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Three critical elements for the control of parallel manipulators such as the Nano-Hexapod were identi-
fied: effective utilization and combination of multiple sensors, appropriate plant decoupling strategies,
and robust controller design for the decoupled system.

During the conceptual design phase of the NASS, pragmatic approaches were implemented for each
of these elements. The High Authority Control-Low Authority Control (HAC-LAC) architecture was
selected for combining sensors. Control was implemented in the frame of the struts, leveraging the
inherent low-frequency decoupling of the plant where all decoupled elements exhibited similar dynam-
ics, thereby simplifying the Single-Input Single-Output (SISO) controller design process. For these
decoupled plants, open-loop shaping techniques were employed to tune the individual controllers.

While these initial strategies proved effective in validating the NASS concept, this work explores alter-
native approaches with the potential to further enhance the performance. Section 1 examines different
methods for combining multiple sensors, with particular emphasis on sensor fusion techniques that
utilize complementary filters. A novel approach for designing these filters is proposed, which allows
optimization of the sensor fusion effectiveness.

Section 2 presents a comparative analysis of various decoupling strategies, including Jacobian decou-
pling, modal decoupling, and Singular Value Decomposition (SVD) decoupling. Each method is evalu-
ated in terms of its theoretical foundations, implementation requirements, and performance character-
istics, providing insights into their respective advantages for different applications.

Finally, Section 3 addresses the challenge of controller design for decoupled plants. A method for
directly shaping closed-loop transfer functions using complementary filters is proposed, offering an
intuitive approach to achieving desired performance specifications while ensuring robustness to plant
uncertainty.
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1 Multiple Sensor Control

The literature review of Stewart platforms revealed a wide diversity of designs with various sensor
and actuator configurations. Control objectives (such as active damping, vibration isolation, or precise
positioning) directly dictate sensor selection, whether inertial, force, or relative position sensors.

In cases where multiple control objectives must be achieved simultaneously, as is the case for the
Nano Active Stabilization System (NASS) where the Stewart platform must both position the sample
and provide isolation from micro-station vibrations, combining multiple sensors within the control
architecture has been demonstrated to yield significant performance benefits [5]. From the literature,
three principal approaches for combining sensors have been identified: High Authority Control-Low
Authority Control (HAC-LAC), sensor fusion, and two-sensor control architectures.
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Figure 1.1: Different control strategies when using multiple sensors. High Authority Control / Low
Authority Control (a). Sensor Fusion (c). Two-Sensor Control (b)

The HAC-LAC approach employs a dual-loop control strategy in which two control loops utilize differ-
ent sensors for distinct purposes (Figure 1.1a). In [1], vibration isolation is provided by accelerometers
collocated with the voice coil actuators, while external rotational sensors are utilized to achieve pointing
control. In [2], force sensors collocated with the magnetostrictive actuators are used for active damping
using decentralized IFF, and subsequently accelerometers are employed for adaptive vibration isolation.
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Similarly, in [3], piezoelectric actuators with collocated force sensors are used in a decentralized man-
ner to provide active damping while accelerometers are implemented in an adaptive feedback loop to
suppress periodic vibrations. In [4], force sensors are integrated in the struts for decentralized force
feedback while accelerometers fixed to the top platform are employed for centralized control.

The second approach, sensor fusion (illustrated in Figure 1.1c), involves filtering signals from two sensors
using complementary filters1 and summing them to create an improved sensor signal. In [5], geophones
(used at low frequency) are merged with force sensors (used at high frequency). It is demonstrated that
combining both sensors using sensor fusion can improve performance compared to using only one of the
two sensors. In [6], sensor fusion architecture is implemented with an accelerometer and a force sensor.
This implementation is shown to simultaneously achieve high damping of structural modes (through
the force sensors) while maintaining very low vibration transmissibility (through the accelerometers).

In [7], the performance of sensor fusion is compared with the more general case of “two-sensor control”
(illustrated in Figure 1.1b). It is highlighted that “two-sensor control” provides greater control freedom,
potentially enhancing performance. In [8], the use of force sensors and geophones is compared for
vibration isolation purposes. Geophones are shown to provide better isolation performance than load
cells but suffer from poor robustness. Conversely, the controller based on force sensors exhibited inferior
performance (due to the presence of a pair of low frequency zeros), but demonstrated better robustness
properties. A “two-sensor control” approach was proven to perform better than controllers based on
individual sensors while maintaining better robustness. A Linear Quadratic Regulator (LQG) was
employed to optimize the two-input/one-output controller.

Beyond these three main approaches, other control architectures have been proposed for different pur-
poses. For instance, in [9], a first control loop utilizes force sensors and relative motion sensors to
compensate for parasitic stiffness of the flexible joints. Subsequently, the system is decoupled in the
modal space (facilitated by the removal of parasitic stiffness) and accelerometers are employed for
vibration isolation.

The HAC-LAC architecture was previously investigated during the conceptual phase and successfully
implemented to validate the NASS concept, demonstrating excellent performance. At the other end of
the spectrum, the two-sensor approach yields greater control design freedom but introduces increased
complexity in tuning, and thus was not pursued in this study. This work instead focuses on sensor
fusion, which represents a promising middle ground between the proven HAC-LAC approach and the
more complex two-sensor control strategy.

A review of sensor fusion is first presented in Section 1.1. Then, in Section 1.2, both the robustness
of the fusion and the noise characteristics of the resulting “fused sensor” are derived and expressed
as functions of the complementary filters’ norms. A synthesis method for shaping complementary
filters is proposed in Section 1.3. The investigation is then extended beyond the conventional two-
sensor scenario, demonstrating how the proposed complementary filter synthesis can be generalized for
applications requiring the fusion of three or more sensors (Section 1.4).

1.1 Review of Sensor Fusion

Measuring a physical quantity using sensors is always subject to several limitations. First, the accuracy
of the measurement is affected by various noise sources, such as electrical noise from the conditioning
electronics. Second, the frequency range in which the measurement is relevant is bounded by the
bandwidth of the sensor. One way to overcome these limitations is to combine several sensors using a

1A set of two complementary filters are two transfer functions that sum to one.
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technique called “sensor fusion” [10]. Fortunately, a wide variety of sensors exists, each with different
characteristics. By carefully selecting the sensors to be fused, a “super sensor” is obtained that combines
the benefits of the individual sensors.

In some applications, sensor fusion is employed to increase measurement bandwidth [11], [12], [13]. For
instance, in [11], the bandwidth of a position sensor is extended by fusing it with an accelerometer that
provides high-frequency motion information. In other applications, sensor fusion is utilized to obtain
an estimate of the measured quantity with reduced noise [14], [15], [16], [17]. More recently, the fusion
of sensors measuring different physical quantities has been proposed to enhance control properties [18],
[19]. In [18], an inertial sensor used for active vibration isolation is fused with a sensor collocated with
the actuator to improve the stability margins of the feedback controller.

Beyond Stewart platforms, practical applications of sensor fusion are numerous. It is widely imple-
mented for attitude estimation in autonomous vehicles such as unmanned aerial vehicles [20], [21], [22]
and underwater vehicles [23], [24]. Sensor fusion offers significant benefits for high-performance posi-
tioning control as demonstrated in [11], [12], [13], [19]. It has also been identified as a key technology
for improving the performance of active vibration isolation systems [6]. Emblematic examples include
the isolation stages of gravitational wave detectors [18], [25] such as those employed at LIGO [14], [15]
and Virgo [26].

Two principal methods are employed to perform sensor fusion: using complementary filters [27] or
using Kalman filtering [28]. For sensor fusion applications, these methods share many relationships [17],
[28], [29], [30]. However, Kalman filtering requires assumptions about the probabilistic characteristics
of sensor noise [17], whereas complementary filters do not impose such requirements. Furthermore,
complementary filters offer advantages over Kalman filtering for sensor fusion through their general
applicability, low computational cost [29], and intuitive nature, as their effects can be readily interpreted
in the frequency domain.

A set of filters is considered complementary if the sum of their transfer functions equals one at all
frequencies. In early implementations of complementary filtering, analog circuits were used to physi-
cally realize the filters [27]. While analog complementary filters remain in use today [19], [31], digital
implementation is now more common as it provides greater flexibility.

Various design methods have been developed to optimize complementary filters. The most straightfor-
ward approach utilizes analytical formulas, which depending on the application may be first order [19],
[21], [32], second order [20], [22], [33], or higher orders [11], [12], [18], [33], [34]. Since the characteristics
of the super sensor depend on proper complementary filter design [35], several optimization techniques
have emerged—ranging from optimizing parameters for analytical formulas [13], [22], [30] to employing
convex optimization tools [14], [15] such as linear matrix inequalities [23]. As demonstrated in [16],
complementary filter design can be linked to the standard mixed-sensitivity control problem, allowing
powerful classical control theory tools to be applied. For example, in [22], two gains of a Proportional
Integral (PI) controller are optimized to minimize super sensor noise.

All these complementary filter design methods share the common objective of creating a super sensor
with desired characteristics, typically in terms of noise and dynamics. As reported in [12], [16], phase
shifts and magnitude bumps in the super sensor dynamics may occur if complementary filters are
poorly designed or if sensors are improperly calibrated. Therefore, the robustness of the fusion must be
considered when designing complementary filters. Despite the numerous design methods proposed in
the literature, a simple approach that specifies desired super sensor characteristics while ensuring good
fusion robustness has been lacking.

Fortunately, both fusion robustness and super sensor characteristics can be linked to complementary
filter magnitude [35]. Based on this relationship, the present work introduces an approach to designing
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complementary filters using H∞-synthesis, which enables intuitive shaping of complementary filter
magnitude in a straightforward manner.

1.2 Sensor Fusion and Complementary Filters Requirements

A general sensor fusion architecture using complementary filters is shown in Figure 1.2, where multiple
sensors (in this case two) measure the same physical quantity x. The sensor output signals x̂1 and x̂2

represent estimates of x. These estimates are filtered by complementary filters and combined to form a
new estimate x̂.

Super Sensor

Normalized
Sensors

Complementary
Filters

Sensor 1

Sensor 2

H1(s)

H2(s)

+x

x̂1

x̂2

x̂

Figure 1.2: Schematic of a sensor fusion architecture using complementary filters.

The complementary property of filters H1(s) and H2(s) requires that the sum of their transfer functions
equals one at all frequencies (1.1).

H1(s) +H2(s) = 1 (1.1)

Sensor Models and Sensor Normalization To analyze sensor fusion architectures, appropriate sensor
models are required. The model shown in Figure 1.3a consists of a linear time invariant (LTI) system
Gi(s) representing the sensor dynamics and an input ni representing sensor noise. The model input x
is the measured physical quantity, and its output x̃i is the “raw” output of the sensor.

Prior to filtering the sensor outputs x̃i with complementary filters, the sensors are typically normalized to
simplify the fusion process. This normalization involves using an estimate Ĝi(s) of the sensor dynamics
Gi(s), and filtering the sensor output by the inverse of this estimate Ĝ−1

i (s), as shown in Figure 1.3b.

It is assumed that the sensor inverse Ĝ−1
i (s) is proper and stable. This approach ensures that the units

of the estimates x̂i match the units of the physical quantity x. The sensor dynamics estimate Ĝi(s)
may be a simple gain or a more complex transfer function.

Sensor

+ Gi(s)x

ni

x̃i

(a) Basic sensor model consisting of a noise input ni

and a linear time invariant transfer function Gi(s)

Normalized
sensorSensor

+ Gi(s) Ĝ−1
i (s)

x

ni

x̃i x̂i

(b) Normalized sensors using the inverse of an esti-
mate Ĝ

Figure 1.3: Sensor models with and without normalization.
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Two normalized sensors are then combined to form a super sensor as shown in Figure 1.4. The two
sensors measure the same physical quantity x with dynamics G1(s) and G2(s), and with uncorrelated
noises n1 and n2. The signals from both normalized sensors are fed into two complementary filters
H1(s) and H2(s) and then combined to yield an estimate x̂ of x. The super sensor output x̂ is therefore
described by (1.2).

x̂ =
(
H1(s)Ĝ

−1
1 (s)G1(s) +H2(s)Ĝ

−1
2 (s)G2(s)

)
x+H1(s)Ĝ

−1
1 (s)G1(s)n1 +H2(s)Ĝ

−1
2 (s)G2(s)n2 (1.2)

Super SensorNormalized
sensorSensor 1

Normalized
sensorSensor 2

+

+

G1(s)

G2(s)

Ĝ−1
1 (s)

Ĝ−2
2 (s)

H1(s)

H2(s)

+x

n1
x̃1 x̂1

n2
x̃2 x̂2

x̂

Figure 1.4: Sensor fusion architecture with two normalized sensors.

Noise Sensor Filtering First, consider the case where all sensors are perfectly normalized (1.3). The
effects of imperfect normalization will be addressed subsequently.

x̂i

x
= Ĝi(s)Gi(s) = 1 (1.3)

In that case, the super sensor output x̂ equals x plus the filtered noise from both sensors (1.4). From
this equation, it is evident that the complementary filters H1(s) and H2(s) operate solely on the
sensor noise. Thus, this sensor fusion architecture allows filtering of sensor noise without introducing
distortion in the measured physical quantity. This fundamental property necessitates that the two filters
are complementary.

x̂ = x+H1(s)n1 +H2(s)n2 (1.4)

The estimation error ϵx, defined as the difference between the sensor output x̂ and the measured quantity
x, is computed for the super sensor (1.5).

ϵx ≜ x̂− x = H1(s)n1 +H2(s)n2 (1.5)

As shown in (1.6), the Power Spectral Density (PSD) of the estimation error Φϵx depends both on the
norm of the two complementary filters and on the PSD of the noise sources Φn1

and Φn2
.

Φϵx(ω) = |H1(jω)|2 Φn1(ω) + |H2(jω)|2 Φn2(ω) (1.6)
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If the two sensors have identical noise characteristics (Φn1
(ω) = Φn2

(ω)), simple averaging (H1(s) =
H2(s) = 0.5) would minimize the super sensor noise. This represents the simplest form of sensor fusion
using complementary filters.

However, sensors typically exhibit high noise levels in different frequency regions. In such cases, to
reduce the noise of the super sensor, |H1(jω)| should be minimized when Φn1

(ω) exceeds Φn2
(ω), and

|H2(jω)| should be minimized when Φn2
(ω) exceeds Φn1

(ω). Therefore, by appropriately shaping the
norm of the complementary filters, the noise of the super sensor can be minimized.

Sensor Fusion Robustness In practical systems, sensor normalization is rarely perfect, and condition
(1.3) is not fully satisfied. To analyze such imperfections, a multiplicative input uncertainty is incor-
porated into the sensor dynamics (Figure 1.5a). The nominal model is the estimated model used for
normalization Ĝi(s), ∆i(s) is any stable transfer function satisfying |∆i(jω)| ≤ 1, ∀ω, and wi(s) is a
weighting transfer function representing the magnitude of uncertainty.

Since the nominal sensor dynamics is taken as the normalized filter, the normalized sensor model can
be further simplified as shown in Figure 1.5b.

Normalized
sensorSensor

w1(s) ∆1(s)

+ + Ĝ1(s) Ĝ−1
1 (s)

x

n1
x̃1 x̂1

(a) Sensor with multiplicative input uncertainty

Normalized
sensor

w1(s) ∆1(s)

+ +x
n1

x̂1

(b) Simplified normalized sensor model

Figure 1.5: Sensor models with dynamical uncertainty

The sensor fusion architecture incorporating sensor models with dynamical uncertainty is illustrated in
Figure 1.6a. The super sensor dynamics (1.7) is no longer unity but depends on the sensor dynamical
uncertainty weights wi(s) and the complementary filters Hi(s). The dynamical uncertainty of the super
sensor can be graphically represented in the complex plane by a circle centered on 1 with a radius equal
to |w1(jω)H1(jω)|+ |w2(jω)H2(jω)| (Figure 1.6b).

x̂

x
= 1 + w1(s)H1(s)∆1(s) + w2(s)H2(s)∆2(s) (1.7)

The super sensor dynamical uncertainty, and consequently the robustness of the fusion, clearly depends
on the complementary filters’ norm. As it is generally desired to limit the dynamical uncertainty of
the super sensor, the norm of the complementary filter |Hi(jω)| should be made small when |wi(jω)| is
large, i.e., at frequencies where the sensor dynamics is uncertain.

1.3 Complementary Filters Shaping

As established in Section 1.2, the super sensor’s noise characteristics and robustness are directly depen-
dent on the complementary filters’ norm. A synthesis method enabling precise shaping of these norms
would therefore offer substantial practical benefits. This section develops such an approach by formu-
lating the design objective as a standard H∞ optimization problem. The methodology for designing
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sensor 1

Normalized
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(a) Sensor Fusion Architecture
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Im
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(b) Uncertainty regions

Figure 1.6: Sensor fusion architecture with sensor dynamics uncertainty (a). Uncertainty region (b)
of the super sensor dynamics in the complex plane (grey circle). The contribution of both
sensors 1 and 2 to the total uncertainty are represented respectively by a blue circle and
a red circle. The frequency dependency ω is here omitted.

appropriate weighting functions (which specify desired complementary filter shape during synthesis) is
examined in detail, and the efficacy of the proposed method is validated with a simple example.

Synthesis Objective The primary objective is to shape the norms of two filters H1(s) and H2(s) while
ensuring they maintain their complementary property as defined in (1.1). This is equivalent to finding
proper and stable transfer functions H1(s) and H2(s) that satisfy conditions (1.8a), (1.8b), and (1.8c).
Weighting transfer functions W1(s) and W2(s) are strategically selected to define the maximum desired
norm of the complementary filters during the synthesis process.

H1(s) +H2(s) = 1 (1.8a)

|H1(jω)| ≤
1

|W1(jω)|
∀ω (1.8b)

|H2(jω)| ≤
1

|W2(jω)|
∀ω (1.8c)

Shaping of Complementary Filters using H∞ synthesis The synthesis objective can be expressed as
a standard H∞ optimization problem by considering the generalized plant P (s) illustrated in Figure
1.7a and mathematically described by (1.9).

z1z2
v

 = P (s)

[
w
u

]
; P (s) =

W1(s) −W1(s)
0 W2(s)
1 0

 (1.9)

Applying standard H∞-synthesis to the generalized plant P (s) is equivalent to finding a stable filter
H2(s) that, based on input v, generates an output signal u such that the H∞ norm of the system shown
in Figure 1.7b from w to [z1, z2] does not exceed unity, as expressed in (1.10).

∥∥∥∥(1−H2(s))W1(s)
H2(s)W2(s)

∥∥∥∥
∞

≤ 1 (1.10)
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(a) Generalized plant
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H2(s)

W1(s)

W2(s)

+
−

w z1

z2

(b) Generalized plant with the synthesized filter

Figure 1.7: Architecture for the H∞-synthesis of complementary filters

By defining H1(s) as the complement of H2(s) (1.11), the H∞-synthesis objective becomes equivalent
to (1.12), ensuring that conditions (1.8b) and (1.8c) are satisfied.

H1(s) ≜ 1−H2(s) (1.11)

∥∥∥∥H1(s)W1(s)
H2(s)W2(s)

∥∥∥∥
∞

≤ 1 (1.12)

Therefore, applying H∞-synthesis to the standard plant P (s) generates two filters, H2(s) and H1(s) ≜
1−H2(s), that are complementary as required by (1.8), with norms bounded by the specified constraints
in (1.8b) and (1.8c).

It should be noted that there exists only an implication (not an equivalence) between the H∞ norm
condition in (1.12) and the initial synthesis objectives in (1.8b) and (1.8c). Consequently, the optimiza-
tion may be somewhat conservative with respect to the set of filters on which it operates [36, Chap.
2.8.3].

Weighting Functions Design Weighting functions play a crucial role during synthesis by specifying
the maximum allowable norms for the complementary filters. The proper design of these weighting
functions is essential for the successful implementation of the proposed H∞-synthesis approach.

Three key considerations should guide the design of weighting functions. First, only proper and stable
transfer functions should be employed. Second, the order of the weighting functions should remain
reasonably small to minimize computational costs associated with solving the optimization problem and
to facilitate practical implementation of the filters (as the order of the synthesized filters equals the sum
of the weighting functions’ orders). Third, the fundamental limitations imposed by the complementary
property (1.1) must be respected, which implies that |H1(jω)| and |H2(jω)| cannot both be made small
at the same frequency.

When designing complementary filters, it is typically desirable to specify their slopes, “blending” fre-
quency, and maximum gains at low and high frequencies. To facilitate the expression of these specifica-
tions, formula (1.13) is proposed for the design of weighting functions. The parameters in this formula
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are G0 = limω→0 |W (jω)| (the low-frequency gain), G∞ = limω→∞ |W (jω)| (the high-frequency gain),
Gc = |W (jωc)| (the gain at a specific frequency ωc in rad/s), and n (the slope between high and low fre-
quency, which also corresponds to the order of the weighting function). The typical magnitude response
of a weighting function generated using (1.13) is illustrated in Figure 1.8.
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Figure 1.8: Magnitude of a weighting function
generated using (1.13), G0 = 10−3,
G∞ = 10, ωc = 10Hz, Gc = 2, n = 3.

W (s) =


1
ωc

√
1−(G0

Gc
)

2
n

1−( Gc
G∞ )

2
n
s+

(
G0

Gc

) 1
n

(
1

G∞

) 1
n 1

ωc

√
1−(G0

Gc
)

2
n

1−( Gc
G∞ )

2
n
s+

(
1
Gc

) 1
n


n

(1.13)

Validation of the proposed synthesis method The proposed methodology for designing complemen-
tary filters is now applied to a simple example. Consider the design of two complementary filters H1(s)
and H2(s) with the following requirements:

• The blending frequency should be approximately 10Hz

• The slope of |H1(jω)| should be +2 below 10Hz, with a low-frequency gain of 10−3

• The slope of |H2(jω)| should be −3 above 10Hz, with a high-frequency gain of 10−3

The first step involves translating these requirements by appropriately designing the weighting functions.
The formula proposed in (1.13) is employed for this purpose. The parameters used are summarized in
Table 1.1. The inverse magnitudes of the designed weighting functions, which represent the maximum
allowable norms of the complementary filters, are depicted by the dashed lines in Figure 1.9.
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Parameter W1(s) W2(s)

G0 0.1 1000
G∞ 1000 0.1
ωc 2π · 10 2π · 10
Gc 0.45 0.45
n 2 3

Table 1.1: Parameters for W1(s) and W2(s)
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Figure 1.9: Weights and obtained filters

Standard H∞-synthesis is then applied to the generalized plant shown in Figure 1.7a. This yields the
filter H2(s) that minimizes the H∞ norm from input w to outputs [z1, z2]

⊺. The resulting H∞ norm is
found to be close to unity, indicating successful synthesis: the norms of the complementary filters remain
below the specified upper bounds. This is confirmed by the Bode plots of the obtained complementary
filters in Figure 1.9. This straightforward example demonstrates that the proposed methodology for
shaping complementary filters is both simple and effective.

1.4 Synthesis of a set of three complementary filters

Certain applications necessitate the fusion of more than two sensors [30], [33]. At LIGO, for example,
a super sensor is formed by merging three distinct sensors: an LVDT, a seismometer, and a geophone
[34].

For merging n > 2 sensors with complementary filters, two architectural approaches are possible, as
illustrated in Figure 1.10. Fusion can be implemented either “sequentially,” utilizing n− 1 sets of two
complementary filters (Figure 1.10a), or “in parallel,” employing a single set of n complementary filters
(Figure 1.10b).

While conventional sensor fusion synthesis techniques can be applied to the sequential approach, par-
allel architecture implementation requires a novel synthesis method for multiple complementary filters.
Previous literature has offered only simple analytical formulas for this purpose [30], [33]. This section
presents a generalization of the proposed complementary filter synthesis method to address this gap.

Sensor 2

Sensor 1

Sensor 3

H1(s)

H2(s)
+ H ′

1(s)

H ′
2(s)

+
x

x̂1

x̂2

x̂3

x̂12

x̂

(a) Sequential fusion

Sensor 2

Sensor 1

Sensor 3

H1(s)

H2(s)

H3(s)

+x

x̂1

x̂2

x̂3

x̂

(b) Parallel fusion

Figure 1.10: Possible sensor fusion architecture when more than two sensors are to be merged
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The synthesis objective is to compute a set of n stable transfer functions [H1(s), H2(s), . . . , Hn(s)]
that satisfy conditions (1.14a) and (1.14b).

n∑
i=1

Hi(s) = 1 (1.14a)

|Hi(jω)| <
1

|Wi(jω)|
, ∀ω, i = 1 . . . n (1.14b)

The transfer functions [W1(s), W2(s), . . . , Wn(s)] are weights selected to specify the maximum com-
plementary filters’ norm during synthesis.

This synthesis objective is closely related to the one described in Section 1.3, and the proposed synthesis
method represents a generalization of the approach previously presented. A set of n complementary
filters can be shaped by applying standard H∞-synthesis to the generalized plant Pn(s) described by
(1.15).


z1
...
zn
v

 = Pn(s)


w
u1

...
un−1

 ; Pn(s) =



W1 −W1 . . . . . . −W1

0 W2 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 Wn

1 0 . . . . . . 0


(1.15)

If the synthesis is successful, a set of n−1 filters [H2(s), H3(s), . . . , Hn(s)] is obtained such that (1.16)
is satisfied.

∥∥∥∥∥∥∥∥∥
(1− [H2(s) +H3(s) + · · ·+Hn(s)])W1(s)

H2(s)W2(s)
...

Hn(s)Wn(s)

∥∥∥∥∥∥∥∥∥
∞

≤ 1 (1.16)

H1(s) is then defined using (1.17), which ensures the complementary property for the set of n filters
(1.14a). Condition (1.14b) is satisfied through (1.16).

H1(s) ≜ 1−
[
H2(s) +H3(s) + · · ·+Hn(s)

]
(1.17)

To validate the proposed method for synthesizing a set of three complementary filters, an example
is provided. The sensors to be merged are a displacement sensor (effective from DC up to 1Hz), a
geophone (effective from 1 to 10Hz), and an accelerometer (effective above 10Hz). Three weighting
functions are designed using formula (1.13), and their inverse magnitudes are shown in Figure 1.11b
(dashed curves).

Consider the generalized plant P3(s) shown in Figure 1.11a, which is also described by (1.18).
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z1
z2
z3
v

 = P3(s)

w
u1

u2

 ; P3(s) =


W1(s) −W1(s) −W1(s)

0 W2(s) 0
0 0 W3(s)
1 0 0

 (1.18)

P3(s)

W1(s)
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W3(s)

+
−

+
−

[
H2(s)
H3(s)

]
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v

(a) Generalized plant with the synthesized filter
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(b) Weights and obtained filters

Figure 1.11: Architecture for the H∞-synthesis of three complementary filters (a). Bode plot of the
inverse weighting functions and of the three obtained complementary filters (b)

Standard H∞-synthesis is performed on the generalized plant P3(s). Two filters, H2(s) and H3(s), are
obtained such that the H∞ norm of the closed-loop transfer from w to [z1, z2, z3] of the system in
Figure 1.11a is less than one. Filter H1(s) is defined using (1.19), thus ensuring the complementary
property of the obtained set of filters.

H1(s) ≜ 1−
[
H2(s) +H3(s)

]
(1.19)

Figure 1.11b displays the three synthesized complementary filters (solid lines), confirming the successful
synthesis.

Conclusion

A new method for designing complementary filters using the H∞-synthesis has been proposed. This
approach allows shaping of the filter magnitudes through the use of weighting functions during synthesis.
This capability is particularly valuable in practice since the characteristics of the super sensor are directly
linked to the complementary filters’ magnitude. Consequently, typical sensor fusion objectives can be
effectively translated into requirements on the magnitudes of the filters.

For the NASS, the HAC-LAC strategy was found to perform well and to offer the advantages of being
both intuitive to understand and straightforward to tune. Looking forward, it would be interesting to
investigate how sensor fusion (particularly between the force sensors and external metrology) compares
to the HAC-IFF approach in terms of performance and robustness.
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2 Decoupling

The control of parallel manipulators (and any MIMO system in general) typically involves a two-
step approach: first decoupling the plant dynamics (using various strategies discussed in this section),
followed by the application of SISO control for the decoupled plant (discussed in section 3).

When sensors are integrated within the struts, decentralized control may be applied, as the system is
already well decoupled at low frequency. For instance, [37] implemented a system where each strut
consists of piezoelectric stack actuators and eddy current displacement sensors, with separate PI con-
trollers for each strut. A similar control architecture was proposed in [38] using strain gauge sensors
integrated in each strut.

An alternative strategy involves decoupling the system in the Cartesian frame using Jacobian matrices.
As demonstrated during the study of Stewart platform kinematics, Jacobian matrices can be utilized
to map actuator forces to forces and torques applied on the top platform. This approach enables the
implementation of controllers in a defined frame. It has been applied with various sensor types including
force sensors [39], relative displacement sensors [40], and inertial sensors [1], [41]. The Cartesian frame
in which the system is decoupled is typically chosen at the point of interest (i.e., where the motion is
of interest) or at the center of mass.

Modal decoupling represents another noteworthy decoupling strategy, wherein the “local” plant inputs
and outputs are mapped to the modal space. In this approach, multiple SISO plants, each corresponding
to a single mode, can be controlled independently. This decoupling strategy has been implemented for
active damping applications [42], which is logical as it is often desirable to dampen specific modes. The
strategy has also been employed in [43] for vibration isolation purposes using geophones, and in [9]
using force sensors.

Another completely different strategy would be to implement a multivariable control directly on the
coupled system. H∞ and µ-synthesis were applied to a Stewart platform model in [44]. In [4], de-
centralized force feedback was first applied, followed by H2-synthesis for vibration isolation based on
accelerometers. H∞-synthesis was also employed in [45] for active damping based on accelerometers.
A comparative study between H∞-synthesis and decentralized control in the frame of the struts was
performed in [8]. Their experimental closed-loop results indicated that the H∞ controller did not out-
perform the decentralized controller in the frame of the struts. These limitations were attributed to the
model’s poor ability to predict off-diagonal dynamics, which is crucial for H∞-synthesis.

The purpose of this section is to compare several methods for the decoupling of parallel manipulators,
an analysis that appears to be lacking in the literature. A simplified parallel manipulator model is
introduced in Section 2.1 as a test case for evaluating decoupling strategies. The decentralized plant
(transfer functions from actuators to sensors integrated in the struts) is examined in Section 2.2. Three
approaches are investigated across subsequent sections: Jacobian matrix decoupling (Section 2.3), modal
decoupling (Section 2.4), and Singular Value Decomposition (SVD) decoupling (Section 2.5). Finally,
a comparative analysis with concluding observations is provided in Section 2.6.
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2.1 Test Model

Instead of utilizing the Stewart platform for comparing decoupling strategies, a simplified parallel
manipulator is employed to facilitate a more straightforward analysis. The system illustrated in Figure
2.1 is used for this purpose. It possesses three degrees of freedom (DoF) and incorporates three parallel
struts. Being a fully parallel manipulator, it is therefore quite similar to the Stewart platform.

Two reference frames are defined within this model: frame {M} with origin OM at the center of mass
of the solid body, and frame {K} with origin OK at the center of stiffness of the parallel manipulator.

Figure 2.1: Model used to compare decoupling strategies

Description Value

la 0.5m
ha 0.2m
k Actuator stiffness 10N/µm
c Actuator damping 200Ns/m
m Payload mass 40 kg
I Payload Rz inertia 5 kgm2

Table 2.1: Model parameters

The equations of motion are derived by applying Newton’s second law to the suspended mass, expressed
at its center of mass (2.1), where X {M} represents the two translations and one rotation with respect
to the center of mass, and F{M} denotes the forces and torque applied at the center of mass.

M{M}Ẍ {M}(t) =
∑

F{M}(t), X {M} =

 x
y
Rz

 , F{M} =

Fx

Fy

Mz

 (2.1)

The Jacobian matrix J{M} is employed to map the spring, damping, and actuator forces to XY forces
and Z torque expressed at the center of mass (2.2).

J{M} =

1 0 ha

0 1 −la
0 1 la

 (2.2)

Subsequently, the equation of motion relating the actuator forces τ to the motion of the mass X {M} is
derived (2.3).

M{M}Ẍ {M}(t) + J⊺
{M}CJ{M}Ẋ {M}(t) + J⊺

{M}KJ{M}X {M}(t) = J⊺
{M}τ (t) (2.3)

The matrices representing the payload inertia, actuator stiffness, and damping are shown in (2.4).
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M{M} =

m 0 0
0 m 0
0 0 I

 , K =

k 0 0
0 k 0
0 0 k

 , C =

c 0 0
0 c 0
0 0 c

 (2.4)

The parameters employed for the subsequent analysis are summarized in Table 2.1, which includes
values for geometric parameters (la, ha), mechanical properties (actuator stiffness k and damping c),
and inertial characteristics (payload mass m and rotational inertia I).

2.2 Control in the frame of the struts

The dynamics in the frame of the struts are first examined. The equation of motion relating actuator
forces τ to strut relative motion L is derived from equation (2.3) by mapping the Cartesian motion
of the mass to the relative motion of the struts using the Jacobian matrix J{M} defined in (2.2). The
obtained transfer function from τ to L is shown in (2.5).

L
τ
(s) = GL(s) =

(
J−⊺
{M}M{M}J

−1
{M}s

2 + Cs+K
)−1

(2.5)

At low frequencies, the plant converges to a diagonal constant matrix whose diagonal elements are equal
to the actuator stiffnesses (2.6). At high frequencies, the plant converges to the mass matrix mapped
in the frame of the struts, which is generally highly non-diagonal.

GL(jω) −−−→
ω→0

K−1 (2.6)

The magnitude of the coupled plant GL is illustrated in Figure 2.2. This representation confirms that
at low frequencies (below the first suspension mode), the plant is well decoupled. Depending on the
symmetry present in the system, certain diagonal elements may exhibit identical values, as demonstrated
for struts 2 and 3 in this example.

2.3 Jacobian Decoupling

Jacobian Matrix The Jacobian matrix J{O} serves a dual purpose in the decoupling process: it

converts strut velocity L̇ to payload velocity and angular velocity Ẋ {O}, and it transforms actuator
forces τ to forces/torque applied on the payload F{O}, as expressed in equation (2.7).

Ẋ {O} = J{O}L̇, L̇ = J−1
{O}Ẋ {O} (2.7a)

F{O} = J⊺
{O}τ , τ = J−⊺

{O}F{O} (2.7b)

The resulting plant (Figure 2.3) have inputs and outputs with clear physical interpretations:

• F{O} represents forces/torques applied on the payload at the origin of frame {O}
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Figure 2.2: Model dynamics from actuator forces to relative displacement sensor of each strut.

• X {O} represents translations/rotation of the payload expressed in frame {O}

G{O}

G{L}J−⊺
{O} J−1

{O}
F{O} τ L X {O}

Figure 2.3: Block diagram of the transfer function from F{O} to X {O}

The transfer function from F{O} to X {O}, denoted G{O}(s) can be computed using (2.8).

X {O}

F{O}
(s) = G{O}(s) =

(
J⊺
{O}J

−⊺
{M}M{M}J

−1
{M}J{O}s

2 + J⊺
{O}CJ{O}s+ J⊺

{O}KJ{O}

)−1

(2.8)

The frame {O} can be selected according to specific requirements, but the decoupling properties are
significantly influenced by this choice. Two natural reference frames are particularly relevant: the center
of mass and the center of stiffness.

Center Of Mass When the decoupling frame is located at the center of mass (frame {M} in Figure
2.1), the Jacobian matrix and its inverse are expressed as in (2.9).

J{M} =

1 0 ha

0 1 −la
0 1 la

 , J−1
{M} =

1 ha

2la
−ha

2la
0 1

2
1
2

0 −1
2la

1
2la

 (2.9)

Analytical formula of the plant G{M}(s) is derived (2.10).
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X {M}

F{M}
(s) = G{M}(s) =

(
M{M}s

2 + J⊺
{M}CJ{M}s+ J⊺

{M}KJ{M}

)−1

(2.10)

At high frequencies, the plant converges to the inverse of the mass matrix, which is a diagonal matrix
(2.11).

G{M}(jω) −−−−→
ω→∞

−ω2M−1
{M} = −ω2

1/m 0 0
0 1/m 0
0 0 1/I

 (2.11)

Consequently, the plant exhibits effective decoupling at frequencies above the highest suspension mode
as shown in Figure 2.4a. This strategy is typically employed in systems with low-frequency suspension
modes [46], where the plant approximates decoupled mass lines.

The low-frequency coupling observed in this configuration has a clear physical interpretation. When a
static force is applied at the center of mass, the suspended mass rotates around the center of stiffness.
This rotation is due to torque induced by the stiffness of the first actuator (i.e. the one on the left side),
which is not aligned with the force application point. This phenomenon is illustrated in Figure 2.4b.

100 101 102 103

Frequency [Hz]

10!10

10!8

10!6

10!4

M
a
g
n
it
u
d
e

Dx;fMg=Mz;fMg
Rz;fMg=Fx;fMg
Dx;fMg=Fx;fMg
Dy;fMg=Fy;fMg
Rz;fMg=Mz;fMg

(a) Dynamics at the CoM (b) Static force applied at the CoM

Figure 2.4: Plant decoupled using the Jacobian matrix expresssed at the center of mass (a). The
physical reason for low frequency coupling is illustrated in (b).

Center Of Stiffness When the decoupling frame is located at the center of stiffness, the Jacobian
matrix and its inverse are expressed as in (2.12).

J{K} =

1 0 0
0 1 −la
0 1 la

 , J−1
{K} =

1 0 0
0 1

2
1
2

0 −1
2la

1
2la

 (2.12)

The frame {K} was selected based on physical reasoning, positioned in line with the side strut and
equidistant between the two vertical struts. However, it could alternatively be determined through
analytical methods to ensure that J⊺

{K}KJ{K} forms a diagonal matrix. It should be noted that the
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existence of such a center of stiffness (i.e. a frame {K} for which J⊺
{K}KJ{K} is diagonal) is not

guaranteed for arbitrary systems. This property is typically achievable only in systems exhibiting
specific symmetrical characteristics, as is the case in the present example.

The analytical expression for the plant in this configuration was then computed (2.13).

X {K}

F{K}
(s) = G{K}(s) =

(
J⊺
{K}J

−⊺
{M}M{M}J

−1
{M}J{K}s

2 + J⊺
{K}CJ{K}s+ J⊺

{K}KJ{K}

)−1

(2.13)

Figure 2.5 presents the dynamics of the plant when decoupled using the Jacobian matrix expressed at
the center of stiffness. The plant is well decoupled below the suspension mode with the lowest frequency
(2.14), making it particularly suitable for systems with high stiffness.

G{K}(jω) −−−→
ω→0

J−1
{K}K

−1J−⊺
{K} (2.14)

The physical reason for high-frequency coupling is illustrated in Figure 2.5b. When a high-frequency
force is applied at a point not aligned with the center of mass, it induces rotation around the center of
mass.
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Figure 2.5: Plant decoupled using the Jacobian matrix expresssed at the center of stiffness (a). The
physical reason for high frequency coupling is illustrated in (b).

2.4 Modal Decoupling

Modal decoupling represents an approach based on the principle that a mechanical system’s behavior
can be understood as a combination of contributions from various modes [47]. To convert the dynamics
in the modal space, the equation of motion are first written with respect to the center of mass (2.15).

M{M}Ẍ {M}(t) +C{M}Ẋ {M}(t) +K{M}X {M}(t) = J⊺
{M}τ (t) (2.15)
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For modal decoupling, a change of variables is introduced (2.16) where Xm represents the modal
amplitudes and Φ is a n × n1 matrix whose columns correspond to the mode shapes of the system,
computed from M{M} and K{M}.

X {M} = ΦXm (2.16)

By pre-multiplying equation (2.15) by Φ⊺ and applying the change of variable (2.16), a new set of
equations of motion is obtained (2.17) where τm represents the modal input, while Mm, Cm, and Km

denote the modal mass, damping, and stiffness matrices respectively.

Φ⊺MΦ︸ ︷︷ ︸
Mm

Ẍm(t) +Φ⊺CΦ︸ ︷︷ ︸
Cm

Ẋm(t) +Φ⊺KΦ︸ ︷︷ ︸
Km

Xm(t) = Φ⊺J⊺τ (t)︸ ︷︷ ︸
τm(t)

(2.17)

The inherent mathematical structure of the mass, damping, and stiffness matrices [48, chapt. 8] ensures
that modal matrices are diagonal [49, chapt. 2.3]. This diagonalization transforms equation (2.17) into
a set of n decoupled equations, enabling independent control of each mode without cross-interaction.

To implement this approach from a decentralized plant, the architecture shown in Figure 2.6 is employed.
Inputs of the decoupling plant are the modal modal inputs τm and the outputs are the modal amplitudes
Xm. This implementation requires knowledge of the system’s equations of motion, from which the mode
shapes matrixΦ is derived. The resulting decoupled system features diagonal elements each representing
second-order resonant systems that are straightforward to control individually.

Gm

G{L}J−⊺
{M}Φ−⊺ J−1

{M} Φ−1
τm

F{M} τ L X {M} X m

Figure 2.6: Modal Decoupling Architecture

Modal decoupling was then applied to the test model. First, the eigenvectors Φ of M−1
{M}K{M} were

computed (2.18). While analytical derivation of eigenvectors could be obtained for such a simple system,
they are typically computed numerically for practical applications.

Φ =

 I−h2
am−2l2am−α
2ham

0
I−h2

am−2l2am+α
2ham

0 1 0
1 0 1

 , α =

√
(I +m(h2

a − 2l2a))
2
+ 8m2h2

al
2
a (2.18)

The numerical values for the eigenvector matrix and its inverse are shown in (2.19).

Φ =

−0.905 0 −0.058
0 1 0

0.424 0 −0.998

 , Φ−1 =

−1.075 0 0.063
0 1 0

−0.457 0 −0.975

 (2.19)

The two computed matrices were implemented in the control architecture of Figure 2.6, resulting in three
distinct second order plants as depicted in Figure 2.7a. Each of these diagonal elements corresponds to
a specific mode, as shown in Figure 2.7b, resulting in a perfectly decoupled system.

1n corresponds to the number of degrees of freedom, here n = 3
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Figure 2.7: Plant using modal decoupling consists of second order plants (a) which can be used to
invidiually address different modes illustrated in (b)

2.5 SVD Decoupling

Singular Value Decomposition Singular Value Decomposition (SVD) represents a powerful mathe-
matical tool with extensive applications in data analysis [50, chapt. 1] and multivariable control systems
where it is particularly valuable for analyzing directional properties in multivariable systems [36].

The SVD constitutes a unique matrix decomposition applicable to any complex matrix X ∈ Cn×m,
expressed as:

X = UΣV H (2.20)

where U ∈ Cn×n and V ∈ Cm×m are unitary matrices with orthonormal columns, and Σ ∈ Rn×n is a
diagonal matrix with real, non-negative entries. For real matrices X, the resulting U and V matrices
are also real, making them suitable for decoupling applications.

Decoupling using the SVD The procedure for SVD-based decoupling begins with identifying the
system dynamics from inputs to outputs, typically represented as a Frequency Response Function
(FRF), which yields a complex matrix G(ωi) for multiple frequency points ωi. A specific frequency
is then selected for optimal decoupling, with the targeted crossover frequency ωc often serving as an
appropriate choice.

Since real matrices are required for the decoupling transformation, a real approximation of the complex
measured response at the selected frequency must be computed. In this work, the method proposed in
[51] was used as it preserves maximal orthogonality in the directional properties of the input complex
matrix.

Following this approximation, a real matrix G̃(ωc) is obtained, and SVD is performed on this matrix.
The resulting (real) unitary matrices U and V are structured such that V −⊺G̃(ωc)U

−1 forms a diagonal

23



matrix. These singular input and output matrices are then applied to decouple the system as illustrated
in Figure 2.8, and the decoupled plant is described by (2.21).

GSVD(s) = U−1G{L}(s)V
−⊺ (2.21)

GSVD

G{L}V −⊺ U−1u τ L y

Figure 2.8: Decoupled plant GSVD using the Singular Value Decomposition

Implementation of SVD decoupling requires access to the system’s FRF, at least in the vicinity of
the desired decoupling frequency. This information can be obtained either experimentally or derived
from a model. While this approach ensures effective decoupling near the chosen frequency, it provides
no guarantees regarding decoupling performance away from this frequency. Furthermore, the quality
of decoupling depends significantly on the accuracy of the real approximation, potentially limiting its
effectiveness for plants with high damping.

Example Plant decoupling using the Singular Value Decomposition was then applied on the test model.
A decoupling frequency of 100Hz was used. The plant response at that frequency, as well as its real
approximation and the obtained U and V matrices are shown in (2.22).

G{L}(ωc = 2π · 100) = 10−9

−99− j2.6 74 + j4.2 −74− j4.2
74 + j4.2 −247− j9.7 102 + j7.0
−74− j4.2 102 + j7.0 −247− j9.7


real−−−−−−−−−→

approximation
G̃{L}(ωc) = 10−9

−99 74 −74
74 −247 102
−74 102 −247


−−−−−−−−−→

SVD
U =

 0.34 0 0.94
−0.66 0.71 0.24
0.66 0.71 −0.24

 , V =

−0.34 0 −0.94
0.66 −0.71 −0.24
−0.66 −0.71 0.24


(2.22)

Using these U and V matrices, the decoupled plant is computed according to equation (2.21). The
resulting plant, depicted in Figure 2.9, exhibits remarkable decoupling across a broad frequency range,
extending well beyond the vicinity of ωc. Additionally, the diagonal terms manifest as second-order
dynamic systems, facilitating straightforward controller design.

As it was surprising to obtain such a good decoupling at all frequencies, a variant system with identical
dynamics but different sensor configurations was examined. Instead of using relative motion sensors
collocated with the struts, three relative motion sensors were positioned as shown in Figure 2.10a.
Although Jacobian matrices could theoretically be used to map these sensors to the frame of the struts,
application of the same SVD decoupling procedure yielded the plant response shown in Figure 2.10b,
which exhibits significantly greater coupling. Notably, the coupling demonstrates local minima near the
decoupling frequency, consistent with the fact that the decoupling matrices were derived specifically for
that frequency point.
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Figure 2.9: Plant dynamics GSVD(s) obtained after decoupling using Singular Value Decomposition

(a) Alternative location of sensors
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(b) Obtained decoupled plant

Figure 2.10: Application of SVD decoupling on a system schematically shown in (a). The obtained
decoupled plant is shown in (b).
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The exceptional performance of SVD decoupling on the plant with collocated sensors warrants fur-
ther investigation. This effectiveness may be attributed to the symmetrical properties of the plant,
as evidenced in the Bode plots of the decentralized plant shown in Figure 2.2. The phenomenon po-
tentially relates to previous research on SVD controllers applied to systems with specific symmetrical
characteristics [52].

2.6 Comparison of decoupling strategies

While the three proposed decoupling methods may appear similar in their mathematical implementation
(each involving pre-multiplication and post-multiplication of the plant with constant matrices), they
differ significantly in their underlying approaches and practical implications, as summarized in Table
2.2.

Each method employs a distinct conceptual framework: Jacobian decoupling is “topology-driven”,
relying on the geometric configuration of the system; modal decoupling is “physics-driven”, based on
the system’s dynamical equations; and SVD decoupling is “data-driven”, utilizing measured frequency
response functions.

The physical interpretation of decoupled plant inputs and outputs varies considerably among these
methods. With Jacobian decoupling, inputs and outputs retain clear physical meaning, corresponding
to forces/torques and translations/rotations in a specified reference frame. Modal decoupling arranges
inputs to excite individual modes, with outputs combined to measure these modes separately. For SVD
decoupling, inputs and outputs represent special directions ordered by decreasing controllability and
observability at the chosen frequency, though physical interpretation becomes challenging for parallel
manipulators.

This difference in interpretation relates directly to the “control space” in which the controllers operate.
When these “control spaces” meaningfully relate to the control objectives, controllers can be tuned
to directly match specific requirements. For Jacobian decoupling, the controller typically operates in
a frame positioned at the point where motion needs to be controlled, for instance where the light
is focused in the NASS application. Modal decoupling provides a natural framework when specific
vibrational modes require targeted control. SVD decoupling generally results in a loss of physical
meaning for the “control space”, potentially complicating the process of relating controller design to
practical system requirements.

The quality of decoupling achieved through these methods also exhibits distinct characteristics. Jaco-
bian decoupling performance depends on the chosen reference frame, with optimal decoupling at low
frequencies when aligned at the center of stiffness, or at high frequencies when aligned with the center of
mass. Systems designed with coincident centers of mass and stiffness may achieve excellent decoupling
using this approach. Modal decoupling offers good decoupling across all frequencies, though its effec-
tiveness relies on the model accuracy, with discrepancies potentially resulting in significant off-diagonal
elements. SVD decoupling can be implemented using measured data without requiring a model, with
optimal performance near the chosen decoupling frequency, though its effectiveness may diminish at
other frequencies and depends on the quality of the real approximation of the response at the selected
frequency point.
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Table 2.2: Comparison of decoupling strategies

Jacobian Modal SVD

Philosophy Topology Driven Physics Driven Data Driven

Requirements Known geometry Known equations of motion Identified FRF

Decoupling Matrices Jacobian matrix J{O} Eigenvectors Φ SVD matrices U and V

Decoupled Plant G{O}(s) = J−1
{O}GL(s)J−⊺

{O} Gm(s) = Φ−1GX (s)Φ−⊺ GSVD(s) = U−1G(s)V −⊺

Controller K{O}(s) = J−⊺
{O}Kd(s)J

−1
{O} Km(s) = Φ−⊺Kd(s)Φ

−1 KSVD(s) = V −⊺Kd(s)U
−1

Interpretation Forces/Torques to Displace-
ment/Rotation in chosen
frame

Inputs (resp. outputs) to ex-
cite (resp. sense) individual
modes

Directions of max to min con-
trollability/observability

Effectiveness Decoupling at low or high fre-
quency depending on the cho-
sen frame

Good decoupling at all fre-
quencies

Good decoupling near the cho-
sen frequency

Pros Retain physical meaning of in-
puts / outputs. Controller acts
on a meaningfully “frame”

Ability to target specific
modes. Simple 2nd order
diagonal plants

Good Decoupling near the
crossover. Very General and
requires no model

Cons Good decoupling at all fre-
quency can only be obtained
for specific mechanical archi-
tecture

Relies on the accuracy of equa-
tion of motions. Robustness to
unmodelled dynamics may be
poor

Loss of physical meaning of
inputs /outputs. Decoupling
away from the chosen fre-
quency may be poor
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3 Closed-Loop Shaping using Complementary
Filters

Once the system is properly decoupled using one of the approaches described in Section 2, SISO con-
trollers can be individually tuned for each decoupled “directions”. Several ways to design a controller
to obtain a given performance while ensuring good robustness properties can be implemented.

In some cases “fixed” controller structures are utilized, such as PI and PID controllers, whose parameters
are manually tuned [9], [37], [38].

Another popular method is Open-Loop shaping, which was used during the conceptual phase. Open-
loop shaping involves tuning the controller through a series of “standard” filters (leads, lags, notches,
low-pass filters, . . . ) to shape the open-loop transfer function G(s)K(s) according to desired specifi-
cations, including bandwidth, gain and phase margins [53, chapt. 4.4.7]. Open-Loop shaping is very
popular because the open-loop transfer function is a linear function of the controller, making it rela-
tively straightforward to tune the controller to achieve desired open-loop characteristics. Another key
advantage is that controllers can be tuned directly from measured frequency response functions of the
plant without requiring an explicit model.

However, the behavior (i.e. performance) of a feedback system is a function of closed-loop transfer
functions. Specifications can therefore be expressed in terms of the magnitude of closed-loop transfer
functions, such as the sensitivity, plant sensitivity, and complementary sensitivity transfer functions [36,
chapt. 3]. With open-loop shaping, closed-loop transfer functions are changed only indirectly, which
may make it difficult to directly address the specifications that are in terms of the closed-loop transfer
functions.

In order to synthesize a controller that directly shapes the closed-loop transfer functions (and therefore
the performance metric), H∞-synthesis may be used [36]. This approach requires a good model of
the plant and expertise in selecting weighting functions that will define the wanted shape of different
closed-loop transfer functions [54]. H∞-synthesis has been applied for the Stewart platform [45], yet
when benchmarked against more basic decentralized controllers, the performance gains proved small
[5], [8].

In this section, an alternative controller synthesis scheme is proposed in which complementary filters
are used for directly shaping the closed-loop transfer functions (i.e., directly addressing the closed-loop
performances). In Section 3.1, the proposed control architecture is presented. In Section 3.2, typical
performance requirements are translated into the shape of the complementary filters. The design of
the complementary filters is briefly discussed in Section 3.3, and analytical formulas are proposed such
that it is possible to change the closed-loop behavior of the system in real time. Finally, in Section
3.4, a numerical example is used to show how the proposed control architecture can be implemented in
practice.
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3.1 Control Architecture

Virtual Sensor Fusion The idea of using complementary filters in the control architecture originates
from sensor fusion techniques [18], where two sensors are combined using complementary filters. Build-
ing upon this concept, “virtual sensor fusion” [55] replaces one physical sensor with a model G of the
plant. The corresponding control architecture is illustrated in Figure 3.1a, where G′ represents the
physical plant to be controlled, G is a model of the plant, k is the controller, and HL and HH are com-
plementary filters satisfying HL(s) +HH(s) = 1. In this arrangement, the physical plant is controlled
at low frequencies, while the plant model is utilized at high frequencies to enhance robustness.

RT controller

+
−

k G′ +

G

HH

+ HL +

u

n

yr

ym

dy

(a) Virtual Sensor Fusion

RT controller

+
−

+
−

k G′ +

GHH

HL +

u

n

yr

ym

dy

(b) Equivalent Architecture

Figure 3.1: Control architecture for virtual sensor fusion (a). An equivalent architecture is shown in
(b). The signals are the reference signal r, the output perturbation dy, the measurement
noise n and the control input u.

Although the control architecture shown in Figure 3.1a appears to be a multi-loop system, it should be
noted that no non-linear saturation-type elements are present in the inner loop (containing k, G, and
HH , all numerically implemented). Consequently, this structure is mathematically equivalent to the
single-loop architecture illustrated in Figure 3.1b.

Asymptotic behavior When considering the extreme case of very high values for k, the effective
controller K(s) converges to the inverse of the plant model multiplied by the inverse of the high-pass
filter, as expressed in (3.1).

lim
k→∞

K(s) = lim
k→∞

k

1 +HH(s)G(s)k
=

(
HH(s)G(s)

)−1
(3.1)

If the resulting K is improper, a low-pass filter with sufficiently high corner frequency can be added to
ensure its causal realization. Furthermore, for K to be stable, both G and HH must be minimum phase
transfer functions.

With these assumptions, the resulting control architecture is illustrated in Figure 3.2, where the com-
plementary filters HL and HH remain the only tuning parameters. The dynamics of this closed-loop
system are described by equations (3.2a) and (3.2a).
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Figure 3.2: Equivalent classical feedback control architecture

y =
HHdy +G′G−1r −G′G−1HLn

HH +G′G−1HL
(3.2a)

u =
−G−1HLdy +G−1r −G−1HLn

HH +G′G−1HL
(3.2b)

At frequencies where the model accurately represents the physical plant (G−1G′ ≈ 1), the denominator
simplifies to HH +G′G−1HL ≈ HH +HL = 1, and the closed-loop transfer functions are then described
by equations (3.3a) and (3.3b).

y = HHdy + r −HLn (3.3a)

u = −G−1HLdy +G−1r −G−1HLn (3.3b)

The sensitivity transfer function equals the high-pass filter S = y
dy = HH , and the complementary

sensitivity transfer function equals the low-pass filter T = y
n = HL. Hence, when the plant model

closely approximates the actual dynamics, the closed-loop transfer functions converge to the designed
complementary filters, allowing direct translation of performance requirements into the design of the
complementary.

3.2 Translating the performance requirements into the shape of the
complementary filters

Performance specifications in a feedback system can usually be expressed as upper bounds on the
magnitudes of closed-loop transfer functions such as the sensitivity and complementary sensitivity
transfer functions [54]. The design of a controller K(s) to obtain the desired shape of these closed-loop
transfer functions is known as closed-loop shaping.

In the proposed control architecture, the closed-loop transfer functions (3.2) are expressed in terms of the
complementary filters HL(s) and HH(s) rather than directly through the controller K(s). Therefore,
performance requirements must be translated into constraints on the shape of these complementary
filters.

Nominal Stability (NS) A closed-loop system is stable when all its elements (here K, G′, and HL)
are stable and the sensitivity function S = 1

1+G′KHL
is stable. For the nominal system (G′ = G), the

sensitivity transfer function equals the high-pass filter: S(s) = HH(s).
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Nominal stability is therefore guaranteed when HL, HH , and G are stable, and both G and HH are
minimum phase (ensuring K is stable). Consequently, stable and minimum phase complementary filters
must be employed.

Nominal Performance (NP) Performance specifications can be formalized using weighting functions
wH and wL, where performance is achieved when (3.4) is satisfied. The weighting functions define
the maximum magnitude of the closed-loop transfer functions as a function of frequency, effectively
determining their “shape”.

|wH(jω)S(jω)| ≤ 1 ∀ω (3.4a)

|wL(jω)T (jω)| ≤ 1 ∀ω (3.4b)

For the nominal system, S = HH and T = HL, hence the performance specifications can be converted
on the shape of the complementary filters (3.5).

NP ⇐⇒

{
|wH(jω)HH(jω)| ≤ 1 ∀ω
|wL(jω)HL(jω)| ≤ 1 ∀ω

(3.5)

For disturbance rejection, the magnitude of the sensitivity function |S(jω)| = |HH(jω)| should be
minimized, particularly at low frequencies where disturbances are usually most prominent. Similarly,
for noise attenuation, the magnitude of the complementary sensitivity function |T (jω)| = |HL(jω)|
should be minimized, especially at high frequencies where measurement noise typically dominates.
Classical stability margins (gain and phase margins) are also related to the maximum amplitude of the
sensitivity transfer function. Typically, maintaining |S|∞ ≤ 2 ensures a gain margin of at least 2 and a
phase margin of at least 29◦.

Therefore, by carefully selecting the shape of the complementary filters, nominal performance specifi-
cations can be directly addressed in an intuitive manner.

Robust Stability (RS) Robust stability refers to a control system’s ability to maintain stability de-
spite discrepancies between the actual system G′ and the model G used for controller design. These
discrepancies may arise from unmodeled dynamics or nonlinearities.

To represent these model-plant differences, input multiplicative uncertainty as illustrated in Figure 3.3a
is employed. The set of possible plants Πi is described by (3.6), with the weighting function wI selected
such that all possible plants G′ are contained within the set Πi.

Πi : G′(s) = G(s)
(
1 + wI(s)∆I(s)

)
; |∆I(jω)| ≤ 1 ∀ω (3.6)

When considering input multiplicative uncertainty, robust stability can be derived graphically from the
Nyquist plot (illustrated in Figure 3.3b), yielding to (3.7), as demonstrated in [36, chapt. 7.5.1].

RS ⇐⇒ |wI(jω)L(jω)| ≤ |1 + L(jω)| ∀ω (3.7)
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G′

G+

∆IwI

(a) Input multiplicative uncertainty

ReIm

(b) Nyquist plot - Effect of multiplicative uncertainty

Figure 3.3: Input multiplicative uncertainty to model the differences between the model and the phys-
ical plant (a). Effect of this uncertainty is displayed on the Nyquist plot (b)

After algebraic manipulation, robust stability is guaranteed when the low-pass complementary filter HL

satisfies (3.8).

RS ⇐⇒ |wI(jω)HL(jω)| ≤ 1 ∀ω (3.8)

Robust Performance (RP) Robust performance ensures that performance specifications (3.4) are met
even when the plant dynamics fluctuates within specified bounds (3.9).

RP ⇐⇒ |wH(jω)S(jω)| ≤ 1 ∀G′ ∈ ΠI , ∀ω (3.9)

Transforming this condition into constraints on the complementary filters yields:

RP ⇐⇒ |wH(jω)HH(jω)|+ |wI(jω)HL(jω)| ≤ 1, ∀ω (3.10)

The robust performance condition effectively combines both nominal performance (3.5) and robust
stability conditions (3.8). If both NP and RS conditions are satisfied, robust performance will be
achieved within a factor of 2 [36, chapt. 7.6]. Therefore, for SISO systems, ensuring robust stability
and nominal performance is typically sufficient.

3.3 Complementary filter design

As proposed in Section 1, complementary filters can be shaped using standard H∞-synthesis tech-
niques. This approach is particularly well-suited since performance requirements were expressed as
upper bounds on the magnitude of the complementary filters.

Alternatively, analytical formulas for complementary filters may be employed. For some applications,
first-order complementary filters as shown in Equation (3.11) are sufficient.
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HL(s) =
1

1 + s/ω0
(3.11a)

HH(s) =
s/ω0

1 + s/ω0
(3.11b)

These filters can be transformed into the digital domain using the Bilinear transformation, resulting in
the digital filter representations shown in Equation (3.12).

HL(z
−1) =

Tsω0 + Tsω0z
−1

Tsω0 + 2 + (Tsω0 − 2)z−1
(3.12a)

HH(z−1) =
2− 2z−1

Tsω0 + 2 + (Tsω0 − 2)z−1
(3.12b)

A significant advantage of using analytical formulas for complementary filters is that key parameters
such as ω0 can be tuned in real-time, as illustrated in Figure 3.4. This real-time tunability allows rapid
testing of different control bandwidths to evaluate performance and robustness characteristics.

RT controller

+
−

H−1
H G−1 G′ +

+HL

•ω0

u

n

yr
dy

Figure 3.4: Implemented digital complementary filters with parameter ω0 that can be changed in real
time

For many practical applications, first order complementary filters are not sufficient. Specifically, a slope
of +2 at low frequencies for the sensitivity transfer function (enabling accurate tracking of ramp inputs)
and a slope of −2 for the complementary sensitivity transfer function are often desired. For these cases,
the complementary filters analytical formula in Equation (3.13) is proposed.

HL(s) =
(1 + α)( s

ω0
) + 1(

( s
ω0

) + 1
)(

( s
ω0

)2 + α( s
ω0

) + 1
) (3.13a)

HH(s) =
( s
ω0

)2
(
( s
ω0

) + 1 + α
)

(
( s
ω0

) + 1
)(

( s
ω0

)2 + α( s
ω0

) + 1
) (3.13b)

The influence of parameters α and ω0 on the frequency response of these complementary filters is
illustrated in Figure 3.5. The parameter α primarily affects the damping characteristics near the
crossover frequency as well as high and low frequency magnitudes, while ω0 determines the frequency
at which the transition between high-pass and low-pass behavior occurs. These filters can also be
implemented in the digital domain with analytical formulas, preserving the ability to adjust α and ω0

in real-time.
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Figure 3.5: Shape of proposed analytical complementary filters. Effect of α (a) and ω0 (b) are shown.

3.4 Numerical Example

To implement the proposed control architecture in practice, the following procedure is proposed:

1. Identify the plant to be controlled to obtain the plant model G.

2. Design the weighting function wI such that all possible plants G′ are contained within the uncer-
tainty set Πi.

3. Translate performance requirements into upper bounds on the complementary filters as explained
in Section 3.2.

4. Design the weighting functions wH and wL and generate the complementary filters usingH∞-synthesis
as described in Section 1.3. If the synthesis fails to produce filters satisfying the defined upper
bounds, either revise the requirements or develop a more accurate model G that will allow for
a smaller wI . For simpler cases, the analytical formulas for complementary filters presented in
Section 3.3 can be employed.

5. IfK(s) = H−1
H (s)G−1(s) is not proper, add low-pass filters with sufficiently high corner frequencies

to ensure realizability.

To evaluate this control architecture, a simple test model representative of many synchrotron positioning
stages is utilized (Figure 3.6a). In this model, a payload with mass m is positioned on top of a stage.
The objective is to accurately position the sample relative to the X-ray beam.

The relative position y between the payload and the X-ray is measured, which typically involves mea-
suring the relative position between the focusing optics and the sample. Various disturbance forces
affect positioning stability, including stage vibrations dw and direct forces applied to the sample dF
(such as cable forces). The positioning stage itself is characterized by stiffness k, internal damping c,
and a controllable force F .

The model of the plant G(s) from actuator force F to displacement y is described by Equation (3.14).
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G(s) =
1

ms2 + cs+ k
, m = 20 kg, k = 1N/µm, c = 102N/(m/s) (3.14)

The plant dynamics include uncertainties related to limited support compliance, unmodeled flexible
dynamics and payload dynamics. These uncertainties are represented using a multiplicative input
uncertainty weight (3.15), which specifies the magnitude of uncertainty as a function of frequency.

wI(s) = 10 · (s+ 100)2

(s+ 1000)2
(3.15)

Figure 3.6b illustrates both the nominal plant dynamics and the complete set of possible plants Πi

encompassed by the uncertainty model.
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Figure 3.6: Schematic of the test system (a). Bode plot of the transfer function G(s) from F to y and
the associated uncertainty set (b).

Requirements and choice of complementary filters As discussed in Section 3.2, nominal performance
requirements can be expressed as upper bounds on the shape of the complementary filters. For this
example, the requirements are:

• track ramp inputs (i.e. constant velocity scans) with zero steady-state error: a +2 slope at low
frequencies for the magnitude of the sensitivity function |S(jω)| is required

• filtering of measurement noise above 300Hz, where sensor noise is significant (requiring a filtering
factor of approximately 100 above this frequency)

• maximizing disturbance rejection

Additionally, robust stability must be ensured, requiring the closed-loop system to remain stable despite
the dynamic uncertainties modeled by wI . This condition is satisfied when the magnitude of the low-
pass complementary filter |HL(jω)| remains below the inverse of the uncertainty weight magnitude
|wI(jω)|, as expressed in Equation (3.8).
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Robust performance is achieved when both nominal performance and robust stability conditions are
simultaneously satisfied.

All requirements imposed on HL and HH are visualized in Figure 3.7a. While H∞-synthesis could be
employed to design the complementary filters, analytical formulas were used for this relatively simple
example. The second-order complementary filters from Equation (3.13) were selected with parameters
α = 1 and ω0 = 2π · 20Hz. There magnitudes are displayed in Figure 3.7a, confirming that these
complementary filters are fulfilling the specifications.
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Figure 3.7: Performance requirement and complementary filters used (a). Obtained controller from
the complementary filters and the plant inverse is shown in (b).

Controller analysis The controller to be implemented takes the form K(s) = G̃−1(s)H−1
H (s), where

G̃−1(s) represents the plant inverse, which must be both stable and proper. To ensure properness,
low-pass filters with high corner frequencies are added as shown in Equation (3.16).

G̃−1(s) =
ms2 + cs+ k

1 + s
2π·1000 +

(
s

2π·1000
)2 (3.16)

The Bode plot of the controller multiplied by the complementary low-pass filter, K(s) · HL(s), is
presented in Figure 3.7b. The frequency response reveals several important characteristics:

• The presence of two integrators at low frequencies, enabling accurate tracking of ramp inputs

• A notch at the plant resonance frequency (arising from the plant inverse)

• A lead component near the control bandwidth of approximately 20 Hz, enhancing stability margins

Robustness and Performance analysis Robust stability is assessed using the Nyquist plot shown in
Figure 3.8a. Even when considering all possible plants within the uncertainty set, the Nyquist plot
remains sufficiently distant from the critical point (−1, 0), indicating robust stability with adequate
margins.
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Performance is evaluated by examining the closed-loop sensitivity and complementary sensitivity trans-
fer functions, as illustrated in Figure 3.8b. It is shown that the sensitivity transfer function achieves the
desired +2 slope at low frequencies and that the complementary sensitivity transfer function nominally
provides the wanted noise filtering.
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Figure 3.8: Validation of Robust stability with the Nyquist plot (a) and validation of the nominal and
robust performance with the magnitude of the closed-loop transfer functions (b)

Conclusion

In this section, a control architecture in which complementary filters are used for closed-loop shaping
has been presented. This approach differs from traditional open-loop shaping in that no controller is
manually designed; rather, appropriate complementary filters are selected to achieve the desired closed-
loop behavior. The method shares conceptual similarities with mixed-sensitivity H∞-synthesis, as both
approaches aim to shape closed-loop transfer functions, but with notable distinctions in implementation
and complexity.

While H∞-synthesis offers greater flexibility and can be readily generalized to MIMO plants, the pre-
sented approach provides a simpler alternative that requires minimal design effort. Implementation only
necessitates extracting a model of the plant and selecting appropriate analytical complementary filters,
making it particularly interesting for applications where simplicity and intuitive parameter tuning are
valued.

Due to time constraints, an extensive literature review comparing this approach with similar existing
architectures, such as Internal Model Control [56], was not conducted. Consequently, it remains unclear
whether the proposed architecture offers significant advantages over existing methods in the literature.

The control architecture has been presented for SISO systems, but can be applied to MIMO systems
when sufficient decoupling is achieved. It will be experimentally validated with the NASS during the
experimental phase.
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Conclusion

In order to optimize the control of the Nano Active Stabilization System, several aspects of control
theory were studied. Different approaches to combine sensors were compared in Section 1. While High
Authority Control-Low Authority Control (HAC-LAC) was successfully applied during the conceptual
design phase, the focus of this work was extended to sensor fusion techniques where two or more sensors
are combined using complementary filters. It was demonstrated that the performance of such fusion
depends significantly on the magnitude of the complementary filters. To address this challenge, a syn-
thesis method based onH∞-synthesis was proposed, allowing for intuitive shaping of the complementary
filters through weighting functions. For the NASS, while HAC-LAC remains a natural way to combine
sensors, the potential benefits of sensor fusion merit further investigation.

Various decoupling strategies for parallel manipulators were examined in Section 2, including decen-
tralized control, Jacobian decoupling, modal decoupling, and Singular Value Decomposition (SVD)
decoupling. The main characteristics of each approach were highlighted, providing valuable insights
into their respective strengths and limitations. Among the examined methods, Jacobian decoupling
was determined to be most appropriate for the NASS, as it provides straightforward implementation
while preserving the physical meaning of inputs and outputs.

With the system successfully decoupled, attention shifted to designing appropriate SISO controllers
for each decoupled direction. A control architecture for directly shaping closed-loop transfer functions
was proposed. It is based on complementary filters that can be designed using either the proposed
H∞-synthesis approach described earlier or through analytical formulas. Experimental validation of
this method on the NASS will be conducted during the experimental tests on ID31.
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