%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); %% Path for functions, data and scripts addpath('./mat/'); % Path for data %% Colors for the figures colors = colororder; % #+name: fig:modal_local_to_global_coordinates % #+caption: Schematic of the measured motions of a solid body % #+RESULTS: % [[file:figs/modal_local_to_global_coordinates.png]] % The motion of the rigid body of figure ref:fig:modal_local_to_global_coordinates can be described by its displacement $\vec{\delta}p = [\delta p_x,\ \delta p_y,\ \delta p_z]$ and (small) rotations $[\delta \Omega_x,\ \delta \Omega_y,\ \delta \Omega_z]$ with respect to a reference frame $\{O\}$. % The motion $\vec{\delta} p_{i}$ of a point $p_i$ can be computed from $\vec{\delta} p$ and $\bm{\delta \Omega}$ using equation eqref:eq:modal_compute_point_response, with $\bm{\delta\Omega}$ defined in equation eqref:eq:modal_rotation_matrix. % \begin{equation}\label{eq:modal_compute_point_response} % \vec{\delta} p_{i} &= \vec{\delta} p + \bm{\delta \Omega} \cdot \vec{p}_{i} \\ % \end{equation} % \begin{equation}\label{eq:modal_rotation_matrix} % \bm{\delta\Omega} = \begin{bmatrix} % 0 & -\delta\Omega_z & \delta\Omega_y \\ % \delta\Omega_z & 0 & -\delta\Omega_x \\ % -\delta\Omega_y & \delta\Omega_x & 0 % \end{bmatrix} % \end{equation} % Writing this in a matrix form for the four points gives eqref:eq:modal_cart_to_acc. % \begin{equation}\label{eq:modal_cart_to_acc} % \left[\begin{array}{c} % \delta p_{1x} \\ \delta p_{1y} \\ \delta p_{1z} \\\hline \vdots \\\hline \delta p_{4x} \\ \delta p_{4y} \\ \delta p_{4z} % \end{array}\right] = % \left[\begin{array}{ccc|ccc} % 1 & 0 & 0 & 0 & p_{1z} & -p_{1y} \\ % 0 & 1 & 0 & -p_{1z} & 0 & p_{1x} \\ % 0 & 0 & 1 & p_{1y} & -p_{1x} & 0 \\ \hline % & \vdots & & & \vdots & \\ \hline % 1 & 0 & 0 & 0 & p_{4z} & -p_{4y} \\ % 0 & 1 & 0 & -p_{4z} & 0 & p_{4x} \\ % 0 & 0 & 1 & p_{4y} & -p_{4x} & 0 % \end{array}\right] \left[\begin{array}{c} % \delta p_x \\ \delta p_y \\ \delta p_z \\ \hline \delta\Omega_x \\ \delta\Omega_y \\ \delta\Omega_z % \end{array}\right] % \end{equation} % Provided that the four sensors are properly located, the system of equation eqref:eq:modal_cart_to_acc can be solved by matrix inversion[fn:5]. % The motion of the solid body expressed in a chosen frame $\{O\}$ can be determined using equation eqref:eq:modal_determine_global_disp. % Note that this matrix inversion is equivalent to resolving a mean square problem. % Therefore, having more accelerometers permits to have a better approximation of the motion of the solid body. % \begin{equation} % \left[\begin{array}{c} % \delta p_x \\ \delta p_y \\ \delta p_z \\ \hline \delta\Omega_x \\ \delta\Omega_y \\ \delta\Omega_z % \end{array}\right] = % \left[\begin{array}{ccc|ccc} % 1 & 0 & 0 & 0 & p_{1z} & -p_{1y} \\ % 0 & 1 & 0 & -p_{1z} & 0 & p_{1x} \\ % 0 & 0 & 1 & p_{1y} & -p_{1x} & 0 \\ \hline % & \vdots & & & \vdots & \\ \hline % 1 & 0 & 0 & 0 & p_{4z} & -p_{4y} \\ % 0 & 1 & 0 & -p_{4z} & 0 & p_{4x} \\ % 0 & 0 & 1 & p_{4y} & -p_{4x} & 0 % \end{array}\right]^{-1} \left[\begin{array}{c} % \delta p_{1x} \\ \delta p_{1y} \\ \delta p_{1z} \\\hline \vdots \\\hline \delta p_{4x} \\ \delta p_{4y} \\ \delta p_{4z} % \end{array}\right] \label{eq:modal_determine_global_disp} % \end{equation} % From the CAD model, the position of the center of mass of each considered solid body is computed (see Table ref:tab:modal_com_solid_bodies). % Then, the position of each accelerometer with respect to the center of mass of the corresponding solid body can easily be derived. %% Load frequency response matrix load('frf_matrix.mat', 'freqs', 'frf'); %% Load Accelerometer positions acc_pos = readtable('mat/acc_pos.txt', 'ReadVariableNames', false); acc_pos = table2array(acc_pos(:, 1:4)); [~, i] = sort(acc_pos(:, 1)); acc_pos = acc_pos(i, 2:4); %% Accelerometers ID connected to each solid body solids = {}; solids.gbot = [17, 18, 19, 20]; % bottom granite solids.gtop = [13, 14, 15, 16]; % top granite solids.ty = [9, 10, 11, 12]; % Ty stage solids.ry = [5, 6, 7, 8]; % Ry stage solids.rz = [21, 22, 23]; % Rz stage solids.hexa = [1, 2, 3, 4]; % Hexapod % Names of the solid bodies solid_names = fields(solids); %% Save the acceleromter positions are well as the solid bodies save('mat/geometry.mat', 'solids', 'solid_names', 'acc_pos'); %% Extract the CoM of considered solid bodies model_com = reshape(table2array(readtable('mat/model_solidworks_com.txt', 'ReadVariableNames', false)), [3, 6]); % #+name: tab:modal_com_solid_bodies % #+caption: Center of mass of considered solid bodies with respect to the "point of interest" % #+attr_latex: :environment tabularx :width 0.6\linewidth :align lXXX % #+attr_latex: :center t :booktabs t % #+RESULTS: % | | $X$ [mm] | $Y$ [mm] | $Z$ [mm] | % |-------------------+----------+----------+----------| % | Bottom Granite | 45 | 144 | -1251 | % | Top granite | 52 | 258 | -778 | % | Translation stage | 0 | 14 | -600 | % | Tilt Stage | 0 | -5 | -628 | % | Spindle | 0 | 0 | -580 | % | Hexapod | -4 | 6 | -319 | % Using eqref:eq:modal_determine_global_disp, the frequency response matrix $\mathbf{H}_\text{CoM}$ eqref:eq:modal_frf_matrix_com expressing the response at the center of mass of each solid body $D_i$ ($i$ from $1$ to $6$ for the $6$ considered solid bodies) can be computed from the initial acrshort:frf matrix $\mathbf{H}$. % \begin{equation}\label{eq:modal_frf_matrix_com} % \mathbf{H}_\text{CoM}(\omega_i) = \begin{bmatrix} % \frac{D_{1,T_x}}{F_x}(\omega_i) & \frac{D_{1,T_x}}{F_y}(\omega_i) & \frac{D_{1,T_x}}{F_z}(\omega_i) \\ % \frac{D_{1,T_y}}{F_x}(\omega_i) & \frac{D_{1,T_y}}{F_y}(\omega_i) & \frac{D_{1,T_y}}{F_z}(\omega_i) \\ % \frac{D_{1,T_z}}{F_x}(\omega_i) & \frac{D_{1,T_z}}{F_y}(\omega_i) & \frac{D_{1,T_z}}{F_z}(\omega_i) \\ % \frac{D_{1,R_x}}{F_x}(\omega_i) & \frac{D_{1,R_x}}{F_y}(\omega_i) & \frac{D_{1,R_x}}{F_z}(\omega_i) \\ % \frac{D_{1,R_y}}{F_x}(\omega_i) & \frac{D_{1,R_y}}{F_y}(\omega_i) & \frac{D_{1,R_y}}{F_z}(\omega_i) \\ % \frac{D_{1,R_z}}{F_x}(\omega_i) & \frac{D_{1,R_z}}{F_y}(\omega_i) & \frac{D_{1,R_z}}{F_z}(\omega_i) \\ % \frac{D_{2,T_x}}{F_x}(\omega_i) & \frac{D_{2,T_x}}{F_y}(\omega_i) & \frac{D_{2,T_x}}{F_z}(\omega_i) \\ % \vdots & \vdots & \vdots \\ % \frac{D_{6,R_z}}{F_x}(\omega_i) & \frac{D_{6,R_z}}{F_y}(\omega_i) & \frac{D_{6,R_z}}{F_z}(\omega_i) % \end{bmatrix} % \end{equation} %% Frequency Response Matrix - Response expressed at the CoM of the solid bodies frfs_CoM = zeros(length(solid_names)*6, 3, 801); for solid_i = 1:length(solid_names) % Number of accelerometers fixed to this solid body solids_i = solids.(solid_names{solid_i}); % "Jacobian" matrix to go from accelerometer frame to CoM frame A = zeros(3*length(solids_i), 6); for i = 1:length(solids_i) acc_i = solids_i(i); acc_pos_com = acc_pos(acc_i, :).' - model_com(:, solid_i); A(3*(i-1)+1:3*i, 1:3) = eye(3); A(3*(i-1)+1:3*i, 4:6) = [ 0 acc_pos_com(3) -acc_pos_com(2) ; -acc_pos_com(3) 0 acc_pos_com(1) ; acc_pos_com(2) -acc_pos_com(1) 0]; end for exc_dir = 1:3 frfs_CoM((solid_i-1)*6+1:solid_i*6, exc_dir, :) = A\squeeze(frf((solids_i(1)-1)*3+1:solids_i(end)*3, exc_dir, :)); end end %% Save the computed FRF at the CoM save('mat/frf_com.mat', 'frfs_CoM'); % Verification of solid body assumption % <> % From the response of one solid body expressed by its 6 acrshortpl:dof (i.e. from $\mathbf{H}_{\text{CoM}}$), and using equation eqref:eq:modal_cart_to_acc, it is possible to compute the response of the same solid body at any considered position. % In particular, the response at the location of the four accelerometers can be computed and compared with the original measurements $\mathbf{H}$. % This is what is here done to check if solid body assumption is correct in the frequency band of interest. %% Compute the FRF at the accelerometer location from the CoM reponses frfs_A = zeros(size(frf)); % For each excitation direction for exc_dir = 1:3 % For each solid for solid_i = 1:length(solid_names) v0 = squeeze(frfs_CoM((solid_i-1)*6+1:(solid_i-1)*6+3, exc_dir, :)); W0 = squeeze(frfs_CoM((solid_i-1)*6+4:(solid_i-1)*6+6, exc_dir, :)); % For each accelerometer attached to the current solid for acc_i = solids.(solid_names{solid_i}) % We get the position of the accelerometer expressed in frame O pos = acc_pos(acc_i, :).' - model_com(:, solid_i); % pos = acc_pos(acc_i, :).'; posX = [0 pos(3) -pos(2); -pos(3) 0 pos(1) ; pos(2) -pos(1) 0]; frfs_A(3*(acc_i-1)+1:3*(acc_i-1)+3, exc_dir, :) = v0 + posX*W0; end end end % The comparison is made for the 4 accelerometers fixed to the micro-hexapod (Figure ref:fig:modal_comp_acc_solid_body_frf). % The original frequency response functions and the ones computed from the CoM responses are well matching in the frequency range of interested. % Similar results are obtained for the other solid bodies, indicating that the solid body assumption is valid, and that a multi-body model can be used to represent the dynamics of the micro-station. % This also validates the reduction of the number of degrees of freedom from 69 (23 accelerometers with each 3 acrshort:dof) to 36 (6 solid bodies with 6 acrshort:dof). %% Comparaison of the original accelerometer response and reconstructed response from the solid body response exc_names = {'$F_x$', '$F_y$', '$F_z$'}; DOFs = {'x', 'y', 'z', '\theta_x', '\theta_y', '\theta_z'}; solid_i = 6; % Considered solid body exc_dir = 1; % Excited direction accs_i = solids.(solid_names{solid_i}); % Accelerometers fixed to this solid body figure; tiledlayout(2, 2, 'TileSpacing', 'Tight', 'Padding', 'None'); for i = 1:length(accs_i) acc_i = accs_i(i); nexttile(); hold on; for dir_i = 1:3 plot(freqs, abs(squeeze(frf(3*(acc_i-1)+dir_i, exc_dir, :))), '-', 'DisplayName', sprintf('$a_{%i,%s}$', acc_i, DOFs{dir_i})); end set(gca,'ColorOrderIndex',1) for dir_i = 1:3 plot(freqs, abs(squeeze(frfs_A(3*(acc_i-1)+dir_i, exc_dir, :))), '--', 'HandleVisibility', 'off'); end hold off; if i > 2 xlabel('Frequency [Hz]'); else set(gca, 'XTickLabel',[]); end if rem(i, 2) == 1 ylabel('Amplitude [$\frac{m/s^2}{N}$]'); else set(gca, 'YTickLabel',[]); end set(gca, 'XScale', 'lin'); set(gca, 'YScale', 'log'); xlim([0, 200]); ylim([1e-6, 3e-2]); xticks([0:20:200]); legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); end