%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); %% Path for functions, data and scripts addpath('./src/'); % Path for scripts addpath('./mat/'); % Path for data addpath('./STEPS/'); % Path for Simscape Model addpath('./subsystems/'); % Path for Subsystems Simulink files %% Colors for the figures colors = colororder; freqs = logspace(1,4,1000); % Frequency vector [Hz] %% Load computed requirements load('instrumentation_requirements.mat') %% Sensitivity to disturbances load('instrumentation_sensitivity.mat', 'Gd'); %% ADC noise adc = load("2023-08-23_15-42_io131_adc_noise.mat"); % Spectral Analysis parameters Ts = 1e-4; Nfft = floor(1/Ts); win = hanning(Nfft); Noverlap = floor(Nfft/2); % Identification of the transfer function from Va to di [pxx, f] = pwelch(detrend(adc.adc_1, 0), win, Noverlap, Nfft, 1/Ts); adc.pxx = pxx; adc.f = f; % estimated mean ASD sprintf('Mean ASD of the ADC: %.1f uV/sqrt(Hz)', 1e6*sqrt(mean(adc.pxx))) sprintf('Specifications: %.1f uV/sqrt(Hz)', 1e6*max_adc_asd) % estimated RMS sprintf('RMS of the ADC: %.2f mV RMS', 1e3*rms(detrend(adc.adc_1,0))) sprintf('RMS specifications: %.2f mV RMS', max_adc_rms) % Estimate quantization noise of the IO318 ADC delta_V = 20; % +/-10 V n = 16; % number of bits Fs = 10e3; % [Hz] adc.q = delta_V/2^n; % Quantization in [V] adc.q_psd = adc.q^2/12/Fs; % Quantization noise Power Spectral Density [V^2/Hz] adc.q_asd = sqrt(adc.q_psd); % Quantization noise Amplitude Spectral Density [V/sqrt(Hz)] %% Measured ADC noise (IO318) figure; hold on; plot(adc.f, sqrt(adc.pxx), 'color', colors(3,:), 'DisplayName', '$\Gamma_{q_{ad}}$') plot([adc.f(2), adc.f(end)], [max_adc_asd, max_adc_asd], '--', 'color', colors(3,:), 'DisplayName', 'Specs') plot([adc.f(2), adc.f(end)], [adc.q_asd, adc.q_asd], 'k--', 'DisplayName', 'Quantization noise (16 bits, $\pm 10\,V$)') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [V/$\sqrt{Hz}$]'); legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); ylim([1e-10, 4e-4]); xlim([1, 5e3]); xticks([1e0, 1e1, 1e2, 1e3]) %% Read force sensor voltage with the ADC load('force_sensor_steps.mat', 't', 'encoder', 'u', 'v'); % Exponential fit to compute the time constant % Fit function f_exp = @(b,x) b(1).*exp(-b(2).*x) + b(3); % Three steps are performed at the following time intervals: t_s = [ 2.5, 23; 23.8, 35; 35.8, 50]; tau = zeros(size(t_s, 1),1); % Time constant [s] V0 = zeros(size(t_s, 1),1); % Offset voltage [V] a = zeros(size(t_s, 1),1); % for t_i = 1:size(t_s, 1) t_cur = t(t_s(t_i, 1) < t & t < t_s(t_i, 2)); t_cur = t_cur - t_cur(1); y_cur = v(t_s(t_i, 1) < t & t < t_s(t_i, 2)); nrmrsd = @(b) norm(y_cur - f_exp(b,t_cur)); % Residual Norm Cost Function B0 = [0.5, 0.15, 2.2]; % Choose Appropriate Initial Estimates [B,rnrm] = fminsearch(nrmrsd, B0); % Estimate Parameters ‘B’ a(t_i) = B(1); tau(t_i) = 1/B(2); V0(t_i) = B(3); end % Data to show the exponential fit t_fit_1 = linspace(t_s(1,1), t_s(1,2), 100); y_fit_1 = f_exp([a(1),1/tau(1),V0(1)], t_fit_1-t_s(1,1)); t_fit_2 = linspace(t_s(2,1), t_s(2,2), 100); y_fit_2 = f_exp([a(2),1/tau(2),V0(2)], t_fit_2-t_s(2,1)); t_fit_3 = linspace(t_s(3,1), t_s(3,2), 100); y_fit_3 = f_exp([a(3),1/tau(3),V0(3)], t_fit_3-t_s(3,1)); % Speedgoat ADC input impedance Cp = 4.4e-6; % [F] Rin = abs(mean(tau))/Cp; % [Ohm] % Estimated input bias current in = mean(V0)/Rin; % [A] % Resistor added in parallel to the force sensor fc = 0.5; % Wanted corner frequency [Hz] Ra = Rin/(2*pi*fc*Cp*Rin - 1); % [Ohm] % New ADC offset voltage V_offset = Ra*Rin/(Ra + Rin) * in; % [V] %% Measured voltage accross the sensor stacks - Voltage steps are applied to the actuators figure; tiledlayout(1, 1, 'TileSpacing', 'compact', 'Padding', 'None'); nexttile(); hold on; plot(t, u, 'DisplayName', '$u$'); plot(t, v, 'DisplayName', '$V_s$'); plot(t_fit_1, y_fit_1, 'k--', 'DisplayName', 'fit'); plot(t_fit_2, y_fit_2, 'k--', 'HandleVisibility', 'off'); plot(t_fit_3, y_fit_3, 'k--', 'HandleVisibility', 'off'); hold off; xlabel('Time [s]'); ylabel('Voltage [V]'); leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; xlim([0, 20]); %% Read force sensor voltage with the ADC with added 82.7kOhm resistor load('force_sensor_steps_R_82k7.mat', 't', 'encoder', 'u', 'v'); % Step times t_s = [1.9, 6; 8.5, 13; 15.5, 21; 22.6, 26; 30.0, 36; 37.5, 41; 46.2, 49.5]; % [s] tau = zeros(size(t_s, 1),1); % Time constant [s] V0 = zeros(size(t_s, 1),1); % Offset voltage [V] a = zeros(size(t_s, 1),1); % for t_i = 1:size(t_s, 1) t_cur = t(t_s(t_i, 1) < t & t < t_s(t_i, 2)); t_cur = t_cur - t_cur(1); y_cur = v(t_s(t_i, 1) < t & t < t_s(t_i, 2)); nrmrsd = @(b) norm(y_cur - f_exp(b,t_cur)); % Residual Norm Cost Function B0 = [0.5, 0.1, 2.2]; % Choose Appropriate Initial Estimates [B,rnrm] = fminsearch(nrmrsd, B0); % Estimate Parameters ‘B’ a(t_i) = B(1); tau(t_i) = 1/B(2); V0(t_i) = B(3); end % Data to show the exponential fit t_fit_1 = linspace(t_s(1,1), t_s(1,2), 100); y_fit_1 = f_exp([a(1),1/tau(1),V0(1)], t_fit_1-t_s(1,1)); t_fit_2 = linspace(t_s(2,1), t_s(2,2), 100); y_fit_2 = f_exp([a(2),1/tau(2),V0(2)], t_fit_2-t_s(2,1)); t_fit_3 = linspace(t_s(3,1), t_s(3,2), 100); y_fit_3 = f_exp([a(3),1/tau(3),V0(3)], t_fit_3-t_s(3,1)); %% Measured voltage accross the sensor stacks - Voltage steps are applied to the actuators figure; tiledlayout(1, 1, 'TileSpacing', 'compact', 'Padding', 'None'); nexttile(); hold on; plot(t, u, 'DisplayName', '$u$'); plot(t, v, 'DisplayName', '$V_s$'); plot(t_fit_1, y_fit_1, 'k--', 'DisplayName', 'fit'); plot(t_fit_2, y_fit_2, 'k--', 'HandleVisibility', 'off'); plot(t_fit_3, y_fit_3, 'k--', 'HandleVisibility', 'off'); hold off; xlabel('Time [s]'); ylabel('Voltage [V]'); leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; xlim([0, 20]); %% Femto Input Voltage Noise femto = load('noise_femto.mat', 't', 'Vout', 'notes'); % Load Data % Compute the equivalent voltage at the input of the amplifier femto.Vout = femto.Vout/femto.notes.pre_amp.gain; femto.Vout = femto.Vout - mean(femto.Vout); Ts = (femto.t(end) - femto.t(1))/(length(femto.t) - 1); Nfft = floor(1/Ts); win = hanning(Nfft); Noverlap = floor(Nfft/2); % Power Spectral Density [pxx, f] = pwelch(detrend(femto.Vout, 0), win, Noverlap, Nfft, 1/Ts); % Save the results inside the struct femto.pxx = pxx(f<=5e3); femto.f = f(f<=5e3); %% Measured input voltage noise of the Femto voltage pre-amplifier figure; hold on; plot(femto.f, sqrt(femto.pxx), 'color', colors(5,:), 'DisplayName', '$\Gamma_{n_a}$'); plot(adc.f, sqrt(adc.pxx)./femto.notes.pre_amp.gain, 'color', colors(3,:), 'DisplayName', '$\Gamma_{q_{ad}}/|G_a|$') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [$V/\sqrt{Hz}$]'); legend('location', 'northeast'); xlim([1, 5e3]); ylim([2e-10, 1e-7]); xticks([1e0, 1e1, 1e2, 1e3]); yticks([1e-9, 1e-8]); %% DAC Output Voltage Noise dac = load('mat/noise_dac.mat', 't', 'Vn', 'notes'); % Take input acount the gain of the pre-amplifier dac.Vn = dac.Vn/dac.notes.pre_amp.gain; dac.Vn = dac.Vn - mean(dac.Vn); Ts = (dac.t(end) - dac.t(1))/(length(dac.t) - 1); Nfft = floor(1/Ts); win = hanning(Nfft); Noverlap = floor(Nfft/2); % Identification of the transfer function from Va to di [pxx, f] = pwelch(dac.Vn, win, Noverlap, Nfft, 1/Ts); dac.pxx = pxx(f<=5e3); dac.f = f(f<=5e3); % Estimated mean ASD sprintf('Mean ASD of the DAC: %.1f uV/sqrt(Hz)', 1e6*sqrt(mean(dac.pxx))) sprintf('Specifications: %.1f uV/sqrt(Hz)', 1e6*max_dac_asd) % Estimated RMS sprintf('RMS of the DAC: %.2f mV RMS', 1e3*rms(dac.Vn)) sprintf('RMS specifications: %.2f mV RMS', max_dac_rms) figure; tiledlayout(1, 1, 'TileSpacing', 'compact', 'Padding', 'None'); ax1 = nexttile(); hold on; plot(femto.f, sqrt(femto.pxx), 'color', colors(5,:), 'DisplayName', '$\Gamma_{n_a}$'); plot(dac.f, sqrt(dac.pxx), 'color', colors(1,:), 'DisplayName', '$\Gamma_{n_{da}}$'); plot([dac.f(2), dac.f(end)], [max_dac_asd, max_dac_asd], '--', 'color', colors(1,:), 'DisplayName', 'DAC specs') plot(adc.f, sqrt(adc.pxx)./dac.notes.pre_amp.gain, 'color', colors(3,:), 'DisplayName', '$\Gamma_{q_{ad}}/|G_a|$') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [$V/\sqrt{Hz}$]'); leg = legend('location', 'northeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; xlim([1, 5e3]); ylim([2e-10, 4e-4]); xticks([1e0, 1e1, 1e2, 1e3]); %% Measure transfer function from DAC to ADC data_dac_adc = load("2023-08-22_15-52_io131_dac_to_adc.mat"); % Frequency analysis parameters Ts = 1e-4; % Sampling Time [s] Nfft = floor(1.0/Ts); win = hanning(Nfft); Noverlap = floor(Nfft/2); [G_dac_adc, f] = tfestimate(data_dac_adc.dac_1, data_dac_adc.adc_1, win, Noverlap, Nfft, 1/Ts); % G_delay = exp(-Ts*s); %% Measure transfer function from DAC to ADC - It fits a pure "1-sample" delay figure; tiledlayout(3, 1, 'TileSpacing', 'compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(f, abs(G_dac_adc), 'color', colors(2,:), 'DisplayName', 'Measurement'); plot(f, abs(squeeze(freqresp(G_delay, f, 'Hz'))), 'k--', 'DisplayName', 'Pure Delay'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [V/V]'); set(gca, 'XTickLabel',[]); ylim([1e-1, 1e1]); leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile(); hold on; plot(f, 180/pi*unwrap(angle(G_dac_adc)), 'color', colors(2,:)); plot(f, 180/pi*unwrap(angle(squeeze(freqresp(G_delay, f, 'Hz')))), 'k--', 'DisplayName', 'Pure Delay'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:90:360); ylim([-200, 20]) linkaxes([ax1,ax2],'x'); xlim([1, 5e3]); xticks([1e0, 1e1, 1e2, 1e3]); %% PD200 Output Voltage Noise % Load all the measurements pd200 = {}; for i = 1:6 pd200(i) = {load(['mat/noise_PD200_' num2str(i) '_10uF.mat'], 't', 'Vout', 'notes')}; end % Take into account the pre-amplifier gain for i = 1:6 pd200{i}.Vout = pd200{i}.Vout/pd200{i}.notes.pre_amp.gain; end % Sampling time / frequency Ts = (pd200{1}.t(end) - pd200{1}.t(1))/(length(pd200{1}.t) - 1); % Compute the PSD of the measured noise Nfft = floor(1/Ts); win = hanning(Nfft); Noverlap = floor(Nfft/2); for i = 1:6 % Identification of the transfer function from Va to di [pxx, f] = pwelch(pd200{i}.Vout, win, Noverlap, Nfft, 1/Ts); pd200{i}.pxx = pxx(f<=5e3); pd200{i}.f = f(f<=5e3); end % Estimated RMS sprintf('RMS of the PD200: %.2f mV RMS', 1e3*rms(detrend(pd200{1}.Vout,0))) sprintf('RMS specifications: %.2f mV RMS', max_amp_rms) %% Measured output voltage noise of the PD200 amplifiers figure; hold on; plot([1 Fs/2], [max_amp_asd, max_amp_asd], '--', 'color', colors(2,:), 'DisplayName', 'Specs') plot(pd200{1}.f, sqrt(pd200{1}.pxx), 'color', [colors(2, :), 0.5], 'DisplayName', '$\Gamma_{n_p}$'); for i = 2:6 plot(pd200{i}.f, sqrt(pd200{i}.pxx), 'color', [colors(2, :), 0.5], 'HandleVisibility', 'off'); end plot(femto.f, sqrt(femto.pxx), 'color', [colors(5, :)], 'DisplayName', '$\Gamma_{n_a}$'); plot(adc.f, sqrt(adc.pxx)./pd200{1}.notes.pre_amp.gain, 'color', colors(3,:), 'DisplayName', '$\Gamma_{q_{ad}}/|G_a|$') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [$V/\sqrt{Hz}$]'); leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ylim([1e-10, 4e-4]); xlim([1, 5e3]); xticks([1e0, 1e1, 1e2, 1e3]) %% Load all the measurements pd200_tf = {}; for i = 1:6 pd200_tf(i) = {load(['tf_pd200_' num2str(i) '_10uF_small_signal.mat'], 't', 'Vin', 'Vout', 'notes')}; end % Compute sampling Frequency Ts = (pd200_tf{1}.t(end) - pd200_tf{1}.t(1))/(length(pd200_tf{1}.t)-1); % Compute all the transfer functions Nfft = floor(1.0/Ts); win = hanning(Nfft); Noverlap = floor(Nfft/2); for i = 1:length(pd200_tf) [tf_est, f] = tfestimate(pd200_tf{i}.Vin, 20*pd200_tf{i}.Vout, win, Noverlap, Nfft, 1/Ts); pd200_tf{i}.tf = tf_est(f<=5e3); pd200_tf{i}.f = f(f<=5e3); end % Amplified model Gp = 20/(1 + s/2/pi/25e3); figure; tiledlayout(3, 1, 'TileSpacing', 'compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; plot(pd200_tf{1}.f, abs(pd200_tf{1}.tf), '-', 'color', [colors(2,:), 0.5], 'linewidth', 2.5, 'DisplayName', 'Measurement') plot(pd200_tf{1}.f, abs(squeeze(freqresp(Gp, pd200_tf{1}.f, 'Hz'))), '--', 'color', colors(2,:), 'DisplayName', '$1^{st}$ order LPF') hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Magnitude [V/V]'); set(gca, 'XTickLabel',[]); hold off; ylim([1, 1e2]); leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ax2 = nexttile; hold on; plot(pd200_tf{1}.f, 180/pi*unwrap(angle(pd200_tf{1}.tf)), '-', 'color', [colors(2,:), 0.5], 'linewidth', 2.5) plot(pd200_tf{1}.f, 180/pi*unwrap(angle(squeeze(freqresp(Gp, pd200_tf{1}.f, 'Hz')))), '--', 'color', colors(2,:)) set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); hold off; yticks(-360:2:360); ylim([-13, 1]); linkaxes([ax1,ax2],'x'); xlim([1, 5e3]); %% Load all the measurements enc = {}; for i = 1:6 enc(i) = {load(['mat/noise_meas_100s_20kHz_' num2str(i) '.mat'], 't', 'x')}; end % Compute sampling Frequency Ts = (enc{1}.t(end) - enc{1}.t(1))/(length(enc{1}.t)-1); Nfft = floor(1.0/Ts); win = hanning(Nfft); Noverlap = floor(Nfft/2); for i = 1:length(enc) [pxx, f] = pwelch(detrend(enc{i}.x, 0), win, Noverlap, Nfft, 1/Ts); enc{i}.pxx = pxx(f<=5e3); enc{i}.pxx(2) = enc{i}.pxx(3); % Remove first point which corresponds to drifts enc{i}.f = f(f<=5e3); end %% Measured Amplitude Spectral Density of the encoder position noise figure; hold on; plot(enc{1}.f, sqrt(enc{1}.pxx), 'color', colors(4,:)); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [$m/\sqrt{Hz}$]'); xlim([1, 5e3]); ylim([1e-12, 1e-8]); %% Estimate the resulting errors induced by noise of instruments f = dac.f; % Vertical direction psd_z_dac = 6*(abs(squeeze(freqresp(Gd('z', 'nda1' ), f, 'Hz'))).^2).*dac.pxx; psd_z_adc = 6*(abs(squeeze(freqresp(Gd('z', 'nad1' ), f, 'Hz'))).^2).*adc.pxx; psd_z_amp = 6*(abs(squeeze(freqresp(Gd('z', 'namp1'), f, 'Hz'))).^2).*pd200{1}.pxx; psd_z_enc = 6*(abs(squeeze(freqresp(Gd('z', 'ddL1' ), f, 'Hz'))).^2).*enc{1}.pxx; psd_z_tot = psd_z_dac + psd_z_adc + psd_z_amp + psd_z_enc; rms_z_dac = sqrt(trapz(f, psd_z_dac)); rms_z_adc = sqrt(trapz(f, psd_z_adc)); rms_z_amp = sqrt(trapz(f, psd_z_amp)); rms_z_enc = sqrt(trapz(f, psd_z_enc)); rms_z_tot = sqrt(trapz(f, psd_z_tot)); % Lateral direction psd_y_dac = 6*(abs(squeeze(freqresp(Gd('y', 'nda1' ), f, 'Hz'))).^2).*dac.pxx; psd_y_adc = 6*(abs(squeeze(freqresp(Gd('y', 'nad1' ), f, 'Hz'))).^2).*adc.pxx; psd_y_amp = 6*(abs(squeeze(freqresp(Gd('y', 'namp1'), f, 'Hz'))).^2).*pd200{1}.pxx; psd_y_enc = 6*(abs(squeeze(freqresp(Gd('y', 'ddL1' ), f, 'Hz'))).^2).*enc{1}.pxx; psd_y_tot = psd_y_dac + psd_y_adc + psd_y_amp + psd_y_enc; rms_y_tot = sqrt(trapz(f, psd_y_tot)); %% Closed-loop noise budgeting using measured noise of instrumentation figure; hold on; plot(f, sqrt(psd_z_amp), 'color', [colors(2,:)], 'linewidth', 2.5, 'DisplayName', 'PD200'); plot(f, sqrt(psd_z_dac), 'color', [colors(1,:)], 'linewidth', 2.5, 'DisplayName', 'DAC') plot(f, sqrt(psd_z_adc), 'color', [colors(3,:)], 'linewidth', 2.5, 'DisplayName', 'ADC') plot(f, sqrt(psd_z_tot), 'k-', 'DisplayName', sprintf('Total: %.1f nm RMS', 1e9*rms_z_tot)); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('ASD [$m/\sqrt{Hz}$]'); leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; xlim([1, 5e3]); ylim([1e-14, 1e-9]); xticks([1e0, 1e1, 1e2, 1e3]);