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In order to properly make a multi-body model of the micro-station, an experimental modal-analysis is
performed.

In fact, even though it is easy to estimate the inertia of each solid body from its geometry and its
material density, it is much more difficult to properly estimate the stiffness and damping properties of
the guiding elements connecting each solid body.

In this report, an experimental modal analysis is perform in order to ease the development of the
multi-body model.

In Section 1 the measurement setup is presented. The instrumentation used (i.e. instrumented hammer,
accelerometers and acquisition system) is presented, and obtained signals

Obtained frequency response functions between the forces applied using the instrumented hammer and
the various accelerometers fixed to the structure are Section 2

Section 3

[1]

Table 1: Report sections and corresponding Matlab files

Sections Matlab File

Section 1 modal 1 meas setup.m
Section 2 modal 2 frf processing.m
Section 3 modal 3 analysis.m
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1 Measurement Setup

1.1 1.2 1.3 1.4 1.5

1.1 Used Instrumentation

In order to perform to Modal Analysis and to obtain first a Response Model, the following devices
are used:

• An acquisition system (OROS) with 24bits ADCs (figure 1.1a)

• 3 tri-axis Accelerometers (figure 1.1b) with parameters shown on table 1.1

• An Instrumented Hammer with various Tips (figure 1.1c)

The acquisition system permits to auto-range the inputs (probably using variable gain amplifiers) the
obtain the maximum dynamic range. This is done before each measurement. Anti-aliasing filters are
also included in the system.

Table 1.1: 393B05 Accelerometer Data Sheet

Sensitivity 10V/g
Measurement Range 0.5 g pk
Broadband Resolution 4 µg rms
Frequency Range 0.7 to 450Hz
Resonance Frequency > 2.5 kHz

Tests have been conducted to determine the most suitable Hammer tip. This has been found that the
softer tip gives the best results. It excites more the low frequency range where the coherence is low, the
overall coherence was improved.

The accelerometers are glued on the structure.

1.2 Structure Preparation and Test Planing

All the stages are turned ON. This is done for two reasons:

• Be closer to the real dynamic of the station in used
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(a) OROS acquisition system (b) Accelerometer (M393B05) (c) Instrumented Hammer

Figure 1.1: Instrumentation used for the modal analysis

• If the control system of stages are turned OFF, this would results in very low frequency modes
un-identifiable with the current setup, and this will also decouple the dynamics which would not
be the case in practice

This is critical for the translation stage and the spindle as their is no stiffness in the free DOF (air-
bearing for the spindle for instance).

The alternative would have been to mechanically block the stages with screws, but this may result in
changing the modes.

The stages turned ON are:

• Translation Stage

• Tilt Stage

• Spindle and Slip-Ring

• Hexapod

The top part representing the NASS and the sample platform have been removed in order to reduce the
complexity of the dynamics and also because this will be further added in the model inside Simscape.

All the stages are moved to their zero position (Ty, Ry, Rz, Slip-Ring, Hexapod).

All other elements have been remove from the granite such as another heavy positioning system.

The goal is to identify the full N ×N FRF matrix H (where N is the number of degree of freedom of
the system):

Hjk =
Xj

Fk
(1.1)
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However, from only one column or one line of the matrix, we can compute the other terms thanks to
the principle of reciprocity.

Either we choose to identify Xk

Fi
or Xi

Fk
for any chosen k and for i = 1, ..., N .

We here choose to identify Xi

Fk
for practical reasons:

• it is easier to glue the accelerometers on all the stages and excite only a one particular point than
doing the opposite

The measurement thus consists of:

• always excite the structure at the same location with the Hammer

• Move the accelerometers to measure all the DOF of the structure

We will measured 3 columns (3 impacts location) in order to have some redundancy and to make sure
that all modes are excited.

1.3 Location of the Accelerometers

4 tri-axis accelerometers are used for each solid body.

Only 2 could have been used as only 6DOF have to be measured, however, we have chosen to have some
redundancy.

This could also help us identify measurement problems or flexible modes is present.

The position of the accelerometers are:

• 4 on the first granite

• 4 on the second granite

• 4 on top of the translation stage (figure 1.2a)

• 4 on top of the tilt stage

• 3 on top of the spindle

• 4 on top of the hexapod (figure 1.2b)

In total, 23 accelerometers are used: 69 DOFs are thus measured.

The precise determination of the position of each accelerometer is done using the SolidWorks model
(shown on figure 1.3).

The precise position of all the 23 accelerometer with respect to a frame located at the point of interest
(located 270mm above the top platform of the hexapod) are shown in table 1.2.
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(a) Ty stage (b) Micro-Hexapod

Figure 1.2: Accelerometers fixed on the micro-station
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Figure 1.3: Position of the accelerometers using SolidWorks
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Table 1.2: Position of the accelerometers

ID x [mm] y [mm] z [mm]

Hexapod 1 -64 -64 -270
Hexapod 2 -64 64 -270
Hexapod 3 64 64 -270
Hexapod 4 64 -64 -270
Tilt 5 -385 -300 -417
Tilt 6 -420 280 -417
Tilt 7 420 280 -417
Tilt 8 380 -300 -417
Translation 9 -475 -414 -427
Translation 10 -465 407 -427
Translation 11 475 424 -427
Translation 12 475 -419 -427
Upper Granite 13 -320 -446 -786
Upper Granite 14 -480 534 -786
Upper Granite 15 450 534 -786
Upper Granite 16 295 -481 -786
Lower Granite 17 -730 -526 -951
Lower Granite 18 -735 814 -951
Lower Granite 19 875 799 -951
Lower Granite 20 865 -506 -951
Spindle 21 -155 -90 -594
Spindle 22 0 180 -594
Spindle 23 155 -90 -594

1.4 Hammer Impacts

Only 3 impact points are used. The impact points are shown on figures 1.4a, 1.4b and 1.4c.

We chose this excitation point as it seems to excite all the modes in the frequency band of interest and
because it provides good coherence for all the accelerometers.

From [1]: Most modal test require a point mobility measurement as one of the measured FRF. This is
hard to achieve as both force and response transducer should be at the same point on the structure.

1.5 Force and Response signals

The force sensor and the accelerometers signals are shown in the time domain in Figure 1.5. Sharp
“impacts” can be seen for the force sensor, indicating wide frequency band excitation. For the ac-
celerometer, many resonances can be seen on the right, indicating complex dynamics

The “normalized” amplitude spectral density of the two signals are computed and shown in Figure
1.6. Conclusions based on the time domain signals can be clearly seen in the frequency domain (wide
frequency content for the force signal and complex dynamics for the accelerometer).

The frequency response function from the applied force to the measured acceleration can then be
computed (Figure 1.7).

The coherence between the input and output signals is also computed and found to be good between
20 and 200Hz (Figure 1.8).
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(a) X impact (b) Y impact (c) Z impact

Figure 1.4: The three hammer impacts used for the modal analysis
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Figure 1.5: Raw measurement of the acceleromter (blue) and of the force sensor at the Hammer tip
(red). Zoom on one impact is shown on the right.
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Figure 1.6: Normalized Amplitude Spectral Density of the measured force and acceleration
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Figure 1.8: Coherence between the measured force and acceleration
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2 Frequency Analysis

The measurements have been conducted and a n × p × q Frequency Response Functions Matrix has
been computed with:

• n: the number of output measured accelerations: 23 × 3 = 69 (23 accelerometers measuring 3
directions each)

• p: the number of input force excitations: 3

• q: the number of frequency points ωi

Thus, the FRF matrix is an 69× 3× 801 matrix.

For each frequency point ωi, a 2D matrix is obtained that links the 3 force inputs to the 69 output
accelerations:

FRF(ωi) =



D1x

Fx
(ωi)

D1x

Fy
(ωi)

D1x

Fz
(ωi)

D1y

Fx
(ωi)

D1y

Fy
(ωi)

D1y

Fz
(ωi)

D1z

Fx
(ωi)

D1z

Fy
(ωi)

D1z

Fz
(ωi)

D2x

Fx
(ωi)

D2x

Fy
(ωi)

D2x

Fz
(ωi)

...
...

...
D23z

Fx
(ωi)

D23z

Fy
(ωi)

D23z

Fz
(ωi)


(2.1)

However, for the multi-body model being developed, only 6 solid bodies are considered, namely: the
bottom granite, the top granite, the translation stage, the tilt stage, the spindle and the hexapod.
Therefore, only 6× 6 = 36 degrees of freedom are of interest.

The objective in this section is therefore to process the Frequency Response Matrix to reduce the
number of measured DoFs from 69 to 36.

In order to be able to perform this reduction of measured DoFs, the measures stages have to behave as
rigid bodies in the frequency band of interest. This

2.1

To go from the accelerometers DoFs to the solid body 6 DoFs (three translations and three rotations),
some computations have to be performed. This is explained in Section 2.2.

Finally, the 69 × 3 × 801 frequency response matrix is reduced to a 36 × 3 × 801 frequency response
matrix where the motion of each solid body is expressed with respect to the CoM of the solid body
(Section 2.3).

To validate this reduction of DoF and the solid body assumption, the frequency response function at the

11



accelerometer location are synthesized from the reduced frequency response matrix and are compared
with the initial measurements in Section 2.4.

2.1 First verification of the solid body assumption

In this section, it is shown that two accelerometers fixed to a rigid body at positions p⃗1 and p⃗2 in such
a way that p⃗2 = p⃗1 + αx⃗ will measure the same value in the x⃗ direction. Such situation is illustrated
on Figure 2.1 and is the case for many accelerometers as shown in Figure 1.3.

• x
y

z
{O}

•
p1 δpx1 •

p2 δpx2

Figure 2.1: Aligned measurement of the motion of a solid body

The motion of the rigid body of figure 2.1 can be defined by its displacement δp⃗ and rotation Ω⃗ with
respect to a reference frame {O}.

The motions at points 1 and 2 are:

δp⃗1 = δp⃗+ Ω⃗× p⃗1

δp⃗2 = δp⃗+ Ω⃗× p⃗2

Taking only the x direction:

δpx1 = δpx +Ωypz1 − Ωzpy1

δpx2 = δpx +Ωypz2 − Ωzpy2

However, we have p1y = p2y and p1z = p2z because of the co-linearity of the two sensors in the x
direction, and thus we obtain:

δpx1 = δpx2 (2.2)

It is therefore concluded that two position sensors fixed to a rigid body will measure the same quantity
in the direction “linking” the two sensors.

Such property can be used to verify that the considered stages are indeed behaving as rigid body in the
frequency band of interest.
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From Table 1.2, we can identify which pair of accelerometers are aligned in the X and Y directions.

The response in the X direction of pairs of sensors aligned in the X direction are compared in Figure
2.2. Good match is observed up to 200Hz. Similar result is obtained for the Y direction.
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Figure 2.2: Comparaison of measured frequency response function for in the X directions for ac-

celerometers aligned along X. Amplitude is in m/s2

N . Accelerometer number is shown in
the legend.

2.2 From accelerometer DOFs to solid body DOFs

Let’s consider the schematic shown in Figure 2.3 where the motion of a solid body is measured at 4
distinct locations (in x, y and z directions).

The goal here is to link these 4 × 3 = 12 measurements to the 6 DOFs of the solid body expressed in
the frame {O}.

Let’s consider the motion of the rigid body defined by its displacement δp⃗ and rotation δΩ⃗ with respect
to the reference frame {O}.
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• x
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z
{O}•
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δp⃗1

•
p⃗2

δp⃗2

•
p⃗3

δp⃗3

•
p⃗4
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Figure 2.3: Schematic of the measured motions of a solid body

From the figure 2.3, we can write:

δp⃗1 = δp⃗+ δΩp⃗1

δp⃗2 = δp⃗+ δΩp⃗2

δp⃗3 = δp⃗+ δΩp⃗3

δp⃗4 = δp⃗+ δΩp⃗4

With

δΩ =

 0 −δΩz δΩy
δΩz 0 −δΩx
−δΩy δΩx 0

 (2.3)

We can rearrange the equations in a matrix form:



1 0 0 0 p1z −p1y
0 1 0 −p1z 0 p1x
0 0 1 p1y −p1x 0

...
...

1 0 0 0 p4z −p4y
0 1 0 −p4z 0 p4x
0 0 1 p4y −p4x 0




δpx
δpy
δpz
δΩx
δΩy
δΩz

 =



δp1x
δp1y
δp1z
...

δp4x
δp4y
δp4z


(2.4)

and then we obtain the velocity and rotation of the solid in the wanted frame {O}:


δpx
δpy
δpz
δΩx
δΩy
δΩz

 =



1 0 0 0 p1z −p1y
0 1 0 −p1z 0 p1x
0 0 1 p1y −p1x 0

...
...

1 0 0 0 p4z −p4y
0 1 0 −p4z 0 p4x
0 0 1 p4y −p4x 0



−1 

δp1x
δp1y
δp1z
...

δp4x
δp4y
δp4z


(2.5)
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Important

Using equation (2.5), we can determine the motion of the solid body expressed in a chosen frame
{O} using the accelerometers attached to it. The inversion is equivalent to resolving a mean
square problem.

2.3 Frequency Response Matrix expressed at the Center of Mass

What reference frame to choose? The question we wish here to answer is how to choose the reference
frame {O} in which the DOFs of the solid bodies are defined.

The possibles choices are:

• One frame for each solid body which is located at its center of mass

• One common frame, for instance located at the point of interest (270mm above the Hexapod)

• Base located at the joint position: this is where we want to see the motion and estimate
stiffness

Table 2.1: Advantages and disadvantages for the choice of reference frame

Chosen Frame Advantages Disadvantages

Frames at CoM Physically, it makes more sense How to compare the motion of the solid
bodies?

Common Frame We can compare the motion of each
solid body

Small θx,y may result in large Tx,y

Frames at joint position Directly gives which joint direction can
be blocked

How to choose the joint position?

The choice of the frame depends of what we want to do with the data.

One of the goals is to compare the motion of each solid body to see which relative DOFs between solid
bodies can be neglected, that is to say, which joint between solid bodies can be regarded as perfect (and
this in all the frequency range of interest). Ideally, we would like to have the same number of degrees
of freedom than the number of identified modes.

In the next sections, we will express the FRF matrix in the different frames.

Center of Mass of each solid body From solidworks, we can export the position of the center of mass
of each solid body considered. These are summarized in Table 2.2

Computation First, we initialize a new FRF matrix which is an n× p× q with:

• n is the number of DOFs of the considered 6 solid-bodies: 6× 6 = 36

• p is the number of excitation inputs: 3

• q is the number of frequency points ωi
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Table 2.2: Center of mass of considered solid bodies

X [mm] Y [mm] Z [mm]

Bottom Granite 45 144 -1251
Top granite 52 258 -778
Translation stage 0 14 -600
Tilt Stage 0 -5 -628
Spindle 0 0 -580
Hexapod -4 6 -319

Important

For each frequency point ωi, the FRF matrix is a n× p matrix:

FRFCoM(ωi) =



D1,Tx

Fx
(ωi)

D1,Tx

Fy
(ωi)

D1,Tx

Fz
(ωi)

D1,Ty

Fx
(ωi)

D1,Ty

Fy
(ωi)

D1,Ty

Fz
(ωi)

D1,Tz

Fx
(ωi)

D1,Tz

Fy
(ωi)

D1,Tz

Fz
(ωi)

D1,Rx

Fx
(ωi)

D1,Rx

Fy
(ωi)

D1,Rx

Fz
(ωi)

D1,Ry

Fx
(ωi)

D1,Ry

Fy
(ωi)

D1,Ry

Fz
(ωi)

D1,Rz

Fx
(ωi)

D1,Rz

Fy
(ωi)

D1,Rz

Fz
(ωi)

D2,Tx

Fx
(ωi)

D2,Tx

Fy
(ωi)

D2,Tx

Fz
(ωi)

...
...

...
D6,Rz

Fx
(ωi)

D6,Rz

Fy
(ωi)

D6,Rz

Fz
(ωi)



(2.6)

where 1, 2, . . . , 6 corresponds to the 6 solid bodies.

Then, as we know the positions of the accelerometers on each solid body, and we have the response of
those accelerometers, we can use the equations derived in the previous section to determine the response
of each solid body expressed in their center of mass.

2.4 Verify that we find the original FRF from the FRF in the global
coordinates

We have computed the Frequency Response Functions Matrix representing the response of the 6 solid
bodies in their 6 DOFs with respect to their center of mass.

From the response of one body in its 6 DOFs, we should be able to compute the FRF of each of its
accelerometer fixed to it during the measurement, supposing that this stage is a solid body.

We can then compare the result with the original measurements. This will help us to determine if:

• the previous inversion used is correct

• the solid body assumption is correct in the frequency band of interest
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From the translation δp and rotation δΩ of a solid body and the positions pi of the accelerometers
attached to it, we can compute the response that would have been measured by the accelerometers
using the following formula:

δp1 = δp+ δΩp1

δp2 = δp+ δΩp2

δp3 = δp+ δΩp3

δp4 = δp+ δΩp4

Thus, we can obtain the FRF matrix FRFs A that gives the responses of the accelerometers to the forces
applied by the hammer.

It is implemented in matlab as follow: We then compare the original FRF measured for each accelerom-
eter FRFs with the “recovered” FRF FRFs A from the global FRF matrix in the common frame.

The FRF for the 4 accelerometers on the Hexapod are compared in Figure 2.4. All the FRF are
matching very well in all the frequency range displayed.
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Figure 2.4: Comparaison of the original accelerometer response and reconstructed response from the
solid body response. For accelerometers 1 to 4 corresponding to the hexapod.

Important

The reduction of the number of degrees of freedom from 69 (23 accelerometers with each 3DOF)
to 36 (6 solid bodies with 6 DOF) seems to work well.
This confirms the fact that the stages are indeed behaving as a solid body in the frequency band
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of interest. This valid the fact that a multi-body model can be used to represent the dynamics
of the micro-station.
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3 Modal Analysis

The goal here is to extract the modal parameters describing the modes of station being studied,
namely:

• the eigen frequencies and the modal damping (eigen values)

• the mode shapes (eigen vectors)

This is done from the FRF matrix previously extracted from the measurements.

In order to do the modal parameter extraction, we first have to estimate the order of the modal model
we want to obtain. This corresponds to how many modes are present in the frequency band of interest.
In section 3.1, we will use the Singular Value Decomposition and the Modal Indication Function to
estimate the number of modes.

The modal parameter extraction methods generally consists of curve-fitting a theoretical expres-
sion for an individual FRF to the actual measured data. However, there are multiple level of
complexity:

• works on a part of a single FRF curve

• works on a complete curve encompassing several resonances

• works on a set of many FRF plots all obtained from the same structure

The third method is the most complex but gives better results. This is the one we will use in section
3.2.

From the modal model, it is possible to obtain a graphic display of the mode shapes (section 3.3).

In order to validate the quality of the modal model, we will synthesize the FRF matrix from the modal
model and compare it with the FRF measured (section 3.4).

The modes of the structure are expected to be complex, however real modes are easier to work with
when it comes to obtain a spatial model from the modal parameters.

3.1 Determine the number of modes

Singular Value Decomposition - Modal Indication Function The Mode Indicator Functions are usu-
ally used on n× p FRF matrix where n is a relatively large number of measurement DOFs and p is the
number of excitation DOFs, typically 3 or 4.
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In these methods, the frequency dependent FRF matrix is subjected to a singular value decomposi-
tion analysis which thus yields a small number (3 or 4) of singular values, these also being frequency
dependent.

These methods are used to determine the number of modes present in a given frequency range, to
identify repeated natural frequencies and to pre-process the FRF data prior to modal analysis.

From the documentation of the modal software:

he MIF consist of the singular values of the Frequency response function matrix. The
number of MIFs equals the number of excitations. By the powerful singular value
decomposition, the real signal space is separated from the noise space. Therefore,
the MIFs exhibit the modes effectively. A peak in the MIFs plot usually indicate the
existence of a structural mode, and two peaks at the same frequency point means the
existence of two repeated modes. Moreover, the magnitude of the MIFs implies the
strength of the a mode.

Important

The Complex Mode Indicator Function is defined simply by the SVD of the FRF (sub)
matrix:

[H(ω)]n×p = [U(ω)]n×n[Σ(ω)]n×p[V (ω)]Hp×p

[CMIF (ω)]p×p = [Σ(ω)]Tp×n[Σ(ω)]n×p

We compute the Complex Mode Indicator Function. The result is shown on Figure 3.1.
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Figure 3.1: Modal Indication Function

Composite Response Function An alternative is the Composite Response Function HH(ω) defined
as the sum of all the measured FRF:

HH(ω) =
∑
j

∑
k

Hjk(ω) (3.1)
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Instead, we choose here to use the sum of the norms of the measured frf:

HH(ω) =
∑
j

∑
k

|Hjk(ω)| (3.2)

The result is shown on figure 3.2.
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Figure 3.2: Composite Response Function

3.2 Modal parameter extraction

OROS - Modal software Modal identification are done within the Modal software of OROS.

Several modal parameter extraction methods are available. We choose to use the “broad band” method
as it permits to identify the modal parameters using all the FRF curves at the same time. It takes
into account the fact the the properties of all the individual curves are related by being from the same
structure: all FRF plots on a given structure should indicate the same values for the natural frequencies
and damping factor of each mode.

Such method also have the advantage of producing a unique and consistent model as direct output.

In order to apply this method, we select the frequency range of interest and we give an estimate of how
many modes are present.

Then, it shows a stabilization charts, such as the one shown on figure 3.3, where we have to manually
select which modes to take into account in the modal model.

We can then run the modal analysis, and the software will identify the modal damping and mode shapes
at the selected frequency modes.

Importation of the modal parameters on Matlab The obtained modal parameters are:

• Resonance frequencies in Hertz
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Figure 3.3: Stabilization Chart
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• Modal damping ratio in percentage

• (complex) Modes shapes for each measured DoF

• Modal A and modal B which are parameters important for further normalization

The obtained mode frequencies and damping are shown in Table 3.1.

Table 3.1: Obtained eigen frequencies and modal damping

Mode Frequency [Hz] Damping [%]

1 11.9 12.2
2 18.6 11.7
3 37.8 6.2
4 39.1 2.8
5 56.3 2.8
6 69.8 4.3
7 72.5 1.3
8 84.8 3.7
9 91.3 2.9
10 105.5 3.2
11 106.6 1.6
12 112.7 3.1
13 124.2 2.8
14 145.3 1.3
15 150.5 2.4
16 165.4 1.4

Theory It seems that the modal analysis software makes the assumption of viscous damping for the
model with which it tries to fit the FRF measurements.

If we note N the number of modes identified, then there are 2N eigenvalues and eigenvectors given by
the software:

sr = ωr(−ξr + i
√
1− ξ2r ), s∗r (3.3)

{ψr} =
{
ψ1x ψ2x . . . ψ23x ψ1y . . . ψ1z . . . ψ23z

}T
, {ψr}∗ (3.4)

for r = 1, . . . , N where ωr is the natural frequency and ξr is the critical damping ratio for that mode.

Modal Matrices We would like to arrange the obtained modal parameters into two modal matrices:

Λ =

s1 0
. . .

0 sN


N×N

; Ψ =

{ψ1} . . . {ψN}


M×N

{ψi} =
{
ψi,1x ψi,1y ψi,1z ψi,2x . . . ψi,23z

}T
M is the number of DoF: here it is 23× 3 = 69. N is the number of mode

Each eigen vector is normalized: ∥{ψi}∥2 = 1

However, the eigen values and eigen vectors appears as complex conjugates:

sr, s
∗
r , {ψ}r, {ψ}∗r , r = 1, N

23



(a) Mode 1

(b) Mode 6

(c) Mode 13

Figure 3.4: Instrumentation used for the modal analysis

In the end, they are 2N eigen values. We then build two extended eigen matrices as follow:

S =



s1
. . . 0

sN
s∗1

0
. . .

s∗N


2N×2N

; Φ =

{ψ1} . . . {ψN} {ψ∗
1} . . . {ψ∗

N}


M×2N

We also build the Modal A and Modal B matrices:

A =

a1 0
. . .

0 aN


N×N

; B =

b1 0
. . .

0 bN


N×N

(3.5)

With ai is the “Modal A” parameter linked to mode i.

“Modal A” and “modal B” are linked through the following formula:

B = −AΛ

3.3 Obtained Mode Shapes animations

From the modal parameters, it is possible to show the modal shapes with an animation.

Examples are shown in Figures 3.4.

We can learn quite a lot from these mode shape animations.

For instance, the mode shape of the first mode at 11Hz (figure 3.4a) seems to indicate that this corre-
sponds to a suspension mode.
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This could be due to the 4 Airloc Levelers that are used for the granite (figure 3.5).

Figure 3.5: AirLoc used for the granite (2120-KSKC)

They are probably not well leveled, so the granite is supported only by two Airloc.

3.4 Verify the validity of the Modal Model

There are two main ways to verify the validity of the modal model

• Synthesize FRF measurements that has been used to generate the modal model and compare

• Synthesize FRF that has not yet been measured. Then measure that FRF and compare

From the modal model, we want to synthesize the Frequency Response Functions that has been used
to build the modal model.

Let’s recall that:

• M is the number of measured DOFs (3× nacc)

• N is the number of modes identified

We then have that the FRF matrix [Hsyn] can be synthesize using the following formula:

Important

[Hsyn(ω)]M×M = [Φ]M×2N

[
Qr

jω − sr

]
2N×2N

[Φ]T2N×M (3.6)

with Qr = 1/MAr

An alternative formulation is:

Hpq(si) =

N∑
r=1

Apqr
si − λr

+
A∗
pqr

si − λ∗r
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with:

• Apqr =
ψprψqr

MAr
, MAr is called “Modal A”

• ψpr: scaled modal coefficient for output DOF p, mode r

• λr: complex modal frequency

From the modal software documentation:

Modal A Scaling constant for a complex mode. It has the same properties as modal
mass for normal modes (undamped or proportionally damped cases). Assuming

• ψpr = Modal coefficient for measured degree of freedom p and mode r

• ψqr = Modal coefficient for measured degree of freedom q and mode r

• Apqr = Residue for measured degree of freedom p, measured degree of q and
mode r

• MAr = Modal A of mode r

Then

Apqr =
ψprψqr
MAr

Modal B Scaling constant for a complex mode. It has the same properties as modal
stiffness for normal modes (undamped or proportionally damped cases). Assuming

• MAr = Modal A of mode r

• λr = System pole of mode r

Then
MBr = −λrMAr

The comparison between the original measured frequency response function and the synthesized one
from the modal model is done in Figure 3.6.

Frequency response functions that has not been measured can be synthesized as shown in Figure 3.7.
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Figure 3.6: description

10!5

100

M
a
g
n
it
u
d
e

[m N
]

Acc 1 - #
Acc 1 - #
Acc 1 - #

100 101 102

Frequency [Hz]

-180

-90

0

90

180

P
h
a
se

[d
eg

]
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4 Conclusion

Validation of solid body model.

Further step: go from modal model to parameters of the solid body model.
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