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When controlling a MIMO system (specifically parallel manipulator such as the Stewart platform?)

[0 Should the quick review of Stewart platform control be here? In that case it should be
possible to highlight three areas:

— use of multiple sensors
— decoupling strategy
— control optimization
Several considerations:
e Section 1: How to most effectively use/combine multiple sensors
e Section 2: How to decouple a system

e Section 3: How to design the controller



1 Multiple Sensor Control

As was shown during the literature review of Stewart platforms, there is a large diversity of designs
and included sensors and actuators. Depending on the control objectives, which may include active
damping, vibration isolation, or precise positioning, different sensor configurations are implemented.
The specific selection of the sensors, whether inertial sensors, force sensors, or relative position sensors,
is heavily influenced by the control requirements of the system.

In cases where multiple control objectives must be achieved simultaneously, as is the case for the
Nano Active Stabilization System (NASS) where the Stewart platform must both position the sample
and provide isolation from micro-station vibrations, combining multiple sensors within the control
architecture has been demonstrated to yield significant performance benefits. From the literature, three
principal approaches for combining sensors have been identified: High Authority Control-Low Authority
Control (HAC-LAC), sensor fusion, and two-sensor control architectures.

Damped Plant

]
1
KLAC : Two-Sensor Control
5 @
ZII/ 1
1
1 Plant
Kuac Plant ] T
T,
j !
1
.................. 1
(a) HAC LAC (b) Two Sensor Control
Sensor Fusion
1
.”L'Li
a
U 1
Kss Plant :
LCH‘:
1
1
L

(c) Sensor Fusion

Figure 1.1: Different control strategies when using multiple sensors. High Authority Control / Low
Authority Control (a). Sensor Fusion (¢). Two-Sensor Control (b)

The HAC-LAC approach, used during the conceptual phase, represents a dual-loop control strategy
where two control loops utilize different sensors for different purposes (Figure 1.1a). In [4], vibration
isolation is provided by accelerometers collocated with the voice coil actuators, while external rotational



sensors are utilized to achieve pointing control. In [1], force sensors collocated with the magnetostrictive
actuators are used for active damping using decentralized IFF, and subsequently accelerometers are
employed for adaptive vibration isolation. Similarly, in [3], piezoelectric actuators with collocated
force sensors are used in a decentralized manner to provide active damping while accelerometers are
implemented in an adaptive feedback loop to suppress periodic vibrations. In [6], force sensors are
integrated in the struts for decentralized force feedback while accelerometers fixed to the top platform
are employed for centralized control.

Sensor fusion, the second approach (illustrated in Figure 1.1¢), involves filtering signals from two sensors
using complementary filters' that are subsequently summed to obtain an improved sensor signal. In
[9], geophones (used at low frequency) are merged with force sensors (used at high frequency). It is
demonstrated that combining both sensors using sensor fusion can improve performance compared to
using the individual sensors independently. In [8], sensor fusion architecture is implemented with an
accelerometer and a force sensor. This implementation is shown to simultaneously achieve high damping
of structural modes (through the force sensors) while maintaining very low vibration transmissibility
(through the accelerometers).

In [10], the performance of sensor fusion is compared with the more general case of “two-sensor control”
(illustrated in Figure 1.1b). It is highlighted that “two-sensor control” provides greater control freedom,
potentially enhancing performance. In [14], the use of force sensors and geophones is compared for
vibration isolation purposes. Geophones are shown to provide better isolation performance than load
cells but suffer from poor robustness. Conversely, the controller based on force sensors exhibited inferior
performance (due to the presence of a pair of low frequency zeros), but demonstrated better robustness
properties. A “two-sensor control” approach was proven to perform better than controllers based on
individual sensors while maintaining better robustness. A Linear Quadratic Regulator (LQG) was
employed to optimize the two-input/one-output controller.

Beyond these three main approaches, other control architectures have been proposed for different pur-
poses. In [12], a first control loop utilizes force sensors and relative motion sensors to compensate for
parasitic stiffness of the flexible joints. Subsequently, the system is decoupled in the modal space (facil-
itated by the removal of parasitic stiffness) and accelerometers are employed for vibration isolation.

The HAC-LAC architecture was previously investigated during the conceptual phase and successfully
implemented to validate the NASS concept, demonstrating excellent performance. At the other end of
the spectrum, the two-sensor approach yields greater control design freedom but introduces increased
complexity in tuning, and thus was not pursued in this study. This work instead focuses on sensor
fusion, which represents a promising middle ground between the proven HAC-LAC approach and the
more complex two-sensor control strategy.

A review of sensor fusion is first presented (Section ?7?), followed by an examination of the fundamental
theoretical concepts (Section 1.2). In this section, both the robustness of the fusion and the noise
characteristics of the resulting “super sensor” are derived and expressed as functions of the comple-
mentary filters’ norms. A synthesis method for designing complementary filters that allow to shape
their norms is proposed (Section 1.3). The investigation is then extended beyond the conventional
two-sensor scenario, demonstrating how the proposed complementary filter synthesis can be generalized
for applications requiring the fusion of three or more sensors (Section ?7).

1A set of two complementary filters are two transfer functions that sum to one.



1.1 Review of Sensor Fusion

Measuring a physical quantity using sensors is always subject to several limitations. First, the accuracy
of the measurement is affected by various noise sources, such as electrical noise from the conditioning
electronics. Second, the frequency range in which the measurement is relevant is bounded by the
bandwidth of the sensor. One way to overcome these limitations is to combine several sensors using a
technique called “sensor fusion” [18]. Fortunately, a wide variety of sensors exists, each with different
characteristics. By carefully selecting the sensors to be fused, a “super sensor” is obtained that combines
the benefits of the individual sensors.

In some applications, sensor fusion is employed to increase measurement bandwidth [19], [20], [21]. For
instance, in [19], the bandwidth of a position sensor is extended by fusing it with an accelerometer that
provides high-frequency motion information. In other applications, sensor fusion is utilized to obtain
an estimate of the measured quantity with reduced noise [22], [23], [24], [25]. More recently, the fusion
of sensors measuring different physical quantities has been proposed to enhance control properties [11],
[26]. In [26], an inertial sensor used for active vibration isolation is fused with a sensor collocated with
the actuator to improve the stability margins of the feedback controller.

On top of Stewart platforms, practical applications of sensor fusion are numerous. It is widely imple-
mented for attitude estimation in autonomous vehicles such as unmanned aerial vehicles [27], [28], [29]
and underwater vehicles [30], [31]. Sensor fusion offers significant benefits for high-performance posi-
tioning control as demonstrated in [11], [19], [20], [21]. Tt has also been identified as a key technology
for improving the performance of active vibration isolation systems [8]. Emblematic examples include
the isolation stages of gravitational wave detectors [26], [32] such as those employed at LIGO [22], [23]
and Virgo [33].

Two principal methods are employed to perform sensor fusion: using complementary filters [34] or
using Kalman filtering [35]. For sensor fusion applications, these methods share many relationships [25],
[35], [36], [37]. However, Kalman filtering requires assumptions about the probabilistic characteristics
of sensor noise [25], whereas complementary filters do not impose such requirements. Furthermore,
complementary filters offer advantages over Kalman filtering for sensor fusion through their general
applicability, low computational cost [36], and intuitive nature, as their effects can be readily interpreted
in the frequency domain.

A set of filters is considered complementary if the sum of their transfer functions equals one at all
frequencies. In early implementations of complementary filtering, analog circuits were used to physi-
cally realize the filters [34]. While analog complementary filters remain in use today [11], [38], digital
implementation is now more common as it provides greater flexibility.

Various design methods have been developed to optimize complementary filters. The most straightfor-
ward approach utilizes analytical formulas. Depending on the application, these formulas may be of
first order [11], [28], [39], second order [27], [29], [40], or higher orders [19], [20], [26], [40], [41].

Since the characteristics of the super sensor depend on the proper design of complementary filters
[42], several optimization techniques have been developed. Some approaches focus on finding optimal
parameters for analytical formulas [21], [29], [37], while others employ convex optimization tools [22],
[23] such as linear matrix inequalities [30]. As demonstrated in [24], complementary filter design can be
linked to the standard mixed-sensitivity control problem. Consequently, the powerful tools developed
for classical control theory can be applied to complementary filter design. For example, in [29], the two
gains of a Proportional Integral (PI) controller are optimized to minimize super sensor noise.

All these complementary filter design methods share the common objective of creating a super sensor



with desired characteristics, typically in terms of noise and dynamics. As reported in [20], [24], phase
shifts and magnitude bumps in the super sensor dynamics may occur if complementary filters are
poorly designed or if sensors are improperly calibrated. Therefore, the robustness of the fusion must be
considered when designing complementary filters. Despite the numerous design methods proposed in
the literature, a simple approach that specifies desired super sensor characteristics while ensuring good
fusion robustness has been lacking.

Fortunately, both fusion robustness and super sensor characteristics can be linked to complementary
filter magnitude [42]. Based on this relationship, the present work introduces an approach to designing
complementary filters using Ho, synthesis, which enables intuitive shaping of complementary filter
magnitude in a straightforward manner.

1.2 Sensor Fusion and Complementary Filters Requirements

A general sensor fusion architecture using complementary filters is shown in Figure 1.2, where multiple
sensors (in this case two) measure the same physical quantity . The sensor output signals & and Z
represent estimates of x. These estimates are filtered by complementary filters and combined to form a
new estimate .

Super Sensor

27
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Figure 1.2: Schematic of a sensor fusion architecture using complementary filters.

The complementary property of filters H;(s) and Hs(s) requires that the sum of their transfer functions
equals one at all frequencies (1.1).

Hy(s) + Ha(s) = 1 (1.1)

Sensor Models and Sensor Normalization To analyze sensor fusion architectures, appropriate sensor
models are required. The model shown in Figure 1.3a consists of a linear time invariant (LTI) system
G;(s) representing the sensor dynamics and an input n; representing sensor noise. The model input z
is the measured physical quantity, and its output Z; is the “raw” output of the sensor.

Prior to filtering the sensor outputs Z; with complementary filters, the sensors are typically normalized to
simplify the fusion process. This normalization involves using an estimate GZ(S) of the sensor dynamics
Gi(s), and filtering the sensor output by the inverse of this estimate G !(s), as shown in Figure 1.3b.
It is assumed that the sensor inverse éi_ 1(3) is proper and stable. This approach ensures that the units
of the estimates &; match the units of the physical quantity x. The sensor dynamics estimate él(s)
may be a simple gain or a more complex transfer function.
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Figure 1.3: Sensor models with and without normalization.

Two normalized sensors are then combined to form a super sensor as shown in Figure 1.4. The two
sensors measure the same physical quantity z with dynamics G1(s) and Ga(s), and with uncorrelated
noises 1 and mo. The signals from both normalized sensors are fed into two complementary filters
H,(s) and Hy(s) and then combined to yield an estimate & of z. The super sensor output Z is therefore
described by (1.2).

= (Hl(s)éfl(s)Gl(s) + Hg(s)égl(s)Gg(s))x + Hy(s)G7(s)Gr(s)n1 + Ha(s)G5 H(s)Ga(s)ne (1.2)
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Figure 1.4: Sensor fusion architecture with two normalized sensors.

Noise Sensor Filtering First, consider the case where all sensors are perfectly normalized (1.3). The
effects of imperfect normalization will be addressed subsequently.

L Gi(s)Gals) = 1 (1.3)

X

In that case, the super sensor output & equals = plus the filtered noise from both sensors (1.4). From
this equation, it is evident that the complementary filters H; (s) and Hz(s) operate solely on the sensor
noise. Thus, this sensor fusion architecture allows filtering of sensor noise without introducing distortion
in the measured physical quantity. This fundamental property necessitates that the two filters must be
complementary.

& =x+ Hy(s)n1 + Ha(s)ns (1.4)

The estimation error €., defined as the difference between the sensor output Z and the measured quantity
x, is computed for the super sensor (1.5).



€z = & —x = Hy(s)ny + Ha(s)no (1.5)

As shown in (1.6), the Power Spectral Density (PSD) of the estimation error ®., depends both on the
norm of the two complementary filters and on the PSD of the noise sources ®,,, and ®,,,.

., (@) = [Hi(jw)|* @, (@) + [Ha(jw)|* @, (w) (1.6)

If the two sensors have identical noise characteristics (P, (w) = ®,,(w)), simple averaging (H;(s) =
Hj(s) = 0.5) would minimize the super sensor noise. This represents the simplest form of sensor fusion
using complementary filters.

However, sensors typically exhibit high noise levels in different frequency regions. In such cases, to
reduce the noise of the super sensor, the norm |H;(jw)| should be minimized when ®,, (w) exceeds
®,,,(w), and the norm |Hs(jw)| should be minimized when ®,,(w) exceeds ®,,(w). Therefore, by
appropriately shaping the norm of the complementary filters, the noise of the super sensor can be
minimized.

Sensor Fusion Robustness In practical systems, sensor normalization is rarely perfect, and condition
(1.3) is not fully satisfied.

To analyze such imperfections, a multiplicative input uncertainty is incorporated into the sensor dy-
namics (Figure 1.5a). The nominal model is the estimated model used for normalization G;(s), A;(s)
is any stable transfer function satisfying |A;(jw)| < 1, Vw, and w;(s) is a weighting transfer function
representing the magnitude of uncertainty. The weight w;(s) is selected such that the actual sensor
dynamics G;(jw) remains within the uncertain region represented by a circle in the complex plane,
centered on 1 with a radius equal to |w;(jw)].

Since the nominal sensor dynamics is taken as the normalized filter, the normalized sensor model can
be further simplified as shown in Figure 1.5b.
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Figure 1.5: Sensor models with dynamical uncertainty

The sensor fusion architecture incorporating sensor models with dynamical uncertainty is illustrated in
Figure 1.6a. The super sensor dynamics (1.7) is no longer unity but depends on the sensor dynamical
uncertainty weights w;(s) and the complementary filters H;(s). The dynamical uncertainty of the super
sensor can be graphically represented in the complex plane by a circle centered on 1 with a radius equal
to |wy (Jw)Hy (jw)| + |wa(jw)Ha(jw)| (Figure 1.6b).

The sensor fusion architecture with the sensor models including dynamical uncertainty is shown in
Figure 1.6a. The super sensor dynamics (1.7) is no longer equal to 1 and now depends on the sensor
dynamical uncertainty weights w;(s) as well as on the complementary filters H;(s). The dynamical



uncertainty of the super sensor can be graphically represented in the complex plane by a circle centered
on 1 with a radius equal to |w; (jw)H; (jw)| + |we(jw)Hz(jw)| (Figure 1.6b).
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Figure 1.6: Sensor fusion architecture with sensor dynamics uncertainty (a). Uncertainty region (b)
of the super sensor dynamics in the complex plane (grey circle). The contribution of both
sensors 1 and 2 to the total uncertainty are represented respectively by a blue circle and
a red circle. The frequency dependency w is here omitted.

The super sensor dynamical uncertainty, and consequently the robustness of the fusion, clearly depends
on the complementary filters’ norm. As it is generally desired to limit the dynamical uncertainty of
the super sensor, the norm of the complementary filter |H;(jw)| should be made small when |w;(jw)]| is
large, i.e., at frequencies where the sensor dynamics is uncertain.

1.3 Complementary Filters Shaping

As demonstrated in Section 1.2, both the noise characteristics and robustness of the super sensor are
functions of the complementary filters’ norm. Consequently, a synthesis method that enables precise
shaping of complementary filter norms would provide significant practical benefits. In this section, such
a synthesis approach is developed by formulating the design objective as a standard H., optimization
problem. The proper design of weighting functions, which are used to specify the desired complementary
filter shapes during synthesis, is discussed in detail. Finally, the efficacy of the proposed synthesis
method is validated through a simple example.

Synthesis Objective The primary objective is to shape the norms of two filters H;(s) and Hs(s) while
ensuring they maintain their complementary property as defined in (1.1). This is equivalent to finding
proper and stable transfer functions Hq(s) and H(s) that satisfy conditions (1.9a), (1.9b), and (1.9¢).
The functions Wi (s) and Ws(s) represent weighting transfer functions that are carefully selected to
specify the maximum desired norm of the complementary filters during synthesis.

10
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Shaping of Complementary Filters using H ., synthesis The synthesis objective can be readily ex-
pressed as a standard H ., optimization problem and solved using widely available computational tools.
Consider the generalized plant P(s) illustrated in Figure 1.7a and mathematically described by (1.10).

21 w Wi(s) —Wi(s)
zo| = P(s) { ] ;. P(s) = 0 Wal(s) (1.9)
U
v 1 0
P(s) P(s)
z z
El >(P)—>| W1 (s) > Z >(P)—>| W1 (s) >
U %) 29
> WQ(S) > > WQ(S) >
g
HQ(S) <
(a) Generalized plant (b) Generalized plant with the synthesized filter

Figure 1.7: Architecture for the Ho, synthesis of complementary filters

Applying standard H, synthesis to the generalized plant P(s) is equivalent to finding a stable filter
Hs(s) that, based on input v, generates an output signal u such that the H, norm of the system shown
in Figure 1.7b from w to [z1, 22] does not exceed unity, as expressed in (1.11).

<1 (1.10)

H(l — Ha(s)) Wi(s)
Hy(s)Wa(s)

o0

By defining H (s) as the complement of Ha(s) ((1.12)), the H, synthesis objective becomes equivalent
to (1.13), ensuring that conditions (1.9b) and (1.9¢) are satisfied.

Hi(s) 21— Hy(s) (1.11)
Hi(s)Wi(s)
“H2(S)W2(S) . <1 (1.12)

11



Therefore, applying H., synthesis to the standard plant P(s) ((1.10)) generates two filters, Ha(s) and
Hy(s) £ 1 — Hy(s), that are complementary as required by (1.9), with norms bounded by the specified
constraints in (1.9b) and (1.9¢).

It should be noted that there exists only an implication (not an equivalence) between the H., norm
condition in (1.13) and the initial synthesis objectives in (1.9b) and (1.9¢). Consequently, the optimiza-
tion may be somewhat conservative with respect to the set of filters on which it operates (see [43, Chap.
2.8.3]).

Weighting Functions Design Weighting functions play a crucial role during synthesis by specifying
the maximum allowable norms for the complementary filters. The proper design of these weighting
functions is essential for the successful implementation of the proposed H., synthesis approach.

Three key considerations should guide the design of weighting functions. First, only proper and stable
transfer functions should be employed. Second, the order of the weighting functions should remain
reasonably small to minimize computational costs associated with solving the optimization problem and
to facilitate practical implementation of the filters (as the order of the synthesized filters equals the sum
of the weighting functions’ orders). Third, the fundamental limitations imposed by the complementary
property ((1.1)) must be respected, which implies that |H;(jw)| and |H2(jw)| cannot both be made
small at the same frequency.

When designing complementary filters, it is typically desirable to specify their slopes, “blending” fre-
quency, and maximum gains at low and high frequencies. To facilitate the expression of these specifica-
tions, formula (1.14) is proposed for the design of weighting functions. The parameters in this formula
are Gy = lim,,_,o |W(jw)| (the low-frequency gain), Go, = lim,, 00 |W (jw)| (the high-frequency gain),
G. = |W(jw.)| (the gain at a specific frequency w,. in rad/s), and n (the slope between high and low fre-
quency, which also corresponds to the order of the weighting function). The typical magnitude response
of a weighting function generated using (1.14) is illustrated in Figure 1.8.
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Figure 1.8: Magnitude of a weighting function
generated using (1.14), Gy = 1073,
Goo =10, w. = 10Hz, G, =2, n = 3.

Validation of the proposed synthesis method The proposed methodology for designing complemen-
tary filters is now applied to a simple example. Consider the design of two complementary filters Hy(s)
and Hy(s) with the following requirements:

12



e The blending frequency should be approximately 10 Hz

e The slope of |H; (jw)| should be +2 below 10 Hz, with a low-frequency gain of 1073

e The slope of |Hs(jw)| should be —3 above 10 Hz, with a high-frequency gain of 10~3
The first step involves translating these requirements by appropriately designing the weighting functions.
The formula proposed in (1.14) is employed for this purpose. The parameters used are summarized in

Table 1.2. The inverse magnitudes of the designed weighting functions, which represent the maximum
allowable norms of the complementary filters, are depicted by the dashed lines in Figure 1.9.

T i B e
o 100 ,"\
el ¢
E /
Parameter Wi(s) Wa(s) éo ,/ \
\
Go 0.1 1000 < / \
1072 / — \
Goo 1000 0.1 S = H, \
We 2710 27 -10 - =Wl H, N
GC 0«45 0.45 1 1
n 2 3 10° 10?

Frequency [Hz]

Table 1.1: Parameters for Wi (s) and Wa(s) Figure 1.9: Weights and obtained filters

Standard Ho synthesis is then applied to the generalized plant shown in Figure 1.7a. This yields the
filter Hy(s) that minimizes the Ho norm from input w to outputs [z1, 22]T. The resulting Ho, norm is
found to be close to unity, indicating successful synthesis: the norms of the complementary filters remain
below the specified upper bounds. This is confirmed by the Bode plots of the obtained complementary
filters in Figure 1.9. This straightforward example demonstrates that the proposed methodology for
shaping complementary filters is both simple and effective.

1.4 Synthesis of a set of three complementary filters

Some applications require merging more than two sensors [37], [40]. For instance, at LIGO, three sensors
(an LVDT, a seismometer, and a geophone) are merged to form a super sensor [41].

When merging n > 2 sensors using complementary filters, two architectures can be employed as shown
in Figure 1.10. The fusion can be performed either in a “sequential” manner where n—1 sets of two com-
plementary filters are used (Figure 1.10a), or in a “paralle]” manner where one set of n complementary
filters is used (Figure 1.10D).

In the sequential approach, typical sensor fusion synthesis techniques can be applied. However, when a
parallel architecture is implemented, a new synthesis method for a set of more than two complementary
filters is required, as only simple analytical formulas have been proposed in the literature [37], [40]. A
generalization of the proposed complementary filter synthesis method is presented in this section.

The synthesis objective is to compute a set of n stable transfer functions [Hi(s), Ha(s), ...
that satisfy conditions (1.15a) and (1.15b).

s Hn(s)]

13



.'f?l T
—> > H L
Sensor 1 1(s) Brg [ Sensor 1 > Hi(s)
X + > Hi(s)
T xZo T T
> Sensor 2 > Hy(s) _50) i Sensor 2 5> Hy(s) >
T3 , &3
—>{ Sensor 3 > Hj(s) Sensor 3 > H3(s)
(a) Sequential fusion (b) Parallel fusion

Figure 1.10: Possible sensor fusion architecture when more than two sensors are to be merged

ZHi(s) =1 (1.14a)

i=1
|H;(jw)| < =, Yw,i=1...n (1.14b)
(Wi(jw)|
The transfer functions [Wi(s), Wa(s), ..., W,(s)] are weights selected to specify the maximum com-

plementary filters’” norm during synthesis.

This synthesis objective is closely related to the one described in Section 1.3, and the proposed synthesis
method represents a generalization of the approach previously presented. A set of n complementary
filters can be shaped by applying standard H., synthesis to the generalized plant P,(s) described by
(1.16).

Wy =W W
. w 0 W, 0 0
: U1 . oL . c. . c. . .
v Un—1 0 ... ... 0 W,
| 1 0 0 |
If the synthesis is successful, a set of n—1 filters [Ha(s), Hs(s), ..., Hy(s)] is obtained such that (1.17)

is satisfied.

Hy(s)Wa(s)
. <1 (1.16)

o0

H,(s) is then defined using (1.18), which ensures the complementary property for the set of n filters
(1.15a). Condition (1.15b) is satisfied through (1.17).

14



Hi(s) £1— [Ha(s) + Hs(s) + -+ Hp(s)] (1.17)

To validate the proposed method for synthesizing a set of three complementary filters, an example
is provided. The sensors to be merged are a displacement sensor (effective from DC up to 1Hz), a
geophone (effective from 1 to 10Hz), and an accelerometer (effective above 10Hz). Three weighting
functions are designed using formula (1.14), and their inverse magnitudes are shown in Figure 1.11b
(dashed curves).

Consider the generalized plant Ps(s) shown in Figure 1.11a, which is also described by (1.19).

zZ1 w Wl(s) —Wl(s) —Wl(S)
22 B 0 Wy (S) 0
23 P3(S) Zl ) PS(S) = 0 0 Wg(S) (118)
v 2 1 0 0
Ps(s)
w 21
W1 (S) > C
- N -
N~ ~
U]_ Z% 100 L > N\ N
Wy (8) > o 4 A3 g N \
: L/ NN
U9 z3 = % \" « N\
> Ws(s) > 0 . -
10 \ - =Wy !
= < w,
v ~ ‘W3‘71
~ H,
H, |%
Hj
Hy(s) 107 0 2
H (8) < 10 10
3 Frequency [Hz]
(a) Generalized plant with the synthesized filter (b) Weights and obtained filters

Figure 1.11: Architecture for the H., synthesis of three complementary filters (a). Bode plot of the
inverse weighting functions and of the three obtained complementary filters (b)

Standard H, synthesis is performed on the generalized plant Ps(s). Two filters, Ha(s) and Hs(s), are
obtained such that the Ho, norm of the closed-loop transfer from w to [z1, 22, z3] of the system in

Figure 1.11a is less than one. Filter H;(s) is defined using (1.20), thus ensuring the complementary
property of the obtained set of filters.

Hi(s) 21— [Ha(s) + Hs(s)] (1.19)

Figure 1.11Db displays the three synthesized complementary filters (solid lines), confirming the successful
synthesis.
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Conclusion

A new method for designing complementary filters using the H., synthesis has been proposed. This
approach allows shaping of the filter magnitudes through the use of weighting functions during synthesis.
This capability is particularly valuable in practice since the characteristics of the super sensor are directly
linked to the complementary filters’ magnitude. Consequently, typical sensor fusion objectives can be
effectively translated into requirements on the magnitudes of the filters.

For the Nano Active Stabilization System (NASS), the High Authority Control-Integral Force Feedback
(HAC-IFF) strategy was found to perform well and to offer the advantages of being both intuitive to
understand and straightforward to tune. Looking forward, it would be interesting to investigate how
sensor fusion (particularly between the force sensor and external metrology) compares to the HAC-IFF
approach in terms of performance and robustness.
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2 Decoupling

When dealing with MIMO systems, a typical strategy is to:

e First decouple the plant dynamics (discussed in this section)

e Apply SISO control for the decoupled plant (discussed in section 3)

Another strategy would be to apply a multivariable control synthesis to the coupled system. Strangely,
while H-infinity synthesis is a mature technology, it use for the control of Stewart platform is not yet

demonstrated. From [14]:

xperimental closed-loop control results using the hexapod have shown that controllers
designed using a decentralized single-strut design work well when compared to full

multivariable methodologies.

X Review of Decoupling Strategies for stewart platforms

[0 Add some citations about different methods

[0 Maybe transform table into text

Table 2.1: Litterature review about decoupling strategy for Stewart platform control

Actuators Sensors Control

APA Eddy current displacement Decentralized (struts) PI + LPF control

PZT Strain Gauge Decentralized position feedback

Piezo

Voice Force Cartesian frame decoupling

Coil

Voice Force Cartesian Frame, Jacobians, IFF

Coil

Hydraulic LVDT Decentralized (strut) vs Centralized (cartesian)

Voice Accelerometer (collocated), ext. Rx/Ry sensors Cartesian acceleration feedback (isolation) + 2DoF pointing control (external sens
Coil

Voice Accelerometer in each leg Centralized Vibration Control, PI, Skyhook

Coil

Voice Geophone + Eddy Current (Struts, collocated) Decentralized (Sky Hook) + Centralized (modal) Control

Coil

Piezoelectric Force, Position Vibration isolation, Model-Based, Modal control: 6x PI controllers
PZT Geophone (struts) H-Infinity and mu-synthesis

Voice Force sensors (struts) + accelerometer (cartesian) Decentralized Force Feedback + Centralized H2 control based on accelerometers
Coil

Voice Accelerometers MIMO H-Infinity, active damping

Coil

The goal of this section is to compare the use of several methods for the decoupling of parallel manip-

ulators.

It is structured as follow:
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2.1

Section 2.1: the model used to compare/test decoupling strategies is presented

Section 2.3: decoupling using Jacobian matrices is presented

Section 2.4: modal decoupling is presented

Section 2.5: SVD decoupling is presented

Section 2.6: the three decoupling methods are applied on the test model and compared

Conclusions are drawn on the three decoupling methods

Test Model

Instead of comparing the decoupling strategies using the Stewart platform, a similar yet much
simpler parallel manipulator is used instead

to render the analysis simpler, the system of Figure 2.1 is used

Fully parallel manipulator: it has 3DoF, and has 3 parallels struts whose model is shown in Figure
2.1b As many DoF as actuators and sensors

It is quite similar to the Stewart platform (parallel architecture, as many struts as DoF)

Two frames are defined:

o {M} with origin Ops at the Center of mass of the solid body

e {K} with origin O at the Center of mass of the parallel manipulator

Yy :
Bl

x

L [T T%'} """ ?
Il

H:ﬁl. ..... t{i{i _____

(a) Geometrical parameters (b) Strut model

Figure 2.1: 3DoF model used to study decoupling strategies

First, the equation of motion are derived. Expressing the second law of Newton on the suspended mass,
expressed at its center of mass gives
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Mun X oy () =Y Fran () (2.1)

with X (57} the two translation and one rotation expressed with respect to the center of mass and F
forces and torque applied at the center of mass.

T F,
Xomy= |y |, Foy=|Fy (2.2)
z MZ

In order to map the spring, damping and actuator forces to XY forces and Z torque expressed at the
center of mass, the Jacobian matrix Jysy is used.

1 0
Jay=10 1 —l, (2.3)
0 1

Then, the equation of motion linking the actuator forces 7 to the motion of the mass X ¢y is obtained.

Mun X () + ILn CIon X (n (1) + I KI o X (any () = J{, 7() (2.4)

Matrices representing the payload inertia as well as the actuator stiffness and damping are shown in

m 0 0 k00 c 00
Mun =10 m 0, K={0 k 0|, C=1{0 ¢ 0 (2.5)
0 0 I 00 k 00 ¢

Parameters used for the following analysis are summarized in table 2.2.

Table 2.2: Model parameters

Parameter Description Value
la 0.5m
he 0.2m
k Actuator stiffness 10 N/pm
c Actuator damping 200 Ns/m
m Payload mass 40 kg
I Payload rotational inertia 5 kgm?

2.2 Control in the frame of the struts

Let’s first study the obtained dynamics in the frame of the struts. The equation of motion linking
actuator forces T to strut relative motion L is obtained from (2.4) by mapping the cartesian motion of
the mass to the relative motion of the struts using the Jacobian matrix Jgyn (2.3) .

The transfer function from 7 to £ is shown in equation (2.6).

19



(Y

~|

{M} {M}

-1
Z(s) = Ge(s) = (J’T M Joh s +Cs + IC)

(2.6)

At low frequency the plant converges to a diagonal constant matrix whose diagonal elements are linked
to the actuator stiffnesses (2.7).

G.(jw) — K1
w—0

2.7)

At high frequency, the plant converges to the mass matrix mapped in the frame of the struts, which is
in general highly non-diagonal.

The magnitude of the coupled plant G is shown in Figure 2.2. This confirms that at low frequency
(below the first suspension mode), the plant is well decoupled. Depending on the symmetry in the
system, some diagonal elements may be equal (such as for struts 2 and 3 in this example).
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Figure 2.2: Magnitude of the coupled plant.
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2.3 Jacobian Decoupling

Jacobian Matrix As already explained, the Jacobian matrix can be used to both convert strut velocity
L to payload velocity and angular velocity X (o} and Convert actuators forces T to forces /torque applied

on the payload F oy (2.8).

S
X0y =Jioy £, L= X0
.’F{O} = JE-O}T’ T = J{_g}f{o}

The obtained plan (Figure 2.3) has inputs and outputs that have physical meaning:

e F (0o} are forces/torques applied on the payload at the origin of frame {O}

e X0y are translations/rotation of the payload expressed in frame {O}

—1
- —1
= G{O}(S) = (J{O}J{]J[}M{M}J{M}J{O}Sz + J{O}CJ{O}S + JEO}KJ{O})

(2.9)

The frame {O} can be any chosen frame, but the decoupling properties depends on the chosen frame
{O}. There are two natural choices: the center of mass {M} and the center of stiffness { K'}. Note that
the Jacobian matrix is only based on the geometry of the system and does not depend on the physical

properties such as mass and stiffness.

Center Of Mass If the center of mass is chosen as the decoupling frame. The Jacobian matrix and

its inverse are expressed in (2.10).

1 0 h, 1 1 2= —2?;
J{M}: 0 1 *la 5 J{M}: O 3 ?
01 I, 0 % T
Gimy
Fomy of P cl . ' Xon
H T Gey Ton o
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Analytical formula of the plant is (2.11).

Xy
F vy

—1
(s) = G{M}(S) = (M{M}52 + JE-M}CJ{M}S + JEM}K:J{M}> (2.11)

At high frequency, converges towards the inverse of the mass matrix, which is a diagonal matrix (2.12).

1/m 0 0
G (jw) — = —w2M{_A}[} =—w?| 0 1/m 0 (2.12)
0 0 1/I

Plant is therefore well decoupled above the suspension mode with the highest frequency. Such strategy
is usually applied on systems with low frequency suspension modes, such that the plant corresponds to
decoupled mass lines.

O Reference to some papers about vibration isolation or ASML?

The coupling at low frequency can easily be understood physically. When a static (or with frequency
lower than the suspension modes) force is applied at the center of mass, rotation is induced by the
stiffness of the first actuator, not in line with the force application point. this is illustrated in Figure
2.4b.

10741
o AI‘
% oo —=
= -
o0
<
= D iy /M gary
10-8 R. oy Fo oy
_DT{M}/FI,{\I}
— D:A/-{M}/F;/V{M}
R. o /M.y
10710 -

100 10! 10? 10°
Frequency [Hz]

(a) Dynamics at the CoM (b) Static force applied at the CoM

Figure 2.4: Plant decoupled using the Jacobian matrix expresssed at the center of mass (a). The
physical reason for low frequency coupling is illustrated in (b).

Center Of Stiffness
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1 0 1 0 0
—1 1 1

J{K} =10 1 —-I,|, J{K} = |0 §1 ? (2.13)
0 1 a 0 T

Frame {K} is chosen such that J{TK}ICJ{ K} is diagonal. Typically, it can me made based on physical
reasoning as is the case here.

Xk - -
L) = Gy (s) = (T Ty Mian Iy Ty 8° + T € ys + Il Koy ) (2.14)

Plant is well decoupled below the suspension mode with the lowest frequency. This is usually suited for
systems which high stiffness.

. _1 71 —
The physical reason for high frequency coupling is schematically shown in Figure 2.5b. At high fre-

quency, a force applied on a point which is not aligned with the center of mass. Therefore, it will induce
some rotation around the center of mass.

10741
<
= 1076
=
g
&0
]
e
1078 p :
A==—=D. (x1/Fu iy D, iy /M. ik}
— Dy iy / Fy (1 R/ Foqy N
R, (xy/M. sy
10710 :

10° 10! 10? 10°
Frequency [Hz]

(a) Dynamics at the CoK (b) High frequency force applied at the CoK

Figure 2.5: Plant decoupled using the Jacobian matrix expresssed at the center of stiffness (a). The
physical reason for high frequency coupling is illustrated in (b).

2.4 Modal Decoupling

e A mechanical system consists of several modes:

— Modal decomposition [51]
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he physical interpretation of the above two equations is that any motion of the
system can be regarded as a combination of the contribution of the various
modes.

— Mode superposition [2], [52, chapt. 2]

e The idea is to control the system in the “modal space” [53] IFF in modal space [54] very interesting
paper [5]

My X oy (8) + Con X (any () + K (ary X 1y (8) = [y, 7(8) (2.16)

Let’s make a change of variables:
Xy =X, (2.17)

with:
e X, the modal amplitudes

e & a matrix whose columns are the modes shapes of the system which can be computed from
M{M} and K{JVI}~

By pre-multiplying the equation of motion (2.16) by ®T and using the change of variable (2.17), a new
set of equation of motion are obtained

PTMPX,,(t)+PTCP X, (1) + BTKPX,,(t) = BTIT7() (2.18)
\7\4,—/ \?H \7(,—/ \ ,
m m m .,-m(t)

e T, is the modal input

e M,,, C,, and K,, are the modal mass, damping and stiffness matrices

Orthogonality of normal modes gives that the “the modal vectors uncouple the equations of motion
making each dynamic equation independent of all the others” [55]. The modal matrices are diagonal.

In order to implement such modal decoupling from the decentralized plant, architecture shown in Figure
2.6 can be used. The dynamics from modal inputs 7, to modal amplitudes X, is fully decoupled.

Figure 2.6: Modal Decoupling Architecture

Modal decoupling requires to have the equations of motion of the system. From the equations of motion
(and more precisely the mass and stiffness matrices), the mode shapes ® are computed.

Then, the system can be decoupled in the modal space. The obtained system on the diagonal are second
order resonant systems which can be easily controlled.
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Using this decoupling strategy, it is possible to control each mode individually.
O Do we need to measure all the states? I think so
[0 Say that the eigen vectors are unitary Are they orthogonal?

[0 Say that the obtained plant are second order systems

Example From the mass matrix M/, and stiffness matrix Ky, expressed at the center of mass,

the eigenvectors of M{_A}[}K{ M) are computed.

m 0 0 k0 0
0 0 I 0 0 k
Obtained
I-h2m—21>m—a 0 I—-h?m—21>m+ta
2hg 2ha
P = 0" 1 o , = \/(I+m(h§ — 212)) 4 8m2h212 (2.20)
1 0 1

It may be very difficult to obtain eigenvectors analytically, so typically these can be computed numeri-
cally.

For the present test system, obtained eigen vectors are

Eigenvectors are arranged for increasing eigenvalues (i.e. resonance frequencies).

—0.905 0 —0.058 —~1.075 0 0.063
o= 0 1 0 |, ¢ '= 0 1 0 (2.21)
0424 0 —0.998 —0.457 0 —0.975

O Formula for the plant transfer function

2.5 SVD Decoupling

Singular Value Decomposition Singular Value Decomposition (SVD)
e Introduction to SVD [56, chapt. 1]

e Singular value is used a lot for multivariable control [43]. Used to study directions in multivariable
systems.
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Figure 2.7: Plant using modal decoupling consists of second order plants (a) which can be used to
control separately different modes (b)

The SVD is a unique matrix decomposition that exists for every complex matrix X € C**™,

X =UxVv# (2.22)

where U € C"*" and V € C™*"™ are unitary matrices with orthonormal columns, and 3 € R™*" is a
diagonal matrix with real, non-negative entries on the diagonal.

If the matrix X is a real matrix, the obtained U and V matrices are real and can be used for decoupling
purposes.

The idea to use Singular Value Decomposition as a way to decouple a plant is not new

O Quick review of SVD controllers [43, chapt. 3.5.4]

Decoupling using the SVD Procedure: Identify the dynamics of the system from inputs to outputs
(can be obtained experimentally) Frequency Response Function, which is a complex matrix obtained
for several frequency points G(w;).

Choose a frequency where we want to decouple the system (usually, the crossover frequency w,. is a
good choice)

As real V and U matrices need to be obtained, a real approximation of the complex measured response
needs to be computed. Compute a real approximation of the system’s response at that frequency. [57]:

real matrix that preserves the most orthogonality in directions with the input complex matrix

Then, a real matrix G(w,) is obtained, and the SVD is performed on this real matrix. Unitary U and
V matrices are then obtained such that V-TG(w.)U ! is diagonal.

Use the singular input and output matrices to decouple the system as shown in Figure 2.8
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Gsvp(s) = U_IG{L} (s)VT (2.23)

Figure 2.8: Decoupled plant Gsyp using the Singular Value Decomposition

In order to apply the Singular Value Decomposition, we need to have the Frequency Response Function
of the system, at least near the frequency where we wish to decouple the system. The FRF can be
experimentally obtained or based from a model.

This method ensure good decoupling near the chosen frequency, but no guaranteed decoupling away
from this frequency.

Also, it depends on how good the real approximation of the FRF is, therefore it might be less good for
plants with high damping.

This method is quite general and can be applied to any type of system. The inputs and outputs are
ordered from higher gain to lower gain at the chosen frequency.

[0 Do we loose any physical meaning of the obtained inputs and outputs?

O Can we take advantage of the fact that U and V are unitary?

Example
—99 — j2.6  T4+j42  —T4d—j4.2
Gioy(we) =107 | 744542  —247—59.7 102+ j7.0
—74— 4§42 102+ 470 —247 —j9.7
—99 T4 T4

real

—— s Gy = 1077 | T4 247 102 (2.24)
approximation —74 102 _247
034 0 094 —034 0 —0.94
- s U=1|-066 071 024 |,V =1_066 -071 —024
SVD 0.66 0.71 —0.24 ~0.66 —0.71 0.24

Once the U and V matrices are obtained, the decoupled plant can be computed using (2.25).

Gsvp(s) =U Gy (s)V T (2.25)

The obtained plant shown in Figure 2.9 is very well decoupled. and not only around w.. On top of
that, the diagonal terms are second order plants.

[0 Do we have something special when applying SVD to a collocated MIMO system? As shown
in Figure 2.2, the plant is symmetrical. Paper by Skogestad mention that. “symmetric circular
plants” [58]
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Figure 2.9: Svd plant G,,(s)

A second system, identical to the first in terms of dynamics. Just the sensor are changed. Instead
of having relative motion sensors in the frame of the struts, three relative motion sensors are used as
shown in Figure 2.10a. Using Jacobian matrices, it is possible to compute the relative motion of each
struts. So theoretically, it should be possible to control both systems the same way.

However, when applying the same SVD decoupling, plant of Figure 2.10b is obtained. It has much more
coupling. It is interesting to note that the coupling have local minimum near the chosen decoupling
frequency. This is very logical as the decoupling matrices were computed from the plant response at
that particular frequency.
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(a) Alternative location of sensors (b) Obtained decoupled plant

Figure 2.10: Application of SVD decoupling on a system schematically shown in (a). The obtained
decoupled plant is shown in (b).
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2.6 Comparison of decoupling strategies

The three proposed methods may seem very similar as each of them consists of pre-multiplying and
post-multiplying the plant with constant matrices. However, the three methods also differs by a number
of points which are summarized in Table 2.3.

However, each method is quite different in terms of approach, and have different pros and cons.

e Comparison of the three proposed methods
e Different “approach” for the three methods:
— Jacobian is based on geometry
— Modal decoupling is based on dynamical equations
— Singular Value Decoupling is based on measured frequency response function
e Depending on the decoupling method, the physical interpretation of inputs and outputs:

— With Jacobian decoupling, the inputs and outputs can be easily interpreted physically. In-
puts correspond to force/torques applied on a particular frames Outputs corresponds to
translation and rotations expressed on a particular frame

— With modal decoupling, inputs are arranged to excite individual modes. By doing a modal
analysis (using a FEA for instance) it can be understood how actuator forces are combined
to individually excite the different modes. Similarly, the outputs are combined to measure
the different modes separately.

— For singular value decomposition, inputs (resp. outputs) are special directions that are
ordered from maximum to minimum controllability (resp. observability), at the chosen fre-
quency. For plants such as parallel manipulators, it is difficult to have a physical interpreta-
tions of the decoupled plants inputs and outputs.

O It is really linked to controllability? (add reference about that)
e Decoupling quality:

— Jacobian: depending on the choice of frame, the plant may be well decoupled at low frequency
(Center of Stiffness) or at high frequency (Center of Mass). If the system is designed to have
both the CoK and the CoM at the same point, the use of Jacobian matrices may lead to
excellent decoupling.

— Modal: good decoupling is obtained for all frequencies. However, this is based on a model of
the plant, and differences between the model and the physical implementation may lead to
large off-diagonal elements. Diagonal elements are expected to be simple 2nd order low pass
filters, which are easy to control.

— SVD: as the decoupling matrices can be computed based on measured data, no model is

required. Decoupling is expected to be good near the frequency chosen for computing the
decoupling matrices, but may depend on how good the real approximation of the plant is for
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that particular frequency. Whether the decoupling quality can be guaranteed away from the
chosen frequency is unknown.

e “Frame” of the controllers: important to be able to tuned the controllers linked to performance

metrics

There are other aspects that were not treated here such as:

e how to integrate feedforward path and reference signals

Table 2.3: Comparison of decoupling strategies

Jacobian Modal SVD
Philosophy Topology Driven Physics Driven Data Driven
Requirements Known geometry Known equations of motion Identified FRF

Decoupling Matrices

Decoupling using J(o} ob-
tained from geometry

Decoupling using ® obtained
from modal decomposition

Decoupling using U and V' ob-
tained from SVD

Decoupled Plant

Goy(s) = J(5,Gc()I ],

Gn(s) =@ 'Gx(s)® T

Gsvp(s) =U'G(s)V™T

Controller Koy(s) = J{—J}Kd(s)J;g) K (s)=® TKy(s)® ! Ksvp(s) = V TKy(s)U!
Interpretation Forces/Torques to Displace- Inputs to excite individual Directions of max to min con-
ment/Rotation in  chosen  modes trollability /observability
frame
Output to sense individual
modes
Properties Decoupling at low or high fre- Good decoupling at all fre- Good decoupling near the cho-
quency depending on the cho- quencies sen frequency
sen frame
Pros Physical inputs / outputs Target specific modes Good Decoupling near the
crossover
Good decoupling at High fre- 2nd order diagonal plant Very General
quency (diagonal mass matrix
if Jacobian taken at the CoM)
Good decoupling at Low fre-
quency (if Jacobian taken at
specific point)
Easy integration of meaningful
reference inputs
Cons Coupling between force/rota-  Need analytical equations Loose the physical meaning of
tion may be high at low fre- inputs /outputs
quency (non diagonal terms in
K)
Limited to parallel mecha- Decoupling depends on the
nisms (7) real approximation validity
If good decoupling at all fre- Diagonal plants may not be
quencies =; requires specific easy to control
mechanical architecture
Applicability Parallel Mechanisms Systems whose dynamics that Very general

Only small motion for the Ja-
cobian matrix to stay constant

can be expressed with M and
K matrices

Need FRF data (either experi-
mentally or analytically)

Conclusion about NASS:
e Prefer to use Jacobian decoupling as we get more physical interpretation
e Also, it is possible to take into account different specifications in the different DoF as the control
is in a “frame” which corresponds to the specifications. For active damping however, it may be

reasonable to work in the modal space as different damping may be applied to different modes
[54].
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3 Closed-Loop Shaping using Complementary
Filters

Once the system is properly decoupled using one of the approaches described in Section 2, a diagonal
controller can be tuned. This consists in tuning several SISO controllers. There are several ways to
design a controller to obtain a given performance while ensuring good robustness properties.

Performances of a feedback system (such as response time, disturbance rejection, ) depends on the
obtained closed-loop transfer functions. For instance sensitivity, transmissibility, etc... Gang of Four.
The specifications can usually be expressed in terms of the shape of these closed-loop transfer functions
[43, chapt. 3].

In some cases, “fixed” controller structures are used, with as PI and PID controllers. In such case the
controller coefficients are manually tuned to obtain acceptable performance and robustness. In many
cases, PID4+LPF can already lead to performances close to optimal, depending on the plant.

Decoupled Open-Loop Shaping:

e Explain procedure when applying open-loop shaping schmidt20’desig high ' perfor'mechat third revis’edition
steinbuch16 'model based

he key idea of loop-shaping is the modification of the controller such that the
open- loop is made according to specifications. The reason this works so well, is
that the controller enters linearly into the open-loop transfer 1(j!) = g(GHk(j!),
so that it is fast and easy to reason what is to be changed in the controller.
However, in practice all specifications are of course given in terms of the final
system performance, i.e. as closed-loop specifications. So we should convert the
closed loop specs into specs on the open-loop.

e The controller is usually manually tuned using a series of Integrators, Leads, Lags, Notches, low
pass filters

e There are lots of tools to check stability, robustness margins and performances

e Open-Loop shaping is very popular as the open-loop gain depends linearly on the controller. So
the open-loop transfer function can easily be shaped by modifying the controller response.

e Different techniques for open loop shaping (choice of optimal open-loop gain shape) [60]
e But this is open-loop shaping, and it does not directly work on the closed loop transfer functions

e The huge advantage of this technique, is that one can tune the controllers based on the measured
FRF of the system. No plant model is required.
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e This is what was done during the conceptual phase after the plan was decoupled in the frame of
the struts.

Model based control:

e Review of model based design (LQG, H-Infinity) applied to Stewart platform Multivariable Control
loop-shaping [43].

e Difficulty to specify robustness to change of payload mass
e Requires high level of expertise. Far from standard in industry. Application to Stewart platforms
is not demonstrated (or performance increased compared to decoupled control and manual loop
shaping).
In this section, an alternative controller synthesis scheme is proposed in which complementary filters are
used for directly shaping the closed-loop transfer functions. In this paper, we propose a new controller
synthesis method
e based on the use of complementary high pass and low pass filters

e inverse based control

e direct translation of requirements such as disturbance rejection and robustness to plant uncertainty

3.1 Control Architecture

Virtual Sensor Fusion Let’s consider the control architecture represented in Figure 3.1 where G’ is
the physical plant to control, G is a model of the plant, k is a gain, H; and Hy are complementary
filters (Hp(s) + Hu(s) = 1). The signals are the reference signal r, the output perturbation d,, the
measurement noise n and the control input .

RT controller d
[ e s s st 1 Y
r 1 Yy
—)@—) k > & —>
—A Y

Figure 3.1: Sensor Fusion Architecture

The dynamics of the closed-loop system is described by (3.1) with L = k(GHy + G'Hp).
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14+ kGHy kG kG'H,

_ 1
1+ Wit 1L (3.12)
KH) k kH,
- _ d — .1b
iy s U T (3.1b)

The idea of using such architecture comes from sensor fusion [26], [61] where two sensors are used. One
is measuring the quantity that is required to control, the other is collocated with the actuator in such a
way that stability is guaranteed. The first one is low pass filtered in order to obtain good performance at
low frequencies and the second one is high pass filtered to benefits from its good dynamical properties.

Here, the second sensor is replaced by a model G of the plant which is assumed to be stable and minimum
phase. This lead to the idea of virtual sensor fusion presented in verma20’virtual'sensor ' fusion"high'precis’contr.

One may think that the control architecture shown in Figure 3.1 is a multi-loop system, but because
no non-linear saturation-type element is present in the inner-loop (containing k, G and Hpy which are
all numerically implemented), the structure is equivalent to the architecture shown in Figure 3.2.

Y<

Hy < G 1

Figure 3.2: Equivalent feedback architecture

The dynamics of the system can be rewritten (3.2) with K = &

1+HyGk*®
1 G'K G'KH;
= d — 3.2
VErrorm Y T irorE,  1r0KH," (3.22)
_KH K KH
Ly + L (3.2b)

YTIYGKH, 1+ G'KH,  1+GKH,"

Asymptotic behavior Let’s take the extreme case of very high values for k. In that case K (s) converges
to plant inverse multiply by the inverse of the high pass filter (3.3).

. . k -1
Jim K(s) = Jim T Ha(5)C(o)k (Hu(s)G(s)) (3.3)

If the obtained K is improper, a low pass filter can be added to have its causal realization. Also, we
want K to be stable, so G and Hy must be minimum phase transfer functions.

With this assumptions, the resulting control architecture is shown on Figure 3.3. The only “tuning
parameters” are the complementary filters Hy, and Hy.
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The equations describing the dynamics of the closed-loop system of Figure 3.3

_ Hpdy + G'GYr—G'G 'Hin
o Hyg+G'G-1Hj,
B —G'Hpdy+G 'r—G 'Hrn

- 4
Y Hy + G'G—1H,, (3.4b)

(3.4a)

At frequencies where the model is accurate: G~ 'G' ~ 1, Hy + G'G™'H; ~ Hy + H;, = 1 and the
closed loop transfer functions are described by (3.5).

y = Hpdy +r —Hpn (3.5a)
uw=—-G 'Hydy+G 'r—G 'Hyn (3.5b)

The obtained sensitivity transfer function equals to the high pass filter S = % = Hpy and the trans-
missibility transfer function equals to the low pass filter T'= £ = H.

Assuming that we have a good model of the plant, we have then that the closed-loop behavior of the
system converges to the designed complementary filters.

3.2 Translating the performance requirements into the shapes of
the complementary filters

The required performance specifications in a feedback system can usually be translated into requirements
on the upper bounds of |S(jw)| and |T(jw)| [62]. The process of designing a controller K (s) in order
to obtain the desired shapes of |S(jw)| and |T'(jw)| is called closed-loop shaping.

The equations (3.41a) and (3.4b) describing the dynamics of the studied feedback architecture are not
written in terms of the controller K(s) but in terms of the complementary filters Hy (s) and Hg(s).
The typical specifications are then translated into the desired shapes of the complementary filters.

Nominal Stability (NS) The closed-loop system is stable if all its elements are stable (K, G’ and
Hp) and if the sensitivity function (S = m) is stable. For the nominal system (G’ = G), the
sensitivity transfer function is equal to the high pass filter: S(s) = Hp(s).
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Nominal stability is then guaranteed if H;,, Hy and G are stable and if G and Hy are minimum phase
(to have K stable). Therefore stable and minimum phase complementary filters need to be used.

Nominal Performance (NP) Two performance weights wy and wy, are here defined in such a way
that performance specifications are satisfied is (3.6) is satisfied.

lwg (jw)S(jw)| <1 Vw (3.6a)
|lwr,(jw)T(jw)| <1 Vw (3.6b)

For the nominal system, we have S = Hy and T = Hj,, and then nominal performance is ensured by
requiring (?7).

lwr (jw)Hy(jw)| <1 Vw (3.7)

NP {wLumHL(jwn <1 W (3.8)

The translation of typical performance requirements on the shapes of the complementary filters is
discussed below:

e for disturbance rejections, make |S| = |Hpy| small
e for noise attenuation, make |T| = |Hp| small

e closed-loop bandwidth can be limited by requiring that |T'| is less than % above the maximum

wanted bandwidth

Therefore, by properly choosing the shape of the complementary filters, the nominal performance spec-
ifications can be addressed.

Classical stability margins (gain and phase margins) can also be linked to the maximum amplitude of
the sensitivity transfer function.

O Add reference
Typically, having |S|. < 2 guarantees a gain margin of at least 2 and a phase margin of at least 29°.
Response time to change of reference signal For the nominal system, the model is accurate and
the transfer function from reference signal r to output y is 1 (3.5a) and does not depends of the
complementary filters.

However, one can add a pre-filter as shown in Figure 3.4.

The transfer function from y to r becomes £ = K, and K, can we chosen to obtain acceptable response
to change of the reference signal. Typically, K, is a low pass filter of the form

(3.9)

with 7 corresponding to the desired response time.
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Figure 3.4: Prefilter used to limit input usage

Input usage Input usage due to disturbances d, and measurement noise n is determined by ’dl’ =
Y

|“| = |G~*HL|. Thus it can be limited by setting an upper bound on |Hp|.

Input usage due to reference signal r is determined by |%‘ = ‘G_1K7.| when using a pre-filter (Figure
3.4) and |%| = |G™!| otherwise.

Proper choice of | K| is then useful to limit input usage due to change of reference signal.

Robust Stability (RS) Robustness stability represents the ability of the control system to remain
stable even though there are differences between the actual system G’ and the model G that was used
for the design of the controller. These differences can have various origins such as unmodelled dynamics
or non-linearities.

To represent the differences between the model and the actual system, the input multiplicative uncer-
tainty as represented in Figure 3.5a is used.

Then, the set of possible plant is described by (3.10). w; should be chosen such that all possible plants
G’ are contained in the set II;.

IL: G'(s) =G(s)(L+wr(s)Ar(s));  |Ar(jw)| <1 Vw (3.10)
ImA Re
[ T T e e e e 1
1 G/
' |-> wr > Ay 1
1 1
: %—» G >
p 1 [wr (jwo)L(jwo)]
(a) Input multiplicative uncertainty (b) Nyquist plot - Effect of multiplicative uncertainty

Figure 3.5: Input multiplicative uncertainty to model the differences between the model and the phys-
ical plant (a). Effect of this uncertainty is displayed on the Nyquist plot (b)

Considering input multiplicative uncertainty, the robust stability property can be derived graphically

from the Nyquist plot (Figure 3.5b), and (3.11) is obtained, as proposed in [43, chapt. 7.5.1].

RS <= |wi(jw)L(jw)| <1+ L{jw)|  Vw (3.11)
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After some algebraic manipulations, robust stability is then guaranteed by having the low pass filter
Hj, satisfying (3.12).

| RS <= [ws(jw) HL(jw)] <1 Vo (3.12)

Robust Performance (RP) Robust performance is a property for a controlled system to have its
performance guaranteed even though the dynamics of the plant is changing within specified bounds.

For robust performance, we then require to have the performance condition valid for all possible plants
in the defined uncertainty set (3.13).

RP < |wy (jw)S(jw)| <1 VG €ll;, Yw (3.13)

Let’s transform condition (3.13) into a condition on the complementary filters (3.14).

[RP = [wn(je) Hp (juo)| + [wr(je) Hy (ju)| < 1, Vo | (3.14)

Obtained condition for robust performance combines both the NP and RS conditions. If both NP and
RS conditions are fulfilled, the robust performance will be fulfilled with a factor 2 [43, chapt. 7.6].
Therefore, for SISO systems, robust stability and nominal performance are usually sufficient.

3.3 Complementary filter design

As was explained in Section 1, complementary filters can easily be shaped with the standard H.
synthesis. As requirements can usually be expressed as upper bounds on the complementary filters’
magnitude, this method is very well suited.

However, analytical formulas for complementary filters may also be used.

For some applications, first order complementary filters (3.15) are sufficient.

Hp(s) = Trom (3.15a)
Hp(s) = 11:7@ (3.15h)

They can be expressed analytically in the digital domain using the Bilinear transformation. In such
case, digital filters (3.16) are obtained.
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The main advantage of having analytical formulas for the complementary filters is that the parameter
wp may be modified in real time. This is illustrated in Figure 3.6. Therefore, the performance and
robustness of different control bandwidth can be tested very quickly.

RT controller

-1
HH
A

Wy —

Y
Hi |«

Y
“

Figure 3.6: Implemented digital complementary filters with parameter wg that can be changed in real
time

For many applications, slope of +2 is wanted at low frequency for the sensitivity transfer function (to
follow ramp inputs for instance), and a slope of —2 for the complementary sensitivity transfer function.
In that case, complementary filters shown in equation (3.17) are proposed.

B (I+a)(5)+1 N

Hrle) = ((j—o) + 1) ((wio)z +a(s)+ 1) (3170)

Hy(s) = G ((“’%) i a) (3.17b)
(@) (@7 +atz) +1) |

The effect of @ and wy and the obtained shape of the complementary filters is shown in Figure 3.7.
Such filters can also be implemented in the digital domain with analytical formulas, such as a and wy
can be changed in real time.

3.4 Numerical Example

Procedure In order to apply this control technique, we propose the following procedure:
1. Identify the plant to be controlled in order to obtain the plant model G
2. Design the weighting function wy such that all possible plants G’ are contained in the set II;

3. Translate the performance requirements into upper bounds on the complementary filters (as ex-
plained in Section 3.2)
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Figure 3.7: Shape of proposed analytical complementary filters. Effect of a (a) and wp (b) are shown.

4. Design the weighting functions wy and wy, and generate the complementary filters using H .,-synthesis
(as was explained in Section 1.3). If the synthesis fails to give filters satisfying the upper bounds
previously defined, either the requirements have to be reworked or a better model G that will
permits to have a smaller w; should be obtained. For simple cases, analytical formulas of com-
plementary filters given in Section 3.3 can be used.

5. 1f K(s) = (G(s)Hp(s))™" is not proper, low pass filters should be added high a high corner
frequency

Plant
e To test this control architecture, a simple test model is used (Figure 3.8a).

e This model is quite similar to many positioning stages for Synchrotrons. A payload (i.e. sample)
with mass m = 5 is positioned on top of the stage. The goal is to position the sample with
respect to the x-ray. It is supposed that the relative position y between the payload an the x-
ray is measured (typically the relative position between the focusing optics and the sample is
performed). There are some disturbance forces acting on the positioning stability, such as stage
vibration d,, and direct forces applied on the sample dg (for instance cable forces). The positioning
stage itself has a stiffness k, an internal damping ¢ and the force F' can be controlled.

The model of the plant G(s) from actuator force F' to displacement y is then

1

Gls) = ms2 +cs+ k

(3.18)

The values for the parameters of the models are m = 20kg, k = IN/um and ¢ = 10°N/(m/s).
The plant dynamics has some uncertainty related to the limited support compliance, unmodeled flexible

dynamics, dynamics of the payload, etc. A multiplicative input uncertainty weight wy(s) is used to
specify the amount of uncertainty as a function of frequency (3.19).
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(s + 100)2

(s +1000)2 (3.19)

wI(s) =

The nominal plant dynamics as well as the entire set of possible plants II; are shown in Figure 3.8b.

Magnitude [m/N]
=

Payload X-ray 1078
dFl m Yy 'go‘ 0 4
o 90f 1
= -180}
k F &~ -270 - -
Adu 10° 10! 10? 108
we Frequency [Hz]
(a) Test model (b) Bode plot of G(s) and associated uncertainty set

Figure 3.8: Schematic of the test system (a). Bode plot of the transfer function G(s) from F to y and
the associated uncertainty set (b).

Requirements and choice of complementary filters As explained in Section 3.2, nominal performance
requirements can be expressed as upper bounds on the complementary filter shapes.

e Be able to follow ramp inputs (i.e. constant velocity scans) with no steady-state tracking error.
This requires to have a +2 slope at low frequency for |S(jw)]

e Filter the measurement noise above 300Hz as the sensor noise is high (say a filtering factor of 100
is needed above that frequency).

e As much disturbance rejection as possible.

The second requirement is to have robust stability meaning that the plant should remain stable while
considering the dynamical uncertainties modelled with w;y

e The low-pass complementary filter magnitude |Hp,(jw)| should be bellow the inverse magnitude
of the uncertainty weight magnitude |wy(jw)| (3.12)

Robust performance is ensured by simultaneous NP and RS.
All the requirements on Hy, and Hy are represented on Figure 3.9a.

While the H., synthesis of complementary filters could be used, for this simple examples with simple
requirements, analytical formulas of complementary filters were used.
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Figure 3.9: Performance requirement and complementary filters used (a). Obtained controller from
the complementary filters and the plant inverse is shown in (b).

For this simple example, analytical formulas proposed to have +2 and -2 slopes (3.17) were used. o =1
and wop = 27 - 20 were used.

Controller analysis The controller to be implemented is K(s) = G~*(s)Hp"'(s), with G~(s) is the
plant inverse which needs to be stable and proper. Therefore, some low pass filters are added at high

frequency (3.20).

~_ ms? +es+k
G l(s) = 5 (3.20)

L+ 271'-;000 + (2ﬂ<i§000)

The obtained bode plot of the controller times the complementary high pass filter is shown in Figure

3.9b.
e two integrators are present at low frequency to be able to follow ramp inputs
e a notch is located at the plant resonance (inverse)

e a lead is added near the bandwidth around 20 Hz

Robustness and Performance analysis The robust stability can be access on the Nyquist plot (Figure
3.10a). Even when considering all the possible plants in the uncertainty set, the nyquist plot stays away
from the unstable point, indicating good robustness.

The performance is evaluated by looking at the closed-loop sensitivity and complementary sensitivity
transfer functions (Figure 3.10b).
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Figure 3.10: Validation of Robust stability with the Nyquist plot (a) and validation of the nominal
and robust performance with the magnitude of the closed-loop transfer functions (b)

Conclusion

[0 Say that the presented control architecture in this section No ambition to overcome fundamental
limitations of current architectures. Very similar to Internal Model Control saxenal2’advan’inter ' model’'contr’t
Had no time to proceed to an extensive literature review to find similar control architecture and
to compare them. Whether the propose architecture has advantages compared to already excising
architecture in the literature is not clear.

[0 The control architecture was presented for a SISO system, but can be applied to MIMO if decou-
pling is sufficient. It will be experimentally demonstrated with the NASS.

[0 Discuss how useful it is as the bandwidth can be changed in real time with analytical formulas
of second order complementary filters. Maybe make a section about that. Maybe give analytical
formulas of second order complementary filters in the digital domain?

0 Disadvantages:

— not optimal

— computationally intensive?

— lead to inverse control which may not be wanted in many cases. Add reference.
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