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When controlling a MIMO system (specifically parallel manipulator such as the Stewart platform?)

Several considerations:

• Section 1: How to most effectively use/combine multiple sensors

• Section 2: How to decouple a system

• Section 3: How to design the controller
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1 Multiple Sensor Control

Look at what was done in the introduction Stewart platforms: Control architecture

Explain why multiple sensors are sometimes beneficial:

• collocated sensor that guarantee stability, but is still useful to damp modes outside the bandwidth
of the controller using sensor measuring the performance objective

• Review for Stewart platform =¿ Table Multi Sensor Control Several sensors:

– force sensor, inertial, strain . . .

Several architectures:

– Sensor fusion

– Cascaded control

– Two sensor control

[1] [2]

Cascaded control / HAC-LAC Architecture was already discussed during the conceptual phase. This is
a very comprehensive approach that proved to give good performances.

On the other hand of the spectrum, the two sensor approach yields to more control design freedom.
But it is also more complex.

In this section, we wish to study if sensor fusion can be an option for multi-sensor control:

• may be used to optimize the noise characteristics

• optimize the dynamical uncertainty

While there are different ways to fuse sensors:

• complementary filters

• kalman filtering

The focus is made here on complementary filters, as they give a simple frequency analysis.

Measuring a physical quantity using sensors is always subject to several limitations. First, the accuracy
of the measurement is affected by several noise sources, such as electrical noise of the conditioning
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electronics being used. Second, the frequency range in which the measurement is relevant is bounded
by the bandwidth of the sensor. One way to overcome these limitations is to combine several sensors
using a technique called “sensor fusion” [3]. Fortunately, a wide variety of sensors exists, each with
different characteristics. By carefully choosing the fused sensors, a so called “super sensor” is obtained
that can combines benefits of the individual sensors.

In some situations, sensor fusion is used to increase the bandwidth of the measurement [4], [5], [6].
For instance, in [4] the bandwidth of a position sensor is increased by fusing it with an accelerometer
providing the high frequency motion information. For other applications, sensor fusion is used to obtain
an estimate of the measured quantity with lower noise [7], [8], [9], [10]. More recently, the fusion of
sensors measuring different physical quantities has been proposed to obtain interesting properties for
control [2], [11]. In [11], an inertial sensor used for active vibration isolation is fused with a sensor
collocated with the actuator for improving the stability margins of the feedback controller.

Practical applications of sensor fusion are numerous. It is widely used for the attitude estimation of
several autonomous vehicles such as unmanned aerial vehicle [12], [13], [14] and underwater vehicles
[15], [16]. Naturally, it is of great benefits for high performance positioning control as shown in [2],
[4], [5], [6]. Sensor fusion was also shown to be a key technology to improve the performance of active
vibration isolation systems [17]. Emblematic examples are the isolation stages of gravitational wave
detectors [11], [18] such as the ones used at the LIGO [7], [8] and at the Virgo [19].

There are mainly two ways to perform sensor fusion: either using a set of complementary filters [20] or
using Kalman filtering [21]. For sensor fusion applications, both methods are sharing many relationships
[10], [21], [22], [23]. However, for Kalman filtering, assumptions must be made about the probabilistic
character of the sensor noises [10] whereas it is not the case with complementary filters. Furthermore, the
advantages of complementary filters over Kalman filtering for sensor fusion are their general applicability,
their low computational cost [22], and the fact that they are intuitive as their effects can be easily
interpreted in the frequency domain.

A set of filters is said to be complementary if the sum of their transfer functions is equal to one at all
frequencies. In the early days of complementary filtering, analog circuits were employed to physically
realize the filters [20]. Analog complementary filters are still used today [2], [24], but most of the time
they are now implemented digitally as it allows for much more flexibility.

Several design methods have been developed over the years to optimize complementary filters. The
easiest way to design complementary filters is to use analytical formulas. Depending on the application,
the formulas used are of first order [2], [13], [25], second order [12], [14], [26] or even higher orders [4],
[5], [11], [26], [27].

As the characteristics of the super sensor depends on the proper design of the complementary filters
[28], several optimization techniques have been developed. Some are based on the finding of optimal
parameters of analytical formulas [6], [14], [23], while other are using convex optimization tools [7], [8]
such as linear matrix inequalities [15]. As shown in [9], the design of complementary filters can also be
linked to the standard mixed-sensitivity control problem. Therefore, all the powerful tools developed
for the classical control theory can also be used for the design of complementary filters. For instance,
in [14] the two gains of a Proportional Integral (PI) controller are optimized to minimize the noise of
the super sensor.

The common objective of all these complementary filters design methods is to obtain a super sensor
that has desired characteristics, usually in terms of noise and dynamics. Moreover, as reported in
[5], [9], phase shifts and magnitude bumps of the super sensors dynamics can be observed if either
the complementary filters are poorly designed or if the sensors are not well calibrated. Hence, the
robustness of the fusion is also of concern when designing the complementary filters. Although many
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design methods of complementary filters have been proposed in the literature, no simple method that
allows to specify the desired super sensor characteristic while ensuring good fusion robustness has been
proposed.

Fortunately, both the robustness of the fusion and the super sensor characteristics can be linked to
the magnitude of the complementary filters [28]. Based on that, this paper introduces a new way to
design complementary filters using the H∞ synthesis which allows to shape the complementary filters’
magnitude in an easy and intuitive way.

1.1 Sensor Fusion and Complementary Filters Requirements

Complementary filtering provides a framework for fusing signals from different sensors. As the effec-
tiveness of the fusion depends on the proper design of the complementary filters, they are expected to
fulfill certain requirements. These requirements are discussed in this section.

1.1.1 Sensor Fusion Architecture

A general sensor fusion architecture using complementary filters is shown in Fig. 1.2 where several
sensors (here two) are measuring the same physical quantity x. The two sensors output signals x̂1 and
x̂2 are estimates of x. These estimates are then filtered out by complementary filters and combined to
form a new estimate x̂.

The resulting sensor, termed as super sensor, can have larger bandwidth and better noise characteristics
in comparison to the individual sensors. This means that the super sensor provides an estimate x̂ of x
which can be more accurate over a larger frequency band than the outputs of the individual sensors.

Super Sensor

Normalized
Sensors

Complementary
Filters

Sensor 1

Sensor 2

H1(s)

H2(s)

+x

x̂1

x̂2

x̂

Figure 1.2: Schematic of a sensor fusion architecture using complementary filters.

The complementary property of filters H1(s) and H2(s) implies that the sum of their transfer functions
is equal to one. That is, unity magnitude and zero phase at all frequencies. Therefore, a pair of
complementary filter needs to satisfy the following condition:

H1(s) +H2(s) = 1 (1.1)

It will soon become clear why the complementary property is important for the sensor fusion architec-
ture.
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1.1.2 Sensor Models and Sensor Normalization

In order to study such sensor fusion architecture, a model for the sensors is required. Such model is
shown in Fig. 1.3a and consists of a linear time invariant (LTI) system Gi(s) representing the sensor
dynamics and an input ni representing the sensor noise. The model input x is the measured physical
quantity and its output x̃i is the “raw” output of the sensor.

Before filtering the sensor outputs x̃i by the complementary filters, the sensors are usually normalized
to simplify the fusion. This normalization consists of using an estimate Ĝi(s) of the sensor dynamics
Gi(s), and filtering the sensor output by the inverse of this estimate Ĝ−1

i (s) as shown in Fig. 1.3b. It is

here supposed that the sensor inverse Ĝ−1
i (s) is proper and stable. This way, the units of the estimates

x̂i are equal to the units of the physical quantity x. The sensor dynamics estimate Ĝi(s) can be a simple
gain or a more complex transfer function.

Sensor

+ Gi(s)x

ni

x̃i

(a) Basic sensor model consisting of a noise input ni

and a linear time invariant transfer function Gi(s)

Normalized
sensorSensor

+ Gi(s) Ĝ−1
i (s)

x

ni

x̃i x̂i

(b) Normalized sensors using the inverse of an esti-
mate Ĝ

Figure 1.3: Sensor models with and without normalization.

Two normalized sensors are then combined to form a super sensor as shown in Fig. 1.4. The two sensors
are measuring the same physical quantity x with dynamics G1(s) and G2(s), and with uncorrelated
noises n1 and n2. The signals from both normalized sensors are fed into two complementary filters
H1(s) and H2(s) and then combined to yield an estimate x̂ of x.

The super sensor output is therefore equal to:

x̂ =
(
H1(s)Ĝ

−1
1 (s)G1(s) +H2(s)Ĝ

−1
2 (s)G2(s)

)
x+H1(s)Ĝ

−1
1 (s)G1(s)n1 +H2(s)Ĝ

−1
2 (s)G2(s)n2 (1.2)

Super SensorNormalized
sensorSensor 1

Normalized
sensorSensor 2

+

+

G1(s)

G2(s)

Ĝ−1
1 (s)

Ĝ−2
2 (s)

H1(s)

H2(s)

+x

n1
x̃1 x̂1

n2
x̃2 x̂2

x̂

Figure 1.4: Sensor fusion architecture with two normalized sensors.

1.1.3 Noise Sensor Filtering

In this section, it is supposed that all the sensors are perfectly normalized, such that:
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x̂i

x
= Ĝi(s)Gi(s) = 1 (1.3)

The effect of a non-perfect normalization will be discussed in the next section.

Provided (1.3) is verified, the super sensor output x̂ is then equal to:

x̂ = x+H1(s)n1 +H2(s)n2 (1.4)

From (1.4), the complementary filters H1(s) and H2(s) are shown to only operate on the noise of
the sensors. Thus, this sensor fusion architecture permits to filter the noise of both sensors without
introducing any distortion in the physical quantity to be measured. This is why the two filters must be
complementary.

The estimation error δx, defined as the difference between the sensor output x̂ and the measured
quantity x, is computed for the super sensor (1.5).

δxx̂− x = H1(s)n1 +H2(s)n2 (1.5)

As shown in (1.6), the Power Spectral Density (PSD) of the estimation error Φδx depends both on the
norm of the two complementary filters and on the PSD of the noise sources Φn1 and Φn2 .

Φδx(ω) = |H1(jω)|2 Φn1
(ω) + |H2(jω)|2 Φn2

(ω) (1.6)

If the two sensors have identical noise characteristics, Φn1
(ω) = Φn2

(ω), a simple averaging (H1(s) =
H2(s) = 0.5) is what would minimize the super sensor noise. This is the simplest form of sensor fusion
with complementary filters.

However, the two sensors have usually high noise levels over distinct frequency regions. In such case,
to lower the noise of the super sensor, the norm |H1(jω)| has to be small when Φn1

(ω) is larger than
Φn2

(ω) and the norm |H2(jω)| has to be small when Φn2
(ω) is larger than Φn1

(ω). Hence, by properly
shaping the norm of the complementary filters, it is possible to reduce the noise of the super sensor.

1.1.4 Sensor Fusion Robustness

In practical systems the sensor normalization is not perfect and condition (1.3) is not verified.

In order to study such imperfection, a multiplicative input uncertainty is added to the sensor dynamics
(Fig. 1.5a). The nominal model is the estimated model used for the normalization Ĝi(s), ∆i(s) is
any stable transfer function satisfying |∆i(jω)| ≤ 1, ∀ω, and wi(s) is a weighting transfer function
representing the magnitude of the uncertainty.

The weight wi(s) is chosen such that the real sensor dynamics Gi(jω) is contained in the uncertain
region represented by a circle in the complex plane, centered on 1 and with a radius equal to |wi(jω)|.
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As the nominal sensor dynamics is taken as the normalized filter, the normalized sensor can be further
simplified as shown in Fig. 1.5b.

Normalized
sensorSensor

w1(s) ∆1(s)

+ + Ĝ1(s) Ĝ−1
1 (s)

x

n1
x̃1 x̂1

(a) Sensor with multiplicative input uncertainty

Normalized
sensor

w1(s) ∆1(s)

+ +x
n1

x̂1

(b) Simplified sensor model

Figure 1.5: Sensor models with dynamical uncertainty

The sensor fusion architecture with the sensor models including dynamical uncertainty is shown in Fig.
1.6.

Super SensorNormalized
sensor 1

Normalized
sensor 2

w1(s)

w2(s)

∆1(s)

∆2(s)

+

+

+

+

H1(s)

H2(s)

+x

n1

n2

x̂1

x̂2

x̂

Figure 1.6: Sensor fusion architecture with sensor dynamics uncertainty

The super sensor dynamics (1.7) is no longer equal to 1 and now depends on the sensor dynamical
uncertainty weights wi(s) as well as on the complementary filters Hi(s).

x̂

x
= 1 + w1(s)H1(s)∆1(s) + w2(s)H2(s)∆2(s) (1.7)

The dynamical uncertainty of the super sensor can be graphically represented in the complex plane by
a circle centered on 1 with a radius equal to |w1(jω)H1(jω)|+ |w2(jω)H2(jω)| (Fig. 1.7).

1

|w1H1|
|w2H2|

|w1H1| + |w2H2|

Re

Im

∆ϕmax

Figure 1.7: Uncertainty region of the super sensor dynamics in the complex plane (grey circle). The
contribution of both sensors 1 and 2 to the total uncertainty are represented respectively
by a blue circle and a red circle. The frequency dependency ω is here omitted.
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The super sensor dynamical uncertainty, and hence the robustness of the fusion, clearly depends on the
complementary filters’ norm. For instance, the phase ∆ϕ(ω) added by the super sensor dynamics at
frequency ω is bounded by ∆ϕmax(ω) which can be found by drawing a tangent from the origin to the
uncertainty circle of the super sensor (Fig. 1.7) and that is mathematically described by (1.8).

∆ϕmax(ω) = arcsin
(
|w1(jω)H1(jω)|+ |w2(jω)H2(jω)|

)
(1.8)

As it is generally desired to limit the maximum phase added by the super sensor, H1(s) andH2(s) should
be designed such that ∆ϕ is bounded to acceptable values. Typically, the norm of the complementary
filter |Hi(jω)| should be made small when |wi(jω)| is large, i.e., at frequencies where the sensor dynamics
is uncertain.

1.2 Complementary Filters Shaping

As shown in Section 1.1, the noise and robustness of the super sensor are a function of the complementary
filters’ norm. Therefore, a synthesis method of complementary filters that allows to shape their norm
would be of great use. In this section, such synthesis is proposed by writing the synthesis objective
as a standard H∞ optimization problem. As weighting functions are used to represent the wanted
complementary filters’ shape during the synthesis, their proper design is discussed. Finally, the synthesis
method is validated on an simple example.

1.2.1 Synthesis Objective

The synthesis objective is to shape the norm of two filters H1(s) and H2(s) while ensuring their com-
plementary property (1.1). This is equivalent as to finding proper and stable transfer functions H1(s)
and H2(s) such that conditions (1.9a), (1.9b) and (1.9c) are satisfied.

H1(s) +H2(s) = 1 (1.9a)

|H1(jω)| ≤
1

|W1(jω)|
∀ω (1.9b)

|H2(jω)| ≤
1

|W2(jω)|
∀ω (1.9c)

W1(s) and W2(s) are two weighting transfer functions that are carefully chosen to specify the maximum
wanted norm of the complementary filters during the synthesis.

1.2.2 Shaping of Complementary Filters using H∞ synthesis

In this section, it is shown that the synthesis objective can be easily expressed as a standard H∞
optimization problem and therefore solved using convenient tools readily available.

Consider the generalized plant P (s) shown in Fig. 1.8a and mathematically described by (1.10).
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z1z2
v

 = P (s)

[
w
u

]
; P (s) =

W1(s) −W1(s)
0 W2(s)
1 0

 (1.10)

P (s)

H2(s)

W1(s)

W2(s)

+
−

w

u

v

z1

z2

(a) Generalized plant

P (s)

H2(s)

W1(s)

W2(s)

+
−

w z1

z2

(b) Generalized plant with the synthesized filter

Figure 1.8: Architecture for the H∞ synthesis of complementary filters

Applying the standard H∞ synthesis to the generalized plant P (s) is then equivalent as finding a stable
filter H2(s) which based on v, generates a signal u such that the H∞ norm of the system in Fig. 1.8b
from w to [z1, z2] is less than one (1.11).

∥∥∥∥(1−H2(s))W1(s)
H2(s)W2(s)

∥∥∥∥
∞

≤ 1 (1.11)

By then defining H1(s) to be the complementary of H2(s) (1.12), the H∞ synthesis objective becomes
equivalent to (1.13) which ensures that (1.9b) and (1.9c) are satisfied.

H1(s)1−H2(s) (1.12)

∥∥∥∥H1(s)W1(s)
H2(s)W2(s)

∥∥∥∥
∞

≤ 1 (1.13)

Therefore, applying the H∞ synthesis to the standard plant P (s) (1.10) will generate two filters H2(s)
and H1(s)1−H2(s) that are complementary (1.9) and such that there norms are bellow specified bounds
(1.9b), (1.9c).

Note that there is only an implication between the H∞ norm condition (1.13) and the initial synthesis
objectives (1.9b) and (1.9c) and not an equivalence. Hence, the optimization may be a little bit con-
servative with respect to the set of filters on which it is performed, see [29, Chap. 2.8.3]. In practice,
this is however not an found to be an issue.
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1.2.3 Weighting Functions Design

Weighting functions are used during the synthesis to specify the maximum allowed complementary
filters’ norm. The proper design of these weighting functions is of primary importance for the success
of the presented H∞ synthesis of complementary filters.

First, only proper and stable transfer functions should be used. Second, the order of the weighting
functions should stay reasonably small in order to reduce the computational costs associated with the
solving of the optimization problem and for the physical implementation of the filters (the synthesized
filters’ order being equal to the sum of the weighting functions’ order). Third, one should not forget
the fundamental limitations imposed by the complementary property (1.1). This implies for instance
that |H1(jω)| and |H2(jω)| cannot be made small at the same frequency.

When designing complementary filters, it is usually desired to specify their slopes, their “blending”
frequency and their maximum gains at low and high frequency. To easily express these specifications,
formula (1.14) is proposed to help with the design of weighting functions.

W (s) =


1
ωc

√
1−(G0

Gc
)

2
n

1−( Gc
G∞ )

2
n
s+

(
G0

Gc

) 1
n

(
1

G∞

) 1
n 1

ωc

√
1−(G0

Gc
)

2
n

1−( Gc
G∞ )

2
n
s+

(
1
Gc

) 1
n


n

(1.14)

The parameters in formula (1.14) are:

• G0 = limω→0 |W (jω)|: the low frequency gain

• G∞ = limω→∞ |W (jω)|: the high frequency gain

• Gc = |W (jωc)|: the gain at a specific frequency ωc in rad/s.

• n: the slope between high and low frequency. It also corresponds to the order of the weighting
function.

The parameters G0, Gc and G∞ should either satisfy (1.15a) or (1.15b).

G0 < 1 < G∞ and G0 < Gc < G∞ (1.15a)

G∞ < 1 < G0 and G∞ < Gc < G0 (1.15b)

The typical magnitude of a weighting function generated using (1.14) is shown in Fig. 1.9.

1.2.4 Validation of the proposed synthesis method

The proposed methodology for the design of complementary filters is now applied on a simple example.
Let’s suppose two complementary filters H1(s) and H2(s) have to be designed such that:
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Frequency [Hz]
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10!1
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0

Figure 1.9: Magnitude of a weighting function generated using formula (1.14), G0 = 1e−3, G∞ = 10,
ωc = 10Hz, Gc = 2, n = 3.

• the blending frequency is around 10Hz.

• the slope of |H1(jω)| is +2 below 10Hz. Its low frequency gain is 10−3.

• the slope of |H2(jω)| is −3 above 10Hz. Its high frequency gain is 10−3.

The first step is to translate the above requirements by properly designing the weighting functions.
The proposed formula (1.14) is here used for such purpose. Parameters used are summarized in Table
1.1. The inverse magnitudes of the designed weighting functions, which are representing the maximum
allowed norms of the complementary filters, are shown by the dashed lines in Fig. 1.10.

Parameter W1(s) W2(s)

G0 0.1 1000
G∞ 1000 0.1
ωc 2π · 10 2π · 10
Gc 0.45 0.45
n 2 3

Table 1.1: Parameters for W1(s) and W2(s)

10!1 100 101 102 103

Frequency [Hz]

10!2

100

M
ag

n
it
u
d
e

jW1j!1

jW2j!1

Figure 1.10: Inverse magnitude of the weights

The standard H∞ synthesis is then applied to the generalized plant of Fig. 1.8a. The filter H2(s)
that minimizes the H∞ norm between w and [z1, z2]

T is obtained. The H∞ norm is here found to
be close to one (1.16) which indicates that the synthesis is successful: the complementary filters norms
are below the maximum specified upper bounds. This is confirmed by the bode plots of the obtained
complementary filters in Fig. 1.11.

∥∥∥∥(1−H2(s))W1(s)
H2(s)W2(s)

∥∥∥∥
∞

≈ 1 (1.16)
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The transfer functions in the Laplace domain of the complementary filters are given in (1.17). As
expected, the obtained filters are of order 5, that is the sum of the weighting functions’ order.

H2(s) =
(s+ 6.6e4)(s+ 160)(s+ 4)3

(s+ 6.6e4)(s2 + 106s+ 3e3)(s2 + 72s+ 3580)
(1.17a)

H1(s)H2(s)− 1 =
10−8(s+ 6.6e9)(s+ 3450)2(s2 + 49s+ 895)

(s+ 6.6e4)(s2 + 106s+ 3e3)(s2 + 72s+ 3580)
(1.17b)

10!2

100

M
ag

n
it
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d
e

jW1j!1

jW2j!1
H1

H2

10!1 100 101 102 103

Frequency [Hz]

-180

0

180

P
h
as

e
[d

eg
]

Figure 1.11: Bode plot of the obtained complementary filters

This simple example illustrates the fact that the proposed methodology for complementary filters shap-
ing is easy to use and effective. A more complex real life example is taken up in the next section.

1.3 “Closed-Loop” complementary filters

An alternative way to implement complementary filters is by using a fundamental property of the
classical feedback architecture shown in Fig. 1.12. This idea is discussed in [9], [14], [30].

+
−

L(s) +x̂2 x̂

x̂1

Figure 1.12: “Closed-Loop” complementary filters.

Consider the feedback architecture of Fig. 1.12, with two inputs x̂1 and x̂2, and one output x̂. The
output x̂ is linked to the inputs by (1.18).
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x̂ =
1

1 + L(s)︸ ︷︷ ︸
S(s)

x̂1 +
L(s)

1 + L(s)︸ ︷︷ ︸
T (s)

x̂2 (1.18)

As for any classical feedback architecture, we have that the sum of the sensitivity transfer function S(s)
and complementary sensitivity transfer function T(s) is equal to one (1.19).

S(s) + T (s) = 1 (1.19)

Therefore, provided that the the closed-loop system in Fig. 1.12 is stable, it can be used as a set of two
complementary filters. Two sensors can then be merged as shown in Fig. 1.13.

Normalized
sensors

"Closed-Loop"
complementary filters

+
−

L(s) +Sensor 2

Sensor 1

x̂x x̂2

x̂1

Figure 1.13: Classical feedback architecture used for sensor fusion.

One of the main advantage of implementing and designing complementary filters using the feedback
architecture of Fig. 1.12 is that all the tools of the linear control theory can be applied for the design
of the filters. If one want to shape both x̂

x̂1
(s) = S(s) and x̂

x̂2
(s) = T (s), the H∞ mixed-sensitivity

synthesis can be easily applied.

To do so, weighting functions W1(s) and W2(s) are added to respectively shape S(s) and T (s) (Fig.
1.14a). Then the system is rearranged to form the generalized plant PL(s) shown in Fig. 1.14b. The
H∞ mixed-sensitivity synthesis can finally be performed by applying the standard H∞ synthesis to the
generalized plant PL(s) which is described by (1.20).

[
z
v

]
= PL(s)

w1

w2

u

 ; PL(s) =

[
W1(s) 0 1

−W1(s) W2(s) −1

]
(1.20)

The output of the synthesis is a filter L(s) such that the “closed-loop” H∞ norm from [w1, w2] to z of
the system in Fig. 1.12 is less than one (1.21).

∥∥∥∥ z
w1
z
w2

∥∥∥∥
∞

=

∥∥∥∥∥
1

1+L(s)W1(s)
L(s)

1+L(s)W2(s)

∥∥∥∥∥
∞

≤ 1 (1.21)

If the synthesis is successful, the transfer functions from x̂1 to x̂ and from x̂2 to x̂ have their magnitude
bounded by the inverse magnitude of the corresponding weighting functions. The sensor fusion can then
be implemented using the feedback architecture in Fig. 1.13 or more classically as shown in Fig. 1.2
by defining the two complementary filters using (1.22). The two architectures are equivalent regarding
their inputs/outputs relationships.
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H1(s) =
1

1 + L(s)
; H2(s) =

L(s)

1 + L(s)
(1.22)

W2(s) +
−

+

W1(s)

w2 w̃2 v u z
w̃1

w1

(a) Feedback architecture with included weights

PL(s)

W2(s)

W1(s) +

+
−w2

w1

u

z

v

(b) Generalized plant

Figure 1.14: H∞ mixed-sensitivity synthesis

As an example, two “closed-loop” complementary filters are designed using the H∞ mixed-sensitivity
synthesis. The weighting functions are designed using formula (1.14) with parameters shown in Table
1.1. After synthesis, a filter L(s) is obtained whose magnitude is shown in Fig. 1.15 by the black
dashed line. The “closed-loop” complementary filters are compared with the inverse magnitude of the
weighting functions in Fig. 1.15 confirming that the synthesis is successful. The obtained “closed-loop”
complementary filters are indeed equal to the ones obtained in Section 1.2.4.
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Figure 1.15: Bode plot of the obtained complementary filters after H∞ mixed-sensitivity synthesis

1.4 Synthesis of a set of three complementary filters

Some applications may require to merge more than two sensors [23], [26]. For instance at the LIGO,
three sensors (an LVDT, a seismometer and a geophone) are merged to form a super sensor [27].
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When merging n > 2 sensors using complementary filters, two architectures can be used as shown in
Fig. 1.16. The fusion can either be done in a “sequential” way where n− 1 sets of two complementary
filters are used (Fig. 1.16a), or in a “parallel” way where one set of n complementary filters is used
(Fig. 1.16b).

In the first case, typical sensor fusion synthesis techniques can be used. However, when a parallel
architecture is used, a new synthesis method for a set of more than two complementary filters is required
as only simple analytical formulas have been proposed in the literature [23], [26]. A generalization of
the proposed synthesis method of complementary filters is presented in this section.

Sensor 2

Sensor 1

Sensor 3

H1(s)

H2(s)
+ H ′

1(s)

H ′
2(s)

+
x

x̂1

x̂2

x̂3

x̂12

x̂

(a) Sequential fusion

Sensor 2

Sensor 1

Sensor 3

H1(s)

H2(s)

H3(s)

+x

x̂1

x̂2

x̂3

x̂

(b) Parallel fusion

Figure 1.16: Possible sensor fusion architecture when more than two sensors are to be merged

The synthesis objective is to compute a set of n stable transfer functions [H1(s), H2(s), . . . , Hn(s)]
such that conditions (1.23a) and (1.23b) are satisfied.

n∑
i=1

Hi(s) = 1 (1.23a)

|Hi(jω)| <
1

|Wi(jω)|
, ∀ω, i = 1 . . . n (1.23b)

[W1(s), W2(s), . . . , Wn(s)] are weighting transfer functions that are chosen to specify the maximum
complementary filters’ norm during the synthesis.

Such synthesis objective is closely related to the one described in Section 1.2.1, and indeed the proposed
synthesis method is a generalization of the one presented in Section 1.2.2.

A set of n complementary filters can be shaped by applying the standardH∞ synthesis to the generalized
plant Pn(s) described by (1.24).


z1
...
zn
v

 = Pn(s)


w
u1

...
un−1

 ; Pn(s) =



W1 −W1 . . . . . . −W1

0 W2 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 Wn

1 0 . . . . . . 0


(1.24)
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If the synthesis if successful, a set of n − 1 filters [H2(s), H3(s), . . . , Hn(s)] are obtained such that
(1.25) is verified.

∥∥∥∥∥∥∥∥∥
(1− [H2(s) +H3(s) + · · ·+Hn(s)])W1(s)

H2(s)W2(s)
...

Hn(s)Wn(s)

∥∥∥∥∥∥∥∥∥
∞

≤ 1 (1.25)

H1(s) is then defined using (1.26) which is ensuring the complementary property for the set of n filters
(1.23a). Condition (1.23b) is satisfied thanks to (1.25).

H1(s)1−
[
H2(s) +H3(s) + · · ·+Hn(s)

]
(1.26)

An example is given to validate the proposed method for the synthesis of a set of three complementary
filters. The sensors to be merged are a displacement sensor from DC up to 1Hz, a geophone from 1 to
10Hz and an accelerometer above 10Hz. Three weighting functions are designed using formula (1.14)
and their inverse magnitude are shown in Fig. 1.18 (dashed curves).

Consider the generalized plant P3(s) shown in Fig. 1.17a which is also described by (1.27).


z1
z2
z3
v

 = P3(s)

w
u1

u2

 ; P3(s) =


W1(s) −W1(s) −W1(s)

0 W2(s) 0
0 0 W3(s)
1 0 0

 (1.27)

P3(s)

W1(s)

W2(s)

W3(s)

+
−

+
−

[
H2(s)
H3(s)

]

w z1

z2

z3

u1

u2

v

(a) Generalized plant

P3(s)

W1(s)

W2(s)

W3(s)

+
−

+
−

[
H2(s)
H3(s)

]

w z1

z2

z3

u1

u2

v

(b) Generalized plant with the synthesized filter

Figure 1.17: Architecture for the H∞ synthesis of three complementary filters

The standard H∞ synthesis is performed on the generalized plant P3(s). Two filters H2(s) and H3(s)
are obtained such that the H∞ norm of the closed-loop transfer from w to [z1, z2, z3] of the system
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in Fig. 1.17b is less than one. Filter H1(s) is defined using (1.28) thus ensuring the complementary
property of the obtained set of filters.

H1(s)1−
[
H2(s) +H3(s)

]
(1.28)

Figure 1.18 displays the three synthesized complementary filters (solid lines) which confirms that the
synthesis is successful.

10!4

10!2

100

M
ag

n
it
u
d
e

jW1j!1

jW2j!1

jW3j!1

H1

H2

H3

10!1 100 101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d

eg
]

Figure 1.18: Bode plot of the inverse weighting functions and of the three complementary filters
obtained using the H∞ synthesis

Conclusion

A new method for designing complementary filters using the H∞ synthesis has been proposed. It allows
to shape the magnitude of the filters by the use of weighting functions during the synthesis. This is
very valuable in practice as the characteristics of the super sensor are linked to the complementary
filters’ magnitude. Therefore typical sensor fusion objectives can be translated into requirements on the
magnitudes of the filters. Several examples were used to emphasize the simplicity and the effectiveness
of the proposed method.

However, the shaping of the complementary filters’ magnitude does not allow to directly optimize the
super sensor noise and dynamical characteristics. Future work will aim at developing a complementary
filter synthesis method that minimizes the super sensor noise while ensuring the robustness of the
fusion.
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2 Decoupling Strategies

When dealing with MIMO systems, a typical strategy is to:

• first decouple the plant dynamics

• apply SISO control for the decoupled plant

Assumptions:

• parallel manipulators

Review of decoupling strategies for Stewart platforms:

• Decoupling Strategies

What example should be taken? 3dof system? stewart platform? Maybe simpler.

2.1 Interaction Analysis

2.2 Decentralized Control (actuator frame)

2.3 Center of Stiffness and center of Mass

• Example

• Show

2.4 Modal Decoupling

2.5 Data Based Decoupling

• Static decoupling

• SVD
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Conclusion

Table that compares all the strategies.
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3 Closed-Loop Shaping using Complementary
Filters

Performance of a feedback control is dictated by closed-loop transfer functions. For instance sensitivity,
transmissibility, etc. . . Gang of Four.

There are several ways to design a controller to obtain a given performance.

Decoupled Open-Loop Shaping:

• As shown in previous section, once the plant is decoupled: open loop shaping

• Explain procedure when applying open-loop shaping

• Lead, Lag, Notches, Check Stability, c2d, etc. . .

• But this is open-loop shaping, and it does not directly work on the closed loop transfer functions

Other strategy: Model Based Design:

• Multivariable Control

• Talk about Caio’s thesis?

• Review of model based design (LQG, H-Infinity) applied to Stewart platform

• Difficulty to specify robustness to change of payload mass

In this section, an alternative is proposed in which complementary filters are used for closed-loop
shaping. It is presented for a SISO system, but can be generalized to MIMO if decoupling is sufficient.
It will be experimentally demonstrated with the NASS.

Conclusion
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