx@Fh zNPBhbyLG$Z)9S*T(xGY7y*AK{@0@>?BWv31E}tsI`lXOdFQib%@h>gfDp1l{f1 z3{_D?rH%oDe1ht3snn#kLCCohqlOl8o$rEOJhHT6=%w*3f%_Ury^686B%>fpO1rC9 z*lWm2YGXR|B&sO+$#8{Eg?in_f6!ojo`8*|=ZSwC33;QtVUD;^-eCrtSjGZ9fw2Tx5d$sMt>FL7KlEB;=IIeZ=jSqGC7-s zbRiEt<%J`2=Evca-TSGo!u08G7D2cc>!7sQrYRojZoPa*O|bZyQ&-j3Hrvv(LrkX63bhiCp~hgmr-U)BKI6KUDKy)E$s2tUgP<7xtksIBa~A zqKpPr%Fz~7q#KAtKc4NUFM80G_~3!{;|<>U%<8S4o`urR^@8oSx_F5aa)9Baw&Lg$;`qOLd@si z=Sk1&q4nOBh&!*861aN2H9`NnttgPX_kB`qwc~j=zISi@NP2=&-L*a6*Nxre6`G1) zk;04)gJt&u+q=l$#0tfANDk~ptfjqpOK$3T&8jAZpv!|n|0`C!bDa9KS2#~z_3bSY zevsthy|Qo-eJzgP(S^2GtEs8)(>1Y+_5Q5m8b7Y))H$awY&KqcfjxOzkcp1zaV&=K zjUsZsHz2!zed#=ZVo1JwQ~k$8JeC$FF8`Jwc7)a8 zdlA2IPV0(4<<77(w@CqHIzcQoL&jQz@~$4ltDg-h2kvy<4=I8w;} zo^dCL&2$PAa*@Qs0`2mXH8vICx@*a_Ph;&Z|^h6tT7jUh%S zJY$H`3CkGb1Utr%p)7X7FNRqCXBYqHB|^MlyBKnl#bCD>iW0?OvlxmJ#bB=(vXaGM zs~Eb6O6=GvHiV31G1w=Dd}J}$CI*Hu8sK9e8*-7wV3!y&k;Pz>81j(CV2>EGki}q& z7;=!s{yD_pF(42v*dK=cV=>qshVGjZ`{NG(m!(4Pu^8+QLs6m_Yz{+Fq8RKALpM!{ z!PYS39E+U@3n5ytFAVv{Vz4a?-7h5uyTV8$$Wp~%R~Ryl#b8qy@{Gk`PZ+X{#b8Sq za*V~`un;ng#b7@e@{7e_I~cl8N(^>`A+uNvGK2qSsgPML2AjcqJ-x z(K-wMTuf3vOfA zAzCN0LWq`>xW&H&1q6ctAAc!AQ6l&*;&=+tIuRB^v`&PD5UmqoAw&x$ifNM);;&Cu zVU)@F8wy~+11vdk#3cVbzY?7>;R=e{5gR+yzV|2)LsP?QA_QkWloZ29uz3{2hh5nv zlAYdsjZ*h~aI`TN@AYcLSm+gDbj8=o$|nggyo4-8=d?`pZ&7oMs8vfu3C6tT9oTL* zyMfZb{*aOPld4~HR>yfCW*J|VY6Mz z1UPj)Nw#h3_eqFV%cdZcIO~(-K5yds7c-qmcF{0r&K0F z!M?Mi$NMNyfP=K;6bJX9Y#g@|6g4Rcykq^zfvZ`|!l0hYoq$c8 zH$q5)cp90rMptJ4F#DxiNoG;nH`CiLiIGjVH9wzQ`36L+ z6>cv|`DI&A*2>;yo)PF;{1{!qGV!j}F+N&AiYQmiK5qa-$M$o1Jv@^}eCYyJTaUzBi6PmG*9lmD8RL zDwDg2QnL3;ocFFQl902R_R~_j=y&jZk*S`;#%E&Iwq|v8df=I7Q})i*)qrr7ui;dT zk=T9H67&h@Ehb))%q(6eTBSBR^NXI$^=^@XRDB;-cr%>_P30ka!M^|JHs_6@D`^=M z*Q8N$3vW$-v|c`{ZJfC<>sBJSZra}8*s5Z2?bG|4xAyl1uaV9CaAWqNAHSW$GvznD zBiR@Hs9KOo-Jj-{WtsIt7v-ectN4E67vCOyWB;8^_m*_*97~Lgl?d0oXm+|&p}C96 z{t>^q4as3s{ZZ~n&UY&CO4i>&R1qO-Dq{#YDi2YYRL;e$D|LH}f zsOW!s5eZ8$u*@N01qK#hBrL$d+KYts7g&0cu>1lmFA@&x!McltwHH`+k+Advt1c2& zUQiDKjfABabOSyTmR?W`0SQYlsDyxor5B(EAe=8llwjor$N_k~+(UX12`eu^55Pa0 zIXqM}K*Guk(u+t~c|m#+2`jHZdJzdrFGw#UVd(|w zMI_RU zBrLrky@-UR7gQ`j!Zj^OFCt;(1?fd3th}J=84^}r5|Ca*!qN+>o*`lB1y#?Gu=Ike zXGmCjLDe%PEWM!W84^}rQ1uK6D=(;ehJ=+Dq!*Dud7adYNLYG7dJzdrFQ|Hkgryf$ zJww9M3lIeG_)8J0o*`l71?fd3th}J=84^}rfAk^}mR^uvM8eVws-7YL^|U}g459_s zw4mx460T`M)iWeq(}JpJNVuj2RnL%cO$!hNP}1dC5kkD+mKLNJk#I>1s-B6%-&sS| zGjaG^Yp8lA4u5YARnNrXZ?2*0nYaje%&C;n`Fe*_Oc%5MJ^wr)K!6jR2n{{`9Gzk5 zdFB$h&F|p+K4tjRA$h%|MGM& zB&GBokdLcAzW(K!`Yw)_HF{Mp)Wn>7Tb?eO5TW12#Hhm%_v)L54?_(9sxn9ERe|{O zr|}%;EgpXn(X3Tt?y1EQ5UypfkUx)ZJKZTfG*^N><}@H8AA5dAAcZiR_9@{wt}R}M zSuid~2Ld+zEPM_(rz>sU2|zj~IG8=ZYQjzXaK#`} zB_Ox^3a@=nRc1u()i(T8TU7ISirn3*WD>Px-g{D~c^%$$av^dyQo}pHsjvy5V;m5f zSddp6fopAUuTV{suW|*c^ zz~;|%4wtLA#iR!my)J%t_WY)IJC1p4=sJ7^CLo3~{YO+w{HIRh; zIme#yj?;Ca9Z}c%`TX))JR=oZDBO3vAA)43=UIpOADUkHbTnn0n^(qAHh#pevPsff$QxNP zE9$dzCV)Rp$ESB*YV+g4?}nT86nQ`QgYVn72OrShSmM4PUj5)TkLSZD=sU9^zg26Q z_R@dMIIr!G6n*;C)3ZxV)g|cVa6`p`IgV0o_f%Y^Qy=XzNm};0^@skgGb$xr>p5QU zO4*}@9bLsgJ3V%~FfCvzezrJi|7<))dqQz2*6ICiej1u@HBQFfYV#I+I9`FP2`uh= zA%oYurdn&kk#_OD39Orxbv0-NqyOoqb(v@Q%xt5>ZR@JOw}P(tew|odD3hL?@k>*C zPP^T`ibfv#(rp*C*atoET$;fDwR@9^`NhjO>l4~xp^TDjhaD@wYN?-PvZ>&?u~Bp> zGBo)fO(l1wudXfKcj;hxlzc9y>vMl+s~YXzFLV0ambB!JECj`EF4q}z7!OBvjt*HG z!dAlmN7Z?NQ~AGtJbUkvz4yvG=Qu(oD#f;_Lmq&g;IP&u4H(Qi?>wZ?N~t2~qfyVBjF)4~*29z;Rr_ zs09_eUk&HtS>_W=VA7(A4wniCNEhHBF5nPlIJzi@aSwQK7~EnWLp+WGV9V)T##jtA z=4T8VbR<3l2_{Uu@#su(HJ7*&kCl`&O}XVhpFaBW=$T+`JJ;3s9G1Ru6Ia5V0p z7HXlvEl2Z83gASpeJy!5QvEMOkvI$CN=h#Hk*1GJ$dtmmnl$4GqNh{mv?mjO86UQj z`)_$iDAL*;+p;gNe!Z3AT@^F9{PTFLIiHX>^0R@c)5+Q4RYk{zTgl+g@i8PC)>#^< z(;6tR=z+CmWlnA{iQ@g@m0OY8UR|jSE2!U!s*@?K{n89s*On@O*f14x*Z)%ZEjh4y z*3*}iI~SYx!gpjjRql65=`ERryW~wThXiR!@V8%B^bhVAJHL`L4Bi`%zZa)yVJT6f zaeGXPa4s;ud;iuGDaPrgeur=Sf)4BSbN7slt~d((ZhOn2{vfeJcO{z7c)Zi~ldu{F z>P56X&tQtl9?uEMm^e}$o!he?sTXo5Uvuq2?MXf(aN65?_4&X6)^cFguz?%l!`Bod zy(#;0>-W_tF6lRn2;EWRy&3X(HoSTo-A$8LGLsI6$@d#tmJS3xeqn9UcKO-_uiEiCeA^>euf&WbWBm=xOIm@FOQ@C_r|ze-%C`N z%Y*q-A^SH0XX|LMyS(&?!QO+z>0uPLN6DxX`+SS6ocZD#=c@!3Ufjp+@HY|xDK)q| z{5PIlNyf?U{~&hf7vYclFZ}u_c?`=&y|ZGq;BujFl&31073BJV6kEgido2(FOR#Jy zxV`Jsj`R;(byZJH8stSX@4ICD28ZK;$oRQT1eK=(j4W)1x z!MfuVi-Y%VkUE#N)Ih-3=INdNgJlz!g(4}MIAnQvW~N*r-xblicLg1yMehrChF|O0 zUheJFPh;wFo3mtmwP-%T^}>+S`IuQj|T6p-A^@tZ%>Xd%|=fvk(ly zzLm9A*=M-V?zp};cEI@9c-t9CyTY`15!CSP`vbo9k>F zz9q3EN?O+1hcFwSU(`MGRqfku!YmKEDjny)a=u~ZG&!B6!=%r9I?u5XNjG0oFTlo0 zCva)g{<7F%xzCez9-A*Kv^!N|F)?(*%q(%oG9g%orNKp>1NwSQ8o$V4^z3NCY;>&M8GM&jD`%?4HDS9o^8H?WM zu<^Fmf#qt{EABi2(|fnhT-b{V4!_m)VcgEYPV4_Tb9`GmGQNE!n|afn*~j*#qOn+{ zUeR21Rzv+}D|X{3RXjFufW42IFA>T%b3B6JUE!sCOFu#SG4nUl=8HuPSu4`D1^OB# zy-BLATIcWe?Oon%$`qHnev<r{d37-JcFQky)1;KeUVZUN(Idi#Jx%FKo+%EWt|U zBXLrB4uc4_>o0d!4A|l)?5#2$I)gk~rTXi_Y6kRe+U@jq&1i#5Je_e{sl8_?5u<{x z&^&oRnqfP|xr4f=-UCC~n>JHtleBJ)ryB~(_5uZ!1YgV?Csgo;>YkB{k zaK~aaeCrmMDrOYvP2YRxDM8fx=cqeZH){{N(@Xu26au+Jtz48QPI&kg<7hav>)s8# zkxL%=G01pFOg+OSs#qHUb8&M#?k2Q1lqrhNK4oBf!^ZJ75dWzvEv@oz(Jbr z$2O>A_jH$~`Miv{=*?T#+EQCeaFhyOK5QVc`WP_ZD=OMBZLr5#+!>vc$ee*{xm26I zAah8_+EHo0?qDKNrf*TroiBakV@l3ejp8wrmQ`R?%e=CXhrf;Kh=#14eU=#0qv$MA z1;5qF0?T4w8{2Y>`lKiAHAA`jqbE^G$o&HY;Rls&nF$Q{Y)sr_M5o4_zbE-%fv|; zuQTIh&xyonBo|A?nxdxXyP>%Uht-0i=m?BbEx*1^Vy7x8Vep;QF9H2Ey*!8A6bGd! zwSu-|?bw*0R2IbXWy6U!=x>F-kJ_#M^@TXo`|EX%p>uKC09RB7@gpp3 zHdggzmUiwvy?6r6D2MRp5y_2d$vYhP83qV3P)T-7KO&FCYqj@4L&~lSzm*ak(<{-~Qmyu6NllRkjOx#;1)8*Ce z>HR8mHDk*BUVbE8{8Vcvu7!V&N>)AFQRS#f(%_5GnXDLWv+#JJx_Yn6&3!HgRx!Ar|;B=vEKMR{0@#Mo8LR1#pl?`&g zgj$%*#&_@C;4YkAr)RV6L3Scc0TWl4EZh!@@oa8IUT>TW`%GtX?-@1OIw(?~z zz9<7ap+8IOp{F`Aj$@>eb4p&OrLWqrwpOFf;UdYA#~tnGN}XDY?oaWu)?oK7i0V&_ zi#;kh>z5{^O5fn?7JCom_daK?$CX%a$M(%D$Ip;^^SmHcFDq!#pBnj_48x$58Qnk1 zNP{5;_SGxVDPxQ(5n3XNy7dpQW(^u1Ygrthi! z)B2RO7Dq$Zhkq*lRO0^qX}PP&@1|c8$2Ybiwla73t)A-T9xvf>9>L5$IPxK8u`%{n zJ91TiLM=W1d1|+!n6UVPw`-13(^mnXq<)1vONGC9;6((& zJk!`mUE1sh@Yoe?>|pG56<()4g8X4qEX6h-Y5NwXK!aD7LHBg6$*!x2_TwoN^xdEu zn$a)ar{H6JYh*UdNQXg7t1*)By(Hyz#wPr_>eDML^!a+9nqX! zaFM>dPJTZY=9xt6?lv}Nx5mUiX~dUa$KX6Fzzd7-rNFaEXTKrUqp<75LU*g5mMkm| zFUdwbQ+Tvd)xl?$Idj92&c=ciht+8(kj|+_cfWG)mflfnQB0(e*auTrE~UQD42r~6 z9Sq9EE$OgVbfWDBH^VLwufIZJ48*13643SJ{nQk4{21D}69PPTm6Ef5$=uL!X2YRf zD}cNlcrMJ!p0jzv_g(mH{L8)+Zz)N|%D+uRhxoBra7m;S5W)wZRv5A-ndJJ0256NayEuB@Q)fzvJp*gvr9<(ph#)MAMk z))kc9{LxDm+92Z1cx8A5KXljJ=_K15F6AXwL%nFKEu5(TM7VQyNHM0eQF?mOTY8$L zctrgpozS&!FRvHpui8%)6n#Nue9!!p%M!Y~Xscal`Sty?{h#JX@rFjmJ^46pN@P;f zwuRD#!}CKMrSI=MSj5eJ0`a>TD>$= zj$^LDqm(WUY0LcWK)oXlv3pTl%SJ`(1vxK`Vq{-7bl11`TN;ggvKrm2L0R2ce-Ylg z;3~K5NJY8vqqR~z)kA02H0iqUl$0*x>Dxz@QVXZ4N}+2#u`_c&oPSYdY6g?_mnxPT ze8^9JuO#49C_OhiGa&x z2MpdQM51JaRRw+3wZ!`c+wmyO(ijha-DW)gYizLmtvj1;#`aoQ6((d9U{tE<{C%M& zY|H&Ek5|CcEVnglluPqVxs-Dn?- z>cV&~Vu@L;SXKF8xci>cZz;p`R|%RD>b)y44`aD2c#9oxI}u&0&M2%-_&A4|HU2nl zl6msefX^QSTli$6*XuT3J-`Y~e{rwj{S93i0~4bc@#@9*bZ3clSK7Lc47peHyS3P9 z;`2nS+vUw7wL56z^YxDiUyHgYJbCoBvb=>3M}hQa$xO?m+kBMEEAI$H1wIan)o4!l zF%jn|UQPVCq{ke>Hq{`8T8?wqDB=BtJATGL{d-qXqptCV5C>-Cd`(?K?={zitKS^% zku{RV|J-`NcCq%qDdnTKGY;>|hk3aFu(aYlL!=vL%o?L-@h9@db&y9-% z(HYL%HT?5Kxi)!2+E0-uHqo|-%^K0BlicbGJ2x*kU($+*pE3JNKT#a6R}YU#=oXi7 z;a|dO;`1!4JIycCuO?DJJ(IgxEZD`pbItEL`$w0R--;aHtOr-cq49G36*_fx0`4c<&oo z2Mr=59BM&>2nmN;&>%v>p%yfVkZ`C44I(5QYC(et35QzHAVR|bw4nbYBpm8Ng9r)# zhpfS}AhZS%5)QF7h>&myu0e!^Lv#%yBpkwP5Fz0ZUtb_393pHGA>j~Wg9r(S2pdF5 zI7HYWLc$@!1`!et5jKdBaEP!$goHzc4I(7`g0LZkghPl8A|xD|{sR#b4iPqpkZ_2w zL4<@ugbgAj93pHGA>j~Vg9r(S2>Svd;Sgej2nmM}8$?JrMA#rg!Xd&25fTm&Hi(dL zh_FF~ghPZ4A|xClY!D&gAYuQ5kZ=gGL4<@~Aoj%r_!kHX5%vW_LWF&RkPu;CAS6WC z7YGRvHrQo{Lxc^-1?vKiM89ChckN6I<>-ewKvM;dtn^)GXU71O!kJ#28thz1qS>#r zT(8{v#_tTw>cD}q>NR$DEO7+TR_O(vUj4HrY>*E#HTt~|^F>lHq4xrqfoD+zfqw`B znRzRLq1O&Li4-Em0SOdRG z1T4HCG+qt-77@^B5AaJw0Ds#5+g$?q9U`F7o{NA$ zK*K#?Kp>#$9xxyf(0C6R5C~|#2Mh=VG~fdU1md3wAF!r>27JJx{u%HAtNJtG^EV(6 z(1Z^d5QzWsRQWFW8WRCc_<#X{_$O7tvY=Q60|Ei%Di{z5C|JROKtRcQ5fBI{Tfu-p zK;a4o1OiG|Fdz_6yn+FNfYKEV2n3X_U_by*ul@If2Ll2Dr7IW^h>LWE0s;ZWD;N+6 zC|<#UKtS;d1_T0{@Bsq?0i`P#5C|w;!GJ(O=?Vq}0!r75fIvX;3I+rMidQfo5Kz2= z0fB(x6$}Ujl&)YvAfR*w0|Ei1D;N+6C|$vTK!EA`Pe34`cm)Fj0mUmA5C|w!W1p@*Br7IW^2q;}I0s;XCj?n-|eBINS)8hZ``vJtpEO?j((9&eL z6lFpk-ro_sF)Px+j^rYz+u^=^EfZ%h(;NS#d_~3UONNx0!VJH?dg+lx8KX{`jW^~6 ze9MEr&L&lBr|7+K`~GDvG^R60TKEP0vOFe!)2#&!^82bhDwo39Y7Nx0FKP1NChb}f z@nOyiMUoR}0lSD2Q#({vkxS5L)UbtD_=s=`p?pmh1v1IE<$ubs&$Med0spARU^8(m za5%*(tYb4}X_xuj%&@@-qK&}{g2!Mf({yq>>11UQFbO|%;&LiiFr<`9s7~Bj>^{ME zNnO=?i8*ae6yO)h`H)jD(^_+Xq1{Q8$Hkm4_ze^NXUg`d685)DXVFTpiL*My8%4R* zP&WddelD9|E+%C6-UZ7-^wjzHp=k%!)kqaQ0rMqRI1 z^DTf2NM#a8v2om5VQc5^Z-1Go^7ET^Qxrt z0?ptV>y9klU+ii8X*221x1+PPwEQ~;GE}aYX6Cl(6IGljnAb|#(PXQJfYqgMNF zi|UQHvT@f*g1NJru=*_(=grrt6}6TdDK)ty@#2YMAH0rA==Vj6w|+qQ&}W;Qn#XPeghCtZW)y`^sls*N!J@(_GCzJubvNSO`yxyR?n0b{z+V;T7Ek+8 z(*}~0lM{(vFK=2$Z3dq>R;AH&pJ3E3XOwY|QjGPV>0U#gwzIj`e!UwQD$o43>O;oV ztf+Kq(w0VVk0&7uJ52*cU5XGo`1psp%nQjYVMkvU>XvZ=aLX=9c>QX;JY?Jm>p$5n z^3p;gWG0mGE1m0WXPnhUbKQ?x1$V};qJpP(Ugx7$jSTlhPI|uwjLzMg=zPCMD{^+w zT2j*BFegSVJ#rR|b*_Ai^e%Efp-yX9M9;#fU zTNmxP_Nk<3aa(M7to8jeg`8Dolbek#nUZo$AA4g>k4KClhGcCKib-KH{`YZn}?|iH) zM)n;PN__wN9ZUI~q!eCarD{>H6Y*b1>8?%&rz+Fvy$(Bd&VAITjbxVr>gu~*MY}!U zPxHs-SOdhso+!T8#9u}(i-&u?(K;227*~^B+Z;lcLfCFlJ`~BGBPC_jcvYucY9OOS1o?Os?_GVd5?L2 z(gVkF&E%)9q*la-*QId6oc#9qk1OSU(Mm}>a;ed!@royYi&h>l%nzTuk?CR=GVr%^ zdHH>`Rgmlcn5e~w;q~peN9hE=h4zg*rbX%EdH?mu$7&eanQ*Nbv{)az;*jZ zw{?c2N}aB658J>)Yy()-S!v|PX$gUW2bJfTLWz0qEKA0{R@2(H-baD`gWo?`t=!Zi zVs(o(G2})xH3p$yxV>=S)f=)ATIyZPI>_tLD+@EzlZ~}0MekC52tCcTxE>tuap{!- z(cb!VNrlkcZ%9u*R$QwqGDby{;tQ2s5x@DO11?#wEasIKU{?0s#gj9WzRqH6!_a&!gsGrFXjUUeH^&ho?q59q&kM)+sJo6l}jg z+K_IuLbP;Vjm8dl&y1=i%lcT~IT+kxxD*q{$Kv8(-T7kJe$#{c`E_j+?TgVj61a;Q ziI_c^)f`KBlgTo@oe6z+Xp7WNYCKGl>b(_d-sf#nx$$q^l&Q7!8<>8e2yiyU(=vlc zcaNHDso3P!-RC2%X#7XDy(N|wUk)sAki3F#Yw-9lv$jsY(uj^-eP}Wx2^0YyC}`TiKxIgTpv+-;J5)AH&LMo@q864VSf! z5uO$BRUe)TzH2^OY@92^vYVtV)1O$soi@dVTXsv{MnP1d26mF6@LO%HgYWaQYiCch z8qs!qDi`Os*UmzH2J$H6VvMnUrO$(J(^*bVJAqEK;^o~F9kEoW==gAsqQd!8@eO^ zCcEc$GE1V#jzE>-Pd`D9?-E&uwr&;vXPGM-^!Y(541{bQ_3DEIl|BQ zn%DRFlJ(#9*>B&r+FZax4d@dKA81Kq6_(?1u+P}ddmRf27-R!a6Ln+C<=pmDejDiI zL0n`wBQ=B_-Q)U#Oq;}lm-y5D<$5RYY_`YC%HIgaa~mVJ?(@>A^B_*wzMZfHyxhZn zw4_W!D91P9vE(aH@S1NTe-F_;8P~XF59fIx;Vz*3^K~>%aXK8Y6@{ALQrRPItDR`0 zg=^MSCQb>Dz6|-Hj>R_0eL$`0Z6oj@DoARElFs06#E)Rk%RHsSZ`z)<=yR=<_A3$W zVZ7c^Nhk?b-i@J+*x<%_ZKb#CNigvwnO|^ahSc{}zW9)+O!w1$`seqrK1=Zm{NBKt zDj;zFYU2A6m5Ng$Ft&s8_1E*mUKXSdFr?O<`J7N5p<7Cw6y+IA>gmYjnI=Y9^(;^K z=}Z9bn|ZS)h0gS!B3H~!5G5m)KjhtmLk5X$Qr_%V>aoLCk}lm??U$}vjgc0>a=ZM* z0Qs%-)khbRCC9YRtWDN9r{PP90__CBV=e)2v`=0QOqb);nqJO#M`>w%9mj|_T%|P~ z-pBFJH;E1`bn}1Mka}G(^UZkwB{S98yY5^M_5|Y>&rF7SPBAg3Q^@O-vM>}Wr-)8dZ44Cr+-y2iQRC}={6H|gT;KLQA)abZi%w)c zZZBR*^J_H|teuNH53E9zLJ`t&lqvQFUc-7;;>N%Ir*T&OpDDRTTHRq?RclJ$s z6_!%OL+^g!tXCs;3yGb_*jAzCrZ~FOND?&QzxAs5LaHpQR<@$6RH`d8wr$Wz(j0q{kvf$i^Oj z6q$3$f}iRaX9}i&QpS_o6mfW3mi>gi zD+L*c5%GQf4-db~naL{$C6{y*5gZ&xS$h~Jmm5H6m3sv{lrKf!{_x>WQJ-(y%OGrKZ)9zW}lIr`c5&4eQY*D_R z<)ndDYEkTNU9yKm`MT~TPBK-3*W0X@ld*>O!$bBjJzmZ!U>FGten#*hXwnov*eHtg zY7vn;C8bFP&Dni?bfudWce(v(jZ1f&=)WN#Z=D~pb)tD>9K3X!kppm>2*&YZ`4e^ue^>HCdcs#Y?8! zE|E;pe`JZ}Ar)cEZ!;D5289g2Phqn9so?KtzJ8W!cdLq7|J=&tHXhpszt7PCZ=bML))hnJ|)(Iq;msxkh2BS)zK3Oht#qHJ` zy$os?U&?QL(@T_yp{CO9s$OK5`i1Ej%B&a#vI_{fG6t%FUve@!toV)C&T^=d@MQ_hX4%T>N6i+=#b0YC=syeIIdD=px^Fq1 za)-yV?#+ZZuixs4Opiz4;&qDNdBk?;R_^z3OMXgH|G6zr-EI^~2bO#kZwa2xx7Ec< z%r(hdDnG|6MmET;xl#+vly{m)zLl zf&Xm(g!XEo!~=*MIEVaV5`@r}MMda;uI$gVb5fAB1D}ME`mZ_t$Kgq#(^e=IQNX+Z zK5uq$5oCS9Px<>OHsCa*AZZ6E4Jk<40Y*a#l6HX5kbhCJFuRAoE>0)r2cVsU`78pJFujGoE=!xKh6#;>W{O#*tHd`>O$H5F<8J? z1=fEb1p*bG)IZJ+EbAX<2bT4ZvjfZe$Jv2p{p0Mwvi@;)U|IhtJ8%K|tZmi3Rb1Izly*@0#KIlEHcqa0OvC>#||38x&ho~4dLg;VrUjOoo%Muk%uQ;j{Fm5qA%AW{KNflE2Y zMS&UBq^M|~ukci%!k|UP+)g3=4Msu?Z>cK>H;3VsSV{j13>`N3ng1YmB|$8AP0Txv zS&Tx1HfFPQ*+r(8=~TK%!C0|xIQL@-^hu=)GU0g4!_QZoqJBu$;W2Aa;b?XuQMP-1 zvy>m33>Hc1fAr1DYRNqHXHq9)-p8SS>L0f3%k=Rjsgkj!p|z5onrPzf`jLNS$Km=rPV>{9UhyyQ-f?C+ zMB1CzbDX`?`#{m@VD?2x^0hh~k5rn{F0SdRxM9S1=V)EVei@BYdkWL1xby0os2sg2 ziYWJxH;h`;8f7k=SMkH0_7`69nM@Z6XvzKRlVOBs;4bLjX~%TdAfE2%xUs_alw2C$ z%TS)sGgI~1`Y%WA*W%B#n8f#tvbP&ll1IKO#pYzF4{6`=JUf2)W8`3a{>u_AZ@{j7 zAIj(&zDAc@`3Oj}?)1)sIo)*eOqhe>`0ZtW3-{AdcI%y`fl~w`xCF;P?fc z(kKF_G@ff0T7gpEtc{-zz-Ev#x; z)ZSrZaPqGGyxnY^{5hYZ&HyE$QGJ>up0dn#++m`9&Y9YV8S%ulOY(OCsyoPt0tvq! z=*vD`_(SUU+ZKuF-qJel!1A%8A0=N}-%`(AQw?^-zRP`zSvP)^PPo|M1D zQb{X@_-y1?n-#)4%NeV<34mi;^MECOvWo2dZrSCem7B>U?qP$pR@xh@s!Zw;BqWUr zNxfAU?*I=zo*2vYNUd)VLG@bg38Zd&F`8x<+dku5V07yCuWGPM)#+jGeNFM{5zEAz zmaPt-^H4{Y!OuNcgQtGHp1lA3^0h+|*Y6L{2b5RatNoiR>gKH-s|ymZTAa_@AM-L~ zS#BDu3Zd^W?zw2D80B?+=xZZ+;3`htx$wlBT?|{gFeLb9Rd`xt{GB3HXG(jx81-V= zi7UzFFB$G-tKBsMA9lsAnogv9H9qVaTUtV!ps1RtnFz!>s98o9yI-7_WNcGZ>dRp3 zI+=dIJDH_3YR*D^f1En$>Kj2ygAI1)E}MW?r(X>lm-TJ#cmQJ(qDk);2p^NAwsRgI z)ESfA2gW2S3>UrtV-g42sFk>1M+}t3_tnd`xV#LVF|r5|3+`!!`2q2j`M~2Lf|DyC-CE?BOgzM;MK7 z3kyw=*BI*`k?5BhdX^Nm*+-~F{(7>1;~?$$%+*;e!R4#+gT5HX?5C(&iH1D*LHF|q zi=Kvu#yT-$xtpk(#YlABfq|sL9Ilg?LD@&$4ViBBN}J^)2frnuiLO<0cmH+#X^J#X zGv#uM+LN}4$0LJv{H)J%t{J^vCos8J>puPCNkPH1kQHDl?p1c*uDz?SH0o}Pix;On zy|nioy@h3&^tfBE>!*ZhbN-e1w1)Apvd!0@D(RPqEJuss8K}cAr9m`XME8zP3#5{I z$>j0Uwl!89E3a`TT?|!VO8vK&uhhlPy%$3jSmJ;-ywS`A>_~+`Yb6T;9Z&~MVl;Ub z<;KN_X4mkjfHx3mps~tVX&lEQi2)c#_Ba+A3`w+@JPu#wgMAiz4DhqT#ww;bfKMkR ze3g*|e85qgGH+RE&?awL{`XW`P72^OMSBUb(c4p$MBud#XYqikKR3)*xai+0z_lEy zz_q|hn@s58EMTde4fxNwDN^1_pKKNl5;P24>t+Mj5S6oVpnJ-I<+XC)pM^5Ok$Mub z{-#6=mIL2prVNm&KepNV&^0Wq+-PkZmU{Htc9xqW|GSm{4+Q_4r39AXeeb_n%Kw2N z@_)@-DQJrF;;O$~2;Q@y5lZlm{m%p?n>Z30pakyMNN9c%xLqTm@k!urjfAErftxk* zKRyLdp8)n$K>i1)z#6z)Bca|h*vv&joC-E`kx+LTY~~^%QU#m2NC;KIX%8gCs^GK- z5`tB5+5`EAR{u70kr1zfB#4B76>R1rAzlTWxk!jt!D$a9#H(O47YXqy*vv&jyb3mR zkr1z5G;@&M?`OTqMM+U^5p9@hV7yNQhU#W-b!qRj`?hgm@JsK_tkl=w>l0 zp328vEC(#$2I0Wz3Fwe@7A_2_KP>q5F{3hh-JalyHK(TAcL@?Y%>8m#CrmxJr=l-? zC=ucqKQLVU^iZjJ`UY$?9UQTZeZJxgn^T*sYisY{uD%ic9!hcl1$nARcr;e=t%8q| zrK6hG)Fs>ln$A5<_;hq{aG7BJPIL9FjXU^lRqQIF#7yb_jqU8W_`;Y<6~4Bk@L4%I z@!sTyF@!B|0SutzVr3xnnrRb(e^`GVKFD=ww@6h*jP!;;8&=e$S zTvEE_mG@yKDbHk;>SdN}m7wjt>nO$5=+y_IcaP+?Odrwfh&_Q1TWQJ2V`0V2-Yk4& zsYjzuBxE6WeOx($!j@QQ_Ps z!W?`&rkH_4Rn^e&WE}a6jhFF52H($$} z8?=?XYo?O5_9kk3>t^3XS_kbs4pvvrU^ly$5u4ai{d^nShx*KwU-Q2_``%6a%h_VV zPqOWD75wrpJ-RpAnP)L+!TroLVQ4mF$ox!OZ?+ueuiMD;i8-J11H&hwd*|%;PXnGX2(CpFK}qspaPSxxz*LZ4|x6INoI$6Bd@9 zPaMvYnx3THl!pErxgAUUme1-H$X*kYE^m+jIJiukfz&fD5qfGH+>$7bDo3sdBIfh` zRu9zG+MdLoAsDvXzH-}oim|ww2!s;8kp5&d_VT5=Fjvm|&6BNIGJ%ifvLCy38#IIu zj^AL~R>`S{o1b5{U6g~>XJlJ?+9s-@!pB({T4b5h%}74^RHe$ui#+@>)$cdKAp2c5 zf<=x6zDjc%&hm-0BB!#X0yQ#rV?ogEi0){1W75m*obhU?vG+Ty7b_N{SldKJ&g46? z(jQKW3pXB{%-!5;VSgcBpAcR}HRWLMxh?AQ(?+^AG|u5fRads7pPZj_loF@8*4UJ6 zEB8)jNws&124_OsVDQf|8+%)?P{~R6ft_BBM>k^(%_%;`D8AqeHOim?|F7Cia?`k) zGsUW0ad3jCGOu$V-L%U>4G_x3SQrxa-&Re)9sS2gOaN$rH~R4?{vYfB?@E&q13v}; zk+%?ECG{Q)0mjAFP8aV3=TIwq(JYTKFo7#(4#a>dG9=<+JoSIH({{i@13bQuL;&CS zRO}jB>=Zzlzqo@|K4lU3AM1pGA1OTjk98hmveKaIOmWE2?wG6sXjX4bf=X&E)AJjqqH+uI6b%0@*8$5i#$%RO0=njm3Xyy*QDgEB$ZeE^Ds_20SxGy#@>-4lQ&!18Zd0Ga^H zzhwbr0xbWQ1&|4_{96`4CcyG z%L2#*SpF>wAQNEuw=956faTw^05SoVf6D^M1X%tp3p}|HSpTgHKoem3_s0dG39!fQ z-?9KS0hWKu0#FB7{w)hY9boylEC6+Y<=?UZ)B%=%%K}gbSi&!)7jLCAC+l}$M>cy* zYAjJnSY=ZT3mXO&@bNzfp-70LeYx5A;;JamfOkrQubrqa-T?AMpptfv1sl9r5)Hm^ z!UQgkvK8g8>_Y>uk$`u@&?RrlF1GF<23Ekl1~{zlREr6`RH{^9rACh_0Ds1&s=%K* zrz-GQ4P^&hmGvS!LU7T~RavRAfO^r+LEL=cYb93nT`l0^i~O+E`X@i?@z4cYKw|W2 zUE~J~`m;VO6__7n=wW@}>jC+3PKjnR07J##PkwM=A%P>aE*S6oO<@iUU`xAF;K=e# zeY-oL@#`s$k9bG8EwfdZiQiEdm2fZQ*0GPKh3U-LTLrvuHDD)vA+72b&wFAsTO=a(I~pFs*v5*63F+eF7U|erulWQY$&z4` zP;W3qYAKm5TqTON7L&3_&z@pakVG;45HVEaQedKxr9jSvcNFc1DrC{r>9cV-&vJ;{WWn0e+=iK52vz*qMTIUOnHBmwXqbV0pkPIj7X$z zkDi<@9`?3x-=((-ReDyhFg4%tlVH7$FvuvQs>JojMeoO|5F?4hLU@CGF*+7RXLjP4 z$X8yl1vPQ^kvN!2R?UeJ`>T-p_4G$Jzhi&yqW8dz1CRMm98BVyt5f&Hor zo2iJh3tM+)Relt4dH|D?%2N(J6pt!TzY{}yS*pbKxAyq{qh`HGHm=K&e9qZnJJ+?9 ze41%~M;>x;jl`S#!kzF7xOz)C+JEaA)bEP)TS+Y#Rm8m7^=%rC_94XUIyGOFz?_YF zBpJzeYyo}L=c8$TUq*&p{Nsv6X-dBpXoXr^g+nCx(zmDE7j;jrxhd(-uJ z8J*bB`@61+eww{HFF9jsezvK9>-4-Z@3qMKjfryiyfrVRV<uD{!Y2BY4YrL*d)G-&y1(RV3Y5ENR0~m)s}6nNHaA_pu)gw{7#dO)yRHBD zl3VQ%lyS>>V9hVj?T%Bi#y9@QIUybN6l)S^UdBT|b%xaU40O`!V(I=G z$?BBL?tIf_W%T(Z{A=DsavozngY#~zRD>DocX0u#U~_ka*WooILFJ>fMARmu77t}7 z-Z?mFcJKbLK03St6gx{vfzQ0vp*B1Ej=j~&SxK0AM_QV;!giBVKV zN^t1h^|x(UHx9+dG|O=JkQHvm+UqNHv~GFrEkWYt(zd4~-HPr`u0~~#$k>1T&3H+$ za8~ekTbx$s^0l0HyLJmxQwXAb7bJ&-P5gJ$RfxW-C7KMC4Sa5C@FxojKHVGOTQZ5F zy_}VWXG4ib!yC%2G9Ap^N6Y!B0zGNhzfjF#{!GI2Sb=j!+_@5qzPzC5b%m_<$L{XZ z@XrEiu45hMPwwY-uA|MDzm0jiwp!N4jojX$ct(=S_qmpf;MtKfzh|x*>c#uiG4n&* z%gt){(t|!%cmzi^NBH5Az#8nc^3uG!1U%LpIQVZ#Ay%#h`}PQLaZ?8oA#m zXO)qUJf8%yq84L!3R%2k=X-``+j>*U*&-irDf1Y&Pe`5lP&V)h*CjWT<-Q8t1$Hty z^NFu}C$hpSceX-`+dRfP-T?P&&>Rme0M1p)>CJ0i%N<9;7Jai;(=B?&zfpwq57jh3 zm7J4q6+@{9{U&m`=c>zZA*;(w91#>*FnkSm-$cokm&a`b*KYWMmRAYy@JotRQ})2u zL|PBk-C8VLWL%l@`dw09U@0t*p((N%sjz_^)I~2w^00snzT?2X;D#7GUO%Y(A!pKG zeJd!fU7+YzzOPMXYcLsZ^or#%Iae?_SIlVj!r|RXbX(0gkR&QOK8I4`B8SI*u z?2o}pvKL2n-rh$$LX)>t0=1i0_oi8}>t}eK#iMU+X($o#9IWnrT@8|0HgG8t@{%)R zp;_MdKVJ?>v2ClyK0#Hxh!i6l=1W0@hjh|;pUkq-g!GO=Qh&jd3`gJ z=g8!1^J!^vJkom&AEY(+F1GbfzqvU;Fw`NIbK~n6L6fM1xg1B7O@GWhg;PXN^89cL zU6pZTMuhn(!YSNN7DJkuIE6|~#`~p-gG}vNo>Q*j%U!_%Th4jZRqiVhrdR~4Xu{%$ z>!annOZT7Ga6I`nL7YEuo*yRb!!G)>S>iT*i1B@ewm$dY&r;d;Z%J77<*~?1EE4-# z^Vs_z@!#kQ2;_pZp>ouz-PP8n_xb_w2<{GlG%aFarRfN9MKGJP{b`hWs9#gw%Nw+5Xtr*b7vr3a_85~edMUPQc=U_nb*`uJ z8*;n=m-F|Bno9SFb^{l>KlxUFnKHnez2A=e$U8;WauP8}%|wdgS#t;sBW<6*x1e>y z>JhJFiA~bWZ}H~eTx@!!efQ%>)%r242RWaIwZAPHZA!A!5p}s6rDb4gex-w1QE8FR z+I6Hvay9hj`Geo%KcpLDjdMre#e|pgX(`g-oWi%K1zQsi?;G=Pe1o^=h81mzuOv@5 z1lGXqj}fJ7x+iLDDC)E59%XH3e7Hw%W{!-35or)?hk8_&h`6dv)G*#N^x4_8+>vkM zAeEo{iwwuHXuJ43%U)_b8Jex?ZL6}1k}qwPS>9l+It@%++vZEpxb48+^I1UVzF6S= zZbIz}4`J*4iGt9&Nx0aaPg=WVa?SEHZO$jOC-V->31LaA6O}(P2))g~hOZ%a_h)I6=hgAVf{$$_n;Y1dZ)>U4`3W__oVE9#T39I~ zn~6i;UAn!h7PLqt_B;_z-bL`_vIF%j4qDb>f{=qRTvW{l_v;mbsc*E2)OS~|2f1tA zPP<8uSY9IhLM_dMqCR|hvmlV<*`raP`G@mb@;k93#6kRqO?E=h<_5KuVu?Gh!75iq znyX!i36`U$YBqjj8TZQ_JkGBwQuTa&-T8`Pepf6BY+c|Qd!ewFb%Lm^OZL5?&R!i< zdXd;|(|NnFE2jNr_)nr3e_1}S;j$9$hNg0+Q6b- z`Lo(DFdp9ur!9VIxw0016S?-ZW)zq_r5BFWq^tbnDOV7Sc=txsUdTG1Wz436x+eUqv+ndQr7^t{nv8+5= zH1ToY!_4OS#>e;gW4`hC=*aJ#%9FT;Th6xEk+<-#a(T)0=adYf3@qM<{OTPU9M8Yz zZOAFZe>M4`jPjtMLv7TTH`-=_O2QhcW+k%%LpE})U+%VV-InIwmTMhj@_xLy*;lfX zYF4R6eJ^Nrh+f$r6=WCC>-lX8?GyUe8Z6;tX-pK^KZzvZf{aCEVa{H4~@FK{y4@|9(*C9QC4gf2QFZZO%!KIQb1 zH#d`|D*t2(XSW!BB{jt(ZFf6?J2PR7SJl$A-agq}vE-Gh7(>-PR+CJ1KA6t>?y&Fv=IlD(_L@Hjx18X^xxo#BfrN!`n0O9}V~9%Jhgln1 zA%T@%)Gs_WF>ZCB68)kmR+gF+2vXO=^KWWhe)2F%y{NijF8xpuX|~W~B&#hN<+QRk z+8HzacGI~WqcbpNWkphW%WS;DNN@%IfxV4?KbaQRe`8USYMh#RvTI_pk@5ZU=l=Di z`|n#4SBkZd;(p=Srbbo!TK%|{iodj={dtt5@Sx{qK~`vUE2?6+PXRGvPdUeQMbRDJ zTqVHaup7X$C?fO9_hE?k-u-mR3V6!kK|9|g6H)>`@rnkYRfcANefvTgW?S3(xJ%ag zQM8UiJxQLho;50+Yd;H~q}<}bMZZjXqOPbTqFgBbj>CC`#qwj}3t_Qkr+?yG){h@9=i9A=*4khc{KIiaAe0O%saQxao$({ ziS=eTh(wb?DbjJ)Q^F{2D76>D1bDpQ&^oqGZEU9Z+QNu#p#SWj%?1Ci>Z@%y= z%nETDchXYf&d<+GWV&AUZ1^}37dMC|v2q#iII-2~_b4Q!f_BXKJ`1&M*k zh&6U=7Ekj#z7)!$&CQYg(yN1tptDV2`-s~$z5y>1*L`9~2(Mb4UM4-U$gy*H%jiFB z#hh5hFT=RJ74754wbo4e?sjZiX>p$lb)c5ksp|KmC?Y0>YgKQp2fqp)oN=`Y*>C(F zz5Sr3_ZRE|O&{-?zGIbf>q2$VR{FcIcnML-+V|0kuZBw6P^33J%d~iU5;S#~Jy7|v znA~%btRuV*T6Ggwu1~ICj`jLKs;&c`%JvOsW@eAwccg(6*dhxYBpgfAhwg zcZlBVn#a5H`r+9J4IcxqM{jzFA{aG3C|P z%~fGx3VHdsu!D+X%l<e{mSFC$ zq|RZsb*gzQHXCUhzKa8u>bZRpWxVh%*uOv zyYrDjI6Epis|w%z!rYm}S-+csC83?>DeFlFqM1x;x4jIHhFoU+jPdmG-f*=4{#{i) zT}fM_{9K2rem?DGs=sI{FZ!Im5Tc}YjgP59M&I$0T~n?MPNuJ;+Kl3(f#!`%kwl{3 zZ_M}A+OWg!&bZyl8w^qE3_@M+`Vhk%72 z#pQx>)ezk93z2#UpQt3&D?7cLT(A=w_ ze4+WH{qwLXvh!Pps{Y+6h0b48CbnLV&@J-4Kie+$UfAaivC&x*!BbPNnnOVhZ`Pin zY$r0AoW7-8yV)Si$2Y+i(lW>q3W{uy<#gzS^50LyZC6|c<_I+q z7PjL}lw6bQ6ngd!@1J;`66>~UrWx9Pci!~-@4G6MAvrqTD1JkBrjILuntqE?^Vds; zZH!k95A_``o~~m=v6y<*x|MoQm`F|wiS6`%9e6wuQ-AcppLvzJL%&~^CU)@GQx*v& z3A}ojUXf{f`O$_gtJWfK)d2I!4CIx?qZ8NkrZ&-Dq3mFZ;CM;%Vi>zR+kbrAF(nP5 zsQ+j}Ck)6RgjgK1|#CBn2bAQEBP8SscO?F?u{n05v%B1}315)tN{ z!Pmv2oFNVoC4$8{0}>I7a|Zcfan4XeqF9_Wl#wVF=M1GJ3aG}or6r2RIYViQVsXwOEiBF%q=iK}gS4joB=^Cip4pDw6Hj5kQNr_4AO#^002QPibXktw6G{=kk&EfjM3tu7(?y? zf?5>joB=^C3UkhYpccjAoIzSxoHIxZi*g2OVNuQ?EiB3z^235+m~#esVR6pjalxE3 zAgD!Q&KVHYqA=$S2x?Jy2>=k(qVN&`AgD#*B>+HBi-H{hGLFA@D}cNZ==hVuf|ZOB z?4!)bG&HWb=rK24c{Y=s8|RpT#si-QG1CH-F)!GS!0OJnD=rOmNghN?3srJtv*X|Z zN}3ie@sgbaEcWO!2voYgWTz(q!WS)C`6as`x~UY>mF|>69P>}`OKK@Qf2HUv_6`d4 z5{L<3LEN!K6ZAPh8==sx3Hs&u(w3R|^8}TJP3#&c(bu65LZmfhQUXZpd|nP#JW-_h zKZjnZxQ`uriPoH<^R&KNw za%|$gLc4O~ssn?`!T4b7K}Mv!+)9jP>(P2M85+%&W|4I4iVJsCUJ)MMy_PUwU-@LeR)n`7in;GmkR~UWPx< zFtD>&OWTVuZ9pkx(~1Z8bv{u@%{{aWe&NqaHUIdA9NmT2(-zT5#p+|*G(ofL)g@7q z2^SJr{Ozr{1d*-YH+6CQja~hE42qW8I&)goY@ZQPO#G|gwf)|Iz_ddPFLbN$5%*}1jH;u-w{b%H$mMP;+!^?m^>l25EjLvfXd->Yr}M46suxP5l( zky+p>6XZ1?%rsx;aB*|>4B+fRncmwIkN zKZv2R({J4VCCPi$wgWK}V=2WP6{Au2>gS0Ll~u*~(L3xd_fgq+0=N!%buZ}j7BZ)O zPYRpjq`C*p^6m_LZGB?8d}HKHlfZ(bpDunrmEf(&`*#%W&6+j*w*+UGD{dw?5T zbzYzN121d3%dQ-B=!)8jSJg1_{JCF(=E=F|3u3o^cq`sp>mjtD%a&6w;8Vi6-Fwpe ztB3Mla)r|fx_>a1wxd_oC30`?1Ix4vMs}p%{tzC zWczn%c9JM|;uhU3m=yEX{C4^6{2sAE4a=?1`D3PQ3&TERx4S6w1BLb+S}vxi+NWd^ z*sh40=2xT(*}gpNes7)}PSX-tJG=h2=i8OGIW${9!l8suxj(9nMa`5y?lX&);IqrG z6^wjR;vPkx3C|f-El2xX3h4`9KgdbEo@Ze5vBjsJRsBm#FX2Jdf+@RR$Q{z=Q%ASh zD=dDyIbZ$cUma^29T?49tQA`uZto~Qz1UJfFCnNkG~n>9W|x_dsA3X@N$ukm30?~zYsorX~ z^UL&N5{?8lOVen%05Rqd7LQ(S5(}1(8ghJK z&Y-+*8r^Q@On*+h*tB-T*)5R1^YZ$KGfSjzJDt2LRiEkf`&s5l&704nboc1##;#wP z#v5&Mn?_NYP8k@Zx`ss+&U|=zm-vb1+^;u-*Q8oC6XllfW%v@|aTKIncTH^_6EG3# zoo$~emNu)q7}+BgOP*k4l*o#Uer%_Vd^L+up(mVqGNog&VrHG9IjU4%!(8OuFmd7g z_sREC?r-a#ZW2ACH^I+%*|c^0whr1wJzD~Itt{w+xsIo;PaR4z-Im90KW%!Gdp=pH z#kJ=Xi$@0M)A3jCkIJq4E3A?4ZN^hMtj#{%m+-TY{p|jUc&*UiAb!$OU{X-%LvdGh zruwEt634KlcI+;EMt&%7ZudGdQ3 z*W_WFjsG9-lrqsykx!?@1`Ul*WWz^F&2yN}=5JP0VtSvvGdTyp>M3 z#prX5vGsjsCHIZ}oz%Hgm&q%>legi=(m#6_9UHV6PCX>Hj?%DM#C;;$X4awaT3fPf zByVa&V$inIT8FFsN}R0LGLuDEX~nTl%;ThYH{-%N#P_$6s7=({Z&$}wmJ(8=$aLR) z=iMH7%jERZMdE7qyG?_EUq;iH$)DmE4~Md+X>m97$9|a`G8%hS{!EMD+2_8K2>f#| zvxINBTe*sTyX3f!VybvWv1KG;XzoH<|3a5_`Bb8DfpDY@X`x4rP?c$cg}QjL*=Fb- z-)La-p86=s=%FNS-(jc8r-dRNks6J=1BH|J!QO0+yJHdYXCHsqJx?0!g~KrE*cOcH zANq)BQe*Blb8uR$7;{)k)YdjxpmkZn>c2hI_tXLM=LDkb-ky!bdKPz>zq=G8* zsZXB+p=Swap6HUVh|W%EaVfK-G`HFYe(=u%@(bRb%3WI@Yw?dP`$;%sv_``Isk=YG3;y}C5sH2X-T zM(CDR7xS)Mf`^8GqY%zFdLIT8MibtK-1Wu-Uugreq|I0AY0JNx`{xJZ%jZdTcl`FWMiq7K#*_W^1jT2>lUA%4jeUR^{VH#OW zs7x#sGx9x5;M4NW5AOrq#eJ5F?st*$YHKSx-q5&Y-4v?clKM@H{__n=>8Mb7xAG_z zNi`~QwPl`!7@pVaT^^~~NuBg!8cy+vOWbG5#Z0czq2Bb<8(x3RqG!&t81cP35m(7G z+K5(0RZWOEjjluKbej36*Cb6c{Cx?c^WQmGraY@a7S60fc86kKz(zz+Nmq!-MMBiEe2>N9YZIT1NJby!ox~aiGMR}p zHrI%5YmqI4?>&5(BU+C<%SYbOiNnqFLSKs7VCa4s>gFgew;&!_j>=r5L#M&O2kF@r zB0WW^jy&h=B+|Cr^YJeTJ!`dMy+eKTX9CaF*{C|EEMDOuG?;1~@QuZN{NO1o~7GTZE4w?v&QK(gO>n^%!LR6#S++@@jt zbL+|K){DULKHc?SnJt6HY9kMv8^@)GBdA8!11Ik*pI}T4W7JMacNf3vTrittSHON{ zLWy!&!RW&TvN+GbEvv1qt9EI_#-c|c2Jxs3IX!cPQXTfvsi}IQ^D4pXH<{lC;fUf# z^@s};-C7al-^Vp0hDl}AmzIjx9!@`UFqfOo;~LP+O*J+Zn#tj*_6#yea5=atQDXL5 zQSM=%IzvEyRGALp*-2T6RaJf($i0VdY|)jfwt~7;Wp78gk)FBClJBR?%al5sVI_Q0yOy6PS~6fFnA*AHK0Km?X20}yRHv4@K<+GRBU{Cl zf?weyUQ8?JQ(jijeqkr>D&im70=Y*C&CzW*vLatmY<-`?6p2GwQ8Sc8!Nm7}qa&$K zXRGb)Q1Ca3j^&O2k&dNmoy&>}-?Q7}?ICgKkGHk#o!D0Fy;N+m`Gs?0onq>-@xdfY zLZ)!_m6Nene@w$Pk7H7In5*#d3Go*^TwP8ez4!4cT22YJZKNyaTd7997n-iwg;Q*y*lrIO_k#&#?(lNZFSjrmTdOAd)kt-y?jR^NKpL(7|;lS`SM-;?cs_6~~C^pdY% zT@pO}k+rk`v3$8T_qW_KafzAkt0|&ll&1U3q_bou$S#o{`}9#eZf=AybMS0ZJDG*vGJp;}N< ze)ddvuWEDupt$@1d07jc^J}KU_p^7mK*;*SUb5uV6}44YyQWRoF?NKI=7Tf-UsYwK zethZs#3$?9ek=9Ynw=vZlVjX`V4Bho-ar9=->WhanY$iiaSz%p{Yh4HcZttEDM?+N1!YT9%gEm7BD^%^6+G^HS#~O8$LuwAZ0oNa z-bz<=;zDd6Uutb`Vb#EQpV&c@hWfI>zy>do1dkKiyMqNmx-!)DCK z2NnuT)DH1}cgT8M_wah-K%nwrgX+59c2A#!9oZJTvboc)-1DMl1J!jyR+rU`ug|3= zm5gQ3$eI`JBqc3j8dfdS*PmDV%Jwj`|4{j@Ew@W!e2^NrA`_x0Z%84!a*(>QhmQSZ zX?m1l@t3wk{-x~{KeDT_|GV<>FK;LM@5;x&yq%~NbSaUb3QF|f!YOp~AH)N|S3LqI z1711>yw5-44_t@{MVR$Kz^=gTA0Ss?_789?F#89n6`1{l*e-FDD9rysbQkn8hCPDl zE-1v1S`gg@g_zYqi0y(x4A%y+T~LTg>6o{}q5wfsSQH?XmDpbj5X0Mv!5kpq?ZjXX z5GpfG}?-hQ$Fwk4p@T0|aSd zaeyE#m;(fhrDE{fDOfBOgDF6;SSkinfMBsy>^}&7tuYUH0+i4#@KPW!Dc5N zwAgsO&)s&&&WiK*jxKS?`2F}q8yY&%cB)eN54!;lT0ek-1|8>&i;srPeg)AGVRnRe zW96Vl_miB*fBcE#6gq;HgTIm-hl7L!J;=&IgWh4~I0G0nVzdP*2MgMT7y4KXDF-z= zoEQ4Uc2bT!Dv0zx-ZU2%LjdbFL39Z#2k&1R&ZCL_6fX2(h=&uZ%m>sNhyWD_8NeBk z38D*lIau&SC83jZz~zGY42L?!e{|&E@`GIDj_XYfJ`N5Z4SX6LJQ?^fIQV{HodpLG z=7$^n5W$x>g6|c4cO&>#!B;ne?-YD<<8i$~*C7A9B@@&ebO|vg1o^;MH-dVDF5Shv z3NnH(#s&2T-8qYS732h8j0<>jpbq?Z4=Uivq5D)p2-h2YG464_LFfGb`|RU-gD=KC zt~dB%+~azKFUAFn+|X@qnEw`}1z(H{7P-Y>>xpBY9J+u4^VuM;e_aylf8cTb>ym1Q z$MyDaJ0A+c(}J7jalK)6OYpSdc6nTHaK8kL+|XG~=<8zD8{9GhPYxYX{FfHs$)WRs zm=L4|cg^E^gPZ1Yy}?cMxZdEVd0cOB(*$SMpuY?AxWFPebS&cER|1RN(1`&|2-1SP zCg91TEqTnVP+HJ-`o9qH|xp`R^i`5Lpy4iy0uV}7`xDu6;vT2L84 zAto)T4xkW|7E}mOhjh7Dh4RTG;^pJpb(Q5 zR18pvNee0lD8!@%6$2Dv(t?Ts3NdLx#Q?1tV$uRq8Prp;eSo1DlNVGBP>4wjDh4RT zqy-fN6k^hXiUA5SX+gyRg_yLUVt_(ST2L`SAto*011t_bzJHGkDh4RTd>5f&fI>`K zP%%IuCM~EKpa_!|R18pvNee0lD8!@%6$2Dv(t?Ts3Z+p0zA#h`P>jh7DhB9p#-s%m z0~BJ?f{FnOF=;`?0EL*epkjbROj=MeKp`eAs2HH|Us@6Y4P%%Iu zCM~EKp#MWmT2L`SAto&#BSJAIFQ6krF(xq}BtkJJGe}8<>Q5Z*@<2<3;(y5*0x=Pa zG06cj5sER{0W}edG3fz05qjj9{D7Va#c+b4<%?r?{Nta0tey{sEOD%+54yfMR@Vn( zmN-`12Yp{0tM7wBOB}25gU&CG)%ii|7l*Gz7d;782=oEb<14}=+r>C4+r>DOOVBgF z*-xRhWeJ$k5AM@)<3i#XbO|s6%9&Y%GI-Q@*tTUZt-)xTgE2^JF4C1l^CQIr6FZly zr~ApBl4FiSJ~)jrk9}(Yu1r)!mfWXpJeqH4UR?5Bl38@lt->al!*kAt^Xm&$Vk4t- zijU5#IvYnrg(QGJAL(-g}V&`Hq6w=j6I{379;92&)8vRZwq zD>Yp!VQ!_`PB1K8E8bvctT|PJtt3scpYJpmKYd&$UOu%Tr7sRaS)aoTB3fL1TqSjd z(}U)mLJILL^eoPuVLxYLp+7w7v~H$4EB)14nd9U)Yh}Jj0yW=-S2I!ZEF6_(ajoHa zPA4Mq)HKU|W;&By;~pZ0p5vj^95mDL)VvlV4DIszI>Rq`-b3P&_I+ea;}|^gl`jdCnK{i} zqs@Fx5X94S8b^mlehoLfB?V9Fb)mRbLSaQ{hfQa@pKwDccX$>LW38h;Dp|rAuT-*lhOGV0vjOV7tOD!&*TL&sw4svMzXv0f7H#urXn21_$F zYvgOR#)Xrowb1emVx`B6ZoVr(B zaXs4)b`CylbjUev#Z%Z!oq9!g+1X9$x8>V(wEWdObda9KE<3n6P;Zo&DW=hG( zEcHRwNPc}`-&Ee6{@lV^bMx%$-#p_#&)3V$-%I-XJ5*}Noatdj_V#MT;GwzG{_}Fm z$)@Bm!g<0zvYY1Y*M212W>6_DP4^x7+9h`r`sFC&Hd=RIoz^;FcI@=#Lw~vbp<@5l zppt>c59utH=;mNty8kAAapd2lsJP+~A$^sB7W{5~is?TylP@crcW}@agj{6k7;Q2- zeCUl#qOuJ5J41NI`lBEXB%wopfbPryhs2n0Au{_|ynofheG2-F*$F`bU~3{!d7DB& zpANiyj2xg>rcMa}ZxbH0ju1y9T8)%Tnd;vl_!l>bgX_}Ha9l!(!y_Q*+3*AiIyTk- z2qMfo4(QhK_y>A5Jp6%94bOg{Ps5`hXwvZHcMKd5@aPAC0|FlXzu2m&7c zz&i*6#>?Oh1OZQe;Qa#uPk!L-0|8Hd;N1i9ck;sk2LwF&0pNguM?U}@5b)>+fCB;^ z{Qz)4z>^;U4hVSigQhDe#0(7pI3VE3?-)2B;L#5nub`JPZ_5BUAmGst00#s-`T^j8 zfblW_4hVSi13(=CPksP6AmGUl00+eJ1U&iy;DCTfKL8vM@aP8?Y!LA12Y>?t zp8NoCK){n901gOv@&mvD0Z)F%zySe|egHTi;L#5N2LwF&fdv}`Jo*9PfPi;qz=90| zp8NoCK){n9Sg=9BlOI^HL4e5*b}oQo%!CDi0|FlX0B}ISqaOec2+Zhb2!I0up8NoC zK){n9G*v+%X0!sp0Rc~b$G`yrkA46+AmGUl00#s-_yOR6fag8{91!r-2Y>?t9{K=q zK)^E}01gOvNL;-L>zz81z2gJX|4jrKfzySe6{A1vNfE)ZVa6rH< z{x5Jqz+L_rI3VCYe+(QDaHl^84hXo{9|H#j-0hEn0|M^%$G`!B)$u{gm%#4$060is z^?cCuC9s-4==u^^T_3c439Pmc`o08K-v^Cf0;}j-dCA#+>-7Y_A_{UeqWC;-!4j zU)NNw5QjSo;Om!P3g>Z9jcc>f(z_dgBl7LfyW1!G9=6Ipo)HVvAPQ^J640dNapsId zQQPvUQ_r4INVZ$>Rx!}TFSb*2@bip&|MmP0u|f@fu|hO;*F$|lyN?3J@g|Ao_uoHx zS!|(XlE(kGLLqf>i4oCtIShAgtm_{Nbu>KQr_Z%6Pw; z4dR6rvWyx|#C%*4&vAO%8NMg7yy6q3knW6AxGol~`ZGt9yr|JBTh%d)L_*{eogSVb zQfoMhaM*x5P*f%skLjWzo|bE~KDQD#zVju=yGrEQLof94c8lgksRKsEb>gnyN@#`eu0KJg9rSX(ztQ<6KRJ zRbhS5ErbjcYfP-FT2|ITmMW8JqzCc-a1oc=*W#~&r&)Uz9eoip4V!+!_@wrE@5V$7)?}`_z5Y~K_NDVb*)4kBSt zthjMbjn(;Z=14ELRADC%6_8LqBP>TEXrjX;kH5_FI7FL zNeok|hpdC7a0NuTI-62N^~6q$8i}zy)E4tZ^zv~xrRb=Jit?YvQ6(1>(JbcRZj!n~ zB$Av!)mDq*!ZXfwi4SXaWIj!-sw-yD*3N=Osx6|!%g2~Y zLnM(DPV!JZ1~)6Z0oPX0N$O#-`72!8%{tty;^sUX)U5!vnfV1ytBvGyXR}gTF2A5Q zB5G>WZ+^IKFiT7pMnYPl8KLJQMn7$;L)dF!x1psk=6~hR!;h7DGkiloXQ=iuQKXNWA2&NX5F`s>}vd~a~`?xpLDA8aYO6Ra?|2K_H*xrX&}%x zLvmj5?@f#lpE_96bV-o zI&zL%33AT*OO_sA6a@Vp|KW|lxKKh&`Y$e&fJb`pmJCny;0+mTpa&5=H-iX+62V(B zJj{bPVtAGZZ^Q5?4~;Pr@FahX3nk!D9^gU=c$7aL5#Uk&ctU_l+~WZOp5%|`19*}@ z9uMG2{&+foC;8*y;O``l!G%~3@c@}9>#@OKJfq-V)?`aT!`fp4{#xtPdvbdSU&Lp7h?Iu16(KpPx1g4V%fwW<3cQ- zcz_GBeBuEv#PW#;xDd-H9^gVOpLl=^v3%kIF2wSQ2e|OBPyFA579cG!$z$O{ET4FQ z3$c9S0WQSyi3hk4%O@V-LM)$nfD5sF;sGwi@`(qy5X&b17#Cvs!~o@co@c{8e~b$upZI^e4#0(yuviChp(M=M09+^uGd2Jh zO2Ui{z=e`9V*_xZB+S?VTqp@MHUJk&ic0(+E|i2R8-NQXVa5jFLP?mh0k}{SW^4d1 zl!O@@fD0vI#s=U*Ntm$#xKI+q*!;zXk}zcha3RK?Sj`aNLdc%@-{S$e5X+<(;6f~y z;$vKh?0i;r<3mSyoVF8n{!Vvru(?T>LGwrepE zl(21!LCeSXEfxj15Zk#JG<|IAV$k)my^BHH$2Knpeg8lA;$x!&(D`bW0<*0IrnSvBxC(YZxyh>fimS zOW=M~HaX!YN(DLBof$@v%@r%g=IF_O(ys(x2t|)BUU~C6Lm-;>CoT7xu*vka^pcYF zCu}lZ`c8{H{EJ-AO;q&zT#6rxA|8q*I9{_)$em4kn|x1TU7Wo1>|7I3x3qj%n7(gN zVp5Wn>KQ5-=0c^Jr0s4;)JzjeIg!f?v5&Ns_&tLZma2C}i~32TJmk*h*q2=m+I~=u zd#-4&x~Q}JQcu9Cy9OLj@Un~s{W6kRy;w!O7f8s8KN2&ZDk_gFBYj0Jn5FtL>Ci0v zO265?$EjhCM(tF1tES9RoL6V*MDhK6A|g+;s@QPU(J7PR+`DN*B*KHD!ox2X9?SCn zh%UHgb=N?G;$hR}ooj?5HW`$X$$_`6E^*#Fsd`p6($`Js`f`}45p)r$*AKahK?gN? zZ7caz21-qrC2Eo37PFLlI`4T;3|=FD7;4`xjy}PVm`b{Oy~7N*<$4Ho3z-fLH|`{{ z=rw<*vmrJplV&3c(q{8pEgAL660Ep)g& zypN;KNf*I;S4kqYS&V!=E+*!EaLC zP}73A^)6T4M%iPbMb+wB_jFX@+NSjw%lM|I+=1ssRG;3#@0u|Vu`kg>L!5;Va;~$C z2RF)+v6>YI6x39;ys0r@-~O4$_2kMs>)&^eI!w~Su8?1iJR-~Ar4)>`=vd$W!=FW1 zIX~#*B{d-GxWm11bQA44+8^0Ao8qq^9I(QEp?`Niai@GL2BofS7OCTnGSoBU{}CO? zee=!v{U`wqj4DBE5H*Iy1r$J+*}iXV05{bphqP) zTAd~7t0Um0EF;LRa_R_BnB^9LUyRB%GZN|^n%5j_T0?v_JuYS+Kv z4tsK5NE@F{@`)TH?hXjgX+l{to^a)S@v$5I%T!o0jEP^sbn8trZiP@DDd6)O8bLb zL=bxtJ^P547M#L_26tRZiN9hH9;Af-rw>7YfbS(O$z|R?ehsKNxR9Og@wKEAQM_fx zhc^G-BZw<5iRM&>PHp}L1<+^x{cI!}$AC-$9}?9i(9O8e-GafnXP`?5A%jZj(!n#8 z>2bXFC(-d}HrnHliJCyWWoD&kn8AO5M3-q1(4b>W&yfFp5!`%Ql*0S?H2Og_FAV|I z_@FCJYUoaKA%yzg$Eo2y#JJH0%>C&Sz!ZW(tgKS*_mW-cfW`CQk4*|b+-fk<3; z*)qNHjH*;GzHy>t6K#hpz6QzM8=)TFJE0q#-jANJ_%I=2>+tSL8`foMq_pf1H~sQJ zbDXM+y+vGpOLG5QUm)p>lK9GJd)d0j2(CM&%P580xa(;LNi0@7<(8eb?T=avPy5{$ z6iQ@SaH_}85>I=U=<~*ygRuXoRHT61C-Zw|;Pa1~)*n>{-bZR=Q6}>_D%NH^%1z+g zQQ@HT;nWmC_`7hQ1XET^ZVwmRBe5I5 zUz!J+IA(pw@)o)hZ8dEsUcI0Y7thVu_&A!XA?&P`8=5TC#fmycizA8cu7Ih;?N^sZ zG^?MKl2a(mOYQ#Xyfso^b54=stIu z7|puT3BAgl8V!!bJhkBaO09SO-U@HyuHeo8;rT(b&Z?PHRj=kGJzASo7um76&K9Cv znRz!m_r0X8SG`8b55?{m5+B6rBr`AEeG%6!E{{T!p$(SPw66wdy_fR%yy$VctZ`gG z%>L}+z)>~PW8bhvp*wv!Omy3JC135lDPs33a%s^sYPJJlP! zyv%M7lATB5NVYW74cv^vs;r_aT#@+@={LO8z(cEMeg-d?)OsYJB{%qD#JP+IOgF=a zFX^Ie2jq)iU)4d?Yr7cAhny`S9)3T7lQDEzQKO2!IYLW1hpM#7w=g&q2Wi~vnOQcK zGwzWWUv0-Z`k*~8je=v2kNcU2ZK-YTnhME5@1DH3(o}R^O!bb_kLBz;1=sD(e-*Yd zrP+n&)Z|ID`O&(xo%8ud!a2BrD;6$e+TmD@QaQ<58TI3$O3%GE7xe6GY3J3OECtpQ zhV=Zy(dlsn@=rL+e6$UYK2uqGTw7AU6K{8UOv}fAiScck;^#9z{Ex^e$M54I}zUcPWv4B!e`%BVD!Oj=8`wV>&!nm#d~LfLATjd?7fw| z+YSwGOL67zvvQ~cj_T5sqO=7_()-EE@1M1loKjpMOWJ(Q_F08RGpO6<9QvC-jiuow z&-^|4T4~)o6+3-8eWc?@7t|jW5-N$h`IU}a)LhSr*t|k2^78YlUX4qaf-m(cJK2co zeBKF^PR(_W=P4HtYggS%2W^m3601(U5HU-`L))u^DPpdH>Uk7w1h5Sy>C1A znF=}95I9quKb+n=7dv55+m`sT%=V`9tDf%p1#=IxSk`YIE>^Ku$nt|J^66tIaS{>t z2C1V6QjCbTQ66`?xWp&V8&^|l6B(WPb)_?)36-ru%|P@X34bVYvx+v=esFHi9hRauhC}(c^|~jsnS>lDZ;$vp*DQqye?dH0p^6l$iFu|) zT+5plYx%yJno*Y5+*_@rQZCtFvnD%q;6`1)CVhA#XJlXe#FDyV2QK5jex5CzIk%y2 z^akp^mc}Pm30~)R`(A!jjXx*xt7?*=Uk#k*zkk(v=9~)%Q`-sru9`<6SNE2P_D}KS z50wT-lXG7xg3g@m75OIrB?A|=!*)ltW;E)lXzmH2BvRoiRLFX3M!#nzpU(ZDyQPVzKFSffi-F`s1(fBbjp~=@PR_lwdj0L;9&5|K^#0o5 zL95RYCG)-LzPwl`{v1ootv_|PeA+o`jNJ=PGrg6iL_>>@YS~vxQB%*IbTz)`Q?Z4R zC`kAY+Zz^NDtO#7&{bH+W>S4uM&k^FvFc)j!`p-GQ;#Tz?@!kd%IsHIFY=Qt%9I8B zT>Z=+9Tf9i5K*aghk5Q4-t7 z`ZeB{Z+3}yYX?yz`@_5R#aWe}8XkKOlGdc_GA&JUmKC;lTPG}|1$ZJ&u9lg;3gkN} zWu4}rc$PQ}-4uH*e=p^Vg}u6&@8LO;$xR!}!BeI=the~Hp0hQ{^ZlMt>fv-`w`^SC zS9!R8NrQ0Q>^5HrE}B=vV88BMe!@cZ!xwyLSBn?hseBg#P{Q1i87iJp_juUSOI=vb zQuEABh0o}VO?UTDmpOl`lD$x=V&LnfTfw72H+iAP@boOv&9O8Mz44Zmhk|ya_GK-} z5u+MVu7SAH_8G|$5Srll!tkuVWI@a}pLBZ|*jO$TW%mgk#gV)Zn1 z(u&@=w`I^agvqbc*stRmtMub5zYT-l^a;KzZ$Cly*xY0ziH3hYnzyIoX&d9+0xOr{ z?&P+IBtz3*FSHd^w%n}0R%t*>`$)cab|L{3P=tGf~;lS)s|EplDh~>4#z^1BR!L{!#CcR!- zve!cjrJap5nIwMAMyz&UzgT2f`Qs%|=Rod9;>P_s!BPIvm}yPuM&wA>V3G$)TBj9Yb5xcP~7s=p{eE%Vv01cr+3wy36KjGvNstfkFYQuS;}-RA&ePsvR$N0 z{Ikq8raF51$$RIB*CiRNe6~DB5j*@2vHLOpA;;n3^|_sfmyP948eQUfw>un>uS zkz65vP|GcG5}(0MSLJz8`{jJ1>KP&l@norql@BL{jk&Y7Xi`!0EwaY0VS`sqG9}H- zhF;bb7R9|~i>~g4{IVqmfBxFPdgh97c7RddZEIt*Kfe~gpk>Rr{8GIXcWwl=+5KwH zl}8O!)j`MrxqrI)>v-h*`Alo-4ib6>-OW0c>53gqQ^jgGMUhK{FSEo>-zPqM$t`y{ zH2iRy`uU&W=Yo?qD98uqw7`Y8x6{=T@!5*)tMb|}a<%(Oh%1)AZOYx6ezx$tjr{}3SWi1L^BNv$;wA6gQm)n>S>bd`&o#z+&K<=it6|QyFi_u3jm)Pg-rcM&k zzKR}K7RS?+N~8$IH44f?F&H$tWY*oHFtEDPlDH5bygOlNf4=!!cyNIR! zi1!Ps49*7B_dM+x(kaaI1V5&UZh2+qSRo0g=anuuvu#THWKL29T&9c|LG|B%e%|iI z`W@XQf%4*rnV^)NP`26uEhqcZ-Yax;DU7sRKTf8w?D=v@MwE1sS6?ki&C8K6AA4bB z7~vgH{o%SXb6L5NKT7X{=mp(q!L~PT1|eyw-|-gH=Qz*rES#6U^0D}?nF~KtdYJcR z3-e~#LIdRca{XYBk!076lsL18MfFQE^s+^kqo*o+{qoIknqIFB+o<%J4S6^?<$~L< zdTkNO-Si|4a8xgHH)#IGwlZczE{-xH8y`HC?5E#s7X0o6GD z=Dxm>Ln+<|_Afugg4*j}EOp6_rZ=EI#e{OzCn2~$@Ug!4FbVbbX4VjY*WXi5Z)Wb% zJP>hV-7e?d*kodsD?@xnE9a^#F$E>@6B5#m%ZeqRl}|GACMj`cqS7PQ?;o*+iVk@PP8$tGiwz-?rs39;z3<)2f%g?}gbvC%Hhc+JH59le7l^V+M@WtgFupdL z)jK&}f#+4@Ad_)CBR({n3#A!0bz;my~L% zpK9mlExowojA&hQXtJy=u5-w}b?RkhppRDh6sOYOWNSlXSPQ-TcUI3V8j}>oSv+RW zv~riI!)Dcvn?2$Fqkpzh8qAh^FA8^yf1{8ia#l7ar*n$w4f5%SYKeK?*4Gker@dmR z<^JscBlNP89{G z|GO@)8r^Y$Plf8A-0@eaMT-8nz>9>14u~U1!a4`UkRxH41LDV#u*w0k<4A}i|8MyZ z;>MA%!~rqmNGyc|M3|LSh!jV{`o^(Pi-ZLZAk-pZfdg>%NLb(ilsyt7a2Nu{9trCk zfUrj%ucRIeae%K!!ukfF>yiJ2YiQ98V(XEAg=>sZi-cEF0auU2(yu{Uuz(GOS|qGs z1ECfPOV~iDMZy|35NeUIhz*2VB&=&33$;jC#|AY0hY#`JkVI3O?wMbaU z20|?o*0F(5i-dJ-Ak-pZ9UBO>$YUKF7HW~OoB@PdB&=otp%w{i89=B-!Yipjs71mn zsX(Yj!W*eTs71mXsX(Yj!W*f_LM;+rNd-bJ5?)CKLM;+rNd-bJ5?)CKLM;+rNd-bJ z5v93MZz1YK&VB+8>z=aEfN;8fl!NtS5kpci-cEFfl!NtS5kpci-cEFfl!Nt zWYK?B3DSZ$Qh`v5gf~)wP>Y0AQEZ_W39qCAp%w|RqynK939qCAp%w|RqynK9iCIZC z1VSwm-be*PEfU^H1wt(n-bg(bYLW0tDiCUs@JcEWY9VX(fB#QFs71mHsX(Yj!uzN| zs71ots6ePi!po>Ys71oNs6ePiO8@@?FA`ow1wt(n-b4jLEfQWt1wyS9yoU;eS}Ax7 z6$rIb@DeHzYNg;ER3Ox1Ealby3bhzdc}SUs@{)o#P=Qd3Wi1bcS}9n^20|^Cx%{zE zi)Al=EYxBd%pVK2SQhhtg<33^`D39L%V+*rsQo{ud5|64>yH5YdQb7&x5{?WjPNn6oq0;5gZG(QdpfI zw0;zX{1(wb$dbm28SOXR4}`1-{27Q>5f5$Nn9R(u|Nb0T(iliO6Zg6kaN z-1e+0QQ5B9QBRU$sLMF)vmz1_vK1{gw8q)O{>(HA&gzfQhTl%?3!8m@K&2Sv(OqJDE`maE$2s{plJ zRA#i@<&%M&UAS^@6P!j!-Q;*Zar8uHa9q~7^l|hzd2h{R`wkBih2y+op3Q3|Usl4X-n8`5CsVD)QknF*-=2I2oOhhMMhcUp12N#W?d!o4vsbCSYS`?A*sB55s`Tlj>}MkvFNz7@rE5XorcWnx zp9-3ZRNl9io8=$W&3>*v?WGyS=u(>cmTUSv!;?$=)3 zcY+slTe6O}9SQrsUN0VzEEmcgDgR?pu4KF$dbOYaH(4Ov?j6*+Q^k;r?28B`j zf&I+;JiW6nfi;sJ{T<&`N83M(9wx*(9coDzvyq)X@9u$Q&qUO`Cy%)(_JUxq3NOvt z&%okr6WvE);U9(js5w0HRF8A*2*G%7?>P>)UW##VgGZGP42jWE9a1Hg__1qkxXa!K z&nwvz2=8xO$mI`SZt;z5;w~}O`Gim$DKfQuJK^;vdz{eSj=A%GUB)lF)erxp>P+CF z?7leulC83DS;}6>zKxkeWDO}h+1E&m5QUm7k&qBm*_Z5*kS!r9`>sty%96;EY{mcH zDf2x4&-;1fcxJ{i%$@J~opbL`+= z!gFTvZ@WGXO45G7kMU${U(61Ejdu+l%HeXa&YpjB_D#7S6W*eG^JteF$E#d@+@koW zZidAa;{>XxwTnsQ@~)DUVcq4fj34yXnNJ^mrG29;P%nG$Me)VS&KatLTiQQnA`7o1 ztaT{6%1)IHO16rAnhdhTZ|q~bXZi7Eun(u5n5%hwYwj0cUK>1T3g^czPlxW+&yRO~ zVm-9Gp{Y}9SmP;4f3o%Rl?$T0n<&L3r$$ES}M$ z&8a_mc%{D6#l4zyd>4)9-csE;twW8Y9krIB-O;@g;$XjaFe~76_*1EoKgWJ#yHOjn zgvLG>j^IxdT5oB%^MkJ7ref1iAN~tEb;*iORQ;k2!^#?Z%cXTzc6Nz-iejay1THte zzF|9VKA2hkAf`}rW%SO(?SiG6?@uUCTl-iR7<;~Fyf0~+=zV~kjS6pL>?T=5h*L>E zQCrDyyRV-*s4ReO>%cu+e&XTlvrUzUH>6Vc^3wO* z&Bx!VcWL|7JBN>)?RFiXNPekuB>%KknP#0*kV!?l6jwa!wW+s{WYQjOjqhgW?Nlmy zL3`+T=Axd{g`NXd0tp-4hWKx*r#x5=)HfynQltGepi}jH+Ec#z*zI$1Ow9ZC_3?_1 z?zL0A;HuDZQbw~aN#m@OMTzF>3r?9yLcf3TwV8RH>`NxeuhsKQ{XF6{EQ4s;4ys)C zrF)se-2XPSyv8Id)4KT7@EP;yqjrQ}Eb@2xRUR#uGPp$V7NnX`6qRqQ!HWx2yql7< zJ!Zl$N1;+|&Y9FGHOQHe|Mk#PLh!phxtu~ZM&U^D%N2=2V^4)dkM+lIX}+wD9x)aA zVLHL|*dz1skMtm$h~kH>wDQO8?rmC`MSYd8H)yOf6-;dF{1e#iH}qnoM0YIEygung z-S2O#UBVMzS$V=(c>?&>$v6_#)&(jBYTMaX7EbKEQZ;<;`zKw)M%tA&){V*ipQ|%O z4XWSl>k4_>#^!id%CF5sC!?P4#uc4gX(h*waP%DkeYigardn_|4e&-xm(l?v@QQy& z;1l(3v&t}Pta#s2B6G@>>whZGwUfV@Y?NI5UD*`n$J9Mv#X5BO&KU0-WMk`2xV;%Q z-Si-Ox>2pf-MFva{|9rwzj%bp)rZX(KkX>jRIALSA916zGO3Iqa$j#hcH70{&ZNuZ zQhJwGsy6QRla85R=c>O(xGH>!IB&WbI&}6J-ix+>r@&c*UcqyhhIw4XC~v!aM0UNX zjN}>e6~!ejzhO<;r*Jpr_JduM=TlEjbLO24Ja9%dO~KcXEH2}6#2x*Ym5lnCG5l0} z*6%s8M!A9iX=Kj0r8_=OPqm2(zNmFl+AGpf`pnJ7|NIj;D4j4e9OvKqoRpqmb$Vf8 z6NST#+fe^o-}K-8?GK1Xfyz5ZtkGBoqP3fJ%Z*B*NO?vpY3ul5tWEvi`PoahEs zquBBaX?`}HVBxqIQ%JcR48aFqY-#(TmHuZ%`MlU*&17U77z%o;Vju@kRgGSU}7A#Y%Kk9)ty#SEDPtkehj zHAT3EU#iR5n!N5{%&r>UA9m}DRg}ulYDRT3R-0YkQ%?(@F**9smp1pj=zn=qP4=Z{ zNA=5|8y;MG+$Ss2Y;C`<4gE+v@_lWo>l*D;30PtG+nUPhwROSDhm$Tnh8}F98woUl?8{)cSDs0ht$PTWx;I=p4!Gl zl?4Z02;0&K%nQ*yp~`|ogioll;1J~#sw_A}`h+SA4yApw z0w`2jaESg1RTdnge?pZ7hv=VBWx*l(CsbK*i2eyx7965~LX`za(m(&IEI32}g(?e< zD1Z`W1gNs$5d9OXEMPWq`_BccEV%83{ogie93p@cRTdnwz!Oy#9J0j!RatPzDo<2d zaL77OR9SGyN>3bz$02JyQDp%}%iH-7$Ki3vdQVhYaHtg@F8Mh0iVw%(ai}#PF8Vms zq7PSn9BS2v%RUaZ?89{*hg$dH!jD5O{BY&Rp;msl^yB_XqR2LB0&uS;NQfF`5LBo{ z=m<97WcL!TToxA~mj%sr;HWYibmyX(CP;eFl_m|3>^}?-W-?(E2o5@e7_Fx8W1qV{s$Ox>veW zrR-8HE$wByR*@-3Pv>+KUS>{8d=#HEA3v`$rv*E&94BRzbE}AbI(K=4P7PJn>h~#g ziMPVn4Xce_SRdrjG%pD@EFWi!I>Sjx=`YDCE?saiBbfhowTZM)T+l23d}ryrWoH`l zcluN;l}E$)z&tIZwKcyw3q=XPW=so-ZPGvR(gdGZ|1SOHyWRUW39U!4M^) zC-n-QUt*GM)$NnLIlE{2zdW58TE4ur@rLndfsJ_WHM|E;^u$oouTs3b?cC(-wQ9?I z+7~1b#BiRew5ssXcvTwU>)Z0}$*k+f*Wyoe48dg+3GR|57cUfdT74Y(eDZ0I{dj%T zk0#TUtOC)34_nfjt)-cdd5^y^JN)al&7~FEvGJnMjais2$AP8x`Ehk#%*}4x^n`rG zVJekp-ci1*LyB+J^}m0Lp~ElpUwbnUur{+K)qg3#M1HT*kx$oD)vz1}%JftbBlCB! zhW8Ho^ae$B8TfS%ef_MQG!Rw8Ii#5zCZsYo;QH}|dHZ{}GK&hIWP8zT4;LKYUz%E5 z_8O^wdyw_FPxYDQ-R=x@6N?qfcG#;yeVz}lUUg3snY4Aub^DY*`S$JSRlKu${Yk4= zeqW0ZRSg&3KJm#SW$RhZeCeUdmuW4>Zsqk2;m<}LPFQ+))qcb7oa+$o($&i225C+c zzdBtbg4q2VbAP8hNt{v91f%bU?QslTM{17n>Ws%1A4%3Mwd=~Pam2(54-eiR0dt!71$z?itQ0pBYUeSNk?ck389sx@LBkLlB7$0d4_y}Za zJZyhK9|x|$d36B#cs4>DB|Ru3a0I4I@xP2u99gr^6t5xBfn$kzx8d#Y-dEfuJTv`!YgKtd;tPxoshtL{i zeH=n-#AP3$HL&V~w}o| zjs+M8grqlAz&IczbqN6DfRJ>?4PYE_j1ws>z&Iczr3DxVgru|pp#V(gKVFLQ-0QaX?5)3m^^%NofJX0U;?Z05~8dr3LT?gdi=1^}+dCq`Uy#fRL0H zfEy5!(gJJ)LQ+})Z9qs$3y=*6NofJF0U;?ZfHfc_r3G0Z#H73c)qs%nbOERV=X{aU z0!#x!Qd$6MKuAgp5Df@PX#t=CAt^1u`XD5w1y~=17&PmHn3NY_eGrn;0;~^0Qd)rZ z!Fgk(v;gaakdzi+eGrn;0;~^0Qd)rZK}bpqvOb7Oc>&f3A?fJ?tPes`T7dOINJIgzo zT3~eqAt^1`Q3Ww6FUa~JCM5=0AH<~0h^!CJf+OVySs%pP$q~;|1u-c($oe2AWd~Uw z#H92f>w}n-A7p(HBME|q62wS?u%imTfMf{PN)RI%!c`ysSlbE@T=wCQMT)_175-SH z7$gXOEF=aA!k>zC9V7@VnC%#DeFa}YGK7mi__6+WSSQy-D<{_vwxoa&Z{k5ow`M?t z6}-BM6#$tTf$6^30sPVrByu2wj64CwJ|5&UY zn}@O*BX@x&YZ8kZ^Wn_?dyN&j^C@A~u??6}5paJ;Int7)&kD;@LR`!f5; z?<*V=aegD-8*dretm9gBhxUF*Lbfx#fsugse4NDn5M6p_dNnV8y!TC`z4z7Z1n#S| zd(h^qlNHEl@3^aT+pVa=Ifh>67_ah4y1f){s#Qa?t90^j7Ol4JVYyRsxZyjCpV0h` z7lRaupJnBlEzZ>F?fP6~R!hU`MtFqfZH?P^GPApdol&r3*WE%JzJkJc+-HY_UNooo zwB+fxMM-4ISFcBfR_)El?+&+?{Aifo_<~$5#DF|#z{0h}J}G~b?cTitGwJfKqal=) zL0s8Sq|KZjcV0JBH>uVwtfVIMRo=rnf*rDwdPzplz_J+W8* zXf~BiWEdAaSFdr%{>TU}rLtC|rlW$CXDr;Lxm9~wia)3cYBSKaGwS0j#KQX@n2HhF31K*MnpiGc>w0afylIQN?a>9xJ9jgfo$o_)G-%3ZSlXUVHS+0;tBx7Ijw zIbz40(^5B27piizeih}cw#Vzf3i^92(ut0#t>2SNCPlWz=5_L?<81;|3F@1_%YQGe zS5A9XzTOx}j*%QGv5S@*(Z}>fxy}~+Sg(^GKT^D*8+2)Ie_CPI!nL=R?Y-YtDo#$> z9RA_^$5*O5tZezxhV_HWA zc3LCHyf5Ck;Ju%BVNE2EiN&_<#OhUSft-edn#qtbi^(%7k(gI}qdV(2%;!fwMJ?Pr zgfVoZxVe_=riCReeCP{n9lM8ppbAek;l!t101Fa&$|&L zNS`C8B@lPL!Y_dq04q88NVG2nyIzaQz%6A7LHe}(#7|1+xP&X`GsJi)i8m#aNrYYs zpd#QT2R9=gj2f6L#sJnO;HE&_@#;iPyrbHzBzRysxItEgU{xZZu%X3^+R52p@J~N%TnDtZ%LG{S+F_UY}Z<;@9RU+Naxva(|q6UI_?% zUL9cMx=X;~F;*G>-0-KG!I?!fj+po|U96&Vz5WsWoyEp|*RF16#4U|5hMGMc@<`1d zP~FlN9SpgPH`Co&9#$TfTXpT7$0PS#x}S-@OS;+KD{FghU!=y%+%nr&U;Vnu>s^Rc zTG5vim&L{S%c8n3e=adh7okuxO}u@gMO@Hh_w2QhHQuW#GCNlWc45-$%|wj~!qwvj z-UsStM+j?|H8i~__dD?_+TKui*N)Ig-xoP@_~`CMO4oK7 z##UKF^=W^)hnZ|Wlr%Os`xB44{dS0XFMoscNs!z^teOMUgYnDp5@v6E&Nr{Kuee$D zM4b0->)4&xdX${)zDuUvq|B!OcwOq|n(Vo&>+Zfj(GM`o6a9z2X^YQ=_huYt)U8b| zxY+2&*l{I;9CZ3}{#ZOo*F2e#>($WnWUaueNcDBFmAu~o73YSr?+lk##5MXSyQTvj z?|OdCv)8y|v9H2g?`~N(JxW_4{=6H|e{V@Iy~cFpQLx0L zSHs_f&L$}yi1NCYk6+o%Ai*EI_Qd?5qF-CUWZ&Dl!eeZ^-rS!!t}{PZ+{V*z>3$)* zwnep>!d;0`$xH$h?^5R<6NR44ykdI|#`His3SY~RI*nJ>)JBS2t6~uP~JTDI}aW*iX=O7?MlIcg&yO`M4#y!%)`2 z`wgRr1m!!f3kor*PYypk+U39c;L#aZ375?((*vHRHMgS;CFNZU!vn%GJC$f2nw0pR zi)YqqVr95Hu3RMUdiLn!hf{dov>E=}JOU{RNHrS2g7sSM<~F6^Vbm zx)tnu=+C7k!9UB^mw!CR&%aaD@4Krl8=(8lY(w*Nf|&&!%bE0_%H8L4G*XTiFjed` z3Sl>)KlOQ-xAMk|;{!Fg(}#9Rl`m^#hV~we|J^Etb2EC zhJ0PWOrBBSX6~O7yG?%kkPtpL_j;~bLz12nWiT_(#VOHA{_I%ahr_0fXC{p(pOGKk zIvCpVC7Mw{bf-;~Z0KuqevMm~PIv5Q6rik?S!bq+4c^BZ#ea9QXlAm`|#ncNkQE&|BEvClN(c=^!GyF7%t2ODm>UR;7EUcHd4CcDpTT(pbY8% z)OvDmNY~;c7ev{tUYs&M`&5YQM)WH}P@89JkZ;NDZL2B)y){9Ka6w%GcIuFsvPb=67|p;NWWg~1{Q<0kj?x9#fC?G;9u6SjK`-r8J>*`!~=idsGI)4q_P zMxz={`}ORJ!AECUjf;0T?a0^PqUIG~Bk(KAu!6Ur#(F_fLJ61%1nN`oll^S?S<62c zShN}c4C7yJ(iBt;rTj@enH^|<(}Yi;ygWLy?IQj7n^K95%($)RKW5*LYV=r$95wMW zT=+ixF<{B{^vZem+;c{!aOcXNFx49rPOW;}l?e+I8E2*|)L)cOW@h5Djp&vSj@#>| z;qqvqPJuZhn8XnA$QTnidgd$fz^&zTubzXP0@PW|y_Xmhm}5gsEpP5kZVPH@EKH7|HOZ35P!DB`*vG8NqU3C$i80}b zpV|}4%*3quMPrw>hEet?zsD=~XHyPiRN|gh!QraW-b{OCWYQ=p_u6t?AP--0#;ZF< zbw^=?1TDOTJVRCKm0U9qP#<`qp-ms^>L{R1t}XlJy01PPIC|gcfHsvjyO+J27az5k z#Hn~eD~rUvoMr6|4i5g&{L~X>w8AGRX~bd$h0Vxte0CJo;YM`37413qzwtjc`dEiU z-1F{P4m$eDTfEr4WgdKbN(<6^9tY!p+LPhjRDz7|%C^$BoSAsZQ6k=U-7G!9J>x%h zH8qz;fp9f?pIe@n~jNus)@WtDKsE(SNjNmcc>f_}BZv zt3AP)ufZy@vN3ahMCZq}v1xtXeZ_)nze=xO`#^u{UigNt`DYo!(GNpIxY=Z1gTuMu zp0bi2&yIG)OnjZr>fh>iH#a_*2a^t-1pZDda%Z>K$ecqH^-CXG(JhBH*Uy`V} zs$0Sk6Eo74%FA1~x5M;m;Cua{ivd~qZ~ZfoPgO@%()Op`?Vav?a<2Gx?vK;AG%h^o zz5HJC{6N;9_V=1g7K0^w2%U~f`|`Ex_ok{G7zk8xFTNhd?sK6e@>`xI{hskFhpl{g zf1Ro`T<$&m`^}F5&TCyJ8e+@~8P{$fSt&epy@1TbCK}ISI;~eAeo8im{$-Za2ZQ%x zc-{A(wVA@E>cQYjd&<`PpMhLi<9qZ)H@H50Rr>FbM9F@SNQT@LCxff1=DfW+!~X17 zja0pxH-6Gh-4gWg;pmagoL*+$HL?D-*mLcf=1{F}jfJ1^0ykIt>fmU>+UK~j&XADz z+BdbD)+v*hYt-+NbkX53erlVK${ z>zMj$WBs=!^0v1LdL8Yx3oaWOA|lOy7P1|z#B-7;3@-LB2H)L%ccSB0-}#axI`eqE1k6mGq`@?pT|9$u3=u`fftP6Kf|7i2}xZ-xRlHljDaJE3*rD$NRaJIH^$#3vR z#UZ?)rGNElqh`COd!8vM_i_iX})nAR9xIklCA~weJpoDC(NIYWno1vFVYtx)im1fBE0i_bNLxZ^cxzef&`P z97jJBcmrqsI%qkn@-04m;hIv7t-NW$7qW5bLwIwgfEONReM+NcY%6@d`A2WAP&o3+ z@_%j=pHVGRKRh;`7*rMBaWlsB%e0f1DehBL@T;8mo;u@k#T~fJqCE3}feZCpK@v5e z-`n&(-?f@zd*VRar)zeeelL}^LJIB#4CAh(=JvIu%dOPtbtD`g+BnQE{E63Uom(tH zA+yK@t|OPj2(=6q9C`sD9T*$HPD&EtSV{IjR^}Y3N>S6Bd=7GOV*M52C=-w~69^V+8RC{d3=kCk$ z?*lp^gWik;D`ry~rTC9TZ*=*$&Dsh-wE#7eupzk_#f)LBR#3*ujV-??9~u z(d&R11in8a*a6ubgrsz!6eNQPc0?rznW7;IL5N-l^?w;euLG(%2oY5WCWYvAQ2&=9 z>UDqRZ=wc-2zEpX2oda{{!cP~1P*5~Ekv(_`ajzL5k66fUI+DmlmjHx|4|l@vWh_d zMwviD{U7B53H5)J4J6e6Q9h7R|3?`?Lj51*0}1tiln*4-|4}}WQ2!_TK>m}zfou+9 z($fX?f0Pj<)c<7=jSlMnC?iOy|Nk?Bgwq*N|3~>iLj51*0}1tilni;MoNT~m#d?2Cz4}BoFM_qty4q}pQ2=#xI z5hT?AQAUtZ|3?`?Lj7MB>B~UH{(9ZyxIZC?iOy|D%i` zq5h9Df`t12wh<(F=Ar&Ci}Yon{x6I4WuX2qi}Yon{x2(wBgx<3RR|n3NIEOj|7DTB z4AlQ+k-iMn|7DTB4AlQ+k-iMn|AF1)w!{kce_5n21NDDdQeOsd4E29mq%i~ae_3RT z2I~K^NM8o(|FTG52I~K^NM8o(|FTG52I~K^NM8o(|FTG52I~K^@>Zn3d8q%(B8?fS z|H~qM8L0ouB7GUC|H~qM8L0ouB7GUC|H}d~r4cK6uyW5wv8@N-P&A@0Ba5jtOc4_x z1G3G6FbfceWHH1eMhF+=Wf&_DTotDvBb@Y+W&_tRhVK_8T=*$NPdNKga-G1VFL4Gc zIm9Emqas-O$Z-4ydNL`{XS=< zx9bFJwuoG=$bM;WU87xcSri_7jfGjy)i{=zKu)6t@8;+B1UFk3L|`WOosCb4f-CFdpwpWFdcB@H_cN;`i4+@KRyPOh~` z6-BP~?YFqSGgpE1t_08r=eVDEFeiv5zd=Oav{dG%f(hBJrv(uwf3nqUKB_oA!^L3>|6fuwBkop~>TV2IZ{YobAe=RdF$zJ#TIA~;ZPVtdR*#*UOeyvGb1xsrgbJ~)x ze_tuxoSj&jUH1%CAN)GuTkD3=%g>4Q@5jt8eC6)=cg2;7Gs|)N) z$J?E$*D9nEoYI`-*K=Kxv!ZZq7K$HJgql$Lh1&%NGlxq{Qn)O#4^Dd^O|hoAL-ym}Np88A=d zr(cH8&P=}?TAS!2yqd3{#``3?;2soBa3{ z>EAs!|NeFBcbxI8Zz0}4x?^fXE9?0|OxT9&+w&_|!$zEOWa-JT3YBk(YRcbA z<0&nuy}B50kx+ZV^tN!w86ly-%LWN$Q(5L$a_R8Qk+k?)9jCcKfo{)RY&^RuqhE|a zp40j6bDX8>>$9ARWXEydr7PWy;$5v>msU9NvIZ$zkynlkytmm>a<_ZC@|>JF{GvVf zrcICM8(T@7JpZLj6%V8s$n6#G{}>tQTomifd!_Wwtv0=1RD0;eqnz2m!H>5U+f6$g zIK{Vad_L!mZ5Wzy?Y#y%0uAP!1rwsDlv0K~lfES?t~WjCo$~WLUZX~6R0jtasF0))6WdXdVR8{!=_ z1Q~fC4#*N7Z}5l^?ilh?5JuS~DG0xBi|>QtGb=$NMx22R9FYX{XTsd9Bu(Yn81XyI zfAwlO`37a^!kgz9L*j8F|t zm=Xd?5HnHUuW-x+<^2jV^RM?Sf|)4uSBRM?^H+$Oa!4l=VkXM`6=EjQ{PpjoI~+4X zdA~x;M0vkL%tU#=5-}5H{t7V@W&R2=6J`DiF%xC}3NaI9{t7V@<^2jV6XpF1F%#we z3Ne%D{ffd&l=&;fOqBU6#7va=E5uBc`76XsX#V=IaSJgM<^2jV6XpF1F%#weO2kZ* z`76Xsl=&;fOqBU6#7va=E5uBc`76Xsl=mydOqBO4#7va;E5uCT(E5Lv39M1Ke+Y<~ zz>1U2;pad}!SP=amW&$gS?OQ|4M0vkL%mm&D zq^mG3WP$}^COG?_bQPuro}+(%5D+uLS@)z6rnOxHgMI4|Gr?K!q{}cbWP$}^COFG{ z`zpjtaHKdXglQqAFvLu7IyUJlObaQ7A!ee?ULj`6VXR1bLCi#Xy+X`HS-nEcL^-`e z%mhb}Y=0++ncyT4QV7#hl>3XB%K75{4+v^>Od7Vun{sQJO%x@;nZe=>89V$Ytyfrv+$RM`q9C-#oi>~17ayA;Ef%wv7i_R6oD zy5v6UqVezI$I1BpwOnKl(at#faJaJ$Ib;iHg~uw>E=fO;RZQeB^k0(Jy=f$^`^`vt zS45V*Nwph~R)XAwgNdpLN2fi<%W$)oG}1MD1RJInhp;L?4`@m6xypza?BPj!N%NCh zG5c0zqn5R%Y46djfai^)r5rBB4yW%<=8a}1=G}~|)vD=zb%jYQu9n>)O7c`_?AKxk z;|{O40#Vk7qiC{PY~(mJ=eVew1^l819206?rOz-m*_V$MH@Y?1g!G2hQe`pty-)XZ zHP2_e!0`Zze4%^ zoNr}+=Wx?{?Q&|$65EknyIH*5R?Yh#eo>?El$7h%rmkHSzI^#;ceS^LDbtU4^|p5V zF20iJep7kjX>B1xyjawL*QJkV8Tx6gZsokZ?7!xF%I*iIuxW5PaiwF?@xvTGZq?UM zX^!6f$PdX}2FVTW)tTXCGsQ~0kK=RdrC)XeuJl`cQ#Uwb!&}L4IO{u`OMUM5 z@w#s+N6wy?Yz^~~I(AiYIPKY3YZ5QRVa(GgdT$J~zsQ`|@q)d+%_6@R-vyZGe&2NE zN@I8{*C%49leIZ6ufiRC+PU}n9nGym@vb8VpRDy~c3yevwdtXir8vUi-LqGox>Ied zBK^)GJK?oA3-wVCxUt|X|1N+-7I&~*T45%XT1l|}bvc!nBgFFX5}W?ya^UENEMAr! zz^d`@6!3X@875fR?I45K41J`*xsq4~g3M7$(MtP|l2l}{vh#q4QjRUl@PYe*st!*0 z5}6L}5&U}>++U<42j8nP4p5+-kpv?ly@6a5Qe7Jj5dMfqR>HdzcLM$&*>Qu*W2)d@ zVlm>3aA5fV;O;gvL9L6Nl>#g#VAOaU@8X~Ey8PWJ`0|2;7C)HF{k!b^#XK+oyB$JZ z0Suo0!#ptSxxGAr)d`GPZbx9v1cQy+5m++8JmGc(R!lI)w;h266HL!-M_{=G6KmTM z@q3XLaj;l|QLXK3L^TnNR*+(_TB58=p_+)YE`@5MJTiF;)kL6?lI{yrLMCq^<^jQw zbQLCrOx{Aw1A-X1ieMg4qPA}hF%Kv}q!6Y>9K9v(<$;(71P{_xm=-d53o#E!38bqq zEkxmgm2a5 zJd|}Q#5|OBDa1UKbt%L=lyxb@Jd|}Q#5|OBDa1UKb1B3;lyfP>Jm_4CRufUyr4aK_ z)}>HQL|KoS(if0 zLs^$XHBlZ>@*(D-oJ*mah&Y%2#XOXCDO3|t)};{hP}Zdo^HA2MP)$TxmqN@#tV@ld znuu~Pg_wtOE`^vUk0mrf#V_WPgjE63fnVo18!o6Iyt{-(fX&7;5!Y6p~%6|zNjA7n1MrSh`gC5(S1p8xHIl5vU z8ayLtg#<_LI5Yq`E1UAQv%P9C2xx+6$pjOpD5IuYR8^TRz3{^JLh51HW2;2y_s2Fr zI7B8`cGRGu1>WkktdLlt1Sk9MVe=*~m*|WXHjxut%;h<&Wd@d_n?>OVH%A*@@SB>5 zXe|)ZGbx*b8)Y--?Xj=#?c=?_$|7cO=@3C^eENuh?x7ZuBwCOP|qvUSK!x+BX%PIxn;u^2_EZASB{W(ap zdYYM&%s{ino(=Y%i76l z-j_4UkJ$`P)H^v_zd0b-z4h+fvj1TIx3hh3>T32bPKJNweOqrpn5Fyh=n$_>phZ2W z&9kJlCJGM*3yY`En<#AlsS%Tu?yCMN{M9|M-*?%oeEr-b8h^X)q^Cn8d3&1Puh(45 zFG#B_^B*djz<+!BdTBwg=EGU`W#-h2W~r&a3~dHxeTL4~EI&Q6TJB#`5GfXDX8w&u zMP*EA@StO?%J|AyQP-V83QLKk)A0$1?QBqMgWy!nw!~whCo)dJ#Y!Rg8S#Cr{sIq$6oOyr6kd z>K>P5zjp4^dWJcCwr}v^X^LEeESI0UU3Ew+W#FHx;|#8TedGNs{p~A#?dw+lZ?-}b zhKBz0D^q{_{YleG4F2%p^5wekU#xtoK8aCX;agpolXkye`XI&!egrmsB}`>3}Ckt)>dc zt76v^JDo~)@-W>96y6mea!c4|9gdmyPHmn2Y5n{uFJS^YsuC?%yE~>%sHuM;6UR3Gfr|4z-d!PP}55DN$ImCR;`O;+PUvyg0Bg~{qILdLlvop z=NIu;J{D&)Q91N{*i~|Q`qJuxrS7ALCcLZe^hfFg_hfe#$*1=`WxBRHE2B5>H}+_d zWv6ftmR;t>4x!jjku;rLYJx)d-n7-eR>uC}IjE6tG&p!*&X`YlqMoz z_)Hz;(a)}Lxhhq4K7LQP=Q&#aajtp)u94xLpZo6{f3ZCLI6T2uFF2dm$FpZ6PD$Q~ zc|M-S%>e&faBUxbfDeb6`f2Pne}jeaWLwEH&gETd_B4T+X(3O4gmh8FErct(^V*NI zm48({bl}Kmp8IAIX;i`bhdP?%zDIZnC(6g|f7B6oPpHI?O5(lWz2%ffrh}u_Yn$^p zrHgv1|i@t-wD&#*J>DjGHGL#bdOcz%eO}eoDfuUO7_@%khd~ zp^P7OwRF67jvmX1jSPy{P?O*J`|ZnyV}~3XDublLkGJil@iXGav@-KO>%JH&nM3Ok zHrODq<}}uPvuVV{!o5Br{GOQp9lHeKJE|&c8hN$2ukXCh7X-IRdGaWjS1@tKXl?bK zxbk-Hapi%7tshz|I$31h(;_eM%dS=>K4NM$j-#u2yBI3)b_-slbyf7j!WgoR|MFSo1R6*`P($b7~vtsY)s?8#C8P&F~+ z_@g@pgWork+9xvy@BVDP(vZy>>a;uhL(YBPvXFaAr`{JfM76)1oI3WqPeZBT9qsX$ zi;tYr_a=UB@)*s%#F}bwIK0WuF3d{rh;&R7C6=UfO7OjQA6KkF+?$q5RI?2-wd(lTGcnYTM+}GlbL2n6tqKk{XKyyZXZrF+iD}T?6PH#V(iyN; zG)(%ICV0l+?b6dMB~YuTx3f5Y47h(aJ~6OcGEVBJzR20}ZmuRHL+A+JbQ8|D1msoECvUDvqRj&}0i4^#+}ikFhtH)*U4D)BUs6u!_Y|6S*~ zW6SUt4^9sCwVEB>T?J#I_v_>;;#rZv-yvQ{uOq)|1nIVD)7;-A6^`q(@)$ z)PL8$4i$HBU(n~fCto_JBi7m2xKv)3Q+NXx`Ye369RJ-X+Bx4P1wGH@b4EI0bW^AL zn$0icS}Ad6rl9Q@fMqo4|5KVe+5b$XYf3Ul-v7*N<=A0ok>oSYk(iu|3;zwA?;j1U zZVNi$sS>u&&SKn-^|;&4d%%h02VSFfpC)nghaC7bgLX_6L0V2yi+8(X{9CLmY*&nb zdon;61RH-f@SuJ{N=2}uBb6cmUz8y(;9is=F2G)tAuga^lp!u)ag-r0C|pp6xB$da zhPcF99c76NTQX=*TtMPzOI(-`QX;}yT>&W(;p7jnr{1oRV6Cozl!&k;qkxo%uvS+f zO4~@Su7GIUuvQ1>d~H7#Y{{T4aba4Bwhdb{XiHp}79wrKmJHew7p8?s+r*X(+7lP% zg=pKbR!3Rl!dhJc(Y9er25pH8(?Uu_*pfk8;=;5LX&bg=h?cmhS{?0)3!g4T+lI9| z+7cJ0g-m+ES{-GH3tKX1OI(;1QX+z138-?BIv-B{pgnP6UWm30Yjw0GE=&s<_JXxK z+7cJ0g_MY}R#!lVyLfw~Y~tD`+}VOpf!nZ~eIM_b~;w2wX#xEY{z&kA7ZpA!E%(Z9tfbEa za=^>rbUzV7dj>Z@nL<3-?mc*mb8t$2bIz`mSIuYzE-iW zeA@j)>fqYS)l}uz@Aw(T3U+Do3nF2My_3# z@4WA3m&z8T`t9fyl8PJvo*J4L$?{VW6vcm<`8~+alDMq2Mx#h zmZAe;r?ZV-etq0NGGB9vMQC%E#!|!ll_PNr?`wII*1y}tIJAr`H_*JV^>Ngp=OE*d z2_RTioIWOK{7aHS%H@Zwp3&{D(a`w!wVt=ZKm4j~BXov*ToFO~-fb*9+LOCRG;44v zb&;X!*^E1~nRYi{ug0Ep1S00eC(WvTW8ZHE@f(D5FmYf4_T*F9)po@TX9jv#|wHi}UmNoNP~ugF!#c-yC{087&e+RalUa>bv$M{Qajr^$e#A z#aJ^JtNa#ouDv;YMaJUh6UBmw&g^Ptm#xLjR;y9vw_Zn5wEq;E8h83Ht>7#8dS=cj zSt_)PE#w_8kSchc8Cbp7w7oS@oTpBC?#P5$fMy_$@6B~_6q+MzWVv)@ykBIhFixmpMH?AX;zPjcYm> ztibg0uJ_xF&lhvY&bzyq6kq?m@1#e_2-b`{psCtQX>m2Tv8YDDbainmZ}UILsyYUF z$-&S<(a}Do*F)3x&t5#DVPIhIE^J+8I8^w(ILwDTL09179YSKAt8@x&?b1RyKGTs` zdr|Jjp7_CC&+&?!3V3H<&Q%}TM;138p4r#wRK#U4rKEO7<@zD)dUvZ z&$5}PkEnNLtzMW?I~U2Ly^?+Ud|%nypPsqjPh1dId-|Tg;LZ1*v_F&IKOXnpe2~(2 z%#XQCI{)^qeXoVNB4R>om#z$-by<#y$FJGt?N%^ej(RWL-9G73qNHMcrQsP5M*nEx z?n3dnMs}v4$dL;Bm_0>e0+Q=XPsF_TO+_wR{>h;-U6}gg99Ug+%i`W^{neCPK6pLy zJBHsC6NOBL>T>z#?Bq4HO+~7jJ?tKvrEf^|3|wZ3y#D5wnYtNa54Y9XjHi!qjfqqE zr*H4CwU^WfIXLtVWK2uF``9U!+aGi3kMX64$7Ab79@8H0xA}G`TfomE;9FLN#8E59 zl|FN=JydD?&1M8L1Lvj${b$_kzDrRx=@ykO52m{pe6=or=vIhxSG2Knq&V!-YptFV z{N!k~J9R^^p)JF^*4Hy+NozjJ4Y?^hJ<{>U0~_VBbvmvo2BQm$pHJ{$)B@z5PDia3 zMeqma7JZ~$D|H@poh@`xcD|OXri9ZhH|2eh^mehZ@t(QZt48` zMQf{PZF>gYWZiZ%s@Zr^mXx}g21%|a*GgDg&6igEa-*L$-Kcw7%&4?~C^#A4$9vYx z{d)Z3?bILBffg~B>n_yX2${67tWP;HpZVf-_^G5`_PXBx_7@%KlzZ+WQB!fex+!W{ z?=*wl$2}eMD;TFquXjzi<|)NKpEC#JN`xwYZ0ymvIDFQo6S$vSmi zXn-|wpo$y=_UyvLGUYLqCsV`($#wukbT~-G_SgK4dPtIkj9i8|TLmpjwmWwh$p~YA zcv=39Vqw7K{hOWt+IBmDIXQd;IFApSd8*){2|-)nwz=by%!G7ZaN^IA5-FRVqlE?U8@W&7g)0s8#paVc^ufTUv1fAiVC_>KgJrn_F z_!f#934sx*V+Y^Y5oiXqfwB^ZZ|Vp#6S*IQ49-IC#~{oMdvqA&Koi)b!ywEIxgUd! zgFx=bAjk~4AA^j8K<>vN$PBq3LmUS|xF3TsGvt1#Z~cQF$o&|EnPHC(gN%bf?#CeG zAh1V=L68}8Kd>bxJrqm}L1rTN0~2D>WtbPTKLT<;24QB%{TPIqA@^gDaS+&}!yw2E zxgP`g?BCA-dvw6bm=waa;Qj~{_hS%dhND;*gqb1tV~_()V2=*7J?IBU{9#&v&;ETU z$o&`unPHC(gG~ED?#Cd=OzhENPy>H3FNB#P_hS%dhCMnA!pxBSG04y#?9pKmWQN?2 zLB{?d_hS%bhCMnAnEFF=KL%lD*rUTBV}FqQF$gom9vuc5`-9w%K~6D&Jvt16%&i<&S8&E5!E>dX(=MD zbJ(L(M0)3t`xT}Cf8rnbDsBH3A@`%)m0*t!Wv>LeALXwEdvqv+CD@}wIV`~*9ok|E zrbX(W|K)y^%M$F-p=_2Q_oG~vAortOmSB$#<+22ObSRf4$o(jnCD^0ec3C2EKLK$6 z-pXgxQlaKP;U|in_^4Arr6*o zZ~AVwt?LVlMp|-MMzl0gK4PN37@|eH&)xopx4cHRvm5s7@yxM=l~k>h`u}N}G`eyf zyTRz@jAv623JlI6-u9W@oo4q9WHQ!eoilJp$PiqugiJ$t3Wi4c0`KZO;;$=%KcjTw?jbTnj@ zA7XB@+W(5NX}9(dQze1-gum6!xJ;62BXZ`L+Jj@@c;L@tEcYP1N(AI|gyWS`=Ds z%?-r~w)kk8C~FMeF^}WrG@i40*vcr$Z?btZMbzOrdF|2ew`z8FJ#7}`v>I?3+c>qz zr(;O4QoU8f+RJu{C9yj5d~l>*vwht2y!QF$c}eH+m+g<$$J$q?@`=+r84^y5v0u9Q z#ajHEm*v54UP=3TsY`70zx|obF&q3!m|Lz&@{#VwhwE;+)phMWl$^?wa@%0*gz)$i z4Cm`_N0w?%l^ilnIsT!hQZoGan#0=b&XRtYfXK*v(42c_SI=YfEQQpZGX>4L95Md+ zR1ePX#NO4Xv){hDEf1YynzB*8@Zo$wp)Kv{nWXiH1=mKpzMU(3P`HP;>$Mc;nKH`( zyq?CZimUz~PG2&t>_1mF{bp#>zyDiGfn@PQQSqR*l1jnNZo}r&-&i)4JHOEu9k8!B z`<&a%>t@1eS%=uG@x=Kl+}`KUf~{IrlBU;gPyedr|F)Hw_a>nJtK+0ga9HEeN&mb) z?b%nXK`wp|GiY3nW5%v2Pf`S5Jbu)v3Ag?OA6oXACt`)KTXxg^Nf86jj^|2;t?+7} zr}_-UKNLr`D}K1yGdSodd!hHJYGdof@!^gm#!+Y98HnyqIVf=PWTIKt`6q5UO@o1k z{TFFl@fizG-L2dLhC6Dy_ivB~4vK&4o4;YJlbAn;WooC$r@W$4@uzJ5`iGsT8dw68 zdOR}mY%>Xmb#Cu#R#vW3PJi8N-lrEc{q?Z_=Pk{zzvvs(ecve@_H}zvuW-0G=3PX! z)9Id{^s-M+KiLs-TRDQ);t#?58r}_;pSF75t~h6gGiLfv{*fyo2{R0ZR8nVtTKm=J z3o9n^nNoQ0-;Jz|zBKQ>q`|e3G{fnhjn@&xU*ZxCNE)3MpDXYdiL}X3*~guj)!#ck z<@5VfbLGk*_W3CvpAX*aEJ4Rd&Jvh%q*x&eg55k|7!wX}5s!aSgviHA0lua{SXh)1 zsiYZ_WG5qsHvtp)@FTHL2Y2{Xf*n52WIKR)8gU2=+(%xavh>#eqo5}TX8Hf#{@)Sr zs{Qnw`Yc9Mge6Hk@_ABm$}*Jma9;TMSq#sHk8 zhXFWqhRBmYnF$j4Ao<5tQWON^d?{ffRFcbsS+jpqG6li0Q%arpA20r;N|Ha?U#bND zX#ZxvP|j#@l}6AEF472@!8IBIGq^;P#&nJ08wWyV@O=Y;GWc$WFd2N)K#+{cl_*Cv z$dxEZG{}`GM>NQlC`UBNm5K1PT#0f- zgItMnM1x$3azuk%iE>1PT#0f-gL*R25DmqZC`UBNl_*Cv$dxEZG{}`GM>NQlC`UBN zl_*Cv$dxEZG{}{}5pDYkAaW(j5e?3Mp&Zd5SE3xzAXlOs(I8i%9MK?Gq8!m6SE3xz zAXg%eXvUB$p&=TYD^ZSUkSkG+Xpk#Wj%bi8QI2SkD^Z4MkSkGsXpk#Wc4&|*QD$gF zu0)xkL9Rr3p+T-hS)oC$#FCiI7;+`b2n}*2$_EYV$tW8%$dxD)G{}{}1MUCxWRwRQ zZ9ASxS z{Hk_`!K1c_!z6k96yzwDeqnMYBNo2$F9fzk8lwSfW3-fuJfWs05ya_nMQ;WopEscN zc0mOcF(RL51-EtyD7i;Q9z%G_9|Wf2kCQQWb@eMNM@AZzTUzACBQuC{3A@!|X&N0W zY0}f-k506E*-1rqGot=nq7P*6VzzWgom{AuW+bo2Zcy)f<3~%0nW1jT0~+GoYIxD7uYG09Nug?srH-| z&yJl|`*D8n3h=cAQ@%KI>e;H0lfX2f(?(CF$?IP-^@XL#vG@J{dDW-?aNCp`uj67Z zkQLk4`-|6v=vLYl^8Jm7GSsgp(EXR<9}b5oqja|>M5usmV83Zdo1Ura3JOUiFAjEx zou&+Sf8CW%9?VWVdh&(3Nt-S_^At(G6d*-va4MBH zWcso84fHB~-L%r(TUgv3e-vuKQ9Q{?Z!Rk&W@PO#RLlvR&iufYlMa)gdF19AZSThU z!TFR?Y~dvQI&$`#K2^Zzy~0n^6{f^qWtyo-VuMJyjm>x>xP%>28|mKBVcb6s1oqrdi{DKuMOQ3RiGP{S`u5c+YjsQJ<#u9vC{&}i z2*>#YRh?BEZbF}zbuQlcsi7wc?@>mEcm>6;NGa8}=A@?0{jVy$VJmSvN53~+CFTVh zCJ)h_%3QBp#^&WBc6xyGxZNt9ic-WaI`}=SD&|`kQ)2O*o^Imloera3pXM8dql%cl zrAf~4^iQ7ZZ=xqQ4A0o^R9-tR_;_z&eers^tqMi*UYG%Lg7(0UFTjloNE!am@&`ms z@U>JMC9wGm++_NN;y#Rf4+p*G%$}PZ$Wa2RP2dfF7;x^K zb+E+u+zK@RrKtYFrO^K}XaC?5@aOptE`@FZ4VfN%-t$OFP9 zoFfkimvD|eAY8&Z@_=v&@5lqTDS>n30pSwPkq3lJI7c23F5w(`K)8f+?bL0Wx63&qagiAO_9uO|!9C<*vgm>ft9=rg3lePxo63&qagiAO_ z9uO|!9C<*vgmdHp;S$b~2ZT#FM;;I^;T(BDxP*7)0sgiDeM9{qT*5i>fN%-t$OFP9 zoFfkimvD|eAY8&Z@_=v&=g0%XCA=dKczzVlkq3lJI7c23F5w(`z@#OdBM%6daE?46 zT*4XhfN%-t#{EnQ1#JR=V66KZcx*~{5c_%P<+3i zy5G$MTbF0JBuyk683$zyXqDH)Xjv@6wK3Mv!sW7>c7)lxOO5X9AZIHgPH+n^^{4Y% zdxnX6DzR%U#E+RV?8s*>PQU3Cy{B6Fh_8Na$rc6D`Qx>j@29x-B}s;es_NBv4WOYP zVkkYgwGchUBL#BRdgk)o1@Sl)eCUVp=b0!n772_f^oy))^oD?+?enU3MGO02jn>k5 zvACjyx38Z!SjbpVFrw4TWb5RAS1aXcK*-g`M(~oa?532y}^i!)*hi{gUY>aSSX5OE`b_)BQ1UNOl85h=mx03`U^D_3vZD zBem}32N5Uj1;)3t$;Ba#>-N7w{#?W6D&Jmbr?O;YLR@WQO8idG&K|o;4zHlJ;}ySF zBtm9c^3vxld$)pQ&zUu5WHM^$xTpww{G;n>e64p}2<-4OlSisSN6-A zr$F-$sG~8?qz2Z0IoG=NqP8l=)kVGAda6k7^@oI&T-HVP6US#_yS>L`sG3>(Rf8pw*W$se!FO;#Fy4u#HCqarP)J`#J99y+OFIDj7U zFi|?Q=CE?Sa-&FWLoKo9&<*<8|Eb!#N5%V|iep&YYOq0()gfiqnqvQem&Vi4l-)Z0 zs@}tG1f4yd`~r%p0*cdDljz|>FBnvdVov-FMp3n*GVEq9xbyeS^Ep)gVgz~?IgWE$ znoqlC5S4piTxU9$uZ()cNrYAQexi%Ark+(NoZ2@(SA`h~&b2AdsB&+6uA|8NI?;)>((%-H@9lcFmLgGbRxWor^Q^ z10DA2X;RCJ^ued{e1|R#V20 zt@)|K^x|i2>TLxmmaaZQlPW*Fsgu4aPa1vh^&{r3tQ*-zBG>a5QnngtoLgV4wv|L> z1ieC??wwhWF!P?Hx*%T8rHOr+PWYDV^mdiHXCM8AK*#Vh6>*oJ$1iOk51aKXH;?&` zb>8Y>*BXzxj{lTMuKga_hs;Y|E{Zzqj`)5~KWQ}P>g>hrJ=rdBK2j&=h3$~ypxIR> zpZ8Ue3X;)jy>f_UiQGzD7#tWRG^KPZCT#siOeVbzm`S9|M4DRbQ7>j$5I2dECLGS{QsJc zz#s?I>^05@5C=qXOH~|<`d?)nn5)#rFj@a=Q39B3{cTZ#^v@$l5*!`aj7mua!xe|% z1J?!&1AR*VoI@fo|GxFNI4&#*UmPb_fc#e+f207x``gB(h8>MZmJkLMk%(csf)I9C z2^kMF%#(++9=2u(k){1#9rGVy3jZ%@_Kz@yh5pwFPx!Wk3C`EI6-;othAUu#>ZYs; zPS&^8OK`5fEnb2v$ZhQsTt9A0m*DboTe;VgFm!UW{)<^dj1-q098n1H-V zumFS!$eSAl5GEjRm>M8VK;Eq5AYlUfhA#lZ1mw*oM1U{>d4oLwVe-RS?f`@d$eXYL z!UW_^SO8%H@+K^RFadcJ7C@MQ{6A%JK;Og#5GEjR!U6~rkT+oggbB!-umHm3hqK%P z2osPuVF82*$eXYL!UW_^SRi2n`X(-bFaddUy8yxjILjS?FadcJ7C@MQ{6A%JK;Og#5GEjR!U6~rkT+oggbB!-umHjYF{AWT5sgar^LAaB9~2osPuVF82* z$eXYL!UW|1!up%O1oTZ@z%&KOo7)8tCO@3z4lq{%@+K@`vI68ySio!r$eXZ$=?aiH zVFB|MAaB9~CM-ZA3j8C?5>v>-2qgZ0g>l%0B{u`mJ(^B{9Oxdc`~PP!CAlWWgwQxd zMefN<#!IRr%6yBQ;FJzM-)Nep}1hv2+ zK#Jp6W|5U=9lWbw0pR6>c>U z5kp2DSz1NjB;}P0`pzuh#GKCQ@iLy^cehXx;Ru(G`f9nF zl$^frlG=!8LibEj3!wbvC}HV}0PV3>z*W_c_WZLD!nacbE8?>@KGR*j%v11oWn8f) z#U2ZSwYB*TN!Wg0RB}>Gf5Z zEWOdVo;_HBh>corL!=FQ`*Dm9_81<`q3$-u3{2R6>$DOavr4ER-F(BNh|!fw!9CUFVJxE* ztkc)M3iG6*^N+4DuRRMyLi6ux_0`?aQl`<&5vz56AJV>$5k@|6_F89YP+6^7SyxTo z=A>BN+|i$5f&k<@42LTgv6G%661k_H_KWuQYFAJH712%eJL4 zFfVJuDV?y<3hgk}!zLZrcX5wye{JihEG=HJnb)G`M+ue&a?f78hNjeD~_I2sJ&cQf+DsZ&%A+2C881{1EyZEkGl|H zM`cY*0yQlnGB5{$nN33Qz$w_At_J9wLJIy^@LzHhd;ummYa9hHT_ti&K-;{5&LG(ec!=a5*;e`!vB-~&LKlNAP3 z%F$sI3J@~jD}}&(ClL%FOdLP~bKwB6wG*IBc|zFiAq2>6qVk}?P>vw?|DmP=B3C^u zj+{r1`o9_YFKGfF{BH*SOPYVjVP=tq0xxdnUU1sJtzm+*_AQ%%lQ!I@GEm*D2EddJ zXNmF@pe8`xtWW?o0rGz<)DwW30C}@O z0n`M@n~(r#;)mRBCj+1fkT(ky08M}dZ_f>A0{Ui!0zngUOJyKvLO?3}uh|_K)-9BQ zpb5E!G7vN&w@?OxCgc{%K+uE$!~bt65HumTR0e`3w?TPOoT6LJe> zAZS8vp$r5~$SstCpb5E!G7vN&Ae7zK$@w8S#mgrkXhLqO3@&Ef`5Hx}9CpQud>lVsD z(1hGV83>w?TPOoT6LJe>AZS8>;o<7!fWG1o=3x;(IWguumZlUZiXhLqO3*Po z1D(|W_r)M+!nIQeK@+Z@ItZFTLv{E%IiPR;6hY90>!}WcCVW$MFs$1W2nd>RZPh{0 zgzKvgf+k#Bbr3Xf+p7NqO}M`5AZSA1Dk0$Qx-Er(pb6Jk9Ry9dzUm-o!u3@LLGxc< z^}oH1K+uHz?{OROZ3n{=;=H+Cz_T%+Z+^LehhsqA{4WAe$AARdU4ePe5L%vY-+#T2 zFD!&_R>) zRl&{=#+M&VLZ)<4>7Wegiy(`8@S2!@Up4$WR5D6dz(kAQFmWjydj&{wYL_#(y0gS~ zX)sySD{#q$QwF_NT(Z%;6Bl409%mk({F<_2M0rV1mK9Y)?rnG)C17R3O3xr-^_isg zzTSfPE}@t{yBc@LPdcvfP|0GHrC4Nop^P$TKI9y4RP?Dsay_Hy*O79TLgWjv=#OOR zp$eh7Wu=KmWMzSY^$SAC8Lx$qMedd*28!K7j9$OzQppB5iOjLnkLe=oMs$rbei0Fi zAh?(l8iSm)xOUxX(NK8s8f}=JRA^O0D~woRq8Qik+uGO6N)tZne&yE|Ptc( zhI~Bc6c4By88UU(o8x{rNI&k9$6e;kbcH&0sIN7!2`Mv%1!k4LEPNYG-t}=VFPt*D zbeB@tB-rIA9oy@*&vwLZ2txHTMBRwq!^*h#tY#A0%qz}hah=QpX3UrG4&ofnNd`nV zn<@)D<~3XlXk!~Qa_Qv2^%k-sK^J>#Z`<6aQ9-1~+n=2CnCLlUZ%?vm!m^?OrC={~ zN@YqyM@*QzPkCst7dBMiq*pma>APi2bGS%7KNJ1MSPX_2QQFX;G{NW)FQBBxtyCmZ zo_<7+vsoY7PUQ!adC)VX5gd=af*wq>AipPu+WY)zf+xm z%b#5PR6;wz=}CS2;t$6Kxri%dE{)w7ojR}2?x({TMb~U2wHs>Ey~IC???DYI-05Yo zq6S6*EREk!-|ef_Zkl%ED79^yB53^+xzE|R-?DwrJ8NwI>gR4{!!e7qvzONuaYq(( za?hrp?QA;I>NlbMz&C4l_XKB`dhcOR>kqby6%`^m{EzLr+EYyJ+u|3AAix? z&hYC>G^l3U4iy^nRq6UgoAN|CU>>f5H zmwD0kry@f<(phQpGnb2n#xzC}?s&dlG~ZQM38_an5}FRtcvoqx6sgb*u8bNuY#uoB z$bUvKY{|=mRZXA2+m|G(5&X%}qd3dTaP3T1BhbQ-&ocWtb4Iu0Q`PvtUxll%W-Hrt zy`fpv<|(PaNQwjzf|-6nB1Gl~w}tz2u)s`0nN9%(bn-g@&HDaz=KEV*hXKX)pD=@L z9%)42LxAl!5I=^q3C!aY4*~4mCmwcK`v4C!`0vx`qPdU41MGc-x$NT-Lk&e^ zEI;4vU)7x|y{|{YlCHC(=yu%yv^xN~fVbp{lS!22=`}jqo4^H^{)Wk{=(-eSEseub zLW5^lU%GmoJ}e#VpB?>P{rZOVL5SPLdhcYD#ODLKXCoaHrWW;I)r0D-CU~MGqX?~K zVVZKW&)v82l`}hi#9TP6yVHo0mejjZXugqA6kwkYYgDx0*@?r8h1Q_4uCWh>9Kf#M zJlrpoF4}sxnyfsjE%i3Z%b;XF;;1B~;x}WLMqVy$Po*J=^@P&&wDYqC;jNEQ|Berj zf3@$6LyO#(NuyRxC@-^r+hm~AsV(p&)8ukD^QG#CFz3m}vgY_UjhUlfOwLX?k`Y%N zMGDQYffpiY{!|I^e*9d9Ln!J-dk=TrF0L9m1jAA z$48idmncIq^IH?ruzz9^+7v@eQhV ziDV9Z<}7VOQV6Dxg*r;g0<$hU5LB>%zOO~db(FYW`PF}h>4ZP6_|`Ks$U*DmlX}c0 zL>2gLyIFdL3ZPW)+4XVzGpB9PPB?R)qv^AGtSDqX^TCI_*C*eulWRD7k(gplxc-!7 zhL)CGX@G^Qg4e~B;MAtTivlGsWUlr{ch&+1DkF-vmr|vh07+_6-yI`JL=Q@u>( z$)+prF|@EEDG;b$PSu6V><6=4cd}SYx)*h&eCfsxGt5u0HX%U-}W;~u(iI>qXGH0})45gQ>Axyc(}4}P3_Z}D@8XWn?BkVyK$Fp8%XIgo@%1!K!M0fBO(OiYIaiOxfr}7akk}(@& zMAFm?Usoh0RweVdI~H40rw+u4*)gZ*=7d(4m*O9#Dx@m~*9F+=FuYR4E%`lp5LJ7g zvCy0MRO3}v7E8drx}$hkU6g|)D%uXa3xj4Ykq1ueB>h=&Sf5rrn2y!8EWC9rGW4R~ zM4s_`E+3~UcOAV&Ew+YwKCY^DGO=S@u3Nl3Ev|9EPjLVEmdbr^Z)dzUB%^ReQe4!9FZ$F7@B) zCvI|OdUy7tPv@yu?V(oadE`g&g^?Im;AZ$9w1pctCLkSphVRouYlmFAcRm|sXqP_u zs+xJ&U1gt;Uv-DbFaK~UUrz6x%S02~Lf2)1x5$XMs z>>CF4EvzSg4+RFGjm8O+Qng8VamVSl(H+O=?^etU%9FKBnB@>Jo5h1jIe(@3aDL;A zo88(zqTJj$T8AaRtEoK~eSnVl^5`A@H1o)*!-drGGttXZp8?xHW|`%Fmdg>FarVz8 zH2gmuW5>K8tS{$V(D90Wx;GQ6NFKgIVsoj98owHE$ZyXs2F13@^6?8RURW&Iki;Up z_#QbvJH}+fEToz+X-V}qdg^o(KpwA0kMS_^#1;tG6K5CC!8o&BZ)LAA+wVx9k z>Wh^)utn5YyxQ>eb6#k;FJRY$MHeej}b8 zgU1orKMj2h_C7-~=$9fxch54cbRlor6$~;%Iv-WQu2V_Fc`)v8DK5bV!rM;hAAZou z#+=t_`Lf5g+V0L0)nFQ~wQ50&lgLoU4?R!SEP@&P!zTP5mZ&_zq0BTq*i!syf86=O z)9J$b?$>Nu;(OnZk2ItY)x{6{wT`=SJlJt*>Id_z&B)ZDSU)W6wWdeI7(^#yKd0-K zb@%j>Di>ls2vc{XkTHFvl%4d1AiUG7}_bRlMG`gHNMK#Z17BO(<=EsS7ZG;Bu$e}_HMaDB<>E2U@FzKzM~l$ z1_aOF9vdd#ccA`k4LLGA)9hi8kGUuTmL=SR%;`E0o0HCJ^jU@2Gx^2YJ65?-eV%bH zztKfM^?*F!5_Z3w@@d~$(Jj84{Bs+n_}r24i(c<;)>RCi5Bif+b@b2T)O#b33tWOb zgz8^rYfSmsz54NHYtMGG84vB1JTum|*ufe(2Yvo;VOL0$eJogr> zsc?XK@mB}_CV#e;+^3G#GqqUTytZTCnzk@CCGS)u#3CFy`2-TrU5cd`*|8+$TTTmn zn_+Qx!L89^=}16o>aBg`R2y2>mJ+cXXHE4YHZsNUxMap{E5lMVz%+T1)=3#>bts~H zs^w@sFS5S`>N2J=!)YgYDUPSeesYOXJUestj;r2=>~wtumR%cpB{>vnZ8qQVgi}O( zaj}K)m&iU}gS7kE9-EmjdaX8Fmll7hL$AVThF5<~RDTV#XK8n&8P!P?1d(+KU)gTfDK74F;-5*e))m3wqw>$(Qx*%6v&6ra_y47tp^?YB34McN-T45nwS^cCWND65s$+-j9@k5l7Bdz+-a4DO~jz1nR5+6ToYVbRIXlV8H z-CwRpeOM@;{${$P{<7{@)XTFf5=Qmj%`^ zKtziIxRwe1>)EPruSVHTeA!=;7gJ6DQ)}8#&DIjLZ9(ph*Mr6O6k2xj3{o{D>|`>c z{T(;eLq3zSPz|x<=Zw!kHu699+s@i9$j`*<7b5igBhUN6%ysTb)N#5jw*(Qv;0b{e zBLh8Sd7PdS5d(i*p1gKVW(=-#d(;ey!W;`T3cUjVM|@$ZtLzen*3~ISr1H{x6$1Ki zW}5UoCl(4zOSH6c34+3e!r`pxdP*wcvZ^g_rI(0Qi0P5DnCWw$+cCMab&4{%=V$Pg z(Lvradmm*W4OYBj3m)JO$JjNcB{r$9S7~(pR&|sVu1`X*wl2f3NDrR zUo>Mh3Q8izKoyt$5M%UGOkbsvKSO+mx#hsWkZd+ef$7j2sm&j6hJ=TpsJw(Y zm~GJ$co>It!lD}Wa#aacGhB;NTaihC)<3|;yvw2WV9SB8``C%lNDyCcuH7J5Y_3BKODp7Ijnin-+gcu^6Rnhv zvZ?X7oV;Y{CI!zXtjZ6|(siv#h54Iw(mayzdF5dnp4GwCSvhYO%|otdG#s5+v7(cm z`r*YS90$EHwS;tLag~?J2YkP;T?k&XhtY3e|ExIrM2f}xl0V%`{BTj=`ttY1tirXB z#0TRnmKe_?uUR$Yot;K9w!4FMHJ)2D{%-ikPTpXv7pFdCuN&9*#;}#+xr$YNRZ)Au0k6@%N2B-M9J{GUW zqASnuUOh7evm})!7Y@!zjL+3!d}m%qiDaVD9D<#4C7uJ#UhcMwAHJ&k?388;;R zhq~HW8J9jOntJmw?BaEe_2RIwfxX@f-_s|8!k4npps4EAZ+ukuqq@R_j(*!fArdK+ zPR6O}9;x21EKk|P1rtswkFL3e^?mIo_&a?PDxxWH+$Z{e8TB}}&?uh=0wp0tx}nHMRg%t#xr}C?1^uym$qLz8XG+(^`bu?NQi*a2|gw(4&#eI z7do@8d^jO|;L!X_;u$yo==f`KmApaMjiO`+ckEO%_KJR+$x0(<6Zw+dom}-%u@qyf zO9A1AWRL1!CYNsVS3LY%NQ4y4zY6v?X0M{TE1**fB%}_l`wQ!vn*s@!{&l2Pzn*t$ zJ#Ue?DEl2>Fj{_gfpGGDseHk=#H`G?)3H3GCrrEJ8`=OfjSdNP^fc(Cpr58)LA8vS z_%Pzsx$5`0yQj0T#CGHnO#>Ad$@FF`N5qbU!l3AC`FiX)wPx;H2?U7b%u{9x?1^IN zJrt;79L(FN6i3bS4AE_A==X6jx;S#$etU3#x(WS zQKBK4%4`3MGV}82lW0=p`N&ZJ8ooJ)I+Hilkj<@kayL?+K~~@H$Ab3^4UEJ5y7VE> zd|ujn4$O!6JoqB`rnD~=PQFBo%~wt6Wh!;yNfDAj#_tsu~LUD%}yUGX&r3;HF| zH9o=bHe+WK%dcH#Wn_4b9u#DPcZc4dh!KVFm)INSK`ZJvAxpvAbGIxVEq+no+i8JS}PBF52|339u?x zuwfir!gFhhImX&?wi<}{R$jbwow&nPU zYj&^-huM?ZqU@(M6M+}xKkDtEoD}h`FgwD0^dpbzr+m5xQuW+LipJ%i@4b8d=XHIZ z$^$2*g$i2Fvfb&otSFbEi#WTqCMXk%wJFkc-|7iSyUqqYX`BQMu3k`70`q0zUmJm{AU(9xYlTy+-60fA#o|rK5$LyDLmF5fvNs zUX*g9VX2AT<4H%vI`}5Rb#z8?*)=!*4;^@bGdO_x4!Cn>cLt3X_M@B$_}kNe5jMM;!4v6JADy)Jg& zcxtOwyrHRHPc+1!(*{=m#9NmqNc`T4y;npBbs}k ziLMkX7q3uY8onf=nXaUit`tEVN3R~Jgi|2N8p^6^#xH$uLAN(M;S2*xl#Qa4IDycE zzby1*DnTGv6I04cxZ`c4eVVDV(hyeATWyyRbW2thjQYLk$`^W6UtZyIC53+A%S}p5 zWn?flc!HMWm66KO!@DKahl;B_Xe3$Pz%(0(L`;vWK_BZBAj>***AeAaE4tjEI%QDK zCM#}RR?eH)MV0J~E}vF>C>hanBSb_xSvKy7%0Plw?@BK)h+fGBAmkwO6J!LNj$u4{ zi=4x-j41gAEeVlDB$KwoQ0Xm_9H%-y73ppPY7VlyBKnV>F7#iWMr;UZEwA5NsJaxQ1>UMy(7c0 zoOG;#{!aC^h`N}REc9+W{v&C``hay}A~wuF!e_tl>oi_B=INdK3Z(oj6uW+@@$J~S zvx2M87h)Wpzld(=Ix%JzBz$xye98A9>t*rohNXSwO{X!cBpV}tjSf*!X5NEE60-5 zK0eY~Ad}w7R+jAiJyV=%_2bb?WCHYH>Gz_=<$KG%JjUrjle0I|g~C)L9#yH37nf)2 zhL>mc)FZ@%E`jgvL-+NmunuKuA8sdap&07p3-XO%JRkeX75{8=3oA{nm?cX-*? z`vk?NoRiJ^^Akg3Pu(tG5O zRY;$s*azawz7M)kz6+_gpNwDnDn~!jxtzJWStWnM`%|DgPquW%`Q#ofN%!w;{_Bij750p z@OJJQDlZQ9Rt!_r<``4PUYwk|G0gdKmvuKOSGnJRl(eFc*XQ)4QB5G16q7HA(x?VI zi<)VeY$VZ4ykACtIeF)m@cL=N^m(o(ehq&?x?-Q>-nAgAOH`y4@l1cc(v&XF_Hd=e zXkJS~rDObg9dr{R%x;5bM-xF_X~i-#9RrPAbhaL~ZQplw<8E{!+JSv9rrpH$cp||L zQgh1NpH{l}rpDtF@I3qrKuk;AwIrJB8U5+S#Lr`M z($g~EhE=FjlMO|cjA!!k7Z=A?k3kRGUmiJSTVc+GTG##Bo$m&QFaXMtH0o3L;}1~=gD{<*3ez@7@z{C1Ym8fCJTx8 z3(%xR_}|6BD7>*F*1}g9M-G2zcMauga3HA+z7YAn4MMDM4A>$Q65)!BZt`kH7 zt-SsYB}L7fiwGRo1qJxE(y;jp9?6<`T3$s=WL{z5L@xM+C~UmDh<}HLQE~9fAoA3h za`3`P{`*`FtqiX=5)!Zl?e8e*a=dc?i-$p;cN_a(JiF}=6{O=z}u51RK!i#RlW11iz4yz{KQHbeycGGsfLlr}Fh;8+a~ zfDAZyCjwa$XilP!7NIWnH*1WfZk_Md!Cypzc%P{KT+FJUocPH~Tu6fL{pOc}FB%47 z6y}nY4wK?3ZHmun;qgg+~ZAhI?tDHWH zsq#5WZLsc76ZYC}XgWW?l4zQ(6(S*jGcP1@pWoxfgeG*kKadNJ$~J+jKWF86s8m%5~BJr3Rg}!YL?-*5q6uXKgA}O7|OEg zetQXeq-hKax@y=ZbwY@VkN~=Q>Ey46&IBLA!xl$MlA>awqx?9=)%EN+eypU_p8Wb1 ztPphh#7L753d`>ww<}GqCULg&YEk$t3b_NvEjH{dU}r%k4E9S;KiM$wvK|1EcqZ-5Ns;%d9+@Yo;;;-SPt| zqh_+_Gc$$yvj?3|t=#5^ArPwwfeDk5&ZTg-$B;T2==~(Kz>Unr66JwN%^b$2*v7LE z8@KSJUfz4PMp61tGkE2$!xA3iWm7~>j@0GUhCWwOE|z!Vp&)C-Yd^K2J3iWZ6*U0(4p#_b>4 zA8C{qv!VCHg%-$@9#g*y>FN3La9I!$PjJ80fL-DpB;x*)M=j365eH9#-DCRZIdgld zj;N|Qh8|y6iA}0kmODnLU!*)CzlR!)%%PUQ5tWA6gOgg^@ZCj7;m*@`TcZ0OTPV1q zRSplhd0q~Udk~|nHHS41cF-eCzRQbz#dC81bA2KdT69mq``Eb23g_Vk;&F+u8)Mk%j!hp(NPOu28d5~`o~_iWRI zRLr~ioI%qfeUoJeNZa@mgdQI$&9MtCpDwf*`Gx1?{jmS-;N;+1n-q$6AE8~JGFDUyP*uK}XCMgGeV4o+KZM%2C7qq?R*B*xR z?!~72tM3)M%)C0{^)k)Yw5X&ld;-fP5SYHkn zej43Jc4plOX~Ckr(dffFUc^11zVfts+BMM$4m~r4`9i=EDY`sXg1{UqtsX4l*p{ zN*ZIKCD+7vA5AO#O0l?8A}fG25uBuXiqwo1C!yE85!Om4fa}&tOaoZoeASK0sEH0? z+k1r1eGCaYJKRP(+fCJaDr|_}#6*wrb>g7*yuC-UR=d&$@xiLLZa%aSEEUsFy^?c)M7yiQO% z?&>{+ZseM)m}W0DoS)+hA-?=QlhAzEWZC&M%Q@XuE7#d;wO}I`^YuR^;Ro3-wYPDP zluyZ<-aN~GF=Ws;Hcdxle7V+&SFL`0o%8dW^SR4F^C6et&iS0TpoA~gMDe5G$KFpd zFIf&;k?!ad1zBZ{8+ZC$?l%8Qk+8xFXIrr>;(<0y{i%y{AykR>Kfc>zyz+o;qO5^s zEBlQ11V0sXwb|i&JlEStd=Z3NAxx~<$sl1C^G z6S)Y~$^09pxS^0HP)o8yNEH=ot-mWYwksm;UCCDyCjJF6Z;#~^>3|2%+!v`&_oQtn zx-A;BBPbAS{jK_44~lur4Q&BYx1B~5 zI$}qus!c!bEx$jtY(zk<=*TW`+A<-!%g}HiT915if2TcDT_<`%PKOikMPT7ngUQzk zFYUXC*PJYG8$ts5)Yi_co!BCpd&uW&KDqtRESI6A9kT81uD-vYbZZ5cs_NfS8Tzf1NtBfB zkJMRHb-+i2Q15NYEyNt$WuMFAM@^N{n5_}DRnC8FPx$)$nQp& zgxb87KX6a`>YZWu>4aM1PAzY4V%F!kX*=nF!-QC;<^UwDE?^An3giU*}C80sWq>Jo7DMd z*K3@A_6)3zOWPdCG&cAI<%!|XV;jboe_*G)ZrsU;+h{E!2ld<=(NEvHZhvvk@$QSl zDZOGLey_A*cs}EYndJ2VZ%o5o-1pue>To5ty;ExIclv^yejr=-#rTXjkj;$~zZLUV z{phQn(Y6xtQ+hLLj<`&q{>u|Z$FR`pzBH7Cy>P3- zLQZ`qQXO@JhR4?&u~S&`I%8Ch=6FOHK}lB$~P;cko%&R_1)%nVXfB15Z1k? z*8<`#`uQ{wDKfd}Cs6EX&)#gE@q15iyFdNRg6rwL&GioRJ-cYvw%OLTizfT9Auir`nxWVtt*R1t#m9n-`4Jb4kjBK%Ia0ke1E6=Yrw_*lC5f^-Kz;t zb=Z1#x1F4fsD5=??b(zUqpu)Rq?WZv1MyJuk>9XUGiqj}1sO5axx8U3eI}pWW=%l- zPC?K1OE=<&a$)w!d`Fa~7R9KQDjh9a>(~~SKbv{#*Z`-ljCNy@w){oRLGsR$LD#n@ zx|T*+Yuy5798o-KwYkEY^}9r?iUVtp#hD-?){2kRx-*FL#J!c#R|$S2V)}d%@@tf8 z#l#e`zH5i7xo+E{DAq@&85vASf=QtI-ZW8IRq;oyq(hlJxn>2n*OJ%5*zfJmTQ_Zf(NXUpUTi+h?bmnlCGE9{`2BGZ=O|A3jw@e(2N{(G2!0gn&Vu#ym7 zW|(Raz}(L{c=>BcLU}KUfOZal;a?<$*B=RH69PO)Y#u@|Yx>i8y=eb>2p>X-Ym6Fs z^_W1rUSKC7aZT?cF9uMa1lm5`*2`SgjQQ!Q~pM(e zQYMbT{WnTE;wFERmHLFSgJRwt{NVkKExjMmoe`IbpcW)YDrDm zh%|1&3}vaZtc?BcYGHuYQOGCs*d~^##}KQnu;yTdN5O1}7P@L;ASp$tIXC4NOIFFa zKcxA=?3rO%j`;o?&br=#j-(pP3e{92K{Bd`JkD^U<7=nG=_Tws@a zDbEyUdxkIv-7zh55fh)KnDcMC)Xvo{@k>GWQWN5?j~sp6x}V9KBQs2hyuVL{p{p3IxVioOc!#QJp#0UrBn9 zCbmH}Gjd*i3RFbJt;~pd+@@E6m?W2iBm*&QWe~9sz{5v5dO1W9Q4u7m^eRVkIH3WN z@f!{s#HI#;N&1inEd>!hgF|X8uj}=9)**}R8QYectCOI^e!U%&1JCxC=bMAeDp0Xr z=BBN@Z<_-TYp5?#JuzsGNmqUGxP+f^{^4PPIw^S9cJ`uh`PE16x(2~M#MG?(cwEt| zFF}4)owYi+xv*RwEZ-c4g27eeorKgipxR4?ifcDbqxYK%R($BMx1SbU9APc;K5HCS zG@$dE3Xy7;%l%ca>4)7!Kg1dY6+I4{KwMv|FGN51eh@VySGFt?1+`d94$qskxV%34 z1&!*(yezdcMi5ip-5PM|d^sTBHtsLbkh-)uZbPu6c2@JpVrTQRpkZ+~CR$CQ=JMnJ zEAB18;#`*e;Uoli4-UZs!QI_8IKc-E?k;bF2M>fm(BMG=gOfmT2@WB+Gq}4md_zv| zx##RXdw1{M-S7WAO;cTO8$0mb){xy2IEZ>*kS<3VWcLxQOmwQDbc znUXUq@zXSvtNDWuoY@2=I zxt1$4rw3m_pj?pveJ>x7oM8rWjb@F5jxP+?wUu3Xz-F z*3pr!%X}BrpVQvF-HEMfmtKHF--v~XsycP`VEWO`p1m=%qq z#EKN~dYKDH&x)J*$ObXyIIhe2!vNO#E2d){6tdR|Z=Zd@l^BG}z>x~HPRNUGtD~Sm zbYo3!Ylg5ceENnez9|Vt6NxtY!~|Z@aI$|Pii9de?9DFr#$njkTT+>Z`Ej7qHfIFW zt0TrmWz}KZ&JFRnaVZ@ltav!N6hM(U{5jsGtl_?tk>>uhY-|ZUHyosItRuR1S2$ee z#B%rgfn;N0pMXo~u@-1{k-Vu$Tw;NWeYhD7K|ML&_@wu`XnVhyGS;DX)4TW67cfKZ zRQKiM+RYW%Psfx)wf??+?WW&~Hq5Qofm_BC@(dN9v4FPt^(&+7Qy-LB;N8etR?*2) ze{TY27k-#;PK%aKL#U=R39e1}xD$2{&oPPviH`+|5553|yNu!87;{GjbH|~jMnrY; zL5SW8p-rN`ezAc0oHj$*)5OC~9Vr_MYOQNjsF2uxoV4chIsQmB%)$T#fS={%$;$|9lBf-kN1)$k{X_TRl0x~Lx zIH}R#F>rzcZhv|!3fpH(GaV)YGuH|6_9NFXZ=EnKC^v|w8N5Au%|`-^X0egc4+SK)y=%VB@*D;!UzTpl!Yt`={^G{>9Ht$QJnhnn}8$+AJ zlx_J`fTvkd@U8+b83>bp5|z)_(;Pq>(UNsgW$*AxRdI=#^t<3b}T#cCqY!zU(|f{^3T&bOB^H8(17EC$FW-oa?@MkQp<& zH1h$7|_=zB1Q--{^jp}mt`&x`4H9H(@Z z_rWHp2(3TZ#a4_zktN!Ah*>Z3tfFrkysa|*I=No$ftlTuc`kj{jH|964pj#p3r{(( zQ^qqH3N@A35TN6{J;~K{chxPi{!O0iTr!F06gehOmF;mD&PSSu<+mX6#gVz`ARP)D zz0c-NK}Lv7(XM#490bOpEUNyc=Iq;6YLDBZPf_%oysO{PIRRmj(IrX_B zYsf{)T;$K}=WzKLdeH|W#>yg?&`*O*JPxJ?)X~aBPJk=Ry_?Uf#1^}QOjCejpM^Ss zZ_ipqPbXtW#BiL(NO|yXiPmE-rOkF9X`?)eFwBRymH7!ZuL-F6#Ms1yW{JYA>#|Tj z<*8dv%?5Jgq6ebFOOn<8u>T%G+~K+2jPFBb04KMFcFH${&AE5AZibN`foUwm;feGopS;USIOT3%NI_mE97O z9d7TZ8M-o!_ld^d(`$JcG5HgN38O+@i*N2)aMwkyk{s&xIC4D4}D5{CGxc2evj7(U3(6f^;&H%s%6$G^WYOJJ@XE zJg}&az!+dC)^Z*s{uJvm9jNm$gy~7d879+Mlb1(>ucm^*T*080TVamG-#joW){`7mOiL=a_9`ynJjrzy-7D+|w9t=QM#Z$%=yf>JR_U_v#`kv8L z!N9cX-dZ4wOt71c0z8ohyzmUu(zHGvnb+t0Tv{`VZ2Q~~;EOXEW$--qg@su+rE?ed zrCD{_(qc^AUq9GTiv4Ee<&L5FmHoT3&`}~glKgY&FYyEBR+Ml)d!NQA6rO!JuvlOi zuylX!$av{L8pE@hEo3K9pZ8L>=B8OAWEKLbhS7iEv$|P4&Ok57TX^W)y|@)~o?>R! zHYucjk7_I^VQa=|tXH*@7hU`HyB5aAa_W$fC{_;bJOZNP_^nKOrgs-q|j8C6WuN0S~@w%la6;fVURc!IxNQi_y@TEs_xWyrC)v zz>(jVE;&1N&ZDivA)^;0lOA6S%bX*-FRNP59|#63mo6l@jQN7f;umHp)i#^<3-|$XVr#_!d zi|$>mwd3dwsN(AQl+AFpwuTtC_JN@*EIlRL{JVeYjsKUjcN^?wBu}5_pb(>jV*!DzatRy0?BxptqpfSV8`6-6#IUifBKva;`~tZ@z>V_?E9R zRv$7iI7TvSInL&%)XUy`6;yovREabQj_7_Ad*5a1iOIFwQ05$%Jlw}4q2HvZb~}Fg z1TFydLv`#*RdE7@4-%aOJ~#Pdg)r9#Goyec^Q)*p`Xdb6wm5|HAG_ZZz#@TpoZZxa zAv}Z4Eu`<+1l_g*?+VfhM+<2j>h`gxVFrtL&GKLXu+03qWVy;i zwDD$to4MPfj8kgJcG(=W6`FJWk&fv4va=1BrZT?i((Q8TdKsC`eX2WtwZrrXSOxc> zb%ze*g-QqDkC)DW1Eq8$7dC5UC|6ixL3{vVn z6A2!`HtMWq%FoD&Ta|hVKw4(2*s82CR=KZ49>Dd|<-D8FaVZH4TXW3FiB3;pk!H*- zJ^$*>1H}FCul-T)rPrS+;_rNYEPQBQKO@tUfMmm&vOL-&^l2G&zCm!__XOE{69u~h zY3(t7(Ji}bsc(9`wbU$a$M%v7?Vv}Mugfu%-(_-TUu$DOaTY5HxD;VYK$o>7)ZY+- zcvRc%EHCeOu&@Q3mizi5m5l6SDRK^s&bNt+m*8)?c{ZMs3e9^75#7jbpV21_pA|>8 zbiD9L*o|POB)C3Y9QQ*?g+99dPHHzdXV`i^?H8`+;>-K8AF^PDjr~T#DMLps^81IX zM4N6`+S=2lS?Ey$FixXdOCyF5uJ#}nl$Jz-ZB^Ux175qE(OHPtsx7js2>BJcR>ze4y@u3k^ z3;cju0q7~z8>7h)LYOW7@)J_C<4LKKn6K(2o!Al2{qyfifb>02Ze+gC0{1_CnkNn5 zXT7IGFUEy5RE#?`^{F45t>D!;hk5!vV|tTl+7~+?SCPQII`B+`L;0qAEkiPQ&e6uS@8^d#@~+XZ0UG@$ULzbs~LCO%KK-XXo@hY!Xt9LhOk z{d@*OKe46x;0jFaw3V0P-b*Q5BK2s}Ja*qcUujG%=hdj=@#sx54a+U;ydn-AAIMqV z@6BtG{pPcOPz-TgA#+_n;W!rfVbRpQZG2W%$pC$CLML(il9GHdYImOr&E#ue+5Yj9 z&*#VXOmA%LAN$`|%g16$upl(fVz*9_*R#?f+UiZwoOladU%5psCrpMNSBp`Ncv=Q4 zR6kJjBQ#8QL!ejELs%RY&5=1b?};ziE0urW$V9Eo@P-DZBcbH29JcP{akTu(_uln5 z((qA+@1u|3zcqaHe(oVV$EUY%y2V)^8opHL)_tRwT48<}i!YV)#s>R?j%TH~h!lrB zJ~k*Dr((&OYTUCp1?Cx9Bp4iKs{ofhIF9NYc$B z-2p$sZSOPjQNH|w3=V!4SM^9Dnt}SAq#O>boQ>8Kl$YG(ksm}6!7ssaxti?JSbZ)G z_yyJQ&CgtUxFbeTNHmNW?ctMeQTIMI`Tp{tvq-X*=0t;;)oT}axP2ZValoR~!eVUk zByG3gk^H@c*@{P<^l_hCEouBcH+qsXIyM$MEEWaqvQ`&YH%d-ebn92w9Fz}uxbNKZ z@qiG$=@s%dC-Mh+R+@X;H8AmagZjX)Zqu>!` zGo;biA1`>8ye)`u&;X>AZ1foW#*EEQ~uJ!8d4BsGmAHsTy3Qk5yq~v}5!AJJla-cHiXQhW1f`MGPXc$R> zOxQHM4|4)vFo2;&&2FWXZwCyr88ZR1^YbL@=e6xHS8ndt8<5zpO57`L?RQ$H&+!^% zHCi~#l;^#(#rB>Ki5#VO=Tm-0QFoPOW8^Z-7Ep^jYm+}Djq1g3BNE0~L?iEVI_z;# z7p*FxP-imd6tq?s&27rUO3UjHq>^vJa`!w1H(3NqbHEcqwyiUiN-EMc2^avzEmOwM zbRK_Ih1YTQC}87)#sqDPa;V<(lJPyH9)ma@c&*1z9FTlM)MN+-DUI}rdF%f0@5!W{$ZV16;Hmr3TRslC z$-^i|GHEp`QC}98(DOnPt3g&ss$u=D2L&Lo+juk1!!j*N=m1aQSq4C?D|>k}*Ch#y zZX?PO3wjjZiq_dW8NbB&qL7jGk-_zw{ON`659$uN`^f|BR)L|^M}Z8@D7eJn*3kQz zW=+Q2Y+BP5J zbayo5hcC^Eo1%ODgwm_RHBPDh*R`*B;LEP@PCaT+!7rpgrk2s=O(vF<; zwjK1sbgnFf_y-M0DFgg@w)-b*SXtk#n=Esc+Tveh#h#36bu18=8d1!c88=1^OkMQz ztLPGMEmj(i9c{LIo;vm4nEbqz!|dD}IYoh!cBSO@Ucc77K2L&pPa<3i z*^fATpgws%?FI9$q$pXQET8J|K2iF%?;&D0!lFNql~v$e9dxrK^HB9evNUo>{M*?$_iYQ7!cD$(YL|b284!Ha}Bx z(Yp}fF&04^VEdrW)QcY<+lEd=V+9Q^G!g;MiZ_W_hLT#pFZ^wh?Wdv)pM~^zTo8X+ zjYD$cx8w+Huh$Es>hcs)Hg$!MC~!1JYtX3J18W{7*KItH^pS|*eez0af7fCvlaNFx z5}&jgyw&|6m~1foft$+Vy4*b?ZS}fYV{ruJPR=+p7eM~`OQ&j13snpg2g47U2Q60- zrthqcK47VIE5aj1pbXAqCxSj-KIq6pi9N;E8cKSTLHL9ma}il2oA^qh1qBa|WNRf* z!u&PEl>or6RUt1yN7!?glw(wLmJ^nF-^RWQe5W% z@fiVA#5TbBidmr`d@H+ELtD&gkBXs{DnTj&>05G1Y`YsfLohAL$ahKN5qeH5HqQzp zVLBB?Op%iftHXt+52}<(B_gAiXh-z8OUXio{0Lp2mkYO)mc;Ybria zfamePj>=HYuf~GE=WE~-HO)BM2$Yc807Tk+DYYzCwPzo4rKq^7_Q&@=EGo`Cgg4YX zFZMGAw6Z63lAc^XJ1@TB7gNB)d&I1EJ@zW`NnhXrP6v9<{;|at^Sttjn8Jf zRlpPABp$}dvq2ddPM^${X3sT`Y(-7CLqY-ca~fbpC0Ms7+_YaQshLsWiR{&$Jn}rS z_Y-KJu6`|R^^nNuwHL+`PH^qL`|b9#iB^y=1}l;R%kd&WdPWv6H0A-#z7<}UxLHsK zLM%Eq$strnhB-lWa@4(j-XNFtAygTtn1#ebc*tXXy%52*LkzI*w_SM)DpiIp>EG}3 zyY7(jvIo}!f+Evhwca$5^zuM0fXspmP=SL z&|8eM)vpPS_8OukPsR2IK!Ntg^g=rQ==kSFkR5 zDOg=0E-rC)Y1p+7Jlx_k64KnH%uwOC0>HpM^|b2j-8)k_&?7c<=ynOgy!@k|?M zqh=S&-pe&LH9z!s>=k9kvMJ!QKH1Cb`|9gk=_9QHjWh4;pwDN}vY4;E464IwPRAiO zD*F2Rm!E=-nA(?WC8pCP4~ktA`YpOwXRvq$<#rHMfA`88A?|}YIbi~OIPU$=a%d3JKqJfoiQ8hzQiL4t;yJXO{kK?>uslj zSdNJaTu+-awWu?-xs)_3l(gEEwCEk1-3!tULmM-L<1xkMF+;5}C8;q(^e`p#FvC1G zr3eL6AUa{m4iQeR`U{BENb+rC@3hhy963hf&=EX-9^z>ybvWC4%x&Q4XbY56bTbcj z_sgPmk8l;l&#ZmsM07&Zd1LU&jKkaLOU0XIfMH|cn3ikR#KBiz)%{+#28ZMILzSA^ z{>+_rjfNMFipG2)Bz2Q>HBQ534bKb_mpB8ElbqpouqlS!XPT8~T6czc_Bjt;*M;R| z*&kHad3WJD<2v8-bY`l$*e-`!&{U z&z*bN${mx?zSGpK9`gVx_TZuF0ovff1J(nSvJj`ModXi-2UC)DXWBDqL7&%=7S;UF zRot?l1{WNh2o6V+_n|IcgeAP+$=FEL1FD)f6X=PYS z-V4_G@gGwA2Nj6US4O&bp{J4*k-Yes=&az^=o!&oZ=$scOB#OADfzT2+W(eJ>m%hX zTDRo~rV!Y^g;OVyiAvJ8%W3)j{ zmY&3j|G>@8z&Z*3NG~PqEKqgZdyAdf&6#zxwbr4LcNK>l-jO_FtUV%D8--cKQpBYEYii91)#y;vV{z81VU8@;FO1qcUF zv#!17%bBi&W1T=Q+jxBycOAS;Pa{fof!wVs7a(zn8=v`$b&#^gr9$#8}y@+$=*_yuA1Ffm&+kU#kTtVqzX7R>xR3o z4)M}&bqruxti_mq&YViCQ%=v? z`IXYJF~71#R#G(4doYr|F2U==hDj%E|9#|-*-qG26*8cbx=@AuhpY>^G?Z+x>SsE> zw{4!k^D~Wy#c(ze>>Y&;y}42_uty_X6Cu}0mFU6*o|JAs%inpHUu#OTEtBsV9J6?v zu-#d@+i^zU(6dmF+j!uA@a5oZGs||UQT_?XS4;#^`~8u>Wx(IbKT=5&UB1vPX1B&Q z$?ky);oEm-BnQ?wZO8bjisfj%*qLl(N)*bw8{?}4IojP-3i+`YpQm6utIdx|j5r`J zhAEgLlR9$dP_Lw&v80p7PS%gkF)YUM?6Eaaj&Sp+nR1LO=w#w$G}sZy)ZVT#Ex;H2 zG-2JL^3+4Gd?X_M7wbmItzoZVDd+7@m0f{xNDOaG7vS69-zA7A(IpG8mrk+MyIud7 zt>eF2Lu8^yiRO)>nGMQ&+g~%mn|k`|mr?ia%IMQ3$jgR99F9%Mf3Bjif#GhiMI$CD zxwwKUlSabCI_ZtLY1zU^!~N{qnsvtWVnPo)Pqtox5t_wmXMmYvqG zug|I{{X*9q7P44LTmE5j0l%-VrP;3$w&8nq5VEGfFRt^3c0r=d=q|6o08)Q%91fIk z?KP6$axW_GNgc`*+UBFOHW=)7OxORuYfzg=q8=#>^toDQZ~{kZ@7MZ-tXBCs2i?Om zGCZq8GFJPSNBOM26(3aSn03rBuD;Wd>ey!t)nRXlSX?nhEDPC{88hsCO;?bVX1M!S z_PwIRMH88|YuH0|_R)w!ZL~&?N2@oxw@P!`d+DeBWi;~*TiyBr)k@URC5A`^I;L~a zOl#B)sOqH*KAHUTrNr5-ztzkSMQK`o{?#Swvso9HzHWBanD4;;ST)lQ0g$U^{h7+0+%Cz!$N@vkob12I4u zR>>Cz`p8o7C2iBCsJFxWj-28C$WV}QLX zeB|IzKX~DLTHP0X0)rUVgPtAmLJw;$1Ggj%p<8vYQtRMZ z!(0CP6k$6Ld{5ZdV6qC&$(rol(ubN(brQQ5Nw|Sh$a>>!;2!ov$D>P2RqpoetSb=% zMc~Q$hYvx47y!ywsuR^pc>`mAk^t%p(8!5^O~Cd{#JHBcI4yi4o~HV<|5F0^Umqhx zhw7$~-dUzBrktmK|( zRYxk}_oz@yF0NmH$!c;j%&TXJH`N9;Qsi2%VOSc_jXJ-TG`Kr&gF{?pm!#jFZ}^Sd z@Gm8NY9hMnZ>N~POdXz&f?6K)=G-yX9c2K{KeHwj`)Pa&V|e}NdEutm5nYF0skmj4 z2*a*ng6S{c_e;KRJol}{B;QMgCB+2>Z&xCr8eSckyanPOGXa<{*N-zO0SW@r6tBMN#viX!sxTsVvY`@P&-<1(6Ock%l^x6FOlh zIT7hN;YWCBU^~v;X&Cl1ubAc3cjdGAL zgqTn)IWKA)k(!Y&uR4(Xf=-%~Aw_;zDZ)}6;7Z7TkJtYv-hYdAD5rbe3y|(D4};g6 zw!@3fK*MDX%%w45(ur6)5-E7!bK~ejxEONfsgzNy)#Vb_TCoCqS{`un$1 z2zQjxTzdnDXv~+_hrvznBX}9>0#os3au?{zd_1%`ym^@}0}CpP_o$XR z3&HXs%8YjEpahgu%?a}cxrSX%p)S;h_NO#d?mi#W9Z_F&k@iU=3j9%i>afrA()bE; zK2NRFdqgnU-L7Sb;0 z*GKAnjS8ek(2Yf(2v?qnVxEZjC6&O0l8H$FN38**&Ell3|NM2j zz*xE{;IKgFu*kE!kko?1g9j{f-*n*o#o}G>kT?cm|C(Q0%RT?6g!;udto0{vYQ1%G2rQ5>+^)}6s0lqiUVul-OP{7_A+A4v8W2mx7-u61qeV> zTPrre%dDlH%I_^K-tC|&LR}cWmyMM&g7Vff>1V!V?&}>oD$Z|&fjsl!ep6dmnQn5J z?Lm{1UH10&hN|;6wp$rKy@W7Pdg+J*>mBqG5u%(IC&Nl$icLV>80oi69MKOj@)S>$ zm{vyg|F089?X(7+_#Zio2TBAgH~We>xBR8Ff#)|CCrP8m+Q8&QW~TQfaL(o3^u`}1 zG9wsTxF?QkY3oep7VjFtt)ssPlMM4&YxVQ(uO0uDt+g=u_E(JW`=FQomZ`~orJJw~ z{Q7qhdSM}Nj$1b}0L=sorm6ebHOttwTH3W}+qHRYH>+&7I&8NX-HFhUdl*Yt7!Uv{ zX6aE3W> z=Mz3A(KCqi2@Ml)>bv_NYVva;61Iq7I{A<;Uz{Au^F9x?9v^z-#e(!m$T z?)IcY1rEmUk2IXTB`EW&0BSVWyQZgAA^5!4^Y4YV;OyIPS}MTTspB1yb$XKO=PHfgu8I=Ij38#!=*_q6y$llUC>j?EhX^oLd_IMPZZCnuhSAI5UcMdlWRf zL17J`7Oxp71yp$6`X46vFV5BafzZcVy@-WDql*V#(E+gInQmg}nWQ8-IycvkU&NAH z39-$Kk6Brvp~Sxv&Yn4cD&IZ8-V<*~_`Swo5x{@!=C3OK3w2IO(66FHZ)Dm6a??6A1BM|qG3#oL~<@0v- zVO0dGKKfR_3UU%Kb}E=iAB;Z@CKCkX)`LlW!Gu?A!8d#_|AX2L!1QJ`7rsc>N1fgV z&C&*~76vU^25rCLrS>x|hBIycLd}vwt!6?k8bWQqz0aA74)9qcilB6X8v`@w z`cvcmC>>t9+NIm5blw2cJG3@gNsCddP%}?GQQ==BfWI~4p3Cy;`q$h4t@$5D9i>V1 zz7j6Df}3hf$-K_5i~0Kzn^n<(f*uIv(Vm z{1^XWF_J5tJ7E{!H zh)97>>(t&QP+IpT!uAd&BpPeHQaDVxm{XUZ7Q#rh7y7sppS?8PSvu;esR1@5;*m~!-9NItX7r!@{V@P*LOxij_E$Ck zLt|fw+YR2OpgEGu!Ry$%DZ)!&-?%+dtP`GtCGH?7>vlVAO5!$8MM%}_0P4j*92IG4 zzy*=rSu}DzjrE_k6BAse^j`Vu@98o-e=DW`NcXJx;PC-aD404kr!=!IM)+ko$UA(n zvaYj(o2As*IXcqTzyJcXAH)+U{iw_Bq~#94JtRsRtn=$!;bh5lzKH6zG7y3M1uWT?l=2DO$z#ek|;k;(9PR)?a9`V3pqQ zunQO3OIq1L?&$cRT4U~32xV!O8D9*p)4(L&GlBvqVyn2e=V@(he}l)8hM({d0cj6; zkAImevWcP{ktEh{zaP}uVBQ!*$LdmWFPjcu*C`lr-W~%>Mbv11BdT4ADKev6Mfqyn z(M8sp$~iW~$|2C(^oFDL+a}Zl^zN-s5WIN81F_9D-0!Fj2o&wp8nYiaWwdyUzNn2x z7ddFU=M<4>{l@x&1N?>tE)nC8f2@<~;ASjUbB>O%b)%NzWK2;Tj*76<L{P$Z77lRi1PS0tKP~m{jWs${OpoQ%)$fnFAzO#-xobMmwWJ0(YbJeJ# zQLHuPawLfTA0Z6fKI3@*)REReIiQfdu9D;Y1`@1x!lb3Kn5n9s55IROYp1M z&W%AvD{cPDp7&Y!1 z%RPbWQ zY@=<_bxpULT=_0Z&f+7i`H7Tzgtf%Hshj!@4(qy4iWZdK^kznEp2JVJ^>SQIaRT}{ z`TzlAku7H7NzCGZqWUMHpz%Bg;xyx@MneCmQ*3A1?j+yt5J3ZpVk}Vp7X!mEhjAw| zUMJ3yt5zVkqk9HrtC0^|r?&0V_~xeW%TFZ@WJv7|fOjbfmPocaJi2;?|KSwxarnR# zS;5p(@uWBV-zR|oVf%l*xgTz=6N$i+tq&zZhyKZc_hetMr4i3j#rvfG2D?=YPS(_4 zEY~L6+_cL#E}ODFg%k`00e>zqS{kt*^<0CYyu}A!P+KqOcV8E4>fVyjPq%jNT{_MD zc%>n#u5u%%bqRZR;dZF8gQ>Cv7tr`MDrqDXS43UqT#kQ{dIboMefz64&9Guu@D?{+ zUByj-f0$uKs^D!xqB_1k9~pzzaA;+W`hb-Jeht z`MqEqzQ_CE4s!$k47&XZx46Sq@U_j*?>reEwF{Vo|16odcAk|)V>($)oC_QK+Ezcc zyPo4+vhkd_9`)=P{o7^;j-J02mfsO&OWzMl!V!sU*qT1?ObAv@3m+H01Lpv0z6i6r z2wRZZ3gVPsQIFxwkz*};+DuOv$3W1zYTf z(oAoTcPNupxea|6w-ulGp3vYu|Ggf4Z|uCoi{HMgYWTa1A_?XL1&X5RMe`dS0Fop-DanO&5{h3*&IL)RoR!(u~(9n)T* z`cmA6)qoun>!*1M)(#l$Zf~faUGEgJr5QIZx7&y>jGILti?d53fZwTqk@x~g8{!Mc zz`FPs8~z&jS1aHj+AsZd0}+#yM#tyY{P9dpvcvY7yc(@^BA%AIru+d$12)TC&{>J} z-t)-0N`kNQ%$E;avptKX_cS91TVt-n;$0eVtkd?6zz{(ZEFIR?7*Fn{OSd)HxNda*m`O^{E=HMDVyPBc}ZqqjltL?;aRQ{v=7Q|U& z^0Wpd=wU+d0ph)L2Ld5oIp0HcMhbI&DC>;Y<@|t-{!ItNoy5Gb)|&FyFwS{-JCKc1=+xxMk1zji3zKJ+naK8Ji94pipWPA$chCx?`GvD4r*b*9+5_O@~;k80yHyTTDjO6PE?N&2`Prg zLSTYE3{&QR-HFRim&jfi1;|?{F`B6pCG;d~cII;Yvo|bFAIqD45wd9WYODEy~qf+uON&G)m4TKLkR&XpmNo;gH zPm{#xcpgeO-Mwt(2}IvSo|$M(+zjtU6_0|>R09M`$AX1#U1SXkY0BcS@43Z|i;LiT z-2U*57Yo>>z!3>xU({)gf7ZC??~BHgBuK|YdDkDwUt|bCzEwqGe7-^oqjgd4zeIe- zIVDlPinfgJ;DtVKkhE>fsAY{ThJx2l9A6i|0(*{MEh*3{CvxpDrwF{*{P3B5+q>(c z2E3*pK(&~Dgd=l!ZqSN22SmXf0yOUGX?@rHe?S0#9F?=synN7D|61tI9}wosCG`_E z`YYh>my!9-#@qt-Tn}hS*lL}-390J|{)*W6NN1~UZuO*Y>Sgp#7pG64y(~^vlgR-80yK*_Ovge4S2m+fc^8|um?C`&wOHDkSOLB-}$HI z?OYJ94cgwke+NUHA45SDGolT`+gF2*k+Jr&6K8KQyG94VdtLJp#fBhb$cS_G9Y!xQ z;59){gt>=#C8DRA&5+)ShzkVJMqZ}?*MLGxC(?$<>vvF)$sFs>RaIH0LnQ2-O>RU;Q3Z@+!}H<>6q8lu7P z^arXxl85CwEgM3`qwT;%tX6u|sdk-P#FO6$QgI%!*S@jmf%IREU{MR&DOi}(drZ1{ z%0}6l$12N5Cr^J9N#!76Z+LUVlgDc+Lyc(PzGy zS}wop=kr>L5~?7wV#vh4Q0frl;>ylq7>+`+mICB7B#2+1w`yKjvX!!r5@7g^t-WM@ zA3-s<wQ-WaTk*x|NevrU!BeAg4UQG-l*1p&-U0_zKv4lzh(=;4HFyVD!%o}30lGsBG&d*1rx({R&P z7HR>Y7yJ70k!W;#VqrD@{taom1rLQRGC5(1`%$QepN`8LvTnyN$d`n2!%I!`qu&D&Pd$hGv&#hljp)Agv@Sc=)lUst9|uHA zV?wi!9%xOPDsv@o`7 z^u3eGNJCvu2%OdB(xx5XzMZ^5Iw~TxpAhD#NqWBUzD|GwLlDZGCEu^qJOdZM|Un*+jIIBlYWw;JgJYFhYFdO1BI4WT2%(+{{zal BKvn<% diff --git a/nass-rotating-3dof-model.tex b/nass-rotating-3dof-model.tex index 91f4259..5d1efed 100644 --- a/nass-rotating-3dof-model.tex +++ b/nass-rotating-3dof-model.tex @@ -1,4 +1,4 @@ -% Created 2024-04-29 Mon 21:05 +% Created 2024-04-30 Tue 15:25 % Intended LaTeX compiler: pdflatex \documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt} @@ -15,6 +15,8 @@ \newacronym{iff}{IFF}{Integral Force Feedback} \newacronym{rdc}{RDC}{Relative Damping Control} \newacronym{drga}{DRGA}{Dynamical Relative Gain Array} +\newacronym{hpf}{HPF}{high-pass filter} +\newacronym{lpf}{LPF}{low-pass filter} \newglossaryentry{psdx}{name=\ensuremath{\Phi_{x}},description={{Power spectral density of signal $x$}}} \newglossaryentry{asdx}{name=\ensuremath{\Gamma_{x}},description={{Amplitude spectral density of signal $x$}}} \newglossaryentry{cpsx}{name=\ensuremath{\Phi_{x}},description={{Cumulative Power Spectrum of signal $x$}}} @@ -40,28 +42,28 @@ \clearpage -An important aspect of the \acrfull{nass} is that the nano-hexapod is continuously rotating around a vertical axis while the external metrology is not. +An important aspect of the \acrfull{nass} is that the nano-hexapod continuously rotates around a vertical axis, whereas the external metrology is not. Such rotation induces gyroscopic effects that may impact the system dynamics and obtained performance. To study these effects, a model of a rotating suspended platform is first presented (Section \ref{sec:rotating_system_description}) -This model is simple enough to be able to derive its dynamics analytically and to well understand its behavior, while still allowing to capture the important physical effects in play. +This model is simple enough to be able to derive its dynamics analytically and to understand its behavior, while still allowing the capture of important physical effects in play. -\acrfull{iff} is then applied to the rotating platform, and it is shown that the unconditional stability of \acrshort{iff} is lost due to gyroscopic effects induced by the rotation (Section \ref{sec:rotating_iff_pure_int}). +\acrfull{iff} is then applied to the rotating platform, and it is shown that the unconditional stability of \acrshort{iff} is lost due to the gyroscopic effects induced by the rotation (Section \ref{sec:rotating_iff_pure_int}). Two modifications of the Integral Force Feedback are then proposed. -The first one consists of adding an high pass filter to the \acrshort{iff} controller (Section \ref{sec:rotating_iff_pseudo_int}). -It is shown that the \acrshort{iff} controller is stable for some values of the gain, and that damping can be added to the suspension modes. -Optimal high pass filter cut-off frequency is computed. +The first modification involves adding a high-pass filter to the \acrshort{iff} controller (Section \ref{sec:rotating_iff_pseudo_int}). +It is shown that the \acrshort{iff} controller is stable for some gain values, and that damping can be added to the suspension modes. +The optimal high-pass filter cut-off frequency is computed. The second modification consists of adding a stiffness in parallel to the force sensors (Section \ref{sec:rotating_iff_parallel_stiffness}). -Under a certain condition, the unconditional stability of the the IFF controller is regained. -Optimal parallel stiffness is then computed. -This study of adapting \acrshort{iff} for the damping of rotating platforms was the subject of two published papers \cite{dehaeze20_activ_dampin_rotat_platf_integ_force_feedb,dehaeze21_activ_dampin_rotat_platf_using}. +Under certain conditions, the unconditional stability of the IFF controller is regained. +The optimal parallel stiffness is then computed. +This study of adapting \acrshort{iff} for the damping of rotating platforms has been the subject of two published papers \cite{dehaeze20_activ_dampin_rotat_platf_integ_force_feedb,dehaeze21_activ_dampin_rotat_platf_using}. It is then shown that \acrfull{rdc} is less affected by gyroscopic effects (Section \ref{sec:rotating_relative_damp_control}). -Once the optimal control parameters for the three tested active damping techniques are obtained, they are compared in terms of achievable damping, obtained damped plant and closed-loop compliance and transmissibility (Section \ref{sec:rotating_comp_act_damp}). +Once the optimal control parameters for the three tested active damping techniques are obtained, they are compared in terms of achievable damping, damped plant and closed-loop compliance and transmissibility (Section \ref{sec:rotating_comp_act_damp}). -The previous analysis is applied on three considered nano-hexapod stiffnesses (\(k_n = 0.01\,N/\mu m\), \(k_n = 1\,N/\mu m\) and \(k_n = 100\,N/\mu m\)) and optimal active damping controller are obtained in each case (Section \ref{sec:rotating_nano_hexapod}). -Up until this section, the study was performed on a very simplistic model that just captures the rotation aspect and the model parameters were not tuned to corresponds to the NASS. +The previous analysis was applied to three considered nano-hexapod stiffnesses (\(k_n = 0.01\,N/\mu m\), \(k_n = 1\,N/\mu m\) and \(k_n = 100\,N/\mu m\)) and the optimal active damping controller was obtained in each case (Section \ref{sec:rotating_nano_hexapod}). +Up until this section, the study was performed on a very simplistic model that only captures the rotation aspect, and the model parameters were not tuned to correspond to the NASS. In the last section (Section \ref{sec:rotating_nass}), a model of the micro-station is added below the suspended platform (i.e. the nano-hexapod) with a rotating spindle and parameters tuned to match the NASS dynamics. -The goal is to determine if the rotation imposes performance limitation for the NASS. +The goal is to determine whether the rotation imposes performance limitation on the NASS. \begin{figure}[htbp] \centering @@ -71,13 +73,13 @@ The goal is to determine if the rotation imposes performance limitation for the \chapter{System Description and Analysis} \label{sec:rotating_system_description} -The studied system consists of a 2 degree of freedom translation stage on top of a rotating stage (Figure \ref{fig:rotating_3dof_model_schematic}). +The system used to study gyroscopic effects consists of a 2 degree of freedom translation stage on top of a rotating stage (Figure \ref{fig:rotating_3dof_model_schematic}). The rotating stage is supposed to be ideal, meaning it induces a perfect rotation \(\theta(t) = \Omega t\) where \(\Omega\) is the rotational speed in \(\si{\radian\per\s}\). -The suspended platform consists of two orthogonal actuators each represented by three elements in parallel: a spring with a stiffness \(k\) in \(\si{\newton\per\meter}\), a dashpot with a damping coefficient \(c\) in \(\si{\newton\per(\meter\per\second)}\) and an ideal force source \(F_u, F_v\). +The suspended platform consists of two orthogonal actuators, each represented by three elements in parallel: a spring with a stiffness \(k\) in \(\si{\newton\per\meter}\), a dashpot with a damping coefficient \(c\) in \(\si{\newton\per(\meter\per\second)}\) and an ideal force source \(F_u, F_v\). A payload with a mass \(m\) in \(\si{\kilo\gram}\), is mounted on the (rotating) suspended platform. Two reference frames are used: an \emph{inertial} frame \((\vec{i}_x, \vec{i}_y, \vec{i}_z)\) and a \emph{uniform rotating} frame \((\vec{i}_u, \vec{i}_v, \vec{i}_w)\) rigidly fixed on top of the rotating stage with \(\vec{i}_w\) aligned with the rotation axis. The position of the payload is represented by \((d_u, d_v, 0)\) expressed in the rotating frame. -After the dynamics of this system is studied, the objective will be to damp the two suspension modes of the payload while the rotating stage performs a constant rotation. +After the dynamics of this system is studied, the objective will be to dampen the two suspension modes of the payload while the rotating stage performs a constant rotation. \begin{figure}[htbp] \centering @@ -89,7 +91,7 @@ After the dynamics of this system is studied, the objective will be to damp the To obtain the equations of motion for the system represented in Figure \ref{fig:rotating_3dof_model_schematic}, the Lagrangian equation \eqref{eq:rotating_lagrangian_equations} is used. \(L = T - V\) is the Lagrangian, \(T\) the kinetic coenergy, \(V\) the potential energy, \(D\) the dissipation function, and \(Q_i\) the generalized force associated with the generalized variable \(\begin{bmatrix}q_1 & q_2\end{bmatrix} = \begin{bmatrix}d_u & d_v\end{bmatrix}\). These terms are derived in \eqref{eq:rotating_energy_functions_lagrange}. -Note that the equation of motion corresponding to the constant rotation along \(\vec{i}_w\) is disregarded as this motion is considered to be imposed by the rotation stage. +Note that the equation of motion corresponding to constant rotation along \(\vec{i}_w\) is disregarded because this motion is imposed by the rotation stage. \begin{equation}\label{eq:rotating_lagrangian_equations} \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) + \frac{\partial D}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i @@ -113,10 +115,10 @@ Substituting equations \eqref{eq:rotating_energy_functions_lagrange} into equati The uniform rotation of the system induces two \emph{gyroscopic effects} as shown in equation \eqref{eq:rotating_eom_coupled}: \begin{itemize} -\item \emph{Centrifugal forces}: that can been seen as an added \emph{negative stiffness} \(- m \Omega^2\) along \(\vec{i}_u\) and \(\vec{i}_v\) +\item \emph{Centrifugal forces}: that can be seen as an added \emph{negative stiffness} \(- m \Omega^2\) along \(\vec{i}_u\) and \(\vec{i}_v\) \item \emph{Coriolis forces}: that adds \emph{coupling} between the two orthogonal directions. \end{itemize} -One can verify that without rotation (\(\Omega = 0\)) the system becomes equivalent to two \emph{uncoupled} one degree of freedom mass-spring-damper systems. +One can verify that without rotation (\(\Omega = 0\)), the system becomes equivalent to two \emph{uncoupled} one degree of freedom mass-spring-damper systems. To study the dynamics of the system, the two differential equations of motions \eqref{eq:rotating_eom_coupled} are converted into the Laplace domain and the \(2 \times 2\) transfer function matrix \(\mathbf{G}_d\) from \(\begin{bmatrix}F_u & F_v\end{bmatrix}\) to \(\begin{bmatrix}d_u & d_v\end{bmatrix}\) in equation \eqref{eq:rotating_Gd_mimo_tf} is obtained. The four transfer functions in \(\mathbf{G}_d\) are shown in equation \eqref{eq:rotating_Gd_indiv_el}. @@ -133,7 +135,7 @@ The four transfer functions in \(\mathbf{G}_d\) are shown in equation \eqref{eq: \end{subequations} To simplify the analysis, the undamped natural frequency \(\omega_0\) and the damping ratio \(\xi\) defined in \eqref{eq:rotating_xi_and_omega} are used instead. -The elements of transfer function matrix \(\mathbf{G}_d\) are now described by equation \eqref{eq:rotating_Gd_w0_xi_k}. +The elements of the transfer function matrix \(\mathbf{G}_d\) are described by equation \eqref{eq:rotating_Gd_w0_xi_k}. \begin{equation} \label{eq:rotating_xi_and_omega} \omega_0 = \sqrt{\frac{k}{m}} \text{ in } \si{\radian\per\second}, \quad \xi = \frac{c}{2 \sqrt{k m}} \end{equation} @@ -185,9 +187,9 @@ Physically, the negative stiffness term \(-m\Omega^2\) induced by centrifugal fo \section{System Dynamics: Effect of rotation} The system dynamics from actuator forces \([F_u, F_v]\) to the relative motion \([d_u, d_v]\) is identified for several rotating velocities. Looking at the transfer function matrix \(\mathbf{G}_d\) in equation \eqref{eq:rotating_Gd_w0_xi_k}, one can see that the two diagonal (direct) terms are equal and that the two off-diagonal (coupling) terms are opposite. -The bode plot of these two terms are shown in Figure \ref{fig:rotating_bode_plot} for several rotational speeds \(\Omega\). -These plots confirm the expected behavior: the frequency of the two pairs of complex conjugate poles are further separated as \(\Omega\) increases. -For \(\Omega > \omega_0\), the low frequency pair of complex conjugate poles \(p_{-}\) becomes unstable (shown be the 180 degrees phase lead instead of phase lag). +The bode plots of these two terms are shown in Figure \ref{fig:rotating_bode_plot} for several rotational speeds \(\Omega\). +These plots confirm the expected behavior: the frequencies of the two pairs of complex conjugate poles are further separated as \(\Omega\) increases. +For \(\Omega > \omega_0\), the low-frequency pair of complex conjugate poles \(p_{-}\) becomes unstable (shown be the 180 degrees phase lead instead of phase lag). \begin{figure}[htbp] \begin{subfigure}{0.49\textwidth} @@ -208,23 +210,23 @@ For \(\Omega > \omega_0\), the low frequency pair of complex conjugate poles \(p \chapter{Integral Force Feedback} \label{sec:rotating_iff_pure_int} The goal is now to damp the two suspension modes of the payload using an active damping strategy while the rotating stage performs a constant rotation. -As was explained with the uniaxial model, such active damping strategy is key to both reducing the magnification of the response in the vicinity of the resonances \cite{collette11_review_activ_vibrat_isolat_strat} and to make the plant easier to control for the high authority controller. +As was explained with the uniaxial model, such an active damping strategy is key to both reducing the magnification of the response in the vicinity of the resonances \cite{collette11_review_activ_vibrat_isolat_strat} and to make the plant easier to control for the high authority controller. -Many active damping techniques have been developed over the years such as Positive Position Feedback (PPF) \cite{lin06_distur_atten_precis_hexap_point,fanson90_posit_posit_feedb_contr_large_space_struc}, Integral Force Feedback (IFF) \cite{preumont91_activ} and Direct Velocity Feedback (DVF) \cite{karnopp74_vibrat_contr_using_semi_activ_force_gener,serrand00_multic_feedb_contr_isolat_base_excit_vibrat,preumont02_force_feedb_versus_accel_feedb}. -In \cite{preumont91_activ}, the IFF control scheme has been proposed, where a force sensor, a force actuator and an integral controller are used to increase the damping of a mechanical system. -When the force sensor is collocated with the actuator, the open-loop transfer function has alternating poles and zeros which facilitates to guarantee the stability of the closed loop system \cite{preumont02_force_feedb_versus_accel_feedb}. -It was latter shown that this property holds for multiple collated actuator/sensor pairs \cite{preumont08_trans_zeros_struc_contr_with}. +Many active damping techniques have been developed over the years, such as Positive Position Feedback (PPF) \cite{lin06_distur_atten_precis_hexap_point,fanson90_posit_posit_feedb_contr_large_space_struc}, Integral Force Feedback (IFF) \cite{preumont91_activ} and Direct Velocity Feedback (DVF) \cite{karnopp74_vibrat_contr_using_semi_activ_force_gener,serrand00_multic_feedb_contr_isolat_base_excit_vibrat,preumont02_force_feedb_versus_accel_feedb}. +In \cite{preumont91_activ}, the IFF control scheme has been proposed, where a force sensor, a force actuator, and an integral controller are used to increase the damping of a mechanical system. +When the force sensor is collocated with the actuator, the open-loop transfer function has alternating poles and zeros, which guarantees the stability of the closed-loop system \cite{preumont02_force_feedb_versus_accel_feedb}. +It was later shown that this property holds for multiple collated actuator/sensor pairs \cite{preumont08_trans_zeros_struc_contr_with}. -The main advantages of IFF over other active damping techniques are the guaranteed stability even in presence of flexible dynamics, good performance and robustness properties \cite{preumont02_force_feedb_versus_accel_feedb}. +The main advantages of IFF over other active damping techniques are the guaranteed stability even in the presence of flexible dynamics, good performance, and robustness properties \cite{preumont02_force_feedb_versus_accel_feedb}. -Several improvements of the classical IFF have been proposed, such as adding a feed-through term to increase the achievable damping \cite{teo15_optim_integ_force_feedb_activ_vibrat_contr} or adding an high pass filter to recover the loss of compliance at low frequency \cite{chesne16_enhan_dampin_flexib_struc_using_force_feedb}. +Several improvements to the classical IFF have been proposed, such as adding a feed-through term to increase the achievable damping \cite{teo15_optim_integ_force_feedb_activ_vibrat_contr} or adding a high-pass filter to recover the loss of compliance at low-frequency \cite{chesne16_enhan_dampin_flexib_struc_using_force_feedb}. Recently, an \(\mathcal{H}_\infty\) optimization criterion has been used to derive optimal gains for the IFF controller \cite{zhao19_optim_integ_force_feedb_contr}. \par -However, none of these study have been applied to a rotating system. -In this section, Integral Force Feedback strategy is applied on the rotating suspended platform, and it is shown that gyroscopic effects alters the system dynamics and that IFF cannot be applied as is. +However, none of these studies have been applied to rotating systems. +In this section, the \acrshort{iff} strategy is applied on the rotating suspended platform, and it is shown that gyroscopic effects alter the system dynamics and that IFF cannot be applied as is. \section{System and Equations of motion} -In order to apply Integral Force Feedback, two force sensors are added in series with the actuators (Figure \ref{fig:rotating_3dof_model_schematic_iff}). +To apply Integral Force Feedback, two force sensors are added in series with the actuators (Figure \ref{fig:rotating_3dof_model_schematic_iff}). Two identical controllers \(K_F\) described by \eqref{eq:rotating_iff_controller} are then used to feedback each of the sensed force to its associated actuator. \begin{equation}\label{eq:rotating_iff_controller} @@ -282,10 +284,10 @@ It is interesting to see that the frequency of the pair of complex conjugate zer This is what usually gives the unconditional stability of IFF when collocated force sensors are used. However, for non-null rotational speeds, the two real zeros \(z_r\) in equation \eqref{eq:rotating_iff_zero_real} are inducing a \emph{non-minimum phase behavior}. -This can be seen in the Bode plot of the diagonal terms (Figure \ref{fig:rotating_iff_bode_plot_effect_rot}) where the low frequency gain is no longer zero while the phase stays at \(\SI{180}{\degree}\). +This can be seen in the Bode plot of the diagonal terms (Figure \ref{fig:rotating_iff_bode_plot_effect_rot}) where the low-frequency gain is no longer zero while the phase stays at \(\SI{180}{\degree}\). -The low frequency gain of \(\mathbf{G}_f\) increases with the rotational speed \(\Omega\) as shown in equation \eqref{eq:rotating_low_freq_gain_iff_plan}. -This can be explained as follows: a constant actuator force \(F_u\) induces a small displacement of the mass \(d_u = \frac{F_u}{k - m\Omega^2}\) (Hooke's law taking into account the negative stiffness induced by the rotation). +The low-frequency gain of \(\mathbf{G}_f\) increases with the rotational speed \(\Omega\) as shown in equation \eqref{eq:rotating_low_freq_gain_iff_plan}. +This can be explained as follows: a constant actuator force \(F_u\) induces a small displacement of the mass \(d_u = \frac{F_u}{k - m\Omega^2}\) (Hooke's law considering the negative stiffness induced by the rotation). This small displacement then increases the centrifugal force \(m\Omega^2d_u = \frac{\Omega^2}{{\omega_0}^2 - \Omega^2} F_u\) which is then measured by the force sensors. \begin{equation}\label{eq:rotating_low_freq_gain_iff_plan} @@ -295,14 +297,14 @@ This small displacement then increases the centrifugal force \(m\Omega^2d_u = \f \end{bmatrix} \end{equation} -\section{Effect of the rotation speed on the IFF plant dynamics} +\section{Effect of rotation speed on IFF plant dynamics} The transfer functions from actuator forces \([F_u,\ F_v]\) to the measured force sensors \([f_u,\ f_v]\) are identified for several rotating velocities and are shown in Figure \ref{fig:rotating_iff_bode_plot_effect_rot}. -As was expected from the derived equations of motion: +As expected from the derived equations of motion: \begin{itemize} -\item when \(\Omega < \omega_0\): the low frequency gain is no longer zero and two (non-minimum phase) real zero appears at low frequency. -The low frequency gain increases with \(\Omega\). -A pair of (minimum phase) complex conjugate zeros appears between the two complex conjugate poles that are split further apart as \(\Omega\) increases. -\item when \(\omega_0 < \Omega\): the low frequency pole becomes unstable. +\item when \(\Omega < \omega_0\): the low-frequency gain is no longer zero and two (non-minimum phase) real zeros appear at low-frequencies. +The low-frequency gain increases with \(\Omega\). +A pair of (minimum phase) complex conjugate zeros appears between the two complex conjugate poles, which are split further apart as \(\Omega\) increases. +\item when \(\omega_0 < \Omega\): the low-frequency pole becomes unstable. \end{itemize} \begin{figure}[htbp] @@ -322,9 +324,9 @@ A pair of (minimum phase) complex conjugate zeros appears between the two comple \end{figure} \section{Decentralized Integral Force Feedback} -The control diagram for decentralized Integral Force Feedback is shown in Figure \ref{fig:rotating_iff_diagram}. +The control diagram for decentralized \acrshort{iff} is shown in Figure \ref{fig:rotating_iff_diagram}. +The decentralized \acrshort{iff} controller \(\bm{K}_F\) corresponds to a diagonal controller with integrators \eqref{eq:rotating_Kf_pure_int}. -The decentralized IFF controller \(\bm{K}_F\) corresponds to a diagonal controller with integrators: \begin{equation} \label{eq:rotating_Kf_pure_int} \begin{aligned} \mathbf{K}_{F}(s) &= \begin{bmatrix} K_{F}(s) & 0 \\ 0 & K_{F}(s) \end{bmatrix} \\ @@ -332,21 +334,21 @@ The decentralized IFF controller \(\bm{K}_F\) corresponds to a diagonal controll \end{aligned} \end{equation} -In order to see how the IFF controller affects the poles of the closed loop system, a Root Locus plot (Figure \ref{fig:rotating_root_locus_iff_pure_int}) is constructed as follows: the poles of the closed-loop system are drawn in the complex plane as the controller gain \(g\) varies from \(0\) to \(\infty\) for the two controllers \(K_{F}\) simultaneously. +To determine how the \acrshort{iff} controller affects the poles of the closed-loop system, a Root Locus plot (Figure \ref{fig:rotating_root_locus_iff_pure_int}) is constructed as follows: the poles of the closed-loop system are drawn in the complex plane as the controller gain \(g\) varies from \(0\) to \(\infty\) for the two controllers \(K_{F}\) simultaneously. As explained in \cite{preumont08_trans_zeros_struc_contr_with,skogestad07_multiv_feedb_contr}, the closed-loop poles start at the open-loop poles (shown by \(\tikz[baseline=-0.6ex] \node[cross out, draw=black, minimum size=1ex, line width=2pt, inner sep=0pt, outer sep=0pt] at (0, 0){};\)) for \(g = 0\) and coincide with the transmission zeros (shown by \(\tikz[baseline=-0.6ex] \draw[line width=2pt, inner sep=0pt, outer sep=0pt] (0,0) circle[radius=3pt];\)) as \(g \to \infty\). -Whereas collocated IFF is usually associated with unconditional stability \cite{preumont91_activ}, this property is lost due to gyroscopic effects as soon as the rotation velocity in non-null. +Whereas collocated IFF is usually associated with unconditional stability \cite{preumont91_activ}, this property is lost due to gyroscopic effects as soon as the rotation velocity becomes non-null. This can be seen in the Root Locus plot (Figure \ref{fig:rotating_root_locus_iff_pure_int}) where poles corresponding to the controller are bound to the right half plane implying closed-loop system instability. -Physically, this can be explained like so: at low frequency, the loop gain is very large due to the pure integrator in \(K_{F}\) and the finite gain of the plant (Figure \ref{fig:rotating_iff_bode_plot_effect_rot}). -The control system is thus canceling the spring forces which makes the suspended platform not capable to hold the payload against centrifugal forces, hence the instability. +Physically, this can be explained as follows: at low frequencies, the loop gain is huge due to the pure integrator in \(K_{F}\) and the finite gain of the plant (Figure \ref{fig:rotating_iff_bode_plot_effect_rot}). +The control system is thus cancels the spring forces, which makes the suspended platform not capable to hold the payload against centrifugal forces, hence the instability. -\chapter{Integral Force Feedback with an High Pass Filter} +\chapter{Integral Force Feedback with a High-Pass Filter} \label{sec:rotating_iff_pseudo_int} -As was explained in the previous section, the instability of the IFF controller applied on the rotating system is due to the high gain of the integrator at low frequency. -In order to limit the low frequency controller gain, an High Pass Filter (HPF) can be added to the controller as shown in equation \eqref{eq:rotating_iff_lhf}. +As explained in the previous section, the instability of the IFF controller applied to the rotating system is due to the high gain of the integrator at low-frequency. +To limit the low-frequency controller gain, a \acrfull{hpf} can be added to the controller, as shown in equation \eqref{eq:rotating_iff_lhf}. This is equivalent to slightly shifting the controller pole to the left along the real axis. -This modification of the IFF controller is typically done to avoid saturation associated with the pure integrator \cite{preumont91_activ,marneffe07_activ_passiv_vibrat_isolat_dampin_shunt_trans}. -This is however not the reason why this high pass filter is added here. +This modification of the IFF controller is typically performed to avoid saturation associated with the pure integrator \cite{preumont91_activ,marneffe07_activ_passiv_vibrat_isolat_dampin_shunt_trans}. +This is however not the reason why this high-pass filter is added here. \begin{equation}\label{eq:rotating_iff_lhf} \boxed{K_{F}(s) = g \cdot \frac{1}{s} \cdot \underbrace{\frac{s/\omega_i}{1 + s/\omega_i}}_{\text{HPF}} = g \cdot \frac{1}{s + \omega_i}} @@ -355,11 +357,11 @@ This is however not the reason why this high pass filter is added here. \section{Modified Integral Force Feedback Controller} The Integral Force Feedback Controller is modified such that instead of using pure integrators, pseudo integrators (i.e. low pass filters) are used \eqref{eq:rotating_iff_lhf} where \(\omega_i\) characterize the frequency down to which the signal is integrated. The loop gains (\(K_F(s)\) times the direct dynamics \(f_u/F_u\)) with and without the added HPF are shown in Figure \ref{fig:rotating_iff_modified_loop_gain}. -The effect of the added HPF limits the low frequency gain to finite values as expected. +The effect of the added HPF limits the low-frequency gain to finite values as expected. -The Root Locus plots for the decentralized IFF with and without the HPF are displayed in Figure \ref{fig:rotating_iff_root_locus_hpf_large}. -With the added HPF, the poles of the closed loop system are shown to be stable up to some value of the gain \(g_\text{max}\) given by equation \eqref{eq:rotating_gmax_iff_hpf}. -It is interesting to note that \(g_{\text{max}}\) also corresponds to the controller gain at which the low frequency loop gain reaches one (for instance the gain \(g\) can be increased by a factor \(5\) in Figure \ref{fig:rotating_iff_modified_loop_gain} before the system becomes unstable). +The Root Locus plots for the decentralized \acrshort{iff} with and without the \acrshort{hpf} are displayed in Figure \ref{fig:rotating_iff_root_locus_hpf_large}. +With the added \acrshort{hpf}, the poles of the closed-loop system are shown to be stable up to some value of the gain \(g_\text{max}\) given by equation \eqref{eq:rotating_gmax_iff_hpf}. +It is interesting to note that \(g_{\text{max}}\) also corresponds to the controller gain at which the low-frequency loop gain reaches one (for instance the gain \(g\) can be increased by a factor \(5\) in Figure \ref{fig:rotating_iff_modified_loop_gain} before the system becomes unstable). \begin{equation}\label{eq:rotating_gmax_iff_hpf} \boxed{g_{\text{max}} = \omega_i \left( \frac{{\omega_0}^2}{\Omega^2} - 1 \right)} @@ -378,16 +380,16 @@ It is interesting to note that \(g_{\text{max}}\) also corresponds to the contro \end{center} \subcaption{\label{fig:rotating_iff_root_locus_hpf_large}Root Locus} \end{subfigure} -\caption{\label{fig:rotating_iff_modified_loop_gain_root_locus}Comparison of the IFF with pure integrator and modified IFF with added high pass filter (\(\Omega = 0.1\omega_0\)). Loop gain is shown in (\subref{fig:rotating_iff_modified_loop_gain}) with \(\omega_i = 0.1 \omega_0\) and \(g = 2\). Root Locus is shown in (\subref{fig:rotating_iff_root_locus_hpf_large})} +\caption{\label{fig:rotating_iff_modified_loop_gain_root_locus}Comparison of the IFF with pure integrator and modified IFF with added high-pass filter (\(\Omega = 0.1\omega_0\)). The loop gain is shown in (\subref{fig:rotating_iff_modified_loop_gain}) with \(\omega_i = 0.1 \omega_0\) and \(g = 2\). The root locus is shown in (\subref{fig:rotating_iff_root_locus_hpf_large})} \end{figure} \section{Optimal IFF with HPF parameters \(\omega_i\) and \(g\)} Two parameters can be tuned for the modified controller in equation \eqref{eq:rotating_iff_lhf}: the gain \(g\) and the pole's location \(\omega_i\). -The optimal values of \(\omega_i\) and \(g\) are here considered as the values for which the damping of all the closed-loop poles are simultaneously maximized. +The optimal values of \(\omega_i\) and \(g\) are considered here as the values for which the damping of all the closed-loop poles is simultaneously maximized. -In order to visualize how \(\omega_i\) does affect the attainable damping, the Root Locus plots for several \(\omega_i\) are displayed in Figure \ref{fig:rotating_root_locus_iff_modified_effect_wi}. +To visualize how \(\omega_i\) does affect the attainable damping, the Root Locus plots for several \(\omega_i\) are displayed in Figure \ref{fig:rotating_root_locus_iff_modified_effect_wi}. It is shown that even though small \(\omega_i\) seem to allow more damping to be added to the suspension modes (see Root locus in Figure \ref{fig:rotating_root_locus_iff_modified_effect_wi}), the control gain \(g\) may be limited to small values due to equation \eqref{eq:rotating_gmax_iff_hpf}. -In order to study this trade off, the attainable closed-loop damping ratio \(\xi_{\text{cl}}\) is computed as a function of \(\omega_i/\omega_0\). +To study this trade-off, the attainable closed-loop damping ratio \(\xi_{\text{cl}}\) is computed as a function of \(\omega_i/\omega_0\). The gain \(g_{\text{opt}}\) at which this maximum damping is obtained is also displayed and compared with the gain \(g_{\text{max}}\) at which the system becomes unstable (Figure \ref{fig:rotating_iff_hpf_optimal_gain}). For small values of \(\omega_i\), the added damping is limited by the maximum allowed control gain \(g_{\text{max}}\) (red curve and dashed red curve superimposed in Figure \ref{fig:rotating_iff_hpf_optimal_gain}) at which point the pole corresponding to the controller becomes unstable. @@ -406,14 +408,14 @@ For larger values of \(\omega_i\), the attainable damping ratio decreases as a f \end{center} \subcaption{\label{fig:rotating_iff_hpf_optimal_gain}Attainable damping ratio $\xi_\text{cl}$ as a function of $\omega_i/\omega_0$. Corresponding control gain $g_\text{opt}$ and $g_\text{max}$ are also shown} \end{subfigure} -\caption{\label{fig:rotating_iff_modified_effect_wi}Root Locus for several high pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). The achievable damping ratio decreases as \(\omega_i\) increases which is confirmed in (\subref{fig:rotating_iff_hpf_optimal_gain})} +\caption{\label{fig:rotating_iff_modified_effect_wi}Root Locus for several high-pass filter cut-off frequency (\subref{fig:rotating_root_locus_iff_modified_effect_wi}). The achievable damping ratio decreases as \(\omega_i\) increases, as confirmed in (\subref{fig:rotating_iff_hpf_optimal_gain})} \end{figure} \section{Obtained Damped Plant} -In order to study how the parameter \(\omega_i\) affects the damped plant, the obtained damped plants for several \(\omega_i\) are compared in Figure \ref{fig:rotating_iff_hpf_damped_plant_effect_wi_plant}. -It can be seen that the low frequency coupling increases as \(\omega_i\) increases. -There is therefore a trade-off between achievable damping and added coupling when tuning \(\omega_i\). -The same trade-off can be seen between achievable damping and loss of compliance at low frequency (see Figure \ref{fig:rotating_iff_hpf_effect_wi_compliance}). +To study how the parameter \(\omega_i\) affects the damped plant, the obtained damped plants for several \(\omega_i\) are compared in Figure \ref{fig:rotating_iff_hpf_damped_plant_effect_wi_plant}. +It can be seen that the low-frequency coupling increases as \(\omega_i\) increases. +Therefore, there is a trade-off between achievable damping and added coupling when tuning \(\omega_i\). +The same trade-off can be seen between achievable damping and loss of compliance at low-frequency (see Figure \ref{fig:rotating_iff_hpf_effect_wi_compliance}). \begin{figure}[htbp] \begin{subfigure}{0.49\textwidth} @@ -451,14 +453,14 @@ The forces measured by the two force sensors represented in Figure \ref{fig:rota \begin{bmatrix} d_u \\ d_v \end{bmatrix} \end{equation} -In order to keep the overall stiffness \(k = k_a + k_p\) constant, thus not modifying the open-loop poles as \(k_p\) is changed, a scalar parameter \(\alpha\) (\(0 \le \alpha < 1\)) is defined to describe the fraction of the total stiffness in parallel with the actuator and force sensor as in \eqref{eq:rotating_kp_alpha}. +To keep the overall stiffness \(k = k_a + k_p\) constant, thus not modifying the open-loop poles as \(k_p\) is changed, a scalar parameter \(\alpha\) (\(0 \le \alpha < 1\)) is defined to describe the fraction of the total stiffness in parallel with the actuator and force sensor as in \eqref{eq:rotating_kp_alpha}. \begin{equation}\label{eq:rotating_kp_alpha} k_p = \alpha k, \quad k_a = (1 - \alpha) k \end{equation} -After the equations of motion derived and transformed in the Laplace domain, the transfer function matrix \(\mathbf{G}_k\) in Eq. \eqref{eq:rotating_Gk_mimo_tf} is computed. -Its elements are shown in Eq. \eqref{eq:rotating_Gk_diag} and \eqref{eq:rotating_Gk_off_diag}. +After the equations of motion are derived and transformed in the Laplace domain, the transfer function matrix \(\mathbf{G}_k\) in Eq. \eqref{eq:rotating_Gk_mimo_tf} is computed. +Its elements are shown in Eqs. \eqref{eq:rotating_Gk_diag} and \eqref{eq:rotating_Gk_off_diag}. \begin{equation}\label{eq:rotating_Gk_mimo_tf} \begin{bmatrix} f_u \\ f_v \end{bmatrix} = @@ -473,22 +475,22 @@ Its elements are shown in Eq. \eqref{eq:rotating_Gk_diag} and \eqref{eq:rotating \end{align} \end{subequations} -Comparing \(\mathbf{G}_k\) in \eqref{eq:rotating_Gk} with \(\mathbf{G}_f\) in \eqref{eq:rotating_Gf} shows that while the poles of the system are kept the same, the zeros of the diagonal terms have changed. +Comparing \(\mathbf{G}_k\) in \eqref{eq:rotating_Gk} with \(\mathbf{G}_f\) in \eqref{eq:rotating_Gf} shows that while the poles of the system remain the same, the zeros of the diagonal terms change. The two real zeros \(z_r\) in \eqref{eq:rotating_iff_zero_real} that were inducing a non-minimum phase behavior are transformed into two complex conjugate zeros if the condition in \eqref{eq:rotating_kp_cond_cc_zeros} holds. -Thus, if the added \emph{parallel stiffness} \(k_p\) is higher than the \emph{negative stiffness} induced by centrifugal forces \(m \Omega^2\), the dynamics from actuator to its collocated force sensor will show \emph{minimum phase behavior}. +Thus, if the added \emph{parallel stiffness} \(k_p\) is higher than the \emph{negative stiffness} induced by centrifugal forces \(m \Omega^2\), the dynamics from the actuator to its collocated force sensor will show \emph{minimum phase behavior}. \begin{equation}\label{eq:rotating_kp_cond_cc_zeros} \boxed{\alpha > \frac{\Omega^2}{{\omega_0}^2} \quad \Leftrightarrow \quad k_p > m \Omega^2} \end{equation} -\section{Effect of the parallel stiffness on the IFF plant} +\section{Effect of parallel stiffness on the IFF plant} The IFF plant (transfer function from \([F_u, F_v]\) to \([f_u, f_v]\)) is identified without parallel stiffness \(k_p = 0\), with a small parallel stiffness \(k_p < m \Omega^2\) and with a large parallel stiffness \(k_p > m \Omega^2\). -The Bode plots of the obtained dynamics are shown in Figure \ref{fig:rotating_iff_effect_kp}. -One can see that the the two real zeros for \(k_p < m \Omega^2\) are transformed into two complex conjugate zeros for \(k_p > m \Omega^2\). -In that case, the systems shows alternating complex conjugate poles and zeros as what is the case in the non-rotating case. +Bode plots of the obtained dynamics are shown in Figure \ref{fig:rotating_iff_effect_kp}. +The two real zeros for \(k_p < m \Omega^2\) are transformed into two complex conjugate zeros for \(k_p > m \Omega^2\). +In that case, the system shows alternating complex conjugate poles and zeros as what is the case in the non-rotating case. -Figure \ref{fig:rotating_iff_kp_root_locus} shows the Root Locus plots for \(k_p = 0\), \(k_p < m \Omega^2\) and \(k_p > m \Omega^2\) when \(K_F\) is a pure integrator as in Eq. \eqref{eq:rotating_Kf_pure_int}. -It is shown that if the added stiffness is higher than the maximum negative stiffness, the poles of the closed-loop system are bounded on the (stable) left half-plane, and hence the unconditional stability of IFF is recovered. +Figure \ref{fig:rotating_iff_kp_root_locus} shows the Root Locus plots for \(k_p = 0\), \(k_p < m \Omega^2\) and \(k_p > m \Omega^2\) when \(K_F\) is a pure integrator, as shown in Eq. \eqref{eq:rotating_Kf_pure_int}. +It is shown that if the added stiffness is higher than the maximum negative stiffness, the poles of the closed-loop system are bounded on the (stable) left half-plane, and hence the unconditional stability of \acrshort{iff} is recovered. \begin{figure}[htbp] \begin{subfigure}{0.55\linewidth} @@ -503,14 +505,14 @@ It is shown that if the added stiffness is higher than the maximum negative stif \end{center} \subcaption{\label{fig:rotating_iff_kp_root_locus}Root Locus for IFF without parallel spring, with small parallel spring and with large parallel spring} \end{subfigure} -\caption{\label{fig:rotating_iff_plant_effect_kp}Effect of the parallel stiffness on the IFF plant} +\caption{\label{fig:rotating_iff_plant_effect_kp}Effect of parallel stiffness on the IFF plant} \end{figure} \section{Effect of \(k_p\) on the attainable damping} Even though the parallel stiffness \(k_p\) has no impact on the open-loop poles (as the overall stiffness \(k\) is kept constant), it has a large impact on the transmission zeros. -Moreover, as the attainable damping is generally proportional to the distance between poles and zeros \cite{preumont18_vibrat_contr_activ_struc_fourt_edition}, the parallel stiffness \(k_p\) is foreseen to have some impact on the attainable damping. +Moreover, as the attainable damping is generally proportional to the distance between poles and zeros \cite{preumont18_vibrat_contr_activ_struc_fourt_edition}, the parallel stiffness \(k_p\) is expected to have some impact on the attainable damping. To study this effect, Root Locus plots for several parallel stiffnesses \(k_p > m \Omega^2\) are shown in Figure \ref{fig:rotating_iff_kp_root_locus_effect_kp}. -The frequencies of the transmission zeros of the system are increasing with an increase of the parallel stiffness \(k_p\) (thus getting closer to the poles) and the associated attainable damping is reduced. +The frequencies of the transmission zeros of the system increase with an increase in the parallel stiffness \(k_p\) (thus getting closer to the poles), and the associated attainable damping is reduced. Therefore, even though the parallel stiffness \(k_p\) should be larger than \(m \Omega^2\) for stability reasons, it should not be taken too large as this would limit the attainable damping. This is confirmed by the Figure \ref{fig:rotating_iff_kp_optimal_gain} where the attainable closed-loop damping ratio \(\xi_{\text{cl}}\) and the associated optimal control gain \(g_\text{opt}\) are computed as a function of the parallel stiffness. @@ -519,24 +521,24 @@ This is confirmed by the Figure \ref{fig:rotating_iff_kp_optimal_gain} where the \begin{center} \includegraphics[scale=1,scale=1]{figs/rotating_iff_kp_root_locus_effect_kp.png} \end{center} -\subcaption{\label{fig:rotating_iff_kp_root_locus_effect_kp}Root Locus: Effect of the parallel stiffness on the attainable damping, $\Omega = 0.1 \omega_0$} +\subcaption{\label{fig:rotating_iff_kp_root_locus_effect_kp}Root Locus: Effect of parallel stiffness on the attainable damping, $\Omega = 0.1 \omega_0$} \end{subfigure} \begin{subfigure}{0.49\linewidth} \begin{center} \includegraphics[scale=1,scale=0.9]{figs/rotating_iff_kp_optimal_gain.png} \end{center} -\subcaption{\label{fig:rotating_iff_kp_optimal_gain}Attainable damping ratio $\xi_\text{cl}$ as a function of the parallel stiffness $k_p$. Corresponding control gain $g_\text{opt}$ is also shown. Values for $k_p < m\Omega^2$ are not shown as the system is unstable.} +\subcaption{\label{fig:rotating_iff_kp_optimal_gain}Attainable damping ratio $\xi_\text{cl}$ as a function of the parallel stiffness $k_p$. The corresponding control gain $g_\text{opt}$ is also shown. Values for $k_p < m\Omega^2$ are not shown because the system is unstable.} \end{subfigure} -\caption{\label{fig:rotating_iff_optimal_kp}Effect of the parallel stiffness on the IFF plant} +\caption{\label{fig:rotating_iff_optimal_kp}Effect of parallel stiffness on the IFF plant} \end{figure} \section{Damped plant} -Let's choose a parallel stiffness equal to \(k_p = 2 m \Omega^2\) and compute the damped plant. +The parallel stiffness are chosen to be \(k_p = 2 m \Omega^2\) and the damped plant is computed. The damped and undamped transfer functions from \(F_u\) to \(d_u\) are compared in Figure \ref{fig:rotating_iff_kp_added_hpf_damped_plant}. -Even though the two resonances are well damped, the IFF changes the low frequency behavior of the plant which is usually not wanted. -This is due to the fact that ``pure'' integrators are used, and that the low frequency loop gains becomes large below some frequency. +Even though the two resonances are well damped, the IFF changes the low-frequency behavior of the plant, which is usually not desired. +This is because ``pure'' integrators are used which are inducing large low-frequency loop gains. -In order to lower the low frequency gain, a high pass filter is added to the IFF controller (which is equivalent as shifting the controller pole to the left in the complex plane): +To lower the low-frequency gain, a high-pass filter is added to the IFF controller (which is equivalent as shifting the controller pole to the left in the complex plane): \begin{equation} K_{\text{IFF}}(s) = g\frac{1}{\omega_i + s} \begin{bmatrix} 1 & 0 \\ @@ -544,11 +546,11 @@ In order to lower the low frequency gain, a high pass filter is added to the IFF \end{bmatrix} \end{equation} -In order to see how the high pass filter impacts the attainable damping, the controller gain \(g\) is kept constant while \(\omega_i\) is changed, and the minimum damping ratio of the damped plant is computed. +To determine how the high-pass filter impacts the attainable damping, the controller gain \(g\) is kept constant while \(\omega_i\) is changed, and the minimum damping ratio of the damped plant is computed. The obtained damping ratio as a function of \(\omega_i/\omega_0\) (where \(\omega_0\) is the resonance of the system without rotation) is shown in Figure \ref{fig:rotating_iff_kp_added_hpf_effect_damping}. It is shown that the attainable damping ratio reduces as \(\omega_i\) is increased (same conclusion than in Section \ref{sec:rotating_iff_pseudo_int}). Let's choose \(\omega_i = 0.1 \cdot \omega_0\) and compare the obtained damped plant again with the undamped and with the ``pure'' IFF in Figure \ref{fig:rotating_iff_kp_added_hpf_damped_plant}. -The added high pass filter gives almost the same damping properties to the suspension while giving good low frequency behavior. +The added high-pass filter gives almost the same damping properties to the suspension while exhibiting good low-frequency behavior. \begin{figure}[htbp] \begin{subfigure}{0.34\linewidth} @@ -563,14 +565,14 @@ The added high pass filter gives almost the same damping properties to the suspe \end{center} \subcaption{\label{fig:rotating_iff_kp_added_hpf_damped_plant}Damped plant with the parallel stiffness, effect of the added HPF} \end{subfigure} -\caption{\label{fig:rotating_iff_optimal_hpf}Effect of the high pass filter cut-off frequency on the obtained damping} +\caption{\label{fig:rotating_iff_optimal_hpf}Effect of high-pass filter cut-off frequency on the obtained damping} \end{figure} \chapter{Relative Damping Control} \label{sec:rotating_relative_damp_control} -In order to apply a ``Relative Damping Control'' strategy, relative motion sensors are added in parallel with the actuators as shown in Figure \ref{fig:rotating_3dof_model_schematic_rdc}. -Two controllers \(K_d\) are used to fed back the relative motion to the actuator. -These controllers are in principle pure derivators (\(K_d = s\)), but to be implemented in practice they are usually replaced by a high pass filter \eqref{eq:rotating_rdc_controller}. +To apply a ``Relative Damping Control'' strategy, relative motion sensors are added in parallel with the actuators as shown in Figure \ref{fig:rotating_3dof_model_schematic_rdc}. +Two controllers \(K_d\) are used to feed back the relative motion to the actuator. +These controllers are in principle pure derivators (\(K_d = s\)), but to be implemented in practice they are usually replaced by a high-pass filter \eqref{eq:rotating_rdc_controller}. \begin{equation}\label{eq:rotating_rdc_controller} K_d(s) = g \cdot \frac{s}{s + \omega_d} @@ -597,7 +599,7 @@ The elements of \(\bm{G}_d\) were derived in Section \ref{sec:rotating_system_de \end{align} \end{subequations} -Neglecting the damping for simplicity (\(\xi \ll 1\)), the direct terms have two complex conjugate zeros which are between the two pairs of complex conjugate poles \eqref{eq:rotating_rdc_zeros_poles}. +Neglecting the damping for simplicity (\(\xi \ll 1\)), the direct terms have two complex conjugate zeros between the two pairs of complex conjugate poles \eqref{eq:rotating_rdc_zeros_poles}. Therefore, for \(\Omega < \sqrt{k/m}\) (i.e. stable system), the transfer functions for Relative Damping Control have alternating complex conjugate poles and zeros. \begin{equation}\label{eq:rotating_rdc_zeros_poles} @@ -607,13 +609,13 @@ Therefore, for \(\Omega < \sqrt{k/m}\) (i.e. stable system), the transfer functi \section{Decentralized Relative Damping Control} The transfer functions from \([F_u,\ F_v]\) to \([d_u,\ d_v]\) were identified for several rotating velocities in Section \ref{sec:rotating_system_description} and are shown in Figure \ref{fig:rotating_bode_plot} (page \pageref{fig:rotating_bode_plot}). -In order to see if large damping can be added with Relative Damping Control, the root locus is computed (Figure \ref{fig:rotating_rdc_root_locus}). -The closed-loop system is unconditionally stable as expected and the poles can be damped as much as wanted. +To see if large damping can be added with Relative Damping Control, the root locus is computed (Figure \ref{fig:rotating_rdc_root_locus}). +The closed-loop system is unconditionally stable as expected and the poles can be damped as much as desired. -Let's select a reasonable ``Relative Damping Control'' gain, and compute the closed-loop damped system. +Let us select a reasonable ``Relative Damping Control'' gain, and compute the closed-loop damped system. The open-loop and damped plants are compared in Figure \ref{fig:rotating_rdc_damped_plant}. -The rotating aspect does not add any complexity for the use of Relative Damping Control. -It does not increase the low frequency coupling as compared to Integral Force Feedback. +The rotating aspect does not add any complexity to the use of Relative Damping Control. +It does not increase the low-frequency coupling as compared to the Integral Force Feedback. \begin{figure}[htbp] \begin{subfigure}{0.49\linewidth} @@ -633,17 +635,17 @@ It does not increase the low frequency coupling as compared to Integral Force Fe \chapter{Comparison of Active Damping Techniques} \label{sec:rotating_comp_act_damp} -These two proposed IFF modifications as well as relative damping control are now compared in terms of added damping and closed-loop behavior. +These two proposed IFF modifications and relative damping control are compared in terms of added damping and closed-loop behavior. For the following comparisons, the cut-off frequency for the added HPF is set to \(\omega_i = 0.1 \omega_0\) and the stiffness of the parallel springs is set to \(k_p = 5 m \Omega^2\) (corresponding to \(\alpha = 0.05\)). -These values are chosen based on previous discussion about optimal parameters. +These values are chosen one the basis of previous discussions about optimal parameters. \section{Root Locus} -Figure \ref{fig:rotating_comp_techniques_root_locus} shows the Root Locus plots for the two proposed IFF modifications as well as for relative damping control. +Figure \ref{fig:rotating_comp_techniques_root_locus} shows the Root Locus plots for the two proposed IFF modifications and the relative damping control. While the two pairs of complex conjugate open-loop poles are identical for both IFF modifications, the transmission zeros are not. This means that the closed-loop behavior of both systems will differ when large control gains are used. -One can observe that the closed loop poles corresponding to the system with added springs (in red) are bounded to the left half plane implying unconditional stability. -This is not the case for the system where the controller is augmented with an HPF (in blue). +The closed-loop poles corresponding to the system with added springs (in red) are bounded to the left half plane implying unconditional stability. +This is not the case for the system in which the controller is augmented with an HPF (in blue). It is interesting to note that the maximum added damping is very similar for both modified IFF techniques. \begin{figure}[htbp] @@ -665,19 +667,19 @@ It is interesting to note that the maximum added damping is very similar for bot \section{Obtained Damped Plant} The actively damped plants are computed for the three techniques and compared in Figure \ref{fig:rotating_comp_techniques_dampled_plants}. It is shown that while the diagonal (direct) terms of the damped plants are similar for the three active damping techniques, the off-diagonal (coupling) terms are not. -Integral Force Feedback strategy is adding some coupling at low frequency which may negatively impact the positioning performance. +The \acrshort{iff} strategy is adding some coupling at low-frequency, which may negatively impact the positioning performance. \section{Transmissibility And Compliance} The proposed active damping techniques are now compared in terms of closed-loop transmissibility and compliance. -The transmissibility is here defined as the transfer function from a displacement of the rotating stage along \(\vec{i}_x\) to the displacement of the payload along the same direction. -It is used to characterize how much vibration is transmitted through the suspended platform to the payload. -The compliance describes the displacement response of the payload to external forces applied to it. +The transmissibility is defined as the transfer function from the displacement of the rotating stage along \(\vec{i}_x\) to the displacement of the payload along the same direction. +It is used to characterize the amount of vibration is transmitted through the suspended platform to the payload. +The compliance describes the displacement response of the payload to the external forces applied to it. This is a useful metric when disturbances are directly applied to the payload. -It is here defined as the transfer function from external forces applied on the payload along \(\vec{i}_x\) to the displacement of the payload along the same direction. +Here, it is defined as the transfer function from external forces applied on the payload along \(\vec{i}_x\) to the displacement of the payload along the same direction. -Very similar results are obtained for the two proposed IFF modifications in terms of transmissibility and compliance (Figure \ref{fig:rotating_comp_techniques_trans_compliance}). -Using IFF degrades the compliance at low frequency while using relative damping control degrades the transmissibility at high frequency. -This is very well known characteristics of these common active damping techniques that holds when applied to rotating platforms. +Very similar results were obtained for the two proposed IFF modifications in terms of transmissibility and compliance (Figure \ref{fig:rotating_comp_techniques_trans_compliance}). +Using IFF degrades the compliance at low frequencies, whereas using relative damping control degrades the transmissibility at high frequencies. +This is very well known characteristics of these common active damping techniques that hold when applied to rotating platforms. \begin{figure}[htbp] \begin{subfigure}{0.49\textwidth} @@ -692,21 +694,21 @@ This is very well known characteristics of these common active damping technique \end{center} \subcaption{\label{fig:rotating_comp_techniques_compliance}Compliance} \end{subfigure} -\caption{\label{fig:rotating_comp_techniques_trans_compliance}Comparison of the obtained transmissibilty (\subref{fig:rotating_comp_techniques_transmissibility}) and compliance (\subref{fig:rotating_comp_techniques_compliance}) for the three tested active damping techniques} +\caption{\label{fig:rotating_comp_techniques_trans_compliance}Comparison of the obtained transmissibility (\subref{fig:rotating_comp_techniques_transmissibility}) and compliance (\subref{fig:rotating_comp_techniques_compliance}) for the three tested active damping techniques} \end{figure} \chapter{Rotating Nano-Hexapod} \label{sec:rotating_nano_hexapod} -The previous analysis is now applied on a model representing the rotating nano-hexapod. +The previous analysis is now applied to a model representing a rotating nano-hexapod. Three nano-hexapod stiffnesses are tested as for the uniaxial model: \(k_n = \SI{0.01}{\N\per\mu\m}\), \(k_n = \SI{1}{\N\per\mu\m}\) and \(k_n = \SI{100}{\N\per\mu\m}\). -Only the maximum rotating velocity is here considered (\(\Omega = \SI{60}{rpm}\)) with the light sample (\(m_s = \SI{1}{kg}\)) as this is the worst identified case scenario in terms of gyroscopic effects. +Only the maximum rotating velocity is here considered (\(\Omega = \SI{60}{rpm}\)) with the light sample (\(m_s = \SI{1}{kg}\)) because this is the worst identified case scenario in terms of gyroscopic effects. \section{Nano-Active-Stabilization-System - Plant Dynamics} For the NASS, the maximum rotating velocity is \(\Omega = \SI[parse-numbers=false]{2\pi}{\radian\per\s}\) for a suspended mass on top of the nano-hexapod's actuators equal to \(m_n + m_s = \SI{16}{\kilo\gram}\). The parallel stiffness corresponding to the centrifugal forces is \(m \Omega^2 \approx \SI{0.6}{\newton\per\mm}\). -The transfer functions from nano-hexapod actuator force \(F_u\) to the displacement of the nano-hexapod in the same direction \(d_u\) as well as in the orthogonal direction \(d_v\) (coupling) are shown in Figure \ref{fig:rotating_nano_hexapod_dynamics} for all three considered nano-hexapod stiffnesses. -The soft nano-hexapod is the most affected by the rotation. -This can be seen by the large shift of the resonance frequencies, and by the induced coupling which is larger than for the stiffer nano-hexapods. +The transfer functions from the nano-hexapod actuator force \(F_u\) to the displacement of the nano-hexapod in the same direction \(d_u\) as well as in the orthogonal direction \(d_v\) (coupling) are shown in Figure \ref{fig:rotating_nano_hexapod_dynamics} for all three considered nano-hexapod stiffnesses. +The soft nano-hexapod is the most affected by rotation. +This can be seen by the large shift of the resonance frequencies, and by the induced coupling, which is larger than that for the stiffer nano-hexapods. The coupling (or interaction) in a MIMO \(2 \times 2\) system can be visually estimated as the ratio between the diagonal term and the off-diagonal terms (see corresponding Appendix). \begin{figure}[htbp] @@ -728,18 +730,18 @@ The coupling (or interaction) in a MIMO \(2 \times 2\) system can be visually es \end{center} \subcaption{\label{fig:rotating_nano_hexapod_dynamics_pz}$k_n = 100\,N/\mu m$} \end{subfigure} -\caption{\label{fig:rotating_nano_hexapod_dynamics}Effect of rotation on the nano-hexapod dynamics. Dashed lines are the plants without rotation, solid lines are plants at maximum rotating velocity (\(\Omega = 60\,\text{rpm}\)), and shaded lines are coupling terms at maximum rotating velocity} +\caption{\label{fig:rotating_nano_hexapod_dynamics}Effect of rotation on the nano-hexapod dynamics. Dashed lines represent plants without rotation, solid lines represent plants at maximum rotating velocity (\(\Omega = 60\,\text{rpm}\)), and shaded lines are coupling terms at maximum rotating velocity} \end{figure} -\section{Optimal IFF with High Pass Filter} -Integral Force Feedback with an added High Pass Filter is applied to the three nano-hexapods. -First, the parameters (\(\omega_i\) and \(g\)) of the IFF controller that yield best simultaneous damping are determined from Figure \ref{fig:rotating_iff_hpf_nass_optimal_gain}. -The IFF parameters are chosen as follow: +\section{Optimal IFF with a High-Pass Filter} +Integral Force Feedback with an added high-pass filter is applied to the three nano-hexapods. +First, the parameters (\(\omega_i\) and \(g\)) of the IFF controller that yield the best simultaneous damping are determined from Figure \ref{fig:rotating_iff_hpf_nass_optimal_gain}. +The IFF parameters are chosen as follows: \begin{itemize} -\item for \(k_n = \SI{0.01}{\N\per\mu\m}\) (Figure \ref{fig:rotating_iff_hpf_nass_optimal_gain}): \(\omega_i\) is chosen such that the maximum damping is achieved while the gain is less than half of the maximum gain at which the system is unstable. +\item for \(k_n = \SI{0.01}{\N\per\mu\m}\) (Figure \ref{fig:rotating_iff_hpf_nass_optimal_gain}): \(\omega_i\) is chosen such that maximum damping is achieved while the gain is less than half of the maximum gain at which the system is unstable. This is done to have some control robustness. -\item for \(k_n = \SI{1}{\N\per\mu\m}\) and \(k_n = \SI{100}{\N\per\mu\m}\) (Figure \ref{fig:rotating_iff_hpf_nass_optimal_gain_md} and \ref{fig:rotating_iff_hpf_nass_optimal_gain_pz}): the largest \(\omega_i\) is chosen such that obtained damping is \(\SI{95}{\percent}\) of the maximum achievable damping. -Large \(\omega_i\) is chosen here to limit the loss of compliance and the increase of coupling at low frequency as was shown in Section \ref{sec:rotating_iff_pseudo_int}. +\item for \(k_n = \SI{1}{\N\per\mu\m}\) and \(k_n = \SI{100}{\N\per\mu\m}\) (Figure \ref{fig:rotating_iff_hpf_nass_optimal_gain_md} and \ref{fig:rotating_iff_hpf_nass_optimal_gain_pz}): the largest \(\omega_i\) is chosen such that the obtained damping is \(\SI{95}{\percent}\) of the maximum achievable damping. +Large \(\omega_i\) is chosen here to limit the loss of compliance and the increase of coupling at low-frequency as shown in Section \ref{sec:rotating_iff_pseudo_int}. \end{itemize} The obtained IFF parameters and the achievable damping are visually shown by large dots in Figure \ref{fig:rotating_iff_hpf_nass_optimal_gain} and are summarized in Table \ref{tab:rotating_iff_hpf_opt_iff_hpf_params_nass}. @@ -762,11 +764,11 @@ The obtained IFF parameters and the achievable damping are visually shown by lar \end{center} \subcaption{\label{fig:rotating_iff_hpf_nass_optimal_gain_pz}$k_n = 100\,N/\mu m$} \end{subfigure} -\caption{\label{fig:rotating_iff_hpf_nass_optimal_gain}For each value of \(\omega_i\), the maximum damping ratio \(\xi\) is computed (blue) and the corresponding controller gain is shown (in red). The choosen controller parameters used for further analysis are shown by the large dots.} +\caption{\label{fig:rotating_iff_hpf_nass_optimal_gain}For each value of \(\omega_i\), the maximum damping ratio \(\xi\) is computed (blue), and the corresponding controller gain is shown (in red). The chosen controller parameters used for further analysis are indicated by the large dots.} \end{figure} \begin{table}[htbp] -\caption{\label{tab:rotating_iff_hpf_opt_iff_hpf_params_nass}Obtained optimal parameters (\(\omega_i\) and \(g\)) for the modified IFF controller including a high pass filter. The corresponding achievable simultaneous damping of the two modes \(\xi\) is also shown.} +\caption{\label{tab:rotating_iff_hpf_opt_iff_hpf_params_nass}Obtained optimal parameters (\(\omega_i\) and \(g\)) for the modified IFF controller including a high-pass filter. The corresponding achievable simultaneous damping of the two modes \(\xi\) is also shown.} \centering \begin{tabularx}{0.4\linewidth}{Xccc} \toprule @@ -781,14 +783,14 @@ The obtained IFF parameters and the achievable damping are visually shown by lar \section{Optimal IFF with Parallel Stiffness} For each considered nano-hexapod stiffness, the parallel stiffness \(k_p\) is varied from \(k_{p,\text{min}} = m\Omega^2\) (the minimum stiffness that yields unconditional stability) to \(k_{p,\text{max}} = k_n\) (the total nano-hexapod stiffness). -In order to keep the overall stiffness constant, the actuator stiffness \(k_a\) is decreased when \(k_p\) is increased (\(k_a = k_n - k_p\), with \(k_n\) the total nano-hexapod stiffness). -A high pass filter is also added to limit the low frequency gain with a cut-off frequency \(\omega_i\) equal to one tenth of the system resonance (\(\omega_i = \omega_0/10\)). +To keep the overall stiffness constant, the actuator stiffness \(k_a\) is decreased when \(k_p\) is increased (\(k_a = k_n - k_p\), with \(k_n\) the total nano-hexapod stiffness). +A high-pass filter is also added to limit the low-frequency gain with a cut-off frequency \(\omega_i\) equal to one tenth of the system resonance (\(\omega_i = \omega_0/10\)). The achievable maximum simultaneous damping of all the modes is computed as a function of the parallel stiffnesses (Figure \ref{fig:rotating_iff_kp_nass_optimal_gain}). -It is shown that the soft nano-hexapod cannot yield good damping as the parallel stiffness cannot be made large enough compared to the negative stiffness induced by the rotation. -For the two stiff options, the achievable damping decreases when the parallel stiffness is chosen too high as explained in Section \ref{sec:rotating_iff_parallel_stiffness}. -Such behavior can be explain by the fact that the achievable damping can be approximated by the distance between the open-loop pole and the open-loop zero \cite[chapt 7.2]{preumont18_vibrat_contr_activ_struc_fourt_edition}. -This distance is larger for stiff nano-hexapod as the open-loop pole will be at higher frequencies while the open-loop zero, which depends on the value of the parallel stiffness, can only be made large for stiff nano-hexapods. +It is shown that the soft nano-hexapod cannot yield good damping because the parallel stiffness cannot be sufficiently large compared to the negative stiffness induced by the rotation. +For the two stiff options, the achievable damping decreases when the parallel stiffness is too high, as explained in Section \ref{sec:rotating_iff_parallel_stiffness}. +Such behavior can be explained by the fact that the achievable damping can be approximated by the distance between the open-loop pole and the open-loop zero \cite[chapt 7.2]{preumont18_vibrat_contr_activ_struc_fourt_edition}. +This distance is larger for stiff nano-hexapod because the open-loop pole will be at higher frequencies while the open-loop zero, whereas depends on the value of the parallel stiffness, can only be made large for stiff nano-hexapods. Let's choose \(k_p = 1\,N/mm\), \(k_p = 0.01\,N/\mu m\) and \(k_p = 1\,N/\mu m\) for the three considered nano-hexapods. The corresponding optimal controller gains and achievable damping are summarized in Table \ref{tab:rotating_iff_kp_opt_iff_kp_params_nass}. @@ -817,7 +819,7 @@ The corresponding optimal controller gains and achievable damping are summarized \section{Optimal Relative Motion Control} For each considered nano-hexapod stiffness, relative damping control is applied and the achievable damping ratio as a function of the controller gain is computed (Figure \ref{fig:rotating_rdc_optimal_gain}). -The gain is chosen is chosen such that 99\% of modal damping is obtained (obtained gains are summarized in Table \ref{tab:rotating_rdc_opt_params_nass}). +The gain is chosen such that 99\% of modal damping is obtained (obtained gains are summarized in Table \ref{tab:rotating_rdc_opt_params_nass}). \begin{minipage}[t]{0.49\linewidth} \begin{center} @@ -842,12 +844,12 @@ The gain is chosen is chosen such that 99\% of modal damping is obtained (obtain \end{minipage} \section{Comparison of the obtained damped plants} -Now that optimal parameters for the three considered active damping techniques have been determined, the obtained damped plants are computed and compared in Figure \ref{fig:rotating_nass_damped_plant_comp}. +Now that the optimal parameters for the three considered active damping techniques have been determined, the obtained damped plants are computed and compared in Figure \ref{fig:rotating_nass_damped_plant_comp}. -Similarly to what was concluded in previous analysis: +Similar to what was concluded in the previous analysis: \begin{itemize} -\item \acrshort{iff} adds coupling below the resonance frequency as compared to the open-loop and \acrshort{rdc} cases -\item All three methods are yielding good damping, except for \acrshort{iff} applied on the soft nano-hexapod +\item \acrshort{iff} adds more coupling below the resonance frequency as compared to the open-loop and \acrshort{rdc} cases +\item All three methods yield good damping, except for \acrshort{iff} applied on the soft nano-hexapod \item Coupling is smaller for stiff nano-hexapods \end{itemize} @@ -870,16 +872,16 @@ Similarly to what was concluded in previous analysis: \end{center} \subcaption{\label{fig:rotating_nass_damped_plant_comp_pz}$k_n = 100\,N/\mu m$} \end{subfigure} -\caption{\label{fig:rotating_nass_damped_plant_comp}Comparison of the damped plants for the three proposed active damping techniques (IFF with HPF in blue, IFF with \(k_p\) in red and RDC in yellow). The direct terms are shown by the solid lines and coupling terms are shown by the shaded lines. Three nano-hexapod stiffnesses are considered. For this analysis the rotating velocity is \(\Omega = 60\,\text{rpm}\) and the suspended mass is \(m_n + m_s = \SI{16}{\kg}\).} +\caption{\label{fig:rotating_nass_damped_plant_comp}Comparison of the damped plants for the three proposed active damping techniques (IFF with HPF in blue, IFF with \(k_p\) in red and RDC in yellow). The direct terms are shown by solid lines, and the coupling terms are shown by the shaded lines. Three nano-hexapod stiffnesses are considered. For this analysis the rotating velocity is \(\Omega = 60\,\text{rpm}\) and the suspended mass is \(m_n + m_s = \SI{16}{\kg}\).} \end{figure} \chapter{Nano-Active-Stabilization-System with rotation} \label{sec:rotating_nass} -Up until now, the model used to study gyroscopic effects consisted of an infinitely stiff rotating stage with a X-Y suspended stage on top. -While quite simplistic, this allowed to study the effects of rotation and the associated limitations when active damping is to be applied. -In this section, the limited compliance of the micro-station is taken into account as well as the rotation of the spindle. +Until now, the model used to study gyroscopic effects consisted of an infinitely stiff rotating stage with a X-Y suspended stage on top. +While quite simplistic, this allowed us to study the effects of rotation and the associated limitations when active damping is to be applied. +In this section, the limited compliance of the micro-station is considered as well as the rotation of the spindle. \section{Nano Active Stabilization System model} -In order to have a more realistic dynamics model of the NASS, the 2-DoF nano-hexapod (modelled as shown in Figure \ref{fig:rotating_3dof_model_schematic}) is now located on top of a model of the micro-station including (see Figure \ref{fig:rotating_nass_model} for a 3D view): +To have a more realistic dynamics model of the NASS, the 2-DoF nano-hexapod (modeled as shown in Figure \ref{fig:rotating_3dof_model_schematic}) is now located on top of a model of the micro-station including (see Figure \ref{fig:rotating_nass_model} for a 3D view): \begin{itemize} \item the floor whose motion is imposed \item a 2-DoF granite (\(k_{g,x} = k_{g,y} = \SI{950}{\N\per\mu\m}\), \(m_g = \SI{2500}{\kg}\)) @@ -898,14 +900,14 @@ A payload is rigidly fixed to the nano-hexapod and the \(x,y\) motion of the pay \section{System dynamics} -The dynamics of the un-damped and damped plants are identified using the optimal parameters found in Section \ref{sec:rotating_nano_hexapod}. -The obtained dynamics are compared in Figure \ref{fig:rotating_nass_plant_comp_stiffness} in which the direct terms are shown by the solid curves while the coupling terms are shown by the shaded ones. +The dynamics of the undamped and damped plants are identified using the optimal parameters found in Section \ref{sec:rotating_nano_hexapod}. +The obtained dynamics are compared in Figure \ref{fig:rotating_nass_plant_comp_stiffness} in which the direct terms are shown by the solid curves and the coupling terms are shown by the shaded ones. It can be observed that: \begin{itemize} \item The coupling (quantified by the ratio between the off-diagonal and direct terms) is higher for the soft nano-hexapod -\item Damping added by the three proposed techniques is quite high and the obtained plant is rather easy to control +\item Damping added using the three proposed techniques is quite high, and the obtained plant is rather easy to control \item There is some coupling between nano-hexapod and micro-station dynamics for the stiff nano-hexapod (mode at 200Hz) -\item The two proposed IFF modification yields similar results +\item The two proposed IFF modifications yield similar results \end{itemize} \begin{figure}[htbp] @@ -933,18 +935,18 @@ It can be observed that: \section{Effect of disturbances} The effect of three disturbances are considered (as for the uniaxial model), floor motion \([x_{f,x},\ x_{f,y}]\) (Figure \ref{fig:rotating_nass_effect_floor_motion}), micro-Station vibrations \([f_{t,x},\ f_{t,y}]\) (Figure \ref{fig:rotating_nass_effect_stage_vibration}) and direct forces applied on the sample \([f_{s,x},\ f_{s,y}]\) (Figure \ref{fig:rotating_nass_effect_direct_forces}). -Note that only the transfer function from the disturbances in the \(x\) direction to the relative position \(d_x\) between the sample and the granite in the \(x\) direction are displayed as the transfer functions in the \(y\) direction are the same due to the system symmetry. +Note that only the transfer functions from the disturbances in the \(x\) direction to the relative position \(d_x\) between the sample and the granite in the \(x\) direction are displayed because the transfer functions in the \(y\) direction are the same due to the system symmetry. -Conclusions are similar than with the uniaxial (non-rotating) model: +Conclusions are similar than those of the uniaxial (non-rotating) model: \begin{itemize} \item Regarding the effect of floor motion and forces applied on the payload: \begin{itemize} -\item The stiffer, the better. This can be seen in Figures \ref{fig:rotating_nass_effect_floor_motion} and \ref{fig:rotating_nass_effect_direct_forces} where the magnitudes for the stiff-hexapod are lower than for the soft one -\item \acrshort{iff} degrades the performance at low frequency compared to \acrshort{rdc} +\item The stiffer, the better. This can be seen in Figures \ref{fig:rotating_nass_effect_floor_motion} and \ref{fig:rotating_nass_effect_direct_forces} where the magnitudes for the stiff hexapod are lower than those for the soft one +\item \acrshort{iff} degrades the performance at low-frequency compared to \acrshort{rdc} \end{itemize} \item Regarding the effect of micro-station vibrations: \begin{itemize} -\item Having a soft nano-hexapod allows to filter these vibrations between the suspensions modes of the nano-hexapod and some flexible modes of the micro-station. Using relative damping control reduces this filtering (Figure \ref{fig:rotating_nass_effect_stage_vibration_vc}). +\item Having a soft nano-hexapod allows filtering of these vibrations between the suspension modes of the nano-hexapod and some flexible modes of the micro-station. Using relative damping control reduces this filtering (Figure \ref{fig:rotating_nass_effect_stage_vibration_vc}). \end{itemize} \end{itemize} @@ -967,7 +969,7 @@ Conclusions are similar than with the uniaxial (non-rotating) model: \end{center} \subcaption{\label{fig:rotating_nass_effect_floor_motion_pz}$k_n = 100\,N/\mu m$} \end{subfigure} -\caption{\label{fig:rotating_nass_effect_floor_motion}Effect of floor motion \(x_{f,x}\) on the position error \(d_x\) - Comparison of active damping techniques for the three nano-hexapod stiffnesses. IFF is shown to increase the sensitivity to floor motion at low frequency.} +\caption{\label{fig:rotating_nass_effect_floor_motion}Effect of floor motion \(x_{f,x}\) on the position error \(d_x\) - Comparison of active damping techniques for the three nano-hexapod stiffnesses. IFF is shown to increase the sensitivity to floor motion at low-frequency.} \end{figure} \begin{figure}[htbp] @@ -1012,7 +1014,7 @@ Conclusions are similar than with the uniaxial (non-rotating) model: \end{center} \subcaption{\label{fig:rotating_nass_effect_direct_forces_pz}$k_n = 100\,N/\mu m$} \end{subfigure} -\caption{\label{fig:rotating_nass_effect_direct_forces}Effect of sample forces \(f_{s,x}\) on the position error \(d_x\) - Comparison of active damping techniques for the three nano-hexapod stiffnesses. Integral Force Feedback degrades this compliance at low frequency.} +\caption{\label{fig:rotating_nass_effect_direct_forces}Effect of sample forces \(f_{s,x}\) on the position error \(d_x\) - Comparison of active damping techniques for the three nano-hexapod stiffnesses. Integral Force Feedback degrades this compliance at low-frequency.} \end{figure} \chapter*{Conclusion} @@ -1020,25 +1022,25 @@ In this study, the gyroscopic effects induced by the spindle's rotation have bee Decentralized \acrlong{iff} with pure integrators was shown to be unstable when applied to rotating platforms (Section \ref{sec:rotating_iff_pure_int}). Two modifications of the classical \acrshort{iff} control have been proposed to overcome this issue. -The first modification concerns the controller and consists of adding a high pass filter to the pure integrators. +The first modification concerns the controller and consists of adding a high-pass filter to the pure integrators. This is equivalent to moving the controller pole to the left along the real axis. -This allows the closed loop system to be stable up to some value of the controller gain (Section \ref{sec:rotating_iff_pseudo_int}). +This allows the closed-loop system to be stable up to some value of the controller gain (Section \ref{sec:rotating_iff_pseudo_int}). The second proposed modification concerns the mechanical system. Additional springs are added in parallel with the actuators and force sensors. It was shown that if the stiffness \(k_p\) of the additional springs is larger than the negative stiffness \(m \Omega^2\) induced by centrifugal forces, the classical decentralized \acrshort{iff} regains its unconditional stability property (Section \ref{sec:rotating_iff_parallel_stiffness}). These two modifications were compared with \acrlong{rdc} in Section \ref{sec:rotating_comp_act_damp}. -While having very different implementations, both proposed modifications were found to be very similar when it comes to the attainable damping and the obtained closed loop system behavior. +While having very different implementations, both proposed modifications were found to be very similar with respect to the attainable damping and the obtained closed-loop system behavior. -Then, this study has been applied to a rotating platform that corresponds to the nano-hexapod parameters (Section \ref{sec:rotating_nano_hexapod}). -As for the uniaxial model, three nano-hexapod stiffness are considered. -The dynamics of the soft nano-hexapod (\(k_n = 0.01\,N/\mu m\)) was shown to be more depend on the rotation velocity (higher coupling and change of dynamics due to gyroscopic effects). -Also, the attainable damping ratio of the soft nano-hexapod when using \acrshort{iff} is limited by gyroscopic effects. +This study has been applied to a rotating platform that corresponds to the nano-hexapod parameters (Section \ref{sec:rotating_nano_hexapod}). +As for the uniaxial model, three nano-hexapod stiffnesses values were considered. +The dynamics of the soft nano-hexapod (\(k_n = 0.01\,N/\mu m\)) was shown to be more depend more on the rotation velocity (higher coupling and change of dynamics due to gyroscopic effects). +In addition, the attainable damping ratio of the soft nano-hexapod when using \acrshort{iff} is limited by gyroscopic effects. -To be closer to the \acrlong{nass} dynamics, the limited compliance of the micro-station has been taken into account (Section \ref{sec:rotating_nass}). -Results are similar to that of the uniaxial model except that come complexity is added for the soft nano-hexapod due to the spindle's rotation. -For the moderately stiff nano-hexapod (\(k_n = 1\,N/\mu m\)), the gyroscopic effects are only slightly affecting the system dynamics, and therefore could represent a good alternative to the soft nano-hexapod that was showing better results with the uniaxial model. +To be closer to the \acrlong{nass} dynamics, the limited compliance of the micro-station has been considered (Section \ref{sec:rotating_nass}). +Results are similar to those of the uniaxial model except that come complexity is added for the soft nano-hexapod due to the spindle's rotation. +For the moderately stiff nano-hexapod (\(k_n = 1\,N/\mu m\)), the gyroscopic effects only slightly affect the system dynamics, and therefore could represent a good alternative to the soft nano-hexapod that showed better results with the uniaxial model. \printbibliography[heading=bibintoc,title={Bibliography}]