%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); %% Path for functions, data and scripts addpath('./mat/'); % Path for data addpath('./src/'); % Path for functions %% Colors for the figures colors = colororder; %% Example of a typical "cubic" architecture MO_B = -50e-3; % Position {B} with respect to {M} [m] H = 100e-3; % Height of the Stewart platform [m] Hc = 100e-3; % Size of the useful part of the cube [m] FOc = H + MO_B; % Center of the cube with respect to {F} % here positionned at the frame {B} stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', H, 'MO_B', MO_B); stewart = generateCubicConfiguration(stewart, 'Hc', Hc, 'FOc', FOc, 'FHa', 5e-3, 'MHb', 5e-3); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart, 'K', ones(6,1)); stewart = computeJacobian(stewart); stewart = initializeCylindricalPlatforms(stewart, 'Fpr', 150e-3, 'Mpr', 150e-3); displayArchitecture(stewart, 'labels', false, 'frames', false); plotCube(stewart, 'Hc', Hc, 'FOc', FOc, 'color', [0,0,0,0.5], 'link_to_struts', true); %% Example of a typical "cubic" architecture MO_B = -20e-3; % Position {B} with respect to {M} [m] H = 40e-3; % Height of the Stewart platform [m] Hc = 100e-3; % Size of the useful part of the cube [m] FOc = H + MO_B; % Center of the cube with respect to {F} % here positionned at the frame {B} stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', H, 'MO_B', MO_B); stewart = generateCubicConfiguration(stewart, 'Hc', Hc, 'FOc', FOc, 'FHa', 5e-3, 'MHb', 5e-3); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart, 'K', ones(6,1)); stewart = computeJacobian(stewart); stewart = initializeCylindricalPlatforms(stewart, 'Fpr', 150e-3, 'Mpr', 150e-3); displayArchitecture(stewart, 'labels', false, 'frames', false); plotCube(stewart, 'Hc', Hc, 'FOc', FOc, 'color', [0,0,0,0.5], 'link_to_struts', true); %% Cubic Architecture - Effect of the position of frame {A} and {B} H = 100e-3; % Height of the Stewart platform [m] Hc = 100e-3; % Size of the useful part of the cube [m] FOc = H/2; % Center of the cube at the Stewart platform center %% Frames {A} and {B} at the cube's center MO_B = -50e-3; % Position {B} with respect to {M} [m] stewart_center = initializeStewartPlatform(); stewart_center = initializeFramesPositions(stewart_center, 'H', H, 'MO_B', MO_B); stewart_center = generateCubicConfiguration(stewart_center, 'Hc', Hc, 'FOc', FOc, 'FHa', 5e-3, 'MHb', 5e-3); stewart_center = computeJointsPose(stewart_center); stewart_center = initializeStrutDynamics(stewart_center, 'K', ones(6,1)); stewart_center = computeJacobian(stewart_center); stewart_center = initializeCylindricalPlatforms(stewart_center, 'Fpr', 150e-3, 'Mpr', 150e-3); displayArchitecture(stewart_center, 'labels', false, 'frames', true); plotCube(stewart_center, 'Hc', Hc, 'FOc', FOc, 'color', [0,0,0,0.5], 'link_to_struts', true); %% Frames {A} and {B} offset from the cube's center MO_B = 50e-3; % Position {B} with respect to {M} [m] stewart_offset = initializeStewartPlatform(); stewart_offset = initializeFramesPositions(stewart_offset, 'H', H, 'MO_B', MO_B); stewart_offset = generateCubicConfiguration(stewart_offset, 'Hc', Hc, 'FOc', FOc, 'FHa', 5e-3, 'MHb', 5e-3); stewart_offset = computeJointsPose(stewart_offset); stewart_offset = initializeStrutDynamics(stewart_offset, 'K', 2*ones(6,1)); stewart_offset = computeJacobian(stewart_offset); stewart_offset = initializeCylindricalPlatforms(stewart_offset, 'Fpr', 150e-3, 'Mpr', 150e-3); displayArchitecture(stewart_offset, 'labels', false, 'frames', true); plotCube(stewart_offset, 'Hc', Hc, 'FOc', FOc, 'color', [0,0,0,0.5], 'link_to_struts', true); %% With cubic configuration H = 100e-3; % Height of the Stewart platform [m] Hc = 100e-3; % Size of the useful part of the cube [m] FOc = 50e-3; % Center of the cube at the Stewart platform center MO_B = -50e-3; % Position {B} with respect to {M} [m] MHb = 0; stewart_cubic = initializeStewartPlatform(); stewart_cubic = initializeFramesPositions(stewart_cubic, 'H', H, 'MO_B', MO_B); stewart_cubic = generateCubicConfiguration(stewart_cubic, 'Hc', Hc, 'FOc', FOc, 'FHa', 5e-3, 'MHb', MHb); stewart_cubic = computeJointsPose(stewart_cubic); stewart_cubic = initializeStrutDynamics(stewart_cubic, 'K', ones(6,1)); stewart_cubic = computeJacobian(stewart_cubic); stewart_cubic = initializeCylindricalPlatforms(stewart_cubic, 'Fpr', 150e-3, 'Mpr', 150e-3); % Let's now define the actuator stroke. L_max = 50e-6; % [m] thetas = linspace(0, pi, 100); phis = linspace(0, 2*pi, 200); rs = zeros(length(thetas), length(phis)); for i = 1:length(thetas) for j = 1:length(phis) Tx = sin(thetas(i))*cos(phis(j)); Ty = sin(thetas(i))*sin(phis(j)); Tz = cos(thetas(i)); dL = stewart_cubic.kinematics.J*[Tx; Ty; Tz; 0; 0; 0;]; % dL required for 1m displacement in theta/phi direction rs(i, j) = L_max/max(abs(dL)); % rs(i, j) = max(abs([dL(dL<0)*L_min; dL(dL>=0)*L_max])); end end % Get circle that fits inside the accessible space min(min(rs)) max(max(rs)) [phi_grid, theta_grid] = meshgrid(phis, thetas); X = 1e6 * rs .* sin(theta_grid) .* cos(phi_grid); Y = 1e6 * rs .* sin(theta_grid) .* sin(phi_grid); Z = 1e6 * rs .* cos(theta_grid); figure; s = surf(X, Y, Z, 'FaceColor', 'white'); s.EdgeColor = colors(1,:); axis equal; grid on; xlabel('X Translation [$\mu$m]'); ylabel('Y Translation [$\mu$m]'); zlabel('Z Translation [$\mu$m]'); xlim(5e6*[-L_max, L_max]); ylim(5e6*[-L_max, L_max]); zlim(5e6*[-L_max, L_max]); H = 200e-3; % height of the Stewart platform [m] MO_B = -10e-3; % Position {B} with respect to {M} [m] Hc = 2.5*H; % Size of the useful part of the cube [m] FOc = H + MO_B; % Center of the cube with respect to {F} stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', H, 'MO_B', MO_B); stewart = generateCubicConfiguration(stewart, 'Hc', Hc, 'FOc', FOc, 'FHa', 25e-3, 'MHb', 25e-3); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart, 'K', 1e6*ones(6,1), 'C', 1e1*ones(6,1)); stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical'); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeCylindricalPlatforms(stewart, 'Fpr', 1.2*max(vecnorm(stewart.platform_F.Fa)), ... 'Mpm', 10, ... 'Mph', 20e-3, ... 'Mpr', 1.2*max(vecnorm(stewart.platform_M.Mb))); stewart = initializeCylindricalStruts(stewart, 'Fsm', 1e-3, 'Msm', 1e-3); stewart = initializeInertialSensor(stewart); ground = initializeGround('type', 'none'); payload = initializePayload('type', 'none'); controller = initializeController('type', 'open-loop'); displayArchitecture(stewart, 'labels', false, 'view', 'all'); open('stewart_platform_model.slx') %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'dLm'); io_i = io_i + 1; % Relative Displacement Outputs [m] %% Run the linearization G = linearize(mdl, io, options); G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'}; Gc = inv(stewart.kinematics.J)*G*inv(stewart.kinematics.J'); Gc = inv(stewart.kinematics.J)*G*stewart.kinematics.J; Gc.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; Gc.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}; freqs = logspace(1, 3, 500); figure; ax1 = subplot(2, 2, 1); hold on; for i = 1:6 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(Gc(i, j), freqs, 'Hz'))), 'k-'); end end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gc(1, 1), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gc(2, 2), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gc(3, 3), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax3 = subplot(2, 2, 3); hold on; for i = 1:6 for j = i+1:6 p4 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(i, j), freqs, 'Hz'))), 'k-'); end end set(gca,'ColorOrderIndex',1); p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(1, 1), freqs, 'Hz')))); p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(2, 2), freqs, 'Hz')))); p3 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(3, 3), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend([p1, p2, p3, p4], {'$D_x/F_x$','$D_y/F_y$', '$D_z/F_z$', '$D_i/F_j$'}) ax2 = subplot(2, 2, 2); hold on; for i = 1:6 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(Gc(i, j), freqs, 'Hz'))), 'k-'); end end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gc(4, 4), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gc(5, 5), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gc(6, 6), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax4 = subplot(2, 2, 4); hold on; for i = 1:6 for j = i+1:6 p4 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(i, j), freqs, 'Hz'))), 'k-'); end end set(gca,'ColorOrderIndex',1); p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(4, 4), freqs, 'Hz')))); p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(5, 5), freqs, 'Hz')))); p3 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(6, 6), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend([p1, p2, p3, p4], {'$R_x/M_x$','$R_y/M_y$', '$R_z/M_z$', '$R_i/M_j$'}) linkaxes([ax1,ax2,ax3,ax4],'x'); H = 200e-3; % height of the Stewart platform [m] MO_B = -100e-3; % Position {B} with respect to {M} [m] Hc = 2.5*H; % Size of the useful part of the cube [m] FOc = H + MO_B; % Center of the cube with respect to {F} stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', H, 'MO_B', MO_B); stewart = generateCubicConfiguration(stewart, 'Hc', Hc, 'FOc', FOc, 'FHa', 25e-3, 'MHb', 25e-3); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart, 'K', 1e6*ones(6,1), 'C', 1e1*ones(6,1)); stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical'); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeCylindricalPlatforms(stewart, 'Fpr', 1.2*max(vecnorm(stewart.platform_F.Fa)), ... 'Mpm', 10, ... 'Mph', 20e-3, ... 'Mpr', 1.2*max(vecnorm(stewart.platform_M.Mb))); stewart = initializeCylindricalStruts(stewart, 'Fsm', 1e-3, 'Msm', 1e-3); stewart = initializeInertialSensor(stewart); ground = initializeGround('type', 'none'); payload = initializePayload('type', 'none'); controller = initializeController('type', 'open-loop'); displayArchitecture(stewart, 'labels', false, 'view', 'all'); open('stewart_platform_model.slx') %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'dLm'); io_i = io_i + 1; % Relative Displacement Outputs [m] %% Run the linearization G = linearize(mdl, io, options); G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'}; Gc = inv(stewart.kinematics.J)*G*inv(stewart.kinematics.J'); Gc.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}; Gc.OutputName = {'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}; freqs = logspace(1, 3, 500); figure; ax1 = subplot(2, 2, 1); hold on; for i = 1:6 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(Gc(i, j), freqs, 'Hz'))), 'k-'); end end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gc(1, 1), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gc(2, 2), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gc(3, 3), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax3 = subplot(2, 2, 3); hold on; for i = 1:6 for j = i+1:6 p4 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(i, j), freqs, 'Hz'))), 'k-'); end end set(gca,'ColorOrderIndex',1); p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(1, 1), freqs, 'Hz')))); p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(2, 2), freqs, 'Hz')))); p3 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(3, 3), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend([p1, p2, p3, p4], {'$D_x/F_x$','$D_y/F_y$', '$D_z/F_z$', '$D_i/F_j$'}) ax2 = subplot(2, 2, 2); hold on; for i = 1:6 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(Gc(i, j), freqs, 'Hz'))), 'k-'); end end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(Gc(4, 4), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gc(5, 5), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(Gc(6, 6), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax4 = subplot(2, 2, 4); hold on; for i = 1:6 for j = i+1:6 p4 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(i, j), freqs, 'Hz'))), 'k-'); end end set(gca,'ColorOrderIndex',1); p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(4, 4), freqs, 'Hz')))); p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(5, 5), freqs, 'Hz')))); p3 = plot(freqs, 180/pi*angle(squeeze(freqresp(Gc(6, 6), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend([p1, p2, p3, p4], {'$R_x/M_x$','$R_y/M_y$', '$R_z/M_z$', '$R_i/M_j$'}) linkaxes([ax1,ax2,ax3,ax4],'x'); H = 200e-3; % height of the Stewart platform [m] MO_B = -10e-3; % Position {B} with respect to {M} [m] Hc = 2.5*H; % Size of the useful part of the cube [m] FOc = H + MO_B; % Center of the cube with respect to {F} stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', H, 'MO_B', MO_B); stewart = generateCubicConfiguration(stewart, 'Hc', Hc, 'FOc', FOc, 'FHa', 25e-3, 'MHb', 25e-3); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart, 'K', 1e6*ones(6,1), 'C', 1e1*ones(6,1)); stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical'); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeCylindricalPlatforms(stewart, 'Fpr', 1.2*max(vecnorm(stewart.platform_F.Fa)), ... 'Mpm', 10, ... 'Mph', 20e-3, ... 'Mpr', 1.2*max(vecnorm(stewart.platform_M.Mb))); stewart = initializeCylindricalStruts(stewart, 'Fsm', 1e-3, 'Msm', 1e-3); stewart = initializeInertialSensor(stewart); ground = initializeGround('type', 'none'); payload = initializePayload('type', 'none'); controller = initializeController('type', 'open-loop'); disturbances = initializeDisturbances(); references = initializeReferences(stewart); displayArchitecture(stewart, 'labels', false, 'view', 'all'); open('stewart_platform_model.slx') %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'dLm'); io_i = io_i + 1; % Relative Displacement Outputs [m] %% Run the linearization G = linearize(mdl, io, options); G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'}; freqs = logspace(1, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'k-'); end end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax3 = subplot(2, 1, 2); hold on; for i = 1:6 for j = i+1:6 p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'k-'); end end set(gca,'ColorOrderIndex',1); p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend([p1, p2], {'$L_i/\tau_i$', '$L_i/\tau_j$'}) linkaxes([ax1,ax2],'x'); %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'Taum'); io_i = io_i + 1; % Force Sensor Outputs [N] %% Run the linearization G = linearize(mdl, io, options); G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'}; freqs = logspace(1, 3, 500); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'k-'); end end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]); ax3 = subplot(2, 1, 2); hold on; for i = 1:6 for j = i+1:6 p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'k-'); end end set(gca,'ColorOrderIndex',1); p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend([p1, p2], {'$F_{m,i}/\tau_i$', '$F_{m,i}/\tau_j$'}) linkaxes([ax1,ax2],'x'); H = 200e-3; % height of the Stewart platform [m] MO_B = -10e-3; % Position {B} with respect to {M} [m] stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', H, 'MO_B', MO_B); stewart = generateGeneralConfiguration(stewart, 'FR', 250e-3, 'MR', 150e-3); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart, 'K', 1e6*ones(6,1), 'C', 1e1*ones(6,1)); stewart = initializeJointDynamics(stewart, 'type_F', 'universal', 'type_M', 'spherical'); stewart = computeJacobian(stewart); stewart = initializeStewartPose(stewart); stewart = initializeCylindricalPlatforms(stewart, 'Fpr', 1.2*max(vecnorm(stewart.platform_F.Fa)), ... 'Mpm', 10, ... 'Mph', 20e-3, ... 'Mpr', 1.2*max(vecnorm(stewart.platform_M.Mb))); stewart = initializeCylindricalStruts(stewart, 'Fsm', 1e-3, 'Msm', 1e-3); stewart = initializeInertialSensor(stewart); ground = initializeGround('type', 'none'); payload = initializePayload('type', 'none'); controller = initializeController('type', 'open-loop'); displayArchitecture(stewart, 'labels', false, 'view', 'all'); open('stewart_platform_model.slx') %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'stewart_platform_model'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'dLm'); io_i = io_i + 1; % Relative Displacement Outputs [m] %% Run the linearization G = linearize(mdl, io, options); G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G.OutputName = {'Dm1', 'Dm2', 'Dm3', 'Dm4', 'Dm5', 'Dm6'}; freqs = logspace(1, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'k-'); end end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax3 = subplot(2, 1, 2); hold on; for i = 1:6 for j = i+1:6 p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'k-'); end end set(gca,'ColorOrderIndex',1); p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend([p1, p2], {'$L_i/\tau_i$', '$L_i/\tau_j$'}) linkaxes([ax1,ax2],'x'); %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Force Inputs [N] io(io_i) = linio([mdl, '/Stewart Platform'], 1, 'openoutput', [], 'Taum'); io_i = io_i + 1; % Force Sensor Outputs [N] %% Run the linearization G = linearize(mdl, io, options); G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; G.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'}; freqs = logspace(1, 3, 500); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 for j = i+1:6 plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'k-'); end end set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]); ax3 = subplot(2, 1, 2); hold on; for i = 1:6 for j = i+1:6 p2 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'k-'); end end set(gca,'ColorOrderIndex',1); p1 = plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend([p1, p2], {'$F_{m,i}/\tau_i$', '$F_{m,i}/\tau_j$'}) linkaxes([ax1,ax2],'x'); %% Cubic configurations with center of the cube above the top platform H = 100e-3; % height of the Stewart platform [m] MO_B = 20e-3; % Position {B} with respect to {M} [m] FOc = H + MO_B; % Center of the cube with respect to {F} %% Small cube Hc = 2*MO_B; % Size of the useful part of the cube [m] stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', H, 'MO_B', MO_B); stewart = generateCubicConfiguration(stewart, 'Hc', Hc, 'FOc', FOc, 'FHa', 5e-3, 'MHb', 5e-3); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart, 'K', ones(6,1)); stewart = computeJacobian(stewart); stewart = initializeCylindricalPlatforms(stewart, 'Fpr', 1.1*max(vecnorm(stewart.platform_F.Fa)), 'Mpr', 1.1*max(vecnorm(stewart.platform_M.Mb))); %% Example of a cubic architecture with cube's center above the top platform - Small cube size displayArchitecture(stewart, 'labels', false, 'frames', false); plotCube(stewart, 'Hc', Hc, 'FOc', FOc, 'color', [0,0,0,0.5], 'link_to_struts', true); scatter3(0, 0, FOc, 200, 'kh'); %% Example of a cubic architecture with cube's center above the top platform - Medium cube size Hc = H + 2*MO_B; % Size of the useful part of the cube [m] stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', H, 'MO_B', MO_B); stewart = generateCubicConfiguration(stewart, 'Hc', Hc, 'FOc', FOc, 'FHa', 5e-3, 'MHb', 5e-3); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart, 'K', ones(6,1)); stewart = computeJacobian(stewart); stewart = initializeCylindricalPlatforms(stewart, 'Fpr', 1.1*max(vecnorm(stewart.platform_F.Fa)), 'Mpr', 1.1*max(vecnorm(stewart.platform_M.Mb))); displayArchitecture(stewart, 'labels', false, 'frames', false); plotCube(stewart, 'Hc', Hc, 'FOc', FOc, 'color', [0,0,0,0.5], 'link_to_struts', true); scatter3(0, 0, FOc, 200, 'kh'); %% Example of a cubic architecture with cube's center above the top platform - Large cube size Hc = 2*(H + MO_B); % Size of the useful part of the cube [m] stewart = initializeStewartPlatform(); stewart = initializeFramesPositions(stewart, 'H', H, 'MO_B', MO_B); stewart = generateCubicConfiguration(stewart, 'Hc', Hc, 'FOc', FOc, 'FHa', 5e-3, 'MHb', 5e-3); stewart = computeJointsPose(stewart); stewart = initializeStrutDynamics(stewart, 'K', ones(6,1)); stewart = computeJacobian(stewart); stewart = initializeCylindricalPlatforms(stewart, 'Fpr', 1.1*max(vecnorm(stewart.platform_F.Fa)), 'Mpr', 1.1*max(vecnorm(stewart.platform_M.Mb))); displayArchitecture(stewart, 'labels', false, 'frames', false); plotCube(stewart, 'Hc', Hc, 'FOc', FOc, 'color', [0,0,0,0.5], 'link_to_struts', true); scatter3(0, 0, FOc, 200, 'kh');