From 8d97690c5c5bd2873bb3eb698101c557fe26e903 Mon Sep 17 00:00:00 2001 From: Thomas Dehaeze Date: Fri, 28 Mar 2025 16:41:26 +0100 Subject: [PATCH] Tangle matlab files without comments --- matlab/rotating_1_system_description.m | 107 +-- matlab/rotating_2_iff_pure_int.m | 88 +-- matlab/rotating_3_iff_hpf.m | 298 +------- matlab/rotating_4_iff_kp.m | 180 +---- matlab/rotating_5_rdc.m | 90 +-- matlab/rotating_6_act_damp_comparison.m | 60 +- matlab/rotating_7_nano_hexapod.m | 969 ++++++------------------ matlab/rotating_8_nass.m | 315 +++----- matlab/src/computeSimultaneousDamping.m | 2 - matlab/src/rootLocusPolesSorted.m | 2 - nass-rotating-3dof-model.org | 2 +- 11 files changed, 401 insertions(+), 1712 deletions(-) diff --git a/matlab/rotating_1_system_description.m b/matlab/rotating_1_system_description.m index 3e8ec27..f92c333 100644 --- a/matlab/rotating_1_system_description.m +++ b/matlab/rotating_1_system_description.m @@ -14,25 +14,6 @@ colors = colororder; %% Simscape model name mdl = 'rotating_model'; -% System Poles: Campbell Diagram -% The poles of $\mathbf{G}_d$ are the complex solutions $p$ of equation eqref:eq:poles. - -% #+name: eq:poles -% \begin{equation} -% \left( \frac{p^2}{{\omega_0}^2} + 2 \xi \frac{p}{\omega_0} + 1 - \frac{{\Omega}^2}{{\omega_0}^2} \right)^2 + \left( 2 \frac{\Omega}{\omega_0} \frac{p}{\omega_0} \right)^2 = 0 -% \end{equation} - -% Supposing small damping ($\xi \ll 1$), two pairs of complex conjugate poles are obtained as shown in equation eqref:eq:pole_values. - -% #+name: eq:pole_values -% \begin{subequations} -% \begin{align} -% p_{+} &= - \xi \omega_0 \left( 1 + \frac{\Omega}{\omega_0} \right) \pm j \omega_0 \left( 1 + \frac{\Omega}{\omega_0} \right) \\ -% p_{-} &= - \xi \omega_0 \left( 1 - \frac{\Omega}{\omega_0} \right) \pm j \omega_0 \left( 1 - \frac{\Omega}{\omega_0} \right) -% \end{align} -% \end{subequations} - - %% Model parameters for first analysis kn = 1; % Actuator Stiffness [N/m] mn = 1; % Payload Mass [kg] @@ -56,19 +37,8 @@ end clear pole_G; - - -% The real and complex parts of these two pairs of complex conjugate poles are represented in Figure ref:fig:rotating_campbell_diagram as a function of the rotational speed $\Omega$. -% As the rotational speed increases, $p_{+}$ goes to higher frequencies and $p_{-}$ goes to lower frequencies. -% The system becomes unstable for $\Omega > \omega_0$ as the real part of $p_{-}$ is positive. -% Physically, the negative stiffness term $-m\Omega^2$ induced by centrifugal forces exceeds the spring stiffness $k$. - - %% Campbell diagram - Real and Imaginary parts of the poles as a function of the rotating velocity figure; -tiledlayout(1, 2, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile(); hold on; plot(Wzs, real(p_ws(1, :)), '-', 'color', colors(1,:), 'DisplayName', '$p_{+}$') plot(Wzs, real(p_ws(4, :)), '-', 'color', colors(1,:), 'HandleVisibility', 'off') @@ -86,7 +56,7 @@ ylim([-3*xin, 3*xin]); yticks([-3*xin, -2*xin, -xin, 0, xin, 2*xin, 3*xin]) yticklabels({'', '', '$-\xi\omega_0$', '$0$', ''}) -ax2 = nexttile(); +figure hold on; plot(Wzs, imag(p_ws(1, :)), '-', 'color', colors(1,:)) plot(Wzs, imag(p_ws(4, :)), '-', 'color', colors(1,:)) @@ -102,22 +72,21 @@ ylim([-3*w0n, 3*w0n]); yticks([-3*w0n, -2*w0n, -w0n, 0, w0n, 2*w0n, 3*w0n]) yticklabels({'', '', '$-\omega_0$', '$0$', '$\omega_0$', '', ''}) -% Identify Generic Dynamics :noexport: - -%% Sample +%% Identify the dynamics for several rotating velocities +% Sample ms = 0.5; % Sample mass [kg] -%% Tuv Stage +% Tuv Stage kn = 1; % Stiffness [N/m] mn = 0.5; % Tuv mass [kg] cn = 0.01*2*sqrt(kn*(mn+ms)); % Damping [N/(m/s)] -%% General Configuration +% General Configuration model_config = struct(); model_config.controller = "open_loop"; % Default: Open-Loop model_config.Tuv_type = "normal"; % Default: 2DoF stage -%% Input/Output definition +% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/controller'], 1, 'openinput'); io_i = io_i + 1; % [Fu, Fv] io(io_i) = linio([mdl, '/fd'], 1, 'openinput'); io_i = io_i + 1; % [Fdu, Fdv] @@ -126,7 +95,7 @@ io(io_i) = linio([mdl, '/translation_stage'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/translation_stage'], 2, 'openoutput'); io_i = io_i + 1; % [Du, Dv] io(io_i) = linio([mdl, '/ext_metrology'], 1, 'openoutput'); io_i = io_i + 1; % [Dx, Dy] -%% Tested rotating velocities [rad/s] +% Tested rotating velocities [rad/s] Wzs = [0, 0.1, 0.2, 0.7, 1.2]; % Vector of rotation speeds [rad/s] Gs = {zeros(2, 2, length(Wzs))}; % Direct terms @@ -144,23 +113,14 @@ for i = 1:length(Wzs) Gs{:,:,i} = G; end -%% Save All Identified Plants +% Save All Identified Plants save('./mat/rotating_generic_plants.mat', 'Gs', 'Wzs'); -% System Dynamics: Effect of rotation -% The system dynamics from actuator forces $[F_u, F_v]$ to the relative motion $[d_u, d_v]$ is identified for several rotating velocities. - -% Looking at the transfer function matrix $\mathbf{G}_d$ in equation eqref:eq:Gd_w0_xi_k, one can see that the two diagonal (direct) terms are equal and that the two off-diagonal (coupling) terms are opposite. -% The bode plot of these two terms are shown in Figure ref:fig:rotating_direct_coupling_bode_plot for several rotational speeds $\Omega$. -% These plots confirm the expected behavior: the frequency of the two pairs of complex conjugate poles are further separated as $\Omega$ increases. -% For $\Omega > \omega_0$, the low frequency pair of complex conjugate poles $p_{-}$ becomes unstable. - - %% Bode plot of the direct and coupling terms for several rotating velocities freqs = logspace(-1, 1, 1000); figure; -tiledlayout(3, 2, 'TileSpacing', 'Compact', 'Padding', 'None'); +tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); % Magnitude ax1 = nexttile([2, 1]); @@ -171,26 +131,11 @@ end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('Magnitude [m/N]'); -title('Direct terms: $d_u/F_u$, $d_v/F_v$'); ylim([1e-2, 1e2]); yticks([1e-2,1e-1,1,1e1,1e2]) yticklabels({'$0.01/k$', '$0.1/k$', '$1/k$', '$10/k$', '$100/k$'}) -ax2 = nexttile([2, 1]); -hold on; -for i = 1:length(Wzs) - plot(freqs, abs(squeeze(freqresp(Gs{i}('dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(i,:), ... - 'DisplayName', sprintf('$\\Omega = %.1f \\omega_0$', Wzs(i))) -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); -title('Coupling Terms: $d_u/F_v$, $d_v/F_u$'); -ldg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); -ldg.ItemTokenSize = [10, 1]; -ylim([1e-2, 1e2]); - -ax3 = nexttile; +ax2 = nexttile; hold on; for i = 1:length(Wzs) plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{i}('du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(i,:)) @@ -203,18 +148,40 @@ ylim([-180 180]); xticks([1e-1,1,1e1]) xticklabels({'$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'}) -ax4 = nexttile; +linkaxes([ax1,ax2],'x'); +xlim([freqs(1), freqs(end)]); + +figure; +tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); + +ax1 = nexttile([2, 1]); +hold on; +for i = 1:length(Wzs) + plot(freqs, abs(squeeze(freqresp(Gs{i}('dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(i,:), ... + 'DisplayName', sprintf('$\\Omega = %.1f \\omega_0$', Wzs(i))) +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +set(gca, 'XTickLabel',[]); ylabel('Magnitude [m/N]'); +ldg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); +ldg.ItemTokenSize = [10, 1]; +ylim([1e-2, 1e2]); +yticks([1e-2,1e-1,1,1e1,1e2]) +yticklabels({'$0.01/k$', '$0.1/k$', '$1/k$', '$10/k$', '$100/k$'}) + + +ax2 = nexttile; hold on; for i = 1:length(Wzs) plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{i}('dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(i,:)); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [rad/s]'); set(gca, 'YTickLabel',[]); +xlabel('Frequency [rad/s]'); ylabel('Phase [deg]'); +yticks(-180:90:180); +ylim([-180 180]); xticks([1e-1,1,1e1]) xticklabels({'$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'}) -linkaxes([ax1,ax2,ax3,ax4],'x'); +linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); - -linkaxes([ax1,ax2],'y'); diff --git a/matlab/rotating_2_iff_pure_int.m b/matlab/rotating_2_iff_pure_int.m index 0ff4895..8124ce4 100644 --- a/matlab/rotating_2_iff_pure_int.m +++ b/matlab/rotating_2_iff_pure_int.m @@ -17,107 +17,43 @@ mdl = 'rotating_model'; %% Load "Generic" system dynamics load('rotating_generic_plants.mat', 'Gs', 'Wzs'); -% Effect of the rotation speed on the IFF plant dynamics -% The transfer functions from actuator forces $[F_u,\ F_v]$ to the measured force sensors $[f_u,\ f_v]$ are identified for several rotating velocities and shown in Figure ref:fig:rotating_iff_bode_plot_effect_rot. - -% As was expected from the derived equations of motion: -% - when $0 < \Omega < \omega_0$: the low frequency gain is no longer zero and two (non-minimum phase) real zero appears at low frequency. -% The low frequency gain increases with $\Omega$. -% A pair of (minimum phase) complex conjugate zeros appears between the two complex conjugate poles that are split further apart as $\Omega$ increases. -% - when $\omega_0 < \Omega$: the low frequency pole becomes unstable. - - %% Bode plot of the direct and coupling term for Integral Force Feedback - Effect of rotation freqs = logspace(-2, 1, 1000); +Wz_i = [1,3,4]; + figure; -tiledlayout(3, 2, 'TileSpacing', 'Compact', 'Padding', 'None'); +tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); % Magnitude ax1 = nexttile([2, 1]); hold on; -for i = 1:length(Wzs) - plot(freqs, abs(squeeze(freqresp(Gs{i}('fu', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(i,:)) +for i = 1:length(Wz_i) + plot(freqs, abs(squeeze(freqresp(Gs{Wz_i(i)}('fu', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(i,:), ... + 'DisplayName', sprintf('$\\Omega = %.1f \\omega_0 $', Wzs(Wz_i(i))),'MarkerSize',8); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('Magnitude [N/N]'); -title('Direct terms: $f_u/F_u$, $f_v/F_v$'); ylim([1e-3, 1e2]); +leg = legend('location', 'northwest', 'FontSize', 8); -ax2 = nexttile([2, 1]); +ax2 = nexttile; hold on; -for i = 1:length(Wzs) - plot(freqs, abs(squeeze(freqresp(Gs{i}('fv', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(i,:), ... - 'DisplayName', sprintf('$\\Omega = %.1f \\omega_0$', Wzs(i))) -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); -title('Coupling Terms: $f_u/F_v$, $f_v/F_u$'); -ldg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); -ldg.ItemTokenSize = [10, 1]; -ylim([1e-3, 1e2]); - -ax3 = nexttile; -hold on; -for i = 1:length(Wzs) - plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{i}('fu', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(i,:)) +for i = 1:length(Wz_i) + plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{Wz_i(i)}('fu', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(i,:)) end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [rad/s]'); ylabel('Phase [deg]'); yticks(-180:90:180); -ylim([-180 180]); +ylim([0 180]); xticks([1e-2,1e-1,1,1e1]) xticklabels({'$0.01 \omega_0$', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'}) -ax4 = nexttile; -hold on; -for i = 1:length(Wzs) - plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{i}('fv', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(i,:)); -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [rad/s]'); set(gca, 'YTickLabel',[]); -yticks(-180:90:180); -ylim([-180 180]); -xticks([1e-2,1e-1,1,1e1]) -xticklabels({'$0.01 \omega_0$', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'}) - -linkaxes([ax1,ax2,ax3,ax4],'x'); +linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); -linkaxes([ax1,ax2],'y'); - - - -% #+name: fig:rotating_iff_diagram -% #+caption: Control diagram for decentralized Integral Force Feedback -% #+RESULTS: -% [[file:figs/rotating_iff_diagram.png]] - -% The decentralized IFF controller $\bm{K}_F$ corresponds to a diagonal controller with integrators: -% #+name: eq:Kf_pure_int -% \begin{equation} -% \begin{aligned} -% \mathbf{K}_{F}(s) &= \begin{bmatrix} K_{F}(s) & 0 \\ 0 & K_{F}(s) \end{bmatrix} \\ -% K_{F}(s) &= g \cdot \frac{1}{s} -% \end{aligned} -% \end{equation} - -% In order to see how the IFF controller affects the poles of the closed loop system, a Root Locus plot (Figure ref:fig:rotating_root_locus_iff_pure_int) is constructed as follows: the poles of the closed-loop system are drawn in the complex plane as the controller gain $g$ varies from $0$ to $\infty$ for the two controllers $K_{F}$ simultaneously. -% As explained in cite:preumont08_trans_zeros_struc_contr_with,skogestad07_multiv_feedb_contr, the closed-loop poles start at the open-loop poles (shown by $\tikz[baseline=-0.6ex] \node[cross out, draw=black, minimum size=1ex, line width=2pt, inner sep=0pt, outer sep=0pt] at (0, 0){};$) for $g = 0$ and coincide with the transmission zeros (shown by $\tikz[baseline=-0.6ex] \draw[line width=2pt, inner sep=0pt, outer sep=0pt] (0,0) circle[radius=3pt];$) as $g \to \infty$. - -% #+begin_important -% Whereas collocated IFF is usually associated with unconditional stability cite:preumont91_activ, this property is lost due to gyroscopic effects as soon as the rotation velocity in non-null. -% This can be seen in the Root Locus plot (Figure ref:fig:rotating_root_locus_iff_pure_int) where poles corresponding to the controller are bound to the right half plane implying closed-loop system instability. -% #+end_important - -% Physically, this can be explained like so: at low frequency, the loop gain is very large due to the pure integrator in $K_{F}$ and the finite gain of the plant (Figure ref:fig:rotating_iff_bode_plot_effect_rot). -% The control system is thus canceling the spring forces which makes the suspended platform no able to hold the payload against centrifugal forces, hence the instability. - - %% Root Locus for the Decentralized Integral Force Feedback controller Kiff = 1/s*eye(2); diff --git a/matlab/rotating_3_iff_hpf.m b/matlab/rotating_3_iff_hpf.m index 7dab985..56d95db 100644 --- a/matlab/rotating_3_iff_hpf.m +++ b/matlab/rotating_3_iff_hpf.m @@ -17,18 +17,6 @@ mdl = 'rotating_model'; %% Load "Generic" system dynamics load('rotating_generic_plants.mat', 'Gs', 'Wzs'); -% Modified Integral Force Feedback Controller -% The Integral Force Feedback Controller is modified such that instead of using pure integrators, pseudo integrators (i.e. low pass filters) are used: -% \begin{equation} -% K_{\text{IFF}}(s) = g\frac{1}{\omega_i + s} \begin{bmatrix} -% 1 & 0 \\ -% 0 & 1 -% \end{bmatrix} -% \end{equation} -% where $\omega_i$ characterize down to which frequency the signal is integrated. - -% Let's arbitrary choose the following control parameters: - %% Modified IFF - parameters g = 2; % Controller gain wi = 0.1; % HPF Cut-Off frequency [rad/s] @@ -36,13 +24,7 @@ wi = 0.1; % HPF Cut-Off frequency [rad/s] Kiff = (g/s)*eye(2); % Pure IFF Kiff_hpf = (g/(wi+s))*eye(2); % IFF with added HPF - - -% The loop gains ($K_F(s)$ times the direct dynamics $f_u/F_u$) with and without the added HPF are shown in Figure ref:fig:rotating_iff_modified_loop_gain. -% The effect of the added HPF limits the low frequency gain to finite values as expected. - - -%% Loop gain for the IFF with pure integrator and modified IFF with added high pass filter +%% Loop gain for the IFF with pure integrator and modified IFF with added high-pass filter freqs = logspace(-2, 1, 1000); Wz_i = 2; @@ -62,138 +44,32 @@ set(gca, 'XTickLabel',[]); ylabel('Loop Gain'); ax2 = nexttile; hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{Wz_i}('fu', 'Fu')*Kiff(1,1), freqs, 'rad/s'))), 'DisplayName', 'IFF') -plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{Wz_i}('fu', 'Fu')*Kiff_hpf(1,1), freqs, 'rad/s'))), 'DisplayName', 'IFF + HPF') +plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{Wz_i}('fu', 'Fu')*Kiff_hpf(1,1), freqs, 'rad/s'))), 'DisplayName', 'IFF,HPF') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [rad/s]'); ylabel('Phase [deg]'); yticks(-180:90:180); -ylim([-180 180]); +ylim([-90 180]); xticks([1e-2,1e-1,1,1e1]) -xticklabels({'$0.01 \omega_0$', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'}) +xticklabels({'', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'}) leg = legend('location', 'southwest', 'FontSize', 8); -leg.ItemTokenSize(1) = 20; +leg.ItemTokenSize(1) = 15; linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); - - -% #+name: fig:rotating_iff_modified_loop_gain -% #+caption: Loop gain for the IFF with pure integrator and modified IFF with added high pass filter ($\Omega = 0.1\omega_0$) -% #+RESULTS: -% [[file:figs/rotating_iff_modified_loop_gain.png]] - -% The Root Locus plots for the decentralized IFF with and without the HPF are displayed in Figure ref:fig:rotating_iff_root_locus_hpf. -% With the added HPF, the poles of the closed loop system are shown to be *stable up to some value of the gain* $g_\text{max}$ given by equation eqref:eq:gmax_iff_hpf. - -% #+name: eq:gmax_iff_hpf -% \begin{equation} -% \boxed{g_{\text{max}} = \omega_i \left( \frac{{\omega_0}^2}{\Omega^2} - 1 \right)} -% \end{equation} - -% It is interesting to note that $g_{\text{max}}$ also corresponds to the controller gain at which the low frequency loop gain (Figure ref:fig:rotating_iff_modified_loop_gain) reaches one. - +%% High-Pass Filter Cut-Off Frequency +wis = [0.01, 0.05, 0.1]; % [rad/s] %% Root Locus for the initial IFF and the modified IFF gains = logspace(-2, 4, 200); figure; -tiledlayout(1, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile([1,2]); -hold on; -for g = gains - clpoles = pole(feedback(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff)); - plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:), 'HandleVisibility', 'off','MarkerSize',4); -end -for g = gains - clpoles = pole(feedback(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff_hpf)); - plot(real(clpoles), imag(clpoles), '.', 'color', colors(2,:), 'HandleVisibility', 'off','MarkerSize',4); -end -% Pure Integrator -plot(real(pole(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... - imag(pole(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... - 'x', 'color', colors(1,:), 'DisplayName', 'IFF','MarkerSize',8); -plot(real(tzero(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... - imag(tzero(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... - 'o', 'color', colors(1,:), 'HandleVisibility', 'off','MarkerSize',8); -% Modified IFF -plot(real(pole(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf)), ... - imag(pole(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf)), ... - 'x', 'color', colors(2,:), 'DisplayName', 'IFF + HPF','MarkerSize',8); -plot(real(tzero(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf)), ... - imag(tzero(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf)), ... - 'o', 'color', colors(2,:), 'HandleVisibility', 'off','MarkerSize',8); -hold off; -axis square; -leg = legend('location', 'northwest', 'FontSize', 8); -leg.ItemTokenSize(1) = 8; -xlabel('Real Part'); ylabel('Imaginary Part'); - -xlim([-2.25, 0.25]); ylim([-1.25, 1.25]); -xticks([-2, -1, 0]) -xticklabels({'$-2\omega_0$', '$-\omega_0$', '$0$'}) -yticks([-1, 0, 1]) -yticklabels({'$-\omega_0$', '$0$', '$\omega_0$'}) - -ax2 = nexttile(); -hold on; -for g = gains - clpoles = pole(feedback(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff)); - plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:),'MarkerSize',4); -end -for g = gains - clpoles = pole(feedback(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff_hpf)); - plot(real(clpoles), imag(clpoles), '.', 'color', colors(2,:),'MarkerSize',4); -end -% Pure Integrator -plot(real(pole(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... - imag(pole(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... - 'x', 'color', colors(1,:),'MarkerSize',8); -plot(real(tzero(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... - imag(tzero(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... - 'o', 'color', colors(1,:),'MarkerSize',8); -% Modified IFF -plot(real(pole(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf)), ... - imag(pole(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf)), ... - 'x', 'color', colors(2,:),'MarkerSize',8); -plot(real(tzero(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf)), ... - imag(tzero(Gs{Wz_i}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf)), ... - 'o', 'color', colors(2,:),'MarkerSize',8); -hold off; -axis square; -xlabel('Real Part'); ylabel('Imaginary Part'); -title('Zoom near the origin'); - -xlim([-0.15, 0.1]); ylim([-0.15, 0.15]); -xticks([-0.1, 0, 0.1]) -xticklabels({'$-0.1\omega_0$', '$0$', '$0.1\omega_0$'}) -yticks([-0.1, 0, 0.1]) -yticklabels({'$-0.1\omega_0$', '$0$', '$0.1\omega_0$'}) - -% Optimal IFF with HPF parameters $\omega_i$ and $g$ -% Two parameters can be tuned for the modified controller in equation eqref:eq:iff_lhf: the gain $g$ and the pole's location $\omega_i$. -% The optimal values of $\omega_i$ and $g$ are here considered as the values for which the damping of all the closed-loop poles are simultaneously maximized. - -% In order to visualize how $\omega_i$ does affect the attainable damping, the Root Locus plots for several $\omega_i$ are displayed in Figure ref:fig:rotating_root_locus_iff_modified_effect_wi. -% It is shown that even though small $\omega_i$ seem to allow more damping to be added to the suspension modes, the control gain $g$ may be limited to small values due to equation eqref:eq:gmax_iff_hpf. - - -%% High Pass Filter Cut-Off Frequency -wis = [0.01, 0.1, 0.5, 1]*Wzs(2); % [rad/s] - -%% Root Locus for the initial IFF and the modified IFF -gains = logspace(-2, 4, 200); - -figure; -tiledlayout(1, 2, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile(); hold on; for wi_i = 1:length(wis) wi = wis(wi_i); Kiff = (1/(wi+s))*eye(2); - L(wi_i) = plot(nan, nan, '.', 'color', colors(wi_i,:), 'DisplayName', sprintf('$\\omega_i = %.2f \\omega_0$', wi./Wzs(2))); + L(wi_i) = plot(nan, nan, '.', 'color', colors(wi_i,:), 'DisplayName', sprintf('$\\omega_i = %.2f \\omega_0$', wi)); for g = gains clpoles = pole(feedback(Gs{2}({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff)); plot(real(clpoles), imag(clpoles), '.', 'color', colors(wi_i,:),'MarkerSize',4); @@ -206,66 +82,20 @@ for wi_i = 1:length(wis) 'o', 'color', colors(wi_i,:),'MarkerSize',8); end hold off; -axis square; +axis equal; xlim([-2.3, 0.1]); ylim([-1.2, 1.2]); xticks([-2:1:2]); yticks([-2:1:2]); -leg = legend(L, 'location', 'northwest', 'FontSize', 8); +leg = legend(L, 'location', 'southwest', 'FontSize', 8); leg.ItemTokenSize(1) = 8; xlabel('Real Part'); ylabel('Imaginary Part'); clear L -xlim([-2.25, 0.25]); ylim([-1.25, 1.25]); -xticks([-2, -1, 0]) -xticklabels({'$-2\omega_0$', '$-\omega_0$', '$0$'}) +xlim([-1.25, 0.25]); ylim([-1.25, 1.25]); +xticks([-1, 0]) +xticklabels({'$-\omega_0$', '$0$'}) yticks([-1, 0, 1]) yticklabels({'$-\omega_0$', '$0$', '$\omega_0$'}) - -ax2 = nexttile(); -hold on; -for wi_i = 1:length(wis) - wi = wis(wi_i); - Kiff = (1/(wi+s))*eye(2); - L(wi_i) = plot(nan, nan, '.', 'color', colors(wi_i,:)); - for g = gains - clpoles = pole(feedback(Gs{2}({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff)); - plot(real(clpoles), imag(clpoles), '.', 'color', colors(wi_i,:),'MarkerSize',4); - end - plot(real(pole(Gs{2}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... - imag(pole(Gs{2}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... - 'x', 'color', colors(wi_i,:),'MarkerSize',8); - plot(real(tzero(Gs{2}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... - imag(tzero(Gs{2}({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff)), ... - 'o', 'color', colors(wi_i,:),'MarkerSize',8); -end -hold off; -axis square; -xlim([-2.3, 0.1]); ylim([-1.2, 1.2]); -xticks([-2:1:2]); yticks([-2:1:2]); -xlabel('Real Part'); ylabel('Imaginary Part'); -title('Zoom near the origin'); -clear L - -xlim([-0.15, 0.1]); ylim([-0.15, 0.15]); -xticks([-0.1, 0, 0.1]) -xticklabels({'$-0.1\omega_0$', '$0$', '$0.1\omega_0$'}) -yticks([-0.1, 0, 0.1]) -yticklabels({'$-0.1\omega_0$', '$0$', '$0.1\omega_0$'}) - - - -% #+name: fig:rotating_root_locus_iff_modified_effect_wi -% #+caption: Root Locus for several high pass filter cut-off frequency -% #+RESULTS: -% [[file:figs/rotating_root_locus_iff_modified_effect_wi.png]] - -% In order to study this trade off, the attainable closed-loop damping ratio $\xi_{\text{cl}}$ is computed as a function of $\omega_i/\omega_0$. -% The gain $g_{\text{opt}}$ at which this maximum damping is obtained is also displayed and compared with the gain $g_{\text{max}}$ at which the system becomes unstable (Figure ref:fig:rotating_iff_hpf_optimal_gain). - -% Three regions can be observed: -% - $\omega_i/\omega_0 < 0.02$: the added damping is limited by the maximum allowed control gain $g_{\text{max}}$ -% - $0.02 < \omega_i/\omega_0 < 0.2$: the attainable damping ratio is maximized and is reached for $g \approx 2$ -% - $0.2 < \omega_i/\omega_0$: the added damping decreases as $\omega_i/\omega_0$ increases. - +ytickangle(90) %% Compute the optimal control gain wis = logspace(-2, 1, 100); % [rad/s] @@ -296,6 +126,7 @@ yyaxis right hold on; plot(wis, opt_gain, '-', 'DisplayName', '$g_{opt}$'); plot(wis, wis*((1/Wzs(2))^2 - 1), '--', 'DisplayName', '$g_{max}$'); +hold off; set(gca, 'YScale', 'lin'); ylim([0,10]); ylabel('Controller gain $g$'); @@ -304,79 +135,6 @@ xlabel('$\omega_i/\omega_0$'); set(gca, 'XScale', 'log'); legend('location', 'northeast', 'FontSize', 8); -% Obtained Damped Plant - -% Let's choose $\omega_i = 0.1 \cdot \omega_0$ and compute the damped plant. -% The undamped and damped plants are compared in Figure ref:fig:rotating_iff_hpf_damped_plant in blue and red respectively. -% A well damped plant is indeed obtained. - -% However, the magnitude of the coupling term ($d_v/F_u$) is larger then IFF is applied. - - -%% Compute damped plant -wi = 0.1; % [rad/s] -g = 2; % Gain -Kiff_hpf = (g/(wi+s))*eye(2); % IFF with added HPF -Kiff_hpf.InputName = {'fu', 'fv'}; -Kiff_hpf.OutputName = {'Fu', 'Fv'}; - -G_iff_hpf = feedback(Gs{2}, Kiff_hpf, 'name'); - -isstable(G_iff_hpf) % Verify stability - -%% Damped plant with IFF and added HPF - Transfer function from $F_u$ to $d_u$ -freqs = logspace(-2, 1, 1000); - -figure; -tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); - -% Magnitude -ax1 = nexttile([2, 1]); -hold on; -plot(freqs, abs(squeeze(freqresp(Gs{2}('Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', [zeros(1,3)], ... - 'DisplayName', '$d_u/F_u$, OL') -plot(freqs, abs(squeeze(freqresp(G_iff_hpf('Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', [colors(1,:)], ... - 'DisplayName', '$d_u/F_u$, IFF') -plot(freqs, abs(squeeze(freqresp(Gs{2}('Dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', [zeros(1,3), 0.5], ... - 'DisplayName', '$d_v/F_u$, OL') -plot(freqs, abs(squeeze(freqresp(G_iff_hpf('Dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', [colors(1,:), 0.5], ... - 'DisplayName', '$d_v/F_u$, IFF') -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -set(gca, 'XTickLabel',[]); ylabel('Magnitude [m/N]'); -leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); -leg.ItemTokenSize(1) = 20; - -ax2 = nexttile; -hold on; -plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{2}('Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', zeros(1,3)) -plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff_hpf('Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(1,:)) -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [rad/s]'); ylabel('Phase [deg]'); -yticks(-180:90:180); -ylim([-180 180]); -xticks([1e-2,1e-1,1,1e1]) -xticklabels({'$0.01 \omega_0$', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'}) - -linkaxes([ax1,ax2],'x'); -xlim([freqs(1), freqs(end)]); - - - -% #+name: fig:rotating_iff_hpf_damped_plant -% #+caption: Damped plant with IFF and added HPF - Transfer function from $F_u$ to $d_u$, $\omega_i = 0.1 \cdot \omega_0$, $\Omega = 0.1 \cdot \omega_0$ -% #+RESULTS: -% [[file:figs/rotating_iff_hpf_damped_plant.png]] - -% In order to study how $\omega_i$ affects the coupling of the damped plant, the closed-loop plant is identified for several $\omega_i$. -% The direct and coupling terms of the plants are shown in Figure ref:fig:rotating_iff_hpf_damped_plant_effect_wi_coupling (left) and the ratio between the two (i.e. the coupling ratio) is shown in Figure ref:fig:rotating_iff_hpf_damped_plant_effect_wi_coupling (right). - -% The coupling ratio is decreasing as $\omega_i$ increases. -% There is therefore a *trade-off between achievable damping and coupling ratio* for the choice of $\omega_i$. -% The same trade-off can be seen between achievable damping and loss of compliance at low frequency (see Figure ref:fig:rotating_iff_hpf_effect_wi_compliance). - - %% Compute damped plant wis = [0.03, 0.1, 0.5]; % [rad/s] g = 2; % Gain @@ -395,7 +153,7 @@ end freqs = logspace(-2, 1, 1000); figure; -tiledlayout(3, 2, 'TileSpacing', 'Compact', 'Padding', 'None'); +tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); % Magnitude ax1 = nexttile([2, 1]); @@ -412,20 +170,6 @@ set(gca, 'XTickLabel',[]); ylabel('Magnitude [m/N]'); leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 20; -ax3 = nexttile([3,1]); -hold on; -for i = 1:length(wis) - plot(freqs, abs(squeeze(freqresp(Gs_iff_hpf{i}('Dv', 'Fu')/Gs_iff_hpf{i}('Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', [colors(i,:)], ... - 'DisplayName', sprintf('$\\omega_i = %.2f \\omega_0$', wis(i))) -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [rad/s]'); ylabel('Coupling Ratio'); -leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); -leg.ItemTokenSize(1) = 20; -xticks([1e-2,1e-1,1,1e1]) -xticklabels({'$0.01 \omega_0$', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'}) - ax2 = nexttile; hold on; for i = 1:length(wis) @@ -435,21 +179,13 @@ hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [rad/s]'); ylabel('Phase [deg]'); yticks(-180:90:180); -ylim([-180 180]); +ylim([-180 0]); xticks([1e-2,1e-1,1,1e1]) xticklabels({'$0.01 \omega_0$', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'}) linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); - - -% #+name: fig:rotating_iff_hpf_damped_plant_effect_wi_coupling -% #+caption: Effect of $\omega_i$ on the damped plant coupling -% #+RESULTS: -% [[file:figs/rotating_iff_hpf_damped_plant_effect_wi_coupling.png]] - - %% Effect of $\omega_i$ on the obtained compliance freqs = logspace(-2, 1, 1000); diff --git a/matlab/rotating_4_iff_kp.m b/matlab/rotating_4_iff_kp.m index 0ba133c..bfb873a 100644 --- a/matlab/rotating_4_iff_kp.m +++ b/matlab/rotating_4_iff_kp.m @@ -17,8 +17,6 @@ mdl = 'rotating_model'; %% Load "Generic" system dynamics load('rotating_generic_plants.mat', 'Gs', 'Wzs'); -% Identify plant with parallel stiffnesses :noexport: - %% Tuv Stage mn = 0.5; % Tuv mass [kg] @@ -38,13 +36,6 @@ io(io_i) = linio([mdl, '/translation_stage'], 1, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/translation_stage'], 2, 'openoutput'); io_i = io_i + 1; % [Du, Dv] io(io_i) = linio([mdl, '/ext_metrology'], 1, 'openoutput'); io_i = io_i + 1; % [Dx, Dy] -% Effect of the parallel stiffness on the IFF plant -% The IFF plant (transfer function from $[F_u, F_v]$ to $[f_u, f_v]$) is identified in three different cases: -% - without parallel stiffness $k_p = 0$ -% - with a small parallel stiffness $k_p < m \Omega^2$ -% - with a large parallel stiffness $k_p > m \Omega^2$ - - Wz = 0.1; % The rotation speed [rad/s] %% No parallel Stiffness @@ -77,12 +68,6 @@ G_high_kp = linearize(mdl, io, 0); G_high_kp.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy'}; G_high_kp.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; - - -% The Bode plots of the obtained dynamics are shown in Figure ref:fig:rotating_iff_effect_kp. -% One can see that for $k_p > m \Omega^2$, the two real zeros with $k_p < m \Omega^2$ are transformed into two complex conjugate zeros and the systems shows alternating complex conjugate poles and zeros. - - %% Effect of the parallel stiffness on the IFF plant freqs = logspace(-2, 1, 1000); @@ -101,7 +86,7 @@ plot(freqs, abs(squeeze(freqresp(G_high_kp('fu', 'Fu'), freqs, 'rad/s'))), '-', hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('Magnitude [N/N]'); -ylim([1e-5, 5e1]); +ylim([1e-4, 5e1]); legend('location', 'southeast', 'FontSize', 8); % Phase @@ -113,7 +98,7 @@ plot(freqs, 180/pi*angle(squeeze(freqresp(G_high_kp('fu', 'Fu'), freqs, 'rad/s') set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [rad/s]'); ylabel('Phase [deg]'); yticks(-180:90:180); -ylim([-180 180]); +ylim([0 180]); hold off; xticks([1e-2,1e-1,1,1e1]) xticklabels({'$0.01 \omega_0$', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'}) @@ -121,24 +106,10 @@ xticklabels({'$0.01 \omega_0$', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'} linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); - - -% #+name: fig:rotating_iff_effect_kp -% #+caption: Effect of the parallel stiffness on the IFF plant: Bode plot of $G_{k}(1,1) = f_u/F_u$ without parallel spring, with parallel spring stiffness $k_p < m \Omega^2$ and $k_p > m \Omega^2$, $\Omega = 0.1 \omega_0$ -% #+RESULTS: -% [[file:figs/rotating_iff_effect_kp.png]] - -% Figure ref:fig:rotating_iff_kp_root_locus shows the Root Locus plots for $k_p = 0$, $k_p < m \Omega^2$ and $k_p > m \Omega^2$ when $K_F$ is a pure integrator as in Eq. eqref:eq:Kf_pure_int. -% It is shown that if the added stiffness is higher than the maximum negative stiffness, the poles of the closed-loop system are bounded on the (stable) left half-plane, and hence the *unconditional stability of IFF is recovered*. - - %% Root Locus for IFF without parallel spring, with small parallel spring and with large parallel spring gains = logspace(-2, 2, 200); figure; -tiledlayout(1, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile([1,2]); hold on; plot(real(pole(G_no_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), imag(pole(G_no_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), 'x', 'color', colors(1,:), ... 'DisplayName', '$k_p = 0$','MarkerSize',8); @@ -181,48 +152,6 @@ xlabel('Real Part'); ylabel('Imaginary Part'); leg = legend('location', 'northwest', 'FontSize', 8); leg.ItemTokenSize(1) = 8; -ax2 = nexttile(); -hold on; -plot(real(pole(G_no_kp( {'fu','fv'},{'Fu','Fv'})*(1/s))), imag(pole(G_no_kp( {'fu','fv'},{'Fu','Fv'})*(1/s))), 'x', 'color', colors(1,:), 'MarkerSize',8); -plot(real(tzero(G_no_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), imag(tzero(G_no_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), 'o', 'color', colors(1,:), 'MarkerSize',8); -for g = gains - cl_poles = pole(feedback(G_no_kp({'fu','fv'},{'Fu','Fv'}), (g/s)*eye(2))); - plot(real(cl_poles), imag(cl_poles), '.', 'color', colors(1,:), 'MarkerSize', 4); -end - -plot(real(pole(G_low_kp( {'fu','fv'},{'Fu','Fv'})*(1/s))), imag(pole(G_low_kp( {'fu','fv'},{'Fu','Fv'})*(1/s))), 'x', 'color', colors(2,:), 'MarkerSize',8); -plot(real(tzero(G_low_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), imag(tzero(G_low_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), 'o', 'color', colors(2,:), 'MarkerSize',8); -for g = gains - cl_poles = pole(feedback(G_low_kp({'fu','fv'},{'Fu','Fv'}), (g/s)*eye(2))); - plot(real(cl_poles), imag(cl_poles), '.', 'color', colors(2,:), 'MarkerSize', 4); -end - -plot(real(pole(G_high_kp( {'fu','fv'},{'Fu','Fv'})*(1/s))), imag(pole(G_high_kp( {'fu','fv'},{'Fu','Fv'})*(1/s))), 'x', 'color', colors(3,:), 'MarkerSize',8); -plot(real(tzero(G_high_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), imag(tzero(G_high_kp({'fu','fv'},{'Fu','Fv'})*(1/s))), 'o', 'color', colors(3,:), 'MarkerSize',8); -for g = gains - cl_poles = pole(feedback(G_high_kp({'fu','fv'},{'Fu','Fv'}), (g/s)*eye(2))); - plot(real(cl_poles), imag(cl_poles), '.', 'color', colors(3,:), 'MarkerSize',4); -end -hold off; -axis equal; -xlim([-0.04, 0.04]); ylim([-0.08, 0.08]); -set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); -xlabel('Real Part'); ylabel('Imaginary Part'); -title('Zoom on controller pole') - -% Effect of $k_p$ on the attainable damping - -% Even though the parallel stiffness $k_p$ has no impact on the open-loop poles (as the overall stiffness $k$ is kept constant), it has a large impact on the transmission zeros. -% Moreover, as the attainable damping is generally proportional to the distance between poles and zeros cite:preumont18_vibrat_contr_activ_struc_fourt_edition, the parallel stiffness $k_p$ is foreseen to have some impact on the attainable damping. - -% To study this effect, Root Locus plots for several parallel stiffnesses $k_p > m \Omega^2$ are shown in Figure ref:fig:rotating_iff_kp_root_locus_effect_kp. -% The frequencies of the transmission zeros of the system are increasing with an increase of the parallel stiffness $k_p$ (thus getting closer to the poles) and the associated attainable damping is reduced. - -% #+begin_important -% Therefore, even though the parallel stiffness $k_p$ should be larger than $m \Omega^2$ for stability reasons, it should not be taken too large as this would limit the attainable damping. -% #+end_important - - %% Tested parallel stiffnesses kps = [2, 20, 40]*(mn + ms)*Wz^2; @@ -265,16 +194,6 @@ xlabel('Real Part'); ylabel('Imaginary Part'); leg = legend('location', 'northwest', 'FontSize', 8); leg.ItemTokenSize(1) = 12; - - -% #+name: fig:rotating_iff_kp_root_locus_effect_kp -% #+caption: Root Locus: Effect of the parallel stiffness on the attainable damping, $\Omega = 0.1 \omega_0$ -% #+RESULTS: -% [[file:figs/rotating_iff_kp_root_locus_effect_kp.png]] - -% This is confirmed by the Figure ref:fig:rotating_iff_kp_optimal_gain where the attainable closed-loop damping ratio $\xi_{\text{cl}}$ and the associated optimal control gain $g_\text{opt}$ are computed as a function of the parallel stiffness. - - %% Computes the optimal parameters and attainable simultaneous damping alphas = logspace(-2, 0, 100); alphas(end) = []; % Remove last point @@ -325,14 +244,6 @@ xlim([0.01, 1]); xticks([0.01, 0.1, 1]) xticklabels({'$m\Omega^2$', '$10m\Omega^2$', '$100m\Omega^2$'}) -% Damped plant -% Let's choose a parallel stiffness equal to $k_p = 2 m \Omega^2$ and compute the damped plant. -% The damped and undamped transfer functions from $F_u$ to $d_u$ are compared in Figure ref:fig:rotating_iff_kp_damped_plant. - -% Even though the two resonances are well damped, the IFF changes the low frequency behavior of the plant which is usually not wanted. -% This is due to the fact that "pure" integrators are used, and that the low frequency loop gains becomes large below some frequency. - - %% Identify dynamics with parallel stiffness = 2mW^2 Wz = 0.1; % [rad/s] kp = 2*(mn + ms)*Wz^2; % Parallel Stiffness [N/m] @@ -353,65 +264,6 @@ Kiff_kp.OutputName = {'Fu', 'Fv'}; %% Compute the damped plant G_cl_iff_kp = feedback(G, Kiff_kp, 'name'); -%% Damped plant with IFF - Transfer function from $F_u$ to $d_u$ -freqs = logspace(-3, 1, 1000); - -figure; -tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); - -% Magnitude -ax1 = nexttile([2, 1]); -hold on; -plot(freqs, abs(squeeze(freqresp(G('Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', zeros(1,3), ... - 'DisplayName', '$d_u/F_u$ - OL') -plot(freqs, abs(squeeze(freqresp(G_cl_iff_kp('Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(1,:), ... - 'DisplayName', '$d_u/F_u$ - IFF + $k_p$') -plot(freqs, abs(squeeze(freqresp(G('Dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', [zeros(1,3), 0.5], ... - 'DisplayName', '$d_v/F_u$ - OL') -plot(freqs, abs(squeeze(freqresp(G_cl_iff_kp('Dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', [colors(1,:), 0.5], ... - 'DisplayName', '$d_v/F_u$ - IFF + $k_p$') -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -set(gca, 'XTickLabel',[]); ylabel('Magnitude [m/N]'); -ldg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); -ldg.ItemTokenSize(1) = 20; -ylim([1e-6, 1e2]); - -ax2 = nexttile; -hold on; -plot(freqs, 180/pi*angle(squeeze(freqresp(G('Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', zeros(1,3)) -plot(freqs, 180/pi*angle(squeeze(freqresp(G_cl_iff_kp('Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(1,:)) -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [rad/s]'); ylabel('Phase [deg]'); -yticks(-180:90:180); -ylim([-180 180]); -xticks([1e-3,1e-2,1e-1,1,1e1]) -xticklabels({'$0.001 \omega_0$', '$0.01 \omega_0$', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'}) - -linkaxes([ax1,ax2],'x'); -xlim([freqs(1), freqs(end)]); - - - -% #+name: fig:rotating_iff_kp_damped_plant -% #+caption: Damped plant with IFF - Transfer function from $F_u$ to $d_u$ -% #+RESULTS: -% [[file:figs/rotating_iff_kp_damped_plant.png]] - -% In order to lower the low frequency gain, an high pass filter is added to the IFF controller (which is equivalent as shifting the controller pole to the left in the complex plane): -% \begin{equation} -% K_{\text{IFF}}(s) = g\frac{1}{\omega_i + s} \begin{bmatrix} -% 1 & 0 \\ -% 0 & 1 -% \end{bmatrix} -% \end{equation} - -% Let's see how the high pass filter impacts the attainable damping. -% The controller gain $g$ is kept constant while $\omega_i$ is changed, and the minimum damping ratio of the damped plant is computed. -% The obtained damping ratio as a function of $\omega_i/\omega_0$ (where $\omega_0$ is the resonance of the system without rotation) is shown in Figure ref:fig:rotating_iff_kp_added_hpf_effect_damping. - - w0 = sqrt((kn+kp)/(mn+ms)); % Resonance frequency [rad/s] wis = w0*logspace(-2, 0, 100); % LPF cut-off [rad/s] @@ -427,7 +279,7 @@ for wi_i = 1:length(wis) opt_xi(wi_i) = min(xi); end -%% Effect of the high pass filter cut-off frequency on the obtained damping +%% Effect of the high-pass filter cut-off frequency on the obtained damping figure; plot(wis, opt_xi, '-'); set(gca, 'XScale', 'log'); @@ -436,19 +288,7 @@ ylim([0,1]); ylabel('Damping Ratio $\xi$'); xlabel('$\omega_i/\omega_0$'); - - -% #+name: fig:rotating_iff_kp_added_hpf_effect_damping -% #+caption: Effect of the high pass filter cut-off frequency on the obtained damping -% #+RESULTS: -% [[file:figs/rotating_iff_kp_added_hpf_effect_damping.png]] - -% Let's choose $\omega_i = 0.1 \cdot \omega_0$ and compute the damped plant again. -% The Bode plots of the undamped, damped with "pure" IFF, and with added high pass filters are shown in Figure ref:fig:rotating_iff_kp_added_hpf_damped_plant. -% The added high pass filter gives almost the same damping properties while giving acceptable low frequency behavior. - - -%% Compute the damped plant with added High Pass Filter +%% Compute the damped plant with added High-Pass Filter Kiff_kp_hpf = (2.2/(s + 0.1*w0))*eye(2); Kiff_kp_hpf.InputName = {'fu', 'fv'}; Kiff_kp_hpf.OutputName = {'Fu', 'Fv'}; @@ -471,16 +311,16 @@ plot(freqs, abs(squeeze(freqresp(G_cl_iff_kp( 'Du', 'Fu'), freqs, 'rad/s'))), plot(freqs, abs(squeeze(freqresp(G_cl_iff_hpf_kp('Du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(2,:), ... 'DisplayName', '$d_u/F_u$ - IFF + $k_p$ + HPF') plot(freqs, abs(squeeze(freqresp(G( 'Dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', [zeros( 1,3), 0.5], ... - 'DisplayName', '$d_v/F_u$ - OL') + 'HandleVisibility', 'off') plot(freqs, abs(squeeze(freqresp(G_cl_iff_kp( 'Dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', [colors(1,:), 0.5], ... - 'DisplayName', '$d_v/F_u$ - IFF + $k_p$') + 'HandleVisibility', 'off') plot(freqs, abs(squeeze(freqresp(G_cl_iff_hpf_kp('Dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', [colors(2,:), 0.5], ... - 'DisplayName', '$d_v/F_u$ - IFF + $k_p$ + HPF') + 'HandleVisibility', 'off') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('Magnitude [m/N]'); -ldg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); -ldg.ItemTokenSize(1) = 20; +ldg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); +ldg.ItemTokenSize(1) = 10; ax2 = nexttile; hold on; @@ -491,7 +331,7 @@ hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [rad/s]'); ylabel('Phase [deg]'); yticks(-180:90:180); -ylim([-180 180]); +ylim([-180 90]); xticks([1e-3,1e-2,1e-1,1,1e1]) xticklabels({'$0.001 \omega_0$', '$0.01 \omega_0$', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'}) diff --git a/matlab/rotating_5_rdc.m b/matlab/rotating_5_rdc.m index bfd4786..1021768 100644 --- a/matlab/rotating_5_rdc.m +++ b/matlab/rotating_5_rdc.m @@ -17,84 +17,6 @@ mdl = 'rotating_model'; %% Load "Generic" system dynamics load('rotating_generic_plants.mat', 'Gs', 'Wzs'); -% Decentralized Relative Damping Control -% The transfer functions from $[F_u,\ F_v]$ to $[d_u,\ d_v]$ is identified and shown in Figure ref:fig:rotating_rdc_plant_effect_rot for several rotating velocities. - - -%% Bode plot of the direct and coupling term for the "relative damping control" plant - Effect of rotation -freqs = logspace(-2, 1, 1000); - -figure; -tiledlayout(3, 2, 'TileSpacing', 'Compact', 'Padding', 'None'); - -% Magnitude -ax1 = nexttile([2, 1]); -hold on; -for i = 1:length(Wzs) - plot(freqs, abs(squeeze(freqresp(Gs{i}('du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(i,:)) -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -set(gca, 'XTickLabel',[]); ylabel('Magnitude [N/N]'); -title('Direct terms: $d_u/F_u$, $d_v/F_v$'); -ylim([1e-3, 1e2]); - -ax2 = nexttile([2, 1]); -hold on; -for i = 1:length(Wzs) - plot(freqs, abs(squeeze(freqresp(Gs{i}('dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(i,:), ... - 'DisplayName', sprintf('$\\Omega = %.1f \\omega_0$', Wzs(i))) -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); -title('Coupling Terms: $d_u/F_v$, $d_v/F_u$'); -ldg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); -ldg.ItemTokenSize = [10, 1]; -ylim([1e-3, 1e2]); - -ax3 = nexttile; -hold on; -for i = 1:length(Wzs) - plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{i}('du', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(i,:)) -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [rad/s]'); ylabel('Phase [deg]'); -yticks(-180:90:180); -ylim([-180 180]); -xticks([1e-2,1e-1,1,1e1]) -xticklabels({'$0.01 \omega_0$', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'}) - -ax4 = nexttile; -hold on; -for i = 1:length(Wzs) - plot(freqs, 180/pi*angle(squeeze(freqresp(Gs{i}('dv', 'Fu'), freqs, 'rad/s'))), '-', 'color', colors(i,:)); -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [rad/s]'); set(gca, 'YTickLabel',[]); -yticks(-180:90:180); -ylim([-180 180]); -xticks([1e-2,1e-1,1,1e1]) -xticklabels({'$0.01 \omega_0$', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$'}) - -linkaxes([ax1,ax2,ax3,ax4],'x'); -xlim([freqs(1), freqs(end)]); - -linkaxes([ax1,ax2],'y'); - - - -% #+name: fig:rotating_rdc_plant_effect_rot -% #+caption: Bode plot of the direct and coupling term for the "relative damping control" plant - Effect of rotation -% #+RESULTS: -% [[file:figs/rotating_rdc_plant_effect_rot.png]] - -% In order to see if large damping can be added with Relative Damping Control, the root locus is computed (Figure ref:fig:rotating_rdc_root_locus). -% The closed-loop system is unconditionally stable and the poles can be damped as much as wanted. - - %% Root Locus for Relative Damping Control Krdc = s*eye(2); % Relative damping controller @@ -126,14 +48,6 @@ xlabel('Real Part'); ylabel('Imaginary Part'); leg = legend('location', 'northwest', 'FontSize', 8); leg.ItemTokenSize(1) = 8; -% Damped Plant -% Let's select a reasonable "Relative Damping Control" gain, and compute the closed-loop damped system. -% The open-loop and damped plants are compared in Figure ref:fig:rotating_rdc_damped_plant. - -% The rotating aspect does not add any complexity for the use of Relative Damping Control. -% It does not increase the low frequency coupling as compared to Integral Force Feedback. - - i = 2; %% Relative Damping Controller @@ -166,7 +80,7 @@ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); set(gca, 'XTickLabel',[]); ylabel('Magnitude [m/N]'); ldg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 2); ldg.ItemTokenSize(1) = 20; -ylim([1e-6, 1e2]); +ylim([1e-4, 1e2]); ax2 = nexttile; hold on; @@ -176,7 +90,7 @@ hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [rad/s]'); ylabel('Phase [deg]'); yticks(-180:90:180); -ylim([-180 180]); +ylim([-180 0]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); diff --git a/matlab/rotating_6_act_damp_comparison.m b/matlab/rotating_6_act_damp_comparison.m index 0be442a..2cd885d 100644 --- a/matlab/rotating_6_act_damp_comparison.m +++ b/matlab/rotating_6_act_damp_comparison.m @@ -14,11 +14,6 @@ colors = colororder; %% Simscape model name mdl = 'rotating_model'; -%% Load "Generic" system dynamics -load('rotating_generic_plants.mat', 'Gs', 'Wzs'); - -% Identify plants :noexport: - %% The rotating speed is set to $\Omega = 0.1 \omega_0$. Wz = 0.1; % [rad/s] @@ -40,7 +35,6 @@ io(io_i) = linio([mdl, '/translation_stage'], 2, 'openoutput'); io_i = io_i + 1; io(io_i) = linio([mdl, '/ext_metrology'], 1, 'openoutput'); io_i = io_i + 1; % [Dx, Dy] %% Identifying plant with parallel stiffness - model_config.Tuv_type = "parallel_k"; % Parallel stiffness @@ -57,7 +51,6 @@ G_kp.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'}; G_kp.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; %% Identifying plant with no parallel stiffness - model_config.Tuv_type = "normal"; % Tuv Stage @@ -84,18 +77,6 @@ Krdc = 2*s*eye(2); Krdc.InputName = {'Du', 'Dv'}; Krdc.OutputName = {'Fu', 'Fv'}; -% Root Locus - -% Figure ref:fig:rotating_comp_techniques_root_locus shows the Root Locus plots for the two proposed IFF modifications as well as for relative damping control. -% While the two pairs of complex conjugate open-loop poles are identical for both IFF modifications, the transmission zeros are not. -% This means that the closed-loop behavior of both systems will differ when large control gains are used. - -% One can observe that the closed loop poles corresponding to the system with added springs (in red) are bounded to the left half plane implying unconditional stability. -% This is not the case for the system where the controller is augmented with an HPF (in blue). - -% It is interesting to note that the maximum added damping is very similar for both techniques. - - %% Comparison of active damping techniques for rotating platform - Root Locus gains = logspace(-2, 2, 500); @@ -139,22 +120,13 @@ xlabel('Real Part'); ylabel('Imaginary Part'); leg = legend('location', 'northwest', 'FontSize', 8); leg.ItemTokenSize(1) = 12; -% Obtained Damped Plant -% The actively damped plants are computed for the three techniques and compared in Figure ref:fig:rotating_comp_techniques_dampled_plants. - -% #+begin_important -% It is shown that while the diagonal (direct) terms of the damped plants are similar for the three active damping techniques, of off-diagonal (coupling) terms are not. -% Integral Force Feedback strategy is adding some coupling at low frequency which may negatively impact the positioning performances. -% #+end_important - - %% Compute Damped plants G_cl_iff = feedback(G, Kiff, 'name'); G_cl_iff_kp = feedback(G_kp, Kiff_kp, 'name'); G_cl_rdc = feedback(G, Krdc, 'name'); %% Comparison of the damped plants obtained with the three active damping techniques -freqs = logspace(-3, 2, 1000); +freqs = logspace(-2, 2, 1000); figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); @@ -195,37 +167,18 @@ hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [rad/s]'); ylabel('Phase [deg]'); yticks(-180:90:180); -ylim([-180 180]); +ylim([-180 15]); linkaxes([ax1,ax2],'x'); xlim([freqs(1), freqs(end)]); +xticks([1e-2,1e-1,1,1e1,1e2]) +xticklabels({'$0.01 \omega_0$', '$0.1 \omega_0$', '$\omega_0$', '$10 \omega_0$', '$100 \omega_0$'}) -% Transmissibility And Compliance -% The proposed active damping techniques are now compared in terms of closed-loop transmissibility and compliance. - -% The transmissibility is here defined as the transfer function from a displacement of the rotating stage along $\vec{i}_x$ to the displacement of the payload along the same direction. -% It is used to characterize how much vibration is transmitted through the suspended platform to the payload. - -% The compliance describes the displacement response of the payload to external forces applied to it. -% This is a useful metric when disturbances are directly applied to the payload. -% It is here defined as the transfer function from external forces applied on the payload along $\vec{i}_x$ to the displacement of the payload along the same direction. - -% Very similar results are obtained for the two proposed IFF modifications in terms of transmissibility and compliance (Figure ref:fig:rotating_comp_techniques_transmissibility_compliance). - -% #+begin_important -% Using IFF degrades the compliance at low frequency while using relative damping control degrades the transmissibility at high frequency. -% This is very well known characteristics of these common active damping techniques that holds when applied to rotating platforms. -% #+end_important - - -%% Comparison of the obtained transmissibilty and compliance for the three tested active damping techniques +%% Comparison of the obtained transmissibility and compliance for the three tested active damping techniques freqs = logspace(-2, 2, 1000); +% transmissibility figure; -tiledlayout(1, 2, 'TileSpacing', 'Compact', 'Padding', 'None'); - -% Transmissibility -ax1 = nexttile(); hold on; plot(freqs, abs(squeeze(freqresp(G( 'Dx', 'Dfx'), freqs, 'rad/s'))), '-', 'color', zeros(1,3), ... 'DisplayName', 'OL') @@ -241,6 +194,7 @@ xlabel('Frequency [rad/s]'); ylabel('Transmissibility [m/m]'); xlim([freqs(1), freqs(end)]); % Compliance +figure; ax1 = nexttile(); hold on; plot(freqs, abs(squeeze(freqresp(G( 'Dx', 'Fdx'), freqs, 'rad/s'))), '-', 'color', zeros(1,3), ... diff --git a/matlab/rotating_7_nano_hexapod.m b/matlab/rotating_7_nano_hexapod.m index 5d2c9e1..a406ac2 100644 --- a/matlab/rotating_7_nano_hexapod.m +++ b/matlab/rotating_7_nano_hexapod.m @@ -14,10 +14,6 @@ colors = colororder; %% Simscape model name mdl = 'rotating_model'; -% Identify NASS dynamics :noexport: -% First, the dynamics is identified for all the considered cases. - - %% Nano-Hexapod mn = 15; % Nano-Hexapod mass [kg] @@ -80,27 +76,11 @@ G_pz_fast = linearize(mdl, io, 0.0); G_pz_fast.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'}; G_pz_fast.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; -% Nano-Active-Stabilization-System - Plant Dynamics -% For the NASS, the maximum rotating velocity is $\Omega = \SI[parse-numbers=false]{2\pi}{\radian\per\s}$ for a suspended mass on top of the nano-hexapod's actuators equal to $m_n + m_s = \SI{16}{\kilo\gram}$. -% The parallel stiffness corresponding to the centrifugal forces is $m \Omega^2 \approx \SI{0.6}{\newton\per\mm}$. - - %% Compute negative spring in [N/m] Kneg_light = (15+1)*(2*pi)^2; - - -% The transfer functions from nano-hexapod actuator force $F_u$ to the displacement of the nano-hexapod in the same direction $d_u$ as well as in the orthogonal direction $d_v$ (coupling) are shown in Figure ref:fig:rotating_nano_hexapod_dynamics for all three considered nano-hexapod stiffnesses. - -% #+begin_important -% It is shown that the rotation has the largest effect on the soft nano-hexapod: -% - larger coupling (the ratio of the coupling term to the direct term is larger for the sort nano-hexapod) -% - larger shift of poles as a function of the rotating velocity -% #+end_important - - %% Effect of rotation on the nano-hexapod dynamics -freqs = logspace(0, 3, 1000); +freqs = logspace(0, 1, 1000); figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); @@ -108,21 +88,72 @@ tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(freqs, abs(squeeze(freqresp(G_vc_norot('Du', 'Fu'), freqs, 'Hz'))), '--', 'color', colors(1,:), ... - 'DisplayName', '$k_n = 0.01\,N/\mu m$'); + 'DisplayName', '$\Omega = 0\,$rpm, $D_u/F_u$'); plot(freqs, abs(squeeze(freqresp(G_vc_fast( 'Du', 'Fu'), freqs, 'Hz'))), '-' , 'color', colors(1,:), ... 'DisplayName', '$\Omega = 60\,$rpm, $D_u/F_u$'); plot(freqs, abs(squeeze(freqresp(G_vc_fast( 'Dv', 'Fu'), freqs, 'Hz'))), '-' , 'color', [colors(1,:), 0.5], ... 'DisplayName', '$\Omega = 60\,$rpm, $D_v/F_u$'); +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]); +ylim([1e-6, 1e-2]) +ax2 = nexttile; +hold on; +plot(freqs, 180/pi*angle(squeeze(freqresp(G_vc_norot('Du', 'Fu'), freqs, 'Hz'))), '--', 'color', colors(1,:)); +plot(freqs, 180/pi*angle(squeeze(freqresp(G_vc_fast( 'Du', 'Fu'), freqs, 'Hz'))), '-' , 'color', colors(1,:)); +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); +hold off; +yticks(-360:90:360); +ylim([-180, 0]); + +linkaxes([ax1,ax2],'x'); +% xlim([1, 1e3]); + +%% Effect of rotation on the nano-hexapod dynamics +freqs = logspace(1, 2, 1000); + +figure; +tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); + +ax1 = nexttile([2,1]); +hold on; plot(freqs, abs(squeeze(freqresp(G_md_norot('Du', 'Fu'), freqs, 'Hz'))), '--', 'color', colors(2,:), ... - 'DisplayName', '$k_n = 1\,N/\mu m$'); + 'DisplayName', '$\Omega = 0\,$rpm, $D_u/F_u$'); plot(freqs, abs(squeeze(freqresp(G_md_fast( 'Du', 'Fu'), freqs, 'Hz'))), '-' , 'color', colors(2,:), ... 'DisplayName', '$\Omega = 60\,$rpm, $D_u/F_u$'); plot(freqs, abs(squeeze(freqresp(G_md_fast( 'Dv', 'Fu'), freqs, 'Hz'))), '-' , 'color', [colors(2,:), 0.5], ... 'DisplayName', '$\Omega = 60\,$rpm, $D_v/F_u$'); +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]); +ylim([1e-8, 1e-4]) +ax2 = nexttile; +hold on; +plot(freqs, 180/pi*angle(squeeze(freqresp(G_md_norot('Du', 'Fu'), freqs, 'Hz'))), '--', 'color', colors(2,:)); +plot(freqs, 180/pi*angle(squeeze(freqresp(G_md_fast( 'Du', 'Fu'), freqs, 'Hz'))), '-' , 'color', colors(2,:)); +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); +hold off; +yticks(-360:90:360); +ylim([-180, 0]); + +linkaxes([ax1,ax2],'x'); + +%% Effect of rotation on the nano-hexapod dynamics +freqs = logspace(2, 3, 1000); + +figure; +tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); + +ax1 = nexttile([2,1]); +hold on; plot(freqs, abs(squeeze(freqresp(G_pz_norot('Du', 'Fu'), freqs, 'Hz'))), '--', 'color', colors(3,:), ... - 'DisplayName', '$k_n = 100\,N/\mu m$'); + 'DisplayName', '$\Omega = 0\,$rpm, $D_u/F_u$'); plot(freqs, abs(squeeze(freqresp(G_pz_fast( 'Du', 'Fu'), freqs, 'Hz'))), '-' , 'color', colors(3,:), ... 'DisplayName', '$\Omega = 60\,$rpm, $D_u/F_u$'); plot(freqs, abs(squeeze(freqresp(G_pz_fast( 'Dv', 'Fu'), freqs, 'Hz'))), '-' , 'color', [colors(3,:), 0.5], ... @@ -130,18 +161,10 @@ plot(freqs, abs(squeeze(freqresp(G_pz_fast( 'Dv', 'Fu'), freqs, 'Hz'))), '-' , ' hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]); -ylim([1e-12, 1e-2]) -ldg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 3); -ldg.ItemTokenSize = [20, 1]; +ylim([1e-10, 1e-6]) ax2 = nexttile; hold on; -plot(freqs, 180/pi*angle(squeeze(freqresp(G_vc_norot('Du', 'Fu'), freqs, 'Hz'))), '--', 'color', colors(1,:)); -plot(freqs, 180/pi*angle(squeeze(freqresp(G_vc_fast( 'Du', 'Fu'), freqs, 'Hz'))), '-' , 'color', colors(1,:)); - -plot(freqs, 180/pi*angle(squeeze(freqresp(G_md_norot('Du', 'Fu'), freqs, 'Hz'))), '--', 'color', colors(2,:)); -plot(freqs, 180/pi*angle(squeeze(freqresp(G_md_fast( 'Du', 'Fu'), freqs, 'Hz'))), '-' , 'color', colors(2,:)); - plot(freqs, 180/pi*angle(squeeze(freqresp(G_pz_norot('Du', 'Fu'), freqs, 'Hz'))), '--', 'color', colors(3,:)); plot(freqs, 180/pi*angle(squeeze(freqresp(G_pz_fast( 'Du', 'Fu'), freqs, 'Hz'))), '-' , 'color', colors(3,:)); hold off; @@ -152,48 +175,6 @@ yticks(-360:90:360); ylim([-180, 0]); linkaxes([ax1,ax2],'x'); -xlim([1, 1e3]); - -% Coupling :noexport: -% Let's define the /coupling ratio/ $\mathcal{C}$ in the system as the ratio of the magnitude of the coupling term $G_c$ to the magnitude of the direct term $G_d$: -% \begin{equation} -% \mathcal{C}(\omega) = \frac{|G_c(j\omega)|}{|G_d(j\omega)|} -% \end{equation} - -% This gives some information in the coupling in the system. -% This is quite important as high coupling can affect the closed-loop stability. - -% The coupling ratio for the three nano-hexapod stiffnesses are shown in Figure ref:fig:rotating_coupling_ratio_nano_hexapod for the maximum rotating velocity $\Omega = 60\,\text{rpm}$. - -% #+begin_important -% It is shown that the low frequency coupling is inversely proportional to the nano-hexapod stiffness (Figure ref:fig:rotating_coupling_ratio_nano_hexapod). -% High nano-hexapod stiffness makes the system better decoupled and therefore easier to control. -% #+end_important - - -%% Coupling ratio of the nano-hexapod at maximum velocity -figure; -tiledlayout(1, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); -hold on; -plot(freqs, abs(squeeze(freqresp(G_vc_fast('Dv', 'Fu')/G_vc_fast('Du', 'Fu'), freqs, 'Hz'))), ... - 'DisplayName', '$k_n = 0.01\,N/\mu m$'); -plot(freqs, abs(squeeze(freqresp(G_md_fast('Dv', 'Fu')/G_md_fast('Du', 'Fu'), freqs, 'Hz'))), ... - 'DisplayName', '$k_n = 1\,N/\mu m$'); -plot(freqs, abs(squeeze(freqresp(G_pz_fast('Dv', 'Fu')/G_pz_fast('Du', 'Fu'), freqs, 'Hz'))), ... - 'DisplayName', '$k_n = 100\,N/\mu m$'); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('Coupling ratio'); -xlim([1, 500]); -legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); - -% Optimal IFF with High Pass Filter -% Let's apply Integral Force Feedback with an added High Pass Filter to the three nano-hexapods. - -% First, let's find the parameters of the IFF controller that yield best simultaneous damping. -% The results are shown in Figure ref:fig:rotating_iff_hpf_nass_optimal_gain. -% The added damping for the soft nano-hexapod is quite low and is limited by the maximum usable gain. - %% Compute the optimal control gain wis = logspace(-2, 3, 200); % [rad/s] @@ -230,89 +211,6 @@ for wi_i = 1:length(wis) opt_iff_hpf_gain_pz(wi_i) = g_opt; end -%% Optimal modified IFF parameters that yields maximum simultaneous damping -figure; -tiledlayout(1, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile(); -yyaxis left -plot(wis, opt_iff_hpf_xi_vc, '-', 'DisplayName', '$\xi_{cl}$'); -set(gca, 'YScale', 'lin'); -ylim([0,1]); -ylabel('Damping Ratio $\xi$'); - -yyaxis right -hold on; -plot(wis, opt_iff_hpf_gain_vc, '-', 'DisplayName', '$g_{opt}$'); -plot(wis, wis*((sqrt(1e4/16)/(2*pi))^2 - 1), '--', 'DisplayName', '$g_{max}$'); -set(gca, 'YScale', 'lin'); -ylim([0,200]); -xlabel('$\omega_i$ [rad/s]'); -set(gca, 'YTickLabel',[]); -% ylabel('Controller gain $g$'); -set(gca, 'XScale', 'log'); -xticks([1e-2,1,1e2]) -legend('location', 'northwest', 'FontSize', 8); -title('$k_n = 0.01\,N/\mu m$'); - -ax2 = nexttile(); -yyaxis left -plot(wis, opt_iff_hpf_xi_md, '-'); -set(gca, 'YScale', 'lin'); -ylim([0,1]); -% ylabel('Damping Ratio $\xi$'); -set(gca, 'YTickLabel',[]); - -yyaxis right -hold on; -plot(wis, opt_iff_hpf_gain_md, '-'); -plot(wis, wis*((sqrt(1e6/16)/(2*pi))^2 - 1), '--'); -set(gca, 'YScale', 'lin'); -ylim([0,1000]); -xlabel('$\omega_i$ [rad/s]'); -% ylabel('Controller gain $g$'); -set(gca, 'YTickLabel',[]); -set(gca, 'XScale', 'log'); -xticks([1e-2,1,1e2]) -title('$k_n = 1\,N/\mu m$'); - -ax3 = nexttile(); -yyaxis left -plot(wis, opt_iff_hpf_xi_pz, '-'); -set(gca, 'YScale', 'lin'); -ylim([0,1]); -set(gca, 'YTickLabel',[]); -% ylabel('Damping Ratio $\xi$'); - -yyaxis right -hold on; -plot(wis, opt_iff_hpf_gain_pz, '-'); -plot(wis, wis*((sqrt(1e8/16)/(2*pi))^2 - 1), '--'); -set(gca, 'YScale', 'lin'); -ylim([0,10000]); -xlabel('$\omega_i$ [rad/s]'); -set(gca, 'YTickLabel',[]); -ylabel('Controller gain $g$'); -set(gca, 'XScale', 'log'); -xticks([1e-2,1,1e2]) -title('$k_n = 100\,N/\mu m$'); - - - -% #+name: fig:rotating_iff_hpf_nass_optimal_gain -% #+caption: Optimal high pass filter cut-off frequency $\omega_i$ that yields maximum simultaneous damping -% #+RESULTS: -% [[file:figs/rotating_iff_hpf_nass_optimal_gain.png]] - -% The IFF parameters are chosen as follow: -% - for $k_n = \SI{0.01}{\N\per\mu\m}$: $\omega_i$ is chosen such that the maximum damping is achieved while the gain is less than half of the maximum gain at which the system is unstable. -% This is done to have some control robustness. -% - for $k_n = \SI{1}{\N\per\mu\m}$ and $k_n = \SI{100}{\N\per\mu\m}$: the largest $\omega_i$ is chosen such that obtained damping is $\SI{95}{\percent}$ of the maximum achievable damping. -% Large $\omega_i$ is chosen here to limit the loss of compliance and the increase of coupling at low frequency as was shown in Section ref:sec:rotating_iff_pseudo_int. - -% The obtained IFF parameters and the achievable damping are summarized in Table ref:tab:iff_hpf_opt_iff_hpf_params_nass. - - %% Find optimal parameters with at least a gain margin of 2 i_iff_hpf_vc = find(opt_iff_hpf_gain_vc < 0.5*(wis*((sqrt(1e4/16)/(2*pi))^2 - 1))); i_iff_hpf_vc = i_iff_hpf_vc(1); @@ -323,183 +221,76 @@ i_iff_hpf_md = i_iff_hpf_md(end)+1; i_iff_hpf_pz = find(opt_iff_hpf_xi_pz > 0.95*max(opt_iff_hpf_xi_pz)); i_iff_hpf_pz = i_iff_hpf_pz(end)+1; +%% Optimal modified IFF parameters that yields maximum simultaneous damping +figure; +yyaxis left +hold on; +plot(wis, opt_iff_hpf_xi_vc, '-', 'DisplayName', '$\xi_{cl}$'); +plot(wis(i_iff_hpf_vc), opt_iff_hpf_xi_vc(i_iff_hpf_vc), '.', 'MarkerSize', 15, 'HandleVisibility', 'off'); +hold off; +set(gca, 'YScale', 'lin'); +ylim([0,1]); +ylabel('Damping Ratio $\xi$'); - -% #+name: tab:iff_hpf_opt_iff_hpf_params_nass -% #+caption: Obtained optimal parameters for the modified IFF controller -% #+attr_latex: :environment tabularx :width 0.5\linewidth :align lXXX -% #+attr_latex: :center t :booktabs t -% #+RESULTS: -% | | $\omega_i$ | $g$ | $\xi$ | -% |-----------------------+------------+---------+-------| -% | $k_n = 0.01\,N/\mu m$ | 7.32 | 51.13 | 0.45 | -% | $k_n = 1\,N/\mu m$ | 39.17 | 426.95 | 0.93 | -% | $k_n = 100\,N/\mu m$ | 499.45 | 3774.63 | 0.94 | - -% The Root Locus for all three nano-hexapods are shown in Figure ref:fig:rotating_root_locus_iff_hpf_nass with included optimal chosen gains. - - -%% Optimal IFF with added HPF -Kiff_hpf_vc = opt_iff_hpf_gain_vc(i_iff_hpf_vc)/(s + wis(i_iff_hpf_vc))*eye(2); -Kiff_hpf_vc.InputName = {'fu', 'fv'}; -Kiff_hpf_vc.OutputName = {'Fu', 'Fv'}; - -Kiff_hpf_md = opt_iff_hpf_gain_md(i_iff_hpf_md)/(s + wis(i_iff_hpf_md))*eye(2); -Kiff_hpf_md.InputName = {'fu', 'fv'}; -Kiff_hpf_md.OutputName = {'Fu', 'Fv'}; - -Kiff_hpf_pz = opt_iff_hpf_gain_pz(i_iff_hpf_pz)/(s + wis(i_iff_hpf_pz))*eye(2); -Kiff_hpf_pz.InputName = {'fu', 'fv'}; -Kiff_hpf_pz.OutputName = {'Fu', 'Fv'}; - -%% Root Locus for optimal parameters - Comparison of attainable damping with the soft and moderately stiff nano-hexapods -gains = logspace(-2, 3, 200); +yyaxis right +hold on; +plot(wis, opt_iff_hpf_gain_vc, '-', 'DisplayName', '$g_{opt}$'); +plot(wis, wis*((sqrt(1e4/16)/(2*pi))^2 - 1), '--', 'DisplayName', '$g_{max}$'); +plot(wis(i_iff_hpf_vc), opt_iff_hpf_gain_vc(i_iff_hpf_vc), '.', 'MarkerSize', 15, 'HandleVisibility', 'off'); +set(gca, 'YScale', 'lin'); +ylim([0,200]); +xlabel('$\omega_i$ [rad/s]'); +set(gca, 'YTickLabel',[]); +ylabel('Controller gain $g$'); +set(gca, 'XScale', 'log'); +xticks([1e-2,1,1e2]) +legend('location', 'northwest', 'FontSize', 8); figure; -tiledlayout(1, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); - -% Voice coil Nano-Hexapod -ax1 = nexttile(); +yyaxis left hold on; -for g = gains - clpoles = pole(feedback(G_vc_norot({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff_hpf_vc)); - plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:),'MarkerSize',4, ... - 'HandleVisibility', 'off'); -end -clpoles = pole(feedback(G_vc_norot({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff_hpf_vc)); -plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:),'MarkerSize', 15, ... - 'DisplayName', '$\Omega = 0$'); -plot(real(pole(G_vc_norot({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf_vc)), ... - imag(pole(G_vc_norot({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf_vc)), ... - 'x', 'color', colors(1,:),'MarkerSize',8, ... - 'HandleVisibility', 'off'); -plot(real(tzero(G_vc_norot({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf_vc)), ... - imag(tzero(G_vc_norot({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf_vc)), ... - 'o', 'color', colors(1,:),'MarkerSize',8, ... - 'HandleVisibility', 'off'); - -for g = gains - clpoles = pole(feedback(G_vc_fast({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff_hpf_vc)); - plot(real(clpoles), imag(clpoles), '.', 'color', colors(2,:),'MarkerSize',4, ... - 'HandleVisibility', 'off'); -end -clpoles = pole(feedback(G_vc_fast({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff_hpf_vc)); -plot(real(clpoles), imag(clpoles), '.', 'color', colors(2,:),'MarkerSize', 15, ... - 'DisplayName', '$\Omega = 60$ rpm'); -plot(real(pole(G_vc_fast({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf_vc)), ... - imag(pole(G_vc_fast({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf_vc)), ... - 'x', 'color', colors(2,:),'MarkerSize',8, ... - 'HandleVisibility', 'off'); -plot(real(tzero(G_vc_fast({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf_vc)), ... - imag(tzero(G_vc_fast({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf_vc)), ... - 'o', 'color', colors(2,:),'MarkerSize',8, ... - 'HandleVisibility', 'off'); - -plot([0, -1e2*opt_iff_hpf_xi_vc(i_iff_hpf_vc)], [0, 1e2*cos(asin(opt_iff_hpf_xi_vc(i_iff_hpf_vc)))], '-', ... - 'DisplayName', sprintf('$\\xi = %.2f$', opt_iff_hpf_xi_vc(i_iff_hpf_vc)), 'color', [zeros(1,3), 0.5]) +plot(wis, opt_iff_hpf_xi_md, '-'); +plot(wis(i_iff_hpf_md), opt_iff_hpf_xi_md(i_iff_hpf_md), '.', 'MarkerSize', 15, 'HandleVisibility', 'off'); hold off; -axis square; -xlabel('Real Part'); ylabel('Imaginary Part'); -xlim([-65, 5]); ylim([-35, 35]); -set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); -title('$k_n = 0.01\,N/\mu m$'); -ldg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); -ldg.ItemTokenSize = [10, 1]; +set(gca, 'YScale', 'lin'); +ylim([0,1]); +ylabel('Damping Ratio $\xi$'); -% APA Nano-Hexapod -ax2 = nexttile(); +yyaxis right hold on; -for g = gains - clpoles = pole(feedback(G_md_norot({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff_hpf_md)); - plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:),'MarkerSize',4); -end -clpoles = pole(feedback(G_md_norot({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff_hpf_md)); -plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:),'MarkerSize', 15); -plot(real(pole(G_md_norot({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf_md)), ... - imag(pole(G_md_norot({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf_md)), ... - 'x', 'color', colors(1,:),'MarkerSize',8); -plot(real(tzero(G_md_norot({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf_md)), ... - imag(tzero(G_md_norot({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf_md)), ... - 'o', 'color', colors(1,:),'MarkerSize',8); +plot(wis, opt_iff_hpf_gain_md, '-'); +plot(wis(i_iff_hpf_md), opt_iff_hpf_gain_md(i_iff_hpf_md), '.', 'MarkerSize', 15, 'HandleVisibility', 'off'); +plot(wis, wis*((sqrt(1e6/16)/(2*pi))^2 - 1), '--'); +set(gca, 'YScale', 'lin'); +ylim([0,1000]); +xlabel('$\omega_i$ [rad/s]'); +ylabel('Controller gain $g$'); +set(gca, 'YTickLabel',[]); +set(gca, 'XScale', 'log'); +xticks([1e-2,1,1e2]) -for g = gains - clpoles = pole(feedback(G_md_fast({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff_hpf_md)); - plot(real(clpoles), imag(clpoles), '.', 'color', colors(2,:),'MarkerSize',4); -end -clpoles = pole(feedback(G_md_fast({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff_hpf_md)); -plot(real(clpoles), imag(clpoles), '.', 'color', colors(2,:),'MarkerSize', 15); -plot(real(pole(G_md_fast({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf_md)), ... - imag(pole(G_md_fast({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf_md)), ... - 'x', 'color', colors(2,:),'MarkerSize',8); -plot(real(tzero(G_md_fast({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf_md)), ... - imag(tzero(G_md_fast({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf_md)), ... - 'o', 'color', colors(2,:),'MarkerSize',8); - -L = plot([0, -1e3*opt_iff_hpf_xi_md(i_iff_hpf_md)], [0, 1e3*cos(asin(opt_iff_hpf_xi_md(i_iff_hpf_md)))], '-', ... - 'DisplayName', sprintf('$\\xi = %.2f$', opt_iff_hpf_xi_md(i_iff_hpf_md)), 'color', [zeros(1,3), 0.5]); -leg = legend(L, 'location', 'northwest', 'FontSize', 8); -leg.ItemTokenSize(1) = 10; -hold off; -axis square; -xlabel('Real Part'); ylabel('Imaginary Part'); -xlim([-520, 20]); ylim([-270, 270]); -set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); -title('$k_n = 1\,N/\mu m$'); - -% Piezo Nano-Hexapod -ax3 = nexttile(); +figure; +yyaxis left hold on; -for g = gains - clpoles = pole(feedback(G_pz_norot({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff_hpf_pz)); - plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:),'MarkerSize',4); -end -clpoles = pole(feedback(G_pz_norot({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff_hpf_pz)); -plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:),'MarkerSize', 15); -plot(real(pole(G_pz_norot({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf_pz)), ... - imag(pole(G_pz_norot({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf_pz)), ... - 'x', 'color', colors(1,:),'MarkerSize',8); -plot(real(tzero(G_pz_norot({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf_pz)), ... - imag(tzero(G_pz_norot({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf_pz)), ... - 'o', 'color', colors(1,:),'MarkerSize',8); - -for g = gains - clpoles = pole(feedback(G_pz_fast({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff_hpf_pz)); - plot(real(clpoles), imag(clpoles), '.', 'color', colors(2,:),'MarkerSize',4); -end -clpoles = pole(feedback(G_pz_fast({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff_hpf_pz)); -plot(real(clpoles), imag(clpoles), '.', 'color', colors(2,:),'MarkerSize', 15); -plot(real(pole(G_pz_fast({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf_pz)), ... - imag(pole(G_pz_fast({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf_pz)), ... - 'x', 'color', colors(2,:),'MarkerSize',8); -plot(real(tzero(G_pz_fast({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf_pz)), ... - imag(tzero(G_pz_fast({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_hpf_pz)), ... - 'o', 'color', colors(2,:),'MarkerSize',8); - -L = plot([0, -1e4*opt_iff_hpf_xi_pz(i_iff_hpf_pz)], [0, 1e4*cos(asin(opt_iff_hpf_xi_pz(i_iff_hpf_pz)))], '-', ... - 'DisplayName', sprintf('$\\xi = %.2f$', opt_iff_hpf_xi_pz(i_iff_hpf_pz)), 'color', [zeros(1,3), 0.5]); -leg = legend(L, 'location', 'northwest', 'FontSize', 8); -leg.ItemTokenSize(1) = 10; +plot(wis, opt_iff_hpf_xi_pz, '-'); +plot(wis(i_iff_hpf_pz), opt_iff_hpf_xi_pz(i_iff_hpf_pz), '.', 'MarkerSize', 15, 'HandleVisibility', 'off'); hold off; -axis square; -xlabel('Real Part'); ylabel('Imaginary Part'); -xlim([-5200, 20]); ylim([-2700, 2700]); -set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); -title('$k_n = 100\,N/\mu m$'); - -% Optimal IFF with Parallel Stiffness -% For each considered nano-hexapod stiffness, the parallel stiffness $k_p$ is varied from $k_{p,\text{min}} = m\Omega^2$ (the minimum stiffness to have unconditional stability) to $k_{p,\text{max}} = k_n$ (the total nano-hexapod stiffness). -% In order to keep the overall stiffness constant, the actuator stiffness $k_a$ is decreased when $k_p$ is increased: -% \begin{equation} -% k_a = k_n - k_p -% \end{equation} -% With $k_n$ the total nano-hexapod stiffness. - -% An high pass filter is also added to limit the low frequency gain. -% The cut-off frequency $\omega_i$ is chosen to be one tenth of the system resonance: -% \begin{equation} -% \omega_i = \omega_0/10 -% \end{equation} +set(gca, 'YScale', 'lin'); +ylim([0,1]); +ylabel('Damping Ratio $\xi$'); +yyaxis right +hold on; +plot(wis, opt_iff_hpf_gain_pz, '-'); +plot(wis(i_iff_hpf_pz), opt_iff_hpf_gain_pz(i_iff_hpf_pz), '.', 'MarkerSize', 15, 'HandleVisibility', 'off'); +plot(wis, wis*((sqrt(1e8/16)/(2*pi))^2 - 1), '--'); +set(gca, 'YScale', 'lin'); +ylim([0,10000]); +xlabel('$\omega_i$ [rad/s]'); +set(gca, 'YTickLabel',[]); +ylabel('Controller gain $g$'); +set(gca, 'XScale', 'log'); +xticks([1e-2,1,1e2]) %% Maximum rotating velocity Wz = 2*pi; % [rad/s] @@ -601,83 +392,16 @@ for kp_i = 1:length(kps_pz) opt_iff_kp_gain_pz(kp_i) = g_opt; end - - -% The achievable maximum simultaneous damping of all the modes is computed as a function of the parallel stiffnesses. -% The comparison for the nano-hexapod stiffnesses is done in Figure ref:fig:rotating_iff_kp_nass_optimal_gain. -% It is shown that *the soft nano-hexapod cannot yield good damping*. -% For the two stiff options, the achievable damping starts to significantly decrease when the parallel stiffness is one tenth of the total stiffness $k_p = k_n/10$. - - -%% Optimal IFF gain and associated simultaneous damping as a function of the parallel stiffness -figure; -hold on; -plot(kps_vc, opt_iff_kp_xi_vc, '-', 'DisplayName', '$k_n = 0.01\,N/\mu m$'); -plot(kps_md, opt_iff_kp_xi_md, '-', 'DisplayName', '$k_n = 1\,N/\mu m$'); -plot(kps_pz, opt_iff_kp_xi_pz, '-', 'DisplayName', '$k_n = 100\,N/\mu m$'); -hold off; -xlabel('$k_p [N/m]$'); -ylabel('Damping Ratio $\xi$'); -set(gca, 'XScale', 'log'); -set(gca, 'YScale', 'lin'); -ylim([0,1]); -legend('location', 'southeast', 'FontSize', 8); -xlim([kps_pz(1), kps_pz(end)]) - - - -% #+name: fig:rotating_iff_kp_nass_optimal_gain -% #+caption: Maximum achievable simultaneous damping with IFF as a function of the parallel stiffness for all three nano-hexapod stiffnesses -% #+RESULTS: -% [[file:figs/rotating_iff_kp_nass_optimal_gain.png]] - -% Let's choose $k_p = \SI{e3}{\newton\per\m}$, $k_p = \SI{e4}{\newton\per\m}$ and $k_p = \SI{e6}{\newton\per\m}$ for the three considered nano-hexapods respectively based on Figure ref:fig:rotating_iff_kp_nass_optimal_gain. - -% The corresponding optimal controller gains are shown in Table ref:tab:iff_kp_opt_iff_kp_params_nass. - - %% Find result with wanted parallel stiffness [~, i_kp_vc] = min(abs(kps_vc - 1e3)); [~, i_kp_md] = min(abs(kps_md - 1e4)); [~, i_kp_pz] = min(abs(kps_pz - 1e6)); +%% Identify plants with choosen Parallel stiffnesses +model_config.Tuv_type = "parallel_k"; % Default: 2DoF stage - -% #+name: tab:iff_kp_opt_iff_kp_params_nass -% #+caption: Obtained optimal parameters for the modified IFF controller -% #+attr_latex: :environment tabularx :width 0.4\linewidth :align lXX -% #+attr_latex: :center t :booktabs t -% #+RESULTS: -% | | $g$ | $\xi_{\text{opt}}$ | -% |-----------------------+---------+--------------------| -% | $k_n = 0.01\,N/\mu m$ | 47.9 | 0.44 | -% | $k_n = 1\,N/\mu m$ | 465.57 | 0.97 | -% | $k_n = 100\,N/\mu m$ | 4624.25 | 1.0 | - -% The root locus for the three nano-hexapod with parallel stiffnesses are shown in Figure ref:fig:rotating_root_locus_iff_kp_nass. - -% #+begin_important -% Similarly to what was found with the IFF and added High Pass Filter: -% - the stiff nano-hexapod is less affected by the rotation than the soft one -% - the achievable damping is much larger with the stiff nano-hexapods -% #+end_important - - -%% Optimal IFF with added parallel stiffness -Kiff_kp_vc = opt_iff_kp_gain_vc(i_kp_vc)/(s + 0.1*sqrt(1e4/(ms+mn)))*eye(2); -Kiff_kp_vc.InputName = {'fu', 'fv'}; -Kiff_kp_vc.OutputName = {'Fu', 'Fv'}; - -Kiff_kp_md = opt_iff_kp_gain_md(i_kp_md)/(s + 0.1*sqrt(1e6/(ms+mn)))*eye(2); -Kiff_kp_md.InputName = {'fu', 'fv'}; -Kiff_kp_md.OutputName = {'Fu', 'Fv'}; - -Kiff_kp_pz = opt_iff_kp_gain_pz(i_kp_pz)/(s + 0.1*sqrt(1e8/(ms+mn)))*eye(2); -Kiff_kp_pz.InputName = {'fu', 'fv'}; -Kiff_kp_pz.OutputName = {'Fu', 'Fv'}; - -%% Identify plant with optimal parallel stiffness - Soft nano-hexapod -kp = kps_vc(i_kp_vc); +% Voice Coil +kp = 1e3; cp = 2*0.001*sqrt((ms + mn)*kp); kn = 1e4-kp; % Nano-Hexapod Stiffness [N/m] cn = 2*0.01*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)] @@ -693,8 +417,8 @@ G_vc_kp_norot = linearize(mdl, io, 0); G_vc_kp_norot.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'}; G_vc_kp_norot.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; -%% Identify plant with optimal parallel stiffness - Stiff nano-hexapod -kp = kps_md(i_kp_md); +% APA +kp = 1e4; cp = 2*0.001*sqrt((ms + mn)*kp); kn = 1e6 - kp; % Nano-Hexapod Stiffness [N/m] cn = 2*0.01*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)] @@ -710,8 +434,8 @@ G_md_kp_norot = linearize(mdl, io, 0); G_md_kp_norot.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'}; G_md_kp_norot.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; -%% Identify plant with optimal parallel stiffness - Stiff nano-hexapod -kp = kps_pz(i_kp_pz); +% Piezo +kp = 1e6; cp = 2*0.001*sqrt((ms + mn)*kp); kn = 1e8 - kp; % Nano-Hexapod Stiffness [N/m] cn = 2*0.01*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)] @@ -727,144 +451,30 @@ G_pz_kp_norot = linearize(mdl, io, 0); G_pz_kp_norot.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy'}; G_pz_kp_norot.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; -%% Root Locus for optimal parameters - Comparison of attainable damping with the soft and moderately stiff nano-hexapods -gains = logspace(-2, 2, 400); - +%% Optimal IFF gain and associated simultaneous damping as a function of the parallel stiffness figure; -tiledlayout(1, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile(); hold on; -% Soft Nano-Hexapod - No Rotation -for g = gains - clpoles = pole(feedback(G_vc_kp_norot({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff_kp_vc)); - plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:),'MarkerSize',4, ... - 'HandleVisibility', 'off'); -end -clpoles = pole(feedback(G_vc_kp_norot({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff_kp_vc)); -plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:),'MarkerSize', 15, ... - 'DisplayName', '$\Omega = 0$'); -plot(real(pole(G_vc_kp_norot({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp_vc)), ... - imag(pole(G_vc_kp_norot({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp_vc)), ... - 'x', 'color', colors(1,:),'MarkerSize',8, ... - 'HandleVisibility', 'off'); -plot(real(tzero(G_vc_kp_norot({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp_vc)), ... - imag(tzero(G_vc_kp_norot({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp_vc)), ... - 'o', 'color', colors(1,:),'MarkerSize',8, ... - 'HandleVisibility', 'off'); - -% Soft Nano-Hexapod - High Speed Rotation -for g = gains - clpoles = pole(feedback(G_vc_kp_fast({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff_kp_vc)); - plot(real(clpoles), imag(clpoles), '.', 'color', colors(2,:),'MarkerSize',4, ... - 'HandleVisibility', 'off'); -end -clpoles = pole(feedback(G_vc_kp_fast({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff_kp_vc)); -plot(real(clpoles), imag(clpoles), '.', 'color', colors(2,:),'MarkerSize', 15, ... - 'DisplayName', '$\Omega = 60$ rpm'); -plot(real(pole(G_vc_kp_fast({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp_vc)), ... - imag(pole(G_vc_kp_fast({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp_vc)), ... - 'x', 'color', colors(2,:),'MarkerSize',8, ... - 'HandleVisibility', 'off'); -plot(real(tzero(G_vc_kp_fast({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp_vc)), ... - imag(tzero(G_vc_kp_fast({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp_vc)), ... - 'o', 'color', colors(2,:),'MarkerSize',8, ... - 'HandleVisibility', 'off'); -plot([0, -1e2*opt_iff_kp_xi_vc(i_kp_vc)], [0, 1e2*cos(asin(opt_iff_kp_xi_vc(i_kp_vc)))], '-', ... - 'DisplayName', sprintf('$\\xi = %.2f$', opt_iff_kp_xi_vc(i_kp_vc)), 'color', [zeros(1,3), 0.5]); +plot(kps_vc, opt_iff_kp_xi_vc, '-', ... + 'color', colors(1,:), 'DisplayName', '$k_n = 0.01\,N/\mu m$'); +plot(kps_vc(i_kp_vc), opt_iff_kp_xi_vc(i_kp_vc), '.', ... + 'color', colors(1,:), 'MarkerSize', 15, 'HandleVisibility', 'off'); +plot(kps_md, opt_iff_kp_xi_md, '-', ... + 'color', colors(2,:), 'DisplayName', '$k_n = 1\,N/\mu m$'); +plot(kps_md(i_kp_md), opt_iff_kp_xi_md(i_kp_md), '.', ... + 'color', colors(2,:), 'MarkerSize', 15, 'HandleVisibility', 'off'); +plot(kps_pz, opt_iff_kp_xi_pz, '-', ... + 'color', colors(3,:), 'DisplayName', '$k_n = 100\,N/\mu m$'); +plot(kps_pz(i_kp_pz), opt_iff_kp_xi_pz(i_kp_pz), '.', ... + 'color', colors(3,:), 'MarkerSize', 15, 'HandleVisibility', 'off'); hold off; -axis square; -xlabel('Real Part'); ylabel('Imaginary Part'); -xlim([-65, 5]); ylim([-35, 35]); -set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); -title('$k_n = 0.01\,N/\mu m$'); -ldg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); -ldg.ItemTokenSize = [10, 1]; - -ax2 = nexttile(); -hold on; -% Stiff Nano-Hexapod - No Rotation -for g = gains - clpoles = pole(feedback(G_md_kp_norot({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff_kp_md)); - plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:),'MarkerSize',4); -end -clpoles = pole(feedback(G_md_kp_norot({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff_kp_md)); -plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:),'MarkerSize', 15); -plot(real(pole(G_md_kp_norot({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp_md)), ... - imag(pole(G_md_kp_norot({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp_md)), ... - 'x', 'color', colors(1,:),'MarkerSize',8); -plot(real(tzero(G_md_kp_norot({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp_md)), ... - imag(tzero(G_md_kp_norot({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp_md)), ... - 'o', 'color', colors(1,:),'MarkerSize',8); - -% Stiff Nano-Hexapod - High Speed Rotation -for g = gains - clpoles = pole(feedback(G_md_kp_fast({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff_kp_md)); - plot(real(clpoles), imag(clpoles), '.', 'color', colors(2,:),'MarkerSize',4); -end -clpoles = pole(feedback(G_md_kp_fast({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff_kp_md)); -plot(real(clpoles), imag(clpoles), '.', 'color', colors(2,:),'MarkerSize', 15); -plot(real(pole(G_md_kp_fast({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp_md)), ... - imag(pole(G_md_kp_fast({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp_md)), ... - 'x', 'color', colors(2,:),'MarkerSize',8); -plot(real(tzero(G_md_kp_fast({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp_md)), ... - imag(tzero(G_md_kp_fast({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp_md)), ... - 'o', 'color', colors(2,:),'MarkerSize',8); -L = plot([0, -1e3*opt_iff_kp_xi_md(i_kp_md)], [0, 1e3*cos(asin(opt_iff_kp_xi_md(i_kp_md)))], '-', ... - 'DisplayName', sprintf('$\\xi = %.2f$', opt_iff_kp_xi_md(i_kp_md)), 'color', [zeros(1,3), 0.5]); -leg = legend(L, 'location', 'northwest', 'FontSize', 8); -leg.ItemTokenSize(1) = 10; -hold off; -axis square; -xlabel('Real Part'); ylabel('Imaginary Part'); -set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); -xlim([-520, 20]); ylim([-270, 270]); -title('$k_n = 1\,N/\mu m$'); - -ax3 = nexttile(); -hold on; -% Stiff Nano-Hexapod - No Rotation -for g = gains - clpoles = pole(feedback(G_pz_kp_norot({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff_kp_pz)); - plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:),'MarkerSize',4); -end -clpoles = pole(feedback(G_pz_kp_norot({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff_kp_pz)); -plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:),'MarkerSize', 15); -plot(real(pole(G_pz_kp_norot({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp_pz)), ... - imag(pole(G_pz_kp_norot({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp_pz)), ... - 'x', 'color', colors(1,:),'MarkerSize',8); -plot(real(tzero(G_pz_kp_norot({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp_pz)), ... - imag(tzero(G_pz_kp_norot({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp_pz)), ... - 'o', 'color', colors(1,:),'MarkerSize',8); - -% Stiff Nano-Hexapod - High Speed Rotation -for g = gains - clpoles = pole(feedback(G_pz_kp_fast({'fu', 'fv'}, {'Fu', 'Fv'}), g*Kiff_kp_pz)); - plot(real(clpoles), imag(clpoles), '.', 'color', colors(2,:),'MarkerSize',4); -end -clpoles = pole(feedback(G_pz_kp_fast({'fu', 'fv'}, {'Fu', 'Fv'}), Kiff_kp_pz)); -plot(real(clpoles), imag(clpoles), '.', 'color', colors(2,:),'MarkerSize', 15); -plot(real(pole(G_pz_kp_fast({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp_pz)), ... - imag(pole(G_pz_kp_fast({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp_pz)), ... - 'x', 'color', colors(2,:),'MarkerSize',8); -plot(real(tzero(G_pz_kp_fast({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp_pz)), ... - imag(tzero(G_pz_kp_fast({'fu', 'fv'}, {'Fu', 'Fv'})*Kiff_kp_pz)), ... - 'o', 'color', colors(2,:),'MarkerSize',8); -L = plot([0, -1e4*opt_iff_kp_xi_pz(i_kp_pz)], [0, 1e4*cos(asin(opt_iff_kp_xi_pz(i_kp_pz)))], '-', ... - 'DisplayName', sprintf('$\\xi = %.2f$', opt_iff_kp_xi_pz(i_kp_pz)), 'color', [zeros(1,3), 0.5]); -leg = legend(L, 'location', 'northwest', 'FontSize', 8); -leg.ItemTokenSize(1) = 10; -hold off; -axis square; -xlabel('Real Part'); ylabel('Imaginary Part'); -set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); -xlim([-5200, 200]); ylim([-2700, 2700]); -title('$k_n = 100\,N/\mu m$'); - -% Optimal Relative Motion Control - -% For each considered nano-hexapod stiffness, relative damping control is applied and the achievable damping ratio as a function of the controller gain is shown in Figure ref:fig:rotating_rdc_optimal_gain. - +xlabel('$k_p [N/m]$'); +ylabel('Damping Ratio $\xi$'); +set(gca, 'XScale', 'log'); +set(gca, 'YScale', 'lin'); +ylim([0,1]); +yticks([0:0.2:1]) +legend('location', 'southeast', 'FontSize', 8); +xlim([kps_pz(1), kps_pz(end)]) %% Computes the optimal parameters and attainable simultaneous damping - Piezo nano-hexapod rdc_gains = 2*logspace(1, 5, 200); @@ -888,37 +498,6 @@ for g_i = 1:length(rdc_gains) rdc_xi_pz(g_i) = min(xi); end -%% Optimal IFF gain and associated simultaneous damping as a function of the parallel stiffness -figure; -hold on; -plot(rdc_gains, rdc_xi_vc, '-', 'DisplayName', '$k_n = 0.01\,N/\mu m$'); -plot(rdc_gains, rdc_xi_md, '-', 'DisplayName', '$k_n = 1\,N/\mu m$'); -plot(rdc_gains, rdc_xi_pz, '-', 'DisplayName', '$k_n = 100\,N/\mu m$'); -hold off; -xlabel('Relative Damping Controller gain $g$'); -ylabel('Damping Ratio $\xi$'); -set(gca, 'XScale', 'log'); -set(gca, 'YScale', 'lin'); -ylim([0,1]); -xlim([rdc_gains(1), rdc_gains(end)]) -legend('location', 'southeast', 'FontSize', 8); - - - -% #+name: fig:rotating_rdc_optimal_gain -% #+caption: Achievable simultaneous damping with "Relative Damping Control" as a function of the controller gain for all three nano-hexapod stiffnesses -% #+RESULTS: -% [[file:figs/rotating_rdc_optimal_gain.png]] - -% The gain is chosen is chosen such that 99% of modal damping is obtained. -% The root locus for all three nano-hexapod stiffnesses are shown in Figure ref:fig:rotating_root_locus_rdc_nass. - -% #+begin_important -% Relative damping control is much less impacted by gyroscopic effects. -% It can be easily applied on the nano-hexapod with and without rotation without much differences. -% #+end_important - - %% Optimal RDC [~, i_rdc_vc] = min(abs(rdc_xi_vc - 0.99)); [~, i_rdc_md] = min(abs(rdc_xi_md - 0.99)); @@ -928,141 +507,32 @@ Krdc_vc = rdc_gains(i_rdc_vc)*Krdc; Krdc_md = rdc_gains(i_rdc_md)*Krdc; Krdc_pz = rdc_gains(i_rdc_pz)*Krdc; -%% Root Locus for optimal parameters - Comparison of attainable damping with the soft and moderately strdc nano-hexapods -gains = logspace(-2, 3, 200); - +%% Optimal IFF gain and associated simultaneous damping as a function of the parallel stiffness figure; -tiledlayout(1, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); - -% Voice coil Nano-Hexapod -ax1 = nexttile(); hold on; -for g = gains - clpoles = pole(feedback(G_vc_norot({'Du', 'Dv'}, {'Fu', 'Fv'}), g*Krdc_vc)); - plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:),'MarkerSize',4, ... - 'HandleVisibility', 'off'); -end -clpoles = pole(feedback(G_vc_norot({'Du', 'Dv'}, {'Fu', 'Fv'}), Krdc_vc)); -plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:),'MarkerSize', 15, ... - 'DisplayName', '$\Omega = 0$'); -plot(real(pole(G_vc_norot({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc_vc)), ... - imag(pole(G_vc_norot({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc_vc)), ... - 'x', 'color', colors(1,:),'MarkerSize',8, ... - 'HandleVisibility', 'off'); -plot(real(tzero(G_vc_norot({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc_vc)), ... - imag(tzero(G_vc_norot({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc_vc)), ... - 'o', 'color', colors(1,:),'MarkerSize',8, ... - 'HandleVisibility', 'off'); - -for g = gains - clpoles = pole(feedback(G_vc_fast({'Du', 'Dv'}, {'Fu', 'Fv'}), g*Krdc_vc)); - plot(real(clpoles), imag(clpoles), '.', 'color', colors(2,:),'MarkerSize',4, ... - 'HandleVisibility', 'off'); -end -clpoles = pole(feedback(G_vc_fast({'Du', 'Dv'}, {'Fu', 'Fv'}), Krdc_vc)); -plot(real(clpoles), imag(clpoles), '.', 'color', colors(2,:),'MarkerSize', 15, ... - 'DisplayName', '$\Omega = 60$ rpm'); -plot(real(pole(G_vc_fast({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc_vc)), ... - imag(pole(G_vc_fast({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc_vc)), ... - 'x', 'color', colors(2,:),'MarkerSize',8, ... - 'HandleVisibility', 'off'); -plot(real(tzero(G_vc_fast({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc_vc)), ... - imag(tzero(G_vc_fast({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc_vc)), ... - 'o', 'color', colors(2,:),'MarkerSize',8, ... - 'HandleVisibility', 'off'); - -plot([0, -1e2*rdc_xi_vc(i_rdc_vc)], [0, 1e2*cos(asin(rdc_xi_vc(i_rdc_vc)))], '-', ... - 'DisplayName', sprintf('$\\xi = %.2f$', rdc_xi_vc(i_rdc_vc)), 'color', [zeros(1,3), 0.5]) +plot(rdc_gains, rdc_xi_vc, '-', ... + 'color', colors(1,:), 'DisplayName', '$k_n = 0.01\,N/\mu m$'); +plot(rdc_gains(i_rdc_vc), rdc_xi_vc(i_rdc_vc), '.', ... + 'color', colors(1,:), 'MarkerSize', 15, 'HandleVisibility', 'off'); +plot(rdc_gains, rdc_xi_md, '-', ... + 'color', colors(2,:), 'DisplayName', '$k_n = 1\,N/\mu m$'); +plot(rdc_gains(i_rdc_md), rdc_xi_md(i_rdc_md), '.', ... + 'color', colors(2,:), 'MarkerSize', 15, 'HandleVisibility', 'off'); +plot(rdc_gains, rdc_xi_pz, '-', ... + 'color', colors(3,:), 'DisplayName', '$k_n = 100\,N/\mu m$'); +plot(rdc_gains(i_rdc_pz), rdc_xi_pz(i_rdc_pz), '.', ... + 'color', colors(3,:), 'MarkerSize', 15, 'HandleVisibility', 'off'); hold off; -axis square; -xlabel('Real Part'); ylabel('Imaginary Part'); -xlim([-65, 5]); ylim([-35, 35]); -set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); -title('$k_n = 0.01\,N/\mu m$'); -ldg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); -ldg.ItemTokenSize = [10, 1]; +xlabel('Relative Damping Controller gain $g$'); +ylabel('Damping Ratio $\xi$'); +set(gca, 'XScale', 'log'); +set(gca, 'YScale', 'lin'); +ylim([0,1]); +yticks([0:0.2:1]) +xlim([rdc_gains(1), rdc_gains(end)]) +legend('location', 'southeast', 'FontSize', 8); -% APA Nano-Hexapod -ax2 = nexttile(); -hold on; -for g = gains - clpoles = pole(feedback(G_md_norot({'Du', 'Dv'}, {'Fu', 'Fv'}), g*Krdc_md)); - plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:),'MarkerSize',4); -end -clpoles = pole(feedback(G_md_norot({'Du', 'Dv'}, {'Fu', 'Fv'}), Krdc_md)); -plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:),'MarkerSize', 15); -plot(real(pole(G_md_norot({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc_md)), ... - imag(pole(G_md_norot({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc_md)), ... - 'x', 'color', colors(1,:),'MarkerSize',8); -plot(real(tzero(G_md_norot({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc_md)), ... - imag(tzero(G_md_norot({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc_md)), ... - 'o', 'color', colors(1,:),'MarkerSize',8); - -for g = gains - clpoles = pole(feedback(G_md_fast({'Du', 'Dv'}, {'Fu', 'Fv'}), g*Krdc_md)); - plot(real(clpoles), imag(clpoles), '.', 'color', colors(2,:),'MarkerSize',4); -end -clpoles = pole(feedback(G_md_fast({'Du', 'Dv'}, {'Fu', 'Fv'}), Krdc_md)); -plot(real(clpoles), imag(clpoles), '.', 'color', colors(2,:),'MarkerSize', 15); -plot(real(pole(G_md_fast({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc_md)), ... - imag(pole(G_md_fast({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc_md)), ... - 'x', 'color', colors(2,:),'MarkerSize',8); -plot(real(tzero(G_md_fast({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc_md)), ... - imag(tzero(G_md_fast({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc_md)), ... - 'o', 'color', colors(2,:),'MarkerSize',8); - -L = plot([0, -1e3*rdc_xi_md(i_rdc_md)], [0, 1e3*cos(asin(rdc_xi_md(i_rdc_md)))], '-', ... - 'DisplayName', sprintf('$\\xi = %.2f$', rdc_xi_md(i_rdc_md)), 'color', [zeros(1,3), 0.5]); -leg = legend(L, 'location', 'northwest', 'FontSize', 8); -leg.ItemTokenSize(1) = 10; -hold off; -axis square; -xlabel('Real Part'); ylabel('Imaginary Part'); -xlim([-520, 20]); ylim([-270, 270]); -set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); -title('$k_n = 1\,N/\mu m$'); - -% Piezo Nano-Hexapod -ax3 = nexttile(); -hold on; -for g = gains - clpoles = pole(feedback(G_pz_norot({'Du', 'Dv'}, {'Fu', 'Fv'}), g*Krdc_pz)); - plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:),'MarkerSize',4); -end -clpoles = pole(feedback(G_pz_norot({'Du', 'Dv'}, {'Fu', 'Fv'}), Krdc_pz)); -plot(real(clpoles), imag(clpoles), '.', 'color', colors(1,:),'MarkerSize', 15); -plot(real(pole(G_pz_norot({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc_pz)), ... - imag(pole(G_pz_norot({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc_pz)), ... - 'x', 'color', colors(1,:),'MarkerSize',8); -plot(real(tzero(G_pz_norot({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc_pz)), ... - imag(tzero(G_pz_norot({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc_pz)), ... - 'o', 'color', colors(1,:),'MarkerSize',8); - -for g = gains - clpoles = pole(feedback(G_pz_fast({'Du', 'Dv'}, {'Fu', 'Fv'}), g*Krdc_pz)); - plot(real(clpoles), imag(clpoles), '.', 'color', colors(2,:),'MarkerSize',4); -end -clpoles = pole(feedback(G_pz_fast({'Du', 'Dv'}, {'Fu', 'Fv'}), Krdc_pz)); -plot(real(clpoles), imag(clpoles), '.', 'color', colors(2,:),'MarkerSize', 15); -plot(real(pole(G_pz_fast({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc_pz)), ... - imag(pole(G_pz_fast({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc_pz)), ... - 'x', 'color', colors(2,:),'MarkerSize',8); -plot(real(tzero(G_pz_fast({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc_pz)), ... - imag(tzero(G_pz_fast({'Du', 'Dv'}, {'Fu', 'Fv'})*Krdc_pz)), ... - 'o', 'color', colors(2,:),'MarkerSize',8); - -L = plot([0, -1e4*rdc_xi_pz(i_rdc_pz)], [0, 1e4*cos(asin(rdc_xi_pz(i_rdc_pz)))], '-', ... - 'DisplayName', sprintf('$\\xi = %.2f$', rdc_xi_pz(i_rdc_pz)), 'color', [zeros(1,3), 0.5]); -leg = legend(L, 'location', 'northwest', 'FontSize', 8); -leg.ItemTokenSize(1) = 10; -hold off; -axis square; -xlabel('Real Part'); ylabel('Imaginary Part'); -xlim([-5200, 20]); ylim([-2700, 2700]); -set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); -title('$k_n = 100\,N/\mu m$'); - -%% Closed Loop Plants - IFF with HPF +%% Closed-Loop Plants - IFF with HPF G_vc_norot_iff_hpf = feedback(G_vc_norot, Kiff_hpf_vc, 'name'); G_vc_fast_iff_hpf = feedback(G_vc_fast, Kiff_hpf_vc, 'name'); @@ -1072,7 +542,7 @@ G_md_fast_iff_hpf = feedback(G_md_fast, Kiff_hpf_md, 'name'); G_pz_norot_iff_hpf = feedback(G_pz_norot, Kiff_hpf_pz, 'name'); G_pz_fast_iff_hpf = feedback(G_pz_fast, Kiff_hpf_pz, 'name'); -%% Closed Loop Plants - IFF with Parallel Stiffness +%% Closed-Loop Plants - IFF with Parallel Stiffness G_vc_norot_iff_kp = feedback(G_vc_kp_norot, Kiff_kp_vc, 'name'); G_vc_fast_iff_kp = feedback(G_vc_kp_fast, Kiff_kp_vc, 'name'); @@ -1082,7 +552,7 @@ G_md_fast_iff_kp = feedback(G_md_kp_fast, Kiff_kp_md, 'name'); G_pz_norot_iff_kp = feedback(G_pz_kp_norot, Kiff_kp_pz, 'name'); G_pz_fast_iff_kp = feedback(G_pz_kp_fast, Kiff_kp_pz, 'name'); -%% Closed Loop Plants - RDC +%% Closed-Loop Plants - RDC G_vc_norot_rdc = feedback(G_vc_norot, Krdc_vc, 'name'); G_vc_fast_rdc = feedback(G_vc_fast, Krdc_vc, 'name'); @@ -1094,11 +564,9 @@ G_pz_fast_rdc = feedback(G_pz_fast, Krdc_pz, 'name'); %% Comparison of the damped plants (direct and coupling terms) for the three proposed active damping techniques (IFF with HPF, IFF with $k_p$ and RDC) applied on the three nano-hexapod stiffnesses freqs_vc = logspace(-1, 2, 1000); -freqs_md = logspace(0, 3, 1000); -freqs_pz = logspace(0, 3, 1000); figure; -tiledlayout(3, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); +tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; @@ -1113,9 +581,30 @@ plot(freqs_vc, abs(squeeze(freqresp(G_vc_fast_rdc( 'Dv', 'Fu'), freqs_vc, 'Hz')) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]); -title('$k_n = 0.01\,N/\mu m$'); +ylim([1e-8, 1e-2]) -ax2 = nexttile([2,1]); +ax2 = nexttile; +hold on; +plot(freqs_vc, 180/pi*angle(squeeze(freqresp(G_vc_fast( 'Du', 'Fu'), freqs_vc, 'Hz'))), '-' , 'color', [zeros(1,3)]); +plot(freqs_vc, 180/pi*angle(squeeze(freqresp(G_vc_fast_iff_hpf( 'Du', 'Fu'), freqs_vc, 'Hz'))), '-' , 'color', [colors(1,:)]); +plot(freqs_vc, 180/pi*angle(squeeze(freqresp(G_vc_fast_iff_kp( 'Du', 'Fu'), freqs_vc, 'Hz'))), '-' , 'color', [colors(2,:)]); +plot(freqs_vc, 180/pi*angle(squeeze(freqresp(G_vc_fast_rdc( 'Du', 'Fu'), freqs_vc, 'Hz'))), '-' , 'color', [colors(3,:)]); +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); +hold off; +yticks(-360:90:360); +ylim([-180, 0]); + +linkaxes([ax1,ax2],'x'); +xlim([freqs_vc(1), freqs_vc(end)]); + +freqs_md = logspace(0, 3, 1000); + +figure; +tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); + +ax1 = nexttile([2,1]); hold on; plot(freqs_md, abs(squeeze(freqresp(G_md_fast( 'Du', 'Fu'), freqs_md, 'Hz'))), '-' , 'color', [zeros(1,3)]); plot(freqs_md, abs(squeeze(freqresp(G_md_fast( 'Dv', 'Fu'), freqs_md, 'Hz'))), '-' , 'color', [zeros(1,3), 0.5]); @@ -1127,10 +616,31 @@ plot(freqs_md, abs(squeeze(freqresp(G_md_fast_rdc( 'Du', 'Fu'), freqs_md, 'Hz')) plot(freqs_md, abs(squeeze(freqresp(G_md_fast_rdc( 'Dv', 'Fu'), freqs_md, 'Hz'))), '-' , 'color', [colors(3,:), 0.5]); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); -title('$k_n = 1\,N/\mu m$'); +ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]); +ylim([1e-10, 1e-4]) -ax3 = nexttile([2,1]); +ax2 = nexttile; +hold on; +plot(freqs_md, 180/pi*angle(squeeze(freqresp(G_md_fast( 'Du', 'Fu'), freqs_md, 'Hz'))), '-' , 'color', [zeros(1,3)]); +plot(freqs_md, 180/pi*angle(squeeze(freqresp(G_md_fast_iff_hpf( 'Du', 'Fu'), freqs_md, 'Hz'))), '-' , 'color', [colors(1,:)]); +plot(freqs_md, 180/pi*angle(squeeze(freqresp(G_md_fast_iff_kp( 'Du', 'Fu'), freqs_md, 'Hz'))), '-' , 'color', [colors(2,:)]); +plot(freqs_md, 180/pi*angle(squeeze(freqresp(G_md_fast_rdc( 'Du', 'Fu'), freqs_md, 'Hz'))), '-' , 'color', [colors(3,:)]); +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); +hold off; +yticks(-360:90:360); +ylim([-180, 0]); + +linkaxes([ax1,ax2],'x'); +xlim([freqs_md(1), freqs_md(end)]); + +freqs_pz = logspace(0, 3, 1000); + +figure; +tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); + +ax1 = nexttile([2,1]); hold on; plot(freqs_pz, abs(squeeze(freqresp(G_pz_fast( 'Du', 'Fu'), freqs_pz, 'Hz'))), '-' , 'color', [zeros(1,3)], ... 'DisplayName', 'OL'); @@ -1150,41 +660,12 @@ plot(freqs_pz, abs(squeeze(freqresp(G_pz_fast_rdc( 'Dv', 'Fu'), freqs_pz, 'Hz')) 'HandleVisibility', 'off'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); -ylim([1e-12, 1e-2]) +ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]); +ylim([1e-12, 1e-6]) ldg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); ldg.ItemTokenSize = [20, 1]; -title('$k_n = 100\,N/\mu m$'); -ax1b = nexttile; -hold on; -plot(freqs_vc, 180/pi*angle(squeeze(freqresp(G_vc_fast( 'Du', 'Fu'), freqs_vc, 'Hz'))), '-' , 'color', [zeros(1,3)]); -plot(freqs_vc, 180/pi*angle(squeeze(freqresp(G_vc_fast_iff_hpf( 'Du', 'Fu'), freqs_vc, 'Hz'))), '-' , 'color', [colors(1,:)]); -plot(freqs_vc, 180/pi*angle(squeeze(freqresp(G_vc_fast_iff_kp( 'Du', 'Fu'), freqs_vc, 'Hz'))), '-' , 'color', [colors(2,:)]); -plot(freqs_vc, 180/pi*angle(squeeze(freqresp(G_vc_fast_rdc( 'Du', 'Fu'), freqs_vc, 'Hz'))), '-' , 'color', [colors(3,:)]); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); -hold off; -yticks(-360:90:360); -ylim([-180, 180]); -xlim([freqs_vc(1), freqs_vc(end)]); - -ax2b = nexttile; -hold on; -plot(freqs_md, 180/pi*angle(squeeze(freqresp(G_md_fast( 'Du', 'Fu'), freqs_md, 'Hz'))), '-' , 'color', [zeros(1,3)]); -plot(freqs_md, 180/pi*angle(squeeze(freqresp(G_md_fast_iff_hpf( 'Du', 'Fu'), freqs_md, 'Hz'))), '-' , 'color', [colors(1,:)]); -plot(freqs_md, 180/pi*angle(squeeze(freqresp(G_md_fast_iff_kp( 'Du', 'Fu'), freqs_md, 'Hz'))), '-' , 'color', [colors(2,:)]); -plot(freqs_md, 180/pi*angle(squeeze(freqresp(G_md_fast_rdc( 'Du', 'Fu'), freqs_md, 'Hz'))), '-' , 'color', [colors(3,:)]); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); -hold off; -yticks(-360:90:360); -ylim([-180, 180]); -xlim([freqs_md(1), freqs_md(end)]); - -ax3b = nexttile; +ax2 = nexttile; hold on; plot(freqs_pz, 180/pi*angle(squeeze(freqresp(G_pz_fast( 'Du', 'Fu'), freqs_pz, 'Hz'))), '-' , 'color', [zeros(1,3)]); plot(freqs_pz, 180/pi*angle(squeeze(freqresp(G_pz_fast_iff_hpf( 'Du', 'Fu'), freqs_pz, 'Hz'))), '-' , 'color', [colors(1,:)]); @@ -1192,14 +673,10 @@ plot(freqs_pz, 180/pi*angle(squeeze(freqresp(G_pz_fast_iff_kp( 'Du', 'Fu'), freq plot(freqs_pz, 180/pi*angle(squeeze(freqresp(G_pz_fast_rdc( 'Du', 'Fu'), freqs_pz, 'Hz'))), '-' , 'color', [colors(3,:)]); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); -ylim([-180, 180]); -xlim([freqs_pz(1), freqs_pz(end)]); +ylim([-180, 0]); -linkaxes([ax1,ax2,ax3],'y'); -linkaxes([ax1b,ax2b,ax3b],'y'); -linkaxes([ax1,ax1b],'x'); -linkaxes([ax2,ax2b],'x'); -linkaxes([ax3,ax3b],'x'); +linkaxes([ax1,ax2],'x'); +xlim([freqs_pz(1), freqs_pz(end)]); diff --git a/matlab/rotating_8_nass.m b/matlab/rotating_8_nass.m index 312365b..12dfe9f 100644 --- a/matlab/rotating_8_nass.m +++ b/matlab/rotating_8_nass.m @@ -20,21 +20,16 @@ load('uniaxial_micro_station_parameters.mat') %% Load controllers load('nass_controllers.mat'); -% System dynamics - - -%% Nano-Hexapod +%% System parameters mn = 15; % Nano-Hexapod mass [kg] - -%% Light Sample ms = 1; % Sample Mass [kg] -%% General Configuration +% General Configuration model_config = struct(); model_config.controller = "open_loop"; % Default: Open-Loop model_config.Tuv_type = "normal"; % Default: 2DoF stage -%% Input/Output definition +% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Forces [Fu, Fv] io(io_i) = linio([mdl, '/fd'], 1, 'openinput'); io_i = io_i + 1; % Direct Forces on Sample [Fdx, Fdy] @@ -44,13 +39,8 @@ io(io_i) = linio([mdl, '/nano_hexapod'], 1, 'openoutput'); io_i = io_i + 1; % [F io(io_i) = linio([mdl, '/nano_hexapod'], 2, 'openoutput'); io_i = io_i + 1; % [Du, Dv] io(io_i) = linio([mdl, '/ext_metrology'],1, 'openoutput'); io_i = io_i + 1; % [Dx, Dy] - - -% The dynamics of the undamped and damped plants are identified. -% The active damping parameters used are the optimal ones previously identified (i.e. for the rotating nano-hexapod fixed on a rigid platform). - - -%% Voice Coil (i.e. soft) Nano-Hexapod +%% Identify plant without parallel stiffness +% Voice Coil (i.e. soft) Nano-Hexapod kn = 1e4; % Nano-Hexapod Stiffness [N/m] cn = 2*0.005*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)] @@ -64,7 +54,7 @@ G_vc_fast = linearize(mdl, io, 0.0); G_vc_fast.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy', 'Ftx', 'Fty'}; G_vc_fast.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; -%% APA (i.e. relatively stiff) Nano-Hexapod +% APA (i.e. relatively stiff) Nano-Hexapod kn = 1e6; % Nano-Hexapod Stiffness [N/m] cn = 2*0.005*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)] @@ -78,7 +68,7 @@ G_md_fast = linearize(mdl, io, 0.0); G_md_fast.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy', 'Ftx', 'Fty'}; G_md_fast.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; -%% Piezoelectric (i.e. stiff) Nano-Hexapod +% Piezoelectric (i.e. stiff) Nano-Hexapod kn = 1e8; % Nano-Hexapod Stiffness [N/m] cn = 2*0.005*sqrt((ms + mn)*kn); % Nano-Hexapod Damping [N/(m/s)] @@ -146,7 +136,8 @@ G_pz_kp_norot = linearize(mdl, io, 0); G_pz_kp_norot.InputName = {'Fu', 'Fv', 'Fdx', 'Fdy', 'Dfx', 'Dfy', 'Ftx', 'Fty'}; G_pz_kp_norot.OutputName = {'fu', 'fv', 'Du', 'Dv', 'Dx', 'Dy'}; -%% Closed Loop Plants - IFF with HPF +%% Compute dampepd plants +% Closed-Loop Plants - IFF with HPF G_vc_norot_iff_hpf = feedback(G_vc_norot, Kiff_hpf_vc, 'name'); G_vc_fast_iff_hpf = feedback(G_vc_fast, Kiff_hpf_vc, 'name'); @@ -156,7 +147,7 @@ G_md_fast_iff_hpf = feedback(G_md_fast, Kiff_hpf_md, 'name'); G_pz_norot_iff_hpf = feedback(G_pz_norot, Kiff_hpf_pz, 'name'); G_pz_fast_iff_hpf = feedback(G_pz_fast, Kiff_hpf_pz, 'name'); -%% Closed Loop Plants - IFF with Parallel Stiffness +% Closed-Loop Plants - IFF with Parallel Stiffness G_vc_norot_iff_kp = feedback(G_vc_kp_norot, Kiff_kp_vc, 'name'); G_vc_fast_iff_kp = feedback(G_vc_kp_fast, Kiff_kp_vc, 'name'); @@ -166,7 +157,7 @@ G_md_fast_iff_kp = feedback(G_md_kp_fast, Kiff_kp_md, 'name'); G_pz_norot_iff_kp = feedback(G_pz_kp_norot, Kiff_kp_pz, 'name'); G_pz_fast_iff_kp = feedback(G_pz_kp_fast, Kiff_kp_pz, 'name'); -%% Closed Loop Plants - RDC +% Closed-Loop Plants - RDC G_vc_norot_rdc = feedback(G_vc_norot, Krdc_vc, 'name'); G_vc_fast_rdc = feedback(G_vc_fast, Krdc_vc, 'name'); @@ -176,28 +167,11 @@ G_md_fast_rdc = feedback(G_md_fast, Krdc_md, 'name'); G_pz_norot_rdc = feedback(G_pz_norot, Krdc_pz, 'name'); G_pz_fast_rdc = feedback(G_pz_fast, Krdc_pz, 'name'); - - -% The undamped and damped plants are shown in Figure ref:fig:rotating_nass_plant_comp_stiffness. -% Three nano-hexapod velocities are shown (from left to right): $k_n = \SI{0.01}{\N\per\mu\m}$, $k_n = \SI{1}{\N\per\mu\m}$ and $k_n = \SI{100}{\N\per\mu\m}$. -% The direct terms are shown by the solid curves while the coupling terms are shown by the shaded ones. - -% #+begin_important -% It can be observed on Figure ref:fig:rotating_nass_plant_comp_stiffness that: -% - Coupling (ratio between the off-diagonal and direct terms) is larger for the soft nano-hexapod -% - Damping added by the three proposed techniques is quite high and the obtained plant is rather easy to control -% - There is some coupling between nano-hexapod and micro-station dynamics for the stiff nano-hexapod (mode at 200Hz) -% - The two proposed IFF modification yields similar results -% #+end_important - - %% Bode plot of the transfer function from nano-hexapod actuator to measured motion by the external metrology freqs_vc = logspace(-1, 2, 1000); -freqs_md = logspace(0, 3, 1000); -freqs_pz = logspace(0, 3, 1000); figure; -tiledlayout(3, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); +tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; @@ -220,10 +194,30 @@ plot(freqs_vc, abs(squeeze(freqresp(G_vc_fast_rdc('Dy', 'Fu'), freqs_vc, 'Hz'))) hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]); -ylim([1e-12, 1e-2]) -title('$k_n = 0.01\,N/\mu m$'); +ylim([1e-8, 1e-2]) -ax2 = nexttile([2,1]); +ax2 = nexttile; +hold on; +plot(freqs_vc, 180/pi*unwrap(angle(squeeze(freqresp(G_vc_fast('Dx', 'Fu'), freqs_vc, 'Hz')))), 'color', zeros(1,3)); +plot(freqs_vc, 180/pi*unwrap(angle(squeeze(freqresp(G_vc_fast_iff_hpf('Dx', 'Fu'), freqs_vc, 'Hz')))), 'color', colors(1,:)); +plot(freqs_vc, 180/pi*unwrap(angle(squeeze(freqresp(G_vc_fast_iff_kp('Dx', 'Fu'), freqs_vc, 'Hz')))), 'color', colors(2,:)); +plot(freqs_vc, 180/pi*unwrap(angle(squeeze(freqresp(G_vc_fast_rdc('Dx', 'Fu'), freqs_vc, 'Hz')))), 'color', colors(3,:)); +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); +hold off; +yticks(-360:90:360); +ylim([ -200, 20]); + +linkaxes([ax,ax2],'x'); +xlim([freqs_vc(1), freqs_vc(end)]); +xticks([1e-1, 1e0, 1e1]); + +freqs_md = logspace(0, 3, 1000); +figure; +tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); + +ax1 = nexttile([2,1]); hold on; plot(freqs_md, abs(squeeze(freqresp(G_md_fast('Dx', 'Fu'), freqs_md, 'Hz'))), 'color', zeros(1,3), ... 'DisplayName', 'OL'); @@ -243,11 +237,31 @@ plot(freqs_md, abs(squeeze(freqresp(G_md_fast_rdc('Dy', 'Fu'), freqs_md, 'Hz'))) 'HandleVisibility', 'off'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); -ylim([1e-12, 1e-2]) -title('$k_n = 1\,N/\mu m$'); +ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]); +ylim([1e-10, 1e-4]) -ax3 = nexttile([2,1]); +ax2 = nexttile; +hold on; +plot(freqs_md, 180/pi*unwrap(angle(squeeze(freqresp(G_md_fast('Dx', 'Fu'), freqs_md, 'Hz')))), 'color', zeros(1,3)); +plot(freqs_md, 180/pi*unwrap(angle(squeeze(freqresp(G_md_fast_iff_hpf('Dx', 'Fu'), freqs_md, 'Hz')))), 'color', colors(1,:)); +plot(freqs_md, 180/pi*unwrap(angle(squeeze(freqresp(G_md_fast_iff_kp('Dx', 'Fu'), freqs_md, 'Hz')))), 'color', colors(2,:)); +plot(freqs_md, 180/pi*unwrap(angle(squeeze(freqresp(G_md_fast_rdc('Dx', 'Fu'), freqs_md, 'Hz')))), 'color', colors(3,:)); +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); +hold off; +yticks(-360:90:360); +ylim([ -200, 20]); + +linkaxes([ax1,ax2],'x'); +xlim([freqs_md(1), freqs_md(end)]); +xticks([1e0, 1e1, 1e2]); + +freqs_pz = logspace(0, 3, 1000); +figure; +tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); + +ax1 = nexttile([2,1]); hold on; plot(freqs_pz, abs(squeeze(freqresp(G_pz_fast('Dx', 'Fu'), freqs_pz, 'Hz'))), 'color', zeros(1,3), ... 'DisplayName', 'OL'); @@ -267,39 +281,12 @@ plot(freqs_pz, abs(squeeze(freqresp(G_pz_fast_rdc('Dy', 'Fu'), freqs_pz, 'Hz'))) 'HandleVisibility', 'off'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); -ylim([1e-12, 1e-2]) -ldg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); +ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]); +ylim([1e-12, 1e-6]) +ldg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); ldg.ItemTokenSize = [20, 1]; -title('$k_n = 100\,N/\mu m$'); -ax1b = nexttile; -hold on; -plot(freqs_vc, 180/pi*unwrap(angle(squeeze(freqresp(G_vc_fast('Dx', 'Fu'), freqs_vc, 'Hz')))), 'color', zeros(1,3)); -plot(freqs_vc, 180/pi*unwrap(angle(squeeze(freqresp(G_vc_fast_iff_hpf('Dx', 'Fu'), freqs_vc, 'Hz')))), 'color', colors(1,:)); -plot(freqs_vc, 180/pi*unwrap(angle(squeeze(freqresp(G_vc_fast_iff_kp('Dx', 'Fu'), freqs_vc, 'Hz')))), 'color', colors(2,:)); -plot(freqs_vc, 180/pi*unwrap(angle(squeeze(freqresp(G_vc_fast_rdc('Dx', 'Fu'), freqs_vc, 'Hz')))), 'color', colors(3,:)); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); -hold off; -yticks(-360:90:360); -ylim([-270, 90]); - -ax2b = nexttile; -hold on; -plot(freqs_md, 180/pi*unwrap(angle(squeeze(freqresp(G_md_fast('Dx', 'Fu'), freqs_md, 'Hz')))), 'color', zeros(1,3)); -plot(freqs_md, 180/pi*unwrap(angle(squeeze(freqresp(G_md_fast_iff_hpf('Dx', 'Fu'), freqs_md, 'Hz')))), 'color', colors(1,:)); -plot(freqs_md, 180/pi*unwrap(angle(squeeze(freqresp(G_md_fast_iff_kp('Dx', 'Fu'), freqs_md, 'Hz')))), 'color', colors(2,:)); -plot(freqs_md, 180/pi*unwrap(angle(squeeze(freqresp(G_md_fast_rdc('Dx', 'Fu'), freqs_md, 'Hz')))), 'color', colors(3,:)); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); -hold off; -yticks(-360:90:360); -ylim([-270, 90]); - -ax3b = nexttile; +ax2 = nexttile; hold on; plot(freqs_pz, 180/pi*unwrap(angle(squeeze(freqresp(G_pz_fast('Dx', 'Fu'), freqs_pz, 'Hz')))), 'color', zeros(1,3)); plot(freqs_pz, 180/pi*unwrap(angle(squeeze(freqresp(G_pz_fast_iff_hpf('Dx', 'Fu'), freqs_pz, 'Hz')))), 'color', colors(1,:)); @@ -307,111 +294,19 @@ plot(freqs_pz, 180/pi*unwrap(angle(squeeze(freqresp(G_pz_fast_iff_kp('Dx', 'Fu') plot(freqs_pz, 180/pi*unwrap(angle(squeeze(freqresp(G_pz_fast_rdc('Dx', 'Fu'), freqs_pz, 'Hz')))), 'color', colors(3,:)); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); -xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); +xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); -ylim([-270, 90]); +ylim([ -200, 20]); -linkaxes([ax1,ax1b],'x'); -xlim([freqs_vc(1), freqs_vc(end)]); - -linkaxes([ax2,ax2b],'x'); -xlim([freqs_md(1), freqs_md(end)]); - -linkaxes([ax3,ax3b],'x'); +linkaxes([ax1,ax2],'x'); xlim([freqs_pz(1), freqs_pz(end)]); - - - -% #+name: fig:rotating_nass_plant_comp_stiffness -% #+caption: Bode plot of the transfer function from nano-hexapod actuator to measured motion by the external metrology -% #+RESULTS: -% [[file:figs/rotating_nass_plant_comp_stiffness.png]] - -% To confirm that the coupling is smaller when the stiffness of the nano-hexapod is increase, the /coupling ratio/ for the three nano-hexapod stiffnesses are shown in Figure ref:fig:rotating_nass_plant_coupling_comp. - - -%% Coupling ratio for the proposed active damping techniques evaluated for the three nano-hexapod stiffnesses -freqs_vc = logspace(-1, 2, 1000); -freqs_md = logspace(0, 3, 1000); -freqs_pz = logspace(0, 3, 1000); - -figure; -tiledlayout(1, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile(); -hold on; -plot(freqs_vc, abs(squeeze(freqresp(G_vc_fast('Dy', 'Fu')/G_vc_fast('Dx', 'Fu'), freqs_vc, 'Hz'))), 'color', zeros(1,3), ... - 'DisplayName', 'OL'); -plot(freqs_vc, abs(squeeze(freqresp(G_vc_fast_iff_hpf('Dy', 'Fu')/G_vc_fast_iff_hpf('Dx', 'Fu'), freqs_vc, 'Hz'))), 'color', colors(1,:), ... - 'DisplayName', 'IFF + $k_p$'); -plot(freqs_vc, abs(squeeze(freqresp(G_vc_fast_iff_kp('Dy', 'Fu')/G_vc_fast_iff_kp('Dx', 'Fu'), freqs_vc, 'Hz'))), 'color', colors(2,:), ... - 'DisplayName', 'IFF + HPF'); -plot(freqs_vc, abs(squeeze(freqresp(G_vc_fast_rdc('Dy', 'Fu')/G_vc_fast_rdc('Dx', 'Fu'), freqs_vc, 'Hz'))), 'color', colors(3,:), ... - 'DisplayName', 'RDC'); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('Coupling Ratio'); -title('$k_n = 0.01\,N/\mu m$'); - -ax2 = nexttile(); -hold on; -plot(freqs_md, abs(squeeze(freqresp(G_md_fast('Dy', 'Fu')/G_md_fast('Dx', 'Fu'), freqs_md, 'Hz'))), 'color', zeros(1,3), ... - 'DisplayName', 'OL'); -plot(freqs_md, abs(squeeze(freqresp(G_md_fast_iff_hpf('Dy', 'Fu')/G_md_fast_iff_hpf('Dx', 'Fu'), freqs_md, 'Hz'))), 'color', colors(1,:), ... - 'DisplayName', 'IFF + $k_p$'); -plot(freqs_md, abs(squeeze(freqresp(G_md_fast_iff_kp('Dy', 'Fu')/G_md_fast_iff_kp('Dx', 'Fu'), freqs_md, 'Hz'))), 'color', colors(2,:), ... - 'DisplayName', 'IFF + HPF'); -plot(freqs_md, abs(squeeze(freqresp(G_md_fast_rdc('Dy', 'Fu')/G_md_fast_rdc('Dx', 'Fu'), freqs_md, 'Hz'))), 'color', colors(3,:), ... - 'DisplayName', 'RDC'); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); -title('$k_n = 1\,N/\mu m$'); - -ax3 = nexttile(); -hold on; -plot(freqs_pz, abs(squeeze(freqresp(G_pz_fast('Dy', 'Fu')/G_pz_fast('Dx', 'Fu'), freqs_pz, 'Hz'))), 'color', zeros(1,3), ... - 'DisplayName', 'OL'); -plot(freqs_pz, abs(squeeze(freqresp(G_pz_fast_iff_hpf('Dy', 'Fu')/G_pz_fast_iff_hpf('Dx', 'Fu'), freqs_pz, 'Hz'))), 'color', colors(1,:), ... - 'DisplayName', 'IFF + $k_p$'); -plot(freqs_pz, abs(squeeze(freqresp(G_pz_fast_iff_kp('Dy', 'Fu')/G_pz_fast_iff_kp('Dx', 'Fu'), freqs_pz, 'Hz'))), 'color', colors(2,:), ... - 'DisplayName', 'IFF + HPF'); -plot(freqs_pz, abs(squeeze(freqresp(G_pz_fast_rdc('Dy', 'Fu')/G_pz_fast_rdc('Dx', 'Fu'), freqs_pz, 'Hz'))), 'color', colors(3,:), ... - 'DisplayName', 'RDC'); -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); -title('$k_n = 100\,N/\mu m$'); -ldg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); -ldg.ItemTokenSize = [20, 1]; - -linkaxes([ax1,ax2,ax3], 'y') - -% Effect of disturbances - -% The effect of three disturbances are considered: -% - Floor motion (Figure ref:fig:rotating_nass_effect_floor_motion) -% - Micro-Station vibrations (Figure ref:fig:rotating_nass_effect_stage_vibration) -% - Direct force applied on the payload (Figure ref:fig:rotating_nass_effect_direct_forces) - -% #+begin_important -% Conclusions are similar than with the uniaxial (non-rotating) model: -% - Regarding the effect of floor motion and forces applied on the payload: -% - The stiffer, the better (magnitudes are lower for the right curves, Figures ref:fig:rotating_nass_effect_floor_motion and ref:fig:rotating_nass_effect_direct_forces) -% - Integral Force Feedback degrades the performances at low frequency compared to relative damping control -% - Regarding the effect of micro-station vibrations: -% - Having a soft nano-hexapod allows to filter these vibrations between the suspensions modes of the nano-hexapod and some flexible modes of the micro-station. Using relative damping control reduce this filtering (Figure ref:fig:rotating_nass_effect_stage_vibration, left). -% #+end_important - +xticks([1e0, 1e1, 1e2]); %% Effect of Floor motion on the position error - Comparison of active damping techniques for the three nano-hexapod stiffnesses freqs = logspace(-1, 3, 1000); figure; -tiledlayout(1, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile(); hold on; plot(freqs, abs(squeeze(freqresp(G_vc_fast('Dx', 'Dfx'), freqs, 'Hz'))), 'color', zeros(1,3), ... 'DisplayName', 'OL'); @@ -423,12 +318,12 @@ plot(freqs, abs(squeeze(freqresp(G_vc_fast_rdc('Dx', 'Dfx'), freqs, 'Hz'))), 'co 'DisplayName', 'RDC'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('Magnitude $d_x/D_{f,x}$ [m/N]'); +xlabel('Frequency [Hz]'); ylabel('Magnitude $d_x/x_{f,x}$ [m/N]'); xticks([1e-1, 1e0, 1e1, 1e2, 1e3]); xtickangle(0) -title('$k_n = 0.01\,N/\mu m$'); +ylim([1e-4, 1e2]); -ax2 = nexttile(); +figure; hold on; plot(freqs, abs(squeeze(freqresp(G_md_fast('Dx', 'Dfx'), freqs, 'Hz'))), 'color', zeros(1,3), ... 'DisplayName', 'OL'); @@ -440,12 +335,12 @@ plot(freqs, abs(squeeze(freqresp(G_md_fast_rdc('Dx', 'Dfx'), freqs, 'Hz'))), 'co 'DisplayName', 'RDC'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); +xlabel('Frequency [Hz]'); ylabel('Magnitude $d_x/x_{f,x}$ [m/N]'); xticks([1e-1, 1e0, 1e1, 1e2, 1e3]); xtickangle(0) -title('$k_n = 1\,N/\mu m$'); +ylim([1e-4, 1e2]); -ax3 = nexttile(); +figure; hold on; plot(freqs, abs(squeeze(freqresp(G_pz_fast('Dx', 'Dfx'), freqs, 'Hz'))), 'color', zeros(1,3), ... 'DisplayName', 'OL'); @@ -457,28 +352,15 @@ plot(freqs, abs(squeeze(freqresp(G_pz_fast_rdc('Dx', 'Dfx'), freqs, 'Hz'))), 'co 'DisplayName', 'RDC'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); +xlabel('Frequency [Hz]'); ylabel('Magnitude $d_x/x_{f,x}$ [m/N]'); xticks([1e-1, 1e0, 1e1, 1e2, 1e3]); xtickangle(0) -title('$k_n = 100\,N/\mu m$'); -ldg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); -ldg.ItemTokenSize = [20, 1]; - -linkaxes([ax1,ax2,ax3], 'y') - - - -% #+name: fig:rotating_nass_effect_floor_motion -% #+caption: Effect of Floor motion on the position error - Comparison of active damping techniques for the three nano-hexapod stiffnesses -% #+RESULTS: -% [[file:figs/rotating_nass_effect_floor_motion.png]] - +ldg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); +ldg.ItemTokenSize = [15, 1]; +ylim([1e-4, 1e2]); %% Effect of micro-station vibrations on the position error - Comparison of active damping techniques for the three nano-hexapod stiffnesses figure; -tiledlayout(1, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile(); hold on; plot(freqs, abs(squeeze(freqresp(G_vc_fast('Dx', 'Ftx'), freqs, 'Hz'))), 'color', zeros(1,3), ... 'DisplayName', 'OL'); @@ -493,9 +375,9 @@ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Magnitude $d_x/f_{t,x}$ [m/N]'); xticks([1e-1, 1e0, 1e1, 1e2, 1e3]); xtickangle(0) -title('$k_n = 0.01\,N/\mu m$'); +ylim([1e-12, 2e-7]); -ax2 = nexttile(); +figure; hold on; plot(freqs, abs(squeeze(freqresp(G_md_fast('Dx', 'Ftx'), freqs, 'Hz'))), 'color', zeros(1,3), ... 'DisplayName', 'OL'); @@ -507,12 +389,12 @@ plot(freqs, abs(squeeze(freqresp(G_md_fast_rdc('Dx', 'Ftx'), freqs, 'Hz'))), 'co 'DisplayName', 'RDC'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); +xlabel('Frequency [Hz]'); ylabel('Magnitude $d_x/f_{t,x}$ [m/N]'); xticks([1e-1, 1e0, 1e1, 1e2, 1e3]); xtickangle(0) -title('$k_n = 1\,N/\mu m$'); +ylim([1e-12, 2e-7]); -ax3 = nexttile(); +figure; hold on; plot(freqs, abs(squeeze(freqresp(G_pz_fast('Dx', 'Ftx'), freqs, 'Hz'))), 'color', zeros(1,3), ... 'DisplayName', 'OL'); @@ -524,28 +406,15 @@ plot(freqs, abs(squeeze(freqresp(G_pz_fast_rdc('Dx', 'Ftx'), freqs, 'Hz'))), 'co 'DisplayName', 'RDC'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); +xlabel('Frequency [Hz]'); ylabel('Magnitude $d_x/f_{t,x}$ [m/N]'); xticks([1e-1, 1e0, 1e1, 1e2, 1e3]); xtickangle(0) -title('$k_n = 100\,N/\mu m$'); -ldg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); +ldg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); ldg.ItemTokenSize = [20, 1]; - -linkaxes([ax1,ax2,ax3], 'y') - - - -% #+name: fig:rotating_nass_effect_stage_vibration -% #+caption: Effect of micro-station vibrations on the position error - Comparison of active damping techniques for the three nano-hexapod stiffnesses -% #+RESULTS: -% [[file:figs/rotating_nass_effect_stage_vibration.png]] - +ylim([1e-12, 2e-7]); %% Effect of sample forces on the position error - Comparison of active damping techniques for the three nano-hexapod stiffnesses figure; -tiledlayout(1, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); - -ax1 = nexttile(); hold on; plot(freqs, abs(squeeze(freqresp(G_vc_fast('Dx', 'Fdx'), freqs, 'Hz'))), 'color', zeros(1,3), ... 'DisplayName', 'OL'); @@ -560,9 +429,9 @@ set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Magnitude $d_x/f_{s,x}$ [m/N]'); xticks([1e-1, 1e0, 1e1, 1e2, 1e3]); xtickangle(0) -title('$k_n = 0.01\,N/\mu m$'); +ylim([1e-8, 1e-2]) -ax2 = nexttile(); +figure; hold on; plot(freqs, abs(squeeze(freqresp(G_md_fast('Dx', 'Fdx'), freqs, 'Hz'))), 'color', zeros(1,3), ... 'DisplayName', 'OL'); @@ -574,12 +443,12 @@ plot(freqs, abs(squeeze(freqresp(G_md_fast_rdc('Dx', 'Fdx'), freqs, 'Hz'))), 'co 'DisplayName', 'RDC'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); +xlabel('Frequency [Hz]'); ylabel('Magnitude $d_x/f_{s,x}$ [m/N]'); xticks([1e-1, 1e0, 1e1, 1e2, 1e3]); xtickangle(0) -title('$k_n = 1\,N/\mu m$'); +ylim([1e-8, 1e-2]) -ax3 = nexttile(); +figure; hold on; plot(freqs, abs(squeeze(freqresp(G_pz_fast('Dx', 'Fdx'), freqs, 'Hz'))), 'color', zeros(1,3), ... 'DisplayName', 'OL'); @@ -591,11 +460,11 @@ plot(freqs, abs(squeeze(freqresp(G_pz_fast_rdc('Dx', 'Fdx'), freqs, 'Hz'))), 'co 'DisplayName', 'RDC'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]); +xlabel('Frequency [Hz]'); ylabel('Magnitude $d_x/f_{s,x}$ [m/N]'); xticks([1e-1, 1e0, 1e1, 1e2, 1e3]); xtickangle(0) -title('$k_n = 100\,N/\mu m$'); ldg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); ldg.ItemTokenSize = [20, 1]; linkaxes([ax1,ax2,ax3], 'y') +ylim([1e-8, 1e-2]) diff --git a/matlab/src/computeSimultaneousDamping.m b/matlab/src/computeSimultaneousDamping.m index 8f6f942..b5ff1d9 100644 --- a/matlab/src/computeSimultaneousDamping.m +++ b/matlab/src/computeSimultaneousDamping.m @@ -1,5 +1,3 @@ -% =computeSimultaneousDamping= - function [xi_min] = computeSimultaneousDamping(g, G, K) [~, xi] = damp(minreal(feedback(G, g*K), [], false)); xi_min = 1/min(xi); diff --git a/matlab/src/rootLocusPolesSorted.m b/matlab/src/rootLocusPolesSorted.m index 9a6d918..62cd6a4 100644 --- a/matlab/src/rootLocusPolesSorted.m +++ b/matlab/src/rootLocusPolesSorted.m @@ -1,5 +1,3 @@ -% =rootLocusPolesSorted= - function [poles] = rootLocusPolesSorted(G, K, gains, args) % rootLocusPolesSorted - % diff --git a/nass-rotating-3dof-model.org b/nass-rotating-3dof-model.org index f316b55..aded24d 100644 --- a/nass-rotating-3dof-model.org +++ b/nass-rotating-3dof-model.org @@ -22,7 +22,7 @@ #+BIND: org-latex-bib-compiler "biber" #+PROPERTY: header-args:matlab :session *MATLAB* -#+PROPERTY: header-args:matlab+ :comments org +#+PROPERTY: header-args:matlab+ :comments no #+PROPERTY: header-args:matlab+ :exports none #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :eval no-export