%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); %% Path for functions, data and scripts addpath('./src/'); % Path for scripts addpath('./mat/'); % Path for data addpath('./STEPS/'); % Path for Simscape Model addpath('./subsystems/'); % Path for Subsystems Simulink files %% Linearization options opts = linearizeOptions; opts.SampleTime = 0; %% Open Simscape Model mdl = 'detail_fem_nass'; % Name of the Simulink File open(mdl); % Open Simscape Model %% Colors for the figures colors = colororder; freqs = logspace(1,3,500); % Frequency vector [Hz] %% Identify the dynamics for several considered bending stiffnesses % Let's initialize all the stages with default parameters. initializeGround('type', 'rigid'); initializeGranite('type', 'rigid'); initializeTy('type', 'rigid'); initializeRy('type', 'rigid'); initializeRz('type', 'rigid'); initializeMicroHexapod('type', 'rigid'); initializeSample('m', 50); initializeSimscapeConfiguration(); initializeDisturbances('enable', false); initializeLoggingConfiguration('log', 'none'); initializeController('type', 'open-loop'); initializeReferences(); % Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'EdL'); io_i = io_i + 1; % Errors in the frame of the struts io(io_i) = linio([mdl, '/NASS'], 3, 'openoutput', [], 'fn'); io_i = io_i + 1; % Force Sensors % Effect of bending stiffness Kf = [0, 50, 100, 500]; % [Nm/rad] G_Kf = {zeros(length(Kf), 1)}; for i = 1:length(Kf) % Limited joint axial compliance initializeSimplifiedNanoHexapod('actuator_type', '1dof', ... 'flex_type_F', '2dof', ... 'flex_type_M', '3dof', ... 'actuator_k', 1e6, ... 'actuator_c', 1e1, ... 'actuator_kp', 0, ... 'actuator_cp', 0, ... 'Fsm', 56e-3, ... % APA300ML weight 112g 'Msm', 56e-3, ... 'Kf_F', Kf(i), ... 'Kf_M', Kf(i)); G_Kf(i) = {linearize(mdl, io)}; G_Kf{i}.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_Kf{i}.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6', 'fm1', 'fm2', 'fm3', 'fm4', 'fm5', 'fm6'}; end freqs = logspace(0, 3, 1000); %% Effect of the flexible joint bending stiffness on the HAC-plant figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:length(Kf) for j = 1:5 for k = j+1:6 plot(freqs, abs(squeeze(freqresp(G_Kf{i}("l"+k,"f"+j), freqs, 'Hz'))), 'color', [colors(i,:), 0.1], ... 'HandleVisibility', 'off'); end end plot(freqs, abs(squeeze(freqresp(G_Kf{i}("l1","f1"), freqs, 'Hz'))), 'color', colors(i,:), 'DisplayName', sprintf('$k_f = %.0f $ [Nm/rad]', Kf(i))); for j = 2:6 plot(freqs, abs(squeeze(freqresp(G_Kf{i}("l"+j,"f"+j), freqs, 'Hz'))), 'color', colors(i,:), 'HandleVisibility', 'off'); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ylim([1e-10, 1e-4]); ax2 = nexttile; hold on; for i = 1:length(Kf) plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_Kf{i}(1, 1), freqs, 'Hz'))))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-200, 20]); yticks([-360:45:360]); linkaxes([ax1,ax2],'x'); %% Effect of the flexible joint bending stiffness on the IFF plant figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:length(Kf) for j = 1:5 for k = j+1:6 plot(freqs, abs(squeeze(freqresp(G_Kf{i}("fm"+k,"f"+j), freqs, 'Hz'))), 'color', [colors(i,:), 0.1], ... 'HandleVisibility', 'off'); end end plot(freqs, abs(squeeze(freqresp(G_Kf{i}("fm1","f1"), freqs, 'Hz'))), 'color', colors(i,:), 'DisplayName', sprintf('$k_f = %.0f $ [Nm/rad]', Kf(i))); for j = 2:6 plot(freqs, abs(squeeze(freqresp(G_Kf{i}("fm"+j,"f"+j), freqs, 'Hz'))), 'color', colors(i,:), 'HandleVisibility', 'off'); end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]); leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ylim([1e-4, 1e2]); ax2 = nexttile(); hold on; for i = 1:length(Kf) plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_Kf{i}("fm1", "f1"), freqs, 'Hz'))))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-20, 200]); yticks([-360:45:360]); linkaxes([ax1,ax2],'x'); %% Decentalized IFF Kiff = -200 * ... % Gain 1/s * ... % LPF: provides integral action eye(6); % Diagonal 6x6 controller (i.e. decentralized) Kiff.InputName = {'fm1', 'fm2', 'fm3', 'fm4', 'fm5', 'fm6'}; Kiff.OutputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; %% Root Locus for decentralized IFF - 1dof actuator - Effect of joint bending stiffness gains = logspace(-1, 2, 400); figure; tiledlayout(1, 1, 'TileSpacing', 'compact', 'Padding', 'None'); nexttile(); hold on; for i = 1:length(Kf) plot(real(pole(G_Kf{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}))), imag(pole(G_Kf{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}))), 'x', 'color', colors(i,:), ... 'DisplayName', sprintf('$k_f = %.0f$ Nm/rad', Kf(i))); plot(real(tzero(G_Kf{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}))), imag(tzero(G_Kf{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}))), 'o', 'color', colors(i,:), ... 'HandleVisibility', 'off'); for g = gains clpoles = pole(feedback(G_Kf{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}), g*Kiff, +1)); plot(real(clpoles), imag(clpoles), '.', 'color', colors(i,:), ... 'HandleVisibility', 'off'); end end xline(0, 'HandleVisibility', 'off'); yline(0, 'HandleVisibility', 'off'); hold off; axis equal; xlim(1.1*[-900, 100]); ylim(1.1*[-100, 900]); xticks(1.1*[-900:100:0]); yticks(1.1*[0:100:900]); set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); xlabel('Real part'); ylabel('Imaginary part'); leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; %% Identify the dynamics for several considered bending stiffnesses - APA300ML G_Kf_apa300ml = {zeros(length(Kf), 1)}; for i = 1:length(Kf) % Limited joint axial compliance initializeSimplifiedNanoHexapod('actuator_type', 'apa300ml', ... 'flex_type_F', '2dof', ... 'flex_type_M', '3dof', ... 'Fsm', 56e-3, ... % APA300ML weight 112g 'Msm', 56e-3, ... 'Kf_F', Kf(i), ... 'Kf_M', Kf(i)); G_Kf_apa300ml(i) = {linearize(mdl, io)}; G_Kf_apa300ml{i}.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_Kf_apa300ml{i}.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6', 'fm1', 'fm2', 'fm3', 'fm4', 'fm5', 'fm6'}; end Kiff = -1000 * ... % Gain 1/(s) * ... % LPF: provides integral action eye(6); % Diagonal 6x6 controller (i.e. decentralized) Kiff.InputName = {'fm1', 'fm2', 'fm3', 'fm4', 'fm5', 'fm6'}; Kiff.OutputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; %% Root Locus for decentralized IFF - APA300ML actuator - Effect of joint bending stiffness gains = logspace(-1, 2, 300); figure; tiledlayout(1, 1, 'TileSpacing', 'compact', 'Padding', 'None'); nexttile(); hold on; for i = 1:length(Kf) plot(real(pole(G_Kf_apa300ml{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}))), imag(pole(G_Kf_apa300ml{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}))), 'x', 'color', colors(i,:), ... 'DisplayName', sprintf('$k_f = %.0f$ [Nm/rad]', Kf(i))); plot(real(tzero(G_Kf_apa300ml{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}))), imag(tzero(G_Kf_apa300ml{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}))), 'o', 'color', colors(i,:), ... 'HandleVisibility', 'off'); for g = gains clpoles = pole(feedback(G_Kf_apa300ml{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}), g*Kiff, +1)); plot(real(clpoles), imag(clpoles), '.', 'color', colors(i,:), ... 'HandleVisibility', 'off'); end end xline(0, 'HandleVisibility', 'off'); yline(0, 'HandleVisibility', 'off'); hold off; axis equal; xlim(1.4*[-900, 100]); ylim(1.4*[-100, 900]); xticks(1.4*[-900:100:0]); yticks(1.4*[0:100:900]); set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); xlabel('Real part'); ylabel('Imaginary part'); leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; %% Identify the dynamics for several considered axial stiffnesses % Let's initialize all the stages with default parameters. initializeGround('type', 'rigid'); initializeGranite('type', 'rigid'); initializeTy('type', 'rigid'); initializeRy('type', 'rigid'); initializeRz('type', 'rigid'); initializeMicroHexapod('type', 'rigid'); initializeSample('m', 50); initializeSimscapeConfiguration(); initializeDisturbances('enable', false); initializeLoggingConfiguration('log', 'none'); initializeController('type', 'open-loop'); initializeReferences(); % Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'EdL'); io_i = io_i + 1; % Errors in the frame of the struts io(io_i) = linio([mdl, '/NASS'], 3, 'openoutput', [], 'fn'); io_i = io_i + 1; % Force Sensors % Effect of bending stiffness Ka = 1e6*[1000, 100, 10, 1]; % [Nm/rad] G_Ka = {zeros(length(Ka), 1)}; for i = 1:length(Ka) % Limited joint axial compliance initializeSimplifiedNanoHexapod('actuator_type', '1dof', ... 'flex_type_F', '2dof_axial', ... 'flex_type_M', '4dof', ... 'actuator_k', 1e6, ... 'actuator_c', 1e1, ... 'actuator_kp', 0, ... 'actuator_cp', 0, ... 'Fsm', 56e-3, ... % APA300ML weight 112g 'Msm', 56e-3, ... 'Ca_F', 1, ... 'Ca_M', 1, ... 'Ka_F', Ka(i), ... 'Ka_M', Ka(i)); G_Ka(i) = {linearize(mdl, io)}; G_Ka{i}.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_Ka{i}.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6', 'fm1', 'fm2', 'fm3', 'fm4', 'fm5', 'fm6'}; end freqs = logspace(1, 4, 1000); %% Effect of the flexible joint axial stiffness on the HAC-plant figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:length(Ka) for j = 1:5 for k = j+1:6 plot(freqs, abs(squeeze(freqresp(G_Ka{i}("l"+k,"f"+j), freqs, 'Hz'))), 'color', [colors(i,:), 0.1], ... 'HandleVisibility', 'off'); end end end for i = 1:length(Ka) plot(freqs, abs(squeeze(freqresp(G_Ka{i}("l1","f1"), freqs, 'Hz'))), 'color', colors(i,:), 'DisplayName', sprintf('$k_a = %.0f$ [N/$\\mu$m]', 1e-6*Ka(i))); % for j = 2:6 % plot(freqs, abs(squeeze(freqresp(G_Ka{i}("l"+j,"f"+j), freqs, 'Hz'))), 'color', colors(i,:), 'HandleVisibility', 'off'); % end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ylim([1e-10, 1e-4]); ax2 = nexttile; hold on; for i = 1:length(Ka) plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_Ka{i}(1, 1), freqs, 'Hz'))))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-200, 20]); yticks([-360:45:360]); linkaxes([ax1,ax2],'x'); %% Effect of the flexible joint axial stiffness on the IFF plant figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for i = 1:length(Ka) for j = 1:5 for k = j+1:6 plot(freqs, abs(squeeze(freqresp(G_Ka{i}("fm"+k,"f"+j), freqs, 'Hz'))), 'color', [colors(i,:), 0.1], ... 'HandleVisibility', 'off'); end end end for i = 1:length(Ka) plot(freqs, abs(squeeze(freqresp(G_Ka{i}("fm1","f1"), freqs, 'Hz'))), 'color', colors(i,:), 'DisplayName', sprintf('$k_a = %.0f$ [N/$\\mu$m]', 1e-6*Ka(i))); % for j = 2:6 % plot(freqs, abs(squeeze(freqresp(G_Ka{i}("fm"+j,"f"+j), freqs, 'Hz'))), 'color', colors(i,:), 'HandleVisibility', 'off'); % end end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]); leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ylim([1e-4, 1e2]); ax2 = nexttile(); hold on; for i = 1:length(Ka) plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_Ka{i}("fm1", "f1"), freqs, 'Hz'))))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-20, 200]); yticks([-360:45:360]); linkaxes([ax1,ax2],'x'); %% Decentalized IFF Kiff = -200 * ... % Gain 1/s * ... % LPF: provides integral action eye(6); % Diagonal 6x6 controller (i.e. decentralized) Kiff.InputName = {'fm1', 'fm2', 'fm3', 'fm4', 'fm5', 'fm6'}; Kiff.OutputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; %% Root Locus for decentralized IFF - 1dof actuator - Effect of joint bending stiffness gains = logspace(-1, 2, 400); figure; tiledlayout(1, 1, 'TileSpacing', 'compact', 'Padding', 'None'); nexttile(); hold on; for i = 1:length(Ka) plot(real(pole(G_Ka{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}))), imag(pole(G_Ka{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}))), 'x', 'color', colors(i,:), ... 'DisplayName', sprintf('$k_a = %.0f$ N/$\\mu$m', 1e-6*Ka(i))); plot(real(tzero(G_Ka{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}))), imag(tzero(G_Ka{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}))), 'o', 'color', colors(i,:), ... 'HandleVisibility', 'off'); for g = gains clpoles = pole(feedback(G_Ka{i}({"fm1", "fm2", "fm3", "fm4", "fm5", "fm6"}, {"f1", "f2", "f3", "f4", "f5", "f6"}), g*Kiff, +1)); plot(real(clpoles), imag(clpoles), '.', 'color', colors(i,:), ... 'HandleVisibility', 'off'); end end xline(0, 'HandleVisibility', 'off'); yline(0, 'HandleVisibility', 'off'); hold off; axis equal; xlim(1.1*[-900, 100]); ylim(1.1*[-100, 900]); xticks(1.1*[-900:100:0]); yticks(1.1*[0:100:900]); set(gca, 'XTickLabel',[]); set(gca, 'YTickLabel',[]); xlabel('Real part'); ylabel('Imaginary part'); leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; %% Compute the damped plants Kiff = -500 * ... % Gain 1/(s + 2*pi*0.1) * ... % LPF: provides integral action eye(6); % Diagonal 6x6 controller (i.e. decentralized) Kiff.InputName = {'fm1', 'fm2', 'fm3', 'fm4', 'fm5', 'fm6'}; Kiff.OutputName = {'u1iff', 'u2iff', 'u3iff', 'u4iff', 'u5iff', 'u6iff'}; % New damped plant input S1 = sumblk("f1 = u1iff + u1"); S2 = sumblk("f2 = u2iff + u2"); S3 = sumblk("f3 = u3iff + u3"); S4 = sumblk("f4 = u4iff + u4"); S5 = sumblk("f5 = u5iff + u5"); S6 = sumblk("f6 = u6iff + u6"); G_Ka_iff = {zeros(1,length(Ka))}; for i=1:length(Ka) G_Ka_iff(i) = {connect(G_Ka{i}, Kiff, S1, S2, S3, S4, S5, S6, {'u1', 'u2', 'u3', 'u4', 'u5', 'u6'}, {'l1', 'l2', 'l3', 'l4', 'l5', 'l6'})}; end %% Interaction Analysis - RGA Number rga = zeros(length(Ka), length(freqs)); for i = 1:length(Ka) for j = 1:length(freqs) rga(i,j) = sum(sum(abs(inv(evalfr(G_Ka_iff{i}({"l1", "l2", "l3", "l4", "l5", "l6"}, {"u1", "u2", "u3", "u4", "u5", "u6"}), 1j*2*pi*freqs(j)).').*evalfr(G_Ka_iff{i}({"l1", "l2", "l3", "l4", "l5", "l6"}, {"u1", "u2", "u3", "u4", "u5", "u6"}), 1j*2*pi*freqs(j)) - eye(6)))); end end %% RGA number for the damped plants - Effect of the flexible joint axial stiffness figure; hold on; for i = 1:length(Ka) plot(freqs, rga(i,:), 'DisplayName', sprintf('$k_a = %.0f$ N/$\\mu$m', 1e-6*Ka(i))) end hold off; xlabel('Frequency [Hz]'); ylabel('RGA number'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylim([0, 10]); xlim([10, 5e3]); leg = legend('location', 'northwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; %% Extract stiffness of the joint from the reduced order model % We first extract the stiffness and mass matrices. K = readmatrix('flex025_mat_K.CSV'); M = readmatrix('flex025_mat_M.CSV'); % Then, we extract the coordinates of the interface nodes. [int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('flex025_out_nodes_3D.txt'); m = 1; %% Name of the Simulink File mdl = 'detail_fem_joint'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/T'], 1, 'openinput'); io_i = io_i + 1; % Forces and Torques io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Translations and Rotations G = linearize(mdl, io); % Stiffness extracted from the Simscape model k_a = 1/dcgain(G(3,3)); % Axial stiffness [N/m] k_f = 1/dcgain(G(4,4)); % Bending stiffness [N/m] k_t = 1/dcgain(G(6,6)); % Torsion stiffness [N/m] % Stiffness extracted from the Stiffness matrix k_s = K(1,1); % shear [N/m] % k_s = K(2,2); % shear [N/m] k_a = K(3,3); % axial [N/m] k_f = K(4,4); % bending [Nm/rad] % k_f = K(5,5); % bending [Nm/rad] k_t = K(6,6); % torsion [Nm/rad] %% Compare Dynamics between "Reduced Order" flexible joints and "2-dof and 3-dof" joints % Let's initialize all the stages with default parameters. initializeGround('type', 'rigid'); initializeGranite('type', 'rigid'); initializeTy('type', 'rigid'); initializeRy('type', 'rigid'); initializeRz('type', 'rigid'); initializeMicroHexapod('type', 'rigid'); initializeSample('m', 50); initializeSimscapeConfiguration(); initializeDisturbances('enable', false); initializeLoggingConfiguration('log', 'none'); initializeController('type', 'open-loop'); initializeReferences(); mdl = 'detail_fem_nass'; % Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'EdL'); io_i = io_i + 1; % Errors in the frame of the struts io(io_i) = linio([mdl, '/NASS'], 3, 'openoutput', [], 'fn'); io_i = io_i + 1; % Force Sensors % Fully flexible joints initializeSimplifiedNanoHexapod('actuator_type', 'apa300ml', ... 'flex_type_F', 'flexible', ... 'flex_type_M', 'flexible', ... 'Fsm', 56e-3, ... % APA300ML weight 112g 'Msm', 56e-3); G_flex = linearize(mdl, io); G_flex.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_flex.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6', 'fm1', 'fm2', 'fm3', 'fm4', 'fm5', 'fm6'}; % Flexible joints modelled by 2DoF and 3DoF joints initializeSimplifiedNanoHexapod('actuator_type', 'apa300ml', ... 'flex_type_F', '2dof_axial', ... 'flex_type_M', '4dof', ... 'Kf_F', k_f, ... 'Kt_F', k_t, ... 'Ka_F', k_a, ... 'Kf_M', k_f, ... 'Kt_M', k_t, ... 'Ka_M', k_a, ... 'Cf_F', 1e-2, ... 'Ct_F', 1e-2, ... 'Ca_F', 1e-2, ... 'Cf_M', 1e-2, ... 'Ct_M', 1e-2, ... 'Ca_M', 1e-2, ... 'Fsm', 56e-3, ... % APA300ML weight 112g 'Msm', 56e-3); G_ideal = linearize(mdl, io); G_ideal.InputName = {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}; G_ideal.OutputName = {'l1', 'l2', 'l3', 'l4', 'l5', 'l6', 'fm1', 'fm2', 'fm3', 'fm4', 'fm5', 'fm6'}; %% Comparison of the dynamics with joints modelled with FEM and modelled with "ideal joints" - HAC plant freqs = logspace(1, 4, 1000); %% Effect of the flexible joint axial stiffness on the HAC-plant figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for j = 1:5 for k = j+1:6 plot(freqs, abs(squeeze(freqresp(G_flex("l"+k,"f"+j), freqs, 'Hz'))), 'color', [colors(1,:), 0.1], ... 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_ideal("l"+k,"f"+j), freqs, 'Hz'))), 'color', [colors(2,:), 0.1], ... 'HandleVisibility', 'off'); end end plot(freqs, abs(squeeze(freqresp(G_flex("l1","f1"), freqs, 'Hz'))), 'color', colors(1,:), 'DisplayName', 'Reduced Order Flexible Joints'); plot(freqs, abs(squeeze(freqresp(G_ideal("l1","f1"), freqs, 'Hz'))), 'color', colors(2,:), 'DisplayName', 'Bot: $k_f$, $k_a$, Top: $k_f$, $k_t$, $k_a$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ylim([1e-10, 1e-4]); ax2 = nexttile; hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(G_flex("l1","f1"), freqs, 'Hz')))); plot(freqs, 180/pi*angle(squeeze(freqresp(G_ideal("l1","f1"), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-20, 200]); yticks([-360:45:360]); linkaxes([ax1,ax2],'x'); freqs = logspace(0, 3, 1000); %% Effect of the flexible joint axial stiffness on the HAC-plant figure; tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None'); ax1 = nexttile([2,1]); hold on; for j = 1:5 for k = j+1:6 plot(freqs, abs(squeeze(freqresp(G_flex("fm"+k,"f"+j), freqs, 'Hz'))), 'color', [colors(1,:), 0.1], ... 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_ideal("fm"+k,"f"+j), freqs, 'Hz'))), 'color', [colors(2,:), 0.1], ... 'HandleVisibility', 'off'); end end plot(freqs, abs(squeeze(freqresp(G_flex("fm1","f1"), freqs, 'Hz'))), 'color', colors(1,:), 'DisplayName', 'Reduced Order Flexible Joints'); plot(freqs, abs(squeeze(freqresp(G_ideal("fm1","f1"), freqs, 'Hz'))), 'color', colors(2,:), 'DisplayName', 'Bot: $k_f$, $k_a$, Top: $k_f$, $k_t$, $k_a$'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]); leg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); leg.ItemTokenSize(1) = 15; ylim([1e-5, 1e1]); ax2 = nexttile; hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(G_flex("fm1","f1"), freqs, 'Hz')))); plot(freqs, 180/pi*angle(squeeze(freqresp(G_ideal("fm1","f1"), freqs, 'Hz')))); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-20, 200]); yticks([-360:45:360]); linkaxes([ax1,ax2],'x');