%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); %% Path for functions, data and scripts addpath('./mat/'); % Path for data %% Colors for the figures colors = colororder; % Number of modes determination % <> % The acrshort:mif is here applied to the $n\times p$ acrshort:frf matrix where $n$ is a relatively large number of measurement DOFs (here $n=69$) and $p$ is the number of excitation DOFs (here $p=3$). % The complex modal indication function is defined in equation eqref:eq:modal_cmif where the diagonal matrix $\Sigma$ is obtained from a acrlong:svd of the acrshort:frf matrix as shown in equation eqref:eq:modal_svd. % \begin{equation} \label{eq:modal_cmif} % [CMIF(\omega)]_{p\times p} = [\Sigma(\omega)]_{p\times n}^T [\Sigma(\omega)]_{n\times p} % \end{equation} % \begin{equation} \label{eq:modal_svd} % [H(\omega)]_{n\times p} = [U(\omega)]_{n\times n} [\Sigma(\omega)]_{n\times p} [V(\omega)]_{p\times p}^H % \end{equation} % The acrshort:mif therefore yields to $p$ values that are also frequency dependent. % A peak in the acrshort:mif plot indicates the presence of a mode. % Repeated modes can also be detected by multiple singular values are having peaks at the same frequency. % The obtained acrshort:mif is shown on Figure ref:fig:modal_indication_function. % A total of 16 modes are found between 0 and $200\,\text{Hz}$. % The obtained natural frequencies and associated modal damping are summarized in Table ref:tab:modal_obtained_modes_freqs_damps. %% Load frequency response matrix load('frf_matrix.mat', 'freqs', 'frf'); %% Computation of the modal indication function MIF = zeros(size(frf, 2), size(frf, 2), size(frf, 3)); for i = 1:length(freqs) [~,S,~] = svd(frf(:, :, i)); MIF(:, :, i) = S'*S; end %% Modal Indication Function figure; hold on; for i = 1:size(MIF, 1) plot(freqs, squeeze(MIF(i, i, :))); end hold off; set(gca, 'Xscale', 'lin'); set(gca, 'Yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('CMIF Amplitude'); xticks([0:20:200]); xlim([0, 200]); ylim([1e-6, 2e-2]); % Verification of the modal model validity % <> % In order to check the validity of the modal model, the complete $n \times n$ acrshort:frf matrix $\mathbf{H}_{\text{syn}}$ is first synthesized from the modal parameters. % Then, the elements of this acrshort:frf matrix $\mathbf{H}_{\text{syn}}$ that were already measured can be compared with the measured acrshort:frf matrix $\mathbf{H}$. % In order to synthesize the full acrshort:frf matrix, the eigenvectors $\phi_r$ are first organized in a matrix from as shown in equation eqref:eq:modal_eigvector_matrix. % \begin{equation}\label{eq:modal_eigvector_matrix} % \Phi = \begin{bmatrix} % & & & & &\\ % \phi_1 & \dots & \phi_N & \phi_1^* & \dots & \phi_N^* \\ % & & & & & % \end{bmatrix}_{n \times 2m} % \end{equation} % The full acrshort:frf matrix $\mathbf{H}_{\text{syn}}$ can be synthesize using eqref:eq:modal_synthesized_frf. % \begin{equation}\label{eq:modal_synthesized_frf} % [\mathbf{H}_{\text{syn}}(\omega)]_{n\times n} = [\Phi]_{n\times2m} [\mathbf{H}_{\text{mod}}(\omega)]_{2m\times2m} [\Phi]_{2m\times n}^T % \end{equation} % With $\mathbf{H}_{\text{mod}}(\omega)$ a diagonal matrix representing the response of the different modes eqref:eq:modal_modal_resp. % \begin{equation}\label{eq:modal_modal_resp} % \mathbf{H}_{\text{mod}}(\omega) = \text{diag}\left(\frac{1}{a_1 (j\omega - s_1)},\ \dots,\ \frac{1}{a_m (j\omega - s_m)}, \frac{1}{a_1^* (j\omega - s_1^*)},\ \dots,\ \frac{1}{a_m^* (j\omega - s_m^*)} \right)_{2m\times 2m} % \end{equation} %% Load modal parameters shapes_m = readtable('mat/mode_shapes.txt', 'ReadVariableNames', false); % [Sign / Real / Imag] freqs_m = table2array(readtable('mat/mode_freqs.txt', 'ReadVariableNames', false)); % in [Hz] damps_m = table2array(readtable('mat/mode_damps.txt', 'ReadVariableNames', false)); % in [%] modal_a = table2array(readtable('mat/mode_modal_a.txt', 'ReadVariableNames', false)); % [Real / Imag] modal_b = table2array(readtable('mat/mode_modal_b.txt', 'ReadVariableNames', false)); % [Real / Imag] %% Guess the number of modes identified from the length of the imported data. acc_n = 23; % Number of accelerometers dir_n = 3; % Number of directions dirs = 'XYZ'; mod_n = size(shapes_m,1)/acc_n/dir_n; % Number of modes %% Mode shapes are split into 3 parts (direction plus sign, real part and imaginary part) % we aggregate them into one array of complex numbers T_sign = table2array(shapes_m(:, 1)); T_real = table2array(shapes_m(:, 2)); T_imag = table2array(shapes_m(:, 3)); mode_shapes = zeros(mod_n, dir_n, acc_n); for mod_i = 1:mod_n for acc_i = 1:acc_n % Get the correct section of the signs T = T_sign(acc_n*dir_n*(mod_i-1)+1:acc_n*dir_n*mod_i); for dir_i = 1:dir_n % Get the line corresponding to the sensor i = find(contains(T, sprintf('%i%s',acc_i, dirs(dir_i))), 1, 'first')+acc_n*dir_n*(mod_i-1); mode_shapes(mod_i, dir_i, acc_i) = str2num([T_sign{i}(end-1), '1'])*complex(T_real(i),T_imag(i)); end end end %% Create the eigenvalue and eigenvector matrices eigen_val_M = diag(2*pi*freqs_m.*(-damps_m/100 + j*sqrt(1 - (damps_m/100).^2))); % Lambda = diagonal matrix eigen_vec_M = reshape(mode_shapes, [mod_n, acc_n*dir_n]).'; % Phi, vecnorm(eigen_vec_M) = 1 % Add complex conjugate eigenvalues and eigenvectors eigen_val_ext_M = blkdiag(eigen_val_M, conj(eigen_val_M)); eigen_vec_ext_M = [eigen_vec_M, conj(eigen_vec_M)]; %% "Modal A" and "Modal B" matrices modal_a_M = diag(complex(modal_a(:, 1), modal_a(:, 2))); modal_b_M = diag(complex(modal_b(:, 1), modal_b(:, 2))); modal_a_ext_M = blkdiag(modal_a_M, conj(modal_a_M)); modal_b_ext_M = blkdiag(modal_b_M, conj(modal_b_M)); %% Synthesize the full FRF matrix from the modal model Hsyn = zeros(acc_n*dir_n, acc_n*dir_n, length(freqs)); for i = 1:length(freqs) Hsyn(:, :, i) = eigen_vec_ext_M*diag(1./(diag(modal_a_ext_M).*(j*2*pi*freqs(i) - diag(eigen_val_ext_M))))*eigen_vec_ext_M.'; end %% Derivate two times to to have the acceleration response for i = 1:size(Hsyn, 1) Hsyn(i, :, :) = squeeze(Hsyn(i, :, :)).*(j*2*pi*freqs).^2; end % The comparison between the original measured frequency response functions and the synthesized ones from the modal model is done in Figure ref:fig:modal_comp_acc_frf_modal. % Whether the obtained match can be considered good or bad is quite arbitrary. % Yet, the modal model seems to be able to represent the coupling between different nodes and different direction which is quite important in a control point of view. % This can be seen in Figure ref:fig:modal_comp_acc_frf_modal_3 that shows the frequency response function between a force applied on node 11 (i.e. on the translation stage) in the $y$ direction to the measured acceleration at node $2$ (i.e. at the top of the micro-hexapod) in the $x$ direction. acc_o = 11; dir_o = 3; acc_i = 11; dir_i = 3; figure; hold on; plot(freqs, abs(squeeze(frf( 3*(acc_o-1)+dir_o, dir_i, :))), 'DisplayName', 'Measured'); plot(freqs, abs(squeeze(Hsyn(3*(acc_o-1)+dir_o, 3*(acc_i-1)+dir_i, :))), 'DisplayName', 'Synthesized'); hold off; set(gca, 'xscale', 'lin'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('Magnitude [$\frac{m/s^2}{N}$]'); ldg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); ldg.ItemTokenSize = [10, 1]; xticks([0:40:200]); xlim([1, 200]); ylim([1e-6, 1e-1]); acc_o = 15; dir_o = 3; acc_i = 11; dir_i = 3; figure; hold on; plot(freqs, abs(squeeze(frf( 3*(acc_o-1)+dir_o, dir_i, :))), 'DisplayName', 'Measured'); plot(freqs, abs(squeeze(Hsyn(3*(acc_o-1)+dir_o, 3*(acc_i-1)+dir_i, :))), 'DisplayName', 'Synthesized'); hold off; set(gca, 'xscale', 'lin'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('Magnitude [$\frac{m/s^2}{N}$]'); ldg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); ldg.ItemTokenSize = [10, 1]; xticks([0:40:200]); xlim([1, 200]); ylim([1e-6, 1e-1]); acc_o = 2; dir_o = 1; acc_i = 11; dir_i = 2; figure; hold on; plot(freqs, abs(squeeze(frf( 3*(acc_o-1)+dir_o, dir_i, :))), 'DisplayName', 'Measured'); plot(freqs, abs(squeeze(Hsyn(3*(acc_o-1)+dir_o, 3*(acc_i-1)+dir_i, :))), 'DisplayName', 'Synthesized'); hold off; set(gca, 'xscale', 'lin'); set(gca, 'yscale', 'log'); xlabel('Frequency [Hz]'); ylabel('Magnitude [$\frac{m/s^2}{N}$]'); ldg = legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 1); ldg.ItemTokenSize = [10, 1]; xticks([0:40:200]); xlim([1, 200]); ylim([1e-6, 1e-1]);