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The performance of a Stewart platform depends on its geometric configuration, especially the orientation
of its struts and the positioning of its joints. During the conceptual design phase of the nano-hexapod,
a preliminary geometry was selected based on general principles without detailed optimization. As the
project advanced to the detailed design phase, a rigorous analysis of how geometry influences system
performance became essential to ensure that the final design would meet the demanding requirements
of the Nano Active Stabilization System (NASS).

In this chapter, the nano-hexapod geometry is optimized through careful analysis of how design param-
eters influence critical performance aspects: attainable workspace, mechanical stiffness, strut-to-strut
coupling for decentralized control strategies, and dynamic response in Cartesian coordinates.

The chapter begins with a comprehensive review of existing Stewart platform designs in Section 1, sur-
veying various approaches to geometry, actuation, sensing, and joint design from the literature. Section
2 develops the analytical framework that connects geometric parameters to performance characteris-
tics, establishing quantitative relationships that guide the optimization process. Section 3 examines the
cubic configuration a specialized architecture that has garnered significant attention for its purported
advantages—to evaluate its suitability for the nano-hexapod application. Finally, Section 4 presents
the optimized nano-hexapod geometry derived from these analyses and demonstrates how it addresses
the specific requirements of the NASS.
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1 Review of Stewart platforms

As was explained in the conceptual phase, Stewart platforms have the following key elements: two plates
connected by six struts, with each strut composed of a joint at each end, an actuator, and one or several
sensors. The exact geometry (i.e., position of joints and orientation of the struts) can be chosen freely
depending on the application, which results in many different designs found in the literature. The focus
is here made on Stewart platforms for nano-positioning and vibration control. Long stroke Stewart
platforms are not considered here as their design imposes other challenges. Some Stewart platforms
found in the literature are listed in Table 1.1.

Table 1.1: Examples of Stewart platform developed. When not specifically indicated, sensors are
included in the struts. All presented Stewart platforms are using flexible joints. The table
is ordered by appearance in the literature

Geometry Actuators Sensors Reference

Cubic Magnetostrictive Force, Accelerometers [1]–[3]
Figure 1.1a Cubic Voice Coil (0.5 mm) Force [4], [5]

Cubic Voice Coil (10 mm) Force, LVDT, Geophones [6]–[8]
Figure 1.1b Cubic Voice Coil Force [9]–[13]

Cubic Piezoelectric (25µm) Force [14]
Figure 1.1c Cubic APA (50µm) Force [15]
Figure 1.2a Non-Cubic Voice Coil Accelerometers [16]

Cubic Voice Coil Force [17], [18]
Figure 1.1d Cubic Piezoelectric (50µm) Geophone [19]

Non-Cubic Piezoelectric (16µm) Eddy Current [20]
Cubic Piezoelectric (120µm) (External) Capacitive [21], [22]

Non-Cubic Piezoelectric (160µm) (External) Capacitive [23]
Figure 1.2b Non-cubic Magnetostrictive Accelerometer [24]

Non-Cubic Piezoelectric Strain Gauge [25]
Cubic Voice Coil Accelerometer [26]–[28]
Cubic Piezoelectric Force [29]

Almost cubic Voice Coil Force, Accelerometer [30], [31]
Figure 1.2c Almost cubic Piezoelectric Force, Strain gauge [32]
Figure 1.2d Non-Cubic 3-phase rotary motor Rotary Encoder [33], [34]

All presented Stewart platforms utilize flexible joints, as this is a prerequisite for nano-positioning
capabilities. Flexible joints can have various implementations, which will be discussed when designing
the nano-hexapod flexible joints. In terms of actuation, most Stewart platforms employ either voice coil
actuators (such as the ones shown in Figures 1.1a, 1.1b and 1.2a) or piezoelectric actuators (such as the
ones shown in Figures 1.1c, 1.1d and 1.2c). Various sensors are integrated in the struts or on the plates
depending on the application requirements. These include force sensors, inertial sensors, or relative
displacement sensors. The actuator and sensor selection for the nano-hexapod will also be described in
the next section.

There are two main categories of Stewart platform geometry. The first is cubic architecture (some
exampled are presented in Figure 1.1), where struts are positioned along six sides of a cube (and are
therefore orthogonal to each other). Such specific architecture has some special properties that will be
studied in Section 3. The second is non-cubic architecture (Figure 1.2), where the orientation of the
struts and position of the joints can be optimized based on performance criteria. The effect of strut
orientation and position of the joints on the Stewart platform properties is discussed Section 2.
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(a) California Institute of Technology - USA (b) University of Wyoming - USA

(c) ULB - Belgium (d) Naval Postgraduate School - USA

Figure 1.1: Some examples of developped Stewart platform with Cubic geometry. (a), (b), (c), (d)
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(a) Naval Postgraduate School - USA (b) Beihang University - China

(c) Nanjing University - China (d) University of Twente - Netherlands

Figure 1.2: Some examples of developped Stewart platform with non-cubic geometry. (a), (b), (c), (d)
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2 Effect of geometry on Stewart platform
properties

As was demonstrated during the conceptual phase, the geometry of the Stewart platform impacts
the stiffness and compliance characteristics, the mobility or workspace, the force authority, and the
dynamics of the manipulator. It is therefore essential to understand how the geometry impacts these
properties, and to develop methodologies for optimizing the geometry for specific applications.

An important analytical tool for this study is the Jacobian matrix, which depends on bi (joint position
with respect to the top platform) and ŝi (orientation of struts). The choice of frames ({A} and {B}),
independently of the physical Stewart platform geometry, impacts the obtained kinematics and stiffness
matrix, as these are defined for forces and motion evaluated at the chosen frame.

2.1 Platform Mobility / Workspace

The mobility of the Stewart platform (or any manipulator) is defined as the range of motion that it can
perform. It corresponds to the set of possible poses (i.e., combined translation and rotation) of frame
{B} with respect to frame {A}. This represents a six-dimensional property which is difficult to represent.
Depending on the applications, only the translation mobility (i.e., fixed orientation workspace) or the
rotation mobility may be represented. This approach is equivalent to projecting the six-dimensional
value into a three-dimensional space, which is easier to represent.

Mobility of parallel manipulators is inherently difficult to study as the translational and orientation
workspace are coupled [35]. The analysis is significantly simplified when considering small motions, as
the Jacobian matrix can be used to link the strut motion to the motion of frame {B} with respect to
{A} through (2.1), which is a linear equation.


δl1
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δl4
δl5
δl6

 =



Aŝ1
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(Ab1 × Aŝ1)
T

Aŝ2
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(Ab2 × Aŝ2)
T

Aŝ3
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(Ab3 × Aŝ3)
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Aŝ4
T

(Ab4 × Aŝ4)
T

Aŝ5
T

(Ab5 × Aŝ5)
T

Aŝ6
T

(Ab6 × Aŝ6)
T




δx
δy
δz
δθx
δθy
δθz

 (2.1)

Therefore, the mobility of the Stewart platform (defined as the set of achievable [δx δy δz δθx δθy δθz])
depends on two key factors: the stroke of each strut and the geometry of the Stewart platform (embodied
in the Jacobian matrix). More specifically, the XYZ mobility only depends on the si (orientation of
struts), while the mobility in rotation also depends on bi (position of top joints).
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Mobility in translation For simplicity, only translations are first considered (i.e., fixed orientation of
the Stewart platform). In the general case, the translational mobility can be represented by a 3D shape
having 12 faces, where each actuator limits the stroke along its axis in positive and negative directions.
The faces are therefore perpendicular to the strut direction. The obtained mobility for the Stewart
platform geometry shown in Figure 2.1a is computed and represented in Figure 2.1b.

(a) Stewart platform geometry (b) Translational mobility

Figure 2.1: Example of one Stewart platform (a) and associated translational mobility (b)

With the previous interpretations of the 12 faces making the translational mobility 3D shape, it can
be concluded that for a strut stroke of ±d, a sphere with radius d is contained in the 3D shape and
touches it along the six lines defined by the strut axes, as illustrated in Figure 2.1b. This means that
the mobile platform can be translated in any direction with a stroke of d.

To better understand how the geometry of the Stewart platform impacts the translational mobility, two
configurations are compared with struts oriented vertically (Figure 2.2a) and struts oriented horizontally
(Figure 2.2b). The vertically oriented struts lead to greater stroke in the horizontal direction and reduced
stroke in the vertical direction (Figure 2.2c). Conversely, horizontal oriented struts provide more stroke
in the vertical direction.

It may seem counterintuitive that less stroke is available in the direction of the struts. This phenomenon
occurs because the struts form a lever mechanism that amplifies the motion. The amplification factor
increases when the struts have a high angle with the direction of motion and equals one when aligned
with the direction of motion.

(a) Vertical struts (b) Horizontal struts (c) Translational mobility

Figure 2.2: Effect of strut orientation on the obtained mobility in translation. Two Stewart platform
geometry are considered: struts oriented vertically (a) and struts oriented vertically (b).
Obtained mobility for both geometry are shown in (c).

Mobility in rotation As shown by equation (2.1), the rotational mobility depends both on the orien-
tation of the struts and on the location of the top joints. Similarly to the translational case, to increase
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the rotational mobility in one direction, it is advantageous to have the struts more perpendicular to the
rotational direction.

For instance, having the struts more vertical (Figure 2.2a) provides less rotational stroke along the
vertical direction than having the struts oriented more horizontally (Figure 2.2b).

Two cases are considered with the same strut orientation but with different top joint positions: struts
positioned close to each other (Figure 2.3a) and struts positioned further apart (Figure 2.3b). The
mobility for pure rotations is compared in Figure 2.3c. Having struts further apart decreases the “lever
arm” and therefore reduces the rotational mobility.

(a) Struts close together (b) Struts far apart (c) Rotational mobility

Figure 2.3: Effect of strut position on the obtained mobility in rotation. Two Stewart platform geom-
etry are considered: struts close to each other (a) and struts further appart (b). Obtained
mobility for both geometry are shown in (c).

Combined translations and rotations It is possible to consider combined translations and rotations,
although displaying such mobility becomes more complex. For a fixed geometry and a desired mobility
(combined translations and rotations), it is possible to estimate the required minimum actuator stroke.
This analysis was conducted in Section 4 to estimate the required actuator stroke for the nano-hexapod
geometry.

2.2 Stiffness

The stiffness matrix defines how the nano-hexapod deforms (frame {B} with respect to frame {A}) due
to static forces/torques applied on {B}. It depends on the Jacobian matrix (i.e., the geometry) and
the strut axial stiffness as shown in equation (2.2). The contribution of joints stiffness is not considered
here, as there were optimized after the geometry was fixed, but several work were done to quantify the
impact of the flexible joint stiffness [11], [36].

K = JTKJ (2.2)

It is assumed that the stiffness of all struts is the same: K = k · I6. In that case, the obtained stiffness
matrix linearly depends on the strut stiffness k, and is structured as shown in equation (2.3).
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K = kJTJ = k

[
Σ6

i=0ŝi · ŝTi Σ6
i=0ŝi · (Abi × Aŝi)

T

Σ6
i=0(

Abi × Aŝi) · ŝTi Σ6
i=0(

Abi × Aŝi) · (Abi × Aŝi)
T

]
(2.3)

Translation Stiffness As shown by equation (2.3), the translation stiffnesses (the 3× 3 top left terms
of the stiffness matrix) only depend on the orientation of the struts and not their location: ŝi · ŝTi . In the
extreme case where all struts are vertical with si = [0, 0, 1], a vertical stiffness of 6k is achieved, but
with null stiffness in the X and Y directions. If two struts are aligned along the X axis, two struts along
the Y axis, and two struts along the Z axis, then ŝi · ŝTi = 2I3, resulting in well-distributed stiffness
along all directions. This configuration corresponds to the cubic architecture presented in Section 3.

When struts are oriented more vertically (Figure 2.2a), vertical stiffness increases while horizontal
stiffness decreases. Additionally, Rx and Ry stiffness increases while Rz stiffness decreases. The opposite
conclusions apply if struts are oriented more horizontally (Figure 2.2b).

Rotational Stiffness The rotational stiffnesses depend both on the orientation of the struts and on the
location of the top joints (with respect to the considered center of rotation, i.e., the location of frame
{B}). With the same orientation but increased distances (bi) by a factor of 2, the rotational stiffness
is increased by a factor of 4. Therefore, the compact Stewart platform depicted in Figure 2.3a has less
rotational stiffness than the Stewart platform shown in Figure 2.3b.

Diagonal Stiffness Matrix Having a diagonal stiffness matrix K can be beneficial for control purposes
as it would make the plant in the Cartesian frame decoupled at low frequency. This property depends
on both the geometry and the chosen {B} frame. For specific geometry and choice of {B} frame, it is
possible to achieve a diagonal K matrix. This is discussed in Section 3.1.

2.3 Dynamical properties

The dynamical equations (both in the Cartesian frame and in the frame of the struts) for the Stewart
platform were derived during the conceptual phase with simplifying assumptions (massless struts and
perfect joints). The dynamics depend both on the geometry (Jacobian matrix) and on the payload
being placed on top of the platform. Under very specific conditions, the equations of motion in the
Cartesian frame, given by equation (2.4), can be decoupled. These conditions are studied in Section
3.2.

X
F (s) = (Ms2 + JTCJs+ JTKJ)−1 (2.4)

In the frame of the struts, the equations of motion given by equation (2.5) are well decoupled at
low frequency. This is why most Stewart platforms are controlled in the frame of the struts: below
the resonance frequency, the system is decoupled and SISO control may be applied for each strut,
independently of the payload being used.

L
f
(s) = (J−TMJ−1s2 + C +K)−1 (2.5)
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Coupling between sensors (force sensors, relative position sensors, inertial sensors) in different struts
may also be important for decentralized control. In section 3.3, it will be studied whether the Stewart
platform geometry can be optimized to have lower coupling between the struts.

Conclusion

The effects of two changes in the manipulator’s geometry, namely the position and orientation of the
legs, are summarized in Table 2.1. These results could have been easily deduced based on mechanical
principles, but thanks to the kinematic analysis, they can be quantified. These trade-offs provide
important guidelines when choosing the Stewart platform geometry.

Table 2.1: Effect of a change in geometry on the manipulator’s stiffness, force authority and stroke

Struts Vertically Oriented Increased separation

Vertical stiffness ↗ =
Horizontal stiffness ↘ =
Vertical rotation stiffness ↘ ↗
Horizontal rotation stiffness ↗ ↗

Vertical stroke ↘ =
Horizontal stroke ↗ =
Vertical rotation stroke ↗ ↘
Horizontal rotation stroke ↘ ↘
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3 The Cubic Architecture

The Cubic configuration for the Stewart platform was first proposed in [2]. This configuration is
characterized by active struts arranged in a mutually orthogonal configuration connecting the corners
of a cube, as shown in Figure 3.1a.

Typically, the struts have similar length to the cube’s edges, as illustrated in Figure 3.1a. Practical
implementations of such configurations can be observed in Figures 1.1a, 1.1b and 1.1d. It is also possible
to implement designs with strut lengths smaller than the cube’s edges (Figure 3.1b), as exemplified in
Figure 1.1c.

(a) sub caption a (b) sub caption b

Figure 3.1: Typical Stewart platform cubic architectures. (a) (b)

Several advantageous properties attributed to the cubic configuration have contributed to its widespread
adoption [2], [13], [18]: simplified kinematics relationships and dynamical analysis [2]; uniform stiffness
in all directions [17]; uniform mobility [37, chapt.8.5.2]; and minimization of the cross coupling between
actuators and sensors in different struts [18]. This minimization is attributed to the fact that the struts
are orthogonal to each other, and is said to facilitate collocated sensor-actuator control system design,
i.e., the implementation of decentralized control [2], [7].

These properties are examined in this section to assess their relevance for the nano-hexapod. The
mobility and stiffness properties of the cubic configuration are analyzed in Section 3.1. Dynamical
decoupling is investigated in Section 3.2, while decentralized control, crucial for the NASS, is examined
in Section 3.3. Given that the cubic architecture imposes strict geometric constraints, alternative
designs are proposed in Section 3.4. The ultimate objective is to determine the suitability of the cubic
architecture for the nano-hexapod.
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3.1 Static Properties

Stiffness matrix for the Cubic architecture Consider the cubic architecture depicted in Figure 3.2a.
Consider the cubic architecture shown in Figure 3.2a. The unit vectors corresponding to the edges of
the cube are described by equation (3.1).

ŝ1 =

√2/
√
3

0

1/
√
3

 ŝ2 =
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√
2
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√
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√
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√
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√
2
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Figure 3.2: Cubic architecture. Struts are represented un blue. The cube’s center by a black dot. The
Struts can match the cube’s edges (a) or just take a portion of the edge (b)

Coordinates of the cube’s vertices relevant for the top joints, expressed with respect to the cube’s center,
are shown in equation (3.2).

b̃1 = b̃2 = Hc


1√
2

−
√
3√
2
1
2

 , b̃3 = b̃4 = Hc


1√
2√
3√
2
1
2

 , b̃5 = b̃6 = Hc

−2√
2

0
1
2

 (3.2)

In the case where top joints are positioned at the cube’s vertices, a diagonal stiffness matrix is obtained
as shown in equation (3.3). Translation stiffness is twice the stiffness of the struts, and rotational
stiffness is proportional to the square of the cube’s size Hc.

K{B}={C} = k


2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 3

2H
2
c 0 0

0 0 0 0 3
2H

2
c 0

0 0 0 0 0 6H2
c

 (3.3)

However, typically, the top joints are not placed at the cube’s vertices but at positions along the cube’s
edges (Figure 3.2b). In that case, the location of the top joints can be expressed by equation (3.4), yet
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the computed stiffness matrix remains identical to Equation (3.3).

bi = b̃i + αŝi (3.4)

The stiffness matrix is therefore diagonal when the considered {B} frame is located at the center of the
cube (shown by frame {C}). This means that static forces (or torques) applied at the cube’s center
will induce pure translations (or rotations around the cube’s center). This specific location where the
stiffness matrix is diagonal is referred to as the “Center of Stiffness” (analogous to the “Center of Mass”
where the mass matrix is diagonal).

Effect of having frame {B} off-centered When the reference frames {A} and {B} are shifted from
the cube’s center, off-diagonal elements emerge in the stiffness matrix.

Considering a vertical shift as shown in Figure 3.2b, the stiffness matrix transforms into that shown in
Equation (3.5). Off-diagonal elements increase proportionally with the height difference between the
cube’s center and the considered {B} frame.

K{B}̸={C} = k


2 0 0 0 −2H 0
0 2 0 2H 0 0
0 0 2 0 0 0
0 2H 0 3

2H
2
c + 2H2 0 0

−2H 0 0 0 3
2H

2
c + 2H2 0

0 0 0 0 0 6H2
c

 (3.5)

This stiffness matrix structure is characteristic of Stewart platforms exhibiting symmetry, and is not an
exclusive property of cubic architectures. Therefore, the stiffness characteristics of the cubic architecture
are only distinctive when considering a reference frame located at the cube’s center. This poses a
practical limitation, as in most applications, the relevant frame (where motion is of interest and forces
are applied) is located above the top platform.

It should be noted that the cube’s center need not be at the “center” of the Stewart platform. This can
lead to interesting architectures shown in Section 3.4.

It should be noted that for the stiffness matrix to be diagonal, the cube’s center need not coincide
with the geometric center of the Stewart platform. This observation leads to the interesting alternative
architectures presented in Section 3.4.

Uniform Mobility The translational mobility of the Stewart platform with constant orientation was
analyzed. Considering limited actuator stroke (elongation of each strut), the maximum achievable
positions in XYZ space were estimated. The resulting mobility in X, Y, and Z directions for the cubic
architecture is illustrated in Figure 3.3a.

The translational workspace analysis reveals that for the cubic architecture, the achievable positions
form a cube whose axes align with the struts, with the cube’s edge length corresponding to the strut
axial stroke. This findings suggest that the mobility pattern is more nuanced than sometimes described
in the literature [11], exhibiting uniformity primarily along directions aligned with the cube’s edges
rather than uniform spherical distribution in all XYZ directions. This configuration still offers more
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consistent mobility characteristics compared to alternative architectures illustrated in Figure 2.1. It is
worth noting that the translational mobility properties remain independent of the cube’s size.

The rotational mobility, illustrated in Figure 3.3b, exhibit greater achievable angular displacements in
the Rx and Ry directions compared to the Rz direction. Furthermore, an inverse relationship exists
between the cube’s dimension and rotational mobility, with larger cube sizes corresponding to more
limited angular displacement capabilities.

(a) Mobility in translation (b) Mobility in rotation

Figure 3.3: Mobility of a Stewart platform with Cubic architecture. Both for translations (a) and
rotations (b)

3.2 Dynamical Decoupling

This section examines the dynamics of the cubic architecture in the Cartesian frame. This corresponds
to the transfer function from forces and torques F to translations and rotations X of the top platform.
When relative motion sensors are integrated in each strut (measuring L), the pose X is computed using
the Jacobian matrix as shown in Figure 3.4.

The analysis aims to identify whether the cubic configuration exhibits special properties for control in
the Cartesian frame.

Cartesian Plant

J−T G J−1KX
F τ L •X

Figure 3.4: From Strut coordinate to Cartesian coordinate using the Jacobian matrix

Low frequency and High frequency coupling As derived during the conceptual design phase, the
dynamics from F to X is described by Equation (??). At low frequency, the static behavior of the
platform depends on the stiffness matrix (??). In Section 3.1, it was demonstrated that for the cubic
configuration, the stiffness matrix is diagonal if frame {B} is positioned at the cube’s center. In this
case, the “Cartesian” plant is decoupled at low frequency. At high frequency, the behavior is governed
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by the mass matrix (evaluated at frame {B}) (??). To achieve a diagonal mass matrix, the center of
mass of the mobile components must coincide with the {B} frame, and the principal axes of inertia
must align with the axes of the {B} frame.

Figure 3.5: Cubic stewart platform with top cylindrical payload

To verify these properties, a cubic Stewart platform with a cylindrical payload on top (Figure 3.5) was
analyzed. Transfer functions from F to X were computed for two specific locations of the {B} frames.
When the {B} frame was positioned at the center of mass, coupling at low frequency was observed
due to the non-diagonal stiffness matrix (Figure 3.6a). Conversely, when positioned at the center of
stiffness, coupling occurred at high frequency due to the non-diagonal mass matrix (Figure 3.6b).
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(a) {B} at the center of mass
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(b) {B} at the cube’s center

Figure 3.6: Transfer functions for a Cubic Stewart platform expressed in the Cartesian frame. Two
locations of the {B} frame are considered: at the cube’s center (b) and at the center of
mass of the moving body (a).

Payload’s CoM at the cube’s center An effective strategy for improving dynamical performances
involves aligning the cube’s center (center of stiffness) with the center of mass of the moving components
[38]. This can be achieved by positioning the payload below the top platform, such that the center of
mass of the moving body coincides with the cube’s center (Figure 3.7a). This approach was physically
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implemented in several studies [9], [13], as shown in Figure 1.1b. The resulting dynamics are indeed
well-decoupled (Figure 3.7b), benefiting from simultaneously diagonal stiffness and mass matrices. The
primary limitation of this approach is that, for many applications including the nano-hexapod, the
payload must be positioned above the top platform. If a design similar to Figure 3.7a were employed
for the nano-hexapod, the X-ray beam would intersect with the struts during spindle rotation.

(a) Payload at the cube’s center

100 102 104

Frequency [Hz]

10!10

10!8

10!6

10!4

A
m

p
li
tu

d
e

[m
/
V

]

Dx=Fx

Dy=Fy

Dz=Fz

Rx=Mx

Ry=My

Rz=Mz

Rx=Fy

Ry=Fx

Dx=My

Dy=Mx

(b) Fully decoupled cartesian plant

Figure 3.7: Cubic Stewart platform with payload at the cube’s center (a). Obtained cartesian plant
is fully decoupled (b)

Conclusion The analysis of dynamical properties of the cubic architecture yields several important
conclusions. Static decoupling, characterized by a diagonal stiffness matrix, is achieved when reference
frames {A} and {B} are positioned at the cube’s center. This property can also be obtained with non-
cubic architectures that exhibit symmetrical strut arrangements. Dynamic decoupling requires both
static decoupling and coincidence of the mobile platform’s center of mass with reference frame {B}.
While this configuration offers powerful control advantages, it requires positioning the payload at the
cube’s center, which is highly restrictive and often impractical. Additionally, the cubic architecture
provides uniform stiffness in XYZ directions, which may be advantageous for certain applications.

3.3 Decentralized Control

The orthogonal arrangement of struts in the cubic architecture suggests a potential minimization of
inter-strut coupling, which could theoretically create favorable conditions for decentralized control.
This section examines whether the cubic architecture actually demonstrates advantageous properties
for decentralized control in the frame of the struts.

Two sensor types integrated in the struts are considered: displacement sensors and force sensors. The
control architecture is illustrated in Figure 3.8, where KL represents a diagonal transfer function ma-
trix.

The obtained plant dynamics in the frame of the struts are compared for two Stewart platforms. The
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Strut Plant

GKL
τ •L

Figure 3.8: From Strut coordinate to Cartesian coordinate using the Jacobian matrix

first employs a cubic architecture shown in Figure 3.5. The second uses a non-cubic Stewart platform
shown in Figure 3.9, featuring identical payload and strut dynamics but with struts oriented more
vertically to differentiate it from the cubic architecture.

Figure 3.9: Stewart platform with non-cubic architecture

Relative Displacement Sensors The transfer functions from actuator force in each strut to the relative
motion of the struts are presented in Figure 3.10. As anticipated from the equations of motion from f
to L (2.5), the 6 × 6 plant is decoupled at low frequency. At high frequency, coupling is observed as
the mass matrix projected in the strut frame is not diagonal.

No significant advantage is evident for the cubic architecture (Figure 3.10b) compared to the non-cubic
architecture (Figure 3.10a). The resonance frequencies differ between the two cases because the more
vertical strut orientation in the non-cubic architecture alters the stiffness properties of the Stewart
platform, consequently shifting the frequencies of various modes.

Force Sensors Similarly, the transfer functions from actuator force to force sensors in each strut were
analyzed for both cubic and non-cubic Stewart platforms. The results are presented in Figure 3.11.
The system demonstrates good decoupling at high frequency in both cases, with no evidence suggesting
any advantage for the cubic architecture.

Conclusion The presented results do not demonstrate the pronounced decoupling advantages often as-
sociated with cubic architectures in the literature. Both the cubic and non-cubic configurations exhibited
similar coupling characteristics in our modeling scenarios, suggesting that the benefits of orthogonal
strut arrangement may be more nuanced than commonly described for decentralized control.
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(b) Cubic architecture

Figure 3.10: Bode plot of the transfer functions from actuator force to relative displacement sensor in
each strut. Both for a non-cubic architecture (a) and for a cubic architecture (b)
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(b) Cubic architecture

Figure 3.11: Bode plot of the transfer functions from actuator force to force sensor in each strut. Both
for a non-cubic architecture (a) and for a cubic architecture (b)
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3.4 Cubic architecture with Cube’s center above the top platform

As demonstrated in Section 3.2, the cubic architecture can exhibit advantageous dynamical properties
when the center of mass of the moving body coincides with the cube’s center, resulting in diagonal mass
and stiffness matrices. As shown in Section 3.1, the stiffness matrix is diagonal when the considered
{B} frame is located at the cube’s center. However, the {B} frame is typically positioned above the
top platform where forces are applied and displacements are measured.

This section proposes modifications to the cubic architecture to enable positioning the payload above the
top platform while still leveraging the advantageous dynamical properties of the cubic configuration.

Three key parameters define the geometry of the cubic Stewart platform: H, the height of the Stewart
platform (distance from fixed base to mobile platform); Hc, the height of the cube, as shown in Figure
3.2a; and HCoM , the height of the center of mass relative to the mobile platform (coincident with the
cube’s center).

Depending on the cube’s size Hc in relation to H and HCoM , different designs emerge. In the following
examples, H = 100mm and HCoM = 20mm.

Small cube When the cube size Hc is smaller than twice the height of the CoM HCoM (3.6), the
resulting design is shown in Figure 3.12.

Hc < 2HCoM (3.6)

This configuration is similar to that described in [20], although they do not explicitly identify it as a
cubic configuration. Adjacent struts are parallel to each other, differing from the typical architecture
where parallel struts are positioned opposite to each other.

This approach yields a compact architecture, but the small cube size may result in insufficient rotational
stiffness.

(a) Isometric view (b) Side view (c) Top view

Figure 3.12: Cubic architecture with cube’s center above the top platform. A cube height of 40mm is
used.
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Medium sized cube Increasing the cube’s size such that (3.7) is verified produces an architecture with
intersecting struts (Figure 3.13).

2HCoM < Hc < 2(HCoM +H) (3.7)

This configuration resembles the design proposed in [32] (Figure 1.2c), although their design is not
strictly cubic.

(a) Isometric view (b) Side view (c) Top view

Figure 3.13: Cubic architecture with cube’s center above the top platform. A cube height of 140mm
is used.

Large cube When the cube’s height exceeds twice the sum of the platform height and CoM height
(3.8), the architecture shown in Figure 3.14 is obtained.

2(HCoM +H) < Hc (3.8)

(a) Isometric view (b) Side view (c) Top view

Figure 3.14: Cubic architecture with cube’s center above the top platform. A cube height of 240mm
is used.
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Platform size In order to determine the approximate size of the platform as a function of For the
proposed configuration, the top joints bi (resp. the bottom joints ai) and are positioned on a circle
with radius Rbi (resp. Rai) described by Equation (3.9).

Rbi =

√
3

2
H2

c + 2H2
CoM (3.9a)

Rai
=

√
3

2
H2

c + 2(HCoM +H)2 (3.9b)

Since the rotational stiffness for the cubic architecture scales with the square of the cube’s height
(3.3), the cube’s size can be determined based on rotational stiffness requirements. Subsequently, using
Equation (3.9), the dimensions of the top and bottom platforms can be calculated.

Conclusion The configurations proposed in this analysis represent derivations from the classical cubic
architecture, wherein the cube’s center is typically located at the Stewart platform’s center. Three
distinct configurations have been identified, each with different geometric arrangements but sharing
the common characteristic that the cube’s center is positioned above the top platform. This structural
modification enables the alignment of the moving body’s center of mass with the center of stiffness,
resulting in beneficial decoupling properties in the Cartesian frame.

These proposed architectures maintain the fundamental advantages inherent to the cubic configuration,
such as uniform stiffness and uniform mobility, while providing favorable dynamical properties when
payloads are placed on top of the mobile platform. This approach allows for practical payload positioning
while preserving the desirable control characteristics associated with the cubic architecture, making
these configurations potentially useful for applications requiring both specific payload placement and
good dynamic performance.

Conclusion

The analysis of the cubic architecture for Stewart platforms has yielded several important findings.
While the cubic configuration provides uniform stiffness in the XYZ directions, it stiffness property
becomes particularly advantageous when forces and torques are applied at the cube’s center. Under
these conditions, the stiffness matrix becomes diagonal, resulting in a decoupled Cartesian plant at low
frequencies.

Regarding mobility, the translational capabilities of the cubic configuration exhibit uniformity along
the directions of the orthogonal struts, rather than complete uniformity in the Cartesian space. This
understanding refines the characterization of cubic architecture mobility commonly presented in litera-
ture.

The analysis of decentralized control in the frame of the struts revealed more nuanced results than
expected. While cubic architectures are frequently associated with reduced coupling between actuators
and sensors, our comparative study showed that these benefits may be more subtle or context-dependent
than commonly described. Under the conditions analyzed, the coupling characteristics of cubic and non-
cubic configurations appeared similar.
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Fully decoupled dynamics can be achieved when the center of mass of the moving body coincides with
the cube’s center. However, this arrangement presents practical challenges, as the cube’s center is
traditionally located between the top and bottom platforms, making payload placement problematic
for many applications.

To address this limitation, modified cubic architectures have been proposed with the cube’s center
positioned above the top platform. These configurations maintain the fundamental advantages of the
cubic architecture while enabling practical payload placement.
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4 Nano Hexapod

Based on previous analysis, this section aims to determine the nano-hexapod geometry.

For the NASS, the chosen reference frames {A} and {B} coincide with the sample’s point of interest,
which is positioned 150mm above the top platform. This is the location where precise control of the
sample’s position is required, as it is where the x-ray beam is focused.

4.1 Requirements

The design of the nano-hexapod must satisfy several constraints. The device should fit within a cylinder
with radius of 120mm and height of 95mm. Based on the measured errors of all stages of the micro-
stations, and incorporating safety margins, the required mobility should enable combined translations
in any direction of ±50µm. At any position, the system should be capable of performing Rx and Ry

rotations of ±50µrad. Regarding stiffness, the resonance frequencies should be well above the maximum
rotational velocity of 2π rad/s to minimize gyroscopic effects, while remaining below the problematic
modes of the micro-station to ensure decoupling from its complex dynamics. In terms of dynamics, the
design should facilitate implementation of Integral Force Feedback (IFF) in a decentralized manner,
and provide good decoupling for the high authority controller in the frame of the struts.

A significant challenge in optimizing the nano-hexapod design arises from the variety of payloads that
will be used, with masses ranging from 1 to 50kg. This variation in payload characteristics makes it
impossible to develop a single geometry that provides optimal dynamical properties for all possible
configurations.

4.2 Obtained Geometry

Based on the previous analysis of Stewart platform configurations, while the geometry can be optimized
to achieve the desired trade-off between stiffness and mobility in different directions, the wide range of
potential payloads complicates the optimization process for obtaining consistent dynamical properties
across all usage scenarios.

For the nano-hexapod design, the struts were oriented more vertically compared to a cubic architecture
due to several important considerations. First, the requirements in the vertical direction are more
stringent than in the horizontal direction. This vertical strut orientation decreases the amplification
factor in the vertical direction, providing greater resolution and reducing the effects of actuator noise.
Second, the micro-station’s vertical modes exhibit higher frequencies than its lateral modes. Therefore,
higher resonance frequencies of the nano-hexapod in the vertical direction compared to the horizontal
direction enhance the decoupling properties between the micro-station and the nano-hexapod.
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Regarding dynamic properties, particularly for control in the frame of the struts, no specific optimization
was implemented since the analysis revealed that the particular geometry has minimal impact on the
resulting coupling characteristics.

Consequently, the geometry was selected according to practical constraints. The height between the two
plates is set at 95mm. Both platforms utilize the maximum available size, with joints offset by 15mm
from the plate surfaces and positioned along circles with radii of 120mm for the fixed joints and 110mm
for the mobile joints. The positioning angles, as shown in Figure 4.1b, are [255, 285, 15, 45, 135, 165]
degrees for the top joints and [220, 320, 340, 80, 100, 200] degrees for the bottom joints.

b6 b5

56

a5a6
a4a1

41

b4b1
b3b2

32

a3a2

(a) Isometric view

a5 a4

a2a1

a6 a3

1

4

6

5

3

2

b5

b6

b2b1

b4

b3

(b) Top view

Figure 4.1: Obtained architecture for the Nano Hexapod

The resulting geometry is illustrated in Figure 4.1. While minor refinements may occur during detailed
mechanical design to address manufacturing and assembly considerations, the fundamental geometry
will remain consistent with this configuration. This geometry serves as the foundation for estimating
required actuator stroke (Section 4.3), determining flexible joint stroke requirements (Section 4.4), per-
forming noise budgeting for instrumentation selection, and developing control strategies. Implementing
a cubic architecture as proposed in Section 3.4 was considered. However, positioning the cube’s center
150mm above the top platform would have resulted in platform dimensions exceeding the maximum
available size. Additionally, to benefit from the cubic configuration’s dynamical properties, each payload
would require careful calibration of inertia before placement on the nano-hexapod, ensuring that its cen-
ter of mass coincides with the cube’s center. Given the impracticality of consistently aligning the center
of mass with the cube’s center, the cubic architecture was deemed unsuitable for the nano-hexapod
application.

4.3 Required Actuator stroke

With the geometry established, the actuator stroke necessary to achieve the desired mobility can be
determined.

The required mobility parameters include combined translations in the XYZ directions of ±50µm
(essentially a cubic workspace). Additionally, at any point within this workspace, combined Rx and Ry

rotations of ±50µrad, with Rz maintained at 0, should be possible.

Calculations based on the selected geometry indicate that an actuator stroke of ±94µm is required
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to achieve the desired mobility. This specification will be used during the actuator selection process.
Figure 4.2 illustrates both the desired mobility (represented as a cube) and the calculated mobility
envelope of the nano-hexapod with an actuator stroke of ±94µm. The diagram confirms that the
required workspace fits within the system’s capabilities.

-100

Y Translation [7m]

0
-100

-50

0

100

Z
T
ra

n
sl
a
ti
o
n

[7
m

]

X Translation [7m]

50

100

100

0
-100

Figure 4.2: Wanted translation mobility of the Nano-Hexapod (grey cube) and computed Mobility
(red volume).

4.4 Required Joint angular stroke

With the nano-hexapod geometry and mobility requirements established, the flexible joint angular
stroke necessary to avoid limiting the achievable workspace can be determined.

This analysis focuses solely on bending stroke, as the torsional stroke of the flexible joints is expected
to be minimal given the absence of vertical rotation requirements.

The required angular stroke for both fixed and mobile joints is calculated to be 1mrad. This specification
will guide the design of the flexible joints.
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5 Conclusion

This chapter has explored the optimization of the nano-hexapod geometry for the Nano Active Stabi-
lization System (NASS).

First, a review of existing Stewart platforms revealed two main geometric categories: cubic architec-
tures, characterized by mutually orthogonal struts arranged along the edges of a cube, and non-cubic
architectures with varied strut orientations. While cubic architectures are prevalent in the literature
and attributed with beneficial properties such as simplified kinematics, uniform stiffness, and reduced
cross-coupling, the performed analysis revealed that some of these advantages may be more nuanced or
context-dependent than commonly described.

The analytical relationships between Stewart platform geometry and its mechanical properties were
established, enabling a better understanding of the trade-offs between competing requirements such
as mobility and stiffness along different axes. These insights were useful during the nano-hexapod
geometry optimization.

For the cubic configuration, complete dynamical decoupling in the Cartesian frame can be achieved
when the center of mass of the moving body coincides with the cube’s center, but this arrangement
is often impractical for real-world applications. Modified cubic architectures with the cube’s center
positioned above the top platform were proposed as a potential solution, but proved unsuitable for the
nano-hexapod due to size constraints and the impracticality of ensuring that different payloads’ centers
of mass would consistently align with the cube’s center.

For the nano-hexapod design, a key challenge was addressing the wide range of potential payloads (1 to
50kg), which made it impossible to optimize the geometry for consistent dynamic performance across
all usage scenarios. This led to a practical design approach where struts were oriented more vertically
than in cubic configurations to address several application-specific needs: achieving higher resolution
in the vertical direction by reducing amplification factors, better matching the micro-station’s modal
characteristics with higher vertical resonance frequencies, and accommodating the stringent vertical
positioning requirements.
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