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To further improve the accuracy of the performance predictions, a model that better represents the
micro-station dynamics is required. A multi-body model consisting of several rigid bodies connected
by kinematic constraints (i.e. joints), springs and damper elements is a good candidate to model the
micro-station.

Although the inertia of each solid body can easily be estimated from its geometry and material density,
it is more difficult to properly estimate the stiffness and damping properties of the guiding elements
connecting each solid body. Experimental modal analysis will be used to tune the model, and to verify
that a multi-body model can accurately represent the dynamics of the micro-station.

The tuning approach for the multi-body model based on measurements is illustrated in Figure 1. First,
a response model is obtained, which corresponds to a set of frequency response functions computed
from experimental measurements. From this response model, the modal model can be computed, which
consists of two matrices: one containing the natural frequencies and damping factors of the considered
modes, and another describing the mode shapes. This modal model can then be used to tune the spatial
model (i.e. the multi-body model), that is, to tune the mass of the considered solid bodies and the
springs and dampers connecting the solid bodies.

Description
of structure

Vibration
Modes

Response
Levels

Spatial ModelModal ModelResponse Model

Mass
Stiffness
Damping

Natural Frequencies
Mode Shapes

Time Responses
Frequency Responses

Figure 1: Three models of the same structure. The goal is to tune a spatial model (i.e. mass, stiffness
and damping properties) from a response model. The modal model can be used as an
intermediate step.

The measurement setup used to obtain the response model is described in Section 1. This includes the
instrumentation used (i.e. instrumented hammer, accelerometers and acquisition system), test planing,
and a first analysis of the obtained signals.

In Section 2, the obtained frequency response functions between the forces applied by the instrumented
hammer and the accelerometers fixed to the structure are computed. These measurements are projected
at the center of mass of each considered solid body to facilitate the further use of the results. The solid
body assumption is then verified, validating the use of the multi-body model.

Finally, the modal analysis is performed in Section 3. This shows how complex the micro-station
dynamics is, and the necessity of having a model representing its complex dynamics.
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1 Measurement Setup

In order to perform an experimental modal analysis, a suitable measurement setup is essential. This
includes using appropriate instrumentation (presented in Section 1.1) and properly preparing the struc-
ture to be measured (Section 1.2). Then, the locations of the measured motions (Section 1.3) and the
locations of the hammer impacts (Section 1.4) have to be chosen carefully. The obtained force and
acceleration signals are described in Section 1.5, and the quality of the measured data is assessed.

1.1 Instrumentation

Three types of equipment are essential for a good modal analysis. First, accelerometers are used to
measure the response of the structure. Here, 3-axis accelerometers1 shown in figure 1.1a are used.
These accelerometers were glued to the micro-station using a thin layer of wax for best results [1, chapt.
3.5.7].

(a) 3-axis accelerometer (b) Instrumented hammer (c) OROS acquisition system

Figure 1.1: Instrumentation used for the modal analysis

Then, an instrumented hammer2 (figure 1.1b) is used to apply forces to the structure in a controlled
manner. Tests were conducted to determine the most suitable hammer tip (ranging from a metallic
one to a soft plastic one). The softer tip was found to give best results as it injects more energy in the
low-frequency range where the coherence was low, such that the overall coherence was improved.

Finally, an acquisition system3 (figure 1.1c) is used to acquire the injected force and response accelera-

1PCB 356B18. Sensitivity is 1V/g, measurement range is ±5 g and bandwidth is 0.5 to 5 kHz.
2Kistler 9722A2000. Sensitivity of 2.3mV/N and measurement range of 2 kN
3OROS OR36. 24bits signal-delta ADC.
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tions in a synchronized manner and with sufficiently low noise.

1.2 Structure Preparation and Test Planing

To obtain meaningful results, the modal analysis of the micro-station is performed in-situ. To do so, all
the micro-station stage controllers are turned “ON”. This is especially important for stages for which
the stiffness is provided by local feedback control, such as the air bearing spindle, and the translation
stage. If these local feedback controls were turned OFF, this would have resulted in very low-frequency
modes that were difficult to measure in practice, and it would also have led to decoupled dynamics,
which would not be the case in practice.

The top part representing the active stabilization stage was disassembled as the active stabilization
stage will be added in the multi-body model afterwards.

To perform the modal analysis from the measured responses, the n × n frequency response function
matrix H needs to be measured, where n is the considered number of degrees of freedom. The Hjk

element of this Frequency Response Function (FRF) matrix corresponds to the frequency response
function from a force Fk applied at Degree of freedom (DoF) k to the displacement of the structure Xj

at DoF j. Measuring this FRF matrix is time consuming as it requires to make n × n measurements.
However, due to the principle of reciprocity (Hjk = Hkj) and using the point measurement (Hjj), it is
possible to reconstruct the full matrix by measuring only one column or one line of the matrix H [1,
chapt. 5.2]. Therefore, a minimum set of n frequency response functions is required. This can be done
either by measuring the response Xj at a fixed DoF j while applying forces Fi at all n considered DoF,
or by applying a force Fk at a fixed DoF k and measuring the response Xi for all n DoF.

It is however not advised to measure only one row or one column, as one or more modes may be missed
by an unfortunate choice of force or acceleration measurement location (for instance if the force is
applied at a vibration node of a particular mode). In this modal analysis, it is chosen to measure the
response of the structure at all considered DoF, and to excite the structure at one location in three
directions in order to have some redundancy, and to ensure that all modes are properly identified.

1.3 Location of the Accelerometers

The location of the accelerometers fixed to the micro-station is essential because it defines where the
dynamics is measured. A total of 23 accelerometers were fixed to the six key stages of the micro station:
the lower and upper granites, the translation stage, the tilt stage, the spindle and the micro hexapod.
The positions of the accelerometers are visually shown on a CAD model in Figure 1.2 and their precise
locations with respect to a frame located at the point of interest are summarized in Table 1.1. Pictures
of the accelerometers fixed to the translation stage and to the micro-hexapod are shown in Figure 1.3.

As all key stages of the micro-station are expected to behave as solid bodies, only 6 DoF can be
considered for each solid body. However, it was chosen to use four 3-axis accelerometers (i.e. 12
measured DoF) for each considered solid body to have some redundancy and to be able to verify the
solid body assumption (see Section 2.2).
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Figure 1.2: Position of the accelerometers

x y z

(17) Low. Granite -730 -526 -951
(18) Low. Granite -735 814 -951
(19) Low. Granite 875 799 -951
(20) Low. Granite 865 -506 -951
(13) Up. Granite -320 -446 -786
(14) Up. Granite -480 534 -786
(15) Up. Granite 450 534 -786
(16) Up. Granite 295 -481 -786
(9) Translation -475 -414 -427
(10) Translation -465 407 -427
(11) Translation 475 424 -427
(12) Translation 475 -419 -427
(5) Tilt -385 -300 -417
(6) Tilt -420 280 -417
(7) Tilt 420 280 -417
(8) Tilt 380 -300 -417
(21) Spindle -155 -90 -594
(22) Spindle 0 180 -594
(23) Spindle 155 -90 -594
(1) Hexapod -64 -64 -270
(2) Hexapod -64 64 -270
(3) Hexapod 64 64 -270
(4) Hexapod 64 -64 -270

Table 1.1: Positions in mm

(a) Ty stage (b) Micro-Hexapod

Figure 1.3: Accelerometers fixed on the micro-station stages

1.4 Hammer Impacts

The selected location of the hammer impact corresponds to the location of accelerometer number 11
fixed to the translation stage. It was chosen to match the location of one accelerometer, because a point
measurement (i.e. a measurement of Hkk) is necessary to be able to reconstruct the full FRF matrix
[1].

The impacts were performed in three directions, as shown in figures 1.4a, 1.4b and 1.4c.
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(a) X impact (b) Y impact (c) Z impact

Figure 1.4: The three hammer impacts used for the modal analysis

1.5 Force and Response signals

The force sensor of the instrumented hammer and the accelerometer signals are shown in the time
domain in Figure 1.5a. Sharp “impacts” can be observed for the force sensor, indicating wide frequency
band excitation. For the accelerometer, a much more complex signal can be observed, indicating complex
dynamics.

The “normalized” Amplitude Spectral Density (ASD) of the two signals were computed and shown in
Figure 1.5b. Conclusions based on the time domain signals can be clearly observed in the frequency
domain (wide frequency content for the force signal and complex dynamics for the accelerometer). These
data are corresponding to a hammer impact in the vertical direction and to the measured acceleration
in the x direction by accelerometer 1 (fixed to the micro-hexapod). Similar results were obtained for
all measured frequency response functions.

The frequency response function from the applied force to the measured acceleration is then computed
and shown Figure 1.6a. The quality of the obtained data can be estimated using the coherence function
(Figure 1.6b). Good coherence is obtained from 20Hz to 200Hz which corresponds to the frequency
range of interest.
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Figure 1.5: Raw measurement of the accelerometer 1 in the x direction (blue) and of the force sensor at
the Hammer tip (red) for an impact in the z direction (a). Computed Amplitude Spectral
Densities of the two signals (normalized) (b)
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(b) Coherence

Figure 1.6: Computed frequency response function from the applied force Fz to the measured response
X1,x (a) as well as computed coherence (b)
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2 Frequency Analysis

After all measurements are conducted, a n×p×q Frequency Response Functions matrix can be computed
with:

• n = 69: number of output measured acceleration (23 3-axis accelerometers)

• p = 3: number of input force excitation

• q = 801: number of frequency points ωi

For each frequency point ωi, a 2D complex matrix is obtained that links the 3 force inputs to the 69
output accelerations (2.1).

H(ωi) =



D1x

Fx
(ωi)

D1x

Fy
(ωi)

D1x

Fz
(ωi)

D1y

Fx
(ωi)

D1y

Fy
(ωi)

D1y

Fz
(ωi)

D1z

Fx
(ωi)

D1z

Fy
(ωi)

D1z

Fz
(ωi)

D2x

Fx
(ωi)

D2x

Fy
(ωi)

D2x

Fz
(ωi)

...
...

...
D23z

Fx
(ωi)

D23z

Fy
(ωi)

D23z

Fz
(ωi)


(2.1)

However, for the multi-body model, only 6 solid bodies are considered, namely: the bottom granite, the
top granite, the translation stage, the tilt stage, the spindle and the micro-hexapod. Therefore, only
6× 6 = 36 degrees of freedom are of interest. Therefore, the objective of this section is to process the
Frequency Response Matrix to reduce the number of measured DoF from 69 to 36.

The coordinate transformation from accelerometers DoF to the solid body 6 DoFs (three translations
and three rotations) is performed in Section 2.1. The 69 × 3 × 801 frequency response matrix is then
reduced to a 36× 3× 801 frequency response matrix where the motion of each solid body is expressed
with respect to its center of mass.

To validate this reduction of DoF and the solid body assumption, the frequency response function at
the accelerometer location are “reconstructed” from the reduced frequency response matrix and are
compared with the initial measurements in Section 2.2.

2.1 From accelerometer DOFs to solid body DOFs

Let us consider the schematic shown in Figure 2.1 where the motion of a solid body is measured at 4
distinct locations (in x, y and z directions). The goal here is to link these 4× 3 = 12 measurements to
the 6 DoF of the solid body expressed in the frame {O}.
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Figure 2.1: Schematic of the measured motions of a solid body

The motion of the rigid body of figure 2.1 can be described by its displacement δ⃗p = [δpx, δpy, δpz]
and (small) rotations [δΩx, δΩy, δΩz] with respect to the reference frame {O}.

The motion δ⃗pi of a point pi can be computed from δ⃗p and δΩ using equation (2.2), with δΩ defined
in equation (2.3) [1, chapt. 4.3.2].

δ⃗pi = δ⃗p+ δΩ · p⃗i (2.2)

δΩ =

 0 −δΩz δΩy

δΩz 0 −δΩx

−δΩy δΩx 0

 (2.3)

Writing this in matrix form for the four points gives (2.4).



δp1x
δp1y
δp1z
...

δp4x
δp4y
δp4z


=



1 0 0 0 p1z −p1y
0 1 0 −p1z 0 p1x
0 0 1 p1y −p1x 0

...
...

1 0 0 0 p4z −p4y
0 1 0 −p4z 0 p4x
0 0 1 p4y −p4x 0




δpx
δpy
δpz
δΩx

δΩy

δΩz

 (2.4)

Provided that the four sensors are properly located, the system of equation (2.4) can be solved by
matrix inversion1. The motion of the solid body expressed in a chosen frame {O} can be determined
by inverting equation (2.4). Note that this matrix inversion is equivalent to resolving a mean square
problem. Therefore, having more accelerometers permits better approximation of the motion of a solid
body.

1As this matrix is in general non-square, the Moore–Penrose inverse can be used instead.
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From the CAD model, the position of the center of mass of each solid body is computed (see Table 2.1).
The position of each accelerometer with respect to the center of mass of the corresponding solid body
can easily be determined.

Table 2.1: Center of mass of considered solid bodies with respect to the “point of interest”

X Y Z

Bottom Granite 45mm 144mm −1251mm
Top granite 52mm 258mm −778mm
Translation stage 0 14mm −600mm
Tilt Stage 0 −5mm −628mm
Spindle 0 0 −580mm
Hexapod −4mm 6mm −319mm

Using (2.4), the frequency response matrix HCoM (2.5) expressing the response at the center of mass of
each solid body Di (i from 1 to 6 for the 6 considered solid bodies) can be computed from the initial
FRF matrix H.

HCoM(ωi) =



D1,Tx

Fx
(ωi)

D1,Tx

Fy
(ωi)

D1,Tx

Fz
(ωi)

D1,Ty

Fx
(ωi)

D1,Ty

Fy
(ωi)

D1,Ty

Fz
(ωi)

D1,Tz

Fx
(ωi)

D1,Tz

Fy
(ωi)

D1,Tz

Fz
(ωi)

D1,Rx

Fx
(ωi)

D1,Rx

Fy
(ωi)

D1,Rx

Fz
(ωi)

D1,Ry

Fx
(ωi)

D1,Ry

Fy
(ωi)

D1,Ry

Fz
(ωi)

D1,Rz

Fx
(ωi)

D1,Rz

Fy
(ωi)

D1,Rz

Fz
(ωi)

D2,Tx

Fx
(ωi)

D2,Tx

Fy
(ωi)

D2,Tx

Fz
(ωi)

...
...

...
D6,Rz

Fx
(ωi)

D6,Rz

Fy
(ωi)

D6,Rz

Fz
(ωi)



(2.5)

2.2 Verification of solid body assumption

From the response of one solid body expressed by its 6 DoFs (i.e. from HCoM), and using equation (2.4),
it is possible to compute the response of the same solid body at any considered location. In particular,
the responses at the locations of the four accelerometers can be computed and compared with the
original measurements H. This is what is done here to check whether the solid body assumption is
correct in the frequency band of interest.

The comparison is made for the 4 accelerometers fixed on the micro-hexapod (Figure 2.2). The original
frequency response functions and those computed from the CoM responses match well in the frequency
range of interest. Similar results were obtained for the other solid bodies, indicating that the solid body
assumption is valid and that a multi-body model can be used to represent the dynamics of the micro-
station. This also validates the reduction in the number of degrees of freedom from 69 (23 accelerometers
with each 3 DoF) to 36 (6 solid bodies with 6 DoF).
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Figure 2.2: Comparison of the original accelerometer responses and the reconstructed responses from
the solid body response. Accelerometers 1 to 4 corresponding to the micro-hexapod are
shown. Input is a hammer force applied on the micro-hexapod in the x direction
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3 Modal Analysis

The goal here is to extract the modal parameters describing the modes of the micro station being
studied, namely, the natural frequencies and the modal damping (i.e. the eigenvalues) as well as the
mode shapes (.i.e. the eigenvectors). This is performed from the FRF matrix previously extracted from
the measurements.

In order to perform the modal parameter extraction, the order of the modal model has to be estimated
(i.e. the number of modes in the frequency band of interest). This is achived using the Mode Indicator
Functions (MIF) in section 3.1.

In section 3.2, the modal parameter extraction is performed. The graphical display of the mode shapes
can be computed from the modal model, which is quite useful for physical interpretation of the modes.

To validate the quality of the modal model, the full FRF matrix is computed from the modal model
and compared to the initial measured FRF (section 3.3).

3.1 Number of modes determination

The MIF is applied to the n×p FRF matrix where n is a relatively large number of measurement DOFs
(here n = 69) and p is the number of excitation DOFs (here p = 3).

The complex modal indication function is defined in equation (3.1) where the diagonal matrix Σ is
obtained from a Singular Value Decomposition of the FRF matrix as shown in equation (3.2).

[CMIF (ω)]p×p = [Σ(ω)]⊺p×n[Σ(ω)]n×p (3.1)

[H(ω)]n×p = [U(ω)]n×n[Σ(ω)]n×p[V (ω)]Hp×p (3.2)

The MIF therefore yields to p values that are also frequency dependent. A peak in the MIF plot
indicates the presence of a mode. Repeated modes can also be detected when multiple singular values
have peaks at the same frequency. The obtained MIF is shown on Figure 3.1. A total of 16 modes
were found between 0 and 200Hz. The obtained natural frequencies and associated modal damping are
summarized in Table 3.1.
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Figure 3.1: Modal Indication Function

Mode Frequency Damping

1 11.9Hz 12.2%
2 18.6Hz 11.7%
3 37.8Hz 6.2%
4 39.1Hz 2.8%
5 56.3Hz 2.8%
6 69.8Hz 4.3%
7 72.5Hz 1.3%
8 84.8Hz 3.7%
9 91.3Hz 2.9%
10 105.5Hz 3.2%
11 106.6Hz 1.6%
12 112.7Hz 3.1%
13 124.2Hz 2.8%
14 145.3Hz 1.3%
15 150.5Hz 2.4%
16 165.4Hz 1.4%

Table 3.1: Identified modes

3.2 Modal parameter extraction

Generally, modal identification is using curve-fitting a theoretical expression to the actual measured
FRF data. However, there are multiple levels of complexity, from fitting of a single resonance, to fitting
a complete curve encompassing several resonances and working on a set of many FRF plots all obtained
from the same structure.

Here, the last method is used because it provides a unique and consistent model. It takes into account
the fact that the properties of all individual curves are related by being from the same structure: all
FRF plots on a given structure should indicate the same values for the natural frequencies and damping
factor of each mode.

From the obtained modal parameters, the mode shapes are computed and can be displayed in the form
of animations (three mode shapes are shown in Figure 3.2).

(a) 1st mode at 11.9 Hz: tilt suspension mode of the granite

(b) 6th mode at 69.8 Hz: vertical resonance of the spindle

(c) 13th mode at 124.2 Hz: lateral micro-hexapod resonance

Figure 3.2: Three obtained mode shape animations
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These animations are useful for visually obtaining a better understanding of the system’s dynamic
behavior. For instance, the mode shape of the first mode at 11Hz (figure 3.2a) indicates an issue with
the lower granite. It turns out that four Airloc Levelers are used to level the lower granite (figure 3.3).
These are difficult to adjust and can lead to a situation in which the granite is only supported by two
of them; therefore, it has a low frequency “tilt mode”. The levelers were then better adjusted.

Figure 3.3: AirLoc used for the granite (2120-KSKC)

The modal parameter extraction is made using a proprietary software1. For each mode r (from 1
to the number of considered modes m = 16), it outputs the frequency ωr, the damping ratio ξr, the
eigenvectors {ϕr} (vector of complex numbers with a size equal to the number of measured DoF n = 69,
see equation (3.3)) and a scaling factor ar.

{ϕi} =
{
ϕi,1x ϕi,1y ϕi,1z ϕi,2x . . . ϕi,23z

}⊺
(3.3)

The eigenvalues sr and s∗r can then be computed from equation (3.4).

sr = ωr(−ξr + i
√
1− ξ2r ), s∗r = ωr(−ξr − i

√
1− ξ2r ) (3.4)

3.3 Verification of the modal model validity

To check the validity of the modal model, the complete n×n FRF matrix Hsyn is first synthesized from
the modal parameters. Then, the elements of this FRF matrix Hsyn that were already measured can
be compared to the measured FRF matrix H.

In order to synthesize the full FRF matrix, the eigenvectors ϕr are first organized in matrix from as
shown in equation (3.5).

Φ =

ϕ1 . . . ϕN ϕ∗
1 . . . ϕ∗

N


n×2m

(3.5)

1NVGate software from OROS company.
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The full FRF matrix Hsyn can be obtained using (3.6).

[Hsyn(ω)]n×n = [Φ]n×2m[Hmod(ω)]2m×2m[Φ]⊺2m×n (3.6)

With Hmod(ω) a diagonal matrix representing the response of the different modes (3.7).

Hmod(ω) = diag

(
1

a1(jω − s1)
, . . . ,

1

am(jω − sm)
,

1

a∗1(jω − s∗1)
, . . . ,

1

a∗m(jω − s∗m)

)
2m×2m

(3.7)

A comparison between original measured frequency response functions and synthesized ones from the
modal model is presented in Figure 3.4. Whether the obtained match is good or bad is quite arbitrary.
However, the modal model seems to be able to represent the coupling between different nodes and
different directions, which is quite important from a control perspective. This can be seen in Figure
3.4c that shows the frequency response function from the force applied on node 11 (i.e. on the translation
stage) in the y direction to the measured acceleration at node 2 (i.e. at the top of the micro-hexapod)
in the x direction.
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Figure 3.4: Comparison of the measured FRF with the FRF synthesized from the modal model.
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4 Conclusion

In this study, a modal analysis of the micro-station was performed. Thanks to an adequate choice
of instrumentation and proper set of measurements, high quality frequency response functions can be
obtained. The obtained frequency response functions indicate that the dynamics of the micro-station
is complex, which is expected from a heavy stack stage architecture. It shows a lot of coupling between
stages and different directions, and many modes.

By measuring 12 degrees of freedom on each “stage”, it could be verified that in the frequency range
of interest, each stage behaved as a rigid body. This confirms that a multi-body model can be used to
properly model the micro-station.

Although a lot of effort was put into this experimental modal analysis of the micro-station, it was
difficult to obtain an accurate modal model. However, the measurements are useful for tuning the
parameters of the micro-station multi-body model.
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Acronyms

Notation Description

ASD Amplitude Spectral Density
DoF Degree of freedom
FRF Frequency Response Function
MIF Mode Indicator Functions
SVD Singular Value Decomposition
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