diff --git a/figs/detail_fem_apa300ml_compliance.pdf b/figs/detail_fem_apa300ml_compliance.pdf deleted file mode 100644 index 491f150..0000000 Binary files a/figs/detail_fem_apa300ml_compliance.pdf and /dev/null differ diff --git a/figs/detail_fem_apa300ml_compliance.png b/figs/detail_fem_apa300ml_compliance.png deleted file mode 100644 index 490ef61..0000000 Binary files a/figs/detail_fem_apa300ml_compliance.png and /dev/null differ diff --git a/figs/detail_fem_apa95ml_compliance.pdf b/figs/detail_fem_apa95ml_compliance.pdf new file mode 100644 index 0000000..6ad228f Binary files /dev/null and b/figs/detail_fem_apa95ml_compliance.pdf differ diff --git a/figs/detail_fem_apa95ml_compliance.png b/figs/detail_fem_apa95ml_compliance.png new file mode 100644 index 0000000..3322569 Binary files /dev/null and b/figs/detail_fem_apa95ml_compliance.png differ diff --git a/figs/detail_fem_apa95ml_mesh.pdf b/figs/detail_fem_apa95ml_mesh.pdf index d70af89..1a0dd43 100644 Binary files a/figs/detail_fem_apa95ml_mesh.pdf and b/figs/detail_fem_apa95ml_mesh.pdf differ diff --git a/figs/detail_fem_apa95ml_mesh.png b/figs/detail_fem_apa95ml_mesh.png index 5e8c41a..f669a04 100644 Binary files a/figs/detail_fem_apa95ml_mesh.png and b/figs/detail_fem_apa95ml_mesh.png differ diff --git a/figs/detail_fem_apa95ml_mesh.svg b/figs/detail_fem_apa95ml_mesh.svg new file mode 100644 index 0000000..7dfc5e2 --- /dev/null +++ b/figs/detail_fem_apa95ml_mesh.svg @@ -0,0 +1,1076 @@ +<?xml version="1.0" encoding="UTF-8" standalone="no"?> +<!-- Created with Inkscape (http://www.inkscape.org/) --> + +<svg + width="50.558105mm" + height="47.101017mm" + viewBox="0 0 50.558106 47.101018" + version="1.1" + id="svg1" + xml:space="preserve" + inkscape:version="1.4 (e7c3feb100, 2024-10-09)" + sodipodi:docname="detail_fem_apa95ml_mesh.svg" + xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" + xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns="http://www.w3.org/2000/svg" + xmlns:svg="http://www.w3.org/2000/svg"><sodipodi:namedview + id="namedview1" + pagecolor="#ffffff" + bordercolor="#666666" + borderopacity="1.0" + inkscape:showpageshadow="2" + inkscape:pageopacity="0.0" + inkscape:pagecheckerboard="0" + inkscape:deskcolor="#d1d1d1" + inkscape:document-units="mm" + inkscape:zoom="4.1930159" + inkscape:cx="64.869775" + inkscape:cy="85.976302" + inkscape:window-width="2534" + inkscape:window-height="1367" + inkscape:window-x="11" + inkscape:window-y="60" + inkscape:window-maximized="1" + inkscape:current-layer="layer1" /><defs + id="defs1"><marker + style="overflow:visible" + id="marker5" + refX="0" + refY="0" + orient="auto-start-reverse" + inkscape:stockid="Concave triangle arrow" + markerWidth="1" + markerHeight="1" + viewBox="0 0 1 1" + inkscape:isstock="true" + inkscape:collect="always" + preserveAspectRatio="xMidYMid"><path + transform="scale(0.7)" + d="M -2,-4 9,0 -2,4 c 2,-2.33 2,-5.66 0,-8 z" + style="fill:context-stroke;fill-rule:evenodd;stroke:none" + id="path5" /></marker><marker + style="overflow:visible" + id="marker4" + refX="0" + refY="0" + orient="auto-start-reverse" + inkscape:stockid="Concave triangle arrow" + markerWidth="1" + markerHeight="1" + viewBox="0 0 1 1" + inkscape:isstock="true" + inkscape:collect="always" + preserveAspectRatio="xMidYMid"><path + transform="scale(0.7)" + d="M -2,-4 9,0 -2,4 c 2,-2.33 2,-5.66 0,-8 z" + style="fill:context-stroke;fill-rule:evenodd;stroke:none" + id="path4" /></marker><marker + style="overflow:visible" + id="ConcaveTriangle" + refX="0" + refY="0" + orient="auto-start-reverse" + inkscape:stockid="Concave triangle arrow" + markerWidth="1" + markerHeight="1" + viewBox="0 0 1 1" + inkscape:isstock="true" + inkscape:collect="always" + preserveAspectRatio="xMidYMid"><path + transform="scale(0.7)" + d="M -2,-4 9,0 -2,4 c 2,-2.33 2,-5.66 0,-8 z" + style="fill:context-stroke;fill-rule:evenodd;stroke:none" + id="path7" /></marker><marker + style="overflow:visible" + id="marker5-5" + refX="0" + refY="0" + orient="auto-start-reverse" + inkscape:stockid="Concave triangle arrow" + markerWidth="1" + markerHeight="1" + viewBox="0 0 1 1" + inkscape:isstock="true" + inkscape:collect="always" + preserveAspectRatio="xMidYMid"><path + transform="scale(0.7)" + d="M -2,-4 9,0 -2,4 c 2,-2.33 2,-5.66 0,-8 z" + style="fill:context-stroke;fill-rule:evenodd;stroke:none" + id="path5-6" /></marker><marker + style="overflow:visible" + id="ConcaveTriangle-2" + refX="0" + refY="0" + orient="auto-start-reverse" + inkscape:stockid="Concave triangle arrow" + markerWidth="1" + markerHeight="1" + viewBox="0 0 1 1" + inkscape:isstock="true" + inkscape:collect="always" + preserveAspectRatio="xMidYMid"><path + transform="scale(0.7)" + d="M -2,-4 9,0 -2,4 c 2,-2.33 2,-5.66 0,-8 z" + style="fill:context-stroke;fill-rule:evenodd;stroke:none" + id="path7-9" /></marker><marker + style="overflow:visible" + id="marker4-1" + refX="0" + refY="0" + orient="auto-start-reverse" + inkscape:stockid="Concave triangle arrow" + markerWidth="1" + markerHeight="1" + viewBox="0 0 1 1" + inkscape:isstock="true" + inkscape:collect="always" + preserveAspectRatio="xMidYMid"><path + transform="scale(0.7)" + d="M -2,-4 9,0 -2,4 c 2,-2.33 2,-5.66 0,-8 z" + style="fill:context-stroke;fill-rule:evenodd;stroke:none" + id="path4-2" /></marker><marker + style="overflow:visible" + id="marker5-7" + refX="0" + refY="0" + orient="auto-start-reverse" + inkscape:stockid="Concave triangle arrow" + markerWidth="1" + markerHeight="1" + viewBox="0 0 1 1" + inkscape:isstock="true" + inkscape:collect="always" + preserveAspectRatio="xMidYMid"><path + transform="scale(0.7)" + d="M -2,-4 9,0 -2,4 c 2,-2.33 2,-5.66 0,-8 z" + style="fill:context-stroke;fill-rule:evenodd;stroke:none" + id="path5-3" /></marker><marker + style="overflow:visible" + id="ConcaveTriangle-6" + refX="0" + refY="0" + orient="auto-start-reverse" + inkscape:stockid="Concave triangle arrow" + markerWidth="1" + markerHeight="1" + viewBox="0 0 1 1" + inkscape:isstock="true" + inkscape:collect="always" + preserveAspectRatio="xMidYMid"><path + transform="scale(0.7)" + d="M -2,-4 9,0 -2,4 c 2,-2.33 2,-5.66 0,-8 z" + style="fill:context-stroke;fill-rule:evenodd;stroke:none" + id="path7-1" /></marker><marker + style="overflow:visible" + id="marker4-2" + refX="0" + refY="0" + orient="auto-start-reverse" + inkscape:stockid="Concave triangle arrow" + markerWidth="1" + markerHeight="1" + viewBox="0 0 1 1" + inkscape:isstock="true" + inkscape:collect="always" + preserveAspectRatio="xMidYMid"><path + transform="scale(0.7)" + d="M -2,-4 9,0 -2,4 c 2,-2.33 2,-5.66 0,-8 z" + style="fill:context-stroke;fill-rule:evenodd;stroke:none" + id="path4-9" /></marker><marker + style="overflow:visible" + id="marker5-0" + refX="0" + refY="0" + orient="auto-start-reverse" + inkscape:stockid="Concave triangle arrow" + markerWidth="1" + markerHeight="1" + viewBox="0 0 1 1" + inkscape:isstock="true" + inkscape:collect="always" + preserveAspectRatio="xMidYMid"><path + transform="scale(0.7)" + d="M -2,-4 9,0 -2,4 c 2,-2.33 2,-5.66 0,-8 z" + style="fill:context-stroke;fill-rule:evenodd;stroke:none" + id="path5-36" /></marker><marker + style="overflow:visible" + id="ConcaveTriangle-1" + refX="0" + refY="0" + orient="auto-start-reverse" + inkscape:stockid="Concave triangle arrow" + markerWidth="1" + markerHeight="1" + viewBox="0 0 1 1" + inkscape:isstock="true" + inkscape:collect="always" + preserveAspectRatio="xMidYMid"><path + transform="scale(0.7)" + d="M -2,-4 9,0 -2,4 c 2,-2.33 2,-5.66 0,-8 z" + style="fill:context-stroke;fill-rule:evenodd;stroke:none" + id="path7-0" /></marker><marker + style="overflow:visible" + id="marker4-6" + refX="0" + refY="0" + orient="auto-start-reverse" + inkscape:stockid="Concave triangle arrow" + markerWidth="1" + markerHeight="1" + viewBox="0 0 1 1" + inkscape:isstock="true" + inkscape:collect="always" + preserveAspectRatio="xMidYMid"><path + transform="scale(0.7)" + d="M -2,-4 9,0 -2,4 c 2,-2.33 2,-5.66 0,-8 z" + style="fill:context-stroke;fill-rule:evenodd;stroke:none" + id="path4-3" /></marker><marker + style="overflow:visible" + id="marker5-6" + refX="0" + refY="0" + orient="auto-start-reverse" + inkscape:stockid="Concave triangle arrow" + markerWidth="1" + markerHeight="1" + viewBox="0 0 1 1" + inkscape:isstock="true" + inkscape:collect="always" + preserveAspectRatio="xMidYMid"><path + transform="scale(0.7)" + d="M -2,-4 9,0 -2,4 c 2,-2.33 2,-5.66 0,-8 z" + style="fill:context-stroke;fill-rule:evenodd;stroke:none" + id="path5-5" /></marker><marker + style="overflow:visible" + id="ConcaveTriangle-69" + refX="0" + refY="0" + orient="auto-start-reverse" + inkscape:stockid="Concave triangle arrow" + markerWidth="1" + markerHeight="1" + viewBox="0 0 1 1" + inkscape:isstock="true" + inkscape:collect="always" + preserveAspectRatio="xMidYMid"><path + transform="scale(0.7)" + d="M -2,-4 9,0 -2,4 c 2,-2.33 2,-5.66 0,-8 z" + style="fill:context-stroke;fill-rule:evenodd;stroke:none" + id="path7-3" /></marker><marker + style="overflow:visible" + id="marker4-7" + refX="0" + refY="0" + orient="auto-start-reverse" + inkscape:stockid="Concave triangle arrow" + markerWidth="1" + markerHeight="1" + viewBox="0 0 1 1" + inkscape:isstock="true" + inkscape:collect="always" + preserveAspectRatio="xMidYMid"><path + transform="scale(0.7)" + d="M -2,-4 9,0 -2,4 c 2,-2.33 2,-5.66 0,-8 z" + style="fill:context-stroke;fill-rule:evenodd;stroke:none" + id="path4-4" /></marker><marker + style="overflow:visible" + id="marker5-3" + refX="0" + refY="0" + orient="auto-start-reverse" + inkscape:stockid="Concave triangle arrow" + markerWidth="1" + markerHeight="1" + viewBox="0 0 1 1" + inkscape:isstock="true" + inkscape:collect="always" + preserveAspectRatio="xMidYMid"><path + transform="scale(0.7)" + d="M -2,-4 9,0 -2,4 c 2,-2.33 2,-5.66 0,-8 z" + style="fill:context-stroke;fill-rule:evenodd;stroke:none" + id="path5-0" /></marker><marker + style="overflow:visible" + id="ConcaveTriangle-7" + refX="0" + refY="0" + orient="auto-start-reverse" + inkscape:stockid="Concave triangle arrow" + markerWidth="1" + markerHeight="1" + viewBox="0 0 1 1" + inkscape:isstock="true" + inkscape:collect="always" + preserveAspectRatio="xMidYMid"><path + transform="scale(0.7)" + d="M -2,-4 9,0 -2,4 c 2,-2.33 2,-5.66 0,-8 z" + style="fill:context-stroke;fill-rule:evenodd;stroke:none" + id="path7-8" /></marker><marker + style="overflow:visible" + id="marker4-68" + refX="0" + refY="0" + orient="auto-start-reverse" + inkscape:stockid="Concave triangle arrow" + markerWidth="1" + markerHeight="1" + viewBox="0 0 1 1" + inkscape:isstock="true" + inkscape:collect="always" + preserveAspectRatio="xMidYMid"><path + transform="scale(0.7)" + d="M -2,-4 9,0 -2,4 c 2,-2.33 2,-5.66 0,-8 z" + style="fill:context-stroke;fill-rule:evenodd;stroke:none" + id="path4-8" /></marker><marker + style="overflow:visible" + id="marker5-8" + refX="0" + refY="0" + orient="auto-start-reverse" + inkscape:stockid="Concave triangle arrow" + markerWidth="1" + markerHeight="1" + viewBox="0 0 1 1" + inkscape:isstock="true" + inkscape:collect="always" + preserveAspectRatio="xMidYMid"><path + transform="scale(0.7)" + d="M -2,-4 9,0 -2,4 c 2,-2.33 2,-5.66 0,-8 z" + style="fill:context-stroke;fill-rule:evenodd;stroke:none" + id="path5-9" /></marker><marker + style="overflow:visible" + id="ConcaveTriangle-26" + refX="0" + refY="0" + orient="auto-start-reverse" + inkscape:stockid="Concave triangle arrow" + markerWidth="1" + markerHeight="1" + viewBox="0 0 1 1" + inkscape:isstock="true" + inkscape:collect="always" + preserveAspectRatio="xMidYMid"><path + transform="scale(0.7)" + d="M -2,-4 9,0 -2,4 c 2,-2.33 2,-5.66 0,-8 z" + style="fill:context-stroke;fill-rule:evenodd;stroke:none" + id="path7-6" /></marker><marker + style="overflow:visible" + id="marker4-4" + refX="0" + refY="0" + orient="auto-start-reverse" + inkscape:stockid="Concave triangle arrow" + markerWidth="1" + markerHeight="1" + viewBox="0 0 1 1" + inkscape:isstock="true" + inkscape:collect="always" + preserveAspectRatio="xMidYMid"><path + transform="scale(0.7)" + d="M -2,-4 9,0 -2,4 c 2,-2.33 2,-5.66 0,-8 z" + style="fill:context-stroke;fill-rule:evenodd;stroke:none" + id="path4-95" /></marker><g + id="g6096"> + <g + id="g9677"> + <path + d="m 2.828125,-6.15625 c 0,-0.390625 0.25,-1.03125 1.34375,-1.09375 C 4.21875,-7.265625 4.25,-7.3125 4.25,-7.359375 c 0,-0.125 -0.078125,-0.125 -0.1875,-0.125 -0.984375,0 -1.90625,0.515625 -1.90625,1.25 v 2.28125 c 0,0.390625 0,0.703125 -0.40625,1.03125 -0.34375,0.296875 -0.71875,0.3125 -0.9375,0.3125 C 0.75,-2.59375 0.71875,-2.546875 0.71875,-2.5 c 0,0.109375 0.0625,0.109375 0.15625,0.125 0.65625,0.03125 1.140625,0.390625 1.25,0.875 0.03125,0.109375 0.03125,0.140625 0.03125,0.5 v 1.96875 c 0,0.421875 0,0.734375 0.46875,1.109375 C 3.015625,2.375 3.671875,2.5 4.0625,2.5 4.171875,2.5 4.25,2.5 4.25,2.375 4.25,2.28125 4.203125,2.28125 4.09375,2.265625 3.46875,2.234375 2.984375,1.90625 2.84375,1.40625 2.828125,1.3125 2.828125,1.296875 2.828125,0.9375 v -2.09375 c 0,-0.453125 -0.09375,-0.625 -0.40625,-0.953125 C 2.21875,-2.3125 1.921875,-2.40625 1.640625,-2.5 c 0.828125,-0.21875 1.1875,-0.6875 1.1875,-1.265625 z m 0,0" + id="path4726" /> + </g> + <g + id="g384"> + <path + d="m 2.15625,1.171875 c 0,0.390625 -0.265625,1.03125 -1.34375,1.09375 C 0.75,2.28125 0.71875,2.328125 0.71875,2.375 0.71875,2.5 0.828125,2.5 0.921875,2.5 1.890625,2.5 2.8125,2 2.828125,1.25 v -2.28125 c 0,-0.390625 0,-0.703125 0.390625,-1.03125 C 3.5625,-2.359375 3.953125,-2.375 4.171875,-2.375 4.21875,-2.390625 4.25,-2.4375 4.25,-2.5 4.25,-2.59375 4.203125,-2.59375 4.09375,-2.609375 3.4375,-2.640625 2.953125,-3 2.84375,-3.484375 2.828125,-3.59375 2.828125,-3.625 2.828125,-3.984375 v -1.96875 c 0,-0.421875 0,-0.734375 -0.484375,-1.109375 C 1.9375,-7.375 1.25,-7.484375 0.921875,-7.484375 c -0.09375,0 -0.203125,0 -0.203125,0.125 0,0.09375 0.0625,0.09375 0.15625,0.109375 0.625,0.03125 1.125,0.359375 1.25,0.859375 0.03125,0.09375 0.03125,0.109375 0.03125,0.46875 v 2.09375 c 0,0.453125 0.078125,0.625 0.390625,0.953125 0.21875,0.203125 0.5,0.296875 0.78125,0.375 -0.8125,0.234375 -1.171875,0.703125 -1.171875,1.28125 z m 0,0" + id="path9296" /> + </g> + <g + id="g486"> + <path + d="m 2.9375,-6.375 c 0,-0.25 0,-0.265625 -0.234375,-0.265625 C 2.078125,-6 1.203125,-6 0.890625,-6 v 0.3125 c 0.203125,0 0.78125,0 1.296875,-0.265625 v 5.171875 c 0,0.359375 -0.03125,0.46875 -0.921875,0.46875 h -0.3125 V 0 c 0.34375,-0.03125 1.203125,-0.03125 1.609375,-0.03125 0.390625,0 1.265625,0 1.609375,0.03125 v -0.3125 h -0.3125 c -0.90625,0 -0.921875,-0.109375 -0.921875,-0.46875 z m 0,0" + id="path4704" /> + </g> + </g> + <g + id="g3837"> + <g + id="g869"> + <path + d="m 2.828125,-6.15625 c 0,-0.390625 0.25,-1.03125 1.34375,-1.09375 C 4.21875,-7.265625 4.25,-7.3125 4.25,-7.359375 c 0,-0.125 -0.078125,-0.125 -0.1875,-0.125 -0.984375,0 -1.90625,0.515625 -1.90625,1.25 v 2.28125 c 0,0.390625 0,0.703125 -0.40625,1.03125 -0.34375,0.296875 -0.71875,0.3125 -0.9375,0.3125 C 0.75,-2.59375 0.71875,-2.546875 0.71875,-2.5 c 0,0.109375 0.0625,0.109375 0.15625,0.125 0.65625,0.03125 1.140625,0.390625 1.25,0.875 0.03125,0.109375 0.03125,0.140625 0.03125,0.5 v 1.96875 c 0,0.421875 0,0.734375 0.46875,1.109375 C 3.015625,2.375 3.671875,2.5 4.0625,2.5 4.171875,2.5 4.25,2.5 4.25,2.375 4.25,2.28125 4.203125,2.28125 4.09375,2.265625 3.46875,2.234375 2.984375,1.90625 2.84375,1.40625 2.828125,1.3125 2.828125,1.296875 2.828125,0.9375 v -2.09375 c 0,-0.453125 -0.09375,-0.625 -0.40625,-0.953125 C 2.21875,-2.3125 1.921875,-2.40625 1.640625,-2.5 c 0.828125,-0.21875 1.1875,-0.6875 1.1875,-1.265625 z m 0,0" + id="path6950" /> + </g> + <g + id="g5639"> + <path + d="m 2.15625,1.171875 c 0,0.390625 -0.265625,1.03125 -1.34375,1.09375 C 0.75,2.28125 0.71875,2.328125 0.71875,2.375 0.71875,2.5 0.828125,2.5 0.921875,2.5 1.890625,2.5 2.8125,2 2.828125,1.25 v -2.28125 c 0,-0.390625 0,-0.703125 0.390625,-1.03125 C 3.5625,-2.359375 3.953125,-2.375 4.171875,-2.375 4.21875,-2.390625 4.25,-2.4375 4.25,-2.5 4.25,-2.59375 4.203125,-2.59375 4.09375,-2.609375 3.4375,-2.640625 2.953125,-3 2.84375,-3.484375 2.828125,-3.59375 2.828125,-3.625 2.828125,-3.984375 v -1.96875 c 0,-0.421875 0,-0.734375 -0.484375,-1.109375 C 1.9375,-7.375 1.25,-7.484375 0.921875,-7.484375 c -0.09375,0 -0.203125,0 -0.203125,0.125 0,0.09375 0.0625,0.09375 0.15625,0.109375 0.625,0.03125 1.125,0.359375 1.25,0.859375 0.03125,0.09375 0.03125,0.109375 0.03125,0.46875 v 2.09375 c 0,0.453125 0.078125,0.625 0.390625,0.953125 0.21875,0.203125 0.5,0.296875 0.78125,0.375 -0.8125,0.234375 -1.171875,0.703125 -1.171875,1.28125 z m 0,0" + id="path7815" /> + </g> + <g + id="g151"> + <path + d="m 1.265625,-0.765625 1.0625,-1.03125 c 1.546875,-1.375 2.140625,-1.90625 2.140625,-2.90625 0,-1.140625 -0.890625,-1.9375 -2.109375,-1.9375 -1.125,0 -1.859375,0.921875 -1.859375,1.8125 0,0.546875 0.5,0.546875 0.53125,0.546875 0.171875,0 0.515625,-0.109375 0.515625,-0.53125 0,-0.25 -0.1875,-0.515625 -0.53125,-0.515625 -0.078125,0 -0.09375,0 -0.125,0.015625 0.21875,-0.65625 0.765625,-1.015625 1.34375,-1.015625 0.90625,0 1.328125,0.8125 1.328125,1.625 C 3.5625,-3.90625 3.078125,-3.125 2.515625,-2.5 l -1.90625,2.125 C 0.5,-0.265625 0.5,-0.234375 0.5,0 H 4.203125 L 4.46875,-1.734375 H 4.234375 C 4.171875,-1.4375 4.109375,-1 4,-0.84375 3.9375,-0.765625 3.28125,-0.765625 3.0625,-0.765625 Z m 0,0" + id="path581" /> + </g> + </g> + <g + id="g5050"> + <g + id="g4922"> + <path + d="m 2.828125,-6.15625 c 0,-0.390625 0.25,-1.03125 1.34375,-1.09375 C 4.21875,-7.265625 4.25,-7.3125 4.25,-7.359375 c 0,-0.125 -0.078125,-0.125 -0.1875,-0.125 -0.984375,0 -1.90625,0.515625 -1.90625,1.25 v 2.28125 c 0,0.390625 0,0.703125 -0.40625,1.03125 -0.34375,0.296875 -0.71875,0.3125 -0.9375,0.3125 C 0.75,-2.59375 0.71875,-2.546875 0.71875,-2.5 c 0,0.109375 0.0625,0.109375 0.15625,0.125 0.65625,0.03125 1.140625,0.390625 1.25,0.875 0.03125,0.109375 0.03125,0.140625 0.03125,0.5 v 1.96875 c 0,0.421875 0,0.734375 0.46875,1.109375 C 3.015625,2.375 3.671875,2.5 4.0625,2.5 4.171875,2.5 4.25,2.5 4.25,2.375 4.25,2.28125 4.203125,2.28125 4.09375,2.265625 3.46875,2.234375 2.984375,1.90625 2.84375,1.40625 2.828125,1.3125 2.828125,1.296875 2.828125,0.9375 v -2.09375 c 0,-0.453125 -0.09375,-0.625 -0.40625,-0.953125 C 2.21875,-2.3125 1.921875,-2.40625 1.640625,-2.5 c 0.828125,-0.21875 1.1875,-0.6875 1.1875,-1.265625 z m 0,0" + id="path6351" /> + </g> + <g + id="g2317"> + <path + d="m 2.15625,1.171875 c 0,0.390625 -0.265625,1.03125 -1.34375,1.09375 C 0.75,2.28125 0.71875,2.328125 0.71875,2.375 0.71875,2.5 0.828125,2.5 0.921875,2.5 1.890625,2.5 2.8125,2 2.828125,1.25 v -2.28125 c 0,-0.390625 0,-0.703125 0.390625,-1.03125 C 3.5625,-2.359375 3.953125,-2.375 4.171875,-2.375 4.21875,-2.390625 4.25,-2.4375 4.25,-2.5 4.25,-2.59375 4.203125,-2.59375 4.09375,-2.609375 3.4375,-2.640625 2.953125,-3 2.84375,-3.484375 2.828125,-3.59375 2.828125,-3.625 2.828125,-3.984375 v -1.96875 c 0,-0.421875 0,-0.734375 -0.484375,-1.109375 C 1.9375,-7.375 1.25,-7.484375 0.921875,-7.484375 c -0.09375,0 -0.203125,0 -0.203125,0.125 0,0.09375 0.0625,0.09375 0.15625,0.109375 0.625,0.03125 1.125,0.359375 1.25,0.859375 0.03125,0.09375 0.03125,0.109375 0.03125,0.46875 v 2.09375 c 0,0.453125 0.078125,0.625 0.390625,0.953125 0.21875,0.203125 0.5,0.296875 0.78125,0.375 -0.8125,0.234375 -1.171875,0.703125 -1.171875,1.28125 z m 0,0" + id="path5318" /> + </g> + <g + id="g4303"> + <path + d="m 2.890625,-3.515625 c 0.8125,-0.265625 1.390625,-0.953125 1.390625,-1.75 0,-0.8125 -0.875,-1.375 -1.828125,-1.375 -1,0 -1.765625,0.59375 -1.765625,1.359375 0,0.328125 0.21875,0.515625 0.515625,0.515625 0.296875,0 0.5,-0.21875 0.5,-0.515625 0,-0.484375 -0.46875,-0.484375 -0.609375,-0.484375 0.296875,-0.5 0.953125,-0.625 1.3125,-0.625 0.421875,0 0.96875,0.21875 0.96875,1.109375 0,0.125 -0.03125,0.703125 -0.28125,1.140625 C 2.796875,-3.65625 2.453125,-3.625 2.203125,-3.625 2.125,-3.609375 1.890625,-3.59375 1.8125,-3.59375 c -0.078125,0.015625 -0.140625,0.03125 -0.140625,0.125 0,0.109375 0.0625,0.109375 0.234375,0.109375 h 0.4375 c 0.8125,0 1.1875,0.671875 1.1875,1.65625 0,1.359375 -0.6875,1.640625 -1.125,1.640625 -0.4375,0 -1.1875,-0.171875 -1.53125,-0.75 0.34375,0.046875 0.65625,-0.171875 0.65625,-0.546875 0,-0.359375 -0.265625,-0.5625 -0.546875,-0.5625 -0.25,0 -0.5625,0.140625 -0.5625,0.578125 0,0.90625 0.921875,1.5625 2.015625,1.5625 1.21875,0 2.125,-0.90625 2.125,-1.921875 0,-0.8125 -0.640625,-1.59375 -1.671875,-1.8125 z m 0,0" + id="path634" /> + </g> + </g> + <g + id="g9392"> + <g + id="g5817"> + <path + d="m 2.828125,-6.15625 c 0,-0.390625 0.25,-1.03125 1.34375,-1.09375 C 4.21875,-7.265625 4.25,-7.3125 4.25,-7.359375 c 0,-0.125 -0.078125,-0.125 -0.1875,-0.125 -0.984375,0 -1.90625,0.515625 -1.90625,1.25 v 2.28125 c 0,0.390625 0,0.703125 -0.40625,1.03125 -0.34375,0.296875 -0.71875,0.3125 -0.9375,0.3125 C 0.75,-2.59375 0.71875,-2.546875 0.71875,-2.5 c 0,0.109375 0.0625,0.109375 0.15625,0.125 0.65625,0.03125 1.140625,0.390625 1.25,0.875 0.03125,0.109375 0.03125,0.140625 0.03125,0.5 v 1.96875 c 0,0.421875 0,0.734375 0.46875,1.109375 C 3.015625,2.375 3.671875,2.5 4.0625,2.5 4.171875,2.5 4.25,2.5 4.25,2.375 4.25,2.28125 4.203125,2.28125 4.09375,2.265625 3.46875,2.234375 2.984375,1.90625 2.84375,1.40625 2.828125,1.3125 2.828125,1.296875 2.828125,0.9375 v -2.09375 c 0,-0.453125 -0.09375,-0.625 -0.40625,-0.953125 C 2.21875,-2.3125 1.921875,-2.40625 1.640625,-2.5 c 0.828125,-0.21875 1.1875,-0.6875 1.1875,-1.265625 z m 0,0" + id="path6554" /> + </g> + <g + id="g9797"> + <path + d="m 2.15625,1.171875 c 0,0.390625 -0.265625,1.03125 -1.34375,1.09375 C 0.75,2.28125 0.71875,2.328125 0.71875,2.375 0.71875,2.5 0.828125,2.5 0.921875,2.5 1.890625,2.5 2.8125,2 2.828125,1.25 v -2.28125 c 0,-0.390625 0,-0.703125 0.390625,-1.03125 C 3.5625,-2.359375 3.953125,-2.375 4.171875,-2.375 4.21875,-2.390625 4.25,-2.4375 4.25,-2.5 4.25,-2.59375 4.203125,-2.59375 4.09375,-2.609375 3.4375,-2.640625 2.953125,-3 2.84375,-3.484375 2.828125,-3.59375 2.828125,-3.625 2.828125,-3.984375 v -1.96875 c 0,-0.421875 0,-0.734375 -0.484375,-1.109375 C 1.9375,-7.375 1.25,-7.484375 0.921875,-7.484375 c -0.09375,0 -0.203125,0 -0.203125,0.125 0,0.09375 0.0625,0.09375 0.15625,0.109375 0.625,0.03125 1.125,0.359375 1.25,0.859375 0.03125,0.09375 0.03125,0.109375 0.03125,0.46875 v 2.09375 c 0,0.453125 0.078125,0.625 0.390625,0.953125 0.21875,0.203125 0.5,0.296875 0.78125,0.375 -0.8125,0.234375 -1.171875,0.703125 -1.171875,1.28125 z m 0,0" + id="path7627" /> + </g> + <g + id="g5836"> + <path + d="m 2.9375,-1.640625 v 0.859375 c 0,0.359375 -0.03125,0.46875 -0.765625,0.46875 H 1.96875 V 0 C 2.375,-0.03125 2.890625,-0.03125 3.3125,-0.03125 c 0.421875,0 0.9375,0 1.359375,0.03125 v -0.3125 h -0.21875 c -0.734375,0 -0.75,-0.109375 -0.75,-0.46875 V -1.640625 H 4.6875 v -0.3125 H 3.703125 v -4.53125 c 0,-0.203125 0,-0.265625 -0.171875,-0.265625 -0.078125,0 -0.109375,0 -0.1875,0.125 l -3.0625,4.671875 v 0.3125 z m 0.046875,-0.3125 H 0.5625 l 2.421875,-3.71875 z m 0,0" + id="path4477" /> + </g> + </g> + <g + id="g8456"> + <g + id="g2435"> + <path + d="m 2.828125,-6.15625 c 0,-0.390625 0.25,-1.03125 1.34375,-1.09375 C 4.21875,-7.265625 4.25,-7.3125 4.25,-7.359375 c 0,-0.125 -0.078125,-0.125 -0.1875,-0.125 -0.984375,0 -1.90625,0.515625 -1.90625,1.25 v 2.28125 c 0,0.390625 0,0.703125 -0.40625,1.03125 -0.34375,0.296875 -0.71875,0.3125 -0.9375,0.3125 C 0.75,-2.59375 0.71875,-2.546875 0.71875,-2.5 c 0,0.109375 0.0625,0.109375 0.15625,0.125 0.65625,0.03125 1.140625,0.390625 1.25,0.875 0.03125,0.109375 0.03125,0.140625 0.03125,0.5 v 1.96875 c 0,0.421875 0,0.734375 0.46875,1.109375 C 3.015625,2.375 3.671875,2.5 4.0625,2.5 4.171875,2.5 4.25,2.5 4.25,2.375 4.25,2.28125 4.203125,2.28125 4.09375,2.265625 3.46875,2.234375 2.984375,1.90625 2.84375,1.40625 2.828125,1.3125 2.828125,1.296875 2.828125,0.9375 v -2.09375 c 0,-0.453125 -0.09375,-0.625 -0.40625,-0.953125 C 2.21875,-2.3125 1.921875,-2.40625 1.640625,-2.5 c 0.828125,-0.21875 1.1875,-0.6875 1.1875,-1.265625 z m 0,0" + id="path6779" /> + </g> + <g + id="g7289"> + <path + d="m 2.15625,1.171875 c 0,0.390625 -0.265625,1.03125 -1.34375,1.09375 C 0.75,2.28125 0.71875,2.328125 0.71875,2.375 0.71875,2.5 0.828125,2.5 0.921875,2.5 1.890625,2.5 2.8125,2 2.828125,1.25 v -2.28125 c 0,-0.390625 0,-0.703125 0.390625,-1.03125 C 3.5625,-2.359375 3.953125,-2.375 4.171875,-2.375 4.21875,-2.390625 4.25,-2.4375 4.25,-2.5 4.25,-2.59375 4.203125,-2.59375 4.09375,-2.609375 3.4375,-2.640625 2.953125,-3 2.84375,-3.484375 2.828125,-3.59375 2.828125,-3.625 2.828125,-3.984375 v -1.96875 c 0,-0.421875 0,-0.734375 -0.484375,-1.109375 C 1.9375,-7.375 1.25,-7.484375 0.921875,-7.484375 c -0.09375,0 -0.203125,0 -0.203125,0.125 0,0.09375 0.0625,0.09375 0.15625,0.109375 0.625,0.03125 1.125,0.359375 1.25,0.859375 0.03125,0.09375 0.03125,0.109375 0.03125,0.46875 v 2.09375 c 0,0.453125 0.078125,0.625 0.390625,0.953125 0.21875,0.203125 0.5,0.296875 0.78125,0.375 -0.8125,0.234375 -1.171875,0.703125 -1.171875,1.28125 z m 0,0" + id="path2721" /> + </g> + <g + id="g1625"> + <path + d="m 4.46875,-2 c 0,-1.1875 -0.8125,-2.1875 -1.890625,-2.1875 -0.46875,0 -0.90625,0.15625 -1.265625,0.515625 V -5.625 c 0.203125,0.0625 0.53125,0.125 0.84375,0.125 1.234375,0 1.9375,-0.90625 1.9375,-1.03125 0,-0.0625 -0.03125,-0.109375 -0.109375,-0.109375 0,0 -0.03125,0 -0.078125,0.03125 C 3.703125,-6.515625 3.21875,-6.3125 2.546875,-6.3125 2.15625,-6.3125 1.6875,-6.390625 1.21875,-6.59375 1.140625,-6.625 1.125,-6.625 1.109375,-6.625 1,-6.625 1,-6.546875 1,-6.390625 V -3.4375 c 0,0.171875 0,0.25 0.140625,0.25 0.078125,0 0.09375,-0.015625 0.140625,-0.078125 C 1.390625,-3.421875 1.75,-3.96875 2.5625,-3.96875 c 0.515625,0 0.765625,0.453125 0.84375,0.640625 0.15625,0.375 0.1875,0.75 0.1875,1.25 0,0.359375 0,0.953125 -0.25,1.375 C 3.109375,-0.3125 2.734375,-0.0625 2.28125,-0.0625 c -0.71875,0 -1.296875,-0.53125 -1.46875,-1.109375 0.03125,0 0.0625,0.015625 0.171875,0.015625 0.328125,0 0.5,-0.25 0.5,-0.484375 0,-0.25 -0.171875,-0.5 -0.5,-0.5 C 0.84375,-2.140625 0.5,-2.0625 0.5,-1.609375 0.5,-0.75 1.1875,0.21875 2.296875,0.21875 3.453125,0.21875 4.46875,-0.734375 4.46875,-2 Z m 0,0" + id="path3497" /> + </g> + </g> + <g + id="g9558"> + <g + id="g8287"> + <path + d="m 2.828125,-6.15625 c 0,-0.390625 0.25,-1.03125 1.34375,-1.09375 C 4.21875,-7.265625 4.25,-7.3125 4.25,-7.359375 c 0,-0.125 -0.078125,-0.125 -0.1875,-0.125 -0.984375,0 -1.90625,0.515625 -1.90625,1.25 v 2.28125 c 0,0.390625 0,0.703125 -0.40625,1.03125 -0.34375,0.296875 -0.71875,0.3125 -0.9375,0.3125 C 0.75,-2.59375 0.71875,-2.546875 0.71875,-2.5 c 0,0.109375 0.0625,0.109375 0.15625,0.125 0.65625,0.03125 1.140625,0.390625 1.25,0.875 0.03125,0.109375 0.03125,0.140625 0.03125,0.5 v 1.96875 c 0,0.421875 0,0.734375 0.46875,1.109375 C 3.015625,2.375 3.671875,2.5 4.0625,2.5 4.171875,2.5 4.25,2.5 4.25,2.375 4.25,2.28125 4.203125,2.28125 4.09375,2.265625 3.46875,2.234375 2.984375,1.90625 2.84375,1.40625 2.828125,1.3125 2.828125,1.296875 2.828125,0.9375 v -2.09375 c 0,-0.453125 -0.09375,-0.625 -0.40625,-0.953125 C 2.21875,-2.3125 1.921875,-2.40625 1.640625,-2.5 c 0.828125,-0.21875 1.1875,-0.6875 1.1875,-1.265625 z m 0,0" + id="path2566" /> + </g> + <g + id="g6630"> + <path + d="m 2.15625,1.171875 c 0,0.390625 -0.265625,1.03125 -1.34375,1.09375 C 0.75,2.28125 0.71875,2.328125 0.71875,2.375 0.71875,2.5 0.828125,2.5 0.921875,2.5 1.890625,2.5 2.8125,2 2.828125,1.25 v -2.28125 c 0,-0.390625 0,-0.703125 0.390625,-1.03125 C 3.5625,-2.359375 3.953125,-2.375 4.171875,-2.375 4.21875,-2.390625 4.25,-2.4375 4.25,-2.5 4.25,-2.59375 4.203125,-2.59375 4.09375,-2.609375 3.4375,-2.640625 2.953125,-3 2.84375,-3.484375 2.828125,-3.59375 2.828125,-3.625 2.828125,-3.984375 v -1.96875 c 0,-0.421875 0,-0.734375 -0.484375,-1.109375 C 1.9375,-7.375 1.25,-7.484375 0.921875,-7.484375 c -0.09375,0 -0.203125,0 -0.203125,0.125 0,0.09375 0.0625,0.09375 0.15625,0.109375 0.625,0.03125 1.125,0.359375 1.25,0.859375 0.03125,0.09375 0.03125,0.109375 0.03125,0.46875 v 2.09375 c 0,0.453125 0.078125,0.625 0.390625,0.953125 0.21875,0.203125 0.5,0.296875 0.78125,0.375 -0.8125,0.234375 -1.171875,0.703125 -1.171875,1.28125 z m 0,0" + id="path1217" /> + </g> + <g + id="g8891"> + <path + d="m 1.3125,-3.265625 v -0.25 c 0,-2.515625 1.234375,-2.875 1.75,-2.875 0.234375,0 0.65625,0.0625 0.875,0.40625 -0.15625,0 -0.546875,0 -0.546875,0.4375 0,0.3125 0.234375,0.46875 0.453125,0.46875 0.15625,0 0.46875,-0.09375 0.46875,-0.484375 0,-0.59375 -0.4375,-1.078125 -1.265625,-1.078125 -1.28125,0 -2.625,1.28125 -2.625,3.484375 0,2.671875 1.15625,3.375 2.078125,3.375 1.109375,0 2.0625,-0.9375 2.0625,-2.25 0,-1.265625 -0.890625,-2.21875 -2,-2.21875 -0.671875,0 -1.046875,0.5 -1.25,0.984375 z M 2.5,-0.0625 c -0.625,0 -0.921875,-0.59375 -0.984375,-0.75 -0.1875,-0.46875 -0.1875,-1.265625 -0.1875,-1.4375 0,-0.78125 0.328125,-1.78125 1.21875,-1.78125 0.171875,0 0.625,0 0.9375,0.625 0.171875,0.359375 0.171875,0.875 0.171875,1.359375 0,0.484375 0,0.984375 -0.171875,1.34375 C 3.1875,-0.109375 2.734375,-0.0625 2.5,-0.0625 Z m 0,0" + id="path6085" /> + </g> + </g> + <g + id="g851"> + <g + id="g7891"> + <path + d="m 2.828125,-6.15625 c 0,-0.390625 0.25,-1.03125 1.34375,-1.09375 C 4.21875,-7.265625 4.25,-7.3125 4.25,-7.359375 c 0,-0.125 -0.078125,-0.125 -0.1875,-0.125 -0.984375,0 -1.90625,0.515625 -1.90625,1.25 v 2.28125 c 0,0.390625 0,0.703125 -0.40625,1.03125 -0.34375,0.296875 -0.71875,0.3125 -0.9375,0.3125 C 0.75,-2.59375 0.71875,-2.546875 0.71875,-2.5 c 0,0.109375 0.0625,0.109375 0.15625,0.125 0.65625,0.03125 1.140625,0.390625 1.25,0.875 0.03125,0.109375 0.03125,0.140625 0.03125,0.5 v 1.96875 c 0,0.421875 0,0.734375 0.46875,1.109375 C 3.015625,2.375 3.671875,2.5 4.0625,2.5 4.171875,2.5 4.25,2.5 4.25,2.375 4.25,2.28125 4.203125,2.28125 4.09375,2.265625 3.46875,2.234375 2.984375,1.90625 2.84375,1.40625 2.828125,1.3125 2.828125,1.296875 2.828125,0.9375 v -2.09375 c 0,-0.453125 -0.09375,-0.625 -0.40625,-0.953125 C 2.21875,-2.3125 1.921875,-2.40625 1.640625,-2.5 c 0.828125,-0.21875 1.1875,-0.6875 1.1875,-1.265625 z m 0,0" + id="path4103" /> + </g> + <g + id="g9962"> + <path + d="m 2.15625,1.171875 c 0,0.390625 -0.265625,1.03125 -1.34375,1.09375 C 0.75,2.28125 0.71875,2.328125 0.71875,2.375 0.71875,2.5 0.828125,2.5 0.921875,2.5 1.890625,2.5 2.8125,2 2.828125,1.25 v -2.28125 c 0,-0.390625 0,-0.703125 0.390625,-1.03125 C 3.5625,-2.359375 3.953125,-2.375 4.171875,-2.375 4.21875,-2.390625 4.25,-2.4375 4.25,-2.5 4.25,-2.59375 4.203125,-2.59375 4.09375,-2.609375 3.4375,-2.640625 2.953125,-3 2.84375,-3.484375 2.828125,-3.59375 2.828125,-3.625 2.828125,-3.984375 v -1.96875 c 0,-0.421875 0,-0.734375 -0.484375,-1.109375 C 1.9375,-7.375 1.25,-7.484375 0.921875,-7.484375 c -0.09375,0 -0.203125,0 -0.203125,0.125 0,0.09375 0.0625,0.09375 0.15625,0.109375 0.625,0.03125 1.125,0.359375 1.25,0.859375 0.03125,0.09375 0.03125,0.109375 0.03125,0.46875 v 2.09375 c 0,0.453125 0.078125,0.625 0.390625,0.953125 0.21875,0.203125 0.5,0.296875 0.78125,0.375 -0.8125,0.234375 -1.171875,0.703125 -1.171875,1.28125 z m 0,0" + id="path1546" /> + </g> + <g + id="g2999"> + <path + d="m 4.75,-6.078125 c 0.078125,-0.109375 0.078125,-0.125 0.078125,-0.34375 H 2.40625 c -1.203125,0 -1.234375,-0.125 -1.265625,-0.3125 h -0.25 L 0.5625,-4.6875 h 0.25 c 0.03125,-0.15625 0.109375,-0.78125 0.25,-0.90625 0.0625,-0.0625 0.84375,-0.0625 0.96875,-0.0625 h 2.0625 C 3.984375,-5.5 3.203125,-4.40625 2.984375,-4.078125 2.078125,-2.734375 1.75,-1.34375 1.75,-0.328125 c 0,0.09375 0,0.546875 0.46875,0.546875 0.453125,0 0.453125,-0.453125 0.453125,-0.546875 V -0.84375 c 0,-0.546875 0.03125,-1.09375 0.109375,-1.625 0.046875,-0.234375 0.171875,-1.09375 0.625,-1.703125 z m 0,0" + id="path3852" /> + </g> + </g> + </defs><g + inkscape:label="Layer 1" + inkscape:groupmode="layer" + id="layer1" + transform="translate(-46.11853,-8.9962835)"><image + width="50.558105" + height="43.270451" + preserveAspectRatio="none" + xlink:href=" AAB1MAAA6mAAADqYAAAXcJy6UTwAAAAGYktHRAD/AP8A/6C9p5MAAAAJcEhZcwAACxIAAAsSAdLd fvwAAAAHdElNRQfpAhQPMR32I18UAAAAAW9yTlQBz6J3mgAAABBjYU52AAADqQAAAtEAAAAgAAAA E/kgjeAAAIAASURBVHja7H13vCRVlf+3ut9gAtQ1oZJzRslxhjjAiKKoq2tEd4FF/RlQBFYxY0DQ FdfIiml1dQUEgQGGODMw5DQw5BwExUAwAfO6f39U3+pbt2++596qfn2/nw+87qq6qd6bqvO953zP Kfr9fh8ZGRkZGRljgqIoAAD59ZWRkZERD1NNTyAjIyMjI8MGjByctOD02vdMFjIyMjLokUlCRkZG RkarIZIDhkwWMjIyMuIhk4SMjIyMjNaiKIoRciAik4WMjIwMemSSkJGRkZHROqi8BzrwZCEThYyM jIwwZJKQkZGRkdEa+JADESctOD17FTIyMjICkUlCRkZGRkbjoCAHPHIIUkZGRkYYipwCNSMjIyOj STBDPgXyKy8jIyPDDtmTkJGRkZHRCHjvwXvn7k/mReDx3rn7j4yZiUJGRkaGGZkkZGRkZGREhcpT wJMCaqLAyAHrj+87hyBlZGRkmJFJQkZGRkYGCUxhQx/7yudw3BGfiuIxYBDJgQyZLGRkZGSYkUlC RkZGRoYTVGTg3z/xscH5Dr7zhWMBAB/+wtH4z09+HgCiEgQdOVB5KDJZyMjIyFAjC5czMjIyMkag 8wowMvDdY46rvn/3mONw6CcPx3e+8FVpG1ty4BpyZOM5sOmT9ZNfiRkZGRklsichIyMjY4Jhk1mI kQIGnhyw7+/71BH49ue+MtI2thg5p0zNyMjIiIPsScjIyMiYAJhChBhE7wB/XiQHRVEoPQcy2Bj0 ul1/G6+BS3+mdkAmCxkZGZOL7EnIyMjImCHw8QowiARAdk71HQAO/+rn8dXDjwagzlQkpiNl14rf xbY+5CAUvGchE4WMjIxJRCYJGRkZGWMGH68A/113jeo8u4b3Hnz4mE9h1qxZ+OrHj8ZXDz/aaMSr RMWqa5ogB7K55RCkjIyMSUQON8rIyMhoKUyeARevgCl0iD8mG6MoChRFgW9//lh88HOfwNSsWfja UZ8BAG14kKuBryMNrggdX6yxkEOQMjIyJgnZk5CRkZHRIGyyCAF6rYDsGhXEfnTEgF1/6NEfx3c+ f2x17IRPHQOAdoef9xrwxn0MkbJqbNMYWdyckZExScgkISMjIyMBqLwCMoJgGzLEEwKZZ6Hevqjm zAjCR7/8WRx/5KcB0BjsNsa5LPyIenzX9KlZr5CRkTEJyCQhIyMjgxA2egExzl+E6rxNyJBNP7Jr VLqFD37+kzjh6C8AAI4/8tPBxnmIoe9CGFShRpRE46QFp2evQkZGxoxFJgkZGRkZjvDxCogGu6tH gL9edZ0qdMgkWObDjt539Mfx7YHn4CPHfApf/8TnqjZ8XL4KoYa5rY7AlTDYju+KHIKUkZExU5GF yxkZGRkKUHoFQj0CvLGv2vU3hSSpCMOhnzwcKIoqrOjDXzga3W4Xxx/1mRFj3LZyMY8UdQ2oxg+d SxY3Z2RkzBRkkpCRkTHxsBUPM4R4BWw8AqqxTHNzqXVQXlMMUpoeK+1fVufA1mgWMwK5tvMBJUGg mEt+vWZkZIwzMknIyMiYCNgQgdheAZVHQAZT1iHTvFR98Hjf0Ufg25//yshxVyGvzTW+7UzQpSzl z/tWXabwauTXbEZGxjgik4SMjIwZhbZ6BUwGu2q+qnSnqjFN5IIvhibCxiA2Gc668yaD3dVToepL V+25KY8GkMlCRkbGeCELlzMyMsYObfEK6PrRwT4cSA0ZQRHXL6Y0/e4xQ3LwkWM+he7UFI474lMA wgW9Nka4bKffZwyf+VJ4Fnzmxq81p0zNyMgYJ2RPQkZGRmvRhFfAJW2obm42/Yjz0RVJU4mVxf5N 4uYPH/OpUpQcUO9ANPJ9w4RsQpJ8iIGLwDrEq2EzN9m9ArJXISMjo/3IJCEjI6NxmLIIpfIKqMZU zUsGV5Lho1EwZUHir3//p47Etz73ZXzoC0fjG5/8fO16U0pTG8OXIixHrLIsnnPt0zWbkjiOTY0F 27mZ+sqv4IyMjLYik4SMjIwkGDevQEjxM51HQNa37dxc1vC+Tx2Bb39OLUr2TWeq6i8ETact5ecg EpaQECeXe5xfxRkZGW1DJgkZGRmk0HkFbIxekyHtU63YxyvgS1JUHgzZdTZrENeh0z78+ycOR6dT VMXQRISkNBXbxURTaUtla0s1l5wyNSMjo23IwuWMjAwv2BQaY2AVfV132dlx37ShtsXHTPOwCV1S jWXSGKjmLmvL3z95FeWhMPmjX/5skO5ABjE0J9Qg5/tQ7d5Tzl+1HhVijasaK1dtzsjIaBOyJyEj I0MJlyxCOqPXZic8hVfAVJFYtQ5T6JJtKlQdadHNTXY/WJuiKFB0Ovj2574yojugrEvgW/tA1584 R1stgGptNulXXfoIzYQU6qnJr+eMjIwmkT0JGRkZTl4BHr6hNT41BXR9+GoAbEmKjeFuSw6YV8V0 j3T3glVL7nQ6VTG0w774aXSnykc65Q54jJShrsazj4iYQmQc4jGh8LJkz0JGRkaTyCQhI2OCYKsX UIWzMPiG1rgbwnZj+3oFbFOT6s7b9MOTA9fwI5EEffeY41B0OvjOQHfw4WM+hampLo47Im5okQyy rEShfdpCRQpiZEXis0DFDEFShXPl+goZGRlNIIcbZWTMMLhkEdLF6JsMWp/MQSbyYdNXKkGzL0L0 D6bUqN895ji87+gj8O3PfwUf+vwn8Y2jv1DrT0xp6puiMzQMKcV1Yht+/RS1H1KuQ0VAZKFP+ZWd kZGRCpkkZGSMKVy8AiLEXWrddS5Gr9i/an6qedjoGlzmbzsXF4LhsnYbwqMjL8P2BYpOUXkPeOgM Y5uQG4oYfJNBHIN06K6n6MN0vek+2dwTBpeCbpksZGRkpEION8rIaDls9QKm2HhXkaypreyczTxl c/QtfGaqRGyag8n4t9E9mO6v2K9q/qpj4hw/9pXP4rgjPm1l1NrG6ccKpYkZoqPrO8SjYAOTVsFG QO07N9Yu6xUyMjJiI3sSMjJaAF2IEA8qg9snnahuTi6hNbK5hAiaxT5dDH/d/RLXFuJhcA09Eq// 8BeORndqSpnSlLreAYUnITTzEYVnwraYGUVdBVOWJh9yYDv//BrPyMiIgexJyMhICNfaAuycTRYh UwgL3za0wi9/rW3IkCl7kGwttvdK1YdLhiXbasjUJEKW+YhVS/7Q549Gd6qLrx31GQBxRMk6g1YG 0859U94D1VxjehT4uZjuY0yvRvYqZGRkxED2JGRkRICNZ8DH2A3J2mMbhuRi9IrXxfQKuAiaZf3L 5ulSDdmHRIj31XQtEyUDwEe++Gl8/T8+CyAs9l28VtafTx8qUBjDqTwT1ASCugicj1Yiv9IzMjKo kElCRoYnfLII+eb09zGExetcPBGqMUxaBpdsQbbpR10rNNuuRdfWRFJMJMK1MBuf0lQERbiMaQee KuTGFq6hQpSVnVOvO7R/23vFkF/pGRkZVMgkISPDgFheAdU14nHVWBRZdPjrfIqima5XzcMlRanN /aIgJ6EZn3wqJos47EufqUKLePh6EmzDc0I1Da7GfAxSYTtfH+Jhq93gQ65EUbjPOmwzJH3pR9/B UQceCiCThIyMDDpkTUJGxgA2egGbol8uAl3+Gl8RLH/MJYuO2M4mg5HuXtiEMblqFnRzdf1d2PRt c69M98PGe1EUBYpOZ6A7+CS63S6+9h+fxdeO+ow2lamrAR4rDp4qQ4/tOmLv2JvGce2bJwqioJli vjw5AICjDjy0RhQyMjIyKJA9CRkTBV+vQIhHgL9el8GGKqzIZj22fboW+1LdBx9y4KJZ8CEvtgXh ZOuWnTfNobzmcHQ6nZruoNvt4rgjPuVkOMt2w2PuWLtcS5ktiFIrYQPK0KCYdRIYOQCGBIF9zq/0 jIwMKmSSkDFjISMEh/zHx8Afds0gxI67pBM1hQ2p+pAZ5D4ZdHwyBana+dwHl6rItmOb+nWpaWAD n3Au8dyhn/w4vvOFUnfw4WM+hf/8xOeq632Nesqd6VBdg0tfLv1TiotlRCKW0Npl7qrfo4wE8gQB yCQhIyMjHjJJyJgxUHkJDvmPjwIolOSAfbfJyhOSvcdFrCzOTdbepeqwbD6quflUazbdLx8i5XOt i77Dpn8fj4V4bVEU+M4Xviodi3KXPFYmHdfQIh+j3qSroDbkKapMx5q76nctkgOgThDY9/xKz8jI oEImCRljD0YO3vXh92FqqouTjvsmDj7yMBSdAt/74vFWmWpsDVlTiI0MNhmHXL0W7DoKoqIbX3aN DymRhVfp7pVNulAXT4w4j9CaBrrzw+MFvnvMkByIKU1dwmNcBbK6tirIwmVc2uv60l1nGmMmFDsL ISCAHUFgx/IrPSMjgwpZuJwxtmDk4J0fPBTdqS5+9LX/AgAcfNRHURQFvvdF+/ShthlpVJ9NBbpM /fnEzdtmCbJdm62B7pP+1NXoV5EKm+rJuvXYkC7be6q7Pzw+csyn8PVPfK4iCAB9SI7qGN/G5lrT GJSwvQe+BdF8Cq/FWL/P/Cn0FRkZGRmhyJ6EjLFDURR42/v+Dd2pKXS7Xfzo698CABx81GEoik4V VuQad24L17z8odmLXDMNuYbehNY7sL1HsvlT1DOwTdeqCxVz8UTozou6g6mpLo474tMA3NOEiqAs COZaUZlqrvzY1Dv2rtfbCospQolcPSssUxH/k4fsGDueX+kZGRlUyCQhY2zAPAfv+H+HoNvt4sf/ +W0AqEKLiqKwSuMpO6e6zvZa2xAl/lrXECWbXXNxXNXaQ6oq6+Zl47Ww2dUXxzRlhTL9Tkx9u9Y9 GCmGVhTodDr41ue+gg9/4Wj85yc/X52nEOLGjNmPpXegDF+yXadrqlhfUXGM3yEAbdYi2Wf+Wob8 Ss/IyKBCDjfKaD0YOXj7Bw6uvAc/PP6bOOjIw1AUBb7/peNr17vWNZBd62rw6q5RhabIdrF14S62 wmq+L3HNsloFNtmXTPdKnKPpOtUcbTUWriJwWRvXugeqtKZitWRGEFQGoUv4SazQH1fDN9TzQJmh KOV9EvuMEQYkpjQF1J4CEYwc5BoJGRkZMZA9CRmtRlEUePv7D8bPvvV9vOewD+CHA90BD5lxaVPX gL9O7E/VJtYOPH+MguTIrpN5NWT3z4ccuaZD9Qn3Uc1N52VQjeEiQFbdG76PMrRoyrreAUBbb8Bl lx0AWdiS2K8KMSomU8zbVydgEp7beH1cRMli6BFPDsTz+ZWekZFBhUwSMlqJoSj53/HTE747cl6X nYg/b1t/QNWn2MY2o5F4LQ/KdKCy9bj050qmfLQBsjnYCL1VtSt04VoUOgddnyI+9PlPYmrWFI4/ 8jMAaIqYUcfsx65voOvPFj5kKEX4kmocl0JpKqg8BTq9gaxtrpOQkZERCzncKKNVqOkOpqbw44Eo GQAOOeqjQFFIhcmqHWZTrLlr0S3fHPqq60zjmY7bXifOzYYY2cyZD6kS76tuDnwb2Xx0vxtbfYHN teKY4nXiWpgw+YOf+wSmpqbwNS6lqQ9kaUyphMP8GCnhUzHZhVCkzL7kO46u3gQAq1AiHqLnICMj IyMFsichoxWoyMEHDsH//Nf3quNMd1AUsKp5IJ6TXUO1k08ReiODjkSY1q47b+MNsOnfZv42mYVc 5mi7ZpXOIaT6MhMmqwqitREpwm9k7WVjx66YHLJ2lbja1I9PqJIpYxEgDzPiYdIuZE9CRkYGJTJJ yGgcqkrJZUrTojrvkjdfdo6d9y2kJV7rKjCm0AKortWdd83AFKK3sO3Dpd6B2MYm5Eg3FzcSWS+I xoNq919WGM2nD3FeIXOhbkdNQHxE1jodRsxCagCcshSJmgMVscjF1DIyMmIjhxtlNAaeHBx42AeG xdAG3gMWWhTiNRCvs6n8G6Il0BXakoX8+GgBTATAxugX750s9MflHvnqAMTfi00NBVO/LjUPdAJl vs1hX/oMvnbUZwDQinAp+qNONdrEGlzWZ4IreYiReUknSmaQkQHAPrMRD9b2e2edXD1XM1nIyMgI RfYkZCQHTw7e/ZH3V7qDg488bEAMymrJPGx3plWiZFlfFKJd2Vxs5uyjBaDwpOj60vVnyvjkWpPA xwNgsz5d2JSr+PyDn/sEulNTVaVk6vATigxDTRUtS1UQTTcGpefFtSq1ag4mcmASJevCiXSfS3KA 4eYKCvzbPm8AkMlCRkaGP7InISMZauTgw+9Dt9vFScd/EwBw8FEfrdU7cDHq+PN8O9Putm3sf6x0 p+y4q85CtkbdmCpQpWd1rXdgG66lWrtsbbqaBza1IUrdQWdYLfkLR6M7NYXjj/y0lbFoGy5kMnxd xb6666iyALmO2/YxZIa9SWjMYCKKOg+AyUNg0huoPA/fn38ygKLSbrGNlpPOO70WrpnJQkZGhiuy JyEjCdiL6l0fOrQshqaod8BgEv+ajEmxP1kf4jlbLYE4hk9dAX5MV2Gzam4UKVVdyYxqPraeBdm4 rl4O03nTvHWiZMqdcsq6B74Vf01rovZM+KzLZQzXeyrr26cPGUwhQiFeBPFaYEAOBl6Dg/Y9wGr+ +XWfkZHhgkwSMqKCr3fQnZqqdAcMh/zHx8Drlk0Fr1zz6svaiNCFwIjtqEKUbFOayvoIzfdPNV8b r4LsemrhsQu54q+nIgc8qOoeqPrSHXfpVzUfyvmnWBeF9yZkbAbb6sg6obKNKFmFH5x7GjAIN6r9 1+lUn98xe5/q+vzaz8jIsEEON8qIgmG9g3/H/3zzu5i1wgo46bgTqvOH/MdHa+FHsvARnRHqWwBN hCk0SdeXKcOQqg8eJiGvC0FxCfmxma9szqZ12WZVsjH0bcPMVCTPxzPE4JIhRzwfo+4BP6/Q/lzC kFKFFpnmoVuLyfsRY/4iQfARG/MwpUc96sBDceLZp+Cgfd+I/z7n15Xe4AcLTqueoyMEoSIKBd6+ yz7430vPq74XRZGJQkZGhhGZJGSQg7203v3h9+HH//ltAKgRhH//j48BEu8BYA7L0e2Eu1b91Y0p tnGteGwTKqQbR7ceG2+LTmDsKuC10UD41IXwqXegGkt3TpW16cPHfArdbremO6CopMtfG2KgxiYc OrIQM2sRv67YRrxt366aEl4TYAOdF8HUDgD++5xfV8/MolPqDQDgvXuV8/nRBWfUiAEEosDaFUXp WfjVlRdnopCRkWFEDjfKIIOy3gGXtUhMaQqE7WKL15nCWFzrEviGC9lmUDIZ7D6Gvs+cbQqdmcax 1SOYQsJUO/+mOerCxlilZAD40Oc/ie7UlDKlKVU4jw90AtqYQt42wkcPEnKvbPQYYnYhU90DBpdw Ip6A/Pe5v0aBogwlQoH3zt0fPzzvN1VoUalJAN69+34AgJ8uPHvEk/AvO+2FX1x2Qc2zwD6/cavZ mShkZGQokT0JGcFQkYODjvwICgxfSgDNrjuDrJ3OgNWRAlN73ZgU9Q1sY/7FfkzHbO+niTzpUsua duxd7qeMRKn6tUmRyoyhb3/+2Or4N47+AgB6o5s3UEOKkvmcC4UsDWjs2gemMVzXG4NMyVKaqsgA RdgR6//Es08t/3aBodYAvEeA8xZgSA6Y7qAKLRo8dzsduYfh1GsXZ49CRkaGEtmTkOENkRy856P/ Dz88/ps46IiP1HatqD0CMoRk6zFdRzWe6zpc6yK43h/V/bbxdJhqHcj60s3bJjTJNUxKxMe+8lkc d4RdStPUWXNM84idEpTNXwxvkq2LYjzKECqbmgcibDQMqpSmOu+BLoORyePAvAcnnn3KiEEPlM/b TqeDd+++H35y8XzO2AeGKVDL/966455Vv7+68qIqC9KbtpmjvCfZFMjIyBCRSUKGF/iUpp1ut8pa dNCRH0FRdKxqHgD2IUW+17roF0JClHxrKrimDLXJHCTO3aU6MpXo2OVe6Najm5v8+gLfPaaeseij X/4sjj/y0wDoU2vGEs2qdAIxDXbVGJRkQdU/VTYp12JwOoQY+7ZZjNg5BiZO5nHSeaejw2Upetdu r8H/LDq7rj/gSMJbdthDuaZTr10MADXigaLA67fYEUAmChkZGXVkkpDhhCql6YcORbfTwY8G1ZJL clDg+1/6GgB7I9hWG+B6fUhcvq4vV02Bai4hqVwp5ype67se23thcz9sCIFpLJPuwAYUNQOo03pS EQUf70coWaBcVwzvjSmlqa3XQDynS3MKlMQAQJW5iC+IVhQF3rPn6wCg8h68c86++Nnic2uaAx6l KBl40za74pSrF+GNW8/GqdcsHuoYBuA1DftvsSN+c+PleN1m22eikJGRUSFrEjKswNc76HS7+DFH Dk788tdx4pe/DsAcg89fo8vCIyKVlkDXl854NRmzqr5l303pX23DpFy9AqrPuvXo1iRr4yLQVv2u dL+HD37uE+hOTeHr//HZ2nGqePuYIuLYAuXQMULCkGyqQ1N4b3xCs3wzFoWA6Q4GmmSwYjG8qJj9 95OLzkLRKfDOOfOq9m/fZe/q8y8vvxAFVyMBRT2j0anXLsYBW+6CX193ST1EtNI8DK4FcMZNV2SN QkZGRoVMEjK04F8q7/7w+9DpdvHD479ZHTvxy1+3KojmkgffJse/bCxZXyIo052qxtUVDbOt82DS C9gY/pQF0mzay37vvIeCqioz//nQoz+O73Ci5BM+dQwAGGPeZeEm4nUUKUhdUmva9B0qiqYgIK73 I7b3I+Qe8boDfsdfhKsgWZX5qPIenHMql7UIlaHOhxUNMxF1lMkh/u+KCwURMyMK5XnWz2nXX4rX v2onnH7DksGJ6n/DbNQDfcNZy67MRCEjIwNADjfK0GCoO3gffvKNb9fOHXLUR6uXCg+XeHVTDQAZ dKJZXV++IUoUKUFV89PdE1/thouQl+J+iNfZCJ1NVZlNhdT+/ROHD6olHyvtwzcExRSnHivMxrVv qtAciv5NffvMlaIas229CxsBsov2QHYNjxPPPqXSELC0piwM6L177Y8fXXhmKVDmCALzGvzvkjJj 0Vt32HPgPSjwz9vtBgA45eqFI5mLaqQAg5CipZeVXwSS8NrNtseZy66otd93w60zUcjImHBkT0LG CGq6A06UzON7nDBZhI1x6RIvL15jU3zN1JfuOh/j3rReG6PeRYdgW6fBpi+K9ZjupWqdPiJnXph8 2Jc+E6Q74KES7Kq+hxbq8t1hdy38FTN8yVSQLdTz4rsG3T0HYO0VCCEIcrDdfkgLnvGehCqd6YAc lISintL05KsXVvUOWDpTkSCwvpnm4IybLgdfzfK1m243QhCKosC5t1+XPQoZGROOTBIyKvC6g5+e 8F389BvlS7Cqd1C5tcvr1Uace7Vhn11r1fWu6U5t0m2q6gLYrFk8r9tJ1/Vj6sOGGLhmO5Ldf929 sCFYqnAr09jvO/oIfPvzX6npDr521Gei1jtg321Dlvh24jGKgl+y/lRriEkOVGs2ESvTfeLXRn2P bFKaUuKoAw/F9846GYe85k2VB+GgfQ6QXvuTi87CTy+ej3fuOtQd1GodDJ67w6xEnRrR+PW1i/GG LXcBAJx2/aUYXFSFMjHHwRk3XTEgBVfWxmf9DUmCOsQpIyNjcpDDjTIA6AqiHTZ4eXTIqyXbGpi2 Y5kIiCnUSdcXRRiPqh8XD4VsHT7F3HTX8PMKuR+hZKREGXbBdAcfPuZTmJqawnFHfCpK+AkQnjEn VtiSzZoojGuqQnC2no5UsK2GbDpucw4Avj//ZKAocPC+b8R/n3Nq3XPQ6ZQhRYP/eHIAcN4Dznjn w5TetPUcnHrNorpIWUhn+pull0mIQkk2XrPxtph/81UAgHkbb4P5t1xd1Vxg485d71XVfLKZkJEx mciehAkHTw4OPOwDw3oHR3yklmkjJG7elAnIJuOPSzpQ/hpVhiHbFKKy9ajOq+biuuNvusbmvrh4 XGwzT7mkYHXxvMj1CkVNd/DhLxyN//zk5/Gfn/gcAFpDm7I/VV+8QexiHNtmBEoRWiSDilz5FjSj LLRmSmkKQFu3wLWCco0cQNj55wXJAkF4x5x9AQA/v2QB3rbzXPxiyfn1YmhXXVwLUaogKba2/4Ag AMDrNt+h+nzmsiuGc+IqNzN0OPHz3uu/GgBw/l03gC/SlolCRsbkIXsSJhS1rEUfef8wpSlXLfl7 QkE0wC4rkW/oUGiuf9OYJjLhO0+b3XwTsbK9v773xTYtqalvW2+ESaisI4SHfvLjKIoC3/78V+AK k7fAJ9adsigatVfCdu2ucw7VOzRZ90BMaaoz9kWBsthOPK5r972zTh7Z9Wff3zv39fjRBWdUZIEJ k9++yz74+aULqnDOt+64J355+QW1sB++SjIrhlamNL0URQG8/lU7VeeZ96DUHlxReQ/222Tb6hrm Ndh3w61wzm3XYp8NtsS5t18HANh7/VfjvDuvR72Cc9nH7mtumolCRsaEIZOECYMqpSkjB9//8teq 8zpDUbyGuggXO+6S9UgFnxSgocZ6aF8uhc90azStU/V70K3DVgCtG0+2vqLoWGUssskWZELMbEK6 dpRaAXEX30Uj4bNeXUhWyH2zCQVzybZkk7FI/G5TKE1GOErdwa8Gz1VOkMyM7M6wIBqrd1AUnboo GUPNwVu23wP/d+VFQwMdqIUUHTDQHfA4fellI9qD1266fc17wIx+AJi30dbK+3fenTfUPBN826Io sOsaG2eikJExQcgkYYLApzTtdjv4oSRrkW81Xtu0pGK/qnP8ef4ailh411oHLn36EB0bj4Punuiu MV1rcz1V2JXqHtiSAwaKmPkmU45SEAWXsBxX8bDM4+J6z2zXSUkkADgb+iYvgQgxpSnzHvCeA2bU 85mK3r37fvjpwrPxzkFoERMl1wXJZUrTk6+6mKt7gBHdwajnYBhCxGsP9ttkW5x181WCoT/8DKAK LQLq4UWsT7HtnNUzScjImCRkkjABGJKDQ9GRpDQ95D8+iuGO0xA2xrR4PiSbjm5s2RzEvnS1EMQ+ Q3boba6zNfx1BMzmfphgyoLk4xUwjaebv+lv6KNf+SyOP+LTAOxDh2wgXh+jdoBtn5ThS6F9xhRZ p6gPoUppamvo+wiWQ/DzSxaMVFXmjfA3bbNrreYBMMw4xMjB6TcsqWoeMN0BH1rEfr6GFySzcwI5 OO/OG7DXulvg/LuWYs91Nq/medG9N0EkDIyHzFlto0wUMjImBJkkzGCIKU1jgHInXdavCi5GON+n SQRtGttnJz+G4e87N8pxfYTU/Njv//SR+NZnv4wPf+FodKemcPyRZnLA4BqCEmqsUobE+F6vmyd1 VWMVKLwJoSSJD63yyVjE4EIQ6rqDAgfPe+OgajJG6h2IuoN3zN63EiXz+L8rLgIf88/64mseAMAb Xr0zgJIcsOtet/kOOOPGy6vv+226HQBUnoMCBfbdaGucc9s14D0HRVFg7nqvGoQVAazk855rb44L 77mxuna3NTep5rnwgVtG7kcmChkZk4Gc3WgGgr0Q3vH/DkF3aqoSJfM45D8+pvUcuBb10hnookEf muqUv8bG6OevF4mCj2Htmg40RuEzm7X69Olyjcu82Pf3HX0Eik6Bb332y/jWZ7+Mw770GXS7XXz1 40c7GY62BcVs+gH8sxylyCqUouYBvw5XzQdVdWZTO/67LuOQSaRsEjPL2omi5P8+59f4t33egB8s OE1LDoAytIjtwvOi5Ddvu1s1xinXLKpIQvlDKIompjJlnweG/lk3Xwmg9B4AwDm3XYtzb78We6+/ JRbccT0AVClNWViR6CHgvRoX339zdW7OahtV82SEYeEDt+SMRxkZE4DsSZhhKIoCb3vfv+Hn3/7v kXOysCLdTrvNOdddclP8v0vOf92xWOE7JlB5F0zhU7b3zrZP0zU+IVjsWn6X9VufKzMWfeSYT6E7 qHcA+BnZlDHv/PUMOrF0inoEMUKibMdw9dTIIKZodU2RyvfDtzEZ+DIRsqydjbAZGNY7kFVKfu9e +9eyFhVFwekOFtSufcv2e+BXV1402hcKHLDVLtK1nH7DkmGyCY4osIJoQ80A+1n+t88GW470df5d Swf9DMkB/3O3NTfBxffdXIUYycATBiDXT8jImOnIJGGGQFUM7eCjDsP3v/Q1J+GtbVpLsS8erpWR XSsB64iMqo3t/GT9mq5RXedaX8KXMJn6tKlVIOvLx2tQK4Q2MFps05lSimMpYv/ZnCjz98eau49h H1tcrYIPcfNNTeqa4Wi03sEoOeD/Y6Lkoijwjtn7yHUHAzLw5m13xclXLxwa51yBNFGUPJq1SCJK ZscFksDCihguuPvG4Q3layVwnotd19gYC++/RUkQRDDCkE2IjIyZixxuNOZQ1js48iMoig46XMEc U8gQ+6wyOGUFslhfIWEqLuE/shAmWf/UKVFV67A15l0LuNmmTLU9ZltV2jYFq+4+qe79YV/8NL72 H58FoK4bEJJNh0eokSubE3VokW6HPVZ4Uaqia6r0rL7kQAaVR8DlmJjh6KgDDx0hB/+2zwHGuTLv AQC8bee5+OVlF5TFygSvATAMJWKfmeYAMIuSWZv5t1yFeRttg7NvvRoyT8Lc9V5ViZEvvOdG7L7W ZgCAC++5aahFQJ0kLLz/FsxZfSOpBkEEIwg57CgjY2YjexLGFDw5eNeHBylNj/8vrlJyB0Vhb3Sb DGtZe9dCalTZfWw1CL7zsw23oS585rKLb0OsTHUPbH4PoXoKAPjIFz+Fr/+HvFKybfy7i2iYslJv CFwF2NSpUV3OhVwrtuPX7vu7kekOXLIOUWYtOmnBaYPd+s6Ih4D3Hrxt57n4xWXn46077AkdTr12 ca3ewWnXX1oLKdp/8x3wmxsvr4UWAcBZN19Z0w2wYmiDywDw1ZKXViRn97U2q7IVMUHyxffdXGvH Zy4ykQTZNVnInJExM5E9CWMIVUrTg488rHqJyYw7ncHns5vvWlRM1Q9voNpoBWx2smXzoazwTF34 zLVQmUtqVRu9guqzbeVl2e/lI8d8Cp1u1ylrEY8YHgYeLsXHVLH1Pv2rrhtX74HL78bkVTB5D2zg k7VIxA8WnKbIXDSshFwUBd6+y95VzYNfXHYB3rrDHlzWorruAEVZDO2ALXfBaddfirL7Ub0B+8GK rJ217MoqpenZt14z4gkoCmDuesOUpgMeMQDff1GSgwLYdfWNAYxmLlr4wC1aomBDIjIyMmYOMkkY I/ApTbvdLn5UhRYdhk5R4HtfOr52vY/4lJ0L1Qi4CoZdSIZrpiVbAuRS/8C0VlMIl+xalzoPNoa/ S3+q9crWqbqfDB/+wtHodrs4/qjPAKAxTnWEQSeQFa9X9akD36cLUbDdMef7pehT1ncM+OoaZBml fMmBTJRsk7WItTvx7FMAFDho3wPw3+f+ujLm/3Xu66trf3zhmVKi8Lad9y4rJtdqHmBIJATdwRu2 3LkiB9qsRRgSBJ4snH3rNdh3w60AoMpYxNc74L0CBYQ5cSFJwJAc8GFDOpiuy2FHGRkzEzncaAwg 6g663S5OOu6EketM4SIy4z9UvOoqaBbHkvUnm6vOoDUJgl1qKdjMTXdN7Ouo4SIwl83j0E9+HEWn wLc/NypMpq53oGpvQowQHqp5x/JOxFq3OHef9qr+XNOaqjIV2WQt4mscAKUR/a97vx4nnXf6SDjR u3Z7DQDgfxadU5GEt+1UhhYNycDw+jdtM6eW0pTpDk67/tIaKaiHFbFZlDUPmPdAJkjmRcksY1Hd u8C3KT+bRMkiCeA9Bi7egxx2lJExs5BJQstRFAXe/v6DMDVrFn78n9+unRNrHeh29E3fxWM+2X1E qDInuWTisdnFjmn4xzTQXUBdQM1VQ6ITqjN87Cufc05pGiOLDuXOeYzsSTFIh+peyOD7u6FOycrP VRQQi6DMWvTf55xaEwGzn1U6U8EgZ4b+23fZu+r/l5ddIIQiDWsoAMAbt5qNX197CVCgIgij1YsL vG6z7UeqJb9mk20x/+arrLIWMVx4z03V53ql5rK9qyAZMIce6frIZkVGxsxADjdqKXjdwU++MXz5 HXzUYTU3MmAXSy7G/OtCbUzGowjfXP4mY1R1vWvmHd1x22ua8hxQ1D6QrcM125Kq3w9/4Wj85yc/ DwCY9awVquOxC4CZUpSy46Fj6Prw9QLEuC8ungnX1KTU8xZTmjKIJIA/xh+3CUkS+z7qwEPL0CIm /AWk2YY6XL2DKjtRUXoOeLxlhz2k45567eJqs77ocMXQBuOJqUzPvOmK0nMwKIZWSRQ6Bfe9nMNQ lFwWQ2OZi4ACu6+1KQDgovuWjdRAcAHvPRBrImRkZEwesiehZVDWOzjyMKAo8P0vHe8Vuy87r+rD xqB23dm28QD4GP8uczPdL5f75hrP73JdSCYml7oRrr9rllL3W5/7Cj70haMxNdVFtzuFYw//ZO36 2fNKg2rR/AUA3DITmeBS/IsiJIgqZCpG4bcYaw+pqGwzJwDSHX6brEO2xdNkbUXUKiVL6h3IPQfl 8/mft9sdv7ry4lFxspDOlGG03kH5P54AvGbjbTD/lqslWYtKQ3/v9V6N8+68gdMbAHusvXktpSmr dQBAmn3IVnfA2rM2sorLJmRvQkbGzED2JLQEIjl4z0f/H354/DfLlKacWE5V1VaESmtggmmHmTLN qSoExsVj4WPQxzTSKa6z1Y3wc5WddxUuq35HLJsLXxDtGwPvAQAc/V/H4fMf+Bg+9/1v4FMHf6g6 zsgCVXVi1z588/Oz8SjDf2KKhyn7FgXUMkG1L2kIyVjkClbv4OB5b6o8CHy9Al6YzKPT6VTk4BdL zufCjQBxp39EnFwUle7g9VvsCAC1egciht6DoSiZJwf1rEXXYzCDimRceM9N2H2tTXHRvcsqMsF0 B6LGQBc6ZCNKFq/VXc/OZSFzRsb4I3sSWgBVSlOWtagYFESzKYamg22KU7Ff1xAV2XnVfGxSaTZR 0Cyk/oHsXlPXU9DdH5t7qppTvV2B7x7z1ZF2Rxx3DDrdLrrdzuBnF5/+9w/jmJO+hU+89/0VORCx aP6CKHUSTP3YnI9xfcwxbchHqJfGJFxmMKWMBWCseaATJus8DrJ+AODEs0+t0v//2z6DzEWc16AW VjR4xr59l31qff/y8gu4UCQ+nSnwxq3n4NRrFwPgwpUEcoACeN1mO+CMGy+XpDgtvQc8zr39Wuy9 /pa1Y+fdeUP5gYUPYUggWJjRxfctAyMbYngRTwBEkmAiBybvgw1hyB6FjIzxRvYkNAhlStMjPoJi 8BL73hftQoZsrrExrMXr+GMuGY9McxJ3um128m0yMcnmZhJpu7RzvS6kOFpIClvTPdXpO0ykc2rW LHS7XXS6HXS7XRx98AfxpR99F91uR9tu9ry51sat6Rrx+tD8/K79qfoP8V7Yahxi6D1kfarmY5ti NsR7YFMdWbwewDBrER+XD1Fr0Ck3XwRy8L+Xnod/2Wkv/OKykhy8Zfvdq/5PuXqhVOzMfr7+VTsB GJCD8uBQm8AJmvkQpbLmwdDgZ5oDAFxo0WAtqGcw4r0a9c91iKlOfUKHVFB5GCj6zsjIaAeyJ6EB sJfLO/7fIeh2u1XWIlYt+ftf+lp1rSmunL/GNoxG15fqnClLkgwuhiyVQS+7jqpGgu11tiRCdf9U WgHXVLO23gwdPvrlz6I71R2Qgi46nS4+/4GPatuoPAk8eL1CqHFNvWPvY4THjOUXx6Beq65PX28E 4KYhsE1nKl7PyMH3558iFC8b/iw6Hbxnz9eV9Q44svCO2QNysOS8Ko1pWQztwpHMRm/canY19q+v u6TKWFQjBxwp4eew3ybb4qybr6rVPBj2P9QY7LXuq3D+XUux5zqbAxikN1URhUG73dbcBBfff7OV SNm2JgJ/va+xL5KGbGZkZIwnMklICF538K4PHYput4sffu2/cNARH8GJX/l6dc4npMUnjEZ1nQgb IuCSyYgi3Man2nGK+ge2ZMPmvlJ4a2T3WHXveXz0y5/F8Ud+Gkd9/ctVWFFJEkrvwSf+9f3KuduQ BGBIFBh8d8dDjHqfECEdIZBlWXJZny7Eh5J0xPCqMM+BbSpT8TiDKQxJ1obHD849raYTKDodHLj7 fvjpxfNRdDpSclClMEWBf95uN5x81cKaIBkYPr95cfKoKJnTLwy+86LkQhirKArste4WAIDz716K PdfeHBfcfSMAYI+1Nys/jxCFOmHYdY2NrdObuqQ1paquzAhDNjUyMsYPOdwoEXiCcOBhH6h0BwBw 4le+Lq15AJiNav6YrTdA1laEbzVe1Vg26VVtd/Jd5u+aztW29oOuXWgKWZc0tK5hR7rjAPCRL34a U1NT6E6Vj4ZZK8yq9AdHH/TB6rrjfvbf6HS6OOxf3oNv/OonZQhHp4MPvOFttf5EIsBDzIKUEqa4 e4YQD4EpLEdVjThGOldxHtT9ARjRDdhUPuZhe+3Qe8CEyafWDHqVKPmdu84DAPz80gWVGJ+vb1Bw YTt8f7w4WcT+gij5zGVXCiLnAmffejX23XBrnHPbtTUdBCMHjBQMxy4/MGHyhffcVCcKgj7BBrzB b0sUfOskiOMyZCFzRsb4IXsSIoMPLfqfb36vdk5X88BmJ9lmN9322tAaCLLxqDIPiddRFj3zSeUq HvcZ2yVDlGshNBnZks3x0E9+HN/5wrEAMEhpOjUILZrClz5yJD797a/hs+87rLr+Kz/5HjqdUovQ 6XbxkX9+N7556s/Q6QwMrk6BQ1/7ltoYJq/CovkLnFKmiohRjI1HzNAnFWngw6+oMizFCOeSiZJt iprx50SYwpAA4HtnnVztyB+07xtLUTKGGeCY94A3yJn3gAcLK5KKkq9ZXCMGvO6AeQ9etzknSuYK oTGcfes1lTdhnw22xII7rgMwLIY29BLUw4cuundZbZ7VsRo5ABhhsBEY+2Q10rU1QVXBOQuZMzLG C5kkREJFDj5wCP7nv743cv6Qoz46ko2CMj8/f71L+lH+s6tw1nYNNv1RG/2x56+73va+mjQDtmFo Nn254Ms/+u4g3KiDTqf0Knzoze/Cf/365yg6BToDglAUHRzymjcBcAs5Eq91IQsUtRBEpAx7Ms2F ElTrss1YJB4XdQQqDQI7Jx4vycHozv+/7v0G/PD830gJQhVaVImSz6/O/fN2vDB5UWWEH7DVLvj1 dZcAkJMDRiZeu9n2OPOmKxSVkYF9Ntiqdh/Ou/P6SncgahLYz13X2BgX338zILyVd11jY1x8382C 7qH8oTPkbesjhLQXrwfUdRoyScjIGC/kcCNiiO5fRhCqegeDFxzLWmQbvw7Yx86L18o+i0ak6G1w CU0Sx7A57nIdVdEzW/LjEi5km0JWV/9Al43I9b7rak3IDHdmkKsM9dnz5uLIA/+9Ov6Nk3+KTqfM YtTtdrkaHmWhNdZGZvzbgq+vELM6MaDXEsSsGK2bEw9KLwmFx8QnYxFPDEwhSCJZ4EOLxFoHvBe2 ylg0+FvkyQEz4n952QV4yw574P+uuAhFp8DJVy+sDHSZMJlBVQztzGVXYL9NymrJ9VSp5X/n3nFd TZS817qvwgV3L61dU3YrCSEqUCMKC++/BXNW36iqg0AJyrAimxCmHHaUkTE+yCSBEKZqycN0d2pj ziUm3rU+ggiTnsA1NEk3ltiOwvC3zfwkW5vsGlMhM35OLilkbcmBSWRuulfsmMrgV0Fl1MuOf+hN 76w+H/q6txj7ZJ99YJsy1QRXAXFKsiAbQyQsFB4AH+2F7HxI1WMXIbOIg+e9qfb9pPNOrwztH194 ZlUt+Z1z9gVQkoPK+K50BSwdalELEUJRSD0HAMtaVEhJwlBD0Kme7SJZ4EXJBQrssfZmgyrJoyRh BMIxvvoxb4yrjHwXw9+XKLhmTGLXZqKQkTEeyCSBAGZyMLwmNJzFVoTqUiSNP24bmiQepyIHITUS bATePqlSbYqyqe6rinTxBNHWuyCDrQFus7tvs/vPG/8AqiJVnaIDFMB79nzdyNyovAqA2pgW4VKI TQUKQz10br7aBNc2NvfR1YNgUwxN1gYodQeHvIarllx5EUpvAf93xvDOOfvi55csqGsTOM1B3Sgf rZYMAK9/1U44/YYl2H+LHWvVkquwIoAjCRzpgDBmAey1zhY1zwEAXHTvMuy25iYABtWRq/7sIMb4 q+Bj8KtIiKp/m+t0Y2WikJHRfmRNQgBEcvDej30QJx13woAcDNPciQXRAJqYePF6m5Soqj5tvQOu cfi661wM/1hpUHXzdPFG6Oboei946KoX24b1iOJg/nrZOd01sjYA8MPzz0BRAAfu8VplWJPLcd1a AHUWIAZq8XNoPQFbYhCastTUh+t9sTHyVYJkm7oHJt3BQfscgB+c+2ug4LUvw7AilSgZQBlWJKmd 8MatZuPUaxc7iJKB/TbZrup3mM601B2ce/t1taJofNYiWUgRu27O6qMVkF3j/1WkgSJ8yKdKs81c +WPZ/MjIaDeyJ8ETPEF4z0f/H354/DdLgnDUYShQ4HtfOr46b9qBZufYtSHpSV2r/Kr60c1Ptxab 61x20HXGtE8aVJssTqHERBxbd56Hi7HMG/MmQ5u/RhcGJHoJbMZin9+z52vx4wvPtJpDCETPQir9 gG8IEtX8bLwaVGOpUpra1EAQz4mkQEY6dLoDoNQbiFWSed0BS2n6LzvuhV9edkFFJN687W7VuKdc s6giCeWPQi5KHpw746bL8dpNty9TmgKDYmhlm303LAXJ595+HYBh+NJe6yjIAeokgQ3ksnMvA0WY kU3frvUVXMbI3oSMjHYjkwRH1MjBYR/AD7/2X/jh8d/EwUcehu9/+WtVtWRbo5PB1vhm19oaqToh qzi2qR/+GIUGQLxOFYJjul822gzf4mOyOdreMxE6rwD76WNEuxrgNvUJXOcye95cvHv3/bRtQ4mC ar4pBcY2ZIEi1Ek3vmvoldjWRDJshcUugmSxD77d9+efjFpIEBe288Pzf1NWS77orEFYW4F3cLqD muYA4EKNOjjl6oUV6Thgq11qc2DC5NNvWMKFHw3AfZZVSWaeA5bKdK91y59KcoAhSRDBewJ8IBrx fJ8hYH3xPykJAj//TBQyMtqLHG5kiVoxtI+8Hz/6+rdGrhELogF+cfNie9m1vkXQTLH/pnH5YyEa ANP90K1HtjbbfmTr9q3I7EoGVOB39l2MaFkYkG58XbpRce6y47L++etUnghZGxu9gmpuqvOUFYld 2osI7c/FS+GqWZBd65rSlD8va2fqQ1UpmQef0rQUJc+vvAfDYmgFZ8Cj8h6U1ZLrWZCA4TOceQ9+ s/Sy4XGhABqreVCGFtUrJPP/7bnO5l6/5xDoah7IzvsQEIoQI3EOJg1FNkUyMtqH7EkwgCcH7/7I +9HtdnHScSdUxw456qNcnuwhbMNn2DkKIqHqXzUfl358NACuZCYkDarO+Fet28crwH9Xxdj77JaL IT2q/k19sDn4tlUd4w1ykRjY9Cca9DIyYSIFprmnTl1KXdfAV6AszkXXh0zL4SpIBtT1DMRrZASB 6Q4OnvcmnHjOqZK0ph28Z8/X1tq9c05ZLfl/L11Q29WXVkvuqEXJQBlatP/mO1SiZAA4c9kVqJEE rvoxn7lIzFp0wd03VhmLdl9rU1x47021ugdiiJEOtrv1JqNfPE9l3FN6KjIyMsYDmSRoIAqTfzzw HtSyFgkvAJsMNqprGSiKbYnXmMS4LnOk0ACo5ixr4xqm5Zq9STfP2OE/utSjLloD3/Ftr3chIDrt Ar9u8XPovY5dX4H1zaDSCcQMNxL71nkGbPrxTWkq6hNsvQ687uC/zzkV/7bPAfjBgtPqO/SdDn5y 8XwURVGlNGX4l52GfyOlMJnPVlRCTC86WgytvO6Mm66odAr7DSolM88Bu0jMXMSTA9Y/BpdfdO9N 2G3NTQEAF91Xr5pMCRtPQazQIDYedf857Cgjo53IJEECfUpT4Ptf+poytIj/bFsJ2UUEzOAqDJZd 6xJm41JgzHbuqn58KhObSIxMSBzLK+ALmcFLqVPQkQHxnC7LEaUA2Zcg6OZgW1/Blky4Gv3UhCFk fF1fLh4EXcYidlyWxYhPaSqrlgwAHa5CMhMlM3Lw80sWVG3+Zcc98cvLL6iuHRUmFzj12sU4YMtd cNr1lwIYpDQVi6ENUB0rCsy/5aqBKHlrAMC5t19bXlN0qmJowLDeQXmu4PoapjhFAey2Rpnm9OL7 b/b6ndtA3NnXZTuiBLX+ge83E4WMjHYhkwQO7KH/rg8dip98Y/gCrFKaDuJfRYPUpRIyIN9xl11j 8ka4ZjLyre6sO6brRyYqdtVc2HhYdG1EhIQBmWAysn0Q0o+prQuJ8BEy27ahqNCs8lz4hiCFpiyV tdX1GdsbIctYZKspMF3DwPfJ2jJygJGQovK/H11wBg7c47X4yUCYXHQKvGN2We+ADxfiKyuzegkn X72wKoh2AFcxGRB0B1w1Y9HjUJ8PcM5t16IoCuy9/qsBoBInn3/X0prXgCcKrPbBxfcNCcHF990M FMCuq288rIdACBMJiJGNSOzfZh4+/WaikJHRHmSSgFHPASMIBx15WO0Fx4cW+VZMZqDYvbc1+sVd 9JBQILFdrDSoPmlg2TGVkZsaPsavqwfAtj/22dSXa0pVqvVTkSpZv4AdWYgZJiT2qRrLldTYCJd5 3YGY0pQdE7/bFj8TIRKFQ17zJul1lTC50wFQehPeIXgPRCMeADqyQmgoKyaL1ZIBSKoll/2cdfOV eM3G23I1D4ZEAShw3p03cKFFZUG0Ojkorys/D8kDdxRAWTBtzur0WYds+opNFPgxqNaXkZHRLkw8 SeAJwns/9v9w0nHfBFDXHTCS4FJXgME1M46pT1thsG4c11AgVT8pvAK6ezVuXoEQhOgPXEOXKETU lGukaCvqFfifDE2kUmVz4n9SzcMmpSl/XvQC+OoVvj//5FKUzKolA/Ud+04H79mjLkyWpjUVxMkn X7UQb9pmThlapKp3wFVLRlHgdZttD4ATJnNzAeTVkkVR8h5rb44L77kROqIAcN6K+mES4a9v2xRG PLVXIXsTMjLag4klCfJiaN8cCS1SVUu20RyIbWTfVV4BXX+mzES6cWVtdOsxeQVc0qD6ZjoyZcox ocmwH0qCEWq08+1tvQUu66IQUccGr1egSH9KkT6Vsno03941pSkPH71CGVpUbqiceM6ptWrJLGtR 0SlrHfz04vkoOoOUppcswNt2nov/XXIe/mXHvap+/++KC0c8CoBcmHz6DUsqQvKbGy/H6zbbHmfc dAXOvOkKQZh8VfVsr/VVFJhb1TsoPQcsaxEA7L7WQJA80BxIiYIhg5GvMW17vcpzkEKnwI/Pj+kK XoSdiUJGRvOYOJJQq3dw2Afwo0ExNBZaxIqhMcj0By4Fz1yy96iy89joA3y8Arr12HoFTOuL5RXw RZuMVp+iY1SCZtZHCNoWduTTNmYmJN2YgNr4N2Ursg0tcoGqCrKJaPC6A3k60i46nWLEM1CFFg1q HgBAp+jgl5dfWKt5wOPUaxeXfY5US14yrJdQXoDhj6EwGSgwb6NSmHzObbwwufQeMFFyTZA8+HzR fctQANh1jU0qvUFhSQ5E2BrT1B6AVOFHbO624+hqPGSikJHRLCaKJLAHflnvoIOTjivJwYlf/hpO /LK8UrJoGNvutpsMb50nQkcOVONT1EoYN69ASmOyiXa2fdr271uHoMksTynGSEUUdORApy2wSXFq G1okQpXGVKVXENvx1ZIrjwFKAbKuWjKvOyiKAr+8/EK8Zfvd8asrL6qM/ZOvXljTHhywZVk1ma+W LNMc1GocCNWSVcLkC+5mwmTmWRj2UX4ofyy8/2bMYWJkIaTIxTDWhSDFDA9ymWcIobAhQlnLkJHR fkwESRhmLXofulNd/PD4b1bnTvzyaDpTmyrHOoNad52tJ0LsV4aQAmlt8AqIce+uaMIroBqTSuzr cr3NNarCZ8zwF4+bxhKvj+FN8Lnetp0qJMpVDxArfaoNVAJoHWQeAMBNr8B/rpEDgSR0BmFFw7h/ WUpTie4A5c6+rBCZLC31/lvsiN/ceBmXUKKohf8wLwHvUZD1c8HdN45cN0ISht2S7siLZCH2Tj8/ f378WOPwaxM/24ZQZW9CRkZzmNEkYTRr0berz7JKyTapRk1Vj01Fy6i1BKq+beZJ6RWgKoiVCm0K O6JYBw/bisiudQ9Caxs0TRRshc1AuEHv049NpiKxf1l9AnZcBpeUpqq2QFkt2RbvrETJC7hwpNH0 o0BZLRkAeM0BUOANrx7qDvbffAf85sbLUQB4LRMmD7QHLFTp7Fuvxr4bbl15DviKyXutu8UwpWkB 7LHWZrjo3mVSkqAKJaIiCqbqybGQSqcgEgSfsTJRyMhoDjOSJLAXzDs/+O/odrv4EVcpuSgKfO9L x1cvI8BuJ922BoFNRWOZd4H/bBsupOubyisA2BuDqePJY41J7RXwbee6Sx/LeJcVWmP3iT/vA4qU rL6IWV8hZviSKqUpIA8Tsklpajo3zFh0Kg7a9wAAwA/OPU3qESgGxdE6nQJv32UfABgRJQPgQotK I/6UaxbhjVvNxqnXLq6e4dLQIgz1BiU5APbbZDsAqKU0BerZi/isRTwhYHUOqnoGhZ3x7rMjL/Yr hhmlTikaQ6cg8xaEri0ThYyMZjDjSEJRFHjb+w/Cz791In56wner4wcf9dHajpVrBWAVTIXRZBV+ VdoFW80Df9yGHIjzkB3LXoE0Y1LPlcJQ952XSBZijhPaxndtsp19nSYgNjkA7AubAUOy4FPzgNcd DIuZFfjBgtNQAHjv3NcP6x1w1ZLZ97fvsjf+d8l5KIoCb91hz5ooGSjw5m13rcY69ZpFleC40+nU UpoCvCgaOOOmK/DaTbfDmcuurM6ddXNZMZkJk8+9/brBuY6SHLC2RTGsZ8Abr7bhMICeVPiE2LB2 40AUdMTHdL9cxsxEISMjPWYMSeBDi37+rROrzwcfdVhtZ8mlkrDtedN1rpmDdNeJ50xhRSKyV4Bu zBCEjqkick393ticYugTQtcV4qlQ6RXEdKWUegNV9WVfI5//rqpvINMrfH/+yTUxMlD3GtSqJVcZ jDp4+y57AwB+seT80ZoEnMD4lKsXVueZKBnASEpTPiV1PXvRqGhZFCZXBOGeG7msS8OQIr5AZoix zO+SuxjNtn22TafgSnxk4/H9ZPFyRkY7MfYkQSZEAzhygALf/aJeEOwiGLbdsQ/1CNiMoTsWGj/O 2ozLDn0TY4a28xnD5vcZIiYOKdomW1usjE7U99nUD1D3ILTBc2AqaiYLMTKFFQHA9876lbri8SCU iB3/ycXz8a5d5wEAfnbJuXj7zgPvAXjvAvNClNWVh6JkVP2cdv2ltWrJ+2+xIwDgjBsvHxEli14A 8Rw7f/5dS7HnOpvjgntuxB5rbaa8z6L3wBRqZPIaUBq8KY1pnQeDiviEri97EzIy0mJsSYJIDt77 sQ/ipONOqOkOGGSx/jpdgAgbEmFTTdikZ7AdnyGFV8AXMcZso1fAJBw2rcdl7Ww8l3mlIocqETS1 x0NWDToVZGPaZhdyRWi9AxXEGgi8XuF7Z/0KzOAWScK/zn09fnTBGdWuPR9i9LPF55ZhnjvP5bwH da/DyVcvxJu2nlMLK5LpDoqiwOs236EiB6/dlFVMvrJGCs6+9Rrsu+FWXL2Dsi/mQTj/rqVAMaia vNZmuOjem1AjEdzrQ2X0q47rUnrGqkWQMgRJ5hVJMabteJkoZGSkw1iSBHm15BMAAN8X6h3wcf+2 aUv54+xanWhYHE/WXgZRzyDWO2Bo0isQy9iMJVZNtU6Zgeqyg+7yu0yVTcjUlkq3wAugbQx91b22 vXdU4mgZOaH2JPCkwyUTkexaFWGQ6RVYQTSRJDARMlB6AhhBYOThHbP3qfX91h33rD7/6sqLamQD XFv2eRhaNAwpGpxEUTByALxm422rfs+57ZoRYTKrd3DenTdwBZD57HWj5IBBtWvexjChmH27kqIY sCULmShkZKTBWJGEGjk47AP44aBaMoOq3gH7bLvDb1t0TBU25OMV+O4xx0WvSOuLSRuTh8qIpRB6 +2QvcvWkpCBcYuYjVbiS6Z6qzqlIJiVR8IFPfQUVVClNAT0B8E1pyusVWOYiESedd/owvAilQV5g WBANAP730vMqIvCWHfbA/11xUUUy3rTNrtV1rFoyig6KAjVhcqEgEHxxND5r0T4bbFn1O3e90nNw 3l03MNXEsK/Bd5a96OL7bq5pEHQI9QjE3PnX9e06b522IKZnxGWNsrllZGSkwViQBJ4cHHjYB/Cj r/0Xfvi1/xq57ntfHDXAdbv4rsXRbIXEsb0CvsheATl0XoGmi3+xufhm6TGN0UQKUhlhiK1jkH12 gYl8haZMNYUIAfZCZBN4z8HB896Eoihw4jmnDnUERek1eM+er6u1e+ecUnvw80sWqIuhdeopTZlR PqyWPCAHS5dUYmh1tWT+2HCcBXdcX0tpev7dS2sEYdAMvH7h4vtuxq5rbGw0NnmDmMJAjmlkU6dg pRyHco38vEX9SPYmZGTERetJgqg9+JGEHMhCffjjImyFwrY1EmTHYnoFYhreMXbvJ8ErkGqdFGLp kL83m9SioVmSYt4L1bxdSLCoi2D3BXAjC666AxVZkEFGIIZZi06pVybudOrGflGgUxT4yUVn4V27 vWak7yqTkVAUDQA6VapSvlKypFry5jtWBdEw4jW4CvM22gZn33o1ZKJkFlrEhMl7rr05AODCe24a znFE0Gy+vxQ78zLEJgps7vx3cV3i9THGiQnV+JkoZGTERWtJgkx3AJQF0YYZNzCyY68iDPwxl5Ag /lqVZ2DcvAIzfUwVOWiL0Ds0JIgiVWnT9R1kfTeVYcrWi2MzPvuuq5ys8x7YZB/i29qEG1Xk4OxT RozyHyw4Df8q1Dt49+77VW1HRcnAW3codQdlaNHAABdChvgQIqY7YKLkkWrJy66sZToath1kQxoY +kyUfN6dN9SuY+Rg97U2BQBcdN+yyrNQkaHC31i3aWc6H3s3XjSiKYiBaZwmQoBkZCEThYyMeGgd SRhWSz4U3aluGVp0/Ddx0JEfqV4M3/uiPnORDGIYELVXwBdNeAXGIQTI1FYX1z6OIV2piALVHE33 NmUtBCrSZOMlsRlf5VUIrXcg8yQwXQJPLkS9AvMc8AXJRIOcDy366cKza9mL3rbTXPzisguqPpju 4M3b7gYAOOXqRUOxMEtzOiAHAHD60suk9Q0YOXjNJkNR8tm3XlMjGLzn4Lw7r4dUgDwQPV907zIU RYFd19i4OuUShmNj5Id6FGzG8oFMdBw7XWqTegGbInYZGRnhaA1JYC+Gd/y/Q9DtdtHtdnHS8d/E QUdw5GCQ1lRVsZgHTx5c9AJtySQjIkZc+Lh5BXzi1ttCamK0CxEq60KIbNpRgDpUKfT3ZZqbT7+A PzkA7HQHMvLAfz543hutxqqRA44kAMMsQsxrUGBYDO2NW82uhMk1csCJkut6A4Df5VeJkjudslry eXfeUB2r+uBCiIZ1F8oDC++/hZ2QhqeIRrqt0U4VNkTVj8pbkEpw3LRXQZxD9iZkZNCjFSSBvUje 9aFD0e12K1HyQUcehhMHKU0BWAmIGVQhQjE9A+NieIe2jTGmSS/QVq9AE9WaXecYoy1rT9W/L2mh Av935lOIzkYcLmoJbEKEZLoCVTveewAAJ559qrTmAf/fu3Z7TUUOWDrTKmNRpx42xMgBTxRQAL++ 7pKq1sFotWThJ+trpCgaEyVfNxAlvwp7rbtFWe+AB0cGxMxFw75Rq6IMjIanhFZWbooouIQRpdrt b9KrIHoSMlHIyKBFoyRBlrUIGJKDE7/8NW11YvZdhqaMJ1/DskljzweUXgHWX6x1jhORShmmw7eV QXWcvYTZv1+fcW1j/V3616Vf9S0O53MvVe1UQmJ2jq9b4BuSxNKZnnjOqThonwMAlKlMRWFywe3s dwZkgJGDt+64J355+QUj+oAhOSh/soxFAHDaDUvw+kGV5P23UIiSB9fqSAILLWLYc53NccHdN9aO ScXIPHnQ1EIQjcqmd8FtjOsQfUEqwXEqr4IuOxMbOxOFjAw6NEIS+NCi//nm9wDUsxapyIHss+lF njJHfCjGxdg3rT97BezHpGrnO5aOuJletDZkwdebwPeXSqshZizy+Tt1GV9WC0E8bgJPDqrdfQCd ooOTFpyOolNUeoMfX3RW6VkYGOjvmLNvKUxm2YqKzkBzcCH+ebvdAQAnX7UQQJnR6I1bza6Nfdr1 l5bnOGv9NzdehgJFTZTMrhmGG3Vq7XiCcP5dS1EUwB5rb14TJPOZi3hCUPXhUP8AKA1KXuTrYthS hvLoyIt4DdU44+JVSK2zyMjIGEVSksAe6G97/0GYmprCT76hfhnqagy4YJx2kcdtTIbsFWgHQrwC IXD1LMQmQKGeA18Bsy9UHgUTWTjqwENr5KCWZYgZ/p3OgBwUeNeu8/A/i84Gv4vf6fLpT4fegpOv Wog3bTMHb9pmDgDgjVvNxq+vu6TsmyMFTERcGe2Dqsln3nQFUBTYbyBKZroD1ob3BrCCaIwgDK8r x2AhRRfdu4wbt2yPotQgzFk9LGuRa7VhsS2V8Zpixz+lV8F2nFBCINa3yN6EjAwaJCMJRVHgXw79 V3SnZuF/vvld6TWmXd7sFYg7potXgB+PfW7TOtvqFfDdVXeFq1eAAjxZoP57iEUUbP5+VX/nFOFN YlYiANrvsqxFotYAQFUpmRGFogB+tvgcvH2XfWrj/8uOeynnduo1i3HAVsOQopo+ARBCfESBcjl2 SQ6AfTfcGufcdi3Ovf067L3+q7Hgjuu5rEU3cPPn+x+GKF183zLsusZQe2AKL9JBVQ9Bda0MvLbB NJYNbPqiQkqvguwepPAQZKKQkUGD6CSB33X63+/8AMB47eiO2871pHgFfDFOY6o8Azri1oaXYr/f r3kVxBAeG4M8NHTJ5nqXStOuoXKmsW28BaqsRWW15GLEsC6KDt6z1+vw4wvPrJ1/x5x9pf3/8vIL R/oZLYQ2DCsaFSWX/+PqsglegmG/59x2bS1zURladANGi6XJQ4gKAAvvvxlzVi/Tmy68/xZncgCM GsYmT4AteXD1RKiQMmNQCq8Cf19Si5szUcjICEc0kiBWSpa9LNsuCKVo64sYXgF2XDce+9ymdbZF 6J06DEWlFxiHl54YgkQFqhSsIX87rL3tXMVxfITJDEyYrANfDA0Afn7Jgppo+a077FHpDn511cVD Yx6oFUJ7w6t3xmnXX1p9P33pZdifK4ZWhTbxnxUkAShq3oMytIjPnDTUSuy6xsbDNKYMkmxFLsa+ rI1LW1kbvl/xWChSZibS3RtXqITFprCu0DGzViEjIw7ISQJvFFCmSHRtR21Y+qJNXgHWZ4wxx+3e ph6zKb1A0+DJAtXvit1Lm7oZsvtOEfIlpkxVzYEfX+c9UBGHSncw2FU/eN834sRzTkVRFOgUHU50 XFZK/unC+XjnnHn42eJzKu8CKk9Dgbdsvwf+78qLUKDAyVddjDdtsytOuWaRlCSw3xufoeiMGy+X VEqu/qckCaLuoBImV+QANeG1yUvgatjHMiT5fqnH8O3Xl/T4kBJdtiGquYUgexMyMsJAShJ8UiKm NvTG0RORvQJhY1K280VIFqGZABaC5FODwHQtoP+3IJKKGL9zGw+HT9aiE88+FcOomwL/fe6v8W97 v2GY1rTTQWdQ74CJkn+2+Fy8fZe9y5SmnaLaoWe7/R0uDSrTHdREyUWB12+xY61SMk8Gzlx2BYqi wGs23hbzb7kKfDrSWtE1FNh7/ZIciLqDC++9CbuvuSkuvm8ZpFWULWDrPWDXhvYl69vVm+GDtngV qLQElPfJpp9MFDIy/EFCEkLypbN2KXPD+4JiTN91Zq9A3DF9Yt1lmMlegVBQ1FcA6qlKGXS6Ax4x CYKJHNsUU+PJAZ/Bp/xUGtM/PP83eM+eA+1Bp4N37Vp6DoZZjgr8Ysn5I/UO3rztbjj56oU1j0FR FFUxND60aDCyvCjaYPd//i1XY95GW+Oc267B0JNQpjetk4PB7IXwo4vvu7kMLQowFnmDUzQ+mwhD iUkUUq2JJyXUqVhj3yfdeJkoZGS4I5gksEwmrtmHKIzCcfIKmHYabWOcUyF7BewwiV6BUITUV7Ct csz3w9rxP6mfUzbeO10xNfb9+2efIoTfYGj8c6FFQJnB6J27zitrHXAVklka0kp3cOXF9fSjnDC5 EicPiqGdvnQJ9t+cL4ZW/o9PWcr6L4qiEiSfe/t1Vf9z13tV5TmoxhSIAgszojAWZbHuPn26zMUk do5lAKcWG1OMY9KC+I7hE1KViUJGhhuCSAKf6tCHKPBIbSCOk1cgRKjZ9A59E2PG9goAwLdO/+rI sffvf3h+CTkgZspUGXz/Rlz6B+yfC7LsRQfv+0br8d656zwAwNt32Vt6/ldXXVzpDoAypSmftUj8 +Zull+F1m+8AAHjdQHdgC+Y5GBZEGx2DJwp8aBEVUQCGRdJ8+0q9wx26Vur6DLL+Y96PJr0+GRkZ ZniRBKoKq5RtfRDLKwCYDfu2eT+yV0D9O5MRAt117N9HJgt2EFOmqkD5N+qi27HxavjMiQ8tOmjf Ayq9wQ8WnDZSjXhY82BYGZmRg18sOb/mZSjbFlUhNAa+5oHhN+J0L0UxwZ7rbG7VShbPLx7n4ZIZ J+Zuu20cfNurG9uGEqUqwJYqlCpv5GRk2MPbk+BTfMi233HSJ+gEkzJkr4DbmFReAcCNBLx//8Ot yYGqv/wysocsBCnGzj/fl2vtA99xRFTk4JxTh6FFKAXFJ513Ot671/4AgB9dcEYtdSlPFN6+8974 3yXnoSgKvHWHPfF/V1xYq5jMRMkogAO2LMnBadddWvMk8MXK2OfXOnoQgDJj0Z7rbI4L7l6KPdbe HBfccyMnluayF6HuQVAZ/SE1B0Rj1iemXmewuhiyqYiC67x8DP4UO/5U4V424+Rnc0aGHZxJgi40 QPUCbjNRsCE02SswM7wCotEvIwLv3/9w6bU++NbpX81eBUf41Fcw/Z256BZsnm0h8zrqwENx4tmn 1Iz/f537+ipbEYqiIgfv3n0//OTi+SPehLftPLf0HhRMe3AR/nm73XDyVQtHKjAzQTIgKYYG1CoX v3az7cu0psVVg8xFVytTmu617hYAgPPvuhEF19kF99yIPdbarExvCp4TjGYv0mXQCY1R58XMYt82 /VMZ+Cl3yHX3jkqAnCL8KFUmp0wUMjLMcCIJPrHDKQ3M0LGyV6A9Y1J6BVT41ulfrUiBT3vbMYAc guSKGPUVTIiROlisk/D9s08BWDpSQYTM77yjKEZqHvDXi+FFJ1+9EG/aeg5OvWZRdZ00YxGXCpUn CsPsROX4Z996DfbdcCuce/u14AlCSQ7K380Fd9+IGg0Y9HvhPTdh97U2xUX3LvO6Z7EzBAF+RrPv nEIKvfmsL1VmIup+ZesI9eZkZGSEwZokhIgLUxqnoVmEsleAfp26tdiMaeMV8IWMKMRAJgt+sK2v 4FpbwaZIGv/ddQy+Dx4FihHPAAAUA5JQ37UHfnbJudLQIj7dKSMXp167GAdsucswpekNS2rpS39z 42V43WY74IybLoewx4/9Nt0OZ918ZaV3KOsdlOQFKCrPwZAg3AQ+69FgmOrzRfcuw25rboKL77vZ uf4BEF4szdTehjBQkpWmBNFNC47bLCLP3oSMDDOsSIILQVC9SGXHTS9diiJksj5tr7XFOO3QNzFm CHFjxjVlGBCDrM8Y44jryVmQ3BBSXyGETOvam8KbxHmyYwftewAA1IqhAaUegekN+AxARVHgF5ed X5KDyy8c3IfOwBEheBe4mgdAaZsPMwkNQ4zqVY15T0Cn8mgURYHz7ryhIgcX3H0j9lh70+EiuTCl oh67VPVY1UG4/2are05dnMy2vQ1haHvokSo70bgLjqn7l+ld8rM4I0MNI0lgLyAKgzQkhEgF3bm2 eQVmwpgMqb0ClGRB1wc/DjVREMfNXgU3mMgClTdBdh37rHoe2RR2488xcfJPLjqrXBNnnA+Nf+Ct O+xZtf3n7XcHALx5212t7lfVT/kFBYAzl12J/TbZFmfdfFV13Ws23gZn33r1CEngsxTxBOHCe8oq yTxR4H8vwwPAwvtvxpzV/QumpQrV4cfj++V/UvUfw+g1eUxihwel6N8kKLftS2yXPQoZGWpYhxtR uvNT1BfwrdkQc4ee8p6Eoon0r+KOvY8RHmLEuxAMPgwplCyo+slkwQ9N1FcAoCUHrs9Fdv27dnsN AOAds/eRtvm/Ky+qsgOxegdAGVrEV04G+wxg/y12rNU8OOOmK+o1CsDVLxj0V5KDkiQwcsDExwCw +1rlzwsHOoNCEmI09CLUyUIqj0CMtoCaLDQVRuObsYlvO04VocX7LyMEWaOQkREHWpLAv4T5VIRA mLDP1kB1LTrmO07T7Zoak4GStPFQpRZVnXOBqxHvQypCvRe27TJZ8IOsvkIMbwJ/PVCv3hz675V/ pjLdAdMF8CFFvCgZQKU9EI1+cD/PuOlyFCiw36bbAQDOuvkqFMVQlHzOrddgnw23wrm3X4dOp8Be 674KAHDhPZwguQB2X3MTAMBF996MOiGohxvVw5jqiEUUYsf563awQ4xVH80FxRgpyILr78TkBUjl DcnehIyMUTinQKXKLS7bkRa/y2J624LsFbAzzNm1MWL9bYx4inF9vBchpCS/rOyhC0FqKv2uCSp9 1r/suBd+efmFkuJpQ3Ezw2nXX4rXv2qnEXEyAPzmxsvxus22xxk3XQEUxUCQXGDeRtsAAM657dpB f0Nx8l7rboEL7r6RIxulrb8bIwj33Yzd1hgIkRmEcCOTQDm0/oAv0fBtx7fRGdxiG9n4vvNKsfNv mqdP33y/tiTApW+Kucp+n/nZm5FRh5IkiK582Q4YEGYsizvSvpVPRch26ibFK+A7V4qUorK279// 8CRiYKBumMciJaZ+qUhJ9iq4QQxBirWpIBZ3o/z3OnveXLxl+93xq6surhEF0WvACMHpNyypQov4 49WGvpBFiZGDfTbYEgCw9/rlT0YQUHNGFNhtzY2ruRUoKiHyxfffrPUa6EDpUYjpRQgNURL7Ml2j uj5FfQVx3NDqzTb3JHTOsX73mShkZNTh5EnQZShin10QUlW3zWFHIWiyKFwMoS6FDsEWsTwWsnsk jkM9bg5B8gMfgmQDl39vlOmIRX0C//nN2+yKU65ZVE+RKtEeALzXoExrqiIJnSprErDgjusxd71X VXM5/+6l4JpBtPwvvu+WWtaiQlIYzQVURCHWmNQGqClMSYy1j1HTwKZPmXdBN2/dGtn1VAY9dear jIwMO0hJgqsg0DUESZUikCoPuitipGEdR68AlRGvE+rGNOJjexLEtaQcJ+9u2SNFITaVkW9zve4Y O/7GrWZX6UxPv2EJBgviSMAwa9GZN11R1jlYdmUtrWmnKrg21Dgw3cH5dy3FnutsXv5ce5jF6MJ7 S7Ey8yJcfN8tNXFyU5WIZbvxrik+QzMlUa5dtbY2GL2yFKohc4tZHM+3X9PvOT9vMzJKeGkSbAoR yV6eOhIRU3Do2yYUTXkFfI3xUCPepm0M41rWVwojXiQlsb0k2avgBtv6Cr5FDV370LWTHWf1DqqQ IgVJKFCKkl+z8TaYf8vVVR9DcjCslnz+XUvrXoGiqAmVd19zU7CCaRfff4tUcxCbKLjG9YttQrIG pTbSxd322HUNfEBhhLeRKJj6zUQhI0NCEijSCqpEyZQG+qSEHbl6BZgGwNdg9TGufQmJb1uXcWMY 8SpSEturwJDJghtCU6bG3LzQjcnApzMVcdbNV1Vk4exbr8a+G26Nc267plpvURRVaNEFd984bMiF JA2aDw4O/6Z2XV0X0tPHnNXKTwsfuNV7nbxhHGIg2xRE48fzzZIUSzgr9ktJFnwzDlGnNaUQkFP2 azPfTBQyJh3OngTAXpQM2NUriCUEVKGNaVF9yAB/PlZMvI1Qt4nMQa5rpTDiTe1j/S5U/WWy4AZZ ylQG1b/TFBsRsg0Bvv3rNt+hrHUADL0Ig/SoLGMRj3022AoAsPf6rwZQhhZVFZw5z8CF996E3dfc FBfdu2w0U1FExBa52hIG/pqmPAimNTQRihTTC9AGj0LWMmRk2MOLJPggxm5cjArO1OOJY1JlEWoi 9l4UIVOOa2vEp/aS+IxL9buxJSV5t8setiFIgH+IkU8yB1MY52s33Q5nLruyVkCtzFh0DRhpYD/n rleSg/PuvKHSIgzOSskA701YeP+tSlGyzGAtj5lTePLQ7eLHFA2LaTlTp1SVrddn/inqQoSsucmd /xh/P/n5mjHJqJEEF3e8Sxyvq5dg3PUJMdKJyiDWIUiVOSjGWvg+ZcYxJSlxMeJDxg2tDu1CSrJX wQ0uZMEHphTRPPjnhcqbMHveXOy3ybaYf8tVA2OfT28KMILAhMlAmdoUQFX/gBcg8xmgquMFMGe1 w7HwAfnfnc7gln0W29ggdnpLfp5t8yCY1h4SihQq2rbtg3I+NnOKOUe+z0wUMiYV0TwJqloFMYqQ NaFPYGuUYae521WfL11wBXaaux0uXXAF2b1tIiZeJCQxSYloxMdak86IpyYltv35jptTpvpBVl+B chNB15cpy5t4fva8uZi30TY457ZrOWIwFCUDZWgRAOy5zuaVBmGPtTfDhffcBN7jUK55MGgtZewq VuuSEYa2h6Twc/XJjhQ6R8r7I64lFcY99Cik/kUmChmTiIok+Ij6XOJ4XV/ATYiFZTCFJvGEwHQd heGpM85jxsSnzhzEj8WThVRjUK/JdM+o7mUmC37g9QqxkiwwuBSP5K9nx/bZYEssuOP6mufggruX AoowoovuvQm7rbkpLr5vGUSiEJpGku+DEjEy/cjWmSr2P5YxzM89pH8qwtOGnf9Y/WaikDGJKPqD v3hZASLbF6W4+6VL26m7znTMNbzJdu46fOlH31GeO+rAQ40kgXkSxGOAe0y8T5tQQmIzJrVXIXa4 kWnc2OOIY8Uc7/37H55fao5wDUFyKcZm6tfmGcfj/LuXVhoD/hm++1oDQTKG4US7rrExFt4/MJq4 x31dE/ArALtj4QMvUs5BNEpDNQW+YTAuMfL8fHXtXclCjJAZCtLm0jfl74yybgF1ETaq/vLzNGOS MBJuJLq+ZbAhAap2ugJELgWHdP3roDr/pR99B0cdeOgIKTjqwEOr81RgpMHGuA6NifclFy5tqEKd dH3E9F40QUpSpUzNegV3xNYrhBRv5DdMWDgRr0mo1U0W0psuvP8WzFldbSjNWe1wANsCWK44bzZC Y+3g+hqypvnKxgppL5tDqnAgH89CSPgN5drGpYJy9iZkTBpqJEF8QbkU8mpb/QEVGThpwel479z9 rY1+dp2MQIRCF4JEHX4S2ysQmjnItg1l3QNbUhJTcO57z1yQQ5D8wEKQQp9RvAeBQvPA2lZag0Ke uagYpjWqYGeMPQHgZdU3V2M5JlHg52EqxkZVGVnXX6z495D7Z0sWQn9HstoOlP1RgCITlQyZKGRM CqSeBNsaCDz4PN8uaQNt0gWqPAQ6IiDivXP3r376GPsqT0MoeK8CEC9TUeqYeNs1hJAS3zm7khKq e6PqJzZZEPvNZMEeoV4Fn0QNLrotFlY0WhQNylSmtvH+ocXNqDUFNsZoW2L/27ArLpt32z0Apr8b X+2LWLDP9R7K+stEIWMSMAWEV1mWpToF3HKEs35sxmLgycB75+4vJQfsHEOIkc+IQmg/MohkIRZE Iz6WYWrqm2Jc3+rQqWtS2Laj9l6YSEl+ydlDRxZ8C7FReFJnz5uL3dbcBBfff3PlTbCBaHCXxtN+ 1fk5q/2RdCc+9u5wrLSgqvXw36l31KkhE2fHMuzFcUJgU2PDtS/KStnUYv2MjDai6Pf7fRlJcBX/ yl54OrJgkxZQJAQmIqDyIPBeAJU3wNVLwMiCj3DZ5vpLF1wx40S6KdO0upzzGcelOrTPmBSF2GxJ E5C9Cq4Qn5m61KUibJ+TLsRj0fwFI0azrUFUJwjbAnglgHWw8IGXWbcPEe+GCnWBMOORKhSFelc9 BtlIYdhSiY1j3MsYYuj87MyYyVDWSaCoPWD70pT1wdowciD7rAO7TjT8KcKGGEGICaqUqTLErp4s gq+tEHsccX0xxrQhO6Hj+s7fR3QO5BAkV/ApU1VkwRYuhdfGFZRGX1t2cNtQnM0WYrramEY4FWIY 9THCo7JHNmMmI7iYmm3sLLuWfdd5HgA1CWDHVWRBRQ54+BAFnhjwYUcsnamLt8AWMr1CCJqMiRdJ SaraCqkKvsW6h7b9UpGS/MKzhxiCRBE6JHsm2pCI2fPmengPSpSGU9wwx+E4tF6DGAZvyNxi11vw nR8/F5EoUM6Vus82ipll/eXnZsZMhZYkUFcylpEFUcdg8hAwiGSBfbYNJTIRBdFbwF/Hhy4xQ77N ZKGNMfGxw45SZw5qwksSY9ycMtUdPFkILRQpSxNtCxNRMBuwfLXlJzBntSltvQQfuBiRLgZ3U0RB p0UINZapMvOYUtbK5h4C6poZbSIKbfYWZWTEgNGTQE0U2HlgSBYWzV9gTQ5E8CFIriFEohBZ9BbI oCIWPFmIQRT4MVzjzX2EuiHGp03bGMa1rK8URnzszFTifYutJ8khSH7gyUJMj4KprevOdgovAg9d tqCQnfgYO+M66HboZetMOS/XsdpkiFP2pWtDPb/sTciYiQgONwoBv1OmEyWrwHsRfMHIAVV6UyY6 Zp9jwEavEGqs+mYOsr02ZByfcWPUPVCRkhRF0vg55PoK7YJKr+AC/tlo600Qrws3gJYHtDWDGWm+ RrRq15lm7e5j69bJt3Ndp8ucQvqOGX7U1rSxmShkZOgxZbPr5ZPiz8YDIWZFsiUKvOeAD/2RwWT8 u6Q0tSUSYghSDKhCkJqMiaciJa6F2FxJCUXmIF37WL+L2DUuTMgvQHtQVG2WeVxdrqdM90gNyvSW Mtgaf65GIoUhLq4/tII1tQaA9dm2WgqxQsps+7X9e8rPyYyZBGtPAnV1ZFlBNUYUAH1BNJmh7itG 1hEM2bUuYF6FVCFIwMyIibfpM2Tc0OrQrpmDUpISyt+/bNzsVXCDiizYbqLwcH320hhUF5GmLxUN 2pj1Bah3xilJB0WIVUyvRBNF0mzGalqknpExaYgabuSrZwDqoURMdyAa6SEhQi5tQ0ORUoQgMcyk mHiZkUpJSlyMeCpS4iM6dyElFPdH10cOQfKDrV6BJwaiJsFFl8CuNe9Cm/QIs0gMM1sRbRNVmm3n H8sw9QlHSmEox8hURDF3yp1/1z5t+8rehIyZAieSIGYjcn1hMcja6mosqLIW+UI0+imLrKkwDlmQ XMDXPkiVOSjWmnRGPDUpse0vRHQe0t7295nJgh94vQKDihi0Cb4Go2ublFWaXdaQSgSsCkeiTlnq 6vGIGX7k03dqobXP30AmChkzAc6eBNe0fBTwTWsqXuOiP1CNEYrUWZCAeDHxscJcmoLoJeHXSDkG EF9f4EoWQklJfiHawzVlKoOvZ9bPmHp08HPl6oitUUeRzadpES2/jiZCW2TehSbDbGKFH6XwKDTV ZyYKGTMBTiRBJAc+3oRQsbMvYhj8IUiVBQkIN+JtYuJjeC9ihxuZ1hITIsGKtS4TkaMkJdmr4AaZ V8GEtEShxJzVHsHCB4Y1FFSGVFtDhcQ+bebZ1rj3pokL9fixCFBIf1n3kJExxBRgn2JPFjKkaxvL da4z+GWhQz4EIQWpSBGCxPr1FenatqHM6GMTE5+SlIx7dWjVONRryyFI7mBEgbIOjarNaLEvWzI8 a+QIbzDGNlxjx8ZThL+o5hzaj2peTZGF0EJpur5U503zaTLjkU0/2ZuQMc6YAvyNedfsHKHVSAF7 453PXNRGgsCjyZSpKvgakKGZg2zbUBq6JlISy4iPnb5Wd89SjJNfjnbwIQr0WMXpah+DLgQxjGOZ IdiWHWTTOttAFlzCzmzmqPJMmdrHJgo2czf1k5+FGeOKypPg8oLir7eprMy3Y8QhxQtxHAgCjzak TI0RE29biM2XlISIdG3aURvXqn5iG/GxPQmy+5a9CnHQTNjRqNaA3wVOYaiKxrGs3oLvutoS3+5T qK0JsiAa0dTE0YU0iOJuCg+O7rsPMlHIGEdUnoRYWgAZ+DAl2Ziq+dga8Hztg5SpTqnQhF4hZky8 rm+KcX2rQ6fOHGQ7LrURryMlMb0KfN+ZLOjRZNiRGcsHuoS06UtVoBBGq/prMuafje+zY+5DFijJ XQoNgI408GFjpnnazklsQ0E8MlHIGDdUwmVfomDbTuV9oCQnYlE0PsvRuCFFFiQ2ThNhLjHGtDHi qUmJbT8+41JVh9a1jeG9kPWV9QpmpCUKtnqEJ1BmOBrVJYiGXaz0paoxKXZ3+bmr+k5FGKhi4Pn5 x66WzY+XmmCpCtLJvsvaZGRkmFHLbhSbKOjass+y44B+l19MbaoiCzrIqi9PileB9Z0qc1AT1aFj kRJTv6Hj+s7f9XrK6tA2pCTvqMmRiijo8RCAV3q3jpkFh9rIM+3M82P7jO8Su08d6kTZt809aEvo k2meruumIL982/zsyxgnkFVcDimwxnsV+O86qIx5mbEf0pfseGqkzIIExI2Jn2mZg1TGNfW4tv1S kpJYonN2XfYqzFxQehV0hjyV4abrj4owuKxNBdc1hxjuvmv1+d2HFruTjdsWjYmsn0wUMsYFIyQh tT5BHBuok4VF8xeMFEgD7AusmaAjFW0jDClDkICZFRM/0zIHyQgX5bi29yxk3ByCJIfMm0BZY6Z8 vu7nPC+xXoINQrwKTesDVOsR52eao66uROrQHNM9pSRBKXQqNhoOyvEzUciYNEg9CdRhR7JjujFE sgC4V0u2SX/qQipUhKEJjEsIkk3b1DHxKUlJKi9JrPXo7hnlfcxkYRQxwo6Gz1NbgvAogJcMPi+H TJdgA9ed5RTkgMI7EeJhaCrVqkxzEVN/ESsESdcf/zuMWZDPpXJ36NhHvX0OVn7es/GsWV2sMFWa bR/4xm9I1pORoYMy3CiFPsF2d8xFU2CLkExGvOch9q6+CilqK/Dj+MTEu4p0fcYRxzS1jZH+U0VK UhRJ4+eQyksSa01Zr1BHCFHgIYZxLpofPjcfw8dmZzd2+I3v3G3mwfdvOheadz90Dan1A1Tj+bZP mX3LZU66Z9179t0KL37+c/G8Z6+AF6z4HDznWVN49gqzMGuqg6luB/979FvQ6XTw1DPL8a4v/qrp 5WTMUJBpEppEKEFwTZPKI9WuvgpNkIVY4Sd8O5+Y+CYyB+nax/JexK5x0TSyXoEGdDVpWIajcKh2 dttkwIUa4apUnW0p1MbPia21CbIg037o7hElMWpLRW0VUThwny3xghWfg2fNmsIKs7rlf1NTWGGq g1lTU5jqdjDVLdDtdvDsFaZw6uffjgOO/lnQXDIyZNCShDZ4E6jh60Hgw51EHUMqYbEJTYYgjXNM vG916CYyB+naxyqSluL3LVvL+/c/fOLJgqs3gfci2D9T7XUGProEGfid3ZTGs0soEdW8xLXyx1ND RQZCd/p9BNW2Y8XSFYT2aZu5yqb+A08U3rr75njBis/GrKkuproddDsddDsFOgWAovzZ7RTodjqY 6pTn++jgjC+9C3/7x9N4y2d/QXKfMjIAC09CE2lRXRC7WJqLFiKVsNhmfP57rHFmWky8jXFNRUp8 qkO7kBLK6tCyPmJqPGR9TjJZYERBBjG0iNdzyfVhKzS9HClSFONqaidflUYzxFCNFWaVMgzJNFbM +0PlVaDOovT6nTfGSs99FrqdDjoF0OkU6BQFChRAUaAAyp/sXGfwueig0+nj+c97Nn76iTfjncfk 8KMMGliFG4UShVj9pyAIYhubfvgQpCaQMgsSW+dMiYlPEcrjYsT7jhtqxNu2i1EdWkdKJlWvwIiC ihTI4P5cXd1w3l+8zEMMdWkyv74OMdJoiv3z6461dp/7mqIwnuo+pPw70P2OQ71Orp6Voijwhl02 RqdTAIM9gepZN7JHUGCFZz8bKz7/+Xjqr09i+umn0UEHKIAXrPic6PctY3JgrUloMjWqL/iQIFfN gmsbEbyh3qRnIVUIEhC/7kEKyAgJfzzWOLFIiasRH0JKYovO2flJ9Sr4CJnbBJPxF5MstMGLwNak qlTNr91m/TYx/KH9tFHwSw2KNVKJyeesthHetfergT7Q6/fR6wPTvR56vX75X7/8+U8vexlWWnlF rLDiipjqroLf3XUXlj/9FNAvQ5GyRiGDClGEyzbeAxGuJMQ3fampT931vnqGJsXNKfUSsao2NxkT Hxuq6tAxSInunlHcTx/vhc+4OWWqPWJs7pS6BPeiXLYpR33IAsWOsGu/Nuv2ie0X75vtPRDbUcbw x+hXtUa+GFrIeD7pbJsWl7M5H7r/tuj3URGD6V5v8F8HvV4Pz1lpJbxolZfjWSs9D89eeSV0Oh3c f9NN1UZCt9NpbA0ZMwtOJIEPH9IRAVmdBJtMG7YvNBtjnc9CZCqUZtNnSMpUoF16hVReBSDM6NT1 kTomfqZXh6Yc0+Z3Q0lKJikEKSwtqnsBtVBQZAkax51smyJftvoA/h6Y7kPK8KjQNKamPpr4/fPk xLcthVdhepp5DXqY7vWH/0338KyVV8ZzV1oZL3r5y/GslVbECis+D4///lFMT/eAoiQWnU6BHx/1 Jrz7SydHv2cZMxtakuBCBGzAk4xYLnPRG6Ay7kXikKqKchtSpqYOQQLcMwfZtqE0dE2kJJYRLzPa Y4wju2epxolJuCYtBMmGKIgbLuX3kFH5NKhmXQKlYRdiLDaR7jJlHQbRqE1lSPPzcCmQ5zPHJmo6 yLJR6eYmaxs6/v87YAcsn+5hmv3X7aHX6+DZK66EFZ77PKzwnOfg73/7O/782GN45plnsHy6h6IA +ihDlDqKZAcZGS6YAtRkQFe509WFLb60VGTB5E3Q7ei71D+QpTJVIdSLIKLplKmpaivwY7nExPtm DgqNiXcR6fqOI44p6ye2ER/bkyC7bykLsQEznyw0p09YDt3eUkxDzmQsyoTQqb0PKYW+/L2Q3Q/X Pn0K2fFrlvXRFrLoAhdvgI4QyM65poj9yJt3wtTyaXS7HXSWT6NbFHj6meV4+pnleOi+B/DM8mfw 1NNPoff0U1je6w0yHRVYvryHopNJQkY4qqd96pcNTxZCdQgUQuMm0KYQpBRjzbSY+JSkhCpzkGy+ sUOd+L7fv//hSTJhTQpZiI9HAbxk5KhYLyF1SEgTY1LkxHfpz2d+qe6Hamx2H/hzMcbjxzGFLNne Z7E/m7YqDYzpnMt9Pfytu6C7fBqdokCnM42nly/HHx/9Ax4rgOnp5Vj+9FOYfvqp0pOA0pOwfPl0 GX6UkREIb+GyjyBO1kYWguSiTQD8yIGtd4DaiyBD0ylTgXTCZmDUaGSfqZA6Jt7F6PUlJRSF2HRt Y3gvZH2lCHVifZ/08QNmtF7BxZsQqz5Ck3oBnbGY2ovQtNdClkpWvCcpMU5kMcbfsIpg+AjQn1k+ PSimVtZFePqZ5fjtfQ+gWwD9/jSmn34KmJ5Gp1OgfNSV+oVnlmeSkBGOKaD5gmmyECSxxgJvrId6 DtpEEBiaTpmaOgsS0ExMfCxSYuo3dFzf+bteT1kd2paUUIvOT/r4AdV3RhSAmelVCA878q2ePKvx TDAMsjz7sXawQ/Ph2/RnA5tCYfw9iRmaw/dPIdz1qd7ss1ZqTwS/fp+2qrH/8+QlOOyfd0IxIAmP PPhbzJrqDv4bVGMeVGUGgH6/fC787amnvcbNyOBRCzdKQRR015tCkCjCilIa/r5gnoWmQ5BSjM/C kGZy5iDKcW37pSQlsUTn7DrKTFg8QWBgx2YqWWhKn9AGgsAghnGowjraNOeQtZr0GOJ6KQ1iG09F 7EJ0qjFt1xpjbi6/F9f+5qy2EQ77550AlP/eWb2EXq9TVmfu9Mq0pwWAwbm//D2ThIxw1MKNUhVM M40j8yIA4ZoDFUHgRcyma1NhUrIgsf5TxsTHGofvt8nMQZTj2t6zkHFD7pmOHIiY6WQhPliGo1K8 3LQnwZRj3ycm3LXwGFUBLZ+YeddxVPfMFq7jN6WTkJGFkNoLTRAe1RwOe/NO6PcH6VCn+uj1u+h2 euh0ytoIRYFBRqQ+/vqPZxqbb8bMAUkxtRjkQgxBCkXTRr8P2pYFadxCkEwx8bEMeJGUzJTMQbrq 0BTjupAFF3IggicLM4UoNOFNUKV7jGlMueTY94kJ15EIMYwk9lrFeVFmCOLXantPQslJE4Jqfv4x 50BRF8PUH5/xqKrA3Ouj2x3oFYqiTH863cPy6R6O+elFCe5yxkzHCEloQ9gRUCcHohaBP6aCqGFw IQhtIxRtyoKUwqsAhBmeNkZmDK+CipTE9iqIc0jlJRGPxxhHJTr3IQciZppeQUcUZs97mli8vDOA W6x2611353X9xd4BNoWoyI7FrsPgUjU4JJZftVYqctKEV0EVhuZTq6Gpyt0i/vHUM1g+1cXyXkkG OgNRc/ks62P5dA+/f+yvcW5oxsRB6kloUsgsZjqSkQXAPgRp3AkCjxyCZIaLkUwp0tW1jxWCFHtn 3wYptSQh3gMVZloIEk8URguq0RCF2fO+qC3MJhP2mq7RXd9kETPZPMSQppjelCbqLsQUfqdak0pQ rTofOhblemy8Ev86b6tSuNydRmcQZsQ8CX/7xzP4wVlXx7q1GRMGZbhRCn0CP4ZrJWYb74KLwW9T VK0NaFsIUoqx2h4T70NKKAqx6UhJDO+FrM8U2gtWWwGgJQg8ZhpZUGH2vFLM6EsWSoJQPrNddrhF 6HavU6SipEQsb4rPvEOFsuLnlFmiKGBbaI8qXWwTtTFYP++c+yrMmurWQo3+8dQz+MmC68jva8bk QqtJoKqFYEIIGZF5F2TnfPprM1Ia602PryMLlEaqixEfSkp829u2i1EdWtZHTKG2jBi899hToxEF fqxx1ivY6RPOHPz8N2N/s+f9l+K4PVEQkTJNJ6VRapvi0uRNsdEBNFXnQVZzgXou1OFHIWFEYh+q fij+jqhDy96y22YABgXUpns4ZeFNwfcyI4MHiXBZhC1RoBIlM4jeBR/PgK5NGwlE02SBHzulXoEh llBXF8pDMa6rce07bqgR70NKqETnqnSm7z321OpzDDAiMs5eBUYUePDP2+Gz+X7Oq/B7AKsDWHXw /Z8we57+mRdCFHjE3vGP1b9tv7YhWE0IosXx+DXFJAu68CPXdKxNiLqbzngEAE/87Sn0+330+8A5 V97e6FwyZiaMJCGGPkGmO6AKbWIhRj5aBEBPBNoejtSWEKQUZCE2KZIZ1zFi/W0yB8mOh4xj01cI KQmZs01YETtHTRbE/sY9BIkRBddQTleEEAWq4lOp4typxjCFKKUQyYaKnCnvRYxCaL73RbdeCiJH VZSP9TNuz6WM8YKVJyGUKDDEfln5io55YqGDLLSpSSGxiDbpFVIWYgPSxcTHgqo6dAxSortnFPfT x3vhozmgIgum9uMegpS6yJotqItPmdC0N8G1L18Btw3aFiZmK2pO7WlRhSNR9EvlgRvX51LGeMA6 3ChUyGxqG9p/yqxEPKlo2jCXoQ0pU5sKQUoh1J3J1aEpx7QhCxSCZJ4suPTjSi7GMQQpVf0EqrAj oJ1EwdQmxpx1IUq+aWVtjWyb9cQIRVIJuG3XHROyuguqa1wR6jnKRCEjFsg1CSqdQcyXVAhB4Nva hCmpzreVLLTBq5BifIr6Cgw6ozamES8z2mOMw68l9Tgi4aJOZ2pr+PsKoMcxBKmNRIHS6PYN02hL alVxDJtCcD5ehhSpTXVju96PmHP2hW9F71hC6IyM2HAiCXz4kAsZsNUc+HgTVEZ7iMEfgqZ38XXz 4b83Mf44hCDZkIwYmYNk/cQ24mN7EmT3jQ/biiE8NoUgUekYxo0s+BIF2fNY95y2IQqxioO5INbO P5WXwtSXTfYkMXQpRb0FVmfBZs4290V1f0LnGEs/Y1MQ0OWcy7qyNyEjBpQkwZR5qA1xrqkLn7mM l0Jc64KmyUvbQ5B8DHEKI96VlFBlDpLNN3aoEx9a9N5jT42azlQkC+Jx6nHG4QWdyqOgQ+xd/6bn 21T/OtIQoj/w8bhQrElVsK5Nfwc+QmhV3/xPl7bidePwHMoYL0wBckKge5H4ZCOy9RLYXhdKEFJU YmaGcQ5BGo4NpEvXakMWqIW6tv34khKK6tC6tjGrQ/MGeqwMRTrErq8wLl4FF/jWykm1+5siC1BT fYb0JQqfYxrZYt+h90C3Q98EWYhJFG2IlY2ngb/3mShkUKLyJFCmOA2Fqe9xIAg8mg75Mc1npo8v 0yvE2DG3MeJDx/Wdv+v1VPfJJEz2FR3bQOwzNiEZhxAkH28CFVFom0Fv6jf2DnzKEKBYRraumFws gXiMdYTMJ3adEFu9SUZGDEwBcQ1+HhTjxA4xErUMlOM1HfKjm09TSEmcUqVMBeKLkG37pSQlLn24 Zi2iLJKm6ieF94Lvu61koQmi0OaCa02ENMXWZZgMTtuMQbG8OLZzNsX+x6yXkDrULNRzxPebvQkZ VAjKbuT74nAJO+JBYbC79BGLkDQZ8qNCW0KQUhVim+mZg1THQsaxWUtIStNQI962XQyyIOurzXqF NugTQhEzpCm07ya1FDbGZ2iKUdsq07HvQWoPSVPr9Jl3G587GeOHWrgRdWVlSqQmCLHR9hCkSciC BMTN6MNn8kmdOYgdox6DX5eMlFAY3D4hSD7hShShTjZEo81eBRf4PutNwkyGpjMe8fONqSmIKd72 mbsLYYgV5mPK5JQyDMn3HlKk1aXWtGSikBGKmichFVFw9SY0YdynGrMNIT+6+TRBFsY9BElnRFOO 0xRE7wVFQTQZbEKQKLwBvqFOLuSijXoF5k0A9rNuwz+7Vc9w3gPMe4RtwjtsYUs8VNAZaDGRQgSr Wq/t7j/fn3hfYhjP1B4hce4u82qDR4A6xCwThYwQjIQbtUmfwL9sjjrw0Oqzj/FuY/TzY6RGm8nC JIQgATRGvM5jEDNzkKy/2N4LfuxUqUxj6Qpc+g0Zu20hSCVReK1TG1koKDB8XvvWT3AxikJ3jE1k gMLrwa6j0GXYZMCJodWwuRchSFXgLUWxOUqtA7WOJyPDF1JNQkytgQ34l82i+QtGjHtXwqAiCCIp EMXKTYUntSUEic1hEkOQADcj3qUNZd0DEymJ4b2QEYNUmYNSjhOrEBvro01eBVewZ7PoNUgJKqEn D1uD3tbw4ouaxVpvTBG0GH7kU+mZwuD17cNWqJ3KgxBrHJMXqS2bEhnjB6VwOQVREHekdDtRPHjD XWXos8/ieRPB4IlBU0Sh6ZCfts2niRAkwM6IDzHCQ4x423YxqkPLjORUmYNipkwV18OvJcZ4bQxB soErMeDfC5SFtoDmMh65xJ6rvjcd1mIzd1MKW1vSILufKUN7VLoL6nm0pU6GrK9MFDJ8MKXLcpHS o+DrhdB5GWTHXQ3+Jj0KTRvnuvk0HYKUaszY+gJXI9533FCyYBtWFMOIV2UOSuFVYJWhY2IcyIKM GPgW1WxrATPKlJSyPmRGsqqN7VpjiKBdQnR0pIFah0AZgsPmECMUh1LvQKnpyEQhwwfGFKgxNQox XNUyL0Oogc97JJomC00TBTafSSzEBgx3/5vIHCQ7HjKOTV++mgMKI97UPqb3QtZnymJsbXmRm7y7 qSsyt0FYN0Ae3AAAgABJREFU6gvR4HOtsJtCZEtBilTrCBFAU65PNh/ZPW/L31mbUqxmTB6C6iSo YCtK5nekqMEb9RSegBjF1VzRpvoKvLHeFHlpKgQpJmRGfCxSoiMeFIJkXyPe9XpKsqDrI3aoUxsL sbmGEzWFthZaC01JKvYlfqbanbYx3l3vhc7LkFIDoJqTSX8SQhyo627o1ufqSWrTJkRG+2FFEijD jlQ7U5QvGV54DNgTBZtrmgw/AtoXgsTm0IYQpFTjszCkVHUPmqgOTWkEu2YO8h071Ii3bRcj1Ekc exxCkELIgY83wSY7UgwPRVvizEWDk/9pahNyXylhM+/Q37Gr7sNU1VnVt+2cqe8bRV+ZKGTYwtqT EEIUGHTtqXajVAY8pXEvE0SnRhtTpk5KFiQ2ZiwjXma0xxiHQRxnJmQOcunPZ2wq74VtSFWbyQIQ P+woZgYfG/hmBopdMIv1p5uD6VzqMBabdK4ha/QlYK51JGzmTHmPKb0TmShk2MIp3EiVH9sGbajK TEUUeILQtE6gDWE/srnw31OO32QIEkXmIFk/scmCSA5SZg7ij1GPwdai6p+qEJtPX74hVW1+safW J6jQJqJADdfMThRpXCnuwZzVNgL6wBxshIUPWtQIWHVgXD8or9UQmiUqxt+cdM2Sz6Z2GRltgrMm QZW21Kadbd+uZMJFVKwSIZvIg5g6lX1vm06gaaLA34cm7ksTY7ukTFXBpm0MjYIstChF5qBUkBnx MdZmS7BCx06tV6AKM9U9201EIXYmHNc4e4qCWdTFskKq88YmPlX/DwJzVt0Ic1Y1aAEEgsDWyfcn HqNADA+Paa4u9TZs+3SZX5s3HTLagSmAVd0srF4GjBTY1jRg18byJPh4BmxFyKqaCqLmoekddB5t JC1N6xXaHILk4x2g0CuYQotiZw6KGW5kWk/K+gqmdYespe0hSDMVTXkUYlYnjmV4u2o9GEGwnXOb iYINEfOttyE75htmlYlChg5WngRVjmwX2HoJXLwJoaFDqvAjnWdCN2ZbUpW2jbQ0OZe2hiCFGvm+ IUiuugNK47otmYNSV4cWj1OPE5MsuGwgMVCGHYXGXbfZmG/amyD2YTv3EG/KwgdvGXoTNGFHqnMU hfRSeHmoa27YZGVy9Urw3zNRyFBBSxKoc2RTpsqLIUKmqoXQZB0BcR5AJgtNFWID5EY8ZbiQbQhS qCg5xLh2aUdtxKsKsbnOq82IrVdomiiEwEYkSyl0jVHczKZfqvAqKq+CD1GShRlR3b+ZCNu6GyJi FJDLmLkYIQkxCpzxsHl5mK6JlYKUIkUqQ1sFxW0IQWJzmYSxZfUVYmQp0oUgUaU09TGufTwDFEa8 TdtY3ovY4Ua69cTyKqiIgklrEEIU2pB2tIl+RTThmWDj8t+p5it6Eypi0vfrN8bvIUY63bbMUyWy zt6EDBlqJMFnl5+yhoLsGhG2hrrLdYA581EIMWmLTqAt8+DnMgmF2Pj1xoQYgsQwEzIHufTjej2l 90I3duxQJ37sGGTBx6PQFqQgCtReiRjwKYbm0sZ7HYM/UxcvgjhXCo+MT58u/TdRnM+lz0wUMkSQ VFyORRREUHoQRHLAf47hpWhL6E9b5sHPpw0hSG0WN7cVMiM+VuYg20JsvmOHzt+2XYz7pAupavql 7xtiylcUBuLkmaeCqaBZyNxihS/5rk+nB3AywDlvgg0otRI+a29zn7nQWkZMVCSB7RK5ZC3iQVFs TXeemiC49EU5dltCf9pUjK3Je9JUFiSAvu6BSnfQZEYfyjHYWsRxqAuxufTpOzZFqJNtSBWlVyFU n6B7R/DvHvZZDH2RIfWurE2BstC5hSCWYcvWpwpXCQ5zepBGgN2URqFJbUQsEXdGxogngc9elJIo 6MhCTIIgfhe9CTE9C23YzW867Kct96SJsSnqKzDodAcpw1yayBwUYyyTEU+1Tp/fTUghNiCcLIQQ BRE6DRyvT/AtCibL5GIyjExeAV3hLJknwKa9bG7UBhxlJiWKfpk3gX2mmncTO/Up5kgdyqTTTmRv QgaDMtzI100sa6fry+S54D0JQFjmIVuDX1VwjRptCv1pE2lp6p6MYwiSbdai1GEuMylzkLgWas+M yz0LGZuSLIToE2ySY5i8zDx8DH4xnMm2P9M8ZKkvbeZEXSwr5o46T2KoM+VQEaXQcCib/qjXmrJP G8KRiUIGYNAk8A/qmHoD0/Xizr94zAa+HoEmyEJTaBtpYXPJIUij8E1pOhMzBzUZ6pRqnBghVSmN AN+seaFpUW0q3aY20myJQxtCb0xeGl60bTOfVPOm7MfUX5syXFGuOxOFDEAgCbLdId/wIxui4OOp 4MOA+O86uBAElYg5FVlgoT/sexNoG1mY1BAkQE4WKFKa+hjxPoYqVaiTbSG20HFsxp5JIVWlV2E/ r/b8+8LWU8xCS5usnyBmI2pD4SxZUSwK49vGM+Gr93C9f9Jx+vJ7qDrmitgahTYQOdd+XQlHJgqT DevsRtQZjFxCkmQQjXf+GIOrYa/TIqQmC0D7xM2TSFqa8vLI9AqhBdFkcMkcFBrmEpI5yLYQW8g4 tmPHrg7NryE2yt//097tGVHgYfIaNFloTVWxlzKLEsX8XOZjG/Kjui6VIS41WKEnRFThTLrwMpd7 MC5hR6p+s1A5wxVOKVBd4kR1baiqLgPyUCTZOR1cDH8ZOYmFNuoE2jKPSRmb1yvMlDCXmZQ5KIZX QTbvNms8fDLj+WreYoFaLBwqTHVpH1pl2QcU3hPdOqgL6oV4U2TzpCaVVDv/Lv269JG9CZML5zoJ vNvYtZ3pJRL64hANeFtD3kff8Lun/oZ+B1hl1nMBxDPi27Kbz8Zu0zwmrRDbTApzYePMlMxB4x5S RYHY5CDUm+CSa599DkGT6Thl6449l7bvsuv6ciVzss9N/55N6w6ZYyYKk4sRkuCStcKWKPh4IHyh Cz/SXSsel7Vl1//p6X8AnQ76BfCH3tNYjh5W6TwbwMwnC20RWbO5tCEEKdXYs7dYE0D8ugdA3cBO MUasXXlb4zp07BAj3qUNdahTObZak2BrGITWT3BpQ5kPXpeRKGWWIdk1bS66RTWGTYVlyirFMUXR oTUyYoQHUaWrZfPLRGHyEFxxmZJMsP58dppkFZRN19vWQmD9/e7pv2FW0cU/zXoWnuxNo4c+nkEP 6AMPTv8Ny/vTWHNqJQCTRRaaDENqi14h5bizt1gzWpgL32fTRdJSjUNJulyNeN+xQ383rO3HT/gK jv3gYuV1Hz/hK9YpU6mJguqcK1EISaNpak+tk6BGjLAgl3z9c5ZtBGwM4Gxg4Tz/31cqj0Jov+I6 dOdjzE03pioTVVs9IBntgBdJ4B/cNga9GGpEHYsqM/LF7EQ66K496sBDcc/fH8OsolseKIAnp5dj pU4Xj08/A6AP9PuDn+Ultz39Z2ywwgujGo5t3NFvOgSJ3Y9JyILEexWA8Q1ziV2DQLae9x57apKQ Kt09o7ifvr+b9x57Kj5+wlesx2HX2pCFVB4FW7iEGJmKnLHPrgiJN297CI8Mc5ZtBNwIzOlvBGwC YL49QUg1b4oKxTZ/N2Jb0zWuc/HpL4TMZG/C5EFKElwe9C4PeP5anT7BpU9TBWVbqFKe3vOPx9Hp AxUD6AMogL/1enhupwMAeOSZv4ORhTuffgzrrvAC3PKPP2KjZ7/I/zdjibaQhbbpFVLPow0hSMC4 hbmMjp3Ce5EKMiM+dkiVKUMVACeCwIMnC00bCdRpUU1oW3EvG9gQH4qwrTmnbQSsB+CVAJ6P0nNQ AHgSwHeBhYfTVRWmvAep+7Kpj8Gqi8tIaSwPgCtpyERhsuDsSfDZ8VG5jNk5/rstbDISqTwEKiIh hird9/Rf0QFQoF8nCgM8Mf0Mnun38KKpZ+HBp/9SO93v97Hsb4+i3+9j0+e9FEB8w7FpI72NoVCp 59FkCBIwPmEutoXYfMdxGTtFqBPzXqTwkohrCSUHIkwhSG3RJ8QoQBXqVfAxNJvIpW9cx7KBIflK ALuiJAfAkBw8DCxc/xbMOWEj4PB2zDmkLxdNi+scxHFU31MTYtWcGJHJRGEy4EQSXGNHdW34tuw6 /rtO7OzrLdBBpmPodqbQQR8dAJ1+SRYYEygG/y9QahVetsJzce9Tjw9Cj0r0+330+30sffIR9Pt9 bLHyywFMll6hLfOYhBAkwKxXaDrMxeV66sxBqvaxQ534fpvIUEVFDniYQpCaJgoxd+lFYbNt2AdP MJr0IsjmZBRWM2/BOcCcxzYqyQFQJwdAjSC49B9jzjZoSwYqfj7sXsiONzknBqraFRnjASVJcH3I 2z7gdWI0wEwqXAmCLIxI5lm4+a9/wFR3ClOd8r/Vp56NVaeeVV3zx+lnSrJQ3h0UGD4XiwJ46Km/ 4JXPWhF3/v1P1f0D+hVRYAThmj8/gK1euFpSvcIkGuniPJr2KqSELARppmQO8inEZjs29X2S9dVE KtNjP3hEFKIA6EOQVO8QH7GyDiJRoAwJsm0nQmdItcko1a27IgZA6S1geD73mScHQI0gmPqPMefa /IlIR2rdiCxlbVuK/fHrBdoRepgRF9aeBB8C4BOaJBM5A3bhRa4EgvV5y9//iG6ni6nOFNaetSIA 4IHeU1it8yw83HsaXRR4UWeWtI8/L38KQPmsvO8fj2ONZ5dP0E2e+xLc+JffYfOVVgEAXPfYQ+j3 ++j1e7jqj/dhmxetASCu0domstCGOfD3YhLGphQ366Ay4qnHdTHiKQqx+c69DSFVIimISRTYeLZZ kGIilQFuIiUm49XV6IuxIz/S/2kDYiMjBoCcHACV9wAYJQi28286DEtJlBISOvFvgp9TW8gCPz6b WyYKMxvBKVBVCMlWIYYghYYX8VoD/vPNf30UnW4X3U4X661QPgHv6/0dANBDDwAwjR6AAr/vPY0u gC4KdAD0en30ej28kPM2iNhsxZfhhiceRq/fQ7839Cr0+31c+ei96Pf72O6lawFIRxbaYqQ3TVgm pRAbAwtDShUTz77HGAOIry/wMeJ9xqYKdTLpDspUp0dor/GF2C9PFkLDjlw81BRhEJQ71DZtm/Yq 1LwF7OcrhYt05AAoCcKd5gxGbc/UJNu9j0HiZHCtrt0EqdLpMjJRmLnQkgT2gAfshcU2hdNcQ5Mo IXoPut0u1plaCff0/gpgSA4A4J7eX7Fq59l4oPc39FGgjwLP9AYGf6+Hfq+H+//6GJajh+n+4D/0 sclKL6vdw5H/eiwUCbjskbsA9LHDKutGNxwnfUe/DfeiSbIUq76CCjFJiSpzEPV4LpmDQnUevr8b 25Sm7BpKsiDzUMjIQix9guz9EFPsSZ3D30UITUFgRrwFNsQAqJMDwJkgxESsImQpPQi+Bj/7HHt+ KcbJaCe8PQkpKiizMURPAAVmTc3CurNWBgDc0/tLabyz9ETCA3EaPUz3B8RguvzZY2Sh38Pyfnl+ 8xe+AgBw3WMP4tUvWBXXP/4QXvX8V+CaPz9QEQQwojCoq8A+X/rbO7DTK9ZzWYIX2rij39Q8Jj0L EpAzB7mOI66Fcn2u3gvfrEUiWdBVXFbBhmiIegVfoiCCP8b3x6fXjiEAjZFSlJ9TLGOsRgz4V8wr JRe7kAPAmSDESgVL6VHw9Uj5zIEiM1K0vxuHfrM3YebCSZPAw2aHxze9KWvPvyRM1ZF1xwHmOeig 0+li3VkrVwTh7um/oMeMd9ZoUAsBAO6YfhxrdlbErU/9Cb3eNKZ5T8J0+fnVL14NAHDVH+5DURTo 9fq49s8P4FXPfyWu+VMpVAZQhRhVhGHgTegPaiwsfvA27LLqBkmM1jbt6LN5tMW7kZosNOVVAMKN XFP7mJmDZIXYQtZigixzUJMhVaGegCFZWGzdxscLwesVfMNQVcSAh4xU+BSOimXI2ghgTdfZFmaT hhEBdsQAUJMDwJsg2KwhBDa76yYCUKsWHXkHnaLQHz8/qvn69pOJwsyEkST4hBwx6GohqNzJJmJh W0m5Igd/+yM63Q46nQ66nQ7W7pahRWt1noe7p/+CtbsrVm3ueObxoTdhsMvf65fhR8uXL0dv4EEY /jeNbV+yFi575K4BOeihKIrqv/L+9XDVH+5Dv9/Hti9ZE5f/7i70MepNYIQBGP1HH5ssNL2jz8+j 6TkA6QlL0yFIgH/mIJd0ptSZg2SF2Ng5qnFk4/LrSRVSxd+/mAJkFUJDlEa9F2bYEAMZdPUTdKQh VFRLZfz6GKhzTtsI+CZXv8BEDAA5OQCiEoSQNdbWazD2Ved9fo8xyEIskhQyX4p1ZqIw82DtSTBV STa1BcwEwHaXSRd+xI4v++ujleag0+lgnamVAGCgPSj/gPvo487pJwYhQMB6s4ZPzZv//oeKJCx9 8hFs+ryX4trHHkRvuiQI275kTQBMUwD0+j0U/WKEJPR6Q0Jw2e/uwvYvWweXPnyHNOQIUGc0SKFX ACZ3R1+cxySFIAFueoVJzhykSmeaKtSpKYJAWYiNEQVdbR0G9t6hLrTGoKto62M0URIFNgedBmLO oYIxfO7g55c0nfuQA6BGEHAIMAc0+fJ9wntMugzTNT5j2RBKmyxOlHOzmW+sjFgZkwEnTYJLalOZ p0BGFviwIpeXgCz86KgDD8VNf/k9ut1uGVrU7WLdKaY7KIXJfUgqhA6O3/b0nzA98BJs/JwX1665 +k/3Y8sXrFp9Z+SAGfpAKXrmiQJQkgdGQvr9gfbg5eU2z6IHblXMqA5+12USxc2TqFdo2qsApMkc FKsQm+84PmPHqkPBjx1DdGyDGKlTeaLAYPIaxKjILELlZWjSgNLtuI8QBB5HoU4Unq++dIQcAErv ATDwIDwQvjZZPQDq+0adSYmfu3jMdr2pICMLVF4SU0hc9ibMHFiRBFF0FuJV4NuwPkLSpfJeBQCY NWsWup0O1h14BUbJQfnpruknsU53JdyxvAwxYiFE071p9KZ7uP7xh6o0p71+D1v/0+oAhuSADw/i P/fRQ39AFC575C5s/9K1seThOznPQak96Pf7mL3ahs4vsFQhSEA7dvTZPCZtDk1qRsQQpFgGsE3f VBWiffpxLcRGNV++H1XmoNRkgRqMKIS8R2JCNGBdMiZRaxq8014eBeDbmvMmcgDICQIxqEXHYp0B /h5SzpmNJ/Yf4/dP/fcT26ORicLMgXd2I9sQIlMfIVmSqtCivz2KTZ77EgDABs96IYBBxiLU9+mH u/4cZej3Su/B9FBnMD3dq2ob9Ho9bPfSUnewwyrrYIdV1sGSh+/ke8RQxsD1z2k5+v1e5UlQhRbx 0D0UJpUstGkOqccFmiMLqcXAYuYgykJsqnFk8B071HthG1bEk4XYRdJiEhKb90aIx9nVmyBCZfDx 523bhUI0erWeBIb3YZQoFIprDQQBh4DEg5DqfrF+gXi7+DahSG0J5UmZNpWNkYnC+MOaJKhS2OlC kHQPdTHkyJVsHHXgobjpr78f6A46o/Md/L+WsYj7XgmSp6c5gtCrMhj1ej1s95Ky0BmrZQAASx6+ Ezu+fF0AwKW/vWM4isyrMPjA6xJEhP7DTbHD3Qay0IZsTE2LvBfdcC+A4U5/KjRBFmKNZTLiKUOq XPuyrXfAI7YRz/dLPQ6be4z6CWIbF0PNNpsMu1Z2PBYqo9SGIDAwouBKDoCREKMYO/782mIa8zGN ddnfRNvqC/B/q6n+bjNRGH+QVVx2CUGSaRUWzV+Ai+9bhl3X2ETbR1Ut+e9/QLfTwQbP+icAwN29 v2Dtzoq4u/cX9NHH2p1h1qK7pp/gPAfD0CIAmF4+XSMGvV4P2754TQAlOWCZiIAhQWDkYKdXrIdL Hrqd9azwKgwJiQouux2yBw9FpVEbtC38p6l5NF3joAmyEKu+Ag8xc1BMiEZ8jHXZei9CRckhRnzZ xq5OArX3wiRgVkFHFFTnQjwKNp5dYNTwoty5HXnGu5a2eB8AMSHgk5LrRIKwDFh4uD6UhhLjTBTE cdo0d10l6baRmYx2wYkkmAri2IQg6V4IRdHBovtvQdHpYJdVN6hdx4cWdbtlvYP1Z70Ad/XKJ10f fdzVexJrd1bEXb0ncVfvycq4X6e7ctXPLf/4Y0UGbnjiYWy24stwzZ8eQK/XwzYvXgPAKDkQCQD7 fslDt2PnV66PxQ/dJiUHgBt7tsmM0HQIEuu/6foK/DzaEILUFFlowqsA0IYCyYzomFoIcYymQqqo Mxa5GPE8oXCpkzBs4+9VkLVN4VGwAUXsN+tH1X9o31VfLt4EEZYEAScAOHx0LlQGq2qtsYkC+0yN WjiYh54l5nzEe8BrN1TXUiB7E8YbZJ4EHmIIkm0hnDmrb4RLf3sHut1u1R4oCcKyv/0enU6ZznSD FUrdAUtfWqKo3Kn8H2Mffdz+zGMVMdjo2S+qzl3z5zLAcvn0cmw3qHdgIgdl/8Ozix+8Dbu8cgMs fvDWupB58Mn1gcc/VFyLujSlV5hEQ112H1LPYfYWa459CJKObMSueyCOnZosxAwPUhnxVCFDPt6L psXWJm8CZUVlkTAk2a09CMAgAV/xggL9DwlG2aEAjpW0e1j4zhGElJqLULjUs3C53nZsvm/ZeKbr mrofsvtCPcdMFMYXUUgCgy1B4DFr1qyKJCx98hF0uh10ZeRgAJ4OiBv3vPi41y/FyTc88XCVxYhV Qi4Jwp0j5ELuHRj1Fix64FbssuqGWPTArRYJTc3g/7H6PMjYAzyV8T7JhrpsDjkEyYw2ZA7SFWOL RRT4MKqYomOZER8rnak4jgymsduqT+DhahjLdpWpMGe1jYYhR3MArA9g1ZIcAMCaa68JnAHc89p7 9B1J9AcsxGjOCfbViamRgoRQeET4vmz6d6m54ItQI99EFkL+/WSiMH5wJgmmkCMVbAjD7Hlzse1L 1sTSJ8sn16xZs5TkwDRHRgwYSej3WYrTkixs/aLVhTaDnwoRcnWu/ADRy7DwgVucUpqaQBHTmLq+ AtAeQ73JOTQdgsR/Tzm2jREfYuhTZQ4ytY0R6qTyHqQQHR/7wSOcKh37jsPWI4YR2a6vSaIQw4iP ZeBWHuZfbFSRA0AgCADuuUFCED6OoTdBQxBs4UOcXL3qKYgC+2y7BpfrVeO69mdzPyjvV6p0qRnt RlRPAv/wFh/kYupT/tzmK70ctz3954oc3NWTeA4kZLTf7+O2p/+M9aaeP6iY3CtrHfAehd40tn7R Grj893dXKUl3XGXdmiBZJ0IWv/OeA4qHmvgP0tdVrSqakis3z+zx26xXoNqhdzXiQwuxubaVja0y kmPWPVDF/qdKmeqzHhVR8BErx0BqQ03WN74KzLl2I2D38piSHPxW0YksvAhwJggu98QXqYgCYP69 NVFzwRaubV3uq8z7IRvbFtmbMF7wIgk+3gTxQS62FUnDBiu8sBIl8yiYLoBP59YHl8KUpTZdjn6v XxGFfr+Prf6pDC+64vf3lH+kZSEFAGU6051esR4u+e3tbp4EAbKdCdsXC99G7JNdQ+FCnIQQJH7c NmRBSg1er9DE2G3KHBRaiM1mHNXYtkZyjMxBsn5ip0wVw5tikxJf8N4E6th029ATL5w++LmqBTm4 06K/QILgsr5UYV7Ua0i1k+4bipRKGyLbuHS9L2yumSiMD6J5EnxcwHxbAFins1LtmpI0lA/GYmCk 8+RgJLXpwIPAQouufPReoBIm8/8BQL/MVvSK9XHJQ7cpPQmLLMKKQlOa6vqliDecpBAkNm7TIUj8 fUgF3quQ2rOQImUq368qc1CMYmw2hdgAPyM8RuYg2Rj8te75NNVj8+P6eklCw45sPQuMKLhCZ0xG 8yBwoUVW5OAmqD0J4K4DggmC6b5QwDfzn+84rE92LOU9cQlFSi0epyLWmSiMD7xJgs6bEOIW5jMi iZ4EkTTwuPEvvxvxJGzzojKl6RW/v6eac/mz/h87BgCLH7oNO79yAyx+8DbUPQnukmTdPybfBxCF a9LkPqRGG8hCG4qxNXkPZkImJB1iZ0Lix1GNQZW1KFXmoOE4bilQXcf28ZLE1ieInmvZs9AlTaeN 0eRjXFXkwCa0yJYcAEaC0MZd/xQeBfHvoOk4fNn7nkr0HFNPEqN9RjMg9yRQxYbOnjcX63RWwt29 JyvjnNU+EIuf9Xo9bLbiy2rtt3nRGrj8d3cDwAhblZn7vLdg8YO3YpdVN8CiB25VXm8L8R81levS 5uVkegjwfTRRubkJNF01OesV4mQOEsObYmYoklWHBujDd2zIQpNpRX09BLZtQoiCDKrEGey4KsxE RCoPgrXugBn8Cyw75giCrA5CKGTvHeqd/lgJQsT3alsM2xRZkUz3SVdrwXdN2ZvQfgSRBAptghkF CpSGem96lByw/67+4/1lteSXrFmbn9DVUE/QL/us6wyGZGHRA7eSZSti/6BC0pmaiAD7HIKUKVPZ eE2hTXqF7FUIg0gImvAqxBYDA/LMQU3F+/uOHVOoLYNrCm4euhAP/nNIQglp/9cO+rcMLVr4hoEB ucDBM8w8CIfHITlt9Si4egpiF1/znXvKeVH8HnVanUwU2g1ST0KoF0FsP3veXKzdWRF3LH9cSgxY tqKyWvKaAMpqyUAfO6yyLnZYZR0seVhQb1XhRXJywH0je9DFDusJETarSrSnMlyzXiGnTA3NHGRT jC1GITYgrdEbmjmIAqmLsfl4Exhc3kcu9RNiFUrz0R0sPJrb3f3OLXZVmIUQo1gGZyqiYNIqiO18 xmJ9NUUUdJ6Z2DUXYhfUy0Sh3QgmCcybANjv1Lh4E2bPm1ulNK1IwXSv8ihs8+JSd1CSg7qxf+nD dwxTm1ZeBAzqrvWHPwFlxiKKXYvQdKa2cMmspJpHkylTU4zXxjm0JQSJ/55ybFcj3pVcUGZYUnkO UpCFJjIHsTFirctWr6AKIZKd14Uc6eBbaM3ViBzRM3joDhYefQvwBknfBqKw8Dvm0FMf6NqJQmDZ uD4QQ3llY8QgPa79UhRts0mUwq+fIhVqLJ1NxnihVZ4EHZYvXz7iRdj2JWtKyEEfO758vZIY9IFL f3v7MLUpg4Qk6HQH4j8E292LWOlMdbDp3/YfP7+WTBbSjt9ECBLQnF7B1oj39QqEhiDZhhXFIAuy vqhTprqOTw0ZEZF9F2vvMFDVT3AhCqo4bfbZBq66g4VvkJODGs4czEUgCyqCULtGkebStp3qPqmu ofKyN5GmNIVh7JsZKdS7kCItsDjv7E1oJ0hIAq9NsI0BFR/guof57HlzsflKq+DqP92P3vRQd8BC i2TVkvk/Nj61aXkOXLu+FRsOrXXg018IdLssvg+dJvQKTZOFSQpBAprTK5hCkKg8AT5kwaXeAQOV EW9qH7vugW/15JCxVOOwtbJ3TIriaa6wNiJZQTTP0CKruViQAhkoDW4+JEh3v0L6bwKxNQGmvm2T ktj0JRs7paeE7ycThfaBzJMgEzHrqiqz7y5hR1v/U1nvYEgOOC/ACDmoV01e/OAwtWmtnQOoi63Y /uPy/Uco7gpRCJuBNIZr04Y6m0MbvAqpIYYgNTG2mDmIWlNgo1egECX7GvGuWYBc2/iuJfY4YkiV bAzb9wWfTjuWN0EFlREpCy2yIgcm74Fk7NAdZMpNrBibYrK5phQZU6QjN60rxjx1c435O7KdayYK 7UK0YmqAvqqy6aGtiynlQ4tGvQjDWgjcmSpj0S6rbkD28KcsthLajwohmThk80xZjI2N0RavQhPg x2+iIFoThdj4sYF42YlY36pCbFRGsItxHWKAN0EWqMZQhVSJx2PXT+DbUBAFYPAM/irIdAexECPN pXg/qPrTZcth5/nvMUGRjty0Lsp5iveHwgbJ2oSZC1KSYEqJqvIysM8mElGd7wseA1m4US1b0dBr QJXfl/rhCdDHAcr6piI2/Bix0bYQpKa8G8xwbtJgb7NewRexyIEInRFPadin0itQhDq5FGJj36mJ guocBVEAAJwOYNXyo3VK00BykLpQlm2fqYzJJjIShbxfUwuim667YJpb9ia0B1E9CTqIhMElM1KZ seh2vRahrw4mosqzHMMtGDMnMRuDXwcVWZiU+gpsHpOqGWijXoECPEFIvRMfy5i3WUt5fj+Stbje M9cKzOI4vqlRU8EnpSm+j6TeAyBNmkvKPl3IR5MhSE0SNJf5UmWfGsnaFRi5kIlCO0BOEnwKrAF2 RIHf8dlpIERWhhsZxvPZaWHt2Pe2PUBdhdM+bUwP4pQhSG3xLDSZiYj/PiljU5IFmfegicxBsaDL FMS+H/vBxdHG0a2ZIqTKBZRhR9rscTYpTSW6gzkfTG8sxtLEUSQC8Z2vbCzWlv8eE7bkpOkQHZNR 70ocKG2iTBTagSiehBSVmGfPm4udX7kBFj14az3EyAEUGYtcdipchcp8n6Z8xqbxdQa+bR+mOfP9 ZHFzfDSdtrTpsUOKpNmEFsXyKsQON1KtJfU44hjUIVViSlQbxNQnONc7AIAPDtp+P33V46YNVFeQ akQQnyzYGN8UGYEoROqmNcjmrrsuE4WZg8bCjRj4B7bPA7xWEI0YrhU4m9ApUP5jpOwvpeHeNnHz pIQgtWFsH6+CS0pTauNa5Z2IbcTLPAkpq0PHWBO/lqaJwpxr3UKLFr5BnqI6ldHeVJpL3z4pPR6p 9QrUyU4oEKIXsSUOJs1i0/cgww7RSIJv2JELZs+bi9mrbUgmQg4V96Z8kMZ62ISKr2QZFCaxvkLq ObQhDKjtIUghwuRQI962XazMQaqaAyX8NQmmtcQOp+LHiU0UZPDVHfChRfzzlroqsXTOAWJX6gw9 tt78GAZlKr1CU7UcdPOJYTeI67X5O7FF9iY0h6iehFRhR5Q5rduW+Ug2P3YsFnRuWR1pMYUyTSJZ yHqFtGPLQpAosxa5GvG+pCJt5qBwTYLN2CkqN/OgIgJ8f9VzjhVD80lpevRo3zbhpLI2JoxDasom 50gVgqQzeGUGNGVWIUqPDNXvwqYfV2F3JgrNoPFwIxlc09WFEAXxHzdV6E6qfMcxYfsAtX0YTCJZ aINeITWaHlssxNZE5iAKg9jXe5HaGLcdO2aoU6g3wZZQzJ43140cQJ/SNCS8w8fr0MZNMF2/qcKi bNJ62xIBXXvZ/FKlIU1BxPgxYqSKz0QhPaKTBJ03QfdQpt4F4qH6R0lVmZj1S5XOlO+PHYvpLpa1 E++bODfXflLqFYDmxM1Np21tQ0G0JorAAfFJii5zEKUR7NJvioxMqnH5uZrWQ0lkQtKiurxnFh0y qNPjoDtwgcvzWbdho+pX145qnlQFO0P7ClkbGzvGBqJsnT6hOq5ouzdpps17JiGJJyGVPsGUyYHB 9HBrA1Ewhfo0IYASH6ChL4OU4Hf1m0DTaVubFhg3NfbmO247ozIHqcZo2nvgE05FMW9x7BCiIMOi +QuG1ZK5gmgm3cHCo2kMZZ/2ImLW9omFJuaZQg9igmxDLjSsLJU3JkXxvOxNSI9Whhsx+OoTGHzd eNS5fkPqMej6Zdc39dAPISpNhyC1wbPQdAhSU7v7TRAFIN4uu7iTHXM3X1UnINZ4KUOqXAuxxVp3 RRi+CuAQ2FVLFnUHFki5USLbYOLPhfTHr4fiXZTSY66LKogZNmzqmyocqQ2kkLomRiYKaZGMJPh6 E3yIwqL5C1oVe8n3RZ2tKKVXQQx9ohB9NUEW2DhZr9BcCBI/j1Sg9irI+krlVUgFmREfY222IUg2 14RUY2bvmkWHLLAnB9DrDnRQGUEpNW1N7aDbhEbFmJuL0U0ZNkyRctRl7pShXz7ri3Ef+f4yUUiD pJ4Enij4GP5WcaODXaDYXgDXP/qYgiUXr4LPP1abgnI219neoyb0Cvz3VGh6/KYM9iY9GrxXAaAL cxER06BWFSpLVfegibAt17Ft0q/yIUZVyNFXgUXrL3BOaepDEHSIaZzKxpK1M13j6yXX9WnTtw1x 0L1v25Da3Bc6+0EkVW2Yb8b4o9XhRiqoSAN/rC3/qHlQplo19U/VtwtJovIsNOFVANojbs71FeLD lyz4GKusHUUhNtXYsY14MaQq1jjiPROPufYjVmUWiQHDot0WjIQWMXIADAiCQA5mPzhoP6+d7xvZ 89lXGK0y8FXvHAoPgGq+LmliKTfiUmZ1sm1LvU6fubn8TVEXz8vehPhIThKYN8EVJm8CZVpUHpQP hxQsnzrvM0UIkesDZJJDkIDJJgtt1SuEGsYhxrVPIbaQuZrGHseQKkYORjaWdlswIkoG9LqD2Q8O vA7z/OcTy+sbCzYhShTvNwqDObQv3RhtIwpiH2zdqntCjaYrd2eiEB+NeBIYUVA9uFVootAaEP6H Lf6jpUy1qpszG6spsVMoYWk6ZSr/PSXaIm7OegVaQ9jVuA4pxEY1d9uQKupwKnHs0KJ00hTcjilN Z5+jfu9QvWuoQBUmq0KqPP8U796miULK+gQyrSCbd6r1hvbpQzwyUYiHxsKNRH0CDx0JkF0fq54C D+pY/lS7RDJ3MLV42mYONv3r7klqo70tZKHp+gpNjAs0U4hNDEEC4hVi48dRZQ4KHTtm8TJxHCoy pZprCPERiQLvPbDVHVShRQNQF/VUoa1GqThWzNTcofegDb+TmH2qCpjFJnJtIsUZ8dAKTYJMW6A7 L15rIhWp05m6pDFNRRTYvKjYu8/8fTwLOrF3CjRdDI0fv4miZKwYGvs+CWNvvuO2WLrkSgBxDey2 ZQ6iWovPOLFDqj5+wldw7FNHmEOLJKJk15oLpmdiG0I0Yqb2ZGvkvzc5Z1fyMk6hYD4akyZqLMnm Q1Fhm+8vexPioFGSoEqLakMaFs1fYO1BsCm0FpKliO+HXWOLlClMZSnlmi7KphtbJ1qbs9pGScNx miYLQDuyETURgtTU2LHrKzCMgxEfaxyKkCqbtseucYRTSlMWWrQIC4x9twlNeBEAdRXhNhjSseZj QxSobIvQvlX3QjxmO682hHHL+stEgR6NexJs6ifoSAMVUXCBaGyH7lLETmGqGqvpB7iMLNiurwm9 AkOTIUhNG+y5ajOtcS3220TmIGC/qOPEKsTG2mvDttYYrNM2tOiDGAkhcg1nbSrsKKZB6juWyyYY Va59U5GyNntlbH/PNvfTZiyxT4p+fUFFPDJRoEXjJAFwL7TG6xLEz6Z21A/vNj9wdHOOMf+QdfvO q+mUqSnH5dEGr8IkjU1VX4GHzIBOmTnIppYA5RixNBKye8aHFrnoDmSeA0qikLLAVSz4hEuxdvz3 pu5B24mCDrE2Ek3hSKLuZBzvXYYfWkESfCE+vF2zJfnAVA0yFDH/0ciyLKUMd7JZOz9P1/s7aeLm STXY20IWQgqxAXZVg2NnDirHWRz1nqX0khz71BFuoUUSUbIMbfEoqJBCU2Yax9QfFVmY6USBOl7f Z3w2nngsFijrR2VvAi1aQxJcvQkymArmsO++aUEBu8qOoYjRp+3DO8WLRjdHvk9+bj79TCJZmCTN QNN6hZSF2FzaUYxNidiehGocR92BGFo0DogVH26DtqTGpppjLKJA0bcsnWnqTTyZd8F3A8/1vlEg EwUatIYkAPZEgd/RUaWi468Vj7kQBZsHWZuJgk9BM9vrqaDycIifXe4da5vSYG+6cvOkagaaGtsl BCnEMA4hC20iB/x6SMO2XHUHNwEf3/QrOBajoVY6j0GoNyF1lj3KvmIVEfPtm+oexCAKbE1UaEM4 jmi8x5wPZYrWTBTC0SqSAPh5FEwPdmCULNhkPALs/2BjGNihuZN95hJzl8dnjlSp71KThTZ4Ffjv eex40JGFWMXYrDL6RM7KFDI2hZdEltLUhhxg0+EcVIXWVODfNbakgb1rYqANBmQo+Oe0z6ZW24iC LKlJSF8h7z7qmggxdAkxPCZ8P5kohKF1JAGgCT0SIQtFEuHClEOzFNmCOm7Utu/YLmGXPkOJAj/m JIYgpcakjp2yGJupEBvV2G0MqbKqdwDUdAeMHIjkJZQo2IB/54zjDnPKEB7dTrzqPUVhuPq+Z23W EPI7YlkIQ/sJGV82diztZBYytw+tJAk6hLqCxVAkSsEMQ1OiqFjVLk33x2W9Te2MsPap6xw0XV+B L0rWVBhQk2MvXXJlZbynAl+MLRakGX0iFWITx5EhdGxbL4m17gAA7gQ+jqHnQHWfQoiCCjJd3KL5 C8g3W0RDlfrZmirbnk04i2qtVHHssn50/dqmo6WopBzSjy+oUtKGjEHRZxYyh6G1JCGGN0EE/6Bv OyM29Rf7AUIlJm46I0WTeoVLF1zRqGdh0jQDQN1gb4IstK14GcU4scKpWD/SsC2PlKYf3/QryjGo 5y4r+CkDdTiFqSJ92ww43Ri22ZFUa1Ud852XbMwmkVIzSBGNELpOCmLF95mJgh9aSxIA//oJLm5g 1iam64x9puyPIeXDzMeN2iadhqwfIL1eAWgmDGnSNQNNkIUY9RV4pMocxCDWVogVTlWt7aswhxZp dAfW48C+MKcIl3bUaVHF56HJkLb1BqcmCL5rF9dJkeij7elR+XlSj2u6j7I+20YUdH1mouCOVpME oE4UfB/iMlD2pQP1Q5f942lyp8NmTTHnR0kU+LlOSiaktpCFJrwKABoLQQLojPhUmYNs5hElnelT RwCnw0t34AqeLOhCiIDRMCLT9TKkrJ/gQxqarEHQVNuYfY1DfwBNoT/2mWI81zVmLUMctJ4kuMJE JlQF12I/uF3jHVOBKnuQuKZx+sfaVAgS0J5MSDkEKd3YQRl9LAux2V5LMTb5OI4pTUXdgS9UFah1 dXfYsVSbTgCCdnJNpCHVOylWdpxJJArscwioN93a+v7P3gR3jAVJYN6EUJge5Kl2eEL/YVMVHaMA /2BI+XCI6eIEJicECWjOYM8hSO6Zg1wMcepibKr2VKFOlLoDXzCiYCIGoUjpTdBBRRpizi2FIJby /rSdKABh4mi+n7at0SVpi0sGrkwU7DEWJAEYEgUbgZhsZ8d2pyfWw5sq1lEVN9p0mrQmwqBiEQW2 JmByyEJbQpBSjz0OZCFV5qDQsX1DnaxSmgrkAN8ffD/B65ZYrcP2fcFr23wLrdlCJ8ykerfYZhvS QTWfFMZ/04Z9EyRItWHYVOYqykQrWZ/QLMaGJAByIbMNaUjpCpYhljuURxNkQfVQEtccE6nu5ySS hSZCkJoau416hVSZg0xtXMdwmbt1StM7B/2z0KIT4twjMaUsZf0E2fm2eBR0dX/YednxWAjdQfYV 7VKk+aZcn2ufpnXYrJVyPik8Cm349zOTMVYkQQbxgcyTBpX+wKbPGJX/UvSVgiy4VEqONQfZWLZ5 q33W2JReAWimxgIfgjRJY6eocaAbO2nmoEhj2IzjpTswjBMaTiXOM0WhNdaGwrDzNcpc3ivsetlx inEo0XbDPpbha3r3phSmy+bSFqM+exPsMHYkwZQWVedlcAEFUYi9y6Hrx4UsuMzH1U3o2sYXlA9w VT9NFURj4ubUO+x8MTT2fRLGZkShqRAkNm7MdKZ1I36/aOsRjfhYugPvUKeEmaBSIEVGGJ/Uo77j NFkbyGdOTffH98vuEUNTIclUdoDsXlH0mYmCHp2mJ+CDfr9vTQBs0tSprmFEwQdtYsuiXsB3PaFZ kGJnzpBlW6JcI7uXfFG0lBAN55TjTuLYm++47QhhSD22LNsOJZIZx18deA92h5kg3AngtNJ74CJM /vgJX6nIgs19Y8TFlCnKdbPJJzWq6V2TojItg8tzVHy/iF6G1AktQtbSVJ8x5sj3DQx/103aJBTr jPX7pEiMM1Mxdp4EBpdCa02nqJOBavfeth/fMCSX66k8GyHw9dKY5sT326ReoS0C46xXSDd27EJs MT0JQIDuwBOmECQfXUabwo5MiBF+aTMm3zdlv6EC6JhCYSphNpXwXNd305kQZV4N1Xxt+2vDRuxM x9iSBFf4EgXXB3fb/3BtjfVYD5QUIUguoreQNTapV2jaYG+qxsEk1legrto8WqV5cZR5u+oOqFOa iiFIIfdv3IiCDrH7lxGGpt+LKYlC7P50ZEB1PVXWKl+4VPO2IZmxvAk57GgUY00SXLwJIbB5cPsY nFQ7Pj4PKxlZiFGS3jRn13vm2j9lPKuqT34tucbBzB57HFKm6hBT51CNIUlpakUOCAqiiaAUavsQ BQpQPqtcBaexUqqyMXzWkjL0KsV9kvXHz0t2TegYYv+x3ve+dpFtv9RkIROFUYw1SQDShR3piELT uyQhEMlC6oJo/NgxvBYyoVOssfj+JzEEaZLGbjoECXAz+H2NZJd2VvUOgGFoEUcOYodUxczqpHuv tMmb0PR7SkZYdOdjjB9LJOybVcp0PrbnQyZwpkr+oeqLOjUqJeastlEmCgLGniQAzRKFmOnEmn6o p0KsHSJxtyFVvG9TnoWmQ5AmceymQpDYeCkLsWnHsdUdAMOUppu6j2MLVT+hKVNDw45s3z+8kDk0 FWYq7zAPm9pAOtKg89amSt/p069sLbo2untHsUvu4jmSzd1HC5kyXC5GivnYCVbGDTOCJLiCSsgc 8x+DT/iQ73xkbuEmyAn/D5TiH2rqNHDii5Edm5QQpEkdu40hSDEKsUnHIU5pGmrE2647RKOQSp/A EPosTB1KEzKeas1t1hKIc01RQCxmn/y7y+V9mUIYLfOE5GrMcTFjSIKrPiFUyAzQ/WNo0jA3xdhT 57Y2zYXvhxquuyUUa2xqZ0IMxcljx4dIFpoYO1mRNJvQogDdgY8R70osQghVDH2CmDaVvaNCn4VN pyH1gc7L0Ia1yN4fMXaimxRcu7wvU25qxoCMfGSiUGLGkAQgPlEQH+KuWQZskWLnR0YCVGk+U/xD pg7jkvUj2+nn7wV/H0LnL+tvzmob4dIFVyQPQZrEgmhs7KY0A6y2QlNjxxIoO+sO4J/S1DrUKVFI VShk9RP476r3UKowSQpQFhCVtRc/y66LcT9c3hFNZT2SzZlyDrJ7kTKtaqy/Ld2aM1GYYSQBCCMK MsKgeoiz4ypWrUPKP3QZfHJMq+adej4hoIiNNfVlGp/1P2kpU5sau2nNQJv1Cq5wTWn6cUQOdYoY UmXqk43tG0LE3h+2OrrQUFLA71nuuvEU+x1hm7pbtg7V2mTnQzeOqA37thAP/l60gSBQrMe0wTfp RGHGkQRgSBRsIe7w2Ozu6OCb55idSxnT57KeJqp+UqTgc4Wrl8HX1QpMTsrUJsdug2agTXoFV1Dr DnyRasdfF+okO26q7iy+T1wIAt+OyqMANBOyQ/FMN/XhQx742HtTP6nX20aIm2hNhCZTrmWm/X6o MSNJgi1E1y875uKFCDG6RahEu1SxfrEf0K4YhxeVycsQ4rIGgEsXXAEgp0xNgTYY7E2TBecUqC7V kgfk4NjvHwGcEGctbA3HfvCIqDUfZIRENR5PKhhMG01UyTN8Qe0hblMSD9V6VX2brgkdt61CZp/+ dGHBsTwLKWt7qPqdZG/CjCUJzJsgIwIMutAiW1DntJb9oceOmfeZn+88XOYTy4UYun5+DP6nS1vZ fIHJJAtNhCABzdY4aGps5114k/dAojsIrW4sg9hfaq+CyVsAhHugTYjxrgHCQzlSb/bEMpZT1uuJ 3VcTdTZikIWYgmjXzcJJJQozliQA7arIbIKLC9VUhVFMZyrrIwSml0vbXiqu82uiL9ZPamEz0Lxe oanwp6Y1A017FQCzcW2qlqzSHVAZ8ab2oSlTXcc2eRNca/WYvAniNS7vGp8MbLHFsT7e11TviiZD sVzn2WbS4XIf2xBy5HKvJpEozGiSAKRLjRoC19y/tmJp31CoWC8XnxcRhUt0nDCJeoUcgtQ0WdhP es1a/cMArBmkO/A14l3JBaX3QtePbpxU9RNiVGRuo4FsegfG2piLsblmM1+fhCKxiULIfQi9jzGz PLbp77ztmPEkwQdteXC7QOVtiD0n25dL2/5Rhj5kbSqKhvTHjgHNhiClxKTXOGhq7KVL5Od+VtyD Ha8ffBF0B64pTV2M+JBqyKy9zTi+Y+vGSV1ojRoqw04VBhvLiIsN08ZcjNCZVJqCGOnDQ+bI+uK/ xx476xPoMBEkwSfsKBVRiJ3yLEUKU9N8U/6DbyoXeIyHEh+ClBqZLEwWWeDxIxwJAHgCwDmvAlYG 0AFw6gl+9Q4YTEY8lSfAhyz4FlRjbWNpIlSIuSlls/HThix8KcgGtYelDeJjm35ieqr47zHuiQkU 9sgkEYWJIAlAO4lCrNy/qn/sqTI5uKyxSbRhR8tljnNW2yh53D7QTBhQG8ZuSq+QeuzNd/w9li55 Kd6G3wAA7lVc9/oPHoHTCIxh0YgXj1PBxoinICail6QNYUdt32CKZdzawGdjznQvmgoVitFfzHei jWehrYRM7HtSiMLEkASAVsjcJhcxD1stQ8yHP+s/9YMwtgbDNEZs0sG/qCZFM5D1CmnG3g9n4onB 59s1173+g0cMvQqBiJEFyXacmIXY+DHbtCnlA3GzKYVXuq0bN5QhSNQ79z7vMdXx2JpB8V4ufOCW qElWYnpIJgETRRJ8EOvBnSr3r6o9hXfBJvVnbO9FSsRygbt4lMTf26QY7JksxE2Zev+O22L1wfp4 srA+Ss/CmgAe4a4PJQuxjXYRTY3j8+5oG1EA5F7iGIi90dNknH3IvG1hm5ZbF0aWspJyqr8rtjZq AjIJ3oSJIwk6b4LqAd1GV7AMoYXd+IeDuHNkaiubi6p/U1vdeDHu6biFHbHvbN1NpC0FmkuZ2tTY Tdc4iE1S7h+MwXIdPQG9VwFwJwu6zEC68xQQd/ljjSNbzzjBVJ1Yds04CJipN3lkG22+94CfI0Vf oV4J2/tFAcp7IFtHTCIyCURh4kgC0E59gg6pUnqJDz2KQmYyw5YfQzzeVjQZc6rrt6kQJDZeU5qB SayvkMqjcf+g39WXXGkVgrQyzHoFW6M8BllQZSFi52KLjl03nmS1EWzqKfAbOyFhJyaxsiqjjm0/ urmM40YPGzvUEG1bLH6K8DJxY5JyLFVa+BiYyURhIkkCkK7QmogmHmShcYOx5sTfE9sxKVPx2d6j FFqHkH7ZsUkLA8ohSPHJgiwEScQjAFaB2qvgY4hTGfGm9rG8CrJwqlSbUjLovAOuUD2DbMZMkRVO tf5Ymzw+5EzVngqURMH1/tmsV+yfet5i36G/I91aUoZMNYGJJQk+CPUmxNopiZXZIDSzkmne/DV8 e9nxcURqsXXWK6Qfu+kQpNhj814FwE2vsP3gO2XmIFu4tKH2XsiISUoh86L5C0jCgXhQbTJRCWZV 48WsG2Cad8x3vOtcKPqTzY199p2fqn2q31EszOSwo4kmCanDjkIRsovu88BowoVrQxhEzUTMDEpt 1Sro7kHWKzSjV2gqZWoqvQJQJwsmvcISIErK1I8ThDWFjuMztg9RsMGi+QtGjqUwiqiJQ0rBLAUo 3g2pBOeUO/OuZMT19xo7dWmsYnMzlShMNEkAwoiCCbJrKGI3Y4GyarC4PipRtXi8zfcjZO0uffue jwleMzApY09CITZXvcLrB4ZzbLJAGTLkGuoUUwQte9eI38V3F/MkxPAux4ROCOxrYPrOPeSd1TZt RazNNPZZhphJStp2P8S+ZxpRmHiSANARBZuHNzD6j8YlXjRkF90nZKktmX9khIEy04a43tB+ZH1S usFlRetkc246BGnRDfc2FoK06IZ7G9MMLF1y5Ywem0qv4APRiI8lPrYJdXIdOyTsiL0/bNqmTItK sbFkMirbtrkW04swLkRBtoa2eYNi3eM22ESpkElCIHhi4OtGtmHjsnNt+iN1yfUfCtNLZaaKiGRr Vj2kxfvSNFkAsmZgpo0tC0FaGXHrK4iInWJU5b0IDWsyzVvlqU6dXa8t8fw2xEGW8pJiw8h1c4fi Xecrnqbs02WetnOIeQ9S9W/z+59J3oRMEgZg3gQVZA/t2GlRTeTBx6XnE3ffFm+COF9TTH5I//xP 8V74IDT7hWpssV8TYZhUvcJM1ww0ObZrCBJgTpmqQ+xwIxmoxc0yoqDbcLIJb20CTb4bmtgcotIA Np2uNUamopA+dOSQIhV7aswkopBJAgdGFFSEQIUm6ifIYi/F8zageOjZPigo3dPU/arma7PWGIIs Cg2GjjDwO0CTUuNgEtKWNjm2bQgSg6teQWegx657IBZioxrHxROdulZP6owzFPH8fP/8T921bbgf qjmmSqPteh/4vvh706bNxBj3wjWV7kwgCpkkCBi3QmsMNrsq1O5Y3fgxoMuqQPWAMoneqIiDqSBR TMIjjjPJIUj890kaO9a4Zw7GcSULphAkW6M8Rt0DcWwqr4KLPoF/x9gUVhOLsbUxbCMWbAxWW/IQ sjYKLVpKomCTrlt2j2T9mq6juI86tOEes77HnShkkiBBU4XWbGAbxxmy469CE7GWKfsOeRnI+pJd J+opmsjapCIMTdc4aCIECZi5mgHd2E2kTBX1CiJkZMHHEKcy4m1SmoaOk7J+QqwdU1fECi8R+3Z9 P7L2lPejze9M2359UpiG3LOU98Cl/zYR4ZTIJIEITXkTXP7x2LhjqUU8VIhZDyJGXzbEoS3z5F8C c1bbqLEaB02QFGDmawZU4wJpQpAAd73CjoPPoYXYAHcj3vX60FCnVEQhJlwMzjYbWrrnNkUWvRhk gyLlqmqututUaQOb+H237W9s3L0JmSQo0MawoxRx96YHYRP/8FMUgUtVlZGNlXJc3ZrZvMQXQhMZ osQQpJSYhBoHTY7tqldYApReBYKxbY14qvChkD5iIkVaVApQZp2h3jQSx7O5rm3hWKr5xihqRyng btKbQLGZO65EIZMEDdpIFGQIEd+YMgPJSENo3KGrgLetY/hAFi/bRG5p064PP7fUngWeLKQemzea U4cCtWXsWJCFIAHpUqbqjHgqIbKP94Kv99CGd02sZ26bDWWbe2GbRY86ZIkfL8Y9jL1pldK7H+Me U859HIlCJgkGtEWf0FSa0ibSzNmu2WbubehDth5RdM3Os3Mx4bp7w9qkDgMChmFITYzNQoFShyA1 PXYTegWbECQKsiAa8eJxKtiQBfFcm4hC06DMOkP1DLftR2fAhoYsUWUIVM2BnyPl30cMQXMstN3z kxqZJESA6sGte6CnenCHxg2qXJP8Odt+Uuw6tWV3y+XlEvNhSqFdyHqFmT12W/UKKyOsvkITkIU6 mVK5NqlPiLWpMulGlyrjkk9mPB8C5do/P2cqUPWbwoiPRWrG0ZuQSYIFdN4EH0KggoooxBbt+u7a 6B54oTsdMXYxUt9X3/X4kAWK7AymPsR55ZSpeWwK2OoVHgGwCsK8CrHDjVRom14hpTchdsio7QYM hU6NWu/mkhnPpW+qOjtt9SrEDAtifck+U6x93IhCJgmWGBd9gg7UdQRE6HZIVGnoQv+hu7iAxy3T AqVnIUZNjkwWZlaNgybHvn/gNdlv8F2WMnVNhOkVdEQgthFv60ng5xLyrrGtp2CqC+ODlM/aJp7p sfVutsRBZ8jGeNbHIApNhyDpxOcx5saPNy5EIZMEB6QiCiGI6U1wCVXSaRmaCv3h59uGjEmuMa6+ D61YGSTYtU2lTAUms77CTA5/8k2ZehpB1iKq+gqmsX3DjkzvkrZtSgHtCjNKvVFEmW1JRxxSZeaj MprFrHp837Zrl7U32S4ufcvGoLyPpjW3CZkktBD8g5vK4KcQO4XGEfJ9iX2L18RCqn+cMUXktvcr 9n2VZWjKeoU04wLNezRiju1KFl4/MLhPCyzExl8fQhZs2ppSs6YWMlOC6jmrewfGDK1tKlGILWLV 3NHB9P4JCXn1NfDFvzNfMqCbZ8zkJePgTcgkwRGpw45SItWDT+VliD226M2IZUSn8Ijw66F6gYas MYcgzVyDvcmxffUK2yPcE+BTJM23QnQTeoVF8xfUvsfaQGmTN4ESvgSGUuMWI1zMZt2u44WmTNf1 KbsvbYTKs9R2opBJggdCiIIJsmt82HFIaI1s/NgPPJULjoq9832ZvtvcUyqE9CmbPwXxCckIJc4p JdpSjG0magaaHFuWMtWkV1gCoPPBI6LXV+ARIn5WeS9CvAkixGN8n4vmLyAXflI916k947Ez3jUV vhVz48t3PNP50PdfqtCdkHna3IM2E4VMEjxBRRRMD27AvWgLa+Pzj0f8x5D6geejZdD1b9OurQJh WzRpmLdxTk2ThSYqJ0/C2DH0CrbQhSBRegFk3osQosC/X0ztY+oTdM912Xkd2rRj7Pu+jJVtKfS9 7Tov1XgpyEpoOnfbfkP6b9Pfqi8ySUgI9sC2fXCzBz1FHJ+PNyIlQVD9A1RpGWyIk+vuhQ1ZoI6R jQGRHFJnZ3DtrynNANBcKA6rmpzHpodtCBKDTK/gC1kxthghQqL3gv+ugspT3aSQ2ea5DphJQ0wB KVVfsnlTwKfv1JoJ/h6kGNdkyLver5RzlKHN3oRMEgLAvAkqqLwEKTJQ2O6Oq8hDWwxe2Zpk86Z8 MPh4Fpq+X7rdLJ9dOyoXv8wlnDUDkzN2yhAkwEwWKKo2p4LMe8ETBZ0XWnY+FSiy96ieWam1VjER IvR16Z99TolYGfVs+g75W6ESrPv+G2gjUcgkIRA8UTA9tHmkTFWn+8PWkYdYrlMKd14K16aKLFCH ZFEK2Uz3il+P6rzPGD73symyMBPj9ts6dsosSIBcryCCuhhbbNGxSBbYe8bm/WGbNIO/LpU3wdSG hyyDDcXzKDTOXOyL0oNL/cxNRa7ETaGmPNmxvCkxNS1tJAqZJBCgrYXWQtN4xfiHHjPmNXY8rexe tMmD4Loevg/ZOap7qoubnZS0pZM6dsosSKwYWwy9gqmmgemaELB+T/zGawEAB33oDGeCkGpTKvbz nX1mY8mu84VLrn1T4gbZ/FJkAnK5fxQwhebarifUq6ILa0tJFELHKlB4t42FTBImCCE7OjEFQU2u z7V/to4U6zGBSmCle7HFWmcOQcpjx4CPXkHnVXAx/H1SpuogkgOGE7/xWmuiwNB0oTUqb6nJUHcl Dja7wjb9qPo29ZUyUQj1GK5e/xCSkiLsqsmsVgX3/8UP3toqb0ImCURoqzfBBzpGzj6LoHLBhYYu pRZsNeX6Tp2FJDQ1ra1YPJOFtGPPxPAnnV5BlTJVRhZ8jX2KugfHfvCIEXLAw4coxEasZ5KLR9yW OKiuFa+n3s3XzSllnYNQg13XNiQxiOtYLmtm/cUIo6MiCGXkeoHFD97WGqKQSQIhxoEohPxBp4pv DEVMoqArZCPepxhIKUTTPQBN6Xdt+pW1aSoECZi5RrNu7Jkc/iQjCzYhSBTF2HxDkFTeAwo0vSnl 81ymjMuX9S1+Tmmo82PHrPugG981RCeGNi2lV4UyTEjcQPPpQ0YQ2OdLHrq9FUQhkwRitIUo+MTv 2SL2rjdFBgFqomCze2J7bcgcUom2XMXQsnulmpPNvJvATK8zoBoXwIwe27W+wsooi7GdRjC2LVnw IQdtCjuKGZIYCzptQyrEEGS73gPb+0z9+6DW+tmuxceTogtj4/ty2TzTEQSgAArg0t/e0ThRyCQh AnyIQmpQEQX2WdVnk14HCqLgm6Oab+vaXjWPlCFUISFcLjt3Jiy64d7GQpBS7+7nseOObatXeATA KqBNmarSK4R6DtpEFGxAsQEUA2LoCDsWY22yNcq80qnWb1pz7DoNTWj9dN4KF12Li+fD9M5b/NBt Q+Fy0R4RcyYJLYHqwa17oKfQJ+hg+seR2oVK3Q9FalO+L/GY7VxThpa1UVzehF4BaEc4TupxZ/rY NilT14RZr+ALsdYBRVhRKqKgArWnmCpXve/cY4eQyt4F/JqaIAuqd3kTdSNSjiuOyd+LGGMx7wHv OWCEYOdXrq9s26Q3odPIqBOAfr+vrYApO6c6rgMjCjxcRcKhkPXThLiaap22MaIu/bKHP+vbtl1b 9B+UYUCufbF7xyo3p8TmO27baCgQX8E4j02H+3fctiIMT2CoV7gdJVG4FyVReGRw7jEMKzdT4qAP nRFtjdSQvWuo0QaPKf9dfG6HjicSAR0ox7ZFE4a6eG/4eaT8e7P9vdjcOxkKFEBRlHW1Bj+LokBn 8PPS396BS397B5Y8fAeWPHxn+d8jdw7bF814FrInISLaok/QgUosFCOWnHLHyKavFDs3qgwXsURi Log5HqVXCJgcr0JbsiDN1LFd9QqMKNjWV+ChCi066ENnBHsUKLwJNu8e8V1D6eVskiDYzJe147/H Go9ybNv5mY7HCL+iqrPgMiY/dgphdFFpDVQ/y6sGF9e0Cjussg4u/93dKIoC2710LdK52iKThMiY BH0C4Bdv3qZ1NrFjrwpHonwZtCEG2DWDhs09yylT89iUOBPAfoPPFPUVeJh0B8zA111jAxlRMBn+ TWc8YmgzQeDharhSP8sp+rSJuVeJiVXX+85DRQ7EHX7Ke2kK9woF62vRA7cCGJIA008MfhQosP3L 1gYAXPnoPShQehqu+eP9jYQdZZLQQjTx4LbxBNgo93VK/zbsOMkEar5zo0STmTZi1bCI1Z9M5DeJ ZGHS0rXGHttGryDCphibjeHPV1Pmv7sipT6BQrOVSiRsO2eXDDmsP9X8Y2X1k42t07Op2tvcI5mx LuvXR2MWukFErTMMEZ7zKAAseuBWzF5tw0G9g8FRJkZW/QQ4cnBvFY7ESEJRFLj+sd8mJwqZJCRA 6rAjwN7Y1GUzsLlWdZ3pgdWkUU69Wx97jvwxarRJO+ID/sUxafUVmhZVz9SxXUOQgJIsnEaQtSiU LMTWOIiaubZ6jVNBtrmT6t2iG1u8JmQMnbjbNC5F1ijdutuUlAOohxYtfug27PLKDXDpb2+HDUnY 7qVr1cmBhCQURYEbn/xdUqKQSUIihBAFE2TX2Mbk+ew0+MJ3J0J80PjsHqn6pNoNo3a/UpIsyqxJ 1DGf1FmsgKxXyGPTwDZlKgNfiI1CYwDY6xVEUuHrTRAhHuP7ZOdCw1SpPZSmsUzwmY/KYG8yhLXJ cVMkMnEhHrG95UNyUH5jhv+lv70DO71iPSx5+E4tOQCAq/5wnyBm7khJQmoBcyYJCUFFFGwe3DZQ eREoUoaa/rHF8jLYkh4K8R0lXNzMFPerDWumRpMhW5NQlKzNY6cMQQL0ZGEJgM6HzsCNhOlN2WcR qnMhYUf8O8TUnrp+Avvs0qYpkappbmxc8RjFmmT98pt+IXoFCv2YbkOQEqbQq9henUpkXMgFykUB LHn4Tuz48nVx2e/uMpID/r8OOKIg/Hfb3/+czJuQScKYwPbBzR70FLHeTTxU2diqc7I5216rG7tJ o9nnwUwVH+oD26wVTb3s+b/hJguDpcYkj52yajNgp1fY5ENnoAMEkwVVCJLJy8ATDBV0abpt4UsU ZClIZcdDkerZLnt/Uj+nTUZvrHsY+o50Ndhdx6P05JjGLgDMZsLkQu1FKFOdlp8v/93d2P5la+OK 39+jJgcSj0HNoyBce+fTTyQhCpkkJAbzJugg8xS0IQOFDtSCVr5fUWcRQ9vQlE6BahdO7FM8Fxqy FXtNMebFvziaKAzWVNz+JI4t1lZoi15hZZRkYRmRVwEIEzfrvNCy802A8lkcy1A0jSNr7+s993nf xXqeUmWGih3SHOq9GGYoYvMctdmUgmSgRhCYR4ERBBtyMEIU0JEcT1PmLJOEBsCIAjP8TQ9uhibr J/iAqg+G2EZ8ai9KrHF0u1cp6060BbzRMRNj5/PY6ce21Ss8AmAV0HgVXD0J7NqDPnRG9Y6xeX/Y bkrx11FvSsXOZNMGmJ7Tsutc+2/6Hui85CFr043Hj+E7TiH5NKxhMDwwUuugIgbD80UBbPfStatW 27x4jeozy1ZkEiszUiAeu6/39+jehEwSGoJIFGzgm6rOFy7xkSlEZy5zSrHu0PWkEPXKXkQxs0xR paeN0Te/9plouLZ57ElJmQrUQ5DWREkUGHzIgkl3IDsnu86VILTBe23auIn5rA59/7nMLdZmGLW4 lzLRhO2YNlCt0UcbwnQGix68FbNXLdOYSq8rzF4EltKUeQ+2ftHquPbPD1Yegi2e/4qqv2V/eVTr UagRBRToo49+v497pv8alSik8VdkKBHb4OfTovpAloozZXtA7cqNCXEngnKNTezuiKJyXuDF/+dz jyjXFeN3y6+Pza+p2PkU8fNtHJsPBZppY58J4PEdVq++P4GSKNyOkijci5IoPDI49xhKsmAD5i3Q FWJjJECnPzjxG691DiWyza4ntrH59+tbQ8D22dAWb7Dv84zyOcg/66n6o+5Ll4HQBJn+Q3UPTH9H paE/NPIXP3gbdll1g/J79V+98FnBE4UBQdjhZetg+5etjSsfvRdX/fE+dDoFOp0OrnvsIWz5wlXR 6XRQdDq48S+/w01//T2W/fVRbLLiS7Dx816MjZ77InQ6nfK/ov4fG7vf76Hf76PX76HX65H8LlTI noQGkbp+wji6LZvYQeLH0M2Bcj26OYSO75tlSnXNuEC3g9ZUCBIbbybXGVCNCzTv0Yg5NiMKz7/s fiu9AiMKyxyyFqlgo1fwyXjUJtg+j5sOsQmBLEMgv/YQUL4zqfsS1257r3T3RjVHlXeBeQJ4r8Dw xzDQaOdXrl/VPuDDioCSRGz/snVwxaP31MODOkMRMoCSJAihRbf+40/VsfVXeEE1HvMUAEAffaBf 2o785zuefjyaNyGThIbRFqJAkfZUBd8HClV1zNC1Uj0Q2/Dyck1Ny+Ztcw21iDwkjZ9qnrJ15BCk PDYlHt9hdTz/svsBuOsVKCouA/b1FUxoS9gRD9F4jpmUQddn7Nz7rK3LWL5zadO7iV+3DNRF2Vi2 IgBY/OCtqAKOBgTgkodurxEDDFqJ4UY7vGwdAFy15I6QnagzJBMVSVCIlu9a/mT1ea3O86o53738 LwNy0EcfA7IwIAa3/SNOWtRMElqAthAFHVJ7E2zTgqaaF4Xh2iZPjOvaxT5Tr81m91A1X9v1TTJZ mImagSbH5r0KgDxl6poY1StcjvCUqYBarxBSP6FtRAFornhZ6o2mGF4A9jm0H8qNRxMpovwdF9z/ GTnYZdUNqvOXPHR73avAy5k5grDDKowc3DOarrQzmsYUADodecYinjgw3DP9l4oQrD21YnX89qce A9BHf+BNAOJoEjJJyLCG+FBoMhe+b98U62efbdFUlqhYoVoy0qCLHY1JSqnd8XyfKTHT6wxM6tiu IUhA/JSpTROFGF7HGH2LYzS9EdKGEJ9U90b2e+XnHTq/kdoGgx+XPDT817nzK9cHAFz62ztw6cN3 YKeXDyonD9rtsMq6AMrUpkVRlIa/rKZBpy46vuUff8RGz34Rbnv6z1wthEFboCIEwDC8CBiGFTFP wvrPegEA4Ja//7EMO0Ify/76KLk3IZOEloDSm6B7oLddn9B2T4fq4do2N25q4Z5pR0mGkDC1mOlw 2bhN7XIzoW1TXoU8Nj1sQ5AYdHoFV4ghSPzPcdUniJ5DMfudClSZdJp6R1G/5yhEyG21CWRQ6Q7q n8sPl/72DqAAdnr5egCGlZOBkiBc/vu7a7oDM0kYngdGdQn9gVcAQBVOxP7XZ8cGZKDf7+PWv/8R fQAbPedF1fpu+svvye9/Jgktgo4o+BACFShcwTEeCm17gIaO1VScfqpUdj7p/cT2NtfzRMTUJxWa DEFi402auHmmjy0LQQLMZIGiajODqQKzDk2GHel0UeLzwTYsUdWfaR4x3lE+XnmXeZvuQernq83c +Gdw6KZQFVpUWBAF4fuSh+8ECmDHgecAGHgPOoU1Sah5CziSAADo99Gr3AV17wFPFiotAkcUSu/B 76tjm6740nL6hN6ETBJahrbrE0Jcu6kyEsUuumaznjYIwWKCQhviQh6aup9t0SvMxLj9SR3bRq8g wpcs7DQgBRujrk1gZMHnvcG3sXn3+LxrbJIliLB5BrluWLA2MVIzh8A1XMhEAMR+XO9/yLvdhpyI z2HbcQoAix64FbNX21AqSlZ5EcTvTHcAlMLkbV+yJgBUNQ90JKHTqROEYRrTvpwQACNkoQo/qoTK Qy3CkDz0ccMTD2OLlV8+WCMNUcgkoYXwIQoxoWL3sgdnG4S9ugdorOwXMcdwQRtiZ0Ohelm1gXg1 GYLEPuexZ8bYj++wOhZfdj/2g51XAbDXK+w4IAF9lIbOzQD+9qEzcB2nSwBQVWPm3zUmwz9Wdj0e qcNhXbwPoTvuIdo+2/WG3k+f/myzTIXMzYUsiGlMRVLA6xFUnwFgh1XWqXQHRVFgmxevgWv+9AA6 nQKvfsGqAIClTz5Segs6dZLQqcKNOjUx8p29J7BuZ2XcsfzxWipTAAJZEMKOJMSAaRgYObj2zw9i yxeu6vT71iGThBmCkAc3AO9dBLGd6QEqe4A0XTGTYhx+/bFT/1Flk0idsYpi3SmycogQX3xNexXy 2DNrbB+9gsqrsNmAHDwJYKXBMWZwPBfAqzmiANTJQmzvNdDuzSUVdIapr/6B6tnLxhd/xhASy8YV z6s8LqHZ52Sea9V666FF3BGJ90BJDmQpTfnsRN2yuNnSJx9BURTYbMWXAQBu+ccf6wSBkQMukmlk d79fqQ5qKU1r13FkgP+8+UqrVJdc++cH0e/3MD09Xc57QGxCvQmZJLQUKcOOFs1fQBKPqHuQUKZJ c50TdTE012tSCoibHCfGvZalwWXn+O+x1ioboy0hSHns9GOnDEECzClTebLwEkFv8OTgJ08Wnosy BOlSIo2DLfjKzeP2zBfnLBY807XRzVF2L1xDmmQZ2VJp8kxrTTEncf2LHrgVwKjxP1LrQKFHYMXQ AEVK0wFJ6HY6tXM3//0P6HQ62PBZ/wQAuGP545VegfMLqA32iihwZEH0MGBIIhg5uO6xhwbHSnLA k4xpokrMmSS0GCFEwQTZNTF3H3TZKGLDZ+fYZk2qdjYPUEr3cqpsVW3KQx6bLNjU6eDnMBNj5/PY o2OnrNoMlGTBJgSJ5TRhBdp4iF6FAqNEISQtqgzicdavzbuJApREIbQQmqpP2edQD2nIfEOge9en ACMHs1fbEACw+MHbpJWTlZ4EznMwUi1ZECEDQKfTlegOOrhjeVn5eN3uygCAu3pPVnMUjX2gTgyG EgRBxMyFGYnkoNebRq/Xr8hBv9fD9qusg0t/ewd609O45KHbgr0JmSS0HFT6BNVDW3YuBkJ2S6jG Vz2YdXO1hS7GVJfCM3TcVEhRXdR1LDYea8N/T7FWcc3AzIydz2PXxwXShCABbvUVGJi3gScLsYmC 7v0ia0MVatNUMgOKLEdsDeKxJuZHGf5EHR6qg+gNYORgl1eWRdEu+e3ttZSmO71ivSpbkeg94HUH IyJkLo3psr/9Hps896X10KJaOtMhOVinU/6ru3P6iWrOzGC/Y/ljWG/qBbjtmT9DRxQ2fd7LqrY8 Oej3+uhx5KDHeRF6vV7NqxCCTBJmIGQPbtNDm4UcpXzoquIXqd3EsmNNu7tDiIOtQIwKbfAgmNZK RRZCdw0nsRBbHjsebPQKjw1+rikcF70KLkTBBNnGUlsSbTDE3LCI0Xes+gepwlD5sSjF2bL+pFoD 7vMlD92OogB2ekVZEG3Jw3cAGu+BqDsYqZTcUdc5YD8Z+JSljBwwz8Idyx+vrhrWRJB4EPrAJs99 CQBg6ZMPo9fro9frjZKDfo/zJJSfAZS6hIF24cJ7bgryJmSSMAbgvQkqzYFsJ6epnNY62Dw4fGL6 bfJfpwxN8YErcaAclzKVq+8LlGI9IWSBevyZWhiszWOnBvNoLL7sfuwy2P2nhk6vwN/lewc/1+SO iV4FG6IgwkQIXDzR/Hsp5N9bSs9mqr5j9Odyr3zhUpeHn5cPVORApTG49OE7UKCoiqCxC1hK0yse vUcqNB4SAz1J6HSK4Rx4w59hYKgzcrDe1PMBALc/85hwHQZt+9j4OS8GANz4l0fQ6/UwPd0bEIRe LaxIRRSAoScBTNsQgEwSxgSMKPCw8RS0iSj4Ft/SpaBTtdH1nSojBqXRqVp/yt2imIiRmpb1y38P Hd/l98quTR2KAwyN10kbu6nwp10G6UzZ5xhQkQUR90LvVeAFzTKiwLwJ7P1i8/5o66ZUCJqK7fep KZEik1LoPQrZwCn4TzYF0YTPlz1yJxg5EFOajlZFFj0Io0QBYMXQJCE9fYlZPjjGyMH6s17An6wE zwBw419+NxAiD8lBRRA05KDf62O3tTbF+XctRW96uqrg3O/3ce5t13p7EzJJGCMwohD74R0DNkJQ FSi8AaLgNIWoLdbDWbYrExq2lTI1rcs9NM3Rpg1/f1QENFYmlKxXmJmaARkYOUhFFja/7H7cMTi2 nnDNvYOfa3LHVOFHOqLg+o5pI1GIYXiH9G3qP8Z7gzr8yKYv1TpsPRy1wmbsWC2NKXeVRc0DRg62 e+la2O6lawEArvnTAxqyICcKVTE0vhCaxosgHES/D9z29J8BABus8EJssMI/4ea//4EjBNNceFFv QAxGw4p4ctCreRGmK3LAPAkh0oRMEsYQsQ1+6gd3DIO8zTtQsSG7D9TiaOoY0qYhI1Op5pdTpk7W 2KnIAg8dWViT+64KP2I2BCMKB33ojCAhc0yikDIEsqm+Y2gKTO9O23VQh7myzzJSMFIFGYW2toHM k8BCi5juABiSA1Z07IYnHpZoEuQeBAC4q/cE1umsjDunn6hXRq4Rh8ERiYG+wQovBADc8o8/YKNn vxgbP+fFuOGJhysCICUIgheBJwfsMwBMT/fq5GBAVs686Qovb0ImCWOGlPUTxjkDhWkO4xZ2pFuL bmxZe9V1qcVuruuhQGyBsYu4elKM5qbTljY1dlNkwdWrIOoUdhoQBMAv49G4IzYJcQ27jUVAfLwf /Lyo5lIAmM3XOSgkXoQCuOSh27DzKzfAJQ/dbhVmVOkOfn9PLVsRMBQdM3LAUosu+9ujcqLAc5c+ 0C9G19LnlMijdnhpqG+4QhlWdPPf/4B+v18VPrvh8d9ii5Vfjmv+9AAXXsQ8C31OjyAnBywUCQD6 vd5QCM04S99fmdDxbJfRIPr9vnPaUtv6CWKbEGPKVdDk0pdtu5hwdUnHgGvfzOvA/8cqRcfYudLN rSkCya9TrBIesi7Xl39TQls+FCj12EzYPElj77LD6jXNAhXuG/wn4g4MPQs87sWQMAAlUWCehScx 1CowovBqiyxHMsR811DUhBk3xJi367NP57H2nXsp+S3/v+jBW7H4wVsxe7UNMXvVDVGFFBUYpBUd CoSr7+w851UohNCiKx+9F91uB51OdyA07uCGJx7Gq1/wyvJ4tzy27G+P4ua//wGbPPcl2Pg5L8ZG z35RRRAAOBnY/VoIUvnfBiv8EzYchBUt+9uj6PWmMT09Xe76A5juTePqP96Prf5pNWzz4jUG53uD /6Zr10/3ptGrPg89DvtutDXm33zVkBTwIUeDn7+58fIRbasJ2ZMwpkjlUfBFW3bpm9AMxEJMdzk/ RooaDiGpRqmyooifY63VtBYgawZm+tgArbj5+RzhYERhDeEalxAkWfjRcwG8usVhRz4wPT9SFaZs Q9+2nooYayo4LwEfMrT4odtQAEOPweCU6FnQ6Q4ALqVpzRswrH8AiAXRyj5ue/rP1TGWiYhPW1rN wcgaSiOdCZJLzwFfFXmoKwBQiZQve+Qu9Ps97LDKulj0wK1cyJHEi8CFEjFmUivSJnoRcgrUjBjw eXBTF3Jpo6HfVLGamH2rai/IiENINqkmPQimUCB2ncsaQ9aUQ5Ama2wxBIkSLmTh3sHPNQc/J4ko qECVjS42CWGfY885RnhRzdgv6mSB/37JQ7dj51eWNQ4u/e0dqDUr9KFFPDHgi5x1igJFZzTkqP7f 0Ja+ffljKFCShTuWP45+ARQ8UdBggxXM5ECsazAMMepj4f23YPZqG+LCu29ETwgr4o3+IRngKi2I hEFS6dkFmSSMMUzeBNlDWvXg1j3QXR7c1A/42Lm0U5KMkLFSprkT+6KqZWGzjlgISdVnWl+M+g4p 0XSdgUkcmycLPjUW+CJrIlzJwpqDz7yomYoo8FjIhSDNMVw7m/t3sChhXRgKxN4QorwX4pxZ3/xY VH0veuDW8kBhRxYYOdjpFeVf7JKH78SSh+/Eji9fF5c9chcAgRxwxn6lQVAQBgDodjoA16ZEvcJZ v+jjjuWPV16FO6cfhw4stekt//hjLVPRkBzwJGGoIyhJRF20fMFdS7H72psBAM657VqBHEh+Ks6V P4bk4LTrlzgJmDNJGHO0ScjclKs2dLfadexxClGyhW9qUb697rzPGLqxKX5fpn5k3gV2PJbImzcC mgpBakpgPIljA/FqLPB6BZ4wiGTh3sHPNQc/mVeBr6fAiIIrasXT5s2tiMLC+QswR7O5hcF1ixIZ 8uP2TLfRe7UFqtAiW7Kw5OE7AUAoiAZ5vQOJ6FisjNxhnoRut9I2DHfdy745WUFFFABg3S4jC0/g zuknsG53ZdwxPSQRtz71p4GxL6QxrdU4kBQ/m56ushjxWY3Ovf1a9PvAPhtsibNvvUbpRdhvk+1w xk1XjHgPWIE2/pgrMkmYAWgDUYjxkI1p6DeFccnZ7dqXiTSMgwfBdn0pXsCTqFeY5LF5z0KMLEgy 74KOLMi8Cs8FcDWArT3eGzKioAI7XwBYODg2Ds/22hoihVmqEibIxg/pn2ITZFRH4EIWxO9FzXuw wyrr4IpH7xmtklzzJnRqXgU+3Oiu3pNYp7MS7uo9KZ98v/65X/RRoCjJQgGs2125Or1e9/m4/Zk/ 1wqfiUXQRogCl84UKIXLPEHocylM+/0+zr7lauy74VZ1YTL/k32WhBbJjv36ukusvQmZJMwgNFU0 rWmCwBDyYEudIzrmfWgDZEZ1anFwrHCzlKFBTZGFSdUMNJkyFXDzKpwJYD/H/m3JwpqDz7xXYSUA z4GcKJg2nWTnZd4ERhDmzJuL2Yj7/Iud8pkiyYKsT9k1MVOk+jy3xUJnix+8DbususFAmOxHFlho EQBc+Yd7se2L1wQAXPvnB+REQeNNqKkKJOlK6z+LgWa5X32+Y/pxrDfwKgCQVEceTV+qIgqsfUUO BILAvAbzb74K8zbeBmctu3LoRbAkBTUywGkYbJBJwgwB8ya4IMSbwED5EB8Xb0Cb10kZOkUxT50Y mh+HGrH/jvh1pajazI5NUp2Bpsdug1eB/y6DTpugg4osqLwKIlG4GcDGHptSiwbEQBZ2ZPIwmBCa rluH2GG0Id4A6sQVunnYPOtU9QuU56AnC6Oi5AJbv2iNATko8OoXlAXRlj758AhZGCEH0pSmLMZI jDVi+YwG/+8DRdHHelMvAFBWTd5ghRfi5r//ARs9+0W48S+P1EKM6oShryQKAOreA44giELlM5dd iddssi3OuOmK6vjrNtsev1l6mQU56NfCqMr7bvYmZJIwg5Ay7GjR/AW1HeLYYmXXF4CP4RYzM4Xr WCHjtYVsiYauSgztQxh0a2y6QFtoaJhJQwFMVijOJKZrBezJwuPccVfCIOoWVF6FR4R2K6EkCv/u MBZfP6GAOouk6F2QeSJl8E0IYdPWtRaNrL3OAxmazIIyNbSuP92zTvQeqCshK85Jvo/oDjqcpmCQ wnTpk4+gKIDNVizzc9389z+MCpgZOZBspvZVPxlnGGQ1Wn9WWSW51B0MC6FNT09j6ZMPV+Nf/cf7 JZ4EiXC5KnoGwXsw9CCg8iwMJ3TGjZfjtZtuBwD4zdLLqvaynwDwhlfv7PU3wZBJwgxDCFEwQXaN b0EqE6iy56SuIDxOiJn9yVfPEOphiF0tVRyDb+tDFlznz8abNKN5UscG3D0LPFxIA+9d4MnCvYPP a2LUq/Dd+Qvw757vGuZR4D0IBVCJlsXrY4a02vy7c+lXd3wcsyqp7ge/Vlm1ZJ4sXPrb27HTK9Yv sxYZyMKw3sE9Q+/AgCAM6xzUvQaMHGz07BcBAG5/5jFpdIVr1MUGNXJQFjPr12oclJmJWLXkrV9U /htc8vCdaoLAhRGxOY2EGHH/AfXaB79ZelnpRdh8h6r961+1k3T+p167uB5iNBAzv3FrU46xEpkk zED4EAUZRFLA98efi+FFoBac2j6g25ISNXQOKb0ilH2HEIYUvzdbYsXPnzprFvvd8i+7STGa2zJ2 U3oFwE3c7ONlMJEFHiFEQbbppNM0jEva0lAveOp1+GZ/A1j2qfIZNHu1DQGU+oNR74F7aBHvBRA1 BoCqzkFRkQO+GFof/brHot+vxMt3Tj8BlT9hgxVeiFv+8cfKc1AWMesLhdCmh6FEg4JovV4PO758 XSx64JYaQYCEDAAotQm8GJn/jx0b/Cx/1P1wr3/VTvj1dZdUa5OKmQfkgG958lUXG0OOMknIACB/ cJtIBvWDm9J9KsJFhBUrM4XtWG2DyxwpNQ4mwsD31yRB8HHNu9w31b3hH+5FUUycZqDJsZvyKgB1 cbMLeMKw+LL7jaJnHVlYE8MQJEYUNtb0ZeOpTgmKjG6u4/DPKjZeDFA9r3WQeQEWP3gbAGCXVTeo rrvkt7eP6BJ0lZJHQ4tGvQgVSegyEXKdJDDcsfwxABxZmH68mstQayAHCy26+e9/qHkOZNWSy/Sl 9bCiXq+HhfffXNX7uODuG+seAtRJQs2zwOkReNLArtt/ix2reZ52/aVDD0LNWyDqD+rf37TNHPzq qoutijBnkjBDwXsTdJoDl90c8Zoqrd0YGdDjEIoUu55ArJCc2Dt9/DjU48YWk/Pzpvh9iPBJXEAF 3mielLGbLMQGDIlCSH0FWy+DjCzIwGsUdF5o2XkdUrxrYsAkBB4Hz4isH5O+4JKHbq/O7fSKsmry kofvAAY1D/hiaADTHdw9MPI7GpIwPHfLU3/ERs96EW575s/D61FURjYwJAKsxsF6XI0DADUDmX1m omRWDI0vciYjCVf8/h5s85I1R0OLBsJkRg72WHsznHfnDXKiAJT1Ehg5GEyIJxI8OTjt+kurBTIP whtevfNI9eUaOeDrJYiLNiCThBkMmeFg8/COUWjNhBCXpy903oWUu9Qxx2p6lz0GVOlVU2Qzopg3 VXYw0ZvAexVS77DzRvOkjb10yZVRiqHZwEWvoIONluE+i36YR8Hm/cFMFD67ka7IGhD3XQPEzxQk G4t9pgZ1yKmVMFk4d+nDd6BAMVIIDeC8B4/eUxU50xGFWvhRp141WeUU4LMTDQuilTUOGFkAUCuG xshBrRCaUACt3+vX6xxMT1fEgLXhQ4vOu+N67LXuFgCAc2+7tu4pAEpPBTAScgQMdQcVOcBomtNT r12MA7bcBadcs0hPDmrF1crP/3fFhdqQo0wSZjgYUWDkoIk6CqGIbei2wbvAvzBiIkZV7KYLpYlu fDbXlPfM5W+Uss6CSBSAOlkAJicbET/2TCuG5jI+/90XJi8DTxj41KkAsAzAoYb+eXNELLSWgijo QJ0pSNdvbK8CxTOb9TEUJltkKhLOLXnkzupcVQxNCC2SEgWVN6HDyErBbYhLjNw+y040RBl2NCQL 63ZX5oqhTUsKoo0SAzHkiJEEpQAZA3KAPvbeYEucfcvV1bUApKFFJnJQS9Xa7+OUaxbhjVvNxslX L5QQheGHN2+7G/7vigvL832hIwkySZgQNFmN2YSYWXZcIRpwtun3KGEzlk9qV9d2tnOlTDMbMm6M tKqpvDCqddjOW7YTNMl6hSYzETXlVeDHpCQrOsIgehfuRalX+M78BThU8f7gsxmxomk2hdYo0NZw pZjP6NBnbiHxHth6ElQpTbd76VrY7qVrAQCu+dMDWqLAexDYZ6giK2WEgS+ENvjeF9qvP+uFWPa3 R7VVk1XeBADo9aalxED8jn4f82+5CvtutHVZFI3zAuvIgVgATbYphH4fJ1+1EG/autQb6LwIw6is vokjZJIwCUhZP4Eqs4IMTWbsSfFicXlJ+JKW0N321GJh1RpMOb11GoY27EDq0i/6EhyVy7ipLEhs vKYzEaUem3pX33cOMcZ/fNAv65ORhvsG//HF2XREAShNttnCMb7Qmg5Nv2soxpCNyfrgv1PA19PK bGlpxWQHT8Iwpem91bOIkYMtX7hqNd7SvzzCEQW5HoGhyk7Ue0Ju6CqKorHQIr4YWq/XwybPfQmu f/y3owSBFT7ji6AxosCM/J6KGAx26wWicOayK/CaTYbPpNdutn31+bTrlwCch6G+pnrmouE6Ba9A RT7qN+Oft9sdv7z8wlo6VaCPXyw5X/n+yCRhQtBmotAWyB6iqQ1i27F8Xl5iu9AKpW0gCDbQpSRs QojtkpOdKoSqyRCktqQtTT1202Qhxfiil4EnC/cCOHb+Anxc8BDIUBMnj2nYEZVH3CYEKST5hBsK 8LLGwtGTIK13MOiw2+2iKMpKyRgc3+x5LwMA3PyPP4wQBXNaBk2Jvj6w3qwXACjJAdMdLPvbo9j4 OS/GDU88jOseewivev4ryvn+/p4hUVB6EIa78D0dMVBkKfrN0ssqr8HpNyzhUpyOCpD7AuOpeRWq eZTj/urKiwYhRRdhSDbqN6MiFH2uDwUySZggpCIKtkhR+MpmDnzfTSFm+ld+faqqx65zFeccMg+f exTSp84ID3X7+6xN18aFMOi8CQxtIQuTFP400/QKKvCEYSmA+y67H+cDOGz+AnxN8BDMmTe3VjQN kL9rqIjCOCQ2EEERgiTzoorFT1V9D83y0i1wyUO3Y+dXDoqhDQ9DRhZqKU0FT0CnU+CGJx7GFiu/ HDf+5Xe19KW3/OMPQFFgo2eVBdGY2FiHGjWQ8IT1K3LwJ/R6/ZGMRQBLY9rDVX+4F71eD9sOQqEW ///23jvebuJMH3/uJdn97aZuyabtZnchhc2G9AYkphswxYCNC7j3BrbBvffee++9G3dTXDC9JSQh 1JTdkOSbDkk2wT7S/P6QRpoZzUgjaaRzru88fC7nHB1pZqR7fc776H2f9/nZy342gREqi94FYMqF FMRALCtiyUHzL1yG5l+4LCgvYn0NeHIQbWvKPifM446nHkGrb1yF7U8+Erkg0vFjSo4sSbAwjlq7 wyMiy53ksstryiIKecYRr1FDhKnMii7ydPHSKaHSIQpA9fUK1RY2V2PuWtIrlAFamvR2s6Z4v6bG gBKFNHqEarfhLlKXleVzVtcLSGf/uiD+59W/OroDWakQqy8A1IZoQdtSxuNAjZAZiM8+/e4P+k7J xO9YpBAeB4JlrzvRmTdfheu6+Pa/XoxHfvx9v7QIEoJAy41cRQaB3wZ4moP9333cO87fxvod7H3+ jLyNqew1opkE+rj9yYfR+ptXY/sTD4MAaHPpNdj2xENSPQIBwZYzx6XfHZYkNDIkZRNkd3NU2YS4 LEPSB3fRjsKy+dhjy5hTF2Xf5TJ5HmWYA+leo7znpRKtm8p2FWEOyI7NvqdDFIDq6RVsCVI5gbpq DXk9FtLMlaVk1WT2usjvmrLLUOlz2TrYfdOOLRvn9M9eBltuFJYaJbgl//rHYalQhCQIJUd+C1OR JNDPrsAQTfA4iEDIIIQtTX/rdywioSuyoC8AAMeRC5Yf/tH3cPV/fg6A18aUDa5FB2RVBiEiSP7u 49ImE3tfOANCCG7/8rew57lHodPGlN1IhEdZKZH0PRKuQQZLEhohzhd9go6Qmd23jDnLPL9aGbtI wR0dt6xshUyDUlZJWp7fSZ6MiFiCVCaqaUpWzblZslALZUjVmN8kqqGFK3s+1U0M9r28OP2/PwSN /pv868XB9sd+/ioAMGZor0Pplhx0KarniAHXpShwTb6AMUOLVr3QnkSvVd4C6hiPA9cjC1S8/Ib7 NgiAT14QipI93YHLm5wJ+gLXDVuYygTLhBA8+Pp3QAhw3ae+iGOvviAtN3IjpUZhBiHSrUhRTkQ/ h/c8dxp3fOXb2P3saciyCMJTbx/BK4eOve2Jh9Dm0msBAFsffzAkNVxXo/hWqPVG/rIsGhwIIalc L4GQKOSF6TuqojkV/aE15kXWihaNvHPp1PGbHE93TN39qkEQxPWxf0fs31fc+mV/l7rlBXn/tug8 aYN++gXX2AL2WnNPPt/mp9mENMjyXUOJAosiMqYmxk3771z1mWPy+80rKQrdi8+8+SrOvPkqHvv5 q7j8Y5/G5R/7FGOKVsf5HTz965+gvr7e+6nzH+t9gkAfg+31qK+/AK9V3sKn3/3BgESoEQa+rztv 4XXnbXyy/v24qP59wR4X1b/f9zv4A15+53dwHMcP/L0fjyywj/77jgMA3GuX9TwgJOhcdOyV53H9 p7+E6z/z5aCzEeuY7LIkwSW49ZJv4tbPX4p933ks4nXAeiTQbf4TEAC7nz2FFl9tEhAN1piNah/E Dkjedn93SgKITw7860cooQiyDmIGIgqbSbAoFOIdHlM98lXbGppmoJY8IkxfG/q8yGujmrusVri1 InwX18QSBZ2yIxaNsWVqteeu9l39osXNecuOdDPZZegT6POiEffZIhpI5lmPWEYU6A3qQi3C4794 PXjv0o980icHP+LdkcWfelk2Icwk1NWr7lELnXwYOQTNLLzuvI26OgRE4bXKW34XIl5bEPocCJkE 2srUdQH4wmWWGIg/AECIZ4IG4MaLv4pDLz0T3plnWqDe6rcz3c+WFYkiZH88NksQ6hC8Z7ueOYmW X7sCO58+yV0XOmSrb3imaGwJEVc+BIK2l10XTNf2cu/5ljPHpWVGhBBsPHUk8p1hSUIjRi2WHWU1 EjN9Z7/WgvdaFzLLxgWyk8JaKB3IIybOY8iW53ci059kJQpA9bsgNaa5gdoTN5tcg0gUdL5L8ugT 8vwbyrpP3psiacfK8zkbaWfKkALxPfpIS4sA4Bv/cmHw/Pnf/0xKFGiJEW+IlpQ5EMCaoTHPL6p/ f7AL1SCIhmiEbWHKEAP28eRPfoAr/v2zeORH30skCfT5oR88jZs++7VwiYQEXge0nWmkBMg/F1m7 UU58TOcCsPPpk7jz61dix9MnoloEbo5g8GD8tpddhy2PHQcIcNe3mmLzmWPBcwDY/OjRsPLJz0zI viYsSWjkKJsoAEgs00gL05mKNKjlu/xpS1zKvvtWlMC3iP7muvOyY+YZO8vvpIjfoSUL1W2Zyr5u bGugyFJ6pPNdo0JSJ6O4fbKUb+rMq7Nm3azC6f99GU3+7WKc/tnLiaSAvicTJX/1nz4RkIMvffDj AIAX//jLxGxCFu0TzSAAoe7g1XN/ACEuPvM3/8gZogHAC3/4GZdNUBGEoGsRJLoCQWMAv9SHBvEH vv8kQDwjtFsu+WakYxH3nAjUQNK1SEYUAGDHUyfQ6ute1oDrTMQexzyn2YMtZ45L2pwSbDp9FABw 97dvAABsPHWE01mIsCTBIhdRSIJsn1oVf5Y9Z5l3mKs9tu751kIGwcR1Yc+5jJKkJK1IlmwCi2q3 TAWq569QCyVI7OtqrcHU/Hk7FyV977DfTWV/VmYh9UU0kGDH47wMwLc1jSsx4siBL0pWtTCl5OCS 9344mOeHf/2tlByw5Yw/cv+IC+vfhzfcP8afnJ9B+NS7PohXzv0ehPE7AELh8XfeehOuS/ClD/4r nv71T7hMAi0nEsuKxA5F0CQJrN8BALnXARIyCZEuQ4xGwJ8HAHY8+QhafeNqAF5rU/E4jhw8djxC Ovh1eNs3njoCAGh/xY3YcPJwoHsQYUmCBYBsREGG0xKDHNV7JpC1TMQ0ypqzmkTBpFiv6HaCtZDh ieuUZDLDo1sal5coAI1Tr1ALJUhAdbsQsWVQJsZKQxTY7400x5nWJ5j0zSmj6x/gZQ1kpmcA/MDd 3yDJJnB+BxLPAwC44IJ6AGHm4KW//CZ4fvHf/iOAeEM03U8jaoj28ju/8/UDYYciICQJVHPw1K9+ jK9/6D8AIPA8CLoZCR2IgpId1w3LhCREAQhJAqs7AEKCcNsXL8feF84EJyfqDPgTZzMJfLtTwgX3 3vPtTz4MQoDW3/T9Dpj32NIikLBsSElWmDauG04cQocrmwEA1j9yEOsePsB9V1iSYBFBGpHY6cPH uQ/xagrLWDR2olC2G3Ka8fOszySKLMdSBRRp26qaJG4miQLQuEuQyp4bqC29Ql7CktTxSPadUsRN pjwwlUE2/Zlbhzqc/t+XUVcHfPtfL8ajP3slYngG+P9+FeQAAJ7+9Y85YTKbEQhamNYzLUzr6Jhe dyTREO115y1EJcjcwiOsgZKDH/71t4EhmtjG9IU//Axf/MDH8MxvfsoJkx/7+atwXYJvffzTAIAT P/l+QApC52Q+oKYkQEYUAHC6Awr283TvC2dw+5e+hT3PPxqcpljuIzxlXvOkgGtLyoyz7fGwrWnb y7zHoLSIyRZEuhYRZm7/NZ13/SMHQQhBx6tvjvw9WZJgESBNNiEuY6ACSz7K6AxUVhlQljnLrruv lbHFOei1oNvKOo9ql3rpCJ6TUG2iVStkoTGVP9WCGRtdh2nConOzKa0erqzvmrww8flSx2QK6PMz b76Cb338MwCo1wFbdiQnBzK3ZLbMiBKGl/7yG3z27/4ZL7/zu4hgmQ1OqSHaJxlDNELCsicZQjO0 33l+B64TdhDiSEKYTXAdBy4tJ/I1B67r4sRPfgBCCK76j8/h4TdejLQSpZ9jnCZBcEpOIgfs6z3P P4o7vvxtAMDu505L9QeCskCdSWA1CGyJkQ9ZaVEki0AINpw8jPZXNsOGE4eYJRCBnBCsfegBAEDn a28N5rAkwYIDW07AIqmMqNaM1qqJamcUav26qsR9ZbexLfL80pTAyQhDUXcaTWUTWFTbjK1a/gbV nLtM1+S4NQDZNRP0HOh3S5rAv5plRyxMNknI+u88KCWSZAUA4LGfvwYAuPxjnwpamXL71AGXflgo LRK6E/HtS+sDwzQAiYJkmjN4rfIW6hhDtDfctxHJJsATJr967ve+6NjzNpCZoIkkwfGdlfmWp2Hg /9AbL+Kaiz4PADj+6gtcxgAIy414UzSvtIgjB/4+wWtJm9M9z50GAdDiK02w69lT7IERI7RwOHWn Ipnu4K7Lm+Kuy5ti86PHhHWIZm+SdqfMOYhdmLpc15z7fViSYBEBJQppyojKRi107qnFeWtt/TJC oPIakJXixB2X9TxqtRRLdQ1YIzcT5VpFEAUg/Nwo+w47e2e/GnO/+PjTVQvWa0WvkHUNlCik/X4p kyiYylibbqvN6gyCAF1GFPxt1C05HKAOl36Ylhb9ROl3oPI4CHQJ9RcEsb70M4VpW0pIWHZEW5hS 12SKV87+PnBKDn0PBGLgsuZlrC6BhEZoTMaAkoHjr70AQoCmn/4Sjr78XChEBl9uBI3sQSSTEAns CXY9ewotv3oFdj1zkssUCE+h0iGoRMn0uM2PHsPd377e71gkyUBIsgXh3IKgmRB0aXobVh/bi67X 3x6clyUJFkrUkn9CHtQaUWgoAl12bB0NhGqMOMgC3zTtBcssJcs7fprflaocyVS2pUiiAFSnBInO Vw3NQLU7EVVbr5BnDVmM1oB8HgqmYVo7pNqf71QkFx7HEYUnfvkG6uqAb374Ilz64YsiuoM4rwMZ YfiR+ydcWP/exO5ErAKBPhcN0V499wevtMhxOK+DqCEaiTwH4OsVosRAVj505OXncMPFXwHgeR4A YblRKnIgEycL3Yl2PnMSLb92JQBg59MnmCREfDaCJQhbH3sQgaOykBnYdPoI2jXx25mePBxPDiTz 0G1dm96GVcf2ghCClUf2BN8PliRYSFGLRmsUtejEW8150wTzWcdmYSJYz7oWETrkxJQzKTtW0d2Z VOdStI7DFBqrXqGad/arTVSKXoPs+yXNd07R3zUmbwqxY9XJBL6IcUgGX24klhUBnij56x/6T3z9 Q/8ZDPvCH36mJAxXzAJ3AACAAElEQVQhOfDN0XyBsqxlJoBo2yImmyAaor1WeQufetcHApHy9/70 /7RIAnFJ4HUAIFJeJNMesCVGh37wNAiAm/7b+4y45XPfAJCFHDAPKqLgk4M7qd8B+BKjpNIitg2r KEYmCMkB1R2IRCFCDpj5uja9DQCw6ugeEJfw48NmEixiUItEoWhRcUNyNZbNoYssJkNFB6ZZrpMp U6OykOdvIa6latL1UK2liGwCi2r7KzTGTkQNkSxkzSYAxROFaoE3PQPE+n0VEVBlEb754Qvx1K9+ HAT6AO+U/MUPfAwA8L0/UUM0hjBI2p+mBStWpiJmr7TIAQD84P9+Bdd1A6+F5373P3AdFw5DEkJi EJYcheO78iyCrGORvyBCCB743hO49RLP7yDWEI0eI5xUkviY3bbjKc/vYPuTD/vH0IewRCjoWBTT 0rRdkxuw8dQRrjsTCMH6E4fQ4aqbsO6Rg3wWge3gxGQQul1/u0cOgutG1x6epSUJFrEw5Z9QK6i2 ViBPgGhy3yxlOlmOS3stTP1+VLqHPEF13BpNlROorpNqrarz1D3HMogCwDdEaCxtS6sdrFd7ftka kvatJaJgImOd9bOMhuGP/uxloY0p+65eudE3Wd1BfV3gmPzCH97Elz74cXz37V+grq4O3/vT/0Nd XR0+955/Cdbx8ju/DclCfV0wrpcM8KJ+qil4w3k78bxo16JXzv4ehLhBiRCAQIfw/O9/Btd18ZV/ 9P52Hv/Fa3Ad0SmZvTvui5Iv/DwefO076iyCQA5EM7T9331c2xAt2q1IkUmQ6Ay2P/mw73XwMHdw mwg5SG5pKistWvfwAXS6+uagUxF3HgwB6Hb97Vh5ZE+UHBDu7CxJsDCPorIJJju8VMtDgZ5H1jHi UFTJkSnBbNprVXTpDj2fpH3SXB/TyNMpSXWOsvHKIgpA9UuQyp672uLias8vriFpv1rRGWSFmfJG ygjq8Oibr+DbH/8Mzrz5avDWYz9/FZd/7NN47OevKYmCTJQstjIF+O5EdXV1gVNyXV0dPvM3/wDA N0QjAKkjUqIgggjPWDM0md8BgIgW4YlfvgHXdXHZRz+FU//zkr+vG2oLgEiA7IqkQKJHYMkBa4ZG CAkM0QDP80CaKQhOS5FVkPod+Af5N/W3PfEQ2lx6TXBom8uuVegO5C1N2ddsFoKuYe1DD6Dztbdi zYP7o2SHEHS74Q6sPLLbf49E5rUkwSIVkrIJaWpF4whEmangMoiCLDhrKKluFRriOcSRnLw6h4ZQ +pZEjKhYvAyiAFS/BAmonl6h2nf1q+2vABSX2TCZTTCV8c2SuaxjA37/8cybr+JbH/900M402Lcu XncgagxEQvCDP/8K//2ef+Gcktmf1ypvgYAEGYDXKm/JiQKixIDi0+/+oEAOouLj53//M3zpgx/H 07/+SUSLcPKnL+GKT3wWAPDQGy8mtPgMS44iZEFCDtig3ntKfHKA0BQtjhxIMgXSTEKwxDBzsPXx ByO6AxUpiJwvICVJrEB5zfH96HJdc6w+tpfr4NT9hjuwwicIIeESSIItN7JIi2rrE2o9MNVt9Vm2 kLkhjl/kHDrjptE5FHUdynC9jjuvMlCtEiQ6X7WzCtWASddkU9dAXIOJsiPdfU23eRa1Qmkzl0GZ kPhY5/kdxHkdyHQHqi5FoXOyp0244IILUEfLl/z32C46r1b+gDqE5UKA150IiGqUKUJDtN9qdCiS ZxPoz0NvvAhCCK4VfA74AByM4RqfQRA7FsluhohB+Z7nPFO0iCEaSwy4CxDfxpRZbqA7ADy3ZKnf QVxLU/pc0b2IPq7y25muPLoHADyCcHgXI1CWkwNLEiwyoSyiUBby1I/mFYwWWRJkco64spY845vu GZ5nHl2osg5Z/xbydEMxbbBG5y0rm0BRbSM2AFUxRKs2WaBrqHZmg70G7BpMEAWd42VEIW275zQt j9NkLs+8+QqAkAjU1SHwOnjil5Qo1EV1B5KMAWuAFm7z/A4AvuSI7YQTwA9SqXsyEJqive68jded t/HJC97vP4a6A6+lqUgQxEfG9VgkCUImgJKDpp/+Eo6+8hwXPAPycqNbP38p9n/38TDDwJ6W6rUf OO9+9jRafKUJAGDXM6cQJQdR3YKaKERFyXd9qykIIQq/AyjLquh8kSyCWDLktzPtfsMdAOARBFkG gctieI+L9mxGXV2dJQkWtQfxg7vad8WLaPnZkO/GN/RzME2gZEGGal7dMcsGO2/ZRAGovl6BGrGV PTdQO8LiWtEr0NdZiQKbSRCzCkllrnHtjSnSCJ51PmtO/+8PIetM9K2Pfyay7+O/fB1P/PINXPoR jxTQR153UM8TAVZ4LG6vrwsCfKXXAd/cB/DLjV6rvAUwDsqA91z0O6BkIIkoANQ1WXRUZoiEH9ge efk53PAZz+fg8EvPMJkEN+hkdCuTPVC2L/Wx9/lHo+VF/n6UHLT82hXY+fRJ7qJE25iGT9jsARUl b33sQUndvxeUbzp9NOhaFCkj8p+rSovYR9oNSaYv6NGsJZYd3BFPEoR5LEmwSIVqlx0VAbF9qIkO OGnmbWhBdkOBKWOzJIhjpTWDSxOAFHEOsrud1SAKQOPUK9RKF6JaMGOj1yErUWD3lR2nQxoosv67 1AXvmOw/Z4gC1R+w7132kU9GxnnmNz9VZgzqBYLAkQahY1EyCKjPQaBLIAh8Digcx4FLXK8TkU8O wnIjEjwGnYqYVqaO40rJQdQcjZIDgmaf/RoOfv8pb4UxpUWRzzMJWYjqALz/EeIZod359Sux4+kT fBYheCASouBlDyg5EHUH/lTBfBtPHUb7K24EAKnfgfR8BFLD7t/9xhYAgOWHdqLnTXdi2YEd6HVz Kyx5YFssObAkwSIXyiYKQHl109XqetRQiUJDXr8Jz4K088nGiXu/saKx6xWqnVVgX1djHao1xH2P 6DTPiCMNRRkVyj5n5KZnQgtTiefBE//vjUCYDADP/uan+Oo//3vw+rtv/YIhBKLPQVSTQKHjnMxm EShR+PS7PgjAKy36zN/8A176y2/wX//fP3lrefsXHiFwXbhcNkFOFLw5eK+DOJJAnx/4/lO42TdC u+WSb0pFyfFeB8H/BO1B1Bhtx1Mn0Mo3ROO6FgVThQIJtqWp8q4/wkCdHkrJQYerbsL6Rw4m6g5k 3ZC63+iVFy0/tCuiXViyfxv63NoGALBo7xZYkmBRCPIQhSSI+5QRPImZBNNzFnlXu6gadt39s/T9 L9oxu6GQPdEtm24ret6k61TNbAJFtUuQgOq1TK12VgGofmaDXUPSDaa4jnlxx7Lb6fdOkTdTTv/v y96GGNMz1Ta2tOjrH/oPPPvb/8FX/+kTeOH3bwYk4PPv/2gw5w//8luouhpFofnvnMkifPpdH8Qr Z38H1+9aBHjlQi/+8ZdwXRdf8NfyzG9+KhEuC+7JNN6l20CUZAECSZCtXOZxEM0kRI/lgu3gsvCC 5O1PeoZoALD9iYf5rk5iaZGypamG38EjB9FR4negzHb427rf2ILRHpAISSCE+OQA6Hf7XVi4exMz Py+SBixJsKgRsMRA/OAuo1WpKROcrGjId+TLWn+tXJOixNxl/+3pdHmqNlEAaocsNMYSJLqGWihB 0s0g5EHeMlfVsXXME5XpmYooUHLw1K9+HJABwBMbU0O0F9/+Jerq6/CDP/86IAUX/3//GMz/hvNH jyCgDorQODBFez3BFO0z7/a8E37419/65UFewP/iH3+JS97zYbzwhzfhui6e/e1P4boEX/vnf8cT v3yd0Rq4nOcBDWQfeuNFXHMRY4gWkAX6A4YkeJEsW1rU/AuXBY8AsO+FM1zrT/9Ug/NlTh8BSZKQ AlkbU0oOWl96DbY98RAAoM2lvO6AMOtUkYJgNUxgzr7H+h1Ey4548hGWFu0SSBVLMJhrDoIFuzfh nhbtAADzd26wmQQLs2CzCbrlRGznCXF73DFltJpkgzwzhjjpYImCmfHTriHNunUC67zXIO3fXtFZ ologCkD19QrVLkFiX5eJamc22DXIRMm63zlZMhEmQIP+wD35zVcU5Ub+cyF78NSvfsxrCAQTNPY5 q0l47exbPqmox4UXvDdYz4/cP3Hr0/2XTY3VfvjX38B1Wc+DqCkaK1Z+/Bev4VJfS3Hqpy8FHYtA +IwB26GILy3iiQJY3cGLT0Q6/uz7zmMghOC2L30Le58/wwiIFf4GzEWQ3fH3D2V3Csbc9vhDUnLA koLInX+FJoHdl/M7eJD6HewLNAfhPt5YPZq18EqLIF5b73z6NG+DRXu3SMiWTw4IQf87O2Du9vXM OVuSYGEAacqO0hADEUUQBd1++WXeIa+V0p2s55w0tqkAuqFlLFRIck4+n87VFKqlV6h2CRJQO3qF aqPIoN7Ud42MCJx58xV86+OfwZmfv6pZWhQ1RPvyP/wrvvv2z73tqMP3//QrfO69/4If/uW3XNci VpPwI/dPXnBZV4cL61nC8Eetc/EM0bzMAZs9CMuFCFxXThIIcXHqf34I4rq44t89U7SHf/S9iMYg CIxdNyAPwfvMfrde8s2QHChr/P2ORV/+FvY89yjXaYjLJLDBv3cw86DOJIgtTdl5ZT4HytIi+pzI 5goDec/v4DasPOq1M6VuyT2ahcLkiHtykMlg1sVea65sC5i7fR0Gtu6IOdvWcudhSYJFbrBf2iLi yojSZB5otqIaQVPZWYWGHghXM6NQFLlJM3aRnZNMzJkl01Ir2QSKWilBKhvVdk2m81crs5D1/NM2 zsjyXUP3D7oWKcqJvGcJpUW//rFXViTpSATAJwDhtpf/8jtc/Hf/iFff+UOYVaivAxCaohF4Afgb ztugC7mw/n0AEAiW33DexkW+3wEQGqLR0iLXdaQeB/Q14HsdUHEyI0wmIAE5uObCS/Dg69/hiQBz B5uI5EHsWqTQGYiB+p7nTuOOr3wbALD72VMRcqDgCIgrOQJ43UHby6/zDNG+5f1tbX70qDqLIJQY ydbMPTJkgfU78AhCS58c0GtG52FIAhVFQ0YMeJIAEMzZuhb3tekMAJi1ZTUASxIsDIEShTzZgjKR JVDKclzWY2qldKdWx6/1NRcxFn2eB3lIVK0RBSBKFspEtchCQ3BNLnputvQo73dMnOg57b+XMOhX 6w4e+8VruPyjvnOy/75Md1DH/fAkoa6+nssUsDoF1iQNQBBosoF3nf//1ytvA3XART5ZoKDeBy+f /R1cx404IUcdk13fxZd6HZCgqxFX3uIHscdf+w6u++QXAQBHX3k+ttxIbGkKCOSAKf/hn3vPdj97 GgQELb56BXY9c5LuFi05CgcQMgbh2KLfARvQU3Jw97dvwKZTR4SMgVp3oBYk80E8AcGKw7vQo1lL 3+9gp5IcUJLDXlcZSZDNT8nBoLu6en9T6f45WVjEg97xpz9J++p0OxKPydsOVafTkApJ75tE0XM1 5PFlYxdJSvIQPVPnW+bfnmoN1QjGdUC/4Kpxdx8Ad3e9TNRCZqEaa6CkRKVxkyHL900S6pj/AI8I 1NX5WQJfKEyfU3fkOtTh8V96zsmUIDz1qx/j6V//xAvy6+tRX3+B/0Nf1wXPATDbvZ+6+nq8Ufkj Pvnu96Ouvj5Yj9gVCACIS/xA3A1KhV6rvBX8ULz8jkcQvOyBA8eJ+3HhuH6HI59UOFSoTLsaEX9e f9vRV57H0Zefww2f+XLwvre+MANBW5qyngdiaRHhQny21AZc8LzrmZNo+bUrGQ0ADaTBBNJMmQ9h x/MIwtbHHgxbmka6Bnkr2HjqCNpdcWM0yGePIQSdrrkFax96ICIwJpFH76fHjS3Qo1lL5txdvxtU 1FvCFbaLfws6XhQzN60EYDMJFgbREIzWTASSZZYfFVFakzS+yWBbbPFZi87JRY5p+vcX97dXtB6k 1lHNEqRauLNe9ry1sgbWPE3cZmJszo2c+T99ypmR1dXFlxuBz3pd+pGLOLdkuZ8BgmzCf//9h/DD v/5WaoxWj3r8xP0//Ef93+PH7p+ZzAFfi86bfgF1vlYB8LQH1PPg4r/1uiNRvwOXuiE7bnC3X8wm nPzJD3DFJ/4Lj/zoexFRMtvalC13OfTSM2j2X18LroncEA2QCYfpm0R8zpUThduoIRoA7HjqEXYI +kxZWiTzOwivIq872HDyMNpf2QzrTxxSZwzAXJvI+sN1sIZohBD0urkVlj6wHb1vaQ0AWLxvKzNu VJjM1D5JS5lkGYzB7boHa7QkwcIoGgJRMIEyhaUNvTSorIxCUYF9rQXXWdZlsvSpFsuOWNQKWSib KNB52ddlouw1iG7MMs8D8TtF/K7R1cUFHgd1UaJQVwdPjPzmq6BvxbU5ZXUH3/jQf/IeBoLgWCQK ALj9633xsmiazNWjUz0Cs42Q8BRo+dFn/uYffe1BBQA4v4Nnf/s/TLmREykzYkuEAMR2MBLN0Kgh GtUdsIZo9FzoQtXkANj93Gnc8ZUmofZAIAr0gZKDVt+4GtuffAQAQetvXuO1NWXmCkuLjiO8lCQc V9QyCEH5+hMH0fGqm7DukYPS8p7guaREim7rcWOLsKWpy+s2Fu/fChCg721tsWjvZm4NMpJAFCRB LG8a0q47ZmxcgSHtewCwJMGiAGQhCmWgSNde+rwoNBSikEQGiiyXqVX34qIdo9nzLTozROeodaIA 8GSh7Jap1bqzXu0uSOIaij5/kShQiNmFvN9FTZo1RZN/uxiP/uyVKFGgD3WKDINMd+ATgud+97/4 yj/+G174w5tKV2SWKAAIBM1hBoOJ+EHwI+dPuPCC9+L1c28juLMcdLnhy2goLv7bf8IP/vLroDMR gECH8Mxvfoqv/pP3O3zs56/xguSgbAlc0E5kWgQJOaCvaeaAovkXLsO+7zwWvFYTBV4zEDxwgTyf XfCnxPYnH0brb16N7U88jGAvqe6AzxywGQPCrS+qO1j38AF0ooZobPkS+GBdXCOfPWCubyTgJ1i4 ZzP63X43FuzepBQk88fIScIQP3swfcMKjgBZkmBRFYh3dIrOJqQJlNIGdXF3dssqXTE5Pl131jFk KJJIycZOs/44YzRTay4qO1FN87+GQBSA8KYFYEuQykRZhEVFFAB1KVLWFqoyQXL4nv9GsCHe74AS AgCov6A+gSDw46oQ3EUGW1oktBgN2mQSoA747N99CN//86/gVELfAwCcWPmJX3hmaJd/7FO+1wHv jcAJdAGpc7KKLNz6+UuDzEHzL1yGfX73otu+eDn2vnAmPDfh1j2bReCog1hyJJADlk1se+IhtL70 muC9tr7uIBB6yzIHghiZnzNaWkQN0QBg9fF90cwBsybWEI27Xj5J6NO8DRbt2wIxK7Rg10bc26Jd 4HkgipODvweOHHiPLDmgF2Zoh56YvmE5hnboaUmCRTGopbKjsgKoMrIKcXOYvEvf0MzWxLHTti7U fb9WPR7Ev4uidCANFbYEqTb0CtWCrBQpy3fNtz7+aTz289e8DT4JuOyjn2Q6Fflv+FD6HTBlRS/+ 8Zf4/Ps+gh/8369jMgh1+NS7PoDXKn8I8wZcuZD/3A8cXzv7Fj71Nx/AK+/8XihzCQnDf//9hwB4 ZUWUEMhIAmG6Gp38yQ8Cr4MHX/8unZQL0OlcfCtTQYvgkwOA0R0IY+x94Qxu/9K3sPf5R6MEIDhA 0saUW4e/Rcg4sEH+tscfQpvLrkXby65ldAdMFoIbQ3gukgJ2jcx7q4/vAwB0bXobVh3dy2USCIAe TObA43VsdiYM7gEEXaTEkqJ5Ozf4hmjruN/B/W27YNaW1RxJAELdAUsOCAGGdeyJaeuXB6TIkgSL wmCKKCSRhziiUI07rFnnTRvki/ubOM+ig0vTY6scs9OuSTW2+L7u76gagTn7tydeG12k/RtsKNkE imqTBVuCVEzb1rhsggg2u5BW7NykWVNc/jG/fSkCvS+XYQCASz+sNkOL6A7q6/DSX36Nz/7dh/Dy O7+TZw8C1EUTCcwGWrXOBaFimREI/vvv/wXf+9MvOedkGUlgCQL9efD17wKE4LpPfgHHX31BGsBH XJPjyIHw+cG+3vP8o7j9y77PwXOng3m8c+X+l5xJEIJ8ICwtAuB5HVzeFJsfPcatI5otEZ5DQRgk pT2rju5Btxtux8oju4P3tPwOgnIx8CRGKC3yDNE6Yc7WtdwxbMaCEGBI++4RcoDoGQGwJMGiYGTV JxTpqFkGspTuZLn7XesahYY+dtYMRdzvPG9JVxqknSMLqWhoRAGonl6hms7FtXBHX1yHSbKQhijI yIGux0+TZk1x2Uc/iSd++YZUj/DND1/IdSxiXZAjWYL6UIBMuwq9VnkrzEoQgBNJgw/l2DwCV+cO gpf/+jtc/P/9I176v99wZUefe8+/+NmD0DlZ9D8AfFM0liAwgT4IwbFXX0DTT38JAHD05eeEciO5 azItLRJbmdJ1h9mDM8H57HnuNAiAFl9pgl3PngpPO5JFiJYUqTIJou7grsubgoBg86PHcPe3r8em 00cjgl5pBiFcvIRUMDX/TInPiiO7g7Ii3u9AKAViyR3VPNDxxbUxJGD21jW4r21nz++Ay+x45ACg 2YMocRrWqRemrlvG/ZFZkmBRc8jjn2BKsJk12BRLU4oM5ou8K28SsnEbUilMlrUmlb8l7ZMXZYq4 G5I+QUScW3yRqBZZqAUjNnEdZRMF+r74KB4TRxqaNGsalBI9+asfoQ7AN/7lQgDAM7/5adh5SNXW VEIYqCFarP6gri5GkiDoAEDw0v/9Bp/9+3/G9//8K4AQfO69H/ZbmjoCOQjJAnGjmgTR/Zi+9sgB wQ0XfwWHf/hMWBKjyB7s8wlCsOLIHezgTCK1+7uePYWWX70CALDzmZMQGALu/PpVfuciEkMUoroD ZlIQQrDp9BG0a3IDNp46HJCcYDThOet1EBEkB9eLJws9mrUIplx2YIdHyqSkIJo1oCckz1aEv6NZ m1cHZmgAhNIivpyKIwrh1Q/++CxJsCgc1dAnlBmAJgVktVhio4Na76ikOtbEusXjy/RPyAtRm1AU KRH/DhsyUQCqU4IEVE8zUCvi5jLXkOY7JYk0UHyTIQfU7VjqY8C8F8km+AHZG84fcdEF78Mbztv+ 6N52b9sfwYTNAEQ9ghBc0zIVeH/jl7z3w/ju2z8XnJNdKVk44WsPHnrjRY4UqNqYUq+Dgz94OphP 9DuIuP+CPxFpe1MuY0ACcnDn167EzqdPREuOWOIQlz1gRNwssaHzbjx5GO2vaIYNJw7Fag/Ec5G6 JvtrYjsW9bzpTiw9sB29bmmFJfu3SbMHsmwBe2259QgkAQSYsWmlIEoWyIFwvYZ36o2p65YKf12W JFiUhLKJQtHQuVN7PgTztU4UyhzXNPko+vcmPi/LALCholpkodpdkOjctZBVMHH+umVHsmxC0v4s RNLwtX/+d7zwhzc5vUGUNDDEoV7UHXhB3hvuH3FRPSUFIthMAgER9AhhLTvf0eiS934Y33nrTThO PDlgXwNRUqD0OgBw8PtP4eb/9v7N3Py5bwCQ6A5UZCA8ifBBQRQAYMdTJ5jMQXiTXae0SNW1SAzQ 1584hA6Mz0E4j6KsSFgzS9hEvwN6/JL9W72ORXu3QCQHYlnRgFYdMXf7uihJ4Egh/Z2EpUUAMLSD 53kwbf0y6e8hShBCWJJgURryEIUkiPvoGHjlLSVKi4YazOcZu9qGd1lLxhpqIB23dpPtUlUlZA01 m8CiFvQKjTWrQM8/7zpkRCGp+UWWG1L0e+c7v38TdXV1+MIHPybd99V3/sCQhrD1qYewvIOlDAGB IOxrNrRjnRLCYP0zf/MP3Nzfffvn+ML7P4YvfuDjePa3P40tM6KtTSHeodYgCSAED3zvSdwacUuO CaqD8xPJglx8zG7b8dQjviHaw+xhdAIpOYiSguAg6Z176nMAwPM6kBzHdo0S16vyOwDgkwWCRXu3 oN/td3k+B5IsguwaxpUzsbqDkBwsB0AwrGMvJRlQwZIEi6ohT79qAMrOFKcPH9cKhHRIRK0adMWt t4hgvtZIiO7+tVQmVA1thmz8IrUy5wtRAHi9QmPrglT23EWsgyUKaTMLOmDHvqCuHnX19Xjpj78S RMr1qK+vwyf/5gOR43/i/llKDgCCH7l/woX17/UeL/Aewe0bBtUX1b+PO/qlv/yGKylyHC8r8Mxv foKv/tO/AwAe/8VrUnLACY4hkgJBiAz+OUsOmn/hMs4QTd4hiD8PrmyI3VcIvP23ABDfEO0a5tJ5 77eR6A6ihmiM9wE7J1vWAwRGaJ2vvRVrHtzPkZ3gDIS1qv0OZOVNBAt2b+J8Dtj18NePn48lCaLf wdAOPQKvA4qp65ZheKde/nOPLMRlEQBLEixKRt5sgm7LOh3/BF0SUUslKw0tmK+FsdNAZw21RDzS rp2dM+0xac7nfCIKgC1BqgZMrCNNx6OsaNKsKS754Efx8h9/LWgQQrLwk8qfA+2B69eG/0f9eyJj /dj9MygR+LH7Z/ynv08dwizChfXv5Y55rfIWkxFw/B+fJDgunECI7OLxX7wOQlxc9tFP4fT//DAg B2FnI8IF8tF+/ZCSBNYQjWLfdx7DbV+8HIDneZAtkyCU+bAiW//5ticeCjIH8boDeRYhPFexZIcP 0Fcf34cu1zXH6mN7Oc0055pMPGHy8kO7/NeEJwkg6Nu8LRbt3cJfbxL1OeDXGb5WlRaxLU35axte L4Bw5EAH9Vp7WVgYBCFEu3sR28ua7UKh29M6rz5Bp2ypFsYsa/yGOHYt/A51yV0RiBtbFDebOJfz EfQL/cXHny513m9f+omqtS6l81a7bWqZ55+lsx497uL3fQgX1NXjgvp6vKvuAu95XT0uoM+ZcIvA IwHsz098UsD+UHiv34sL69+L1ytv47Vzb+HVs3/AK2d/D8epoFJx4DgOHMflf1wXrusAoN2KvH1O /fQlNPnEf+HKf//voNWpRwiYO95A6Jzs19LzXYtc3HLJNzmCINbL733hTNDW1N/I1e8H5INeFJYU BHfLvTcDYbbwnC0tAiAYooWCYJbgsNmRSNcgIh4Xbl91bC+6Xn975DwJ8bIHHkHYyVwv/pqyegTZ D/U5ELfTlqbiWIPbdZcShKEdfEM05g9OvGXDZg/iCIPNJFhUBXGtB+PKiIpIGyehVkWw1Rpfd+ys xmZFOGjXSqaiKORt95t3DNmY50s2gYUtQapuF6Qs64jLJmQx71ShSbOm+OR7/gE//esfme5FoWjZ BUEdWK8D+m+jLnjlZRJCsEThtXNvgRBqfuYFny4TsLt+EO9KDNAABG1Pie958NAbL4IQF9d+8gs4 9uoLQk0+W3LDBMz+81tE3YF/XAT+mHuefxR3fPnbniGapORIeApVeZEoSiYIW5q2vfw6pSEaNx4B c55giIkii8CIkAGClUf2oPsNdwAAVhzexbklE+ITK8k144mF63MkEplvzta1uK9NZ8zeukaS6ZCX FjEXU2ADJPJ/EUllR5YkWNQE0jpf6kKn7EiGoltgFjVmlvFrLeiuVsejLF4ItVB2ZGoNOlqFtCVN 5ytRAFC6v0K1jdiqNXfcOtKQhbTtT+P2j3vvgrr6QJdA26DSEiMAAVFwA44Q/fdRB+A/69+LNyp/ xEXveh9e+evv8al3fwA//L/fcKZmXhBKCUJIFAKdgROSBMcR9Af+8cdeeR7X+6ZoR15+NghoAeaO t/dCWlokbQHKPvcD293PnUaLrzQBAOx65hSi5CB6rIooAGH2IMwceMdxhmis7kAiTAaAjlffjHUP H4gVA4fCZO9xxeFd6NGsJeOWTHhyECEGJCQFoEQivKZhtsR7f9aW1bi/bRfM2ryK4U0k9DvYuIIv JQp3wbCOPf0uRuzfVfRvTMweTF23NNjGkgVbbmRRNdB/EGnKiPIYreVFmpKQtMJak2NmHb/I61Er Y5seV2e8tIF1Nc/71P/+0OgaKFE4H8HeGSwzeKYlSNVALZGFtGVINKNQJJo0a4p//dv34IK6erzL LzWipKCOFSgzotfAP4DWtjOlIQ5TKvSDP/0K//X3/+yXFVW8MqOg1CgsOapUKqg4DpyKA8d1gzFc x4HjykuLjrz8LA7/8FncePFXAxIC8GUxSaVFYv28/0Z4F554hmi7njmJll+7IjhlSILokKiQyHOq Pdj62IPY8thxQePgrWPT6aNo1+QGXkMhag4A6XlGfsC+9o7t0axleIqu5Bix1IjZRzafrNRp5uZV GHR3Nwy+uxtmbFyJwe26Y8bGFV72IKzPYq6X8MdIIOMGsZi6bmlAFihhsCTBoqrIcpexoRCFao5Z 1viqsct0b672uNUgHkVfjyxahcYK+kVfjcC5WpqBWtMrFLGOPPqEj7z7bwOCQBEQBRJmEyhI8OP9 d2H9e/Hq2T/AcXyS4DqoOA6+84ef4/Pv/wi+8IGPeaSAIwgVVCoVj0QERKGCKz7hmaI5rusFq8GP 3wKVCWIP/eBp3PTZr+Em3+8gcEy+5JvY/93HA1M0FTkIymvoe94TQfQM7Hz6BO78+pXBdpYEAOyd +PB5m0t5ciAG1f5UwbaNpw6j/RU3ov2VzThSEAnMwWQPGJ0ECL9mjxy0QI9mLbHs4E4ACAzRAhLA kAM3QhRc9G/ZHvN2rOd1ERwRAbe+GRtXAgiFyWG4xGcPaE4myCKQeI6Q1NGIkgXAkgSLGkAaITNF kUShGiLToolCkaj23e9aGLdsslTGeYtZhazncj5nE1hQolCNrEI1AvZqzp11HWmzCVmJAgDU+7kD jhAQAMw22rMolO8SXHTB+/Dq2d97QmPHwYtv/xKXvO/DfgbBwTO/+Sme/tVP8NV//oQ0k8ASBEoy aODpcjoG4Y633+HowPeexIHvPQkAXPZAlxyA2Q4ZUfAfdzx1Aq2+fhVafeMqJpESlhaxgXqUHCAa VINZh//ehhOHAlM08W69+s5+9E4/Sw6WHdwB1mxuyf5t6NO8DXMdo9c3mp1hyYCEnCAUJfMIQ/8g ExP+YYW/D2FfFkkEgd3P+zu2sKgBZCEK1URDIwoNIYgt85qYCH6rfd5lrVu8Vll+H42JKFSbLJSN as6tWkfcWvISBd3mGf9QXw83aCEKIYMQ/luooyU3BLjogvf7HYv8gN91wmxCUGbkPT7289dw6Ucu wmUf/WRAFByn4nc0cgNCAMAjAEyZEUcW3PA5faTCZADY5xMEbyDEkoMgewCEpCBCFMK8yfYnH/G9 Dq4GCEHrb17jtTRlSovaXnZtJHPAdS8CS1iiQT4IwbpHDqLj1TdLy4m8w2TlPwjIwfKAHHjXq/ct rf3r6pGARXu3oO9td4XX0OVLjaJZC1lpk/fe4HbdMaRdd0ynpUUBZKVFfMkRve6p64xiYEmCRYOB +GFdRDah2vXjDbHOv6yxixKOFzVe3vXW4t8Xm12Q/SQd2xiIAlBdsmBLkJJJC0sU8mQL4tCkWVN8 6IJ3wyEOHOLCIa5PGrwor46EmmUC4JPvYgmCGxAEniTwP6f+5yWc/OlLuOIT/+V3LiIMGXCDwJQl BCFhYImCG5QVsbqDfd95DLd94TLc9sXLmbv0fNcejhwEGgMEdfNiyU5QRsSUGG174mG0vvSa4Diu tOjMcS5zQElBZFww2QeA1x0QgrUPPYDO194a0QAA4F6z2YPlhxhyQAh3TRfv28oF+Qt2b8I9d9yt 1DYMbN0Jc7atjZIRhPMOEXQH1BCNXhe2tEgkDcM6Jbspp8ki0P1sdyOLmgFtL5jFaC3tMaY7whTd 9aiW1yuOTZ/rIG3AWhQRifMRyHINiu54VGb2g52LPo/rfhR3Lo0NbCekssTGtWLEVvbcsrWYIix5 2mq7rgs3uL/r/1fHlhkBn3r3B/DK2d8Fwb/nlOz4YmPanajCB/UIA+BHfvw9XP2fn/Pbmop33Pk6 d9md9Fs/fykA+GVFvFZw7wtnAAC3f+lb2PP8o95GtuOP+JrTFYSlMQFhYNuQMoHutscf4kTJrGCY nkMwMjMxs1SeMEge1xzf7xui7RPWF66NipKXHdypbGfqHcMazXnvz9+5IdQd+AsSOz5FuicBXEtT aQkRhOvFX7rIvnkgdj2yJMGipmCKKCR9qDdEolALY6cR1OquJe3cJq+JTsvPrOMWRRSqRRB01xo3 FoDzsi1qEujnGlBe4FxN5+RadG0W15LWjTlr5vrjf/P3+Olf/wgCApeSAxKShk//7T/gh3/9LSoV hhwEj15WAfDN0ILyGkQEwQ+9/l1ce9Hncfy173CkAEBY/gK+3IWSg33feczbT/h3yZYWUa+DPc+d 5tpyikQB7HvMNllbU5YstL3sOm7eMCAnAskQ5xWei/MIAblniHYbVh71/A5WHNntZw5CcuDN5TLH ykgC/3ug+8zbsR4DWnXE3O3rOJITHhOuaUhMS9PAEE0kDRJyoJMh0M0iAHwLVEsSLGoOWYiCCZjo cGMyuDc5lkqPoHovbk26c5kO5osKkuOuc9Z5dGv3q3F3PY9/Rp6/SfbYxkoUAFSFLFTrzn4159ZZ Sxp9QlpdAguHOEGA7iLMIlz8d/+El/7y64AYUFIgPlKH5BM/+QFTpoLI8+OvvoCmn/oiAODIy88p a+5FcsAijijsfu407vhKE+x+9lRMFiEue8AE2f4TSg62POYZoW05cxx3faspNj96VJ2BIEyITIjn dfDIQWn2IHhkyAJriAafICw/uDPUTAiBP10DF/ALXgfsfHO2rcXA1p2ihmiuN1bE7yBCsLjfAKat X4ZhHXth2rplbF8j7b8/XciIhCUJFucFql12BGSr99bttqS7b9zaVOPWWrairLHZMUwTsjSBuM75 ZinlMnVtZOvJa/rWWIkCECULZcAascnXEqdfEMkDm0mQ6eNUaNKsKS78uw/i1T//lis5cv1ff6Xi OSi7LomSBL/cKOim47qCIJitzfeC0SMvPwcQghsv/goO/eBpAKEm4VbGKVm8wy0DJwgGPKLw7Cm0 +OoVAIBdz5yMkoPwaDVRAE8OuBJ74vkc3P3tGwAAG08d4XQG4XQkukbZNvHRXwNriBboDiDPDrDZ m3tatMP8XRsZHQaRkpLZW9b4hmirMejurpi5aaWnO2jv6Q4IYS8W+7vgfgOSB/53ZTqLIMKSBIua RNn6BCDdXXJT++nM25CC+aIC76LXXcSYOuNl+Zsz8fcQt7Yifme12EGq2qgFvUKZYIXNtZBVoNeB PpeRAhlk3zNJhKFJs6b49Hv+CS/98VeBHuFz7/kwvvv2L4IsAvEdkh03JAeO43AlKy5zl1tJFPzg 9eAPng78Dm753DcAgDNC855wyoL41wxRoOSg5deuxM6nT9C3w4PABszBQEHg3fby6zhyIJbxACQg B+2vuBEbThxSkwSEx0XOK/IYdi1iwbVV5cgBn62BYpsqc+EZonUFgDB7EON3QMH6HQh7pfkzTwUV kbAkwaJmUSZROH34uLHykCKC+oYWcDfUsatBFHTGAKJ/V+Lfa5lBeJrziivlaqzZBBbV0CsA1RMX 12oJEoDMJa66hMHxu+N8/v0fxQt/eBNOxRMju37HIdq+lOoRXJcJRhGKZWVBqowsUOx/8QnJnXeW AETJgffA6AKC7WFmwDNFuwo7njoRHMToiyOBetvL/ezBmeOMZoEdE5G7/xt8n4P1jxyUZxCCw4hw Tnz2ACDofqNHDpYf2glCCHrd3ApLH9iO3re0xpL92ySlRdE2rsHYilImMWNBIdMdhNcpbrv68zEp Q8CKkOP2jXvPkgSLmkYeopAEcR+TpSbicxNoaAG3qbEb0p1t03X8ItixZB2PxH11xyrquuhkUixR qI5ewXZBiq4l7gYT+17czSgVYQCAS97/EQDA87//3zCDQD0NqL9BUHLkqxf8IBVAaNQFliiIJUcE t3zOKyt64MUncOvnL0VzxhAN4ANs7t8eSwj817JMAhvU73jqEbT6xlXY/uQj4MPdMHgOSovOHPeP DZlEJAPBnZs3L/U5WPfwAWUWJEoS+DX0uLEFlh/aBdoKttctrbDkAY8YLN63FX2at8GivVs4jYcs W0Dn0iEJnBmaRHegIgf81fAwdd3S1EZo4jEsadAtP7IkwaJBIU8rOkB9l4dmEmotqBePb2zBfNFr LmvMvNAp48pLGrJ0Moo7Rnc8SxRCVLsEqbF2QWLXkuf7RYQ4Dv3++fI//Bue+tWPfB2CQBQoeQB4 EoBQW6DSI9CyogdefCIMdOEZojX/wmXY953HYgiC2KlIyCSwugPhOTVE2/7Ew1yQ3uayawGEuoPo eOJzdXC+9qEH0OmaW7Dmwf3B+DKSIGY9+OyBy5Mupsxo0d7N6Hf7XVi4e5NQzoUg6B/YuiPndaAq Z6LkYPqGFb7XwQrO80BWbkQvzfDA7yD+81BFGOKIBLudEoYk4mFJgkXNI282IY3ArCEEnEWQjyLX W+S4RY2dZcwixL55z0Fcn+r9sjMIsrVaohCiWi1TbQmSHDLikPaGFd339OHjeOr//Qjf+JcLI/s8 /KPvwXWcqNgWBEdefg43fObLOPzDZzhycLNPDACPHHiHeP+OKDEAIZ4x2hcvBwDsff5MTKmRpL1o AlEAAbY98VBgiLbV9zzY+tiDXCDOrk1aYkSfs12ZmG1rHvR9Do7vi1mrtyUkB7t4vUZAJuB3GwqJ yYLdmzxh8s4NUsEzu34ZSZC3NBWvGb8tTpScBmz2QAc0y6CEvxRLEiwaBNISBZYglNXxqOwgsCEF 3UWOm3bsNHe4a0GfYKqESUUaxMe82YRay8I0VNgSpOqQhTT+CVkz2y4heOznr/qZA1+H4Lq45sJL gn2OvvJ8hCgAYckRJQcPfO9JuaBXkjHY+8IZgAC3f9k3RotkD0RDNHY8fwtbKy88p4ZobS+7Flse O87X9UceEQny6VqlgmA/EF99bB+6Nr0Nq47tBQhBtxvuwMoje4LjerDkAIzfAVOOJYqk2azB/J0b 0P/ODp4hmjA/t2ZG66BqaTq0Q08ve0CAaeuXh4Jk5pqzJUdZHJHTkgMRqjImui5LEiwaDNi7azLI MganDx/X+hDPW8YUB5PBoThmUTjfiUK1xqwlHw1VW9U87tN512OzCVFUmyxUswSprPOVrcHk94Go Z7j0IxfhzM9e8cqNCAnKiI69+kJACG74zJe5MWg7U9qx6MD3ngxKXAC1zkBWw7/nOc8Ybfdzp6Ul OomZBIEcAGFpERB6Hmw+c4zLIoSkgBnD39aRipMlxEA8ftXRPeh2/e1YeWQPc46+34FIDhBmD0It AZ9BELMGc7evw4BWXmkR3e/+tl0wa8tqgcRA0tKU//yKKy2KbE8Ae/c/LzlgiQE77tR1S7nzsCTB okFDt5QoDRpT2ZGp8dOso6hxdcbOcr101lumELqIsUXNg2r/uLHijtWFJQpqVEuvUM0SJKD6eoUk spB0g0n1nkcMPD0C/WH1BUd++Cxz91skB0zZCxBPFBTlRLufO40WX2mCXc+ekhKFcFhZ9iCqO9j6 2IMgILjr8qYAIdj86DHc/a3rsen0UWE98Z4HcVkE9nHlkd3ofqNniEZbmi4/uBNxTsn0et5zx91Y sHuTkiQQQjBn21rc16YzZm9dI6zF22+IdkvTcNu0dZ4p2tR1y5CGHMiQlRwkjTe8U29MWbvElhtZ NEzQbAJrapOEMozWdPY934lCLYxbxjWppfWVea5JJIl9TNo/aR5LFNRIyqiaRrXN0FRmZ2XMq+vG rEJcB6Qm/3YxTvz4+0EmgfVA4MtjEEScD3zvSdxyyTcj2gPuuSjohRCcM/vsevYUWn71Cs/3IEIO /KMVREEkB/xavPVsOn0U7Zrc4HkeyMYSyI2yY5C0XCmcb9nBnf52uQmazDWZFTGL5UN0n1lbVuP+ tl0wc/OqYF1y3UGUHHClRSSyV+RvQtcUzQSUcxFgytolGNG5DyavWQwAqDcyo4VFiaD/gItoiyoe U2RJTxyy3JkvCkWNX+S6TY8dN16e7EQcysoimLxetDUrHY/9sTAHGkBSc7IyQN2JqwGWqJRJGHTP V/b9onNjissmBMLaKEFg78LTtqYygiAzAwM3FjgiAkKw85mTaPm1K8EG0bSlKRdc+wF7m0uvDUTJ ge6AK+Vhg3LPFK39FTcyYmvmjjwrJga419wP+McezVp4pUUHdwIAet18J4hfuuU9etfTdZkxXP9a 07nccA1xjzM3rcLgu7sB8LIH0zeuwPQNlCCEpUtM5Rc4EkDYvUiyYFiC4Z16K8uDjID9/RFg8prF GNmlLwCbSbBooCjbkbkWa9KzjltUyU2tQVyzCVOzWvxbSDtOUZ2txOOTuivJ9mG322xCMqqhVwCq a8RG5y9zbl035jRo0qwprrnwEhx/9YUwi6Aou5H5G4ivo+U8/kvmf6rnOwJTtEf4u+NMVqLNpWHm gJ1P2tZUKOHZcPIQOlzZDOtPHFKW98iOk2URPN2BZ4bW8+Y7sfTAdhBC0PvW1li8f2uk1IiOxZUW setXZS+4+aHWHcToC6SkISVUd/3T+CYox5OVkQlLtZkEC4ucyFo3bxrVyiiYEs+aHLeoa1L0Nc56 7mWtK8862CyDKtsgliuVWVbTkMFmFsoAzSqUfWefnb/suZs0axr80IYY9Ie+n6WrHr3rzd0xF+60 3+qboVHs+85jaP6Fy7wXBFJyccdXvo3dz54OMgdhaQ1r0BY+90zRrg5IAc0etLn0WrS59FpsffxB obRIFAQjiIrDO/8IAu31jxxEx6tuUtyxRzinIptAswfLDu4MOjwBCJ4v3rcVfZu3jWQNvNfh8wF3 dsDc7evUWQsm2zG4XffA82BI+x4ILjiY9QbbQlbG6w6iBEHMBMiCfTF7INsvc0bBX1YgfOcIAsHI rn0xadVCADaTYNGAoZNNELMHtZBNAGojo1Ar45e15iLWW0R2oswyI5315B0z6fxl47GwGQV9lO2v cD53QaLjrjm+H12aNufeU5mk0ee63y9NmjXFDZ/5Cg699IzyDjv7l8/+O6C+B3tfOMO9x2UX2Lv8 3gPAkADxuWeKdg2dzCsrevzBsEyJSMYVswh0PFGgTAjWPXwAna65BWsfeoBbL21pypVL+QFsj2Yt AbC6A0aYDL7EauEezxBtwe5N0kyFTIAsyySIugNqhBYYosmyBxq6AxaqTEBWvwOVxoB9HN65N6au XcplDNjnI7t6JUYTVy7EqG73ALAkwaKBo6GWHQHqgKzWymLKGN/0mHHZiSxrU623ls69VkrCTJQt UdBrbImCPqrVMvV8KkFiMxSUIMR9Z7Att5P2lUIRyBIAzT9/Ke+UzATIe184g9u/RD0Pwu1hNK8m BOJzevy2Jx7idAfiXeZwaIGUEIL2VzbDhqCkiNdG0Mc1D+5H52tvDQzReO1EOAftWMSKklXjss8X 7NqIe6khWkphtMzvgHVKZi+tbslREmiAn6elaYQoCISFAKgLnkdLi1hyEFxrH5YkWDR4mCIKSeRB RhRqISirBlQ99k2MmcVPQjaWuI/J8dO8n8a4TXf/LNewTBO5vGPQa0Hv4q45vj8Iei1Z0EPZZKHa /gamiApLENYc3x88F7MJLMSSI7b0SMej56b//joOfP8pKVmgEDv6sPX1rA6Bv0sMIbhnCUH4hJYV iZDfcY7vNqTSG7CPq4/zhmh0u0x3EG1T6q2j721tsWjvZo480AzGPN8Qbe72ddzc97XpjNlb1khJ QtTvgL/ehEgM0STkII1OgAb3WbQFqrGmrl0a/r6YtQ3v3AdT1iyRlBb1w6RVCzlB+Zie/TFu2TyM 6zXAkgSL8wNZiEItoKGWHbFII0jVXbdqDJNzpVlT3HknzV8LWoGGQmZZciCCbrNkIR3oZ2NZJUHn QwkS/R6hxGDN8f0BYZWVGsXdbNLOKkS6/ADhHf9oFoEes/u507jjK02w+9lTkZIiXsRMJOQAaHOp V14UlBUBaHv5ddhyhjdE49bBaRyYR4SBZkggJHfvwRqi7Q7eD0uLdgRaA/HON1dO5UpKs/zHudvX YWDrTpizbW1E4M2OmeR34A/Jb+cesn8O5TVECxfoPUxduxTDO/s+B+zSONLovWCzBy7t9MS8T1zv 0ZIEi0aLWiw7Krp7jom7u+L49Hncvibmk81j4ppkXZtu16S09f15HI9NnaPuGDqu4LodtwA5ORBh yUJ6iFmFMnA+lCCxZEH2t6nz/aGTVWjSrGngf8CWzwSaAy5rECUKu549hRbU7wDAnV+7EjufPiEv LYqQg4eY7Z4Z2pYzx0EQGqJtfvSosnORGFxKOzJJS5YIVhzZje43emVFVJQcHk/HlpUt8SVZSt1B ML/Y1UhSWkQvLvN0aMeemLZ+Odgoe9q6ZRjWqVeuwJ4VG2ftUsSuk/ktBz4HU9YsCXYZ0cX3PSCE Ly1if1f+47jeAzF2yRxP+wFLEizOI5StTwDMl9qYRp6AUUYKdOcwEYSbGMf0NSlyvCSimJU0VTOL oOtWrUMORLBkwRIFPbBkoYw7/eeLEVuTZk05bQK7Xfd49ljVcSQm2BWJQkAV/P/t8v0Odj59gu4O sRQoECWDJQeMbwKzDjrRptNHcfe3b8Cm00fkREGmpRCFwQqSwP6zXXZwRyhKjpAD4RiiRxJmb1mD +9t2wazNqzDo7m6YuWklCCGS0iKVvoB5L7I9iqRgX8wcpOlMFBlbls3wH6asWRISAx/U90AsLVJd Q/rckgSL8wplEoXTh48XEthXo9Y/7117k4E3GywXRRZqlSjEjaVLHNgx8ly7ogXVabIHcbB6hfRg yULZJUhlQ2yXmrcESVdrkDSGeHyTZk3R/AuXBSJllSA5jij4uwQ70MCakoNtTzzE1+Irutzw/448 Q7R2TW7ExpOHtTQHER2BhBz0vKllMMOyAzvQ6+ZWWPLAtmB/jhwIWYv+Ldtjni9Mji1rIsBMnyAA CLMHitIiXVFylrv/cfunGi+GHDC/ec4QDQAmrVqEsD2s4B3hv57Q5z6MXjTLL+OyJMHiPIVIFLKQ ABVEUx2TwasY1OUhILIAkx1PN0uQds68QaUqI5G3TMqkeVgZd+Z115akl6hFmCIHLGwJUjaU3TIV qA0jtqzzs6LkOLKg0wRDdTx7F1cuSGYFwsxrAt/r4KpgnAg54EqOxDv8fAaBC44JwYaTh4PuRTId QOdrb8Wa4/uF8hVvLBk5WHZwB0CAXre0AiEES/ZvQ59b22DR3i1QkYPU2gehNEtVWsR/XHgvhnXs hWnrlil1B7qBvUp3oPI8iB2PJXTCsuJIg5c9kHhwsL/HCMnzjrUkwcIC/Ie2CFV6mWYSitIn5A22 496rRRGrTn07fW4KZWQAsp57nvHY6yUalJk6pzRrY9djkhywYLvP2BIkfTTGLkh0/jRzywTKsu26 UB0vmouJ2QISQxRafePqYJzW37zGIwf+2zIyEO2kJNcv0I3rTxxCh6tuwrpHDqqzCGCCUCaA73nT nQBoWRF/nq5fZrRo7xb0u/0uLNy9ibvTzc3BrCfeJTnUHQBe9mBoe76dqSxLwD5VEQQZZMZngAFR smw9CeSA6g4oWGGyaNRHr9/EfoMwasGMIIswpf9QEEIsSbA4P5Gn7EgkC0lmbaaFsKaEp7I5ZPOZ RJFdlUxkFfKuuQgzsiKgElZnIVqmMkQUqlaSaciDbAx6vG2Zmg3VJAtlEwU6vy5RietglKbdqQzi 8Xd8+dsA4HcrYur4AYAQ3Pn1q5RjUTO0bU887AmTRXKg1AXw+oDwjj1DFPwd1j18AJ2uvjliiEYf 2baiHjnwMwcHdnhBqkuEtfBZgQW7N+Ee6nPAzBttCRtPEljdwdAOPZBUQsRuHx4Ik+M/O+IM0Yrw O4gSBDk5oKVFo7vfI1xfRQaB+T0QQjxS4cOSBIvzFmmJQhZBGt23FgLDOMiCxlqq909zJ73ItVfr /E2OlZSRofuwr4uCmD1QdYmh76kgvme7IBWHaugVaiGroJpft4MR3Ze+TlPmKh4PAC2+eoV03x1P PeI9CWI7RljLlCl5m0gqotD+imbYcPIwf9deeE4IwdqHHpAaookkoedNLf3MAd/OlO7reR1s8YgD Cb0OAp+DHesZkuCt4r42nTF76xolSZC3NIW/bTmGdhA6FvGXEEnEQAYThmgUrN8BXc8IxuMg+B0K Sx3ZtW+oO/AJwoTl80EIwdie/TF26VxpBoEQgsn3DsGIedPgum6gW6CwJMHivAZbcyuDjBjQbEJZ ngumS010kTdgNNn+MksZTNZj867X9HgmsxO6f0sy3YvJDImqtIg1RxMh20b3jSMXsv1l41qykA5l 6hVqqQSJRZaGFvQ4FeLeY0HbmYpBMltuJCMK/l7Y+tiDaHvZddjy2HGBFPBkQqz1Z7dx+4LXS7CG aGJ70sDv4AAlCAhIgKzkSVYnP3f7Ogxs1RFztq1lzlVSJuVvH6JoaTq0Q09M37BcqjvISw6AbIZo yn1lZUQJ28LswULuWgKAy5ZruQS09IvN3NBryRIE67hs0aiRNWMgQkw5V7MMJg6yAFEsb5LtV8b6 TfXzZ8+jqPXWeivRrOOy5yduy4KsLU3jQIkCfZ51DMDqFdKgsZYg6ZQPxWUKxBtOsvdUoPvLSEFU K8CThbaXXYutjz0YBM5xhmgyokC3y8hJcAxzB3rV0b3odv3tAIAVh3ehRzPP84DVHcS2MoWEJDA6 Bm6d4poF3UFADlgSFRwXPMO09csEUTK/f9pg3wiEDIHnddCb8zpQlxZ5LU1Z3cHYnv0xbuncgBh4 18ANiQFDFqYOGIahsyd7JMElHBEEgHozZ2hhUbugf/BshoD+qBAnZI47ppa7yiRBbDtqckwZdLv3 JK2Hirxl+6UNrE36VZj2vkgazwThivsbEMXQspamOgSBDfjjIGYFWNdbnf3j5q+rqyvVWKyhgwYO ZbUwFduWVgMmM8k63zkAn7kgQkDN3f31y2vABeKEOS4M5qkhWhh4849swAhIhK3M+7IOOSt8x2Rq hkbLi4IxXPnxYiZBnA8EmL3V8zmg7w26qytmbl4VvB7cztMdTN+Q1LUoDJaj2YNsNwxYMpHLCI0G 7ZTp+T/U64AjBwxBmLRqESauXOhfXze8hq7LXFc30BcQQuAy+xDXxdQBwzBklkcQXMf1Hv0fCksS LBoF6AdSFiFzGqQlCrqlJlmR1P5Ttt00WSjKKE41T965yiQKpr0lTJyT+DeQdBxLDkxlEOICfkoU dIiGCnStliykQ5lk4duXfqKqZEHnsz+pK54obNZFk2ZN0errVwWBdkAUWHIgBJZtL78OW84c5+70 07vq1BAtuIPPlgD5AX3Hq2/GuocP8DXrAiGAENB3v/EO9PAdkwF/vBhSQJgx76XiZNeNjMv+zNq8 GoPu6sqRisHtumNI++4Sv4Mw+0EIMKxjT0xbv4x7m4CWCPXK9HehKi1iNQlJx09dtxThr44IHCb8 L1i3j5Fd+2Jk174eOfCJgStc83G9B2LM4tnMNfRJg+vtJxIB4vLkwHVdzB0xPrjettzIotGgLKM1 06hGP/+iBa613gFJvOZ5r2WR2omiryWdg52f3ZbVLVlFBHQyAqwQWtyWdh2A1SukRTX1CmUhT9ei LN8ZsmPihcfBK/V7zHPeEC3qQ+A98KUmYXkPIw4mQPcb7wAALD+0CyAEPW++E0sPbEevW1phyf5t fImRqHsgYQAccftlCQ5zzMxNKzHYN0Qb0q670u9A2rVIoTuQdSaKKzUy3dKU/51GFg8AmLx6cVBW 5GUPBLdkQCBv4e+NvZ4j5k/H5P5DMGzO1IA4zBg0CoOmT4DrOhzJcIXPQEsSLCwMQ1efkKXPfNk1 8abIArv+rCVA1SobMoGiiEJZf0MyoXMRfge6JUOqY/PC6hX0UbZeAShP2CzeHMrT4lQ2ni54DYJA FPy3AOCubzXF5kep7oAnB8FzEhqirT9xKCIU9h6Yufzt4RIIut/gkYMVh3eFd6mZwHTJ/m3o07wN Fu3bEk8SBL1BtFMR/zhE8DuI6A5k5CDyKntZESAnB6kN0SRkjkjIAYXY0pR6GLBZIFbDMaHv/Ri9 cFY0I+MK4mQ/u+D6ZUfsvgvGTObWYEmCRaOCTjZB/EDP8gFf7baoaer9ddaYlSyIgXo1Avcsc4o6 h1prtVoLfgx5/Q7EbEISQdDxRshzHjarkA1ltkytVhekNMZpcWJm1Xuy7U2aNUWbS6/B1scfAkcU AK3MAUsOCLNt/SMH0fGqm4LSIm8XlZg5PK77jXf45ABMsErQ+5bWXvbAD/IX7d2CfrfdhYV7NitJ woBWHTF3+7qoDgIhUaHzUr+DIe17MFdHpTsInw7r1AtT1y1DHDlICuqz+h1E4C9heOfemLJ2SYT0 Bb9LZt9R3fph0qpFGNWtH0Z164cJKxZEr6dAFADPmI4lB5whnU8IZg0dg4FTxnIkgZKDPmOGYsmE 6cG6LEmwaHQoq+wojihkbftpOkORFiJZ0BEVy9ZWdPCdt1RIh9zk/f1laSmq2l50NsGE30HaID6N N0KaNqniHLZlqhlUqwSpqLlkn/myEiR2P1NlRhyoJgFQkoNgNwU54O7MS0qL4kgCLS0KswdgshDx Y6lIgvQYtqQJ4Fqa0mV5Pgc9NFua8s+SwBKCPKVFHPHgeUvwJC6TMKpbPwDAxJULA3Iwpse9vgaB ufZMBoEQgkn3DMbI+dPDzICgDQG8zMHsYWMxcPIYX4tAsGDMJABA3zFD4boESyZM5z7zLEmwaJQw RRSSvhhMZxSq2c9fdXye40yTBZPtUJPGjCNIefwjdAmJzEnZ5LVkx83rdwAgtiuR7HkR5UzivEnE A7AlSGlQjZap1cwqsK91j01LJGL1CARo1+QGbDp9RBLgM1X4wt1naoa25vg+EMDzOzi6N4Yc8NkD TtQM9rm3pgW7NobCZAURid4V50uL2JamlBgEZx6rR0j3b5UVHKchB3FZBpkhmvT3yXyusOSABv90 n/HL5mFszwFqQzS2nEghHKfv08f5oyk5GAaXuHAcN+iMxMKSBAuLklHknf4ySlBMCXoBfbKQx3Mh DxGKO9e0gb7s/TwZCva80vgdpMlImQzUxbFMZRyyIE3WgXZBAmxWQRdlkoUiS5B0vRDoo667sm7m oUmzphGfA7GsCEB4hzl4ISEH9NF/f/Xxfejim6H5owKEoLvfrSggB7LsAdOpyBs2mjUIXJO3rwv2 AeA5Jm9ZIyUJtLTI5xuQkYBp65dHuhaJmYOsZUImS4uCa+pvG9GlDyavWcL8frxHjhww13FMz/4Y v2yelxmg43HtTcOfKf2HYticKXAdV0oQ6LWfO2I8AGD+6EnoN3YYXJfAdZ2AXKyYNifyGWdJgkWj RS2UHWVBLWUTTK0lL+modn2+6nzi1quzX565s2YXdLsWZSnxkWUKxDGyZhN01pPVkM2WIGVDtfQK ZRqxsSVIqlanMr1BqraoilKi9lf43YrYunPmfU6QTB+Z2n/WDI0XJTPkQJo98N7rd/tdWLh7k7y0 iMBzTW7dCXO2rY10TZKWFkVamgqXQFK/kyV7wMK0IZp/xXxDtD6cIRpHEIhHELx2ptHrF1wnadci hiAMGIahs6fEZhHYa99v3HAQ188c+D4KRPBGYGFJgkWjRtlEATATGJbZCpOFbI4iOvfoXifdfbOs McmpOu81ZD0IymxhqjqXPC1Nk5AmODdBGFRryDuGJQvZwOoViobpEqS0n/cqYbLuvjLwbsUAJCUr ieQAkAbyFHJyQB8FkhCjR+DHJpi9dQ3ua9MZs7as5tYsLS0KzwT0NLyswXKwrGDaumW+MDn7nX+2 tIhmHnQzEJH9ZIRFllHwn4/q6mcPfDEy/f3SX+u4XgMwdskcLsgfvXAWJvYbhJHzZwQditgyIrFL Ef2ZP2oit3ZqmiYSBNrxSIQlCRaNHmUShdOHjxcSGJr2BUg7h2miQOdjX+f1LjCxxrxjqEqWihZy y7IL4rpMkwOdAF9XF6A7niqbYIIgyNZl9Qr6qGYJUpEQS4dUnYpkx+nqGiJ6AwAd/FamIkng90eo I6DbCdDthtu58Zcf2uk7Ju9AOAxDDMQSI6keAZF56HGztniGaIDvedDO8zxgdQdyfQGzQdiuCuqT An3TfgfhQ5QcTF6zGCO69PGeM54HbPZALANjswbs748jBD5JmH7/SAyeMRHEdbyAn5CALFDNQb9x w7Fo3FT0GTMUxCVYMnE6egy/LzBWI64LlxCsm7NI+llmSYKFBaJEwaSJmngXKSlgk8F0rX1a1JpH Q9HrKYIQJY1ZxnmJ15D9G8xSiiNrY8q+ZxJZMwxFey/YrEI6NESyoPo+yPsdodNatUmzpmh/xY3Y cPIwX1LkXcxYciB2DKKlRSuO7A6C/p43tQQhBMsO7ECvm1th6QPbFV2IspME9l/G4Hai7oA5I4m+ IHZ7SiSRijTZhIhQmohv80xHNEOTtTMFgPF97uMckzmhMtReB66QOeg3bjgIIVg0bip6jxoC13FC gXOQTSCc+7IMliRYWGREXF0pu5398KeZBFFsmoQ4QmHKe0AV/KbxUigiyJW1Xa0F9+M00C3TSltu ZaKlaZwmQBdZa/2zIo4w0HOS7Zv2HNMQEEsW0qFMvQJgXticxQ9BBZ1j2JKUjlffHO9zAD5Qp+Rg 5ZHdCM21SOSu9ZIHtqH3rYzvAaIlRlTE3P/ODpi7Y70GSeDLbVS6A9m2YR17Ydq6ZUrdgW5Qbyx7 QDyvg0jXIoVYmcXElQs5M7SQAPhHsb87TlsQlhENnTUZ0+8fgcEzJmLmkNG4b+q4gCTME8gBFTED 8MXJXpah6+D+WDVjHjrd188jCI6LTQuXKT+3LEmwsPCRp+xIJAtJHSuylMrIIKtv1zmuKBQdhJdR y1/t8yyyBElHd5DHz8B0WY8OkghOnAlbHojnaslCNpTlr5C3C5JOSRHdnoco0OeSCyXc4QfC7kZC BgFeW1MKjxyIQli5T8HifVs91+S9W4L3uDvazBrCbjx81oDdJroli+1MpVkCRT1/EkTCkIUcKIlH AhEQt9HSovDXx2cFRO0GIQQT+w3CqIUzmWyBQBSYVqeA1+1o7sgJAIB+40Z4OgMnzDQsmzwLPYbd B8fPItByJABwKk7Q2SgOliRYWDDIQhQoqu3IrOqlr7Mf+17eFqemA2hZsJwnkE5an+nMSZ7OUVnP UbUOla9B1uBeVf9Pxy0aKgJQpt+CbH7A6hXSoFolSEXOo+OhI/PdAeRZimi2gLn7HASdQNfrbwMA rDq6xyMGkBADVmuAMKin2YVFezd7nYv2bIqUGElLkcTSIkIw2CcHtLRoaIce0Coh8rcP1xQmy4J6 XXKgykLIDNHUmQP+ZCg5mLTKq/Ef3f2ewBBt/LJ5UaG3QNjkXYp4kjB72FgAwNyRE3DP+BG+voAS AW/f5VNmo/vQgR5B8MmB6z+2u6cnNi5Yija9umLbstWxn1OWJFhYCNDpxCGWE6VqZ2cIbPCpCljz EIdql/XoBMdlCX+znmfSNdC5TibawwLmHYuTzNSSyEJWh2TZXHHjFpHd0BnT+iukR9lkQZVViPs8 T9vpKItuQTyuSbOm6HTNLaEJ2oP7+daWMnIgBKC0TIh1Xu7TvA0W79saIQlB6OvyNfN0voGtO2H2 1jVB+QxHEgjvdyD+6XuuyULHIn/KrLoD0RDNiCiZW5P3f7GlqSx7QMkBIS5Gd78XE5bPl/obiK8n 3zsEw+dN84TH0lambkASAODeCSODciGXuCFBcMPxKUEIdAu0kxHNJjiVxEtgSYKFhSZUOgP2/aQv AzElXU1BMAuROFTTdyBrdkA8jyzBuekMiOlMUZb2sGlMw3QDat0gme4rbtNBljIh2bryZEqynru4 XksW0qEsvUJcCZLqszztDSFTRIG9LvSRKyk6uodpUwpwWQPISUI4VrTt6YJdG3Fvy/aYt3MDTxIk 3XfE0qLpG3ndwdAOPTF9w3KBMBDJQ/5/HyZ0BwAwde1SDO/cG1PWLuG2+1eJ2xZmD3jPAwBw/edj l8zFuN4DA1Fy+LsKtQNBG1MJSZgzfBy3TNdxgsyAKxCEVTPmofP99/hlRm6QnWBJQsuuHbBz5frE zyRLEiwsJKDZhCRiwKJMozXTfgWyfvkicSi67MiE50ERzsNZzrNMvYKsRAzIVmaja0iWtgMSe6xs bSZ0A3HrYkuQyi4/Yue0ZCEdyvJXSNsFqQhhctxxFF2ua47Vx/cF5GDV0T1BmVEkG0D4u/yRoJ7T IwjOzP7zeTvWY4DvmiySBLaefrDod8BkI5jh6DNMW78sVpScJhuQ1QwtTneg27VILC1ihclje/bH uKVzld2gWCIwdeAwDJ09OdQiuFFy0H/iKM8p2W9p6lBvBJcwmQSC1TPno+PAvnAqFSk5cF0Xu1Zv CH/3CbAkwcJCgYboyFx04CvbL+96iioVKrMUiT3PMrIwqhIkE34Hpu+8y8amAXuZgbvK4TkN8l4X q1dIDzarULSOgJYgZdETJCEPUQDCDEbXprcF5EBmfCbe3ZdnEMTORoLWwH9OCMGcbevC8iJCMOiu rpi5eVUwN1talKal6dSchmgqM7RMUJCDKWuWYESXPpi8ZglGdumDyasXA0RCDojLazfosAI5GLVw Jib2G4QR86cHQf20+4ZjyKzJvFjZ5ckB9T3oO3YYXMdvfeq4nM6AuC7WzF6IDgP6wK14gmSPPIRl RrtWbUh9aSxJsLCIQVlEIQ2KDEJ1evmL+yftE1faozrGJOJKkUwH92ULvdkSJFOtcAFzpmRxwmJR YJwHaUuAspATU8SJzm2zCulQdsvUJJRFFGTlTXJXZO9RzBbElxeFga1/tFSUPHvrGtzftgtmbl4V vKcqLQrX6D16jsnLgrez6g5YaAmOE44Xl6BqXSpu5HUH8vaw43oPxBjGMdm7/kJZEaMdIIz3wexh 4wAA/SeNDgL8hWOnoM+YoYHXQY/h92P5lFnoNmRAQADWzVmE9vf2glOpcMRgx4p13Jk0a9MCh7ft 1v7csSTBwsIA8hKDWsgmqHr264hq2TFk+7DBrGyuMs4xTSmS6vrorKlMETW7JpkGQIYi7qKr5kyj Wyjz7r6JedOsL25uSxbSoayWqTqf6TKBcdpjVJC1Qz19+DhWHN6N7je2wPJDu6AkCQwRkGYQhLvd SSSBEIKZm1dh8N2eU/KQdt2VpUVpdAeqzkSqIN+kW/LUtUuja5KQhsmrF2NkFy9zEBqiyc3QuOsX tCnlOxQNmzMFUwcOx5CZkzBj8CgMmj4BrusGHYsGTBoNlxCPEDAtSylBcBkBs+NUAv8D77WXQSCO i+0r1gIAbut4F1zHwQObtuOGO29LRRAASxIsLBJRS2VH1TY205lXtuYs51DGOkWDtjgioLvmMsqc ZLoDGnTqiHvjQI8X7/jHkZC8d+SrpRnQnTcNmUjbgcmWIKVHWV2QTAb9OtDRwBFCsPzQTvS8qSUA YOmB7Vz2ILw+jGkXEAlq+9/ZAfN2rOe0Bey1FUnC4HbdgjVM37AiqjuIyRLkzR7EkQORVCRmExJ0 B3F+B6EhGnM9BaIwoe/9GL1ollR7wGYTqD+B67qYM3wcBkwaHXQiCtugulgycQZ6jrif62Lkcl4H BJsWLkPb3t3gVBxsX74GAHB7p7vgVBzsW+/5XVx3xy04unNf6s8YSxIsLDRQS0ShCMQJgU3c9adz JM1XNsRynSJ8K0yThbx+B2lJRFn6Ad3WqeLaTGgw4sbSEXLLxsuyDptVSIcyW6bGIe1nvShIjjVR k54zwdIDOwBC0PuW1gCAxfu3csLlWGGy0CWJfR45jgCD23XDjI0rMKR9D3YlzLHRbSDwNQfLEEcO koL6LC1NpWP6Swg7FpHIslSi5FHd+gXXRJpBCK57SADkJMEL/AFg1tAxAIA5w8eh/8RRociYaWe6 dNJM9Bh+n0cQWPEx0+J086IVaNOrC7Yu9UrB7uh8N5yKg3Nnz+Hglp1o2uJWVM5V8OCeA5k+VyxJ sLDQhCmikPXOU5bymiLNvrKsXdaFp5pkQVxXEddC53zTCLyLvtOual3KkoUiS4N0S4FMlwqlySrI 1mviGtguSNlQpF5B9/M6yS9H9V7q7wJBZ0DJQd/mbT2XZMLc6WbKi9jrRGJIAtsNiZYXzdi4Ioin PZ+DHkJLU54c8FuS/4ZZ0TEN7I2VFsmyBKrtDEGYtGoRAIJR3fphwooFACEY0+NejFs2T9qtCASY eM8gjJw/ndEYqEkCwOsORILguiERiHYo8t7bvGgFAGDbsjW4o3M7uI5HDpyKg8Pbd+Pa227G2XfO 4uTBo5k/SyxJsLCoMciyCUUF8jrj5g2eVaZveclCnnWJc4pEIct6dNab5XzTkAMTnYlkgbLMoIyd swhUowRJJChiFqWstViykA1l6RVUoERBRghU3jpZzlGmM1i0x3NJBoAFuzdJOhqFjwNbd8KcbWvD MiXvzaCCaNDdXQEAMzauBN1jaHuPGADA9PUSQzSF7iAt0pCDuCxDkE1YuzS6pmCt8tIiVpgcXLdI hoXJILh6WQSqO6AIdQdRgrBy2hx0GXQvnIoTIRJbFq8EANzZrSNc14XjOKicOwfHcXBo6y4AwNW3 NsND+w5yv/cssCTBwiIFGlrZUbW0CRS6JITuy76u1pryOhwnIc35mmhpqos0AXkWwpBXYCy+NkGE 0uxjqrNRFo8Jq1dQQ+WjoHJTzgKdz3Ax4C/KlVnZsYiQgBzc26Id5u/cwJXEBPsx44gkYZCfOZi5 aSWnU+Dia4UwWcwcZHU+NuKWrMgSjOjiOSYHpEFFDlwXBMCYHvdi/LJ5wfUdu2QOxjOGaCwZmDJg KIbNmSolCawoed6oibhn/EgsHDvZa2NKaBtT3xiNuFg1PTRDY/0NKDmgqFQqcB0HjuPAqTg4smMP rml+E5xKBY88cNjIZ4YlCRYWKVE2UQDyBc4m3IWzkI20OoeiyULacYsmWLLzFbMZRRmiicgTdJeR YZCVQOVpn6rr3GxSsJ33/Bt7VkFFBnqNHMS9XjZ5VrB92eRZ2gZpecB+tmfJDqQpaerTvA0W79sS 1R14T0AAzN+5Af3v7AAAvhEawNbMB8fQ7QAG390NMzd5QSh7550XNYfPqSGapzkIt2dBZn8DEUI2 Y8raJRjR2SMG4S7hTiq/A1k5Eavl4IiAH+Dz273H2UN9cjB5DIjregRh3Ai4ruPvTzsWkYAIrJ45 H50YMzSaQaCaAwC4vdPd2Ltus5c98EuLAOCqW27Ew/sP8X8TOWFJgoVFBsiIQpEGPKaD1aKzC3nG T0MWitZdpC0/ytOalRVQ12L2QAcqwsC+Z8oboahrJHYeiusalYY45OmQxOJ8JwtJDssiKQBCYsC+ v2zyLO55XiM2meZAJTgu2kMhKHWRCJLp49zt6wD4pUVb1/rZB7H1KYKuRTM2rWQaFvGkQFVaJHmR CipDtNSlRpFKIr2uRVR3IAqSCSEY12sAxi6ZK/ghAKMWzMCkewZjxLxpwfZp943AkJmTOC3C7GFj MXDyGK6dKQA4PjHoNXIQlk6aie7DBgaagzWzFqDjgD5BBsF13IActOzaAbtWb8BtHdqiUqkAAM6+ cxbHdu3D1bfeiEceOIITB44Y/1ywJMHCogYhfhnlbc9pqktRmUJoE5kFU5kYk+cVt06Ar8VnkbZM RcfXIK0BWZZSGVPdkZLu6udFlvVlIQ46a48b93zQK8QRAZYEiFmBuKyBbDtLHgBzJUg63YiKJAph PTzkRIG5Cz576xrc17YzAGDW5tUYdHdXzNy0ihEl+yUsjAiZJQsRcTIJA3FVUJ8U6Jv0O0hqaTp5 zWKM6NLHe756cSR7IBqhEY5IuaGQ2422MCWEYPr9IzF4xsTgNVta5PilQoQQLBo3Fb1HDwlKjILs g+O1MXVZrwPHxZYl3u+lZbcOcB0Xu1ZvwK3t2uCcnz0AgGO79gEAHnngSPD7Ng1LEiwsMiJP2ZEM qh7ZOpkEHaOvIkW57DpM33HPI/g12Q2qqPIjMXMQ14pTRJbOOlmOywKTOgLxWBMC7bjxWaSdK+53 l3XNKm8JoLb1CklZASA+MyDLCsjeF7er5qDvZyULWVudmvBQYKHKIngP0a47s7as9jUHniDZa2lK 69tJdGx/u6hLSNOxSAYVOWBJRZpsAktYxGWxugNKDni3ZDcs2RII1vg+9/G6A8EQDQhJAn0ekAO/ tCgoFSIEi8dPQ+9Rg0MNgssYolUcuIRgw7wluLtvD2xa6InDW3brCOI6cCoV7F23BTff1Qrnzr4D p+Lg+J4HhN9Zcf/+LUmwsMiBPESBfnno3pVKCmDjYMrQLC5QLrqESZcsFEmETBKttLqDtMRBNENL M1ceqObKGtirjjFFFIp2Xc6bAUlaXy3oFXT0AklZAXEfGcQxkkgBPUY1N92uQxZEXwPTgT+FDrGg XY2CIJkLcoFAf8C0M2UD6BkbVyDSh0h4QsehugNV1yLdoD6NkDl2TOJ5HXhdi2TlT+quRRNXim7J kgyCsktR+HrwzEmYMWhUMN/sYWM9cuCboRGmVSlteeo4boQ8eNsdbFzg6To2L14RdizyNQn7N2xF s9YtcPadd3B8t/c5cEWzpjh1+Hgp/94tSbCwyIksRIEi7V2pPME9EBXJqvZLGquaHZOSBL9Frytv +ZFJvwMd4mCKIJgoYUob2OsEyEX7NuSZJ08GJEu3qSLJQlFZAdk+svdYQiAL9FUEQCQMdD92zcsm z1ISBfEmTlphclzQr3oviSiwLTmD1+IjQxBYv4Mh7XtgSPsenmsyP6p/LPM6yiCkiNMUFOF34L3U 0x1QTFy5EKO734MJy+fzRmjsc0Iwsd8gjFowIyQJAkEQCddAnxzQsiLe88DFssmz0H3YQL+sKOp1 QAlCq+6dvFamjGD5wKbtuL7lbTj7zjtBO1MApREEwJIECwsjYPtzqyCWExV5N0oG0chMlQ1gUVRp Dx3bpMC5bOKSdv265CBv4CtmDsRsgmz/PCgiS5E2QM7Szcn0mnXH11lv1t+/CbKQlBWQ3b3PkhVQ 7aMzvpgdYI9LGlMkCmIJEkVchreMsqO4Y1QkIWhp6ge/g+7y/Q42reQEyawhWjhItHQnTxiqSw5U GQOOcCToDpL8DkZ3v0fZrShSnoUwi+CKZUaBKHlcMDefcXCZTkUEy6fMQrchAzivA5pdoGVFgCdK rpw7F2gYHti0HQBw3e23BLqDyO+6JFiSYGFRIFQ6A/b9avgnqCBrkyp7v+y797qoFlFgr41qXWV2 LFIFp6r9ZdBpE6qzn2zcpIyE6THzjp9mDl1X6TjtiYmsD6DWK6TNCshKe9KKidn3xLFUxCCtFiGp 8xG7LU7PUMQNHJNEgbgu/1rS2pQKlElYk+RnEJYz+3KjBA80GM9SIgRk90jgTyp8ZMmBtKWpyu+A uBjd/V6MXz4fxHUxbtk8jO01AGOXzOHKsujP5HuHYPjcaUE2gBA/I+ATBJYc9J84CvNHT+IyDoEh muti+dTZ6Dq4f8TrgLgEmxd7WZw7u3fEzpXrUTl3LsgeHNyyE01b3Irjux/Ag3sPSH/HZcKSBAsL Q6DZhCRiwELni0PcJwtREPfXDe6TSENZHZNU58Su0QRpydvCVHW9igx6KfIE7XHjmZpH5/xMZFCK uEOvO0dagbPMydq0SZyMEOgE2bKSHHYf3QBeNp5sHXHjq7IGcXOIZUWqtemOLaKsbLBsHi5gJMyd dITZg5mbVgEMQeAOIcC09csxrGNPTFu/jBnHf5IDpjoWEQBT1i7F8M69MWXtkmB7uIteS9Pgesmy BgRcKRFAMwMhSSCui9nDxwHwOhYRQgJyEO4fZg+I62LFtDnoMuieiNcBJQcA0KJre1TOea1MqSna 4e17AADHd4fC5Go3JbAkwcLCIBqaI3NasPOxZT7ie0VDpwtR2Wti5zWpO0hCUtCetXxJFsDHvVYd l+Y8itRNlClQTrtecZw8568aK22AzG6TEYK42n9xrDRrYMdPyjjEzakSR+ucexpzszK6HYnHseVF rBkaAMzcvEogBnyXIrUhWn6/A/pclyhE9lURFZkeIZI9YETJ/jmP7dkf45bO5UjC6EWzMaHv/Ri1 YCZXSjR14HAMnTU5FB77gf+cEeMDcuC6LhaMmYx+44bDdV30GTMUi8dPQ6+Rg5lsgdee1KmEGoTN izxy0KpHJ+xYsQ53dG6HyjmPGADAuXPncGznPgDAFTddj1OHjvG/5yrCkgQLC8PII2QuAmmdj9OM Keoc6LhFnovOHGWuKQ61fmc8y3norEnn3ES9hElDN9N36OPG182sZPVHyAI6l+ruuKpLkG5pjyqz IENej4OkNel0ONI9d90sQh7kJQoATxKoGRp1Sw47HXn/C0iB0u+A2ZYSou4gs3NysKSo3mDKmiUY 0aUPJq9ZgpFd+mDy6sVyt2Q3NEITTePidAeUKITbvIzAHD970H/iqGDfhWOnoO/YYVyJEeB7G7gO iONizeyF6NC/NxzHCXQHrXp0BnFd7FixDrd1vCtwSj60bRcA4NjOfbjyputx8tAxnDp0rCbIAYUl CRYWVQL7ZVGtbEIWohBHOuj74jYTa0jaRzZO2QRGFkib8DcQUYYZmmqepLHSdO5hn5u8gy7eoS/D nTnpHHTInqmWrqq7/vS16j32/TSdhtj905Yl6QqV0xyj0iGIr+OOKSqbkPUY9tjBd3s+B0Padw/8 DggBQCvLZBkEhO+x5CCPIZrYxYglC9plRyRKDohAWiavWYyRviGaTHcga2M6rvdAjFkyh9Mc0J/h 86ZhyoChGDp7CgghmDFoJAZNn8D5HfSfOCrsVsSSC4cXKgMIyorWzVmE9vf2wob53rm37tE5aGe6 e81GNG/fxicIFTh+FgHwWpqerDFyQGFJgoVFAThfy450tA2ykiQTngK16pqcVFpk0hitLL+Doucx nUVIIhhFOjTnJSPs+efxtBCzByJkpUSy93XEv3k8DpLGlBEQ2RxpuifFrT1Jx1BLYLMJHkEI/Q4A gIu1hRKjYR17YprC7yCNgZlO1yKd8YZ3YrwOYjIJImS6Ay6DwIq4XTeiO+AyC66LGYNHYdD08Zg1 dAwAT3dAHZBZn4QlE6fzZUWMa7LjOFg/dzHa9euJjQuWoXXPLnBdBxWnAtdxsXfdZtxydyucO3sO jlPBsV38v+2TfnlRLcKSBAuLglALREFXnGziTr5qbHqsuE0HpjMAOnqFNNcDyNbmUoc4FFmSo4Ju gJpnPeIcJs4tTgBdxHUr8neSdt1x5CCudEfcJ2sJT9rMQ1ofA9k+cXqDuDlV+6pel5FNkCHOi4Ee N33DCkRuPNchQg74vEF+3YEs8E/dzYglBZLnIli/A1F3IPM7CMZ0CVdSxJKEwTMmYsZgzxBt1tCx UqdkShCWTpqBniMGeV4HPjmgZAEA1s9dDADYtGg5WvXoxAmW963fgpvatsS5s2fhVByuYxE9n1qG JQkWFgWiLKJQNEzdyadjidtlgXlRGRITJUhFtDSNE52yd62L0jiUIeyVnafO2kzMYfI8TBIcFZKy CjJykDW4F1ucinfqs2gKVHNn0SLEbU8696zXhSItUdCF6OAsjpWEiM8BEAbHQm2RThiqMkTLaoYm zSb4Cwk6FpEoOWCJzKiu/QB42YNR3fr558ZnECBmB3xDtJGsIZqMKLjhPAMmjfbLiNzQ6yAwUqPZ ggpHDlg3ZQBo3bMzXMdFpVIBcTyCsH/jNtzY6g6ce+csju/xOhaV6ZZsApYkWFg0ACR9UcmyCWmC 7Li751m0AElzsWPrbNNFmrVkKUEqs2sRi6S6dxNtM2vRmyDteRRJQFRz5C0RSnKUlu1HdQdJwT2F rBuR7D36WudOvU7L0LxaBNlxsveSxpDtqzteHiRlBNh90t4UmrZ+OYZ26Ilp60OiECQSOHKQL3tg qqVp+FQQTisyCaO69fM7FnnPJ6xYABCCMT3uxbhl85SOyZPuGYwR86dzXgcQiMKsoWO55bFtSgMi 4RK4hGAF9Tughmi+FoE6JVN4bUz9TITj4MDmHbi+ZXMc2bGH26+WS4tksCTBwqJg1ELZkQ6q0a2o 2q7J7HnHnWsWcpC3JEfVnUdX4yDbV+bAXK3sganrpTOHCaKgUz5WRlaBImtwD6QLxpPakSZ5GWTR IqjWo0tIVOesuj5JHY7Sfh5nDfzTwmthGnodhB192Ff6yGKIFrff1LVLGe2BZE307j9DEGjGYOLK hUHHIm9XL9gft3QuxgWGaKzfQXhnnzDdh9hMAtUdDJw8BnNHTsC9E0ZiwZjJfhkRCUmCb4y2ctrc 0O8g8ELwWpq26dUV25atRstuHbBr1QY45yq+SJnpWiRoDxpK9oCFJQkWFiWgbKIA5Avuq+miXC2P A3ZucS1luiVnmS+LIZqJczLtS5A2mK9GC1iT608zP0VaIzTVcXHHi+/FEYy4+dO0MZWRjbhMCfta pxtS2k5OacCSgiwEIVuJKe91MG0dJQrRQDStKBkwYIqmyB6M6OI5JhOBIHDkgCkpGtOzP8Yvm+cF /gBnkEaEsqApA4Zi2JwpXItSus/sYWMxcMoYEJdg7sgJuGf8iMAQzWGzCH5J0aoZ89D5vn5Sv4PW PTpj27LVaNElNEQ7d+4cDm3dFZzzlTffgJMHjwZrbaiwJMHCoiTIiIJOGVFWfYIY8KY5LotAOa/n guw5HbustbBzF6E7iEPSnWrThmhJHX/ymKLlOb6oOfJkKsrKIKnOM03nHxa6d89V77HjJB2fVYsQ dz5xmRLZa9ncca1O05ADmebAZMYg02e9H3tOXbcMwzr1yhzYs7qDzF4HwpooBZiydglGdPaIQbAL QxCo7mDiygUgQSeiYMdgf+/HO2r0olmY0Pd+jFwwI6IdcIWSIdrSNNQdMD4JLkHvUYOxdOIM9Bh+ X0AQVs+cj04D+/r+B27gd9C6R2e4xMX2FWtxe6e7vXamfitTliAAwMmDRxs0OaCwJMHC4jyBeDcr 6514GiAD5RujsQF+tQzRWHIl6ziUBrqGaFnGTgNxDp016ZII0x2YihRYl5WpMGGEJ/odAPJyGB0D NBZpMg9Jd99VZmRJgbtq3rSOzEnnrLtf3HVgQT9bk8iBKWflWGj6HSRB5W+gMxa3j0J8DMIaoi3m 9hnVtV+YOXAZfYH/OK73QK6sSNbClB477f4RGDJzUrAtaGnKdC2ihmh9xgwNhMou08aUuARrZi1A xwF94DhOoDto3dPzO6g4FexevRG3dWgbGKId3r47+qs5D8gBhSUJFhYlIk/ZkQzsdnHMvPoEOgb7 2hSyCJ2LJgtiaZEsiMtLGmRjVUvQG4e0hmjsaxPnpQqyyyAhpubKqvtI6lqURU8g7qMjeE4yG5O9 nxSQ63YZissKJJ2z7FzTrCUOaTIHRROFOL8D+jwOWbsWKRYSXZOENIzs0heTVy8OWpqKpUViORF9 DFudht2Jhs+diikDhmHo7MlBpyLXdTndASGE6VpEsGj8VPQePYQhCKHXgVvxdAkAsH6el/Wgfge0 5GjP2k24tV1rnPXbmR7btQ/A+VNaJIMlCRYWJSMvUYgjBuIxJk3I2NeqfYvyWyhqLex4ujXnLLKS hrLq9VVrMuVNwM6Rxn04y/VKs39emNRs6I4XV1qUtg2pbB/2dVbBs2wu3UyCzj66JVBJ58sSIRkp ks2f1K2JBu40k1AkUdCDPBhNygTokoM0mQk1OfD/TxCQg5Fd+2LiyoVe0B+0KPX2U5MEwnceYh2Q XRczB4/G/dM8Q7SBU8ZyTsls1yLAd0wW/BA6DeyLtXMWBetu06srXMeR+h2cfeediN/B+VJaJEMd OV/PzMKixkGJgs6XiC4xYPdnW+ylNTBL6vIT937WY3XHMbEWdp88JSGy/Slk3YnyBrsmW47mCYRl 55GnM1ESiiAHJgXXaeeLa2lKoRPEmmj3mbUbEt1H5qkgO07njr6O43GWcqG0JnLsZ6yYPUjKJoif 50mf76r34447ffh4anfkJHIgIwRKkkCo18FSyMiB9zLczpqhRbIHnMeBfwABJvS7H6MWzlQShKBj 0ZAxwdgD/OxBWIYUtixdOmkmegy/LyANot9BUFrUozMc1wnamZLA7+B2VCoOHgz8Dq7HqcPHzlty QGEzCRYWNQzVF1RR0PFEoPuJ2/KMmwV5ypCK6loUdye9lhyT6T4mhbxZxtPRaojP046T5vyL/B0l ZVtUmQLd2nsZTPgOqCDrfJTHdI09XqebUhzSajJUc6sC9TQZglL0CQpQcpDV7yCSTYjEw+rSIvow smvfwAxt4soFGN39HoxfPj9CFABEHmXeBSxBoKLkoLRI7FLkPy6bPBPdhw4MyoZk5AAA7uze0fc7 cAIzNABo2qI5juzYy535yUNHM/9eGhIsSbCwqBJo2ZEMcXeryvZPkEFlfmbKayGrKVrSXGW2NJX1 ts9rhBZXq1/0eZWpoWDnSVOqE3fdVNtNiq511ig+prlLT7eLyOqQnNbQTIY0rVV1RNdJGQzdbko6 61Fda9M+B9UiCsZ0B0CkaxH74D2NkgPAc0sOhcYE45fNw9ie/QNBMiCQA0Iw6d4hGDFvWtCNiAb9 IjkAvK5F1POA7uOSkAgsnzIL3YYMCDoVUZLAkoNWPTphx4p1qPheB67j4sDm7bjhzttwdOc+HN/d 8P0OssKSBAuLKoISBTFDkKQ1qAWiQBHnMVBNrwMZYSlaB0CRJtDNSxyK7vZTRnYi7Txpr1cSiRAD 9yLAksakshrVXXp6rLhvVodklUg5CWnu1CdpK3RExuK+ceMlrUfnWgPJBCHt53Cx+gQeot9BUiZB xxCNLS2KtDRlWi2J5IC4Lkb3uBfjl8/3hMGC1sA7lM0qeOMEZUECQZgzfFyQOZg3amLgdcBmEVym nAgApy0gLsGmRcvRtndXbF26Gnd26xh4HTiVChzHwaGtu3DdHbfi6M5957UoWQeWJFhYVBkNxZE5 CaLHQLXM2GQuzkA52QNVoBsXPOs6KFcre1DtEilTIuu4uZP2M3WebKCaJJQV9xORVrSsa2wmO1Zn vXGtUen7qnKiJLMz3Wuie32SMhq6n69lBP5p5xDbmGZGytKiCDlgyokA2q7U+74bs2g2JvQNNQeU HBBCMHWg17GIZhEoSZgzfBwA3+/AdTF/9KTAEK3v2GFYNG4qeo8azBAEB6tmKPwOenbB1qXUDO0c HMcjE+fOnsORHXsAINAenM+iZB1YkmBhUQPIQhTiUOZdKwrxDn5a3YKIPKZoMhQVVKvEynmQRBzE 50WdU1EeAUWuPcv5mRKWx82le6c+T9kM+75ui1BxW9b1sK/jgv04QzRxX52WqjqtYtMazRWFIsuO imxpKjVEE7IHk1Yt8rYKLU3H9uyPcUvnRgTHIxfMwKR7BmPEvGkBQZh233AMnTWZyQrwZmhUd7Bg zGT0GzucKUcKvQ5ouZDc76ALiOti+/I1uKNzO1QqlSB7ACAgCME5NmJyQGFJgoVFA0WtZBNUWgCV bqFoJPkd5C3vEccpK8gVNQ5p242q1irW5ZdxTmnnMaUZ0MlasPvluRZx5CBLQJ7XIVk2RpqAPMuc SQJkHbfkuLHjOkCl9YEQ11FUNsE0UVCRA12xskyYHNfSdGSXPpi8erE0e0CJgUyQzP0IDsnsvq7r wiUuZg/1yEH/SaMBTpTMiJqD8WhZkUcS1s5eiA79ewd+B216dYHruHAqFexavQG3dbwL586d88qQ HAdHd+4DAFx50/U4eehYsGYLSxIsLGoG1S47Skse4gJ/MQuQtStSWujoDnTKe9h9xAC1bHIgmzOP P4PuHHlQTYG1iXOTEbC01zhJsKvbnz/tXX9V1yD2/bSlR6rxkrbJxtPVWeisRZbFkJ2Xrm5BRFEZ 2bxEAUiXOUjUJSSQAwCYvGYxRnbpA0BWWhSWErGmaGxADwKvdIghCcNmT8G0+4ZjyMxJmDF4FAZN nwDXdTF72NjAKZm4vCZh8YRpflmRw2kWugy6F6tnzgcAtL+3FzbMX4q2vbvCcVxUKg6I62L3mo1o 3r4Nzp09B8epwK04OO6XFQHAyUPnf0vTtLAkwcKihpBEFGRfLmVnFPJkBdJmF9IYtAHZjcOSTNLY bdUIcNNoHOKQRJBkHZl0x0k6hyzH5T1nU/PqjsXqDuLujuuUuZi465+mFChtEK1TxiQjBGmO111P llavMkIl26bz+Zo16E/b0prdP6sQObLfWm8/3a5FAJSlRWIGYXyf+zB60axYrwPAIw8AArfk/pNG w3Uchhx4xy2ZOAO9Rg7yPAyI6HfgBuvbuGAZWvfs4rcz9d7bu24zbrm7VeCW3Jg7FqWBJQkWFjUG 0/oEU0hLDpICfBPZhSL9DorsdKODsoXJaebTvTYNJXOgg7jrJPodAOnujqtKb1THxY2lCn5lc6re k61DZ1/x/STPg6xrydPNKO78yswosFkBFnHEwahfjkZpESRdiwCmMxH8bkQ06AfznA4ZGJrxAT/t bDRo+oTAEI1mDzyCICcUjk8eRL+DDfM9stOmV1e4rsQtuU1LnD17Fsf80iLuUliCoIQlCRYW5wGK zCYUrSdIyi7IyEZR5CDJMZndp9pdhUy3G00zXloiYaqLUNIay/jdqEq+8nQhYveLG8+US7Ls/aQS piSn5LhxTK8ly3XWKYeK6zSlCup132ch7se+zktEErMIsq5FGm7JgSHaitAQDRFiEGoQJvYbhJHz ZwRBvMwMjWYOKKiJmSzrsHzKbM/vwC8dok7KlBxQOJUKHNcBcVw4rosHNm7DDa1ux6FtuyK/K0sO kmFJgoVFDaIW9AkU1fY6EGHS70AneBWPK5IsFB3klm26pgro4zIRDUFEzq7fVIvSLGMlGavFjZHU 4jSPSVrcPDpjxAmS8zg6q85L5tUgA/2M1QnqdTIC7H6FZo5J6Hcwde1SEAAjOvfGlLVLtFuajurW DxNWLIgYnxEJUYiKi6MkYfawsRg4ZSzmjhiPeyeOwoLRk4Isgbj/imlz0HVw/6B7ES0v2rRwOdr2 7oatS1fhzu6dsHPlOq/EyPVEyge37ETTFs1xdMdeXHXLjThx4AgA4JQvTrZIhiUJFhY1irKJAmA+ a5C1jamsFMlU9sBUy1LTZCGrxsBku9GyshM65m2ytenMWTSo7kClKzBpCKYTTKcJ6lWi5bh1y5yf dboHpVmL6hyzmrbJ1pRVj8FCFtCrSoaK/tyWQZpFUGUJmPdkpUUR3QHCMqNxS+diXK8BgWsyRxgI weT+QzF87lSuZIiKlmnXogGTx3gEYcJIuH4L0sXjp6HXyEGMczLBqulz0WXQPVz5EO93sAotu3aA U/EM0TzfAweHt+0GgEB7cOLAEZs5yABLEiwsahh5iEIWVMsALW49opNzHq1A2bXq1VpTQx5fx/is mh2m0gacJlyCVXfZ03TtyUJqVM7PebsHZV2L7E6/TkejOJdn2fpkoEG8+NkqfjYb0QuYQEAAiPI9 7n1lS1OCMT36Y/yyeV7QDwCEYMzi2aEwWdAbAOBalrKlRQMnj4FLSEAMaPag18jBWDZ5pi9KJgHB AMLWptTvoE2vLnAFvwM63rmz53B0514AaPRuySZgSYKFxXmKuLtTsi+604ePRwJyE6QhazZBljnI Exxm0RWkuaueVQCcN9BNKuspKjuhe56mPA5k45XhmKxjhpbG1CttYC8bI249bGCfR+CbpG9IW05l Yi151xSXyWC3i2A/R2utLSpFkEVQZAcCEGBElz6YvGZJYIiW1NIUYL0OvEFUZGDafcMxZNakYHtA DqaMDcqEXNfFwrFT0HfMUN8QLexO5DhOMJbU78D1WpruWrUet3e6O2KIdnTnXlx18w04cfBoo3dL NgFLEiwsahxiNiFNSz6KpLtfLGQCYXF70VDpDlQGaUlI0hWw2/JCNXaZpmVFjl+t+n+dMibTpIFt aUqh6kSUZBwm2y7bR7WfiUyFzhrj1pB0LllEy7pj5TWai3N9jhu7KIdkk8cFIOpuRQAwZc0SjPC9 DgCCkV1CchBtaRp2LgKihmggBCPmT8fke4dg2JypIIRg+v0jMHjmpECLMHuopzsgfuaAOiYvGjcV fUYPhcMQBNdxA6+DTgP7Yt3cxYHfQZveXX0zNC+jsHvNRjTv0Bbnzp4NCMLx3aHfwQlLDozBkgQL iwaAPG1R07qBykzQABSSZRChqztIE2jHEYq4LEXeu9+qFpkm76qnPd80a1c5VWcZO202ISt5M0Ua krIHJgJqcRyTQmEdkpLHkE1nDNX7aYXGRV3fpJKjOEFxkd4JWY4LBck8OeAIA4PJqxdjZJe+mLR6 kUcsJMSACpLH9x6IMYtnc87I4Y+LYXNCQzTAa3lKswcDJo8JMgXUGdmlGQjHgUvcwMeAdU5eN3cx AOp30BnOuVCPEPgdvPOO9TsoAZYkWFg0EOgSBfbLzWR9bJ4OSEklR1lEyaaCedl4LIrwSyh6zCLu qJeROUhDREyY5Kne1+0ipELR3YhMCYVVWgfd+v24jkhpdQAqF+q8WRXVdYnroJT1br4Jo8tUELUF CSZoFFSYTNwkrwN5FoHvVOQF9jMGjwLgGaINnDzGzx5ECcLSiTPQc/j9Qaci2q3IyzKEi23Tqytc x0HFJwjEdbFvw1Y0a9MCZ985i2O79kUvhyUIxmFJgoXFeQJTrfR0/RNMZRmytDRlYaImXxW0mwqO RT1EEf4OWVuO6l4XE5mVpPUVTUTiSIPMEE2GtOQgazci1ZgmhMKqMUyauumeT5ZzShIcJxEv3bXH oUgCoDW2Hw8PF1qZEpkOAbwZGgChtCjqlkwIwYS+92PUwpmeXkBBEqhbMiDqDghHEAghWDppJgBw BIFqFzYu4LsyVc6dg+s6cF2vVOmBTdtxw523B12L2OtkyUFxsCTBwqIBgWYTWCSRgyKN1ih0sgxi NsGkIZqs/ChNwGxK9Kuaq9raA1MtTXXIRtElReJceX5P9Pg0d6R1ynmydCNKugtuwpXYlHdDFoO4 vN2M2Oeq621C80Fh8qZLXAOJrJ/bMu2BjCBEzNBWLsTo7vdEW5cCnFsyzRB4AT4iZUaUJLCGaFR3 QFy/5SlDFGiWIPA7CMqMfL+DPt2wdckq3Nm9I3auXB/4HbiOE/odMKJkwPodlAFLEiwsGhgoUUjz JVYGUWARl2Uoyi1ZVi6kSwhU4+UJQFXHmur2o/IfyDt2HNnKk5VRjV8tyEqLZAFpmkA4Tzci1T6m zcLi5k86XxNEJc04SS1cs5CeuGvHgn5WmsgWFKNPIBjRuQ+mMF2Kwne8F6O69uNEyYD3/TF++XyM 6XEvxi2bxxGDQLzsEky6dzBGzJvuZwSieoSZQ0YD8Fqazh05AfdOGIn5oyeh39jhPEHwCcPKaXPR ZdC9Ur+DNr26YOsSz++gci70O3BdN+p3YEXJpcKSBAuLBohqOzKngcwYDSimLl9ENQJRnSC4KAKS d2xTomfVNVFtK6qMSXWOQHytf1Lpi+w41T46XYayiI2zmoXF6SJMdDQybTSXdj1px5MRQ/azktV2 iZ+dhWsO4uaQZg+8YH9Ut34AgIkrF3IlRUC8IRpbSgQgLDNiOh/NHOyTA7+0aO7ICbhn/Ai4rou+ Y4Zh0fip6DVycEgQXBerZsxD5/v6BQQh9DvoCtd1sW2Z73fgG6EBQOVcJfQ7uOl6nPSzBpYglAtL EiwsLAoH1R2U0QJU5odQ1Fxxcxc1fhHnEjduVtIRd+1VnZNU+5s8xzRiWxFZPQiSaufjshl5Spd0 3ZGzOj6L56Iay0Q2JG4c1ebxaTkAACJySURBVFhpf0cqLQObVWBfp4FpQkEkpUajuobkAGACakIw pqfaEG3UwpkcQZg6cBiGzp7i78uTg/umjvN0B47jZQ7GDWe8ErwSJaolIK4btDR1HAcb5nu6A0oO nEoFO1etx+2d7goIgsv4HVAztJOHjllyUCVYkmBh0UDRELIJqtKivC7FulAFokWUHKUNpLPcAa+F dSeNxa4hzbVQjaMzVtL5Ut0BGzDrlgTpGm6J4+gE53HzqMTGsuNl5TlxY5jSWKjORWcc1TUx0X41 bVZEtr/ss1JGFuIyDSJMlh2N7NIXk1d7rUIpQfDIAS0toiVESDREo8JiNovAEoRZQ8bg/mnjAhGx 68qclT2xcvehA7Fi6hx0GXQvZ5C2ccEytO3tkwPHyyjsXk39DkKCcGyX92/4imZNrRlaDcCSBAuL BoxaJQpp/A4Ac2QhqydC3jmzjpXG3di0c7LJdqNpr0HSeKb9DoD8d7iL6CYkO75MwbJuFiMNoZKR KN2ORibar2ZpmxpH/GQQyUIamNUnEIzsqigtYh6DvSVlRSPmTcfk/kMxbM4U3xBtJAbPmAiXuJg1 xBMl3zd1nGd8xnQtWjRuKnqPHsI5JtPyIsAjBusZv4M2vbqgUnGC7kd71m7CLe1a49zZs3AdB0d3 7uPO95TtWlQTsCTBwqKBwxRRSPry0iEKWUXJRbYHTZpP3JYGRRmXseNnXVvc2CY7N2VdX5pshw5p kJWzUcQFtOxrcf+0rUazaALSltboEhgdzYRqzCwiYVk2w1SHJV2yovM7Va1ZRkR0PhOBbGQhC0Tv m5E0e0A7DlG/A/CP4/vc5xui8RkD+nzo7CmYdt8IDJ45EQACUfJ9U8d6gT+TPXBdF4vHT0OvkYM9 guCGXYpoiVGH/r0DgkDdkmm3IuK42Lt+C25ueycqZ8/iyI69kfO05KB2YEmChcV5gDyOzKaQ1+8A SOekLCLr3Xb2eNm8pt2Hizyfosal51u2xkMFHb8D3Xp9iqz9/3XEsKZM1GTHZ+n4w+6nG/wXZTCn Wo/OtRW3Z22JGned00BFFlSC5zzjsqVFMo8D7xGgogUVQWBN0wLdwZSxjBkaCbIHNFvgjecEmQOW QBBGmNy6ZxdPrOy3O3UdF/s3bsWNre/Awa07I+dkyUHtwZIEC4tGClNlR6ZbmpalV0iaVzV3EcG7 SERMziG7s562s5TsLn3RWZQs44i99OPu4KcNsOPcinXmMGGiJr7O2mqVhS45MKkBiFtXVtFynOYj S7tYCt3PySQ/BBV0yII45unDxzG6+z2YsHx+xOPAe8prEICQJEBCEmjmAPBamoqEwmtp6mUKlk2e ie5DB8JxQpJA36OGaG16dcG2ZWt8guD4OgQHBzbvwPUtb8OR7Xtw9a3N8MgDh7n1WtQe6oj97VhY nDcQswk6X27sPrqkgf1iSxPg5bmLHXdckXfdRZgs06kGTLZdNZFZMOXrkMcDIM/d8jwmaGnGV5XV pBH1yubQIT/sMXk1ALrnrTOO7vrTOl3LgnLV52KWz0+dceOOmbBiAQghGNuzPwD4bUwB+O1Q2Zal k+8dghHzpkmzCGxZ0Zzh4wEA/SeO4ggESwKWT5mFbkMGhNt8N+Wga1Hvrti2dDVadusI13GwZ+0m 3NquNRzHwaGtu6TnY0PQ2obNJFhYnEcoQ8iclSBkRdl6BV0zsLznoxq3iPam7DXMStRU7VFl16XI Lk/ifCaC0LjuO+I+sjmyvqez/jSdjGTHJM0ntlVNWlPazkiq34c4t858cdcxbj1pzkvVAjVvNkGF LESBtjEdu3RuoDkAgNELZwUEAZIsAiUJITnw2pnOGT4+IAe0rSnxCYDrZwtWTJ0duCVTHQIlB217 d4PrOti2dDVadGkPp1KBU/FamZ5jdAe0pSlgyUFDgSUJFhbnGfIQBRXY99i7ZmWWBKn0CmkDzKQg P07kW4ZOwHRLUnasIs8jD2HI0g42zV3/pNKgpExCXAcgnZKfuLvbuiVJWUtmdMzNdMZK0xlJtoa4 65nnGsqQx6yO7q+bUc2qA8uTgRC1BKMXzcLEfoMw8Z5BGDF/uk8QEPgdUE0B53VAPEHyvFETce+E kZK2pm6gN2A7FtHtGxcsQ9s+3QJR8s6V63B7p7tRqVQ8kuD7HRzZsRdX3XIjThw4YluaNkBYkmBh YSGFjBiIoNvLIgtJegWdu/x5yqNM1dCXMYcpV2ZTgnBxe9ZzAuLdktn3xfdk5Shp7y7LsgtZ/ADY 7WlEtGnFwbo+CGm7AqnONW3bVNk+smsSJzRPc/66rVBF74MiswlpEWllSkhADqb0HwoAGDp7irev 62LG4FEAEHod+CRAlmnoPWoIlkyYjh7D7wsEx2tmLUDHAX08vwPGEI2Kknet3oDbOvqGaD5BoH4H AHDiwBFLDhoorCbBwuI8RV1dHQA9d1BZFiGNloHdVoZ2QEUGTAfvqjFNnkdc+VHRdf5l6z2yisJZ cpDX2Etnv6Rxk3rrm7gznlZPkTSvrsdA0vXRWXvSuceNE3et0nZ0ypulYSEG/7o6BRXEfdLowcYs ms3pDkQhMgjB9EEjg2PunzY+LB/yHwkhWDh2CvqOHSaM4WL5FK+0yHVdrJ29EB369464JXtEw8Hu NZ7uoOKXGB3btQ8AcOVN1+PkoWMAbGlRQ4YlCRYW5zEoUUiCzEk0CUmdPEz15leJh8VuO0XW8md5 P+/4WecweUyROhAVYRBLr0Qklb2w28XjdA3NVHNl2S9N4K+bGVGNL7smplqG6qxfNX7cOGn2SdPR KQvJEveLy5hkuYmS9J4uuRi1cKYnUCZhi1KqQaDkYebg0SE5CMgEb4bWZ8xQjhywLU3XzFrAzdu2 d1c4jsuVIu1dtxk3tW0Jp+Lg6E7rd3A+wpYbWVicx0ijT6BfUKcPH9ciC6q0ep4SpCzdhIpomaoT HOcV3BZVq1+0sZkpqEqSZNuyBuHi+3E6Ap25kvaTrStrsJu3a1ARLUOTzj3N7yXpHPKQGpkXRp41 iMGuzudp1hbTOsfwGQRXyCKEZmiEKSNivQ4Wj5+G3qNCt2RKFEQNAoBQd3Cuwr2/f8NW3NjqDpx7 5yyO73kg0B3IrpdFw4UlCRYWFhFkFdTJxlCVBuVpLyoLaE2JctMcX0YQrzOHCYIkZmVMuzKnPc5k EK6CjtcBC51shFhTHyd6FtctjiNbU5678+x+srXKrmPcNtXvRRxTJCRZPCqykJqsXal0Oh3R59UA Rw5cApfpZjRr6BjcN3Uc5gwfx2kNqBGaSzwCQF2SQx8EnyQ4TlBaBMAjB77XAX3f8ztojiM79gT7 WYJwfsKWG1lYNALoZBNU9bZ5a2/ZfVkUGciX6dqse1xR5KUIIbUpZMki6YhpWaQVyKrGMtH2M2ms tCVEeevodZDVGyIukE7SRpgwgdM9H9k8aTozAUDHAX2xft7iyGeiTnOHLNqDpM/cYXOmciVClAjM HjYWA3235HkjJ+DeCSMjhmhLJ81Ej+H3BUTDdUlQPrR+3pJgnlY9OmPHirW4vdPdgVuy6/J+B1Z3 cP7DkgQLi0aCOKKQ9EVmQqTHoqw7/WnIQpEZiKKEznnKndKgyDKkJL+DrF1tZO+zSFsyk2VdsrnT +DXoGqTlzS6Ic5pwSc5iApd0rmkFzbJ5VGtg5+w+dCBWTp+LTvf1w7o5iwAkG6ypsgt5BMoq3cLQ WZOZEiOPKMwePg4DJ48Jtnt+ByP893m35CCz4OsU1s1dDAC4q083bFmyCnd26wjHzx7sW78FN7Vt CddxrN9BI4QtN7KwaCRIo08Qa2PzpNhlWYlqtEwtuoOPqkTH5J1+UbBtugWsyq+hSHF4UiCqI4DV LT/RFS/rluvozJk0nu6YcSVAceuI68IkO2dTguMs5WK6101nzUk+COK+PYbfD0JcrJw2FyunzwUA JUGQQdX8oYiWqJw5GiGYM3wcBkwazW0HAOKGZULLp8xGtyEDPK8DRsi8ft4S3NW3O1zHxZYlq9Ci a3uvU5HjwPUN0SrnzuHYrv246pYb4bqu9TtoRLAkwcKikUP3CyytTiGOVGQVN+cV5srmKiqINzF2 kp5DfL+oTIhpsqDKHugGuEl32rN27ckrWk5aR9J21fiixkGnFCutW7Qu4UrzO4kbR/d3qHNMmpaz 4hy0XGfF1Nnc/uznnapBQ1zjBvbzL8tNFtn4pw8fx6Dp4+G6YaA/d8QE9J84iskMhCSBZgNWTJ0T vGbJAeC5JTuVCrYvX4s7OrcLNAhOxQkM0Y7t2o8rb7re6g4aISxJsLBoRMiTTUjaziIt8Sijpl91 h7wIDwDV86xrll2HIp2Zda5h3BqTrlHaIJkiSRwr2088XqerkLiWLHfv416nbc/JXq+kcpk8RmKq 9YlrSHsNdc6RPY+yfBB025pm+SwUyUIWyMb3OhIRzB05AQBwz/iRfHbAJwoA4FScoFNRp/v6wXWc gBzc1ac7XNcJ3JJDMzSPHNCWplfdfANOHDyKk4eOWXLQCGFJgoVFIwNLFLKmwdlj05gMxY1XZgmS qSBeHFccr0jvhjKcmZPOlT1fHSG5qvNPlrvQWbQJceNRiGtiS1Ti7npnyUakOY+4zkmqwFo3SyAj QmnbjKqOT7omWUiNeD3izk1EnLYqiQhkKbkUyULe0iPXdTFv1ETcO2GkX0rkCGZqnv4A8DIH1C2Z lk7R0qJK5Vzglty8fVuGIFRwfPcDAIArmjXFCVta1KhhhcsWFo0UOo7MOhkDCl3SoTtmHoFuUuBf lAmbCWGx7th550g6/6zXPEknYdoMK2kc1XhJ8ybVspsQGWfNbCSdd9K10+lIlFVQnLXVaRYfhDik NYiM2y9PYwfZ+KrsQlJzCHrcPeNGBG1LxVaoxG9tunqmZ4ZG3ZLv7tsDruvAdVw4/uOetZtwy92t 4DgOnEoFx3bx/3ZteGhhMwkWFhZKJAX+SXW7WecE4oNYHRIQhyJEuWWbkbHnmiWgN73WtC7J4va0 pUeqcWTv5xkrTkCt8hpQ1e3LypB0vBrSBNpJ55bGJyDNNczT6jRrVgAw61Wge6MjbRY2TUtp2Vws Qeg3dhgc1wmM0qhJGtvSdO3shcHxG+YvRdve3YLMgeu6cBwn6Fp07uw565ZsoYTNJFhYNGLQbAKF zl002ftxx6cdL258ilryGzB9Rz7rGLrzmN5PdT2S+tHH1f4nddox2dUobSZANb5qPJ278kllTKo7 7GmzI6p9ks43KSsgO4cisgKAfmaA3T+tjkq2b9K2uJalWVqgiuebBW17dwtKkihBcB0H+zduw42t bg9aml51yw04ccC2NLWIwpIEC4tGDlbIrNvrW9xX94tYNVbcviyKDraLuiOfhyiY9IUoOuMga2mq ajtZhNA4qQRIl7DErVG1Tp01xI2TpmWnCmnLlFTHF5kViJs/zU2GLH4DafxedIP7uPXoEgcdnD58 HL1GDvY8D4KyIuqkHG7buGBZcMyd3TuB+JkD13XhVBwc3LID17dojmO7vZamtmORRRxsuZGFRSMH K2SWdeSIIwcidL6806bq2f2LFjen0SqkCaCziozTHhPXtanIcqiklqZZhMZxXXzSdjWSzZk0j7iv jlNv0jbZOGnutOt0NUrTWSiNt0CatbJrkK0nrV6gGshSemTaD0GE6zihFoEhBh5RINi0aDkAoFWP TnAd1+ta1KGtpzlwHBzethsAcGx32NLUkgOLOFiSYGFhEWmNKkvv65IDU1+WcT3Iiwy4k9qjltWF KU9QL5quFbVeGTnI6sYrQ5FdjXT0BWmDZV0SEdeyNO7aqe7wy3wU0oyddD5FZQXoflk7oqU9rqhA XiZGTtJypc2odhs6MGh1GmQPAh2Ciy2LVwIAWnbr6HkduC5ubdca+zZsxQ133h7oDqhbsm1paqED W25kYWERQOWhoHPHT5aeVx2TxWdBNX7R9fUmuxWVUZ7EjkFhutQpzu8gqUSF3UcGU12NTNXr6+yT Vhgs21ccP4mU6OgBZMdm8RaIW2uerECWO/Bpa/yz6AtU29N2MUp7LnH7dRl0rzR7sHnximC/Fl3a B7oDJzBE81qaXnXLjXAdB6cOH7fkwEIbNpNgYWERQMwoiLqDtGVCdIwsgYPu+EXeKRfvyOedQ2ec vIJh1dpla8kCqjtQ3XEH8ptcxQmN48bUae3Jjq/aTzZe3FrY66F7nkllTuId/Lgyq7hzk51/lu5I eQwYizouCSbGTKt/KAqu43iZA9eF62cPti5ZBQBo2bUDdq3egEqlwhGEY7v2AQCusKVFFhlhMwkW FhYRyDwUku76pREFptmWZg4AuWrx0xir1UKHpaRsQdx4OsRB1iqWQidoFvdTBeY6QmPZfjodkmTr S4u02QXddq5ZOyslEZ+kkqzzKSuQZXvWueOuiZhxEK9p2nNi3+84oI/fpcjLHriui23LVuPObh3h OA72rN2EW9u1DrQHR/2uRVfedD1OHjoGwAqTLbLBZhIsLCwioBkFFnEmQEkoQ9Qn0yuoBLwqpAm0 Td6d14UsWxCHuMyF7jmx23TLhOL8A2TH6WoJ0mQwVGuLOw+dtqQ6558mYI+bO2mb7JonrbmWswK1 rk+QHaMiDybF2bQ7EdUhbF++Bi26tEelUsHedZtx81134pzvmHx89/5gPqs7sMgLSxIsLCykEEuP KIr6IjdlYsR2QQLSB9a6yEMcZMG7DqEpmoSI6xGRJohOCv6ziI2zeh3o+CTIzkuFpPNKKudJ6kSU NRvCbq9mB6EybgqUPad4kyRNIwe6f9qOcKcPH8fdfbvDqYQkYcfKdbi9092oVCrYv2ErmrW+A+fO ngtKiyhO+RkEC4s8sCTBwsJCibKIgukvd/ELvSwn5DTEQaZ3KJsUqCDzOxCRptWm7DgdApGWaKju vCeJqPM6QOve8VdlQrLqGgC94L8WswJZgmbTyNqOOc+1pM91Uak4ATkAgNs6tEWlUsGBTdtxfcvb cHj7Hm5/mzmwMAlLEiwsLGJRFFEAyrnLmcdfwZRYWTau+LxIH4M05wuk6z6UtL94XJpOREl3zLMI qNn9xKA87tx0NBLivDotXNN4C9isgPnjdMooTQmSVdkdVRlTq+6d4DgV7Fq1Abd1vAuu46ByroKD W3fiujtuwbFd+3DVzTfgxEHrlmxRDCxJsLCwSARLFEx1DAGyZRB01qBqW1jNQFylhWAzCEVkEnQ7 KgHpOxDFvS8er9sONKsRmmo/nSyBjsdAGsdh2fnpXFObFajOeapKidj3xfPNYxqp+/nnOA52r9mI 5u3boHLuHBzHwRE/c/DgngMAgBMHj1pyYFEYLEmwsLDQQpyYOa2JmviFXNZdyjRZBROeCCySui5V SxwtKy1KcvnVQRpxbhrxctIadITSsvdV68jqjhy3PW9WoNZajdbanGmRJbNp4rzEvwO2Q9Ttne7G 7jUbccvdrVA5V0GlUonoDiw5sCgaliRYWFhog34pie7MaUyG6DHstrQBU5ovaHHfIvwV0gbzMoIg IyU6xCGP3wGQ7BmQlxwkiZ2zaB9025jqlEYlZQWyOg4DyX/PtRi0N/SsAHuc7NyS9i/bwVnWNhUA 9q7bDAA4sHlH5BhLDizKgiUJFhYWqcFmFbI6kMr6qpuouTZhxqZbnkOR1ttAt+ORDDotXdOsPcm0 LOmuvewue5xOIG7ctHoH3ayBrLuRblZA1c6VwmYFam9OVelQEaQtqawo7ecRu96mLZoHLU0pLEGw KBOWJFhYWGQCm1UAzHwxp9EqmNRHnD58vBQ/hCQSkMXZOYvfAaAXfKfNHtDnuk7JSRkBnXF0Tdfy lAzpeAvUYgB9PmQF4s4lLjPAvl8N/4Ss53hjqzt8XwTP84CObcmBRTVgSYKFhUUuyMiCqcCdPs+L pC9xMavAPjelAdAN/rMQBdkY4tyAfmlPWu+CpGPihMLia50sQ1zwr1qLKtMhoiEG0FnQEOdMEhRX EybOrWmL5jh39iwe2ncw2G79DiyqCUsSLCwsjEAmbNaF7Au2GmZQRfkrZMkOmOjEFKc7YJFVkJvW lTjNHf+ktWXVCyRlBWRlcGWgFrsWFTmniLg2o3luGpSZGVB9jumOde7sWZw4cASALSuyqA1YkmBh YWEUpgOsuBIkmaYhLlug2zqVPpoK1LOMkYcoyDIHunX5Oi7AsmA+bYtQ2TE6Y8hKm5L0Ag0lgI5D 3r9t08g6Z9ayxDxzlqk1yKOhsATBotZgSYKFhYVxZKmV1ikJKjKroFpTnrIjE2VDacZIW1Ykey0L yrM4AufpIhR3vOzYpL+zhhJANzRSE2dEZrqTUF5UI6Ogc47sdbLkwKLWYEmChYVFISgiOJOVIOVp h0qRRq+QJmAvywyNzpfG+RhIJ15OIgeq/XSzCiJRUHkLNJQAOg7ne1aAjlnEnGlaLpsgBHnWya5D 5qhMYcmBRa3CkgQLC4vCUFTAIysvMl3ipNJI6JAF087OcURBlT3Q0RHIoOM4rLNfUV2EGkoAfb6R mrj56PNaP89aybZYgmDRUGBJgoWFRaFIE0ik/TKOK3fQnSPLHUcAsUG7aVdkIEoURFGyqtwna+aA 3a4zlpgBSOoixF5LHeQlhDYroHccPSfxvSLmrOZ5VmOtQHhtLTmwaAiwJMHCwsIoVCl71Xt5ERfc sHPrrlUcN+59MatQFEFgoWuGputJkNdxWDW2ThchG1iWP6cOqT4fztP0nCbWaf0OLBoaLEmwsLAw jrhAJOmLNu2XMVvzS4/XWUvaDIRqrYDcX6FIpM0IpGktKr6vyiSoroUOGlNWoJplR/ScxPeSzr+h nWdZc+bpXGTJgUVDhCUJFhYWxqFzBzlpPx3o9CSP63xTFExnE3T8DtIaoaXNCgDx17Ih3A3Oc1w1 1qqDpL/j8+E8a6mki50vqYMbYMmBRcOGJQkWFhZGodvKNG+vcRN9ytOsVffcAXNlR6IoOWtGQFYy ZCorkPVa5T0uCY0hK0Dfjzv/hnaeDWFOlRbKCpItzjdYkmBhYWEcul++WbujmG5VmCdIlZXO5PVX AJJbmupkDmTtRE1nBUwE+LVGMKo1p80KNLzfpyUGFuczLEmwsLAoBGmIAoAIWcjiaZB2bp398/ZJ z+KvACQH/0kuybK1pFn7+R60N7SsAH1sSOfZ0OaUQbXdEgKLxgBLEiwsLGoCKrJAkTbjkLaUKKso UVcTkVSClEQOxKwASwyKKDnJiiKCvKLW35CyAlna/RZ9nudbVoCeEwtLBiwaMyxJsLCwKAyqL+2k O/dActeiPPOb2j/tWmRZBRk5qAW9QEMK8hpiVqDM66MD05m0PMeWnRUALBmwsJDBkgQLC4tCYSII yxMUZSUK7LyyMbIEVbKWqRRJmYEsWQF2/zKJwvmWFaDrjpu7rLU2JCKVBzYrYGFRfViSYGFhUThM iQPLLJmh8xYZ0KY5J93Wi7pjyFALgvBqBqT0Gqj2kV2vvHM2lKxANc4zqcTK6gUsLIpFfbUXYGFh cf6AEBIbZKUJqtg74FmOzzN30nG6hnC651nW+eQ9tiyY/n2JoB2c2B92DNmP6bWWcZ4NfU4Wst8Z IUT6Y2FhYQY2k2BhYWEUhBDU1dUBgFZwlaYkJa0YOc2xOus0dRdWHK/Wy0eydpqq9p1rmxUwi2oI vW3Qb2FRPdhMgoWFhXHQO3qyu7R572LS52XeDRXLUXSCJJ25dALauDHLvLtb9h3ovFkBNhNVRlZA B3HlXGWi2pkImxWwsGgYsJkECwuLwkC/5NnMQpa6eBF5NAMmhNR5UFSmg70uuuPWUvenpPlqPStg xcghbBchC4vzA5YkWFhYFA6WLLBEQUTW7jv0eZbj4pDUSlGHzJQRhFeDNGWZQ+eamfi7KOO8TIq8 86AWhd6WCFhYnB+wJMHCwqI0sHoFIF29f5znApC/E5Fur3ux7CluX9mxSYFltXv+lzFHmnaiNitQ /TmtXsDConHCkgQLC4tSwWYV0tb5xyGriVJeszYT46jOxbR4W2dOHbKUtTUlfc9mBapznnFz0usg gyUDFhaNE5YkWFhYVAViCZIJqALdOP1D3PtJ87DHsRkNdptOqY1qvLLuLCdlRNISgqTrnQVp7nqb uo5Fr9XksbolXZYIWFhY6MKSBAsLi6pCt2UqfT9NdyEdmC7VkGUXssJUsBnXwlS25rhziju26HMq +zpWWxicR6NjyYCFhUVeWJJgYWFRdci6IGUBG1TVQtceMfiulUDVVGlU2WVADYlgmJhT5/qotlsy YGFhkRfWJ8HCwqJmoPJXYGGqM5LuuCaPSWrlqfteFqExvUaik7WJ65AW1e7TX405s2QFKGS+AnHe ApYgWFhYmIAlCRYWFjUHlixkRRlBv+4xMoflMtZG5xbHMYk0d71lWYEyUbTXRd45VaZwlghYWFhU A7bcyMLComahq1cwWQ5SZHmJOHbash9dQiIew76na1ZXC+VatTKfyTmt0ZiFhUVDgSUJFhYWNY0k 1+Yi24GWaYKmO46si1Iav4ZqBNhFrMXU77bIrIBsmyUCFhYWDQWWJFhYWDQIiGShaBRFFHTbp1IU 4fGQx7yOzmvKV8AkaUnT+cpmBSwsLCziYUmChYVFg4JoxlbknfNqldHoZAaq2V61qPOuRucnHdis gIWFRWOEFS5bWFg0SNAALWuwnPausw50902zX5HryyqiNrGWJBTx+9GZM00XIQsLC4vzGZYkWFhY NFjotEwFqtNJJwvYwFhnzaI2IwtEV+i81012TJqMT9EQuwex2ywZsLCwsAhhSYKFhUWDRx5/BR2w xyaNYyKbkBT8x2kCyvYCMAmTHgjWW8DCwsIiHyxJsLCwOG9gwl9BhaLLjlR329OQkrisgM54svfE bbWUFaDrsVkBCwsLC/OwwmULC4vzDip/hbxi3aKC3zydhkzsb+pYE+OosgIq2MDfwsLCohhYkmBh YXFeQuavkBU6rUlNtQRVHS9mDNIen2Vu+rysTkgqcmCJgIWFhUX5sCTBwsLivAZLFnTKcYBkAiBr USo7Jk5TwO6n2/ZUBVUQn5ZYyM65iMyL6vpbMmBhYWFRO6gj9lPZwsKikUA0YosL8OOg49ibpAsQ xxLHVB2nCvqTgnnx/TTBfxpHaJ3zt187FhYWFrUPSxIsLCwaHVRkQQeyIFknQFfNE0c4ZMeJXY/S BP465CbpHGRzymC/WiwsLCwaNmx3IwsLi0YH051udEqYpq5baqy9J92eVkhtSnhtjcYsLCwszn9Y kmBhYdFoYbJlahqikNbLIc6nIQ9R0PUWsGTAwsLCovHBCpctLCwaPVQtU9MiSSg8vFNvTF23NHge N0aadYjma1nLiGzQb2FhYWFBYUmChYWFBcy1TFXV/MsIwtR1SzG8U2+tDkRJBCCNv4AlAxYWFhYW SbAkwcLCwoKBSbIgIwoAArJAIcsuJJUdxe1n/QUsLCwsLPLCkgQLCwsLCUR/hSwQg3qRHLDZBXEf ShhU2QBLBCwsLCwsioQlCRYWFhYxSKNXiBMQ6xIEsRSJrsHCwsLCwqJMWJJgYWFhkQCxBCmuO5EM WbonDe/U25IDCwsLC4uqwZIECwsLC02YKEEC5FkE2TwWFhYWFhbVgiUJFhYWFimRp2WqiiDY0iIL CwsLi1qCJQkWFhYWGWCqC5IlBxYWFhYWtQhLEiwsLCxyIA1ZELMIVndgYWFhYVGrqCP2G8rCwsLC GGR6BSpcFtub2o9fCwsLC4tahSUJFhYWFoYhZhXE7kb2Y9fCwsLCotZhy40sLCwsDEMsQRK3W1hY WFhY1Dr+f5MgDjgaZDi3AAAAWmVYSWZNTQAqAAAACAAFARIAAwAAAAEAAQAAARoABQAAAAEAAABK ARsABQAAAAEAAABSASgAAwAAAAEAAgAAAhMAAwAAAAEAAQAAAAAAAAAAAEgAAAABAAAASAAAAAEf Uvc0AAAAJXRFWHRkYXRlOmNyZWF0ZQAyMDI1LTAyLTIwVDE1OjQ5OjI2KzAwOjAwCoQ/bgAAACV0 RVh0ZGF0ZTptb2RpZnkAMjAyNS0wMi0yMFQxNTo0OToyNiswMDowMHvZh9IAAAAodEVYdGRhdGU6 dGltZXN0YW1wADIwMjUtMDItMjBUMTU6NDk6MjkrMDA6MDDahNbkAAAAF3RFWHRleGlmOllDYkNy UG9zaXRpb25pbmcAMawPgGMAAAAASUVORK5CYII= " + id="image1" + x="-96.676636" + y="12.82685" + style="stroke-width:5.42165" + transform="scale(-1,1)" /><path + style="font-variation-settings:normal;opacity:1;vector-effect:none;fill:#77ac30;fill-opacity:0.5;stroke:#000000;stroke-width:0.132292;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;-inkscape-stroke:none;stop-color:#000000;stop-opacity:1" + d="M 78.632867,18.685941 74.13749,21.261009 64.109346,15.42706 68.627029,12.82685 Z" + id="path8" /><path + style="font-variation-settings:normal;opacity:1;vector-effect:none;fill:#77ac30;fill-opacity:0.5;stroke:#000000;stroke-width:0.132292;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;-inkscape-stroke:none;stop-color:#000000;stop-opacity:1" + d="M 78.839212,53.422411 74.343835,55.997479 64.315691,50.16353 68.833374,47.56332 Z" + id="path8-6" /><path + style="fill:#0072bd;fill-opacity:0.5;stroke:#000000;stroke-width:0.132292;stroke-linecap:round;stroke-linejoin:round;stroke-dasharray:none;stroke-opacity:1" + d="m 76.402477,31.557863 5.03024,2.904211 v -5.805445 l -5.03024,-2.904211 z" + id="path9-1" + sodipodi:nodetypes="ccccc" /><path + style="fill:#0072bd;fill-opacity:0.5;stroke:#000000;stroke-width:0.132292;stroke-linecap:round;stroke-linejoin:round;stroke-dasharray:none;stroke-opacity:1" + d="m 86.462761,25.795738 5.03024,2.904211 v -5.805445 l -5.03024,-2.904211 z" + id="path9-1-9" + sodipodi:nodetypes="ccccc" /><path + style="font-variation-settings:normal;opacity:1;vector-effect:none;fill:#d95319;fill-opacity:0.5;stroke:#000000;stroke-width:0.132292;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;-inkscape-stroke:none;stop-color:#000000;stop-opacity:1" + d="m 71.402563,34.490929 5.03024,2.904211 v -5.805445 l -5.03024,-2.904211 z" + id="path9-1-7" + sodipodi:nodetypes="ccccc" /><path + style="font-variation-settings:normal;opacity:1;vector-effect:none;fill:#d95319;fill-opacity:0.5;stroke:#000000;stroke-width:0.132292;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;-inkscape-stroke:none;stop-color:#000000;stop-opacity:1" + d="m 61.368584,40.417988 5.03024,2.904211 v -5.805445 l -5.03024,-2.904211 z" + id="path9-1-5" + sodipodi:nodetypes="ccccc" /><path + style="font-variation-settings:normal;opacity:1;vector-effect:none;fill:#d95319;fill-opacity:0.5;stroke:#000000;stroke-width:0.132292;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;-inkscape-stroke:none;stop-color:#000000;stop-opacity:1" + d="m 51.33843,46.11855 5.03024,2.904211 v -5.805445 l -5.03024,-2.904211 z" + id="path9-1-6" + sodipodi:nodetypes="ccccc" /><g + id="g6" + transform="matrix(-1,0,0,1,143.71266,0.069772)" + style="stroke:#77ac30"><path + style="fill:none;stroke:#77ac30;stroke-width:0.264583px;stroke-linecap:round;stroke-linejoin:round;stroke-opacity:1;marker-end:url(#marker5)" + d="m 72.29694,16.951848 0.0041,-6.358464" + id="path1" + sodipodi:nodetypes="cc" /><path + style="fill:none;stroke:#77ac30;stroke-width:0.265;stroke-linecap:round;stroke-linejoin:round;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#ConcaveTriangle)" + d="m 72.296958,16.951848 4.090398,-2.345487" + id="path2" + sodipodi:nodetypes="cc" /><path + style="fill:none;stroke:#77ac30;stroke-width:0.264583px;stroke-linecap:round;stroke-linejoin:round;stroke-opacity:1;marker-end:url(#marker4)" + d="m 72.296958,16.951848 4.495382,2.621288" + id="path3" /></g><g + id="g6-1" + transform="matrix(-1,0,0,1,161.27484,7.3932725)" + style="stroke:#0072bd"><path + style="fill:none;stroke:#0072bd;stroke-width:0.264583px;stroke-linecap:round;stroke-linejoin:round;stroke-opacity:1;marker-end:url(#marker5-7)" + d="m 72.29694,16.951848 0.0041,-6.358464" + id="path1-94" + sodipodi:nodetypes="cc" /><path + style="fill:none;stroke:#0072bd;stroke-width:0.265;stroke-linecap:round;stroke-linejoin:round;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#ConcaveTriangle-6)" + d="m 72.296958,16.951848 4.090398,-2.345487" + id="path2-7" + sodipodi:nodetypes="cc" /><path + style="fill:none;stroke:#0072bd;stroke-width:0.264583px;stroke-linecap:round;stroke-linejoin:round;stroke-opacity:1;marker-end:url(#marker4-2)" + d="m 72.296958,16.951848 4.495382,2.621288" + id="path3-8" /></g><g + id="g6-06" + transform="matrix(-1,0,0,1,151.24216,13.151805)" + style="stroke:#0072bd"><path + style="fill:none;stroke:#0072bd;stroke-width:0.264583px;stroke-linecap:round;stroke-linejoin:round;stroke-opacity:1;marker-end:url(#marker5-0)" + d="m 72.29694,16.951848 0.0041,-6.358464" + id="path1-1" + sodipodi:nodetypes="cc" /><path + style="fill:none;stroke:#0072bd;stroke-width:0.265;stroke-linecap:round;stroke-linejoin:round;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#ConcaveTriangle-1)" + d="m 72.296958,16.951848 4.090398,-2.345487" + id="path2-5" + sodipodi:nodetypes="cc" /><path + style="fill:none;stroke:#0072bd;stroke-width:0.264583px;stroke-linecap:round;stroke-linejoin:round;stroke-opacity:1;marker-end:url(#marker4-6)" + d="m 72.296958,16.951848 4.495382,2.621288" + id="path3-5" /></g><g + id="g6-2" + transform="matrix(-1,0,0,1,146.21848,16.049961)" + style="stroke:#d95319"><path + style="fill:none;stroke:#d95319;stroke-width:0.264583px;stroke-linecap:round;stroke-linejoin:round;stroke-opacity:1;marker-end:url(#marker5-6)" + d="m 72.29694,16.951848 0.0041,-6.358464" + id="path1-5" + sodipodi:nodetypes="cc" /><path + style="fill:none;stroke:#d95319;stroke-width:0.265;stroke-linecap:round;stroke-linejoin:round;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#ConcaveTriangle-69)" + d="m 72.296958,16.951848 4.090398,-2.345487" + id="path2-4" + sodipodi:nodetypes="cc" /><path + style="fill:none;stroke:#d95319;stroke-width:0.264583px;stroke-linecap:round;stroke-linejoin:round;stroke-opacity:1;marker-end:url(#marker4-7)" + d="m 72.296958,16.951848 4.495382,2.621288" + id="path3-7" /></g><rect + style="font-variation-settings:normal;fill:#ffffff;fill-opacity:0.8;stroke:#000000;stroke-width:0.132;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" + id="rect15-1" + width="5.4406261" + height="4.8587742" + x="88.25325" + y="24.408112" + ry="2.1179492" + rx="2.1179492" /><g + id="g6-3" + transform="matrix(-1,0,0,1,136.18451,21.883023)" + style="stroke:#d95319"><path + style="fill:none;stroke:#d95319;stroke-width:0.264583px;stroke-linecap:round;stroke-linejoin:round;stroke-opacity:1;marker-end:url(#marker5-3)" + d="m 72.29694,16.951848 0.0041,-6.358464" + id="path1-14" + sodipodi:nodetypes="cc" /><path + style="fill:none;stroke:#d95319;stroke-width:0.265;stroke-linecap:round;stroke-linejoin:round;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#ConcaveTriangle-7)" + d="m 72.296958,16.951848 4.090398,-2.345487" + id="path2-9" + sodipodi:nodetypes="cc" /><path + style="fill:none;stroke:#d95319;stroke-width:0.264583px;stroke-linecap:round;stroke-linejoin:round;stroke-opacity:1;marker-end:url(#marker4-68)" + d="m 72.296958,16.951848 4.495382,2.621288" + id="path3-2" /></g><rect + style="font-variation-settings:normal;fill:#ffffff;fill-opacity:0.8;stroke:#000000;stroke-width:0.132;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" + id="rect15-8" + width="5.4406261" + height="4.8587742" + x="78.463669" + y="30.493528" + ry="2.1179492" + rx="2.1179492" /><g + id="g6-4" + transform="matrix(-1,0,0,1,126.15051,27.716085)" + style="stroke:#d95319"><path + style="fill:none;stroke:#d95319;stroke-width:0.264583px;stroke-linecap:round;stroke-linejoin:round;stroke-opacity:1;marker-end:url(#marker5-8)" + d="m 72.29694,16.951848 0.0041,-6.358464" + id="path1-8" + sodipodi:nodetypes="cc" /><path + style="fill:none;stroke:#d95319;stroke-width:0.265;stroke-linecap:round;stroke-linejoin:round;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#ConcaveTriangle-26)" + d="m 72.296958,16.951848 4.090398,-2.345487" + id="path2-71" + sodipodi:nodetypes="cc" /><path + style="fill:none;stroke:#d95319;stroke-width:0.264583px;stroke-linecap:round;stroke-linejoin:round;stroke-opacity:1;marker-end:url(#marker4-4)" + d="m 72.296958,16.951848 4.495382,2.621288" + id="path3-72" /></g><rect + style="font-variation-settings:normal;fill:#ffffff;fill-opacity:0.8;stroke:#000000;stroke-width:0.132;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" + id="rect15-0" + width="5.4406261" + height="4.8587742" + x="71.584496" + y="33.403946" + ry="2.1179492" + rx="2.1179492" /><g + id="g6-0" + transform="matrix(-1,0,0,1,143.87441,34.828552)" + style="stroke:#77ac30"><path + style="fill:none;stroke:#77ac30;stroke-width:0.264583px;stroke-linecap:round;stroke-linejoin:round;stroke-opacity:1;marker-end:url(#marker5-5)" + d="m 72.29694,16.951848 0.0041,-6.358464" + id="path1-9" + sodipodi:nodetypes="cc" /><path + style="fill:none;stroke:#77ac30;stroke-width:0.265;stroke-linecap:round;stroke-linejoin:round;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#ConcaveTriangle-2)" + d="m 72.296958,16.951848 4.090398,-2.345487" + id="path2-3" + sodipodi:nodetypes="cc" /><path + style="fill:none;stroke:#77ac30;stroke-width:0.264583px;stroke-linecap:round;stroke-linejoin:round;stroke-opacity:1;marker-end:url(#marker4-1)" + d="m 72.296958,16.951848 4.495382,2.621288" + id="path3-6" /></g><rect + style="font-variation-settings:normal;fill:#ffffff;fill-opacity:0.8;stroke:#000000;stroke-width:0.132;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" + id="rect15-4" + width="5.4406261" + height="4.8587742" + x="62.588665" + y="38.960194" + ry="2.1179492" + rx="2.1179492" /><g + inkscape:label="" + transform="translate(78.803732,31.161777)" + id="g9" + style="fill:#0072bd"><g + fill="#000000" + fill-opacity="1" + id="g4" + transform="matrix(0.352778,0,0,0.352778,-63.9455,-2.28022)" + style="fill:#0072bd"> + <g + id="use3" + transform="translate(180.54401,13.948)" + style="fill:#0072bd"> + <path + d="m 2.828125,-6.15625 c 0,-0.390625 0.25,-1.03125 1.34375,-1.09375 C 4.21875,-7.265625 4.25,-7.3125 4.25,-7.359375 c 0,-0.125 -0.078125,-0.125 -0.1875,-0.125 -0.984375,0 -1.90625,0.515625 -1.90625,1.25 v 2.28125 c 0,0.390625 0,0.703125 -0.40625,1.03125 -0.34375,0.296875 -0.71875,0.3125 -0.9375,0.3125 C 0.75,-2.59375 0.71875,-2.546875 0.71875,-2.5 c 0,0.109375 0.0625,0.109375 0.15625,0.125 0.65625,0.03125 1.140625,0.390625 1.25,0.875 0.03125,0.109375 0.03125,0.140625 0.03125,0.5 v 1.96875 c 0,0.421875 0,0.734375 0.46875,1.109375 C 3.015625,2.375 3.671875,2.5 4.0625,2.5 4.171875,2.5 4.25,2.5 4.25,2.375 4.25,2.28125 4.203125,2.28125 4.09375,2.265625 3.46875,2.234375 2.984375,1.90625 2.84375,1.40625 2.828125,1.3125 2.828125,1.296875 2.828125,0.9375 v -2.09375 c 0,-0.453125 -0.09375,-0.625 -0.40625,-0.953125 C 2.21875,-2.3125 1.921875,-2.40625 1.640625,-2.5 c 0.828125,-0.21875 1.1875,-0.6875 1.1875,-1.265625 z m 0,0" + id="path6" + style="fill:#0072bd" /> + </g> + </g> + <g + fill="#000000" + fill-opacity="1" + id="g5" + transform="matrix(0.352778,0,0,0.352778,-63.9455,-2.28022)" + style="fill:#0072bd"> + <g + id="use4" + transform="translate(185.52499,13.948)" + style="fill:#0072bd"> + <path + d="m 2.9375,-6.375 c 0,-0.25 0,-0.265625 -0.234375,-0.265625 C 2.078125,-6 1.203125,-6 0.890625,-6 v 0.3125 c 0.203125,0 0.78125,0 1.296875,-0.265625 v 5.171875 c 0,0.359375 -0.03125,0.46875 -0.921875,0.46875 h -0.3125 V 0 c 0.34375,-0.03125 1.203125,-0.03125 1.609375,-0.03125 0.390625,0 1.265625,0 1.609375,0.03125 v -0.3125 h -0.3125 c -0.90625,0 -0.921875,-0.109375 -0.921875,-0.46875 z m 0,0" + id="path7-1-1" + style="fill:#0072bd" /> + </g> + </g> + <g + fill="#000000" + fill-opacity="1" + id="g6-1-1" + transform="matrix(0.352778,0,0,0.352778,-63.9455,-2.28022)" + style="fill:#0072bd"> + <g + id="use5" + transform="translate(190.507,13.948)" + style="fill:#0072bd"> + <path + d="m 2.15625,1.171875 c 0,0.390625 -0.265625,1.03125 -1.34375,1.09375 C 0.75,2.28125 0.71875,2.328125 0.71875,2.375 0.71875,2.5 0.828125,2.5 0.921875,2.5 1.890625,2.5 2.8125,2 2.828125,1.25 v -2.28125 c 0,-0.390625 0,-0.703125 0.390625,-1.03125 C 3.5625,-2.359375 3.953125,-2.375 4.171875,-2.375 4.21875,-2.390625 4.25,-2.4375 4.25,-2.5 4.25,-2.59375 4.203125,-2.59375 4.09375,-2.609375 3.4375,-2.640625 2.953125,-3 2.84375,-3.484375 2.828125,-3.59375 2.828125,-3.625 2.828125,-3.984375 v -1.96875 c 0,-0.421875 0,-0.734375 -0.484375,-1.109375 C 1.9375,-7.375 1.25,-7.484375 0.921875,-7.484375 c -0.09375,0 -0.203125,0 -0.203125,0.125 0,0.09375 0.0625,0.09375 0.15625,0.109375 0.625,0.03125 1.125,0.359375 1.25,0.859375 0.03125,0.09375 0.03125,0.109375 0.03125,0.46875 v 2.09375 c 0,0.453125 0.078125,0.625 0.390625,0.953125 0.21875,0.203125 0.5,0.296875 0.78125,0.375 -0.8125,0.234375 -1.171875,0.703125 -1.171875,1.28125 z m 0,0" + id="path8-1" + style="fill:#0072bd" /> + </g> + </g> +</g><rect + style="font-variation-settings:normal;fill:#ffffff;fill-opacity:0.8;stroke:#000000;stroke-width:0.132;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" + id="rect15-6" + width="5.4406261" + height="4.8587742" + x="53.063667" + y="44.781029" + ry="2.1179492" + rx="2.1179492" /><g + inkscape:label="" + transform="translate(71.924559,34.806448)" + id="g10" + style="fill:#d95319"><g + fill="#000000" + fill-opacity="1" + id="g4-1" + transform="matrix(0.352778,0,0,0.352778,-63.9455,-2.28022)" + style="fill:#d95319"> + <g + id="use3-1" + transform="translate(180.54401,13.948)" + style="fill:#d95319"> + <path + d="m 2.828125,-6.15625 c 0,-0.390625 0.25,-1.03125 1.34375,-1.09375 C 4.21875,-7.265625 4.25,-7.3125 4.25,-7.359375 c 0,-0.125 -0.078125,-0.125 -0.1875,-0.125 -0.984375,0 -1.90625,0.515625 -1.90625,1.25 v 2.28125 c 0,0.390625 0,0.703125 -0.40625,1.03125 -0.34375,0.296875 -0.71875,0.3125 -0.9375,0.3125 C 0.75,-2.59375 0.71875,-2.546875 0.71875,-2.5 c 0,0.109375 0.0625,0.109375 0.15625,0.125 0.65625,0.03125 1.140625,0.390625 1.25,0.875 0.03125,0.109375 0.03125,0.140625 0.03125,0.5 v 1.96875 c 0,0.421875 0,0.734375 0.46875,1.109375 C 3.015625,2.375 3.671875,2.5 4.0625,2.5 4.171875,2.5 4.25,2.5 4.25,2.375 4.25,2.28125 4.203125,2.28125 4.09375,2.265625 3.46875,2.234375 2.984375,1.90625 2.84375,1.40625 2.828125,1.3125 2.828125,1.296875 2.828125,0.9375 v -2.09375 c 0,-0.453125 -0.09375,-0.625 -0.40625,-0.953125 C 2.21875,-2.3125 1.921875,-2.40625 1.640625,-2.5 c 0.828125,-0.21875 1.1875,-0.6875 1.1875,-1.265625 z m 0,0" + id="path6-1" + style="fill:#d95319" /> + </g> + </g> + <g + fill="#000000" + fill-opacity="1" + id="g5-1" + transform="matrix(0.352778,0,0,0.352778,-63.9455,-2.28022)" + style="fill:#d95319"> + <g + id="use4-1" + transform="translate(185.52499,13.948)" + style="fill:#d95319"> + <path + d="m 1.265625,-0.765625 1.0625,-1.03125 c 1.546875,-1.375 2.140625,-1.90625 2.140625,-2.90625 0,-1.140625 -0.890625,-1.9375 -2.109375,-1.9375 -1.125,0 -1.859375,0.921875 -1.859375,1.8125 0,0.546875 0.5,0.546875 0.53125,0.546875 0.171875,0 0.515625,-0.109375 0.515625,-0.53125 0,-0.25 -0.1875,-0.515625 -0.53125,-0.515625 -0.078125,0 -0.09375,0 -0.125,0.015625 0.21875,-0.65625 0.765625,-1.015625 1.34375,-1.015625 0.90625,0 1.328125,0.8125 1.328125,1.625 C 3.5625,-3.90625 3.078125,-3.125 2.515625,-2.5 l -1.90625,2.125 C 0.5,-0.265625 0.5,-0.234375 0.5,0 H 4.203125 L 4.46875,-1.734375 H 4.234375 C 4.171875,-1.4375 4.109375,-1 4,-0.84375 3.9375,-0.765625 3.28125,-0.765625 3.0625,-0.765625 Z m 0,0" + id="path7-1-1-1" + style="fill:#d95319" /> + </g> + </g> + <g + fill="#000000" + fill-opacity="1" + id="g6-1-1-1" + transform="matrix(0.352778,0,0,0.352778,-63.9455,-2.28022)" + style="fill:#d95319"> + <g + id="use5-1" + transform="translate(190.507,13.948)" + style="fill:#d95319"> + <path + d="m 2.15625,1.171875 c 0,0.390625 -0.265625,1.03125 -1.34375,1.09375 C 0.75,2.28125 0.71875,2.328125 0.71875,2.375 0.71875,2.5 0.828125,2.5 0.921875,2.5 1.890625,2.5 2.8125,2 2.828125,1.25 v -2.28125 c 0,-0.390625 0,-0.703125 0.390625,-1.03125 C 3.5625,-2.359375 3.953125,-2.375 4.171875,-2.375 4.21875,-2.390625 4.25,-2.4375 4.25,-2.5 4.25,-2.59375 4.203125,-2.59375 4.09375,-2.609375 3.4375,-2.640625 2.953125,-3 2.84375,-3.484375 2.828125,-3.59375 2.828125,-3.625 2.828125,-3.984375 v -1.96875 c 0,-0.421875 0,-0.734375 -0.484375,-1.109375 C 1.9375,-7.375 1.25,-7.484375 0.921875,-7.484375 c -0.09375,0 -0.203125,0 -0.203125,0.125 0,0.09375 0.0625,0.09375 0.15625,0.109375 0.625,0.03125 1.125,0.359375 1.25,0.859375 0.03125,0.09375 0.03125,0.109375 0.03125,0.46875 v 2.09375 c 0,0.453125 0.078125,0.625 0.390625,0.953125 0.21875,0.203125 0.5,0.296875 0.78125,0.375 -0.8125,0.234375 -1.171875,0.703125 -1.171875,1.28125 z m 0,0" + id="path8-1-1" + style="fill:#d95319" /> + </g> + </g> +</g><rect + style="font-variation-settings:normal;fill:#ffffff;fill-opacity:0.8;stroke:#000000;stroke-width:0.132;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" + id="rect15-5" + width="5.4406261" + height="4.8587742" + x="72.113663" + y="9.5914459" + ry="2.1179492" + rx="2.1179492" /><g + inkscape:label="" + transform="translate(53.403731,45.449277)" + id="g11" + style="fill:#d95319"><g + fill="#000000" + fill-opacity="1" + id="g4-1-1" + transform="matrix(0.352778,0,0,0.352778,-63.9455,-2.28022)" + style="fill:#d95319"> + <g + id="use3-1-1" + transform="translate(180.54401,13.948)" + style="fill:#d95319"> + <path + d="m 2.828125,-6.15625 c 0,-0.390625 0.25,-1.03125 1.34375,-1.09375 C 4.21875,-7.265625 4.25,-7.3125 4.25,-7.359375 c 0,-0.125 -0.078125,-0.125 -0.1875,-0.125 -0.984375,0 -1.90625,0.515625 -1.90625,1.25 v 2.28125 c 0,0.390625 0,0.703125 -0.40625,1.03125 -0.34375,0.296875 -0.71875,0.3125 -0.9375,0.3125 C 0.75,-2.59375 0.71875,-2.546875 0.71875,-2.5 c 0,0.109375 0.0625,0.109375 0.15625,0.125 0.65625,0.03125 1.140625,0.390625 1.25,0.875 0.03125,0.109375 0.03125,0.140625 0.03125,0.5 v 1.96875 c 0,0.421875 0,0.734375 0.46875,1.109375 C 3.015625,2.375 3.671875,2.5 4.0625,2.5 4.171875,2.5 4.25,2.5 4.25,2.375 4.25,2.28125 4.203125,2.28125 4.09375,2.265625 3.46875,2.234375 2.984375,1.90625 2.84375,1.40625 2.828125,1.3125 2.828125,1.296875 2.828125,0.9375 v -2.09375 c 0,-0.453125 -0.09375,-0.625 -0.40625,-0.953125 C 2.21875,-2.3125 1.921875,-2.40625 1.640625,-2.5 c 0.828125,-0.21875 1.1875,-0.6875 1.1875,-1.265625 z m 0,0" + id="path6-1-1" + style="fill:#d95319" /> + </g> + </g> + <g + fill="#000000" + fill-opacity="1" + id="g5-1-1" + transform="matrix(0.352778,0,0,0.352778,-63.9455,-2.28022)" + style="fill:#d95319"> + <g + id="use4-1-1" + transform="translate(185.52499,13.948)" + style="fill:#d95319"> + <path + d="m 2.890625,-3.515625 c 0.8125,-0.265625 1.390625,-0.953125 1.390625,-1.75 0,-0.8125 -0.875,-1.375 -1.828125,-1.375 -1,0 -1.765625,0.59375 -1.765625,1.359375 0,0.328125 0.21875,0.515625 0.515625,0.515625 0.296875,0 0.5,-0.21875 0.5,-0.515625 0,-0.484375 -0.46875,-0.484375 -0.609375,-0.484375 0.296875,-0.5 0.953125,-0.625 1.3125,-0.625 0.421875,0 0.96875,0.21875 0.96875,1.109375 0,0.125 -0.03125,0.703125 -0.28125,1.140625 C 2.796875,-3.65625 2.453125,-3.625 2.203125,-3.625 2.125,-3.609375 1.890625,-3.59375 1.8125,-3.59375 c -0.078125,0.015625 -0.140625,0.03125 -0.140625,0.125 0,0.109375 0.0625,0.109375 0.234375,0.109375 h 0.4375 c 0.8125,0 1.1875,0.671875 1.1875,1.65625 0,1.359375 -0.6875,1.640625 -1.125,1.640625 -0.4375,0 -1.1875,-0.171875 -1.53125,-0.75 0.34375,0.046875 0.65625,-0.171875 0.65625,-0.546875 0,-0.359375 -0.265625,-0.5625 -0.546875,-0.5625 -0.25,0 -0.5625,0.140625 -0.5625,0.578125 0,0.90625 0.921875,1.5625 2.015625,1.5625 1.21875,0 2.125,-0.90625 2.125,-1.921875 0,-0.8125 -0.640625,-1.59375 -1.671875,-1.8125 z m 0,0" + id="path7-1-1-1-1" + style="fill:#d95319" /> + </g> + </g> + <g + fill="#000000" + fill-opacity="1" + id="g6-1-1-1-1" + transform="matrix(0.352778,0,0,0.352778,-63.9455,-2.28022)" + style="fill:#d95319"> + <g + id="use5-1-1" + transform="translate(190.507,13.948)" + style="fill:#d95319"> + <path + d="m 2.15625,1.171875 c 0,0.390625 -0.265625,1.03125 -1.34375,1.09375 C 0.75,2.28125 0.71875,2.328125 0.71875,2.375 0.71875,2.5 0.828125,2.5 0.921875,2.5 1.890625,2.5 2.8125,2 2.828125,1.25 v -2.28125 c 0,-0.390625 0,-0.703125 0.390625,-1.03125 C 3.5625,-2.359375 3.953125,-2.375 4.171875,-2.375 4.21875,-2.390625 4.25,-2.4375 4.25,-2.5 4.25,-2.59375 4.203125,-2.59375 4.09375,-2.609375 3.4375,-2.640625 2.953125,-3 2.84375,-3.484375 2.828125,-3.59375 2.828125,-3.625 2.828125,-3.984375 v -1.96875 c 0,-0.421875 0,-0.734375 -0.484375,-1.109375 C 1.9375,-7.375 1.25,-7.484375 0.921875,-7.484375 c -0.09375,0 -0.203125,0 -0.203125,0.125 0,0.09375 0.0625,0.09375 0.15625,0.109375 0.625,0.03125 1.125,0.359375 1.25,0.859375 0.03125,0.09375 0.03125,0.109375 0.03125,0.46875 v 2.09375 c 0,0.453125 0.078125,0.625 0.390625,0.953125 0.21875,0.203125 0.5,0.296875 0.78125,0.375 -0.8125,0.234375 -1.171875,0.703125 -1.171875,1.28125 z m 0,0" + id="path8-1-1-1" + style="fill:#d95319" /> + </g> + </g> +</g><g + inkscape:label="" + transform="translate(62.928729,39.628442)" + id="g13" + style="fill:#d95319"><g + fill="#000000" + fill-opacity="1" + id="g4-1-1-1-1" + transform="matrix(0.352778,0,0,0.352778,-63.9455,-2.28022)" + style="fill:#d95319"> + <g + id="use3-1-1-1-1" + transform="translate(180.54401,13.948)" + style="fill:#d95319"> + <path + d="m 2.828125,-6.15625 c 0,-0.390625 0.25,-1.03125 1.34375,-1.09375 C 4.21875,-7.265625 4.25,-7.3125 4.25,-7.359375 c 0,-0.125 -0.078125,-0.125 -0.1875,-0.125 -0.984375,0 -1.90625,0.515625 -1.90625,1.25 v 2.28125 c 0,0.390625 0,0.703125 -0.40625,1.03125 -0.34375,0.296875 -0.71875,0.3125 -0.9375,0.3125 C 0.75,-2.59375 0.71875,-2.546875 0.71875,-2.5 c 0,0.109375 0.0625,0.109375 0.15625,0.125 0.65625,0.03125 1.140625,0.390625 1.25,0.875 0.03125,0.109375 0.03125,0.140625 0.03125,0.5 v 1.96875 c 0,0.421875 0,0.734375 0.46875,1.109375 C 3.015625,2.375 3.671875,2.5 4.0625,2.5 4.171875,2.5 4.25,2.5 4.25,2.375 4.25,2.28125 4.203125,2.28125 4.09375,2.265625 3.46875,2.234375 2.984375,1.90625 2.84375,1.40625 2.828125,1.3125 2.828125,1.296875 2.828125,0.9375 v -2.09375 c 0,-0.453125 -0.09375,-0.625 -0.40625,-0.953125 C 2.21875,-2.3125 1.921875,-2.40625 1.640625,-2.5 c 0.828125,-0.21875 1.1875,-0.6875 1.1875,-1.265625 z m 0,0" + id="path6-1-1-1-1" + style="fill:#d95319" /> + </g> + </g> + <g + fill="#000000" + fill-opacity="1" + id="g5-1-1-1-1" + transform="matrix(0.352778,0,0,0.352778,-63.9455,-2.28022)" + style="fill:#d95319"> + <g + id="use4-1-1-1-1" + transform="translate(185.52499,13.948)" + style="fill:#d95319"> + <path + d="m 4.46875,-2 c 0,-1.1875 -0.8125,-2.1875 -1.890625,-2.1875 -0.46875,0 -0.90625,0.15625 -1.265625,0.515625 V -5.625 c 0.203125,0.0625 0.53125,0.125 0.84375,0.125 1.234375,0 1.9375,-0.90625 1.9375,-1.03125 0,-0.0625 -0.03125,-0.109375 -0.109375,-0.109375 0,0 -0.03125,0 -0.078125,0.03125 C 3.703125,-6.515625 3.21875,-6.3125 2.546875,-6.3125 2.15625,-6.3125 1.6875,-6.390625 1.21875,-6.59375 1.140625,-6.625 1.125,-6.625 1.109375,-6.625 1,-6.625 1,-6.546875 1,-6.390625 V -3.4375 c 0,0.171875 0,0.25 0.140625,0.25 0.078125,0 0.09375,-0.015625 0.140625,-0.078125 C 1.390625,-3.421875 1.75,-3.96875 2.5625,-3.96875 c 0.515625,0 0.765625,0.453125 0.84375,0.640625 0.15625,0.375 0.1875,0.75 0.1875,1.25 0,0.359375 0,0.953125 -0.25,1.375 C 3.109375,-0.3125 2.734375,-0.0625 2.28125,-0.0625 c -0.71875,0 -1.296875,-0.53125 -1.46875,-1.109375 0.03125,0 0.0625,0.015625 0.171875,0.015625 0.328125,0 0.5,-0.25 0.5,-0.484375 0,-0.25 -0.171875,-0.5 -0.5,-0.5 C 0.84375,-2.140625 0.5,-2.0625 0.5,-1.609375 0.5,-0.75 1.1875,0.21875 2.296875,0.21875 3.453125,0.21875 4.46875,-0.734375 4.46875,-2 Z m 0,0" + id="path7-1-1-1-1-1-1" + style="fill:#d95319" /> + </g> + </g> + <g + fill="#000000" + fill-opacity="1" + id="g6-1-1-1-1-1-1" + transform="matrix(0.352778,0,0,0.352778,-63.9455,-2.28022)" + style="fill:#d95319"> + <g + id="use5-1-1-1-1" + transform="translate(190.507,13.948)" + style="fill:#d95319"> + <path + d="m 2.15625,1.171875 c 0,0.390625 -0.265625,1.03125 -1.34375,1.09375 C 0.75,2.28125 0.71875,2.328125 0.71875,2.375 0.71875,2.5 0.828125,2.5 0.921875,2.5 1.890625,2.5 2.8125,2 2.828125,1.25 v -2.28125 c 0,-0.390625 0,-0.703125 0.390625,-1.03125 C 3.5625,-2.359375 3.953125,-2.375 4.171875,-2.375 4.21875,-2.390625 4.25,-2.4375 4.25,-2.5 4.25,-2.59375 4.203125,-2.59375 4.09375,-2.609375 3.4375,-2.640625 2.953125,-3 2.84375,-3.484375 2.828125,-3.59375 2.828125,-3.625 2.828125,-3.984375 v -1.96875 c 0,-0.421875 0,-0.734375 -0.484375,-1.109375 C 1.9375,-7.375 1.25,-7.484375 0.921875,-7.484375 c -0.09375,0 -0.203125,0 -0.203125,0.125 0,0.09375 0.0625,0.09375 0.15625,0.109375 0.625,0.03125 1.125,0.359375 1.25,0.859375 0.03125,0.09375 0.03125,0.109375 0.03125,0.46875 v 2.09375 c 0,0.453125 0.078125,0.625 0.390625,0.953125 0.21875,0.203125 0.5,0.296875 0.78125,0.375 -0.8125,0.234375 -1.171875,0.703125 -1.171875,1.28125 z m 0,0" + id="path8-1-1-1-1-1" + style="fill:#d95319" /> + </g> + </g> +</g><g + inkscape:label="" + transform="translate(72.453726,10.259694)" + id="g14" + style="fill:#77ac30"><g + fill="#000000" + fill-opacity="1" + id="g4-1-1-1-1-1" + transform="matrix(0.352778,0,0,0.352778,-63.9455,-2.28022)" + style="fill:#77ac30"> + <g + id="use3-1-1-1-1-1" + transform="translate(180.54401,13.948)" + style="fill:#77ac30"> + <path + d="m 2.828125,-6.15625 c 0,-0.390625 0.25,-1.03125 1.34375,-1.09375 C 4.21875,-7.265625 4.25,-7.3125 4.25,-7.359375 c 0,-0.125 -0.078125,-0.125 -0.1875,-0.125 -0.984375,0 -1.90625,0.515625 -1.90625,1.25 v 2.28125 c 0,0.390625 0,0.703125 -0.40625,1.03125 -0.34375,0.296875 -0.71875,0.3125 -0.9375,0.3125 C 0.75,-2.59375 0.71875,-2.546875 0.71875,-2.5 c 0,0.109375 0.0625,0.109375 0.15625,0.125 0.65625,0.03125 1.140625,0.390625 1.25,0.875 0.03125,0.109375 0.03125,0.140625 0.03125,0.5 v 1.96875 c 0,0.421875 0,0.734375 0.46875,1.109375 C 3.015625,2.375 3.671875,2.5 4.0625,2.5 4.171875,2.5 4.25,2.5 4.25,2.375 4.25,2.28125 4.203125,2.28125 4.09375,2.265625 3.46875,2.234375 2.984375,1.90625 2.84375,1.40625 2.828125,1.3125 2.828125,1.296875 2.828125,0.9375 v -2.09375 c 0,-0.453125 -0.09375,-0.625 -0.40625,-0.953125 C 2.21875,-2.3125 1.921875,-2.40625 1.640625,-2.5 c 0.828125,-0.21875 1.1875,-0.6875 1.1875,-1.265625 z m 0,0" + id="path6-1-1-1-1-1" + style="fill:#77ac30" /> + </g> + </g> + <g + fill="#000000" + fill-opacity="1" + id="g5-1-1-1-1-1" + transform="matrix(0.352778,0,0,0.352778,-63.9455,-2.28022)" + style="fill:#77ac30"> + <g + id="use4-1-1-1-1-1" + transform="translate(185.52499,13.948)" + style="fill:#77ac30"> + <path + d="m 1.3125,-3.265625 v -0.25 c 0,-2.515625 1.234375,-2.875 1.75,-2.875 0.234375,0 0.65625,0.0625 0.875,0.40625 -0.15625,0 -0.546875,0 -0.546875,0.4375 0,0.3125 0.234375,0.46875 0.453125,0.46875 0.15625,0 0.46875,-0.09375 0.46875,-0.484375 0,-0.59375 -0.4375,-1.078125 -1.265625,-1.078125 -1.28125,0 -2.625,1.28125 -2.625,3.484375 0,2.671875 1.15625,3.375 2.078125,3.375 1.109375,0 2.0625,-0.9375 2.0625,-2.25 0,-1.265625 -0.890625,-2.21875 -2,-2.21875 -0.671875,0 -1.046875,0.5 -1.25,0.984375 z M 2.5,-0.0625 c -0.625,0 -0.921875,-0.59375 -0.984375,-0.75 -0.1875,-0.46875 -0.1875,-1.265625 -0.1875,-1.4375 0,-0.78125 0.328125,-1.78125 1.21875,-1.78125 0.171875,0 0.625,0 0.9375,0.625 0.171875,0.359375 0.171875,0.875 0.171875,1.359375 0,0.484375 0,0.984375 -0.171875,1.34375 C 3.1875,-0.109375 2.734375,-0.0625 2.5,-0.0625 Z m 0,0" + id="path7-1-1-1-1-1-1-1" + style="fill:#77ac30" /> + </g> + </g> + <g + fill="#000000" + fill-opacity="1" + id="g6-1-1-1-1-1-1-1" + transform="matrix(0.352778,0,0,0.352778,-63.9455,-2.28022)" + style="fill:#77ac30"> + <g + id="use5-1-1-1-1-1" + transform="translate(190.507,13.948)" + style="fill:#77ac30"> + <path + d="m 2.15625,1.171875 c 0,0.390625 -0.265625,1.03125 -1.34375,1.09375 C 0.75,2.28125 0.71875,2.328125 0.71875,2.375 0.71875,2.5 0.828125,2.5 0.921875,2.5 1.890625,2.5 2.8125,2 2.828125,1.25 v -2.28125 c 0,-0.390625 0,-0.703125 0.390625,-1.03125 C 3.5625,-2.359375 3.953125,-2.375 4.171875,-2.375 4.21875,-2.390625 4.25,-2.4375 4.25,-2.5 4.25,-2.59375 4.203125,-2.59375 4.09375,-2.609375 3.4375,-2.640625 2.953125,-3 2.84375,-3.484375 2.828125,-3.59375 2.828125,-3.625 2.828125,-3.984375 v -1.96875 c 0,-0.421875 0,-0.734375 -0.484375,-1.109375 C 1.9375,-7.375 1.25,-7.484375 0.921875,-7.484375 c -0.09375,0 -0.203125,0 -0.203125,0.125 0,0.09375 0.0625,0.09375 0.15625,0.109375 0.625,0.03125 1.125,0.359375 1.25,0.859375 0.03125,0.09375 0.03125,0.109375 0.03125,0.46875 v 2.09375 c 0,0.453125 0.078125,0.625 0.390625,0.953125 0.21875,0.203125 0.5,0.296875 0.78125,0.375 -0.8125,0.234375 -1.171875,0.703125 -1.171875,1.28125 z m 0,0" + id="path8-1-1-1-1-1-1" + style="fill:#77ac30" /> + </g> + </g> +</g><g + inkscape:label="" + transform="translate(88.593314,25.07636)" + id="g15" + style="fill:#0072bd"><g + fill="#000000" + fill-opacity="1" + id="g4-1-1-1-1-1-1" + transform="matrix(0.352778,0,0,0.352778,-63.9455,-2.28022)" + style="fill:#0072bd"> + <g + id="use3-1-1-1-1-1-1" + transform="translate(180.54401,13.948)" + style="fill:#0072bd"> + <path + d="m 2.828125,-6.15625 c 0,-0.390625 0.25,-1.03125 1.34375,-1.09375 C 4.21875,-7.265625 4.25,-7.3125 4.25,-7.359375 c 0,-0.125 -0.078125,-0.125 -0.1875,-0.125 -0.984375,0 -1.90625,0.515625 -1.90625,1.25 v 2.28125 c 0,0.390625 0,0.703125 -0.40625,1.03125 -0.34375,0.296875 -0.71875,0.3125 -0.9375,0.3125 C 0.75,-2.59375 0.71875,-2.546875 0.71875,-2.5 c 0,0.109375 0.0625,0.109375 0.15625,0.125 0.65625,0.03125 1.140625,0.390625 1.25,0.875 0.03125,0.109375 0.03125,0.140625 0.03125,0.5 v 1.96875 c 0,0.421875 0,0.734375 0.46875,1.109375 C 3.015625,2.375 3.671875,2.5 4.0625,2.5 4.171875,2.5 4.25,2.5 4.25,2.375 4.25,2.28125 4.203125,2.28125 4.09375,2.265625 3.46875,2.234375 2.984375,1.90625 2.84375,1.40625 2.828125,1.3125 2.828125,1.296875 2.828125,0.9375 v -2.09375 c 0,-0.453125 -0.09375,-0.625 -0.40625,-0.953125 C 2.21875,-2.3125 1.921875,-2.40625 1.640625,-2.5 c 0.828125,-0.21875 1.1875,-0.6875 1.1875,-1.265625 z m 0,0" + id="path6-1-1-1-1-1-1" + style="fill:#0072bd" /> + </g> + </g> + <g + fill="#000000" + fill-opacity="1" + id="g5-1-1-1-1-1-1" + transform="matrix(0.352778,0,0,0.352778,-63.9455,-2.28022)" + style="fill:#0072bd"> + <g + id="use4-1-1-1-1-1-1" + transform="translate(185.52499,13.948)" + style="fill:#0072bd"> + <path + d="m 4.75,-6.078125 c 0.078125,-0.109375 0.078125,-0.125 0.078125,-0.34375 H 2.40625 c -1.203125,0 -1.234375,-0.125 -1.265625,-0.3125 h -0.25 L 0.5625,-4.6875 h 0.25 c 0.03125,-0.15625 0.109375,-0.78125 0.25,-0.90625 0.0625,-0.0625 0.84375,-0.0625 0.96875,-0.0625 h 2.0625 C 3.984375,-5.5 3.203125,-4.40625 2.984375,-4.078125 2.078125,-2.734375 1.75,-1.34375 1.75,-0.328125 c 0,0.09375 0,0.546875 0.46875,0.546875 0.453125,0 0.453125,-0.453125 0.453125,-0.546875 V -0.84375 c 0,-0.546875 0.03125,-1.09375 0.109375,-1.625 0.046875,-0.234375 0.171875,-1.09375 0.625,-1.703125 z m 0,0" + id="path7-1-1-1-1-1-1-1-1" + style="fill:#0072bd" /> + </g> + </g> + <g + fill="#000000" + fill-opacity="1" + id="g6-1-1-1-1-1-1-1-1" + transform="matrix(0.352778,0,0,0.352778,-63.9455,-2.28022)" + style="fill:#0072bd"> + <g + id="use5-1-1-1-1-1-1" + transform="translate(190.507,13.948)" + style="fill:#0072bd"> + <path + d="m 2.15625,1.171875 c 0,0.390625 -0.265625,1.03125 -1.34375,1.09375 C 0.75,2.28125 0.71875,2.328125 0.71875,2.375 0.71875,2.5 0.828125,2.5 0.921875,2.5 1.890625,2.5 2.8125,2 2.828125,1.25 v -2.28125 c 0,-0.390625 0,-0.703125 0.390625,-1.03125 C 3.5625,-2.359375 3.953125,-2.375 4.171875,-2.375 4.21875,-2.390625 4.25,-2.4375 4.25,-2.5 4.25,-2.59375 4.203125,-2.59375 4.09375,-2.609375 3.4375,-2.640625 2.953125,-3 2.84375,-3.484375 2.828125,-3.59375 2.828125,-3.625 2.828125,-3.984375 v -1.96875 c 0,-0.421875 0,-0.734375 -0.484375,-1.109375 C 1.9375,-7.375 1.25,-7.484375 0.921875,-7.484375 c -0.09375,0 -0.203125,0 -0.203125,0.125 0,0.09375 0.0625,0.09375 0.15625,0.109375 0.625,0.03125 1.125,0.359375 1.25,0.859375 0.03125,0.09375 0.03125,0.109375 0.03125,0.46875 v 2.09375 c 0,0.453125 0.078125,0.625 0.390625,0.953125 0.21875,0.203125 0.5,0.296875 0.78125,0.375 -0.8125,0.234375 -1.171875,0.703125 -1.171875,1.28125 z m 0,0" + id="path8-1-1-1-1-1-1-1" + style="fill:#0072bd" /> + </g> + </g> +</g><rect + style="font-variation-settings:normal;opacity:1;fill:#ffffff;fill-opacity:0.8;stroke:#000000;stroke-width:0.132;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1" + id="rect15" + width="5.4406261" + height="4.8587742" + x="72.116028" + y="45.664001" + ry="2.1179492" + rx="2.1179492" /><g + inkscape:label="" + transform="translate(72.456092,46.332249)" + id="g12" + style="fill:#77ac30"><g + fill="#000000" + fill-opacity="1" + id="g4-1-1-1" + transform="matrix(0.352778,0,0,0.352778,-63.9455,-2.28022)" + style="fill:#77ac30"> + <g + id="use3-1-1-1" + transform="translate(180.54401,13.948)" + style="fill:#77ac30"> + <path + d="m 2.828125,-6.15625 c 0,-0.390625 0.25,-1.03125 1.34375,-1.09375 C 4.21875,-7.265625 4.25,-7.3125 4.25,-7.359375 c 0,-0.125 -0.078125,-0.125 -0.1875,-0.125 -0.984375,0 -1.90625,0.515625 -1.90625,1.25 v 2.28125 c 0,0.390625 0,0.703125 -0.40625,1.03125 -0.34375,0.296875 -0.71875,0.3125 -0.9375,0.3125 C 0.75,-2.59375 0.71875,-2.546875 0.71875,-2.5 c 0,0.109375 0.0625,0.109375 0.15625,0.125 0.65625,0.03125 1.140625,0.390625 1.25,0.875 0.03125,0.109375 0.03125,0.140625 0.03125,0.5 v 1.96875 c 0,0.421875 0,0.734375 0.46875,1.109375 C 3.015625,2.375 3.671875,2.5 4.0625,2.5 4.171875,2.5 4.25,2.5 4.25,2.375 4.25,2.28125 4.203125,2.28125 4.09375,2.265625 3.46875,2.234375 2.984375,1.90625 2.84375,1.40625 2.828125,1.3125 2.828125,1.296875 2.828125,0.9375 v -2.09375 c 0,-0.453125 -0.09375,-0.625 -0.40625,-0.953125 C 2.21875,-2.3125 1.921875,-2.40625 1.640625,-2.5 c 0.828125,-0.21875 1.1875,-0.6875 1.1875,-1.265625 z m 0,0" + id="path6-1-1-1" + style="fill:#77ac30" /> + </g> + </g> + <g + fill="#000000" + fill-opacity="1" + id="g5-1-1-1" + transform="matrix(0.352778,0,0,0.352778,-63.9455,-2.28022)" + style="fill:#77ac30"> + <g + id="use4-1-1-1" + transform="translate(185.52499,13.948)" + style="fill:#77ac30"> + <path + d="m 2.9375,-1.640625 v 0.859375 c 0,0.359375 -0.03125,0.46875 -0.765625,0.46875 H 1.96875 V 0 C 2.375,-0.03125 2.890625,-0.03125 3.3125,-0.03125 c 0.421875,0 0.9375,0 1.359375,0.03125 v -0.3125 h -0.21875 c -0.734375,0 -0.75,-0.109375 -0.75,-0.46875 V -1.640625 H 4.6875 v -0.3125 H 3.703125 v -4.53125 c 0,-0.203125 0,-0.265625 -0.171875,-0.265625 -0.078125,0 -0.109375,0 -0.1875,0.125 l -3.0625,4.671875 v 0.3125 z m 0.046875,-0.3125 H 0.5625 l 2.421875,-3.71875 z m 0,0" + id="path7-1-1-1-1-1" + style="fill:#77ac30" /> + </g> + </g> + <g + fill="#000000" + fill-opacity="1" + id="g6-1-1-1-1-1" + transform="matrix(0.352778,0,0,0.352778,-63.9455,-2.28022)" + style="fill:#77ac30"> + <g + id="use5-1-1-1" + transform="translate(190.507,13.948)" + style="fill:#77ac30"> + <path + d="m 2.15625,1.171875 c 0,0.390625 -0.265625,1.03125 -1.34375,1.09375 C 0.75,2.28125 0.71875,2.328125 0.71875,2.375 0.71875,2.5 0.828125,2.5 0.921875,2.5 1.890625,2.5 2.8125,2 2.828125,1.25 v -2.28125 c 0,-0.390625 0,-0.703125 0.390625,-1.03125 C 3.5625,-2.359375 3.953125,-2.375 4.171875,-2.375 4.21875,-2.390625 4.25,-2.4375 4.25,-2.5 4.25,-2.59375 4.203125,-2.59375 4.09375,-2.609375 3.4375,-2.640625 2.953125,-3 2.84375,-3.484375 2.828125,-3.59375 2.828125,-3.625 2.828125,-3.984375 v -1.96875 c 0,-0.421875 0,-0.734375 -0.484375,-1.109375 C 1.9375,-7.375 1.25,-7.484375 0.921875,-7.484375 c -0.09375,0 -0.203125,0 -0.203125,0.125 0,0.09375 0.0625,0.09375 0.15625,0.109375 0.625,0.03125 1.125,0.359375 1.25,0.859375 0.03125,0.09375 0.03125,0.109375 0.03125,0.46875 v 2.09375 c 0,0.453125 0.078125,0.625 0.390625,0.953125 0.21875,0.203125 0.5,0.296875 0.78125,0.375 -0.8125,0.234375 -1.171875,0.703125 -1.171875,1.28125 z m 0,0" + id="path8-1-1-1-1" + style="fill:#77ac30" /> + </g> + </g> +</g></g></svg> diff --git a/figs/detail_fem_open_loop_identification.pdf b/figs/detail_fem_open_loop_identification.pdf new file mode 100644 index 0000000..9047e78 Binary files /dev/null and b/figs/detail_fem_open_loop_identification.pdf differ diff --git a/figs/detail_fem_open_loop_identification.png b/figs/detail_fem_open_loop_identification.png new file mode 100644 index 0000000..b717e3f Binary files /dev/null and b/figs/detail_fem_open_loop_identification.png differ diff --git a/figs/detail_fem_open_loop_identification.svg b/figs/detail_fem_open_loop_identification.svg new file mode 100644 index 0000000..7ab5ecf --- /dev/null +++ b/figs/detail_fem_open_loop_identification.svg @@ -0,0 +1,48 @@ +<?xml version="1.0" encoding="UTF-8"?> +<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="93.701" height="30.343" viewBox="0 0 93.701 30.343"> +<defs> +<g> +<g id="glyph-0-0"> +<path d="M 7.03125 -2.546875 C 7.03125 -2.625 6.984375 -2.65625 6.90625 -2.65625 C 6.671875 -2.65625 6.109375 -2.625 5.875 -2.625 L 4.515625 -2.65625 C 4.421875 -2.65625 4.3125 -2.65625 4.3125 -2.46875 C 4.3125 -2.359375 4.390625 -2.359375 4.609375 -2.359375 C 4.609375 -2.359375 4.890625 -2.359375 5.125 -2.34375 C 5.375 -2.3125 5.421875 -2.28125 5.421875 -2.15625 C 5.421875 -2.0625 5.3125 -1.625 5.21875 -1.265625 C 4.9375 -0.1875 3.671875 -0.09375 3.328125 -0.09375 C 2.40625 -0.09375 1.375 -0.640625 1.375 -2.140625 C 1.375 -2.4375 1.46875 -4.046875 2.5 -5.3125 C 3.015625 -5.984375 3.96875 -6.578125 4.9375 -6.578125 C 5.921875 -6.578125 6.5 -5.828125 6.5 -4.6875 C 6.5 -4.296875 6.46875 -4.296875 6.46875 -4.1875 C 6.46875 -4.09375 6.578125 -4.09375 6.625 -4.09375 C 6.75 -4.09375 6.75 -4.109375 6.796875 -4.296875 L 7.40625 -6.78125 C 7.40625 -6.8125 7.390625 -6.875 7.296875 -6.875 C 7.265625 -6.875 7.265625 -6.859375 7.15625 -6.75 L 6.46875 -6 C 6.390625 -6.140625 5.9375 -6.875 4.859375 -6.875 C 2.6875 -6.875 0.484375 -4.71875 0.484375 -2.453125 C 0.484375 -0.90625 1.5625 0.21875 3.15625 0.21875 C 3.578125 0.21875 4.015625 0.125 4.375 -0.015625 C 4.859375 -0.21875 5.046875 -0.421875 5.21875 -0.609375 C 5.296875 -0.375 5.5625 -0.015625 5.65625 -0.015625 C 5.703125 -0.015625 5.71875 -0.046875 5.71875 -0.046875 C 5.75 -0.0625 5.84375 -0.4375 5.890625 -0.640625 L 6.078125 -1.390625 C 6.109375 -1.5625 6.15625 -1.71875 6.203125 -1.890625 C 6.3125 -2.328125 6.3125 -2.34375 6.875 -2.359375 C 6.921875 -2.359375 7.03125 -2.375 7.03125 -2.546875 Z M 7.03125 -2.546875 "/> +</g> +<g id="glyph-0-1"> +<path d="M 5.296875 -1.390625 C 5.296875 -1.484375 5.203125 -1.484375 5.171875 -1.484375 C 5.078125 -1.484375 5.0625 -1.453125 5.046875 -1.3125 C 4.90625 -0.765625 4.71875 -0.109375 4.3125 -0.109375 C 4.109375 -0.109375 4 -0.234375 4 -0.5625 C 4 -0.765625 4.125 -1.234375 4.203125 -1.5625 L 4.46875 -2.625 C 4.5 -2.765625 4.609375 -3.140625 4.640625 -3.28125 C 4.6875 -3.515625 4.78125 -3.875 4.78125 -3.9375 C 4.78125 -4.109375 4.65625 -4.203125 4.5 -4.203125 C 4.453125 -4.203125 4.203125 -4.1875 4.125 -3.859375 L 3.390625 -0.921875 C 3.390625 -0.890625 3 -0.109375 2.28125 -0.109375 C 1.78125 -0.109375 1.671875 -0.546875 1.671875 -0.90625 C 1.671875 -1.453125 1.953125 -2.21875 2.203125 -2.890625 C 2.328125 -3.1875 2.375 -3.328125 2.375 -3.515625 C 2.375 -3.953125 2.0625 -4.3125 1.5625 -4.3125 C 0.640625 -4.3125 0.28125 -2.890625 0.28125 -2.8125 C 0.28125 -2.703125 0.40625 -2.703125 0.40625 -2.703125 C 0.5 -2.703125 0.5 -2.734375 0.5625 -2.890625 C 0.796875 -3.734375 1.171875 -4.09375 1.546875 -4.09375 C 1.625 -4.09375 1.78125 -4.078125 1.78125 -3.765625 C 1.78125 -3.546875 1.671875 -3.25 1.625 -3.109375 C 1.25 -2.140625 1.046875 -1.546875 1.046875 -1.0625 C 1.046875 -0.140625 1.71875 0.109375 2.25 0.109375 C 2.890625 0.109375 3.25 -0.328125 3.40625 -0.546875 C 3.515625 -0.140625 3.859375 0.109375 4.28125 0.109375 C 4.625 0.109375 4.84375 -0.109375 5 -0.421875 C 5.171875 -0.78125 5.296875 -1.390625 5.296875 -1.390625 Z M 5.296875 -1.390625 "/> +</g> +<g id="glyph-0-2"> +<path d="M 4.734375 -3.71875 C 4.78125 -3.84375 4.78125 -3.875 4.78125 -3.9375 C 4.78125 -4.109375 4.640625 -4.203125 4.5 -4.203125 C 4.390625 -4.203125 4.234375 -4.140625 4.15625 -4 C 4.140625 -3.953125 4.0625 -3.640625 4.015625 -3.46875 L 3.828125 -2.6875 L 3.390625 -0.9375 C 3.34375 -0.796875 2.921875 -0.109375 2.28125 -0.109375 C 1.78125 -0.109375 1.671875 -0.53125 1.671875 -0.890625 C 1.671875 -1.34375 1.84375 -1.953125 2.171875 -2.8125 C 2.328125 -3.203125 2.375 -3.3125 2.375 -3.515625 C 2.375 -3.953125 2.0625 -4.3125 1.5625 -4.3125 C 0.640625 -4.3125 0.28125 -2.890625 0.28125 -2.8125 C 0.28125 -2.703125 0.40625 -2.703125 0.40625 -2.703125 C 0.5 -2.703125 0.5 -2.734375 0.5625 -2.890625 C 0.8125 -3.796875 1.203125 -4.09375 1.546875 -4.09375 C 1.625 -4.09375 1.78125 -4.09375 1.78125 -3.78125 C 1.78125 -3.546875 1.6875 -3.28125 1.625 -3.09375 C 1.234375 -2.0625 1.046875 -1.515625 1.046875 -1.046875 C 1.046875 -0.1875 1.671875 0.109375 2.25 0.109375 C 2.625 0.109375 2.953125 -0.0625 3.234375 -0.328125 C 3.09375 0.171875 2.984375 0.65625 2.59375 1.171875 C 2.34375 1.5 1.96875 1.78125 1.515625 1.78125 C 1.390625 1.78125 0.953125 1.75 0.78125 1.375 C 0.9375 1.375 1.0625 1.375 1.203125 1.25 C 1.296875 1.171875 1.390625 1.046875 1.390625 0.859375 C 1.390625 0.5625 1.125 0.515625 1.03125 0.515625 C 0.8125 0.515625 0.484375 0.671875 0.484375 1.15625 C 0.484375 1.640625 0.921875 2 1.515625 2 C 2.53125 2 3.53125 1.109375 3.796875 0.015625 Z M 4.734375 -3.71875 "/> +</g> +</g> +<clipPath id="clip-0"> +<path clip-rule="nonzero" d="M 29 0 L 64 0 L 64 29.699219 L 29 29.699219 Z M 29 0 "/> +</clipPath> +<clipPath id="clip-1"> +<path clip-rule="nonzero" d="M 10 0 L 42 0 L 42 29.699219 L 10 29.699219 Z M 10 0 "/> +</clipPath> +<clipPath id="clip-2"> +<path clip-rule="nonzero" d="M 72 0 L 92.5625 0 L 92.5625 29.699219 L 72 29.699219 Z M 72 0 "/> +</clipPath> +</defs> +<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" d="M 30.058594 28.722656 L 63.351562 28.722656 L 63.351562 0.976562 L 30.058594 0.976562 Z M 30.058594 28.722656 "/> +<g clip-path="url(#clip-0)"> +<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -17.006492 -14.172572 L 17.007351 -14.172572 L 17.007351 14.174293 L -17.006492 14.174293 Z M -17.006492 -14.172572 " transform="matrix(0.978806, 0, 0, -0.978806, 46.704658, 14.850451)"/> +</g> +<g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> +<use xlink:href="#glyph-0-0" x="42.870673" y="18.182309"/> +</g> +<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -22.138699 -0.00113507 L -45.85221 -0.00113507 " transform="matrix(0.978806, 0, 0, -0.978806, 46.704658, 14.850451)"/> +<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 28.179688 14.851562 L 23.832031 13.203125 L 25.277344 14.851562 L 23.832031 16.496094 Z M 28.179688 14.851562 "/> +<g clip-path="url(#clip-1)"> +<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.052179 -0.00113507 L 1.610385 1.682995 L 3.086992 -0.00113507 L 1.610385 -1.681274 Z M 6.052179 -0.00113507 " transform="matrix(0.978806, 0, 0, -0.978806, 22.255776, 14.850451)"/> +</g> +<g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> +<use xlink:href="#glyph-0-1" x="5.561507" y="11.11239"/> +</g> +<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 17.506205 -0.00113507 L 41.219715 -0.00113507 " transform="matrix(0.978806, 0, 0, -0.978806, 46.704658, 14.850451)"/> +<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 90.195312 14.851562 L 85.847656 13.203125 L 87.292969 14.851562 L 85.847656 16.496094 Z M 90.195312 14.851562 "/> +<g clip-path="url(#clip-2)"> +<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.051413 -0.00113507 L 1.60962 1.682995 L 3.086227 -0.00113507 L 1.60962 -1.681274 Z M 6.051413 -0.00113507 " transform="matrix(0.978806, 0, 0, -0.978806, 84.27215, 14.850451)"/> +</g> +<g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> +<use xlink:href="#glyph-0-2" x="82.715926" y="9.216442"/> +</g> +</svg> diff --git a/nass-fem.bib b/nass-fem.bib index 65dce2a..c9045d9 100644 --- a/nass-fem.bib +++ b/nass-fem.bib @@ -33,6 +33,15 @@ +@book{hatch00_vibrat_matlab_ansys, + author = {Hatch, Michael R}, + title = {Vibration simulation using MATLAB and ANSYS}, + year = 2000, + publisher = {CRC Press}, +} + + + @phdthesis{rankers98_machin, author = {Rankers, Adrian Mathias}, keywords = {favorite}, @@ -44,15 +53,6 @@ -@book{hatch00_vibrat_matlab_ansys, - author = {Hatch, Michael R}, - title = {Vibration simulation using MATLAB and ANSYS}, - year = 2000, - publisher = {CRC Press}, -} - - - @article{craig68_coupl_subst_dynam_analy, author = {ROY R. CRAIG and MERVYN C. C. BAMPTON}, title = {Coupling of Substructures for Dynamic Analyses.}, diff --git a/nass-fem.org b/nass-fem.org index f938c2a..b0825f2 100644 --- a/nass-fem.org +++ b/nass-fem.org @@ -1149,8 +1149,6 @@ First, the fundamental principles and methodological approaches of this modeling It is then illustrated through its practical application to the modelling of an Amplified Piezoelectric Actuator (APA) (Section ref:ssec:detail_fem_super_element_example). Finally, the validity of this modeling approach is demonstrated through experimental validation, wherein the obtained dynamics from the hybrid modelling approach is compared with measurements (Section ref:ssec:detail_fem_super_element_validation). -The work presented in this section has also been published in [[cite:&brumund21_multib_simul_reduc_order_flexib_bodies_fea]]. - ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) <<matlab-dir>> @@ -1213,7 +1211,7 @@ The presented modeling framework was first applied to an Amplified Piezoelectric Primarily, this actuator represents an excellent candidate for implementation within the nano-hexapod, as will be elaborated in Section ref:sec:detail_fem_actuator. Additionally, an Amplified Piezoelectric Actuator (the APA95ML shown in Figure ref:fig:detail_fem_apa95ml_picture) was available in the laboratory for experimental testing. -The APA consists of multiple piezoelectric stacks arranged horizontally (depicted in blue in Figure ref:fig:detail_fem_apa95ml_picture) and an amplifying shell structure (shown in red) that serves two purposes: the application of pre-stress to the piezoelectric elements and the amplification of their displacement into the vertical direction [[cite:&claeyssen07_amplif_piezoel_actuat]]. +The APA consists of multiple piezoelectric stacks arranged horizontally (depicted in blue in Figure ref:fig:detail_fem_apa95ml_picture) and of an amplifying shell structure (shown in red) that serves two purposes: the application of pre-stress to the piezoelectric elements and the amplification of their displacement into the vertical direction [[cite:&claeyssen07_amplif_piezoel_actuat]]. The selection of the APA for validation purposes was further justified by its capacity to simultaneously demonstrate multiple aspects of the modeling framework. The specific design of the APA allows for the simultaneous modeling of a mechanical structure analogous to a flexible joint, piezoelectric actuation, and piezoelectric sensing, thereby encompassing the principal elements requiring validation. @@ -1233,8 +1231,8 @@ The specific design of the APA allows for the simultaneous modeling of a mechani | *Parameter* | *Value* | |----------------+---------------| | Nominal Stroke | $100\,\mu m$ | -| Blocked force | $1600\,N$ | -| Stiffness | $16\,N/\mu m$ | +| Blocked force | $2100\,N$ | +| Stiffness | $21\,N/\mu m$ | #+latex: \captionof{table}{\label{tab:detail_fem_apa95ml_specs}APA95ML specifications} #+end_minipage @@ -1252,68 +1250,59 @@ The finite element mesh, shown in Figure ref:fig:detail_fem_apa95ml_mesh, was th | Stainless Steel | $190\,GPa$ | $0.31$ | $7800\,\text{kg}/m^3$ | | Piezoelectric Ceramics (PZT) | $49.5\,GPa$ | $0.31$ | $7800\,\text{kg}/m^3$ | -The definition of interface frames, or "remote points" as depicted in Figure ref:fig:detail_fem_apa95ml_frames, constitute a critical aspect of the model preparation. -Seven frames were established: two frames for each piezoelectric stack to facilitate strain measurement and force application, and additional frames at the top and bottom of the structure to enable connection with external elements in the multi-body simulation. +The definition of interface frames, or "remote points", constitute a critical aspect of the model preparation. +Seven frames were established: one frame at the two ends of each piezoelectric stack to facilitate strain measurement and force application, and additional frames at the top and bottom of the structure to enable connection with external elements in the multi-body simulation. Six additional modes were considered, resulting in total model order of $48$. The modal reduction procedure was then executed, yielding the reduced mass and stiffness matrices that form the foundation of the component's representation in the multi-body simulation environment. #+name: fig:detail_fem_apa95ml_model -#+caption: Finite element model of the APA95ML. Obtained mesh is shown in (\subref{fig:detail_fem_apa95ml_mesh}). Frames (or "remote points") used for the modal reduction are shown in (\subref{fig:detail_fem_apa95ml_frames}). +#+caption: Obtained mesh and defined interface frames (or "remote points") in the finite element model of the APA95ML (\subref{fig:detail_fem_apa95ml_mesh}). Interface with the multi-body model is shown in (\subref{fig:detail_fem_apa_modal_schematic}). #+attr_latex: :options [htbp] #+begin_figure -#+attr_latex: :caption \subcaption{\label{fig:detail_fem_apa95ml_mesh}Obtained mesh} +#+attr_latex: :caption \subcaption{\label{fig:detail_fem_apa95ml_mesh}Obtained mesh and "remote points"} #+attr_latex: :options {0.48\textwidth} #+begin_subfigure -#+attr_latex: :width 0.95\linewidth +#+attr_latex: :scale 1 [[file:figs/detail_fem_apa95ml_mesh.png]] #+end_subfigure -#+attr_latex: :caption \subcaption{\label{fig:detail_fem_apa95ml_frames}Defined frames} +#+attr_latex: :caption \subcaption{\label{fig:detail_fem_apa_model_schematic}Inclusion in multi-body model} #+attr_latex: :options {0.48\textwidth} #+begin_subfigure -#+attr_latex: :width 0.85\linewidth -[[file:figs/detail_fem_apa95ml_frames.png]] +#+attr_latex: :scale 1 +[[file:figs/detail_fem_apa_modal_schematic.png]] #+end_subfigure #+end_figure **** Super Element in the Multi-Body Model +Previously computed reduced order mass and stiffness matrices were imported in a multi-body model block called "Reduced Order Flexible Solid". +This block has several interface frames corresponding to the ones defined in the FEA software. +Frame $\{4\}$ was connected to the "world" frame, while frame $\{6\}$ was coupled to a vertically guided payload. +In this example, two piezoelectric stacks were used for actuation while one piezoelectric stack was used as a force sensor. +Therefore, a force source $F_a$ operating between frames $\{3\}$ and $\{2\}$ was used, while a displacement sensor $d_L$ between frames $\{1\}$ and $\{7\}$ was used for the sensor stack. +This is illustrated in Figure ref:fig:detail_fem_apa_model_schematic. - -Model: -- Connect frame $\{4\}$ to world frame and frame $\{6\}$ to a 5.5kg mass, vertically guided -- 2 actuator stacks, 1 sensor stack: - - force source between frames $\{3\}$ and $\{2\}$ - - measured strain for force sensor by measuring the displacement between $\{1\}$ and $\{7\}$ -- Input: internal force applied -- Output: strain in the sensor stack -- Issue: how to convert voltage to force and strain to voltage? - -#+name: fig:detail_fem_apa_model_schematic -#+caption: Amplified Piezoelectric Actuator Schematic -#+attr_latex: :width 0.5\linewidth -[[file:figs/detail_fem_apa_modal_schematic.png]] - -Need to link the electrical domain (voltages, charges) with the mechanical domain (forces, strain). -To do so, "actuator constant" $g_a$ and "sensor constant" $g_s$ are used as shown in Figure ref:fig:detail_fem_apa_model_schematic. - -A voltage $V_a$ applied to the actuator stacks will induce an actuator force $F_a$: -\begin{equation} - \boxed{F_a = g_a \cdot V_a} -\end{equation} - -A change of length $dl$ of the sensor stack will induce a voltage $V_s$: -\begin{equation} - \boxed{V_s = g_s \cdot dl} -\end{equation} - -In order to correctly model the piezoelectric actuator with Simscape, the values for $g_a$ and $g_s$ needs to be determined. -- $g_a$: the ratio of the generated force $F_a$ to the supply voltage $V_a$ across the piezoelectric stack -- $g_s$: the ratio of the generated voltage $V_s$ across the piezoelectric stack when subject to a strain $\Delta h$ +However, to have access to the physical voltage input of the actuators stacks $V_a$ and to the generated voltage by the force sensor $V_s$, conversion between the electrical and mechanical domains need to be determined. **** Sensor and Actuator "constants" -The gains $g_a$ and $g_s$ were estimated from the physical properties of the piezoelectric stack material (summarized in Table ref:tab:detail_fem_stack_parameters). +To link the electrical domain to the mechanical domain, an "actuator constant" $g_a$ and a "sensor constant" $g_s$ were introduced as shown in Figure ref:fig:detail_fem_apa_model_schematic. + +From [[cite:&fleming14_desig_model_contr_nanop_system p. 123]], the relation between relative displacement $d_L$ of the sensor stack and generated voltage $V_s$ is given by eqref:eq:detail_fem_dl_to_vs. + +\begin{equation}\label{eq:detail_fem_dl_to_vs} + V_s = g_s \cdot d_L, \quad g_s = \frac{d_{33}}{\epsilon^T s^D n} +\end{equation} + +From [[cite:&fleming10_integ_strain_force_feedb_high]] the relation between the force $F_a$ and the applied voltage $V_a$ is given by eqref:eq:detail_fem_va_to_fa. + +\begin{equation}\label{eq:detail_fem_va_to_fa} + F_a = g_a \cdot V_a, \quad g_a = d_{33} n k_a, \quad k_a = \frac{c^{E} A}{L} +\end{equation} + +Unfortunately, it is difficult to know exactly which material is used in the amplified piezoelectric actuator[fn:1]. +However, based on the available properties of the stacks in the data-sheet (summarized in Table ref:tab:detail_fem_stack_parameters), the soft Lead Zirconate Titanate "THP5H" from Thorlabs seemed to match quite well the observed properties. #+name: tab:detail_fem_stack_parameters #+caption: Stack Parameters @@ -1329,19 +1318,7 @@ The gains $g_a$ and $g_s$ were estimated from the physical properties of the pie | Length | $mm$ | 20 | | Stack Area | $mm^2$ | 10x10 | -From [[cite:&fleming14_desig_model_contr_nanop_system p. 123]], the relation between relative displacement $d_L$ of the sensor stack and generated voltage $V_s$ is given by eqref:eq:test_apa_piezo_strain_to_voltage and from [[cite:&fleming10_integ_strain_force_feedb_high]] the relation between the force $F_a$ and the applied voltage $V_a$ is given by eqref:eq:test_apa_piezo_voltage_to_force. - -\begin{subequations} -\begin{align} - V_s &= \underbrace{\frac{d_{33}}{\epsilon^T s^D n}}_{g_s} d_L \label{eq:test_apa_piezo_strain_to_voltage} \\ - F_a &= \underbrace{d_{33} n k_a}_{g_a} \cdot V_a, \quad k_a = \frac{c^{E} A}{L} \label{eq:test_apa_piezo_voltage_to_force} -\end{align} -\end{subequations} - -Unfortunately, it is difficult to know exactly which material is used in the amplified piezoelectric actuator[fn:1]. -However, based on the available properties of the stacks in the data-sheet (summarized in Table ref:tab:detail_fem_stack_parameters), the soft Lead Zirconate Titanate "THP5H" from Thorlabs seemed to match quite well the observed properties. The properties of this "THP5H" material used to compute $g_a$ and $g_s$ are listed in Table ref:tab:test_apa_piezo_properties. - From these parameters, $g_s = 5.1\,V/\mu m$ and $g_a = 26\,N/V$ were obtained. #+name: tab:test_apa_piezo_properties @@ -1379,18 +1356,103 @@ ka = cE*A/L; % Stiffness of the two stacks [N/m] ga = d33*n*ka; % Actuator Constant [N/V] #+end_src +**** Identification of the APA Characteristics + +Initial validation of the finite element model and its integration as a reduced-order flexible model within the multi-body model was accomplished through comparative analysis of key actuator characteristics against manufacturer specifications. + +#+begin_src matlab +%% Load reduced order model +K = readmatrix('APA95ML_K.CSV'); % order: 48 +M = readmatrix('APA95ML_M.CSV'); +[int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('APA95ML_out_nodes_3D.txt'); +#+end_src + +The stiffness of the APA95ML was estimated from the multi-body model by computing the axial compliance of the APA95ML (Figure ref:fig:detail_fem_apa95ml_compliance), which corresponds to the transfer function from a vertical force applied between the two interface frames to the relative vertical displacement between these two frames. +The inverse of the DC gain this transfer function corresponds to the axial stiffness of the APA95ML. +A value of $23\,N/\mu m$ was found which is close to the specified stiffness in the datasheet of $k = 21\,N/\mu m$. + +#+begin_src matlab +%% Stiffness estimation +m = 0.0001; % block-free condition, no payload + +clear io; io_i = 1; +io(io_i) = linio([mdl, '/Fd'], 1, 'openinput'); io_i = io_i + 1; +io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1; + +G = linearize(mdl, io); + +% The inverse of the DC gain of the transfer function +% from vertical force to vertical displacement is the axial stiffness of the APA +k_est = 1/dcgain(G); % [N/m] +#+end_src + +The multi-body model predicted a resonant frequency under block-free conditions of $2024\,\text{Hz}$ (Figure ref:fig:detail_fem_apa95ml_compliance), which is in agreement with the nominal specification of $2000\,\text{Hz}$. + +#+begin_src matlab :exports none :results none +%% Estimated compliance of the APA95ML +freqs = logspace(2, log10(5000), 1000); + +% Get first resonance indice +i_max = find(abs(squeeze(freqresp(G, freqs(2:end), 'Hz'))) - abs(squeeze(freqresp(G, freqs(1:end-1), 'Hz'))) < 0, 1); + +figure; +hold on; +plot(freqs, abs(squeeze(freqresp(G, freqs, 'Hz'))), 'DisplayName', 'Compliance'); +plot([freqs(1), freqs(end)], [1/k_est, 1/k_est], 'k--', 'DisplayName', sprintf('$1/k$ ($k = %.0f N/\\mu m$)', 1e-6*k_est)) +xline(freqs(i_max), '--', 'linewidth', 1, 'color', [0,0,0], 'DisplayName', sprintf('$f_0 = %.0f$ Hz', freqs(i_max))) +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); ylabel('Amplitude [m/N]'); +leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); +leg.ItemTokenSize(1) = 15; +xlim([100, 5000]); +#+end_src + +#+begin_src matlab :tangle no :exports results :results file replace +exportFig('figs/detail_fem_apa95ml_compliance.pdf', 'width', 'wide', 'height', 'normal'); +#+end_src + +#+name: fig:detail_fem_apa95ml_compliance +#+caption: Estimated compliance of the APA95ML +#+RESULTS: +[[file:figs/detail_fem_apa95ml_compliance.png]] + +In order to estimate the stroke of the APA95ML, first the mechanical amplification factor, defined as the ratio between vertical displacement and horizontal stack displacement, needs to be determined. +This characteristic was quantified through analysis of the transfer function relating horizontal stack motion to vertical actuator displacement, from which an amplification factor of $1.5$ was derived. + +#+begin_src matlab :exports none +%% Estimation of the amplification factor and Stroke +clear io; io_i = 1; +io(io_i) = linio([mdl, '/Fa'], 1, 'openinput'); io_i = io_i + 1; +io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1; +io(io_i) = linio([mdl, '/d'], 1, 'openoutput'); io_i = io_i + 1; + +G = linearize(mdl, io); + +% Estimated amplification factor +ampl_factor = abs(dcgain(G(1,1))./dcgain(G(2,1))); + +% Estimated stroke +apa_stroke = ampl_factor * 3 * 20e-6; % [m] +#+end_src + +The piezoelectric stacks, exhibiting a typical strain response of $0.1\,\%$ relative to their length (here equal to $20\,mm$), produce an individual nominal stroke of $20\,\mu m$ (see data-sheet of the piezoelectric stacks on Table ref:tab:detail_fem_stack_parameters, page pageref:tab:detail_fem_stack_parameters). +As three stacks are used, the horizontal displacement is $60\,\mu m$. +Through the established amplification factor of 1.5, this translates to a predicted vertical stroke of $90\,\mu m$ which falls within the manufacturer-specified range of $80\,\mu m$ and $120\,\mu m$. + +The high degree of concordance observed across multiple performance metrics provides a first validation of the ability to include FEM into multi-body model. + ** Experimental Validation <<ssec:detail_fem_super_element_validation>> **** Introduction :ignore: -**** Test Bench -goal: validation of the procedure. +Further validation of the reduced-order flexible body methodology was undertaken through experimental investigation. +The goal is to measure the dynamics of the APA95ML and compared it with predictions derived from the multi-body model incorporating the actuator as a flexible element. -- Explain test bench: (Figure ref:fig:detail_fem_apa95ml_bench) - - 5.7kg granite, vertical guided with an air bearing - - fibered interferometer measured the vertical motion of the granite $y$ - - DAC generating control signal $u$, voltage amplifier gain of 20, $V_a$ is the voltage across the two piezoelectric stacks - - ADC is used to measured the voltage across the piezoelectric sensor stack +The test bench illustrated in Figure ref:fig:detail_fem_apa95ml_bench was used, which consists of a $5.7\,kg$ granite suspended on top of the APA95ML. +The granite's motion was vertically guided with an air bearing system, and a fibered interferometer was used to measured its vertical displacement $y$. +A digital-to-analog converter (DAC) was used to generate the control signal $u$, which was subsequently conditioned through a voltage amplification stage providing a gain factor of $20$, ultimately yielding the effective voltage $V_a$ across the two piezoelectric stacks. +Measurement of the sensor stack voltage $V_s$ was performed using an analog-to-digital converter (ADC). #+name: fig:detail_fem_apa95ml_bench #+caption: Test bench used to validate "reduced order solid bodies" using an APA95ML. Picture of the bench is shown in (\subref{fig:detail_fem_apa95ml_bench_picture}). Schematic is shown in (\subref{fig:detail_fem_apa95ml_bench_schematic}). @@ -1412,15 +1474,21 @@ goal: validation of the procedure. **** Comparison of the dynamics -- Explain how to experimentally measure the transfer function: - - test signal, here noise - - compute and show the transfer functions from $V_a$ to $y$ and to $V_s$ - - Compare the model and measurement: validation (Figure ref:fig:detail_fem_apa95ml_comp_plant) - - talk about the phase: - - for force sensor, just delay linked to the limited sampling rate of $0.1\,ms$ - - for interferometer: additional delay due to electronics being used - - good match. The gains can be further tuned based on the experimental results. - - [ ] talk about minimum phase zero: will be discussed during the experimental phase +Frequency domain system identification techniques were used to characterize the dynamic behavior of the APA95ML. +The identification procedure necessitated careful choice of the excitation signal [[cite:&pintelon12_system_ident, chap. 5]]. +The most used ones are impulses (particularly suited to modal analysis), steps, random noise signals, and multi-sine excitations. +During all this experimental work, random noise excitation was predominantly employed. + +The designed excitation signal is then generated and both input and output signals are synchronously acquired. +From the obtained input and output data, the frequency response functions were derived. +To improve the quality of the obtained frequency domain data, averaging and windowing were used [[cite:&pintelon12_system_ident, chap. 13]].. + +The obtained frequency response functions from $V_a$ to $V_s$ and to $y$ are compared with the theoretical predictions derived from the multi-body model in Figure ref:fig:detail_fem_apa95ml_comp_plant. + +The difference in phase between the model and the measurements can be attributed to the sampling time of $0.1\,ms$ and to additional delays induced by electronic instrumentation related to the interferometer. +The presence of a non-minimum phase zero in the measured system response (Figure ref:fig:detail_fem_apa95ml_comp_plant_sensor), shall be addressed during the experimental phase. + +Regarding the amplitude characteristics, the constants $g_a$ and $g_s$ could be further refined through calibration against the experimental data. #+begin_src matlab %% Experimental plant identification @@ -1530,10 +1598,10 @@ exportFig('figs/detail_fem_apa95ml_comp_plant_sensor.pdf', 'width', 'half', 'hei #+end_src #+name: fig:detail_fem_apa95ml_comp_plant -#+caption: Comparison of the measured frequency response functions and the identified dynamics from the finite element model of the APA95ML. Both for the dynamics from $V_a$ to $d_i$ (\subref{fig:detail_fem_apa95ml_comp_plant_actuator}) and from $V_a$ to $V_s$ (\subref{fig:detail_fem_apa95ml_comp_plant_sensor}) +#+caption: Comparison of the measured frequency response functions and the identified dynamics from the finite element model of the APA95ML. Both for the dynamics from $V_a$ to $y$ (\subref{fig:detail_fem_apa95ml_comp_plant_actuator}) and from $V_a$ to $V_s$ (\subref{fig:detail_fem_apa95ml_comp_plant_sensor}) #+attr_latex: :options [htbp] #+begin_figure -#+attr_latex: :caption \subcaption{\label{fig:detail_fem_apa95ml_comp_plant_actuator}from $V_a$ to $d_i$} +#+attr_latex: :caption \subcaption{\label{fig:detail_fem_apa95ml_comp_plant_actuator}from $V_a$ to $y$} #+attr_latex: :options {0.49\textwidth} #+begin_subfigure #+attr_latex: :width 0.95\linewidth @@ -1549,20 +1617,20 @@ exportFig('figs/detail_fem_apa95ml_comp_plant_sensor.pdf', 'width', 'half', 'hei **** Integral Force Feedback with APA -goal: -- validate the use of super element for control tasks +To further validate this modeling methodology, its ability to predict closed-loop behavior was verified experimentally. +Integral Force Feedback (IFF) was implemented using the force sensor stack, and the measured dynamics of the damped system were compared with model predictions across multiple feedback gains. -The controller used in the Integral Force Feedback Architecture is eqref:eq:detail_fem_iff_controller, wtih $g$ a gain that can be tuned. +The IFF controller implementation, defined in equation ref:eq:detail_fem_iff_controller, incorporated a tunable gain parameter $g$ and was designed to provide integral action near the system resonances and to limit the low frequency gain using an high pass filter. \begin{equation}\label{eq:detail_fem_iff_controller} K_{\text{IFF}}(s) = \frac{g}{s + 2\cdot 2\pi} \cdot \frac{s}{s + 0.5 \cdot 2\pi} \end{equation} +The theoretical damped dynamics of the closed-loop system was analyzed through using the model by computed the root locus plot shown in Figure ref:fig:detail_fem_apa95ml_iff_root_locus. +For experimental validation, six gain values were tested: $g = [0,\,10,\,50,\,100,\,500,\,1000]$. +The measured frequency responses for each gain configuration were compared with model predictions, as presented in Figure ref:fig:detail_fem_apa95ml_damped_plants. -Above 2 Hz the controller is basically an integrator, whereas an high pass filter is added at 0.5Hz to further reduce the low frequency gain. -In the frequency band of interest, this controller should mostly act as a pure integrator. - -- [ ] Maybe make a block diagram of the control with added damped input +The close agreement between experimental measurements and theoretical predictions across all gain configurations demonstrates the model's capability to accurately predict both open-loop and closed-loop system dynamics, thereby validating its utility for control system design and analysis. #+begin_src matlab :exports none %% Integral Force Feedback Controller @@ -1696,7 +1764,7 @@ exportFig('figs/detail_fem_apa95ml_damped_plants.pdf', 'width', 'half', 'height' #+end_src #+name: fig:detail_fem_apa95ml_iff_results -#+caption: Obtained results using Integral Force Feedback with the APA95ML. +#+caption: Obtained results using Integral Force Feedback with the APA95ML. Obtained closed-loop poles as a function of the controller gain $g$ are prediction by root Locus plot (\subref{fig:detail_fem_apa95ml_iff_root_locus}). Circles are predictions from the model while crosses are poles estimated from the experimental data. Damped plants estimated from the model (dashed curves) and measured ones (solid curves) are compared in (\subref{fig:detail_fem_apa95ml_damped_plants}) for all tested controller gains. #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:detail_fem_apa95ml_iff_root_locus}Root Locus plot} @@ -1718,11 +1786,13 @@ exportFig('figs/detail_fem_apa95ml_damped_plants.pdf', 'width', 'half', 'height' :UNNUMBERED: t :END: -- Validation of the method -- Very useful to optimize different parts -- However, model order may become very large and not convenient to perform time domain simulations -- But extracting dynamics is not computational intensive, even for large model orders -- For instance APA: order 48, 6 APA for the nano hexapod 288 orders just for the APA +The modeling procedure presented in this section will demonstrate significant utility for the optimization of complex mechanical components within multi-body systems, particularly in the design of actuators (Section ref:sec:detail_fem_actuator) and flexible joints (Section ref:sec:detail_fem_joint). + +Through experimental validation using an Amplified Piezoelectric Actuator, the methodology has been shown to accurately predict both open-loop and closed-loop dynamic behavior, thereby establishing its reliability for component design and system analysis. + +While this modeling approach provides accurate predictions of component behavior, the resulting model order can become prohibitively high for practical time-domain simulations. +This is exemplified by the nano-hexapod configuration, where the implementation of six Amplified Piezoelectric Actuators, each modeled with 48 degrees of freedom, yields 288 degrees of freedom only for the actuators. +However, the methodology remains valuable for system analysis, as the extraction of frequency domain characteristics can be efficiently performed even with such high-order models. * Actuator <<sec:detail_fem_actuator>> @@ -1895,104 +1965,6 @@ To validate the choice of the APA300ML (Shown in Figure ref:fig:detail_fem_apa30 - The link between mechanical properties and electrical properties was discussed in Section ref:ssec:detail_fem_super_element_validation. As the stacks are the same between the APA300ML and the APA95ML, the values estimated for $g_a$ and $g_s$ are used for the APA300ML. -** Identification of the APA Characteristics -**** Introduction :ignore: -A first validation of the FEM and inclusion of the "reduced order flexible model" in the multi body-model is performed by computed some key characteristics of the APA that can be compared against the datasheet. - -#+begin_src matlab -% Extract the stiffness and mass matrices -K = readmatrix('APA300ML_mat_K.CSV'); -M = readmatrix('APA300ML_mat_M.CSV'); -[int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('APA300ML_out_nodes_3D.txt'); -#+end_src - -**** Stiffness -The stiffness is estimated by extracting the transfer function from a vertical force applied on the top frame to the displacement of the same top frame. -The inverse of the DC gain this transfer function should be equal to the axial stiffness of the APA300ML. -A value of $1.75\,N/\mu m$ is found which is close to the specified stiffness in the datasheet of $k = 1.8\,N/\mu m$. -See compliance transfer function ref:fig:detail_fem_apa300ml_compliance. - -#+begin_src matlab -%% Stiffness estimation -m = 0.0001; % block-free condition, no payload - -clear io; io_i = 1; -io(io_i) = linio([mdl, '/Fd'], 1, 'openinput'); io_i = io_i + 1; -io(io_i) = linio([mdl, '/z'], 1, 'openoutput'); io_i = io_i + 1; - -G = linearize(mdl, io); - -% The inverse of the DC gain of the transfer function -% from vertical force to vertical displacement is the axial stiffness of the APA -k_est = 1/dcgain(G); % [N/m] -#+end_src - - -**** Resonance Frequency - -The resonance frequency in the block-free condition is specified to be between 650Hz and 840Hz. -This is estimated at 709Hz from the model (Figure ref:fig:detail_fem_apa300ml_compliance). - -#+begin_src matlab :exports none :results none -%% Estimated compliance of the APA300ML -freqs = logspace(2, log10(5000), 1000); - -% Get first resonance indice -i_max = find(abs(squeeze(freqresp(G, freqs(2:end), 'Hz'))) - abs(squeeze(freqresp(G, freqs(1:end-1), 'Hz'))) < 0, 1); - -figure; -hold on; -plot(freqs, abs(squeeze(freqresp(G, freqs, 'Hz'))), 'DisplayName', 'Compliance'); -plot([freqs(1), freqs(end)], [1/k_est, 1/k_est], 'k--', 'DisplayName', sprintf('$1/k$ ($k = %.2f N/\\mu m$)', 1e-6*k_est)) -xline(freqs(i_max), '--', 'linewidth', 1, 'color', [0,0,0], 'DisplayName', sprintf('$f_0 = %.0f$ Hz', freqs(i_max))) -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('Amplitude [m/N]'); -leg = legend('location', 'southwest', 'FontSize', 8, 'NumColumns', 1); -leg.ItemTokenSize(1) = 15; -xlim([100, 5000]); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/detail_fem_apa300ml_compliance.pdf', 'width', 'wide', 'height', 'normal'); -#+end_src - -#+name: fig:detail_fem_apa300ml_compliance -#+caption: Estimated compliance of the APA300ML -#+RESULTS: -[[file:figs/detail_fem_apa300ml_compliance.png]] - - -**** Amplification Factor and Actuator Stroke - -The amplification factor is the ratio of the vertical displacement to the (horizontal) stack displacement. -It can be estimated from the multi-body model by computing the transfer function from the horizontal motion of the stacks to the vertical motion of the APA. -The ratio between the two is found to be equal to $5$. -This is linked to the - -#+begin_src matlab :exports none -%% Estimation of the amplification factor and Stroke -clear io; io_i = 1; -io(io_i) = linio([mdl, '/Fa'], 1, 'openinput'); io_i = io_i + 1; -io(io_i) = linio([mdl, '/z'], 1, 'openoutput'); io_i = io_i + 1; -io(io_i) = linio([mdl, '/d'], 1, 'openoutput'); io_i = io_i + 1; - -G = linearize(mdl, io); - -% Estimated amplification factor -ampl_factor = abs(dcgain(G(1,1))./dcgain(G(2,1))); - -% Estimated stroke -apa_stroke = ampl_factor * 3 * 20e-6; % [m] -#+end_src - -From the data-sheet of the piezoelectric stacks (see Table ref:tab:detail_fem_stack_parameters, page pageref:tab:detail_fem_stack_parameters), the nominal stroke of the stack is $20\,\mu m$ (which is typical for PZT to have a maximum stroke equal to $0.1\,\%$ of its length, here equal to $20\,mm$). -Three stacks are used, for an horizontal stroke of the stacks of $60\,\mu m$. -With an amplification factor equal to $5$, the vertical stroke is estimated at $300\,\mu m$, which corresponds to what is indicated in the datasheet. - - -This analysis provides some confidence on the model accuracy. - ** Simpler 2DoF Model of the APA300ML <<sec:apa_model>> **** Introduction :ignore: diff --git a/nass-fem.pdf b/nass-fem.pdf index 7e0e4bb..898921e 100644 Binary files a/nass-fem.pdf and b/nass-fem.pdf differ diff --git a/nass-fem.tex b/nass-fem.tex index 760e587..4b01f1d 100644 --- a/nass-fem.tex +++ b/nass-fem.tex @@ -1,4 +1,4 @@ -% Created 2025-02-26 Wed 09:37 +% Created 2025-02-26 Wed 15:42 % Intended LaTeX compiler: pdflatex \documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt} @@ -43,71 +43,51 @@ To do so, Reduced Order Flexible Bodies are used (Section \ref{sec:detail_fem_su \end{itemize} \chapter{Reduced order flexible bodies} -\label{sec:orgefd3374} +\label{sec:org5704c94} \label{sec:detail_fem_super_element} -Goal: -\begin{itemize} -\item include parts from which dynamical properties are estimated from a FEM -\end{itemize} +Components exhibiting complex dynamical behavior are frequently found to be unsuitable for direct implementation within multi-body models. +These components are traditionally analyzed using Finite Element Analysis (FEA) software. +However, a methodological bridge between these two analytical approaches has been established, whereby components whose dynamical properties have been determined through FEA can be successfully integrated into multi-body models \cite{hatch00_vibrat_matlab_ansys}. +This combined multibody-FEA modeling approach presents significant advantages, as it enables the selective application of FEA modeling to specific elements while maintaining the computational efficiency of multi-body analysis for the broader system \cite{rankers98_machin}. -Outline: -\begin{itemize} -\item Quick explanation of the theory -\item Explain the implementation with FEA software (Ansys) and Simscape -\item Experimental validation with an amplified piezoelectric actuator -\end{itemize} - -\cite{rankers98_machin} -\cite{hatch00_vibrat_matlab_ansys} -\section{FEA Modal Reduction} -\label{sec:org4844a44} +The investigation of this hybrid modeling approach is structured in three sections. +First, the fundamental principles and methodological approaches of this modeling framework are introduced (Section \ref{ssec:detail_fem_super_element_theory}). +It is then illustrated through its practical application to the modelling of an Amplified Piezoelectric Actuator (APA) (Section \ref{ssec:detail_fem_super_element_example}). +Finally, the validity of this modeling approach is demonstrated through experimental validation, wherein the obtained dynamics from the hybrid modelling approach is compared with measurements (Section \ref{ssec:detail_fem_super_element_validation}). +\section{Procedure} +\label{sec:orga74dca6} \label{ssec:detail_fem_super_element_theory} -\begin{itemize} -\item sub-components in the multi-body model as reduced order flexible bodies representing the component's modal behaviour with reduced mass and stiffness matrices obtained from finite element analysis (FEA) models -\item matrices were created from FEA models via modal reduction techniques, more specifically the component mode synthesis (CMS). -\item this makes this design approach a combined multibody-FEA technique. -\end{itemize} +In this modeling approach, some components within the multi-body framework are represented as \emph{reduced-order flexible bodies}, wherein their modal behavior is characterized through reduced mass and stiffness matrices derived from finite element analysis (FEA) models. +These matrices are generated via modal reduction techniques, specifically through the application of component mode synthesis (CMS), thus establishing this design approach as a combined multibody-FEA methodology. +Standard FEA implementations typically involve thousands or even hundreds of thousands of DoF, rendering direct integration into multi-body simulations computationally prohibitive. +The objective of modal reduction is therefore to substantially decrease the number of DoF while preserving the essential dynamic characteristics of the component. -\begin{itemize} -\item FEM: high number of DoF -\item goal: reduce number of DoF, allow to integrate in multi-body simulation -\end{itemize} +The procedure for implementing this reduction involves several distinct stages. +Initially, the component is modeled in a finite element software with appropriate material properties and boundary conditions. +Subsequently, interface frames are defined at locations where the multi-body model will establish connections with the component. +These frames serve multiple functions, including connecting to other parts, applying forces and torques, and measuring relative motion between defined frames. -Procedure: -\begin{itemize} -\item model the part in FE software as usually by defining material properties, etc. -\item define frames for which we want to the multi-body model will then be able to interface with, and can be used to: -\begin{itemize} -\item connect other parts -\item apply forces and torques -\item measure motion between frames -\end{itemize} -\item perform the modal reduction technique from FEA (also called component mode synthesis or ``Craig-Bampton'' method \cite{craig68_coupl_subst_dynam_analy}) for the reduction of the high number of FEA degrees of freedom (DoF) to a smaller number of retained degrees of freedom -typically from hundred thousands to less than 100 DoF -\item the number of DoF is 6 times the number of defined frame + any number of additional DoF that we want to model -\(m = 6 \times n + p\) -\(n\) the number of frames, \(p\) the number of additional modes -\item then, it outputs \(m \times m\) reduced mass and stiffness matrices -\item in the multi-body model, the two reduced matrices can be used to model the part -\end{itemize} +Following the establishment of these interface parameters, modal reduction is performed using the Craig-Bampton method \cite{craig68_coupl_subst_dynam_analy} (also known as the ``fixed-interface method''), a technique that transforms the extensive FEA degrees of freedom into a significantly reduced set of retained degrees of freedom. +This transformation typically reduces the model complexity from hundreds of thousands to fewer than 100 DoF. +The number of degrees of freedom in the reduced model is determined by \eqref{eq:detail_fem_model_order} where \(n\) represents the number of defined frames and \(p\) denotes the number of additional modes to be modeled. +The outcome of this procedure is an \(m \times m\) set of reduced mass and stiffness matrices, which can subsequently be incorporated into the multi-body model to represent the component's dynamic behavior. -\section{Validation of the Method} -\label{sec:orgcb6472b} -\label{ssec:detail_fem_super_element_validation} -Validation with Amplified Piezoelectric Actuator, because: -\begin{itemize} -\item is a good candidate for the nano-hexapod (as will be explained in Section \ref{sec:detail_fem_actuator}) -\item had one in the lab for experimental testing (APA95ML, Figure \ref{fig:detail_fem_apa95ml_picture}) -It is composed of several piezoelectric stacks (arranged horizontally, in blue), and a shell (in red) that amplifies the motion. The working direction of the APA95ML is vertical. -\item permits to model a mechanical structure (similar to a flexible joint), piezoelectric actuator and piezoelectric sensor -\end{itemize} +\begin{equation}\label{eq:detail_fem_model_order} +m = 6 \times n + p +\end{equation} -Quick explanation of APA: -\begin{itemize} -\item \cite{claeyssen07_amplif_piezoel_actuat} -\end{itemize} +\section{Example with an Amplified Piezoelectric Actuator} +\label{sec:org3e7c2ec} +\label{ssec:detail_fem_super_element_example} +The presented modeling framework was first applied to an Amplified Piezoelectric Actuator (APA) for several reasons. +Primarily, this actuator represents an excellent candidate for implementation within the nano-hexapod, as will be elaborated in Section \ref{sec:detail_fem_actuator}. +Additionally, an Amplified Piezoelectric Actuator (the APA95ML shown in Figure \ref{fig:detail_fem_apa95ml_picture}) was available in the laboratory for experimental testing. + +The APA consists of multiple piezoelectric stacks arranged horizontally (depicted in blue in Figure \ref{fig:detail_fem_apa95ml_picture}) and of an amplifying shell structure (shown in red) that serves two purposes: the application of pre-stress to the piezoelectric elements and the amplification of their displacement into the vertical direction \cite{claeyssen07_amplif_piezoel_actuat}. +The selection of the APA for validation purposes was further justified by its capacity to simultaneously demonstrate multiple aspects of the modeling framework. +The specific design of the APA allows for the simultaneous modeling of a mechanical structure analogous to a flexible joint, piezoelectric actuation, and piezoelectric sensing, thereby encompassing the principal elements requiring validation. \begin{minipage}[b]{0.48\linewidth} \begin{center} @@ -118,40 +98,22 @@ Quick explanation of APA: \hfill \begin{minipage}[b]{0.48\linewidth} \centering -\begin{tabularx}{0.8\linewidth}{Xcc} +\begin{tabularx}{0.7\linewidth}{Xc} \toprule -Parameter & Unit & Value\\ +\textbf{Parameter} & \textbf{Value}\\ \midrule -Nominal Stroke & \(\mu m\) & 100\\ -Blocked force & \(N\) & 1600\\ -Stiffness & \(N/\mu m\) & 16\\ +Nominal Stroke & \(100\,\mu m\)\\ +Blocked force & \(2100\,N\)\\ +Stiffness & \(21\,N/\mu m\)\\ \bottomrule \end{tabularx} \captionof{table}{\label{tab:detail_fem_apa95ml_specs}APA95ML specifications} \end{minipage} \paragraph{Finite Element Model} -\label{sec:orgf976215} +\label{sec:org491eeae} -\begin{itemize} -\item explain how the FEM is done: -\begin{itemize} -\item material properties (Table \ref{tab:detail_fem_material_properties}) -\item mesh (Figure \ref{fig:detail_fem_apa95ml_mesh}) -\end{itemize} -\item explain piezoelectric materials: -\begin{itemize} -\item sensors -\item actuators -\end{itemize} -\item choice of frames (Figure \ref{fig:detail_fem_apa95ml_frames}) -\begin{itemize} -\item 2 for each piezoelectric stack to measure strain and apply forces -\item 1 at the top, 1 at the bottom to connect to other elements -\end{itemize} -\item choose number of DoF => size of model -7 frames + 6 modes => order 48 -\item perform the reduction: show the output reduced matrices -\end{itemize} +The development of the finite element model for the APA95ML necessitated the specification of appropriate material properties, as summarized in Table \ref{tab:detail_fem_material_properties}. +The finite element mesh, shown in Figure \ref{fig:detail_fem_apa95ml_mesh}, was then generated. \begin{table}[htbp] \caption{\label{tab:detail_fem_material_properties}Material properties used for FEA modal reduction model. \(E\) is the Young's modulus, \(\nu\) the Poisson ratio and \(\rho\) the material density} @@ -166,67 +128,59 @@ Piezoelectric Ceramics (PZT) & \(49.5\,GPa\) & \(0.31\) & \(7800\,\text{kg}/m^3\ \end{tabularx} \end{table} +The definition of interface frames, or ``remote points'', constitute a critical aspect of the model preparation. +Seven frames were established: one frame at the two ends of each piezoelectric stack to facilitate strain measurement and force application, and additional frames at the top and bottom of the structure to enable connection with external elements in the multi-body simulation. + +Six additional modes were considered, resulting in total model order of \(48\). +The modal reduction procedure was then executed, yielding the reduced mass and stiffness matrices that form the foundation of the component's representation in the multi-body simulation environment. + \begin{figure}[htbp] \begin{subfigure}{0.48\textwidth} \begin{center} -\includegraphics[scale=1,width=0.95\linewidth]{figs/detail_fem_apa95ml_mesh.png} +\includegraphics[scale=1,scale=1]{figs/detail_fem_apa95ml_mesh.png} \end{center} -\subcaption{\label{fig:detail_fem_apa95ml_mesh}Obtained mesh} +\subcaption{\label{fig:detail_fem_apa95ml_mesh}Obtained mesh and "remote points"} \end{subfigure} \begin{subfigure}{0.48\textwidth} \begin{center} -\includegraphics[scale=1,width=0.85\linewidth]{figs/detail_fem_apa95ml_frames.png} +\includegraphics[scale=1,scale=1]{figs/detail_fem_apa_modal_schematic.png} \end{center} -\subcaption{\label{fig:detail_fem_apa95ml_frames}Defined frames} +\subcaption{\label{fig:detail_fem_apa_model_schematic}Inclusion in multi-body model} \end{subfigure} -\caption{\label{fig:detail_fem_apa95ml_model}Finite element model of the APA95ML. Obtained mesh is shown in (\subref{fig:detail_fem_apa95ml_mesh}). Frames (or ``remote points'') used for the modal reduction are shown in (\subref{fig:detail_fem_apa95ml_frames}).} +\caption{\label{fig:detail_fem_apa95ml_model}Obtained mesh and defined interface frames (or ``remote points'') in the finite element model of the APA95ML (\subref{fig:detail_fem_apa95ml_mesh}). Interface with the multi-body model is shown in (\subref{fig:detail_fem_apa_modal_schematic}).} \end{figure} \paragraph{Super Element in the Multi-Body Model} -\label{sec:orga1214e3} +\label{sec:org29dd028} -Model: -\begin{itemize} -\item Connect frame \(\{4\}\) to world frame and frame \(\{6\}\) to a 5.5kg mass, vertically guided -\item 2 actuator stacks, 1 sensor stack: -\begin{itemize} -\item force source between frames \(\{3\}\) and \(\{2\}\) -\item measured strain for force sensor by measuring the displacement between \(\{1\}\) and \(\{7\}\) -\end{itemize} -\item Input: internal force applied -\item Output: strain in the sensor stack -\item Issue: how to convert voltage to force and strain to voltage? -\end{itemize} +Previously computed reduced order mass and stiffness matrices were imported in a multi-body model block called ``Reduced Order Flexible Solid''. +This block has several interface frames corresponding to the ones defined in the FEA software. +Frame \(\{4\}\) was connected to the ``world'' frame, while frame \(\{6\}\) was coupled to a vertically guided payload. +In this example, two piezoelectric stacks were used for actuation while one piezoelectric stack was used as a force sensor. +Therefore, a force source \(F_a\) operating between frames \(\{3\}\) and \(\{2\}\) was used, while a displacement sensor \(d_L\) between frames \(\{1\}\) and \(\{7\}\) was used for the sensor stack. +This is illustrated in Figure \ref{fig:detail_fem_apa_model_schematic}. -\begin{figure}[htbp] -\centering -\includegraphics[scale=1,width=0.5\linewidth]{figs/detail_fem_apa_modal_schematic.png} -\caption{\label{fig:detail_fem_apa_model_schematic}Amplified Piezoelectric Actuator Schematic} -\end{figure} - -Need to link the electrical domain (voltages, charges) with the mechanical domain (forces, strain). -To do so, ``actuator constant'' \(g_a\) and ``sensor constant'' \(g_s\) are used as shown in Figure \ref{fig:detail_fem_apa_model_schematic}. - -A voltage \(V_a\) applied to the actuator stacks will induce an actuator force \(F_a\): -\begin{equation} - \boxed{F_a = g_a \cdot V_a} -\end{equation} - -A change of length \(dl\) of the sensor stack will induce a voltage \(V_s\): -\begin{equation} - \boxed{V_s = g_s \cdot dl} -\end{equation} - -In order to correctly model the piezoelectric actuator with Simscape, the values for \(g_a\) and \(g_s\) needs to be determined. -\begin{itemize} -\item \(g_a\): the ratio of the generated force \(F_a\) to the supply voltage \(V_a\) across the piezoelectric stack -\item \(g_s\): the ratio of the generated voltage \(V_s\) across the piezoelectric stack when subject to a strain \(\Delta h\) -\end{itemize} +However, to have access to the physical voltage input of the actuators stacks \(V_a\) and to the generated voltage by the force sensor \(V_s\), conversion between the electrical and mechanical domains need to be determined. \paragraph{Sensor and Actuator ``constants''} -\label{sec:orgb6b6d3f} +\label{sec:org1329f1a} -The gains \(g_a\) and \(g_s\) were estimated from the physical properties of the piezoelectric stack material (summarized in Table \ref{tab:detail_fem_stack_parameters}). +To link the electrical domain to the mechanical domain, an ``actuator constant'' \(g_a\) and a ``sensor constant'' \(g_s\) were introduced as shown in Figure \ref{fig:detail_fem_apa_model_schematic}. + +From \cite[p. 123]{fleming14_desig_model_contr_nanop_system}, the relation between relative displacement \(d_L\) of the sensor stack and generated voltage \(V_s\) is given by \eqref{eq:detail_fem_dl_to_vs}. + +\begin{equation}\label{eq:detail_fem_dl_to_vs} + V_s = g_s \cdot d_L, \quad g_s = \frac{d_{33}}{\epsilon^T s^D n} +\end{equation} + +From \cite{fleming10_integ_strain_force_feedb_high} the relation between the force \(F_a\) and the applied voltage \(V_a\) is given by \eqref{eq:detail_fem_va_to_fa}. + +\begin{equation}\label{eq:detail_fem_va_to_fa} + F_a = g_a \cdot V_a, \quad g_a = d_{33} n k_a, \quad k_a = \frac{c^{E} A}{L} +\end{equation} + +Unfortunately, it is difficult to know exactly which material is used in the amplified piezoelectric actuator\footnote{The manufacturer of the APA95ML was not willing to share the piezoelectric material properties of the stack.}. +However, based on the available properties of the stacks in the data-sheet (summarized in Table \ref{tab:detail_fem_stack_parameters}), the soft Lead Zirconate Titanate ``THP5H'' from Thorlabs seemed to match quite well the observed properties. \begin{table}[htbp] \caption{\label{tab:detail_fem_stack_parameters}Stack Parameters} @@ -246,19 +200,7 @@ Stack Area & \(mm^2\) & 10x10\\ \end{tabularx} \end{table} -From \cite[p. 123]{fleming14_desig_model_contr_nanop_system}, the relation between relative displacement \(d_L\) of the sensor stack and generated voltage \(V_s\) is given by \eqref{eq:test_apa_piezo_strain_to_voltage} and from \cite{fleming10_integ_strain_force_feedb_high} the relation between the force \(F_a\) and the applied voltage \(V_a\) is given by \eqref{eq:test_apa_piezo_voltage_to_force}. - -\begin{subequations} -\begin{align} - V_s &= \underbrace{\frac{d_{33}}{\epsilon^T s^D n}}_{g_s} d_L \label{eq:test_apa_piezo_strain_to_voltage} \\ - F_a &= \underbrace{d_{33} n k_a}_{g_a} \cdot V_a, \quad k_a = \frac{c^{E} A}{L} \label{eq:test_apa_piezo_voltage_to_force} -\end{align} -\end{subequations} - -Unfortunately, it is difficult to know exactly which material is used in the amplified piezoelectric actuator\footnote{The manufacturer of the APA95ML was not willing to share the piezoelectric material properties of the stack.}. -However, based on the available properties of the stacks in the data-sheet (summarized in Table \ref{tab:detail_fem_stack_parameters}), the soft Lead Zirconate Titanate ``THP5H'' from Thorlabs seemed to match quite well the observed properties. The properties of this ``THP5H'' material used to compute \(g_a\) and \(g_s\) are listed in Table \ref{tab:test_apa_piezo_properties}. - From these parameters, \(g_s = 5.1\,V/\mu m\) and \(g_a = 26\,N/V\) were obtained. \begin{table}[htbp] @@ -279,20 +221,42 @@ From these parameters, \(g_s = 5.1\,V/\mu m\) and \(g_a = 26\,N/V\) were obtaine \end{tabularx} \end{table} -\paragraph{Experimental Validation} -\label{sec:orgfd4d8f6} +\paragraph{Identification of the APA Characteristics} +\label{sec:org5512e6c} -goal: validation of the procedure. +Initial validation of the finite element model and its integration as a reduced-order flexible model within the multi-body model was accomplished through comparative analysis of key actuator characteristics against manufacturer specifications. -\begin{itemize} -\item Explain test bench: (Figure \ref{fig:detail_fem_apa95ml_bench}) -\begin{itemize} -\item 5.7kg granite, vertical guided with an air bearing -\item fibered interferometer measured the vertical motion of the granite \(y\) -\item DAC generating control signal \(u\), voltage amplifier gain of 20, \(V_a\) is the voltage across the two piezoelectric stacks -\item ADC is used to measured the voltage across the piezoelectric sensor stack -\end{itemize} -\end{itemize} +The stiffness of the APA95ML was estimated from the multi-body model by computing the axial compliance of the APA95ML (Figure \ref{fig:detail_fem_apa95ml_compliance}), which corresponds to the transfer function from a vertical force applied between the two interface frames to the relative vertical displacement between these two frames. +The inverse of the DC gain this transfer function corresponds to the axial stiffness of the APA95ML. +A value of \(23\,N/\mu m\) was found which is close to the specified stiffness in the datasheet of \(k = 21\,N/\mu m\). + +The multi-body model predicted a resonant frequency under block-free conditions of \(2024\,\text{Hz}\) (Figure \ref{fig:detail_fem_apa95ml_compliance}), which is in agreement with the nominal specification of \(2000\,\text{Hz}\). + +\begin{figure}[htbp] +\centering +\includegraphics[scale=1]{figs/detail_fem_apa95ml_compliance.png} +\caption{\label{fig:detail_fem_apa95ml_compliance}Estimated compliance of the APA95ML} +\end{figure} + +In order to estimate the stroke of the APA95ML, first the mechanical amplification factor, defined as the ratio between vertical displacement and horizontal stack displacement, needs to be determined. +This characteristic was quantified through analysis of the transfer function relating horizontal stack motion to vertical actuator displacement, from which an amplification factor of \(1.5\) was derived. + +The piezoelectric stacks, exhibiting a typical strain response of \(0.1\,\%\) relative to their length (here equal to \(20\,mm\)), produce an individual nominal stroke of \(20\,\mu m\) (see data-sheet of the piezoelectric stacks on Table \ref{tab:detail_fem_stack_parameters}, page \pageref{tab:detail_fem_stack_parameters}). +As three stacks are used, the horizontal displacement is \(60\,\mu m\). +Through the established amplification factor of 1.5, this translates to a predicted vertical stroke of \(90\,\mu m\) which falls within the manufacturer-specified range of \(80\,\mu m\) and \(120\,\mu m\). + +The high degree of concordance observed across multiple performance metrics provides a first validation of the ability to include FEM into multi-body model. + +\section{Experimental Validation} +\label{sec:org8627abc} +\label{ssec:detail_fem_super_element_validation} +Further validation of the reduced-order flexible body methodology was undertaken through experimental investigation. +The goal is to measure the dynamics of the APA95ML and compared it with predictions derived from the multi-body model incorporating the actuator as a flexible element. + +The test bench illustrated in Figure \ref{fig:detail_fem_apa95ml_bench} was used, which consists of a \(5.7\,kg\) granite suspended on top of the APA95ML. +The granite's motion was vertically guided with an air bearing system, and a fibered interferometer was used to measured its vertical displacement \(y\). +A digital-to-analog converter (DAC) was used to generate the control signal \(u\), which was subsequently conditioned through a voltage amplification stage providing a gain factor of \(20\), ultimately yielding the effective voltage \(V_a\) across the two piezoelectric stacks. +Measurement of the sensor stack voltage \(V_s\) was performed using an analog-to-digital converter (ADC). \begin{figure}[htbp] \begin{subfigure}{0.34\textwidth} @@ -309,29 +273,31 @@ goal: validation of the procedure. \end{subfigure} \caption{\label{fig:detail_fem_apa95ml_bench}Test bench used to validate ``reduced order solid bodies'' using an APA95ML. Picture of the bench is shown in (\subref{fig:detail_fem_apa95ml_bench_picture}). Schematic is shown in (\subref{fig:detail_fem_apa95ml_bench_schematic}).} \end{figure} +\paragraph{Comparison of the dynamics} +\label{sec:orgb3fa207} -\begin{itemize} -\item Explain how to experimentally measure the transfer function: -\begin{itemize} -\item test signal, here noise -\item compute and show the transfer functions from \(V_a\) to \(y\) and to \(V_s\) -\item Compare the model and measurement: validation (Figure \ref{fig:detail_fem_apa95ml_comp_plant}) -\item talk about the phase: -\begin{itemize} -\item for force sensor, just delay linked to the limited sampling rate of \(0.1\,ms\) -\item for interferometer: additional delay due to electronics being used -\end{itemize} -\item good match. The gains can be further tuned based on the experimental results. -\item[{$\square$}] talk about minimum phase zero: will be discussed during the experimental phase -\end{itemize} -\end{itemize} +Frequency domain system identification techniques were used to characterize the dynamic behavior of the APA95ML. +The identification procedure necessitated careful choice of the excitation signal \cite[, chap. 5]{pintelon12_system_ident}. +The most used ones are impulses (particularly suited to modal analysis), steps, random noise signals, and multi-sine excitations. +During all this experimental work, random noise excitation was predominantly employed. + +The designed excitation signal is then generated and both input and output signals are synchronously acquired. +From the obtained input and output data, the frequency response functions were derived. +To improve the quality of the obtained frequency domain data, averaging and windowing were used \cite[, chap. 13]{pintelon12_system_ident}.. + +The obtained frequency response functions from \(V_a\) to \(V_s\) and to \(y\) are compared with the theoretical predictions derived from the multi-body model in Figure \ref{fig:detail_fem_apa95ml_comp_plant}. + +The difference in phase between the model and the measurements can be attributed to the sampling time of \(0.1\,ms\) and to additional delays induced by electronic instrumentation related to the interferometer. +The presence of a non-minimum phase zero in the measured system response (Figure \ref{fig:detail_fem_apa95ml_comp_plant_sensor}), shall be addressed during the experimental phase. + +Regarding the amplitude characteristics, the constants \(g_a\) and \(g_s\) could be further refined through calibration against the experimental data. \begin{figure}[htbp] \begin{subfigure}{0.49\textwidth} \begin{center} \includegraphics[scale=1,width=0.95\linewidth]{figs/detail_fem_apa95ml_comp_plant_actuator.png} \end{center} -\subcaption{\label{fig:detail_fem_apa95ml_comp_plant_actuator}from $V_a$ to $d_i$} +\subcaption{\label{fig:detail_fem_apa95ml_comp_plant_actuator}from $V_a$ to $y$} \end{subfigure} \begin{subfigure}{0.49\textwidth} \begin{center} @@ -339,30 +305,26 @@ goal: validation of the procedure. \end{center} \subcaption{\label{fig:detail_fem_apa95ml_comp_plant_sensor}from $V_a$ to $V_s$} \end{subfigure} -\caption{\label{fig:detail_fem_apa95ml_comp_plant}Comparison of the measured frequency response functions and the identified dynamics from the finite element model of the APA95ML. Both for the dynamics from \(V_a\) to \(d_i\) (\subref{fig:detail_fem_apa95ml_comp_plant_actuator}) and from \(V_a\) to \(V_s\) (\subref{fig:detail_fem_apa95ml_comp_plant_sensor})} +\caption{\label{fig:detail_fem_apa95ml_comp_plant}Comparison of the measured frequency response functions and the identified dynamics from the finite element model of the APA95ML. Both for the dynamics from \(V_a\) to \(y\) (\subref{fig:detail_fem_apa95ml_comp_plant_actuator}) and from \(V_a\) to \(V_s\) (\subref{fig:detail_fem_apa95ml_comp_plant_sensor})} \end{figure} \paragraph{Integral Force Feedback with APA} -\label{sec:orgbd44486} +\label{sec:org182828d} -goal: -\begin{itemize} -\item validate the use of super element for control tasks -\end{itemize} +To further validate this modeling methodology, its ability to predict closed-loop behavior was verified experimentally. +Integral Force Feedback (IFF) was implemented using the force sensor stack, and the measured dynamics of the damped system were compared with model predictions across multiple feedback gains. -The controller used in the Integral Force Feedback Architecture is \eqref{eq:detail_fem_iff_controller}, wtih \(g\) a gain that can be tuned. +The IFF controller implementation, defined in equation \ref{eq:detail_fem_iff_controller}, incorporated a tunable gain parameter \(g\) and was designed to provide integral action near the system resonances and to limit the low frequency gain using an high pass filter. \begin{equation}\label{eq:detail_fem_iff_controller} K_{\text{IFF}}(s) = \frac{g}{s + 2\cdot 2\pi} \cdot \frac{s}{s + 0.5 \cdot 2\pi} \end{equation} +The theoretical damped dynamics of the closed-loop system was analyzed through using the model by computed the root locus plot shown in Figure \ref{fig:detail_fem_apa95ml_iff_root_locus}. +For experimental validation, six gain values were tested: \(g = [0,\,10,\,50,\,100,\,500,\,1000]\). +The measured frequency responses for each gain configuration were compared with model predictions, as presented in Figure \ref{fig:detail_fem_apa95ml_damped_plants}. -Above 2 Hz the controller is basically an integrator, whereas an high pass filter is added at 0.5Hz to further reduce the low frequency gain. -In the frequency band of interest, this controller should mostly act as a pure integrator. - -\begin{itemize} -\item[{$\square$}] Maybe make a block diagram of the control with added damped input -\end{itemize} +The close agreement between experimental measurements and theoretical predictions across all gain configurations demonstrates the model's capability to accurately predict both open-loop and closed-loop system dynamics, thereby validating its utility for control system design and analysis. \begin{figure}[htbp] \begin{subfigure}{0.48\textwidth} @@ -377,23 +339,21 @@ In the frequency band of interest, this controller should mostly act as a pure i \end{center} \subcaption{\label{fig:detail_fem_apa95ml_damped_plants}Damped plants} \end{subfigure} -\caption{\label{fig:detail_fem_apa95ml_iff_results}Obtained results using Integral Force Feedback with the APA95ML.} +\caption{\label{fig:detail_fem_apa95ml_iff_results}Obtained results using Integral Force Feedback with the APA95ML. Obtained closed-loop poles as a function of the controller gain \(g\) are prediction by root Locus plot (\subref{fig:detail_fem_apa95ml_iff_root_locus}). Circles are predictions from the model while crosses are poles estimated from the experimental data. Damped plants estimated from the model (dashed curves) and measured ones (solid curves) are compared in (\subref{fig:detail_fem_apa95ml_damped_plants}) for all tested controller gains.} \end{figure} \section*{Conclusion} -\label{sec:orga81cb67} -\begin{itemize} -\item Validation of the method -\item Very useful to optimize different parts -\item However, model order may become very large and not convenient to perform time domain simulations -\item But extracting dynamics is not computational intensive, even for large model orders -\item For instance APA: order 48, 6 APA for the nano hexapod 288 orders just for the APA +\label{sec:org7af3b1c} +The modeling procedure presented in this section will demonstrate significant utility for the optimization of complex mechanical components within multi-body systems, particularly in the design of actuators (Section \ref{sec:detail_fem_actuator}) and flexible joints (Section \ref{sec:detail_fem_joint}). -\item[{$\square$}] \href{file:///home/thomas/Cloud/research/papers/published/brumund21\_multib\_simul\_reduc\_order\_flexib\_bodies\_fea/paper/brumund21\_multib\_simul\_reduc\_order\_flexib\_bodies\_fea.pdf}{published paper} -\end{itemize} +Through experimental validation using an Amplified Piezoelectric Actuator, the methodology has been shown to accurately predict both open-loop and closed-loop dynamic behavior, thereby establishing its reliability for component design and system analysis. + +While this modeling approach provides accurate predictions of component behavior, the resulting model order can become prohibitively high for practical time-domain simulations. +This is exemplified by the nano-hexapod configuration, where the implementation of six Amplified Piezoelectric Actuators, each modeled with 48 degrees of freedom, yields 288 degrees of freedom only for the actuators. +However, the methodology remains valuable for system analysis, as the extraction of frequency domain characteristics can be efficiently performed even with such high-order models. \chapter{Actuator} -\label{sec:orgece4287} +\label{sec:orgcb23435} \label{sec:detail_fem_actuator} Goals: \begin{itemize} @@ -404,7 +364,7 @@ and validate this choice with simulations \item Development of a 2DoF model for lower order models (i.e. for simulations) \end{itemize} \section{Choice of the Actuator based on Specifications} -\label{sec:org058dd07} +\label{sec:org6a6861c} \label{ssec:detail_fem_actuator_specifications} From previous analysis: @@ -515,7 +475,7 @@ Height \(< 50\, [mm]\) & 22 & 30 & 24 & 27 & 16\\ \end{table} \section{APA300ML - Reduced Order Flexible Body} -\label{sec:orgcc3207d} +\label{sec:org56a3ff1} \label{ssec:detail_fem_actuator_apa300ml} To validate the choice of the APA300ML (Shown in Figure \ref{fig:detail_fem_apa300ml_picture}): @@ -551,47 +511,8 @@ To validate the choice of the APA300ML (Shown in Figure \ref{fig:detail_fem_apa3 As the stacks are the same between the APA300ML and the APA95ML, the values estimated for \(g_a\) and \(g_s\) are used for the APA300ML. \end{itemize} -\section{Identification of the APA Characteristics} -\label{sec:org0b219f1} -A first validation of the FEM and inclusion of the ``reduced order flexible model'' in the multi body-model is performed by computed some key characteristics of the APA that can be compared against the datasheet. - -\paragraph{Stiffness} -\label{sec:orgebcd8db} -The stiffness is estimated by extracting the transfer function from a vertical force applied on the top frame to the displacement of the same top frame. -The inverse of the DC gain this transfer function should be equal to the axial stiffness of the APA300ML. -A value of \(1.75\,N/\mu m\) is found which is close to the specified stiffness in the datasheet of \(k = 1.8\,N/\mu m\). -See compliance transfer function \ref{fig:detail_fem_apa300ml_compliance}. - -\paragraph{Resonance Frequency} -\label{sec:org7704c52} - -The resonance frequency in the block-free condition is specified to be between 650Hz and 840Hz. -This is estimated at 709Hz from the model (Figure \ref{fig:detail_fem_apa300ml_compliance}). - -\begin{figure}[htbp] -\centering -\includegraphics[scale=1]{figs/detail_fem_apa300ml_compliance.png} -\caption{\label{fig:detail_fem_apa300ml_compliance}Estimated compliance of the APA300ML} -\end{figure} - - -\paragraph{Amplification Factor and Actuator Stroke} -\label{sec:org218b81c} - -The amplification factor is the ratio of the vertical displacement to the (horizontal) stack displacement. -It can be estimated from the multi-body model by computing the transfer function from the horizontal motion of the stacks to the vertical motion of the APA. -The ratio between the two is found to be equal to \(5\). -This is linked to the - -From the data-sheet of the piezoelectric stacks (see Table \ref{tab:detail_fem_stack_parameters}, page \pageref{tab:detail_fem_stack_parameters}), the nominal stroke of the stack is \(20\,\mu m\) (which is typical for PZT to have a maximum stroke equal to \(0.1\,\%\) of its length, here equal to \(20\,mm\)). -Three stacks are used, for an horizontal stroke of the stacks of \(60\,\mu m\). -With an amplification factor equal to \(5\), the vertical stroke is estimated at \(300\,\mu m\), which corresponds to what is indicated in the datasheet. - - -This analysis provides some confidence on the model accuracy. - \section{Simpler 2DoF Model of the APA300ML} -\label{sec:org3340d21} +\label{sec:orgfabc6b8} \label{sec:apa_model} \begin{itemize} \item \emph{super-element} order is quite large, and therefore not practical for simulations @@ -608,7 +529,7 @@ This analysis provides some confidence on the model accuracy. \item Therefore this model can be useful for simulations as it contains a very limited number of states, but when more complex dynamics of the APA is to be modelled, a flexible model will be used. \end{itemize} \paragraph{2DoF Model} -\label{sec:org5603255} +\label{sec:org5962dd3} The model is adapted from \cite{souleille18_concep_activ_mount_space_applic}. @@ -638,7 +559,7 @@ The main advantage is that this model is very simple, only adds 4 states \end{figure} \paragraph{Parameter Tuning} -\label{sec:org6d0757e} +\label{sec:org7bd1971} 9 parameters (\(m\), \(k_1\), \(c_1\), \(k_e\), \(c_e\), \(k_a\), \(c_a\), \(g_s\) and \(g_a\)) have to be tuned such that the dynamics of the model (Figure \ref{fig:detail_fem_apa_2dof_model}) well represents the identified dynamics using the FEM. \begin{itemize} @@ -694,7 +615,7 @@ Of course, higher order modes are not represented by the 2DoF model, nor the lim \end{figure} \section{Electrical characteristics of the APA} -\label{sec:org02c143e} +\label{sec:org5cdd335} \begin{itemize} \item Mechanical equations and electrical equations are coupled @@ -717,7 +638,7 @@ This will be discussed in chapter ``instrumentation'' \end{figure} \section{Validation with the Nano-Hexapod} -\label{sec:org461915d} +\label{sec:orgf89bb46} NASS model + FEM model (or just 2DoF) of APA300ML => validation (based on what?) \begin{itemize} @@ -755,7 +676,7 @@ here matrices have a size of 36 \chapter{Flexible Joint} -\label{sec:orgfd42b09} +\label{sec:org8601117} \label{sec:detail_fem_joint} The flexible joints have few advantages compared to conventional joints such as the \textbf{absence of wear, friction and backlash} which allows extremely high-precision (predictable) motion. The parasitic bending and torsional stiffness of these joints usually induce some \textbf{limitation on the control performance}. \cite{mcinroy02_model_desig_flexur_joint_stewar} @@ -784,7 +705,7 @@ Say that for simplicity (reduced number of parts, etc.), we consider the same jo \item Implementation of flexible elements in the Simscape model: close to simplified model \end{itemize} \section{Flexible joints for Stewart platforms} -\label{sec:org5c169eb} +\label{sec:orgd5923ee} Review of different types of flexible joints for Stewart plaftorms (see Figure \ref{fig:detail_fem_joints_examples}). @@ -827,7 +748,7 @@ Typical values? \end{figure} \section{Bending and Torsional Stiffness} -\label{sec:org004c610} +\label{sec:orgf11a334} \label{sec:joints_rot_stiffness} Because of bending stiffness of the flexible joints, the forces applied by the struts are no longer aligned with the struts (additional forces applied by the ``spring force'' of the flexible joints). @@ -908,7 +829,7 @@ Conclusion: \end{itemize} \section{Axial Stiffness} -\label{sec:org436b957} +\label{sec:orgd08fa7c} \label{sec:joints_trans_stiffness} \begin{itemize} @@ -976,7 +897,7 @@ Conclusion: \end{itemize} \section{Obtained design / Specifications} -\label{sec:org1a780d9} +\label{sec:org93383a9} \begin{itemize} \item Summary of specifications (Table \ref{tab:detail_fem_joints_specs}) @@ -1036,7 +957,7 @@ Bending Stroke & \(> 1\,\text{mrad}\) & 24.5\\ \end{figure} \section{Validation with the Nano-Hexapod} -\label{sec:org6bcd4cf} +\label{sec:org9751c8e} To validate the designed flexible joint: \begin{itemize} @@ -1110,7 +1031,7 @@ Talk about model order: \end{figure} \chapter*{Conclusion} -\label{sec:org14441b2} +\label{sec:org57f9ca5} \label{sec:detail_fem_conclusion} \printbibliography[heading=bibintoc,title={Bibliography}]