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When controlling a MIMO system (specifically parallel manipulator such as the Stewart platform?)

□ Should the quick review of Stewart platform control be here? In that case it should be
possible to highlight three areas:

– use of multiple sensors

– decoupling strategy

– control optimization

Several considerations:

• Section 1: How to most effectively use/combine multiple sensors

• Section 2: How to decouple a system

• Section 3: How to design the controller
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1 Multiple Sensor Control

The literature review of Stewart platforms revealed a wide diversity of designs with various sensor
and actuator configurations. Control objectives (such as active damping, vibration isolation, or precise
positioning) dictate specific sensor configurations. The selection between inertial sensors, force sensors,
or relative position sensors is primarily determined by the system’s control requirements.

In cases where multiple control objectives must be achieved simultaneously, as is the case for the
Nano Active Stabilization System (NASS) where the Stewart platform must both position the sample
and provide isolation from micro-station vibrations, combining multiple sensors within the control
architecture has been demonstrated to yield significant performance benefits. From the literature, three
principal approaches for combining sensors have been identified: High Authority Control-Low Authority
Control (HAC-LAC), sensor fusion, and two-sensor control architectures.
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Figure 1.1: Different control strategies when using multiple sensors. High Authority Control / Low
Authority Control (a). Sensor Fusion (c). Two-Sensor Control (b)

The HAC-LAC approach, implemented during the conceptual phase, employs a dual-loop control strat-
egy in which two control loops utilize different sensors for distinct purposes (Figure 1.1a). In [4],
vibration isolation is provided by accelerometers collocated with the voice coil actuators, while ex-
ternal rotational sensors are utilized to achieve pointing control. In [1], force sensors collocated with
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the magnetostrictive actuators are used for active damping using decentralized IFF, and subsequently
accelerometers are employed for adaptive vibration isolation. Similarly, in [3], piezoelectric actuators
with collocated force sensors are used in a decentralized manner to provide active damping while ac-
celerometers are implemented in an adaptive feedback loop to suppress periodic vibrations. In [6], force
sensors are integrated in the struts for decentralized force feedback while accelerometers fixed to the
top platform are employed for centralized control.

The second approach, sensor fusion (illustrated in Figure 1.1c), involves filtering signals from two sensors
using complementary filters1 and summing them to create an improved sensor signal. In [9], geophones
(used at low frequency) are merged with force sensors (used at high frequency). It is demonstrated that
combining both sensors using sensor fusion can improve performance compared to using the individual
sensors independently. In [8], sensor fusion architecture is implemented with an accelerometer and
a force sensor. This implementation is shown to simultaneously achieve high damping of structural
modes (through the force sensors) while maintaining very low vibration transmissibility (through the
accelerometers).

In [10], the performance of sensor fusion is compared with the more general case of “two-sensor control”
(illustrated in Figure 1.1b). It is highlighted that “two-sensor control” provides greater control freedom,
potentially enhancing performance. In [14], the use of force sensors and geophones is compared for
vibration isolation purposes. Geophones are shown to provide better isolation performance than load
cells but suffer from poor robustness. Conversely, the controller based on force sensors exhibited inferior
performance (due to the presence of a pair of low frequency zeros), but demonstrated better robustness
properties. A “two-sensor control” approach was proven to perform better than controllers based on
individual sensors while maintaining better robustness. A Linear Quadratic Regulator (LQG) was
employed to optimize the two-input/one-output controller.

Beyond these three main approaches, other control architectures have been proposed for different pur-
poses. In [12], a first control loop utilizes force sensors and relative motion sensors to compensate for
parasitic stiffness of the flexible joints. Subsequently, the system is decoupled in the modal space (facil-
itated by the removal of parasitic stiffness) and accelerometers are employed for vibration isolation.

The HAC-LAC architecture was previously investigated during the conceptual phase and successfully
implemented to validate the NASS concept, demonstrating excellent performance. At the other end of
the spectrum, the two-sensor approach yields greater control design freedom but introduces increased
complexity in tuning, and thus was not pursued in this study. This work instead focuses on sensor
fusion, which represents a promising middle ground between the proven HAC-LAC approach and the
more complex two-sensor control strategy.

A review of sensor fusion is first presented (Section 1.1), followed by an examination of the fundamen-
tal theoretical concepts (Section 1.2). In this section, both the robustness of the fusion and the noise
characteristics of the resulting “super sensor” are derived and expressed as functions of the comple-
mentary filters’ norms. A synthesis method for designing complementary filters that allow to shape
their norms is proposed (Section 1.3). The investigation is then extended beyond the conventional
two-sensor scenario, demonstrating how the proposed complementary filter synthesis can be generalized
for applications requiring the fusion of three or more sensors (Section 1.4).

1A set of two complementary filters are two transfer functions that sum to one.

5



1.1 Review of Sensor Fusion

Sensors used to measure physical quantities have two primary limitations: measurement accuracy which
is compromised by various noise sources (including electrical noise from conditioning electronics), and
limited measurement bandwidth. Sensor fusion offers a solution to these limitations by combining
multiple sensors [18]. By strategically selecting sensors with complementary characteristics, a “super
sensor” can be created that combines the advantages of each individual sensor.

Measuring a physical quantity using sensors is always subject to several limitations. First, the accuracy
of the measurement is affected by various noise sources, such as electrical noise from the conditioning
electronics. Second, the frequency range in which the measurement is relevant is bounded by the
bandwidth of the sensor. One way to overcome these limitations is to combine several sensors using a
technique called “sensor fusion” [18]. Fortunately, a wide variety of sensors exists, each with different
characteristics. By carefully selecting the sensors to be fused, a “super sensor” is obtained that combines
the benefits of the individual sensors.

In some applications, sensor fusion is employed to increase measurement bandwidth [19], [20], [21]. For
instance, in [19], the bandwidth of a position sensor is extended by fusing it with an accelerometer that
provides high-frequency motion information. In other applications, sensor fusion is utilized to obtain
an estimate of the measured quantity with reduced noise [22], [23], [24], [25]. More recently, the fusion
of sensors measuring different physical quantities has been proposed to enhance control properties [11],
[26]. In [26], an inertial sensor used for active vibration isolation is fused with a sensor collocated with
the actuator to improve the stability margins of the feedback controller.

On top of Stewart platforms, practical applications of sensor fusion are numerous. It is widely imple-
mented for attitude estimation in autonomous vehicles such as unmanned aerial vehicles [27], [28], [29]
and underwater vehicles [30], [31]. Sensor fusion offers significant benefits for high-performance posi-
tioning control as demonstrated in [11], [19], [20], [21]. It has also been identified as a key technology
for improving the performance of active vibration isolation systems [8]. Emblematic examples include
the isolation stages of gravitational wave detectors [26], [32] such as those employed at LIGO [22], [23]
and Virgo [33].

Two principal methods are employed to perform sensor fusion: using complementary filters [34] or
using Kalman filtering [35]. For sensor fusion applications, these methods share many relationships [25],
[35], [36], [37]. However, Kalman filtering requires assumptions about the probabilistic characteristics
of sensor noise [25], whereas complementary filters do not impose such requirements. Furthermore,
complementary filters offer advantages over Kalman filtering for sensor fusion through their general
applicability, low computational cost [36], and intuitive nature, as their effects can be readily interpreted
in the frequency domain.

A set of filters is considered complementary if the sum of their transfer functions equals one at all
frequencies. In early implementations of complementary filtering, analog circuits were used to physi-
cally realize the filters [34]. While analog complementary filters remain in use today [11], [38], digital
implementation is now more common as it provides greater flexibility.

Various design methods have been developed to optimize complementary filters. The most straightfor-
ward approach utilizes analytical formulas. Depending on the application, these formulas may be of
first order [11], [28], [39], second order [27], [29], [40], or higher orders [19], [20], [26], [40], [41].

Since the characteristics of the super sensor depend on the proper design of complementary filters
[42], several optimization techniques have been developed. Some approaches focus on finding optimal
parameters for analytical formulas [21], [29], [37], while others employ convex optimization tools [22],
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[23] such as linear matrix inequalities [30]. As demonstrated in [24], complementary filter design can be
linked to the standard mixed-sensitivity control problem. Consequently, the powerful tools developed
for classical control theory can be applied to complementary filter design. For example, in [29], the two
gains of a Proportional Integral (PI) controller are optimized to minimize super sensor noise.

All these complementary filter design methods share the common objective of creating a super sensor
with desired characteristics, typically in terms of noise and dynamics. As reported in [20], [24], phase
shifts and magnitude bumps in the super sensor dynamics may occur if complementary filters are
poorly designed or if sensors are improperly calibrated. Therefore, the robustness of the fusion must be
considered when designing complementary filters. Despite the numerous design methods proposed in
the literature, a simple approach that specifies desired super sensor characteristics while ensuring good
fusion robustness has been lacking.

Fortunately, both fusion robustness and super sensor characteristics can be linked to complementary
filter magnitude [42]. Based on this relationship, the present work introduces an approach to designing
complementary filters using H∞ synthesis, which enables intuitive shaping of complementary filter
magnitude in a straightforward manner.

1.2 Sensor Fusion and Complementary Filters Requirements

A general sensor fusion architecture using complementary filters is shown in Figure 1.2, where multiple
sensors (in this case two) measure the same physical quantity x. The sensor output signals x̂1 and x̂2

represent estimates of x. These estimates are filtered by complementary filters and combined to form a
new estimate x̂.

Super Sensor

Normalized
Sensors

Complementary
Filters

Sensor 1

Sensor 2

H1(s)

H2(s)

+x

x̂1

x̂2

x̂

Figure 1.2: Schematic of a sensor fusion architecture using complementary filters.

The complementary property of filters H1(s) and H2(s) requires that the sum of their transfer functions
equals one at all frequencies (1.1).

H1(s) +H2(s) = 1 (1.1)

Sensor Models and Sensor Normalization

To analyze sensor fusion architectures, appropriate sensor models are required. The model shown in
Figure 1.3a consists of a linear time invariant (LTI) system Gi(s) representing the sensor dynamics and
an input ni representing sensor noise. The model input x is the measured physical quantity, and its
output x̃i is the “raw” output of the sensor.
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Prior to filtering the sensor outputs x̃i with complementary filters, the sensors are typically normalized to
simplify the fusion process. This normalization involves using an estimate Ĝi(s) of the sensor dynamics
Gi(s), and filtering the sensor output by the inverse of this estimate Ĝ−1

i (s), as shown in Figure 1.3b.

It is assumed that the sensor inverse Ĝ−1
i (s) is proper and stable. This approach ensures that the units

of the estimates x̂i match the units of the physical quantity x. The sensor dynamics estimate Ĝi(s)
may be a simple gain or a more complex transfer function.

Sensor

+ Gi(s)x

ni

x̃i

(a) Basic sensor model consisting of a noise input ni

and a linear time invariant transfer function Gi(s)

Normalized
sensorSensor

+ Gi(s) Ĝ−1
i (s)

x

ni

x̃i x̂i

(b) Normalized sensors using the inverse of an esti-
mate Ĝ

Figure 1.3: Sensor models with and without normalization.

Two normalized sensors are then combined to form a super sensor as shown in Figure 1.4. The two
sensors measure the same physical quantity x with dynamics G1(s) and G2(s), and with uncorrelated
noises n1 and n2. The signals from both normalized sensors are fed into two complementary filters
H1(s) and H2(s) and then combined to yield an estimate x̂ of x. The super sensor output x̂ is therefore
described by (1.2).

x̂ =
(
H1(s)Ĝ

−1
1 (s)G1(s) +H2(s)Ĝ

−1
2 (s)G2(s)

)
x+H1(s)Ĝ

−1
1 (s)G1(s)n1 +H2(s)Ĝ

−1
2 (s)G2(s)n2 (1.2)

Super SensorNormalized
sensorSensor 1

Normalized
sensorSensor 2

+

+

G1(s)

G2(s)

Ĝ−1
1 (s)

Ĝ−2
2 (s)

H1(s)

H2(s)

+x

n1
x̃1 x̂1

n2
x̃2 x̂2

x̂

Figure 1.4: Sensor fusion architecture with two normalized sensors.

Noise Sensor Filtering

First, consider the case where all sensors are perfectly normalized (1.3). The effects of imperfect
normalization will be addressed subsequently.

x̂i

x
= Ĝi(s)Gi(s) = 1 (1.3)

In that case, the super sensor output x̂ equals x plus the filtered noise from both sensors (1.4). From
this equation, it is evident that the complementary filters H1(s) and H2(s) operate solely on the sensor
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noise. Thus, this sensor fusion architecture allows filtering of sensor noise without introducing distortion
in the measured physical quantity. This fundamental property necessitates that the two filters must be
complementary.

x̂ = x+H1(s)n1 +H2(s)n2 (1.4)

The estimation error ϵx, defined as the difference between the sensor output x̂ and the measured quantity
x, is computed for the super sensor (1.5).

ϵx ≜ x̂− x = H1(s)n1 +H2(s)n2 (1.5)

As shown in (1.6), the Power Spectral Density (PSD) of the estimation error Φϵx depends both on the
norm of the two complementary filters and on the PSD of the noise sources Φn1 and Φn2 .

Φϵx(ω) = |H1(jω)|2 Φn1
(ω) + |H2(jω)|2 Φn2

(ω) (1.6)

If the two sensors have identical noise characteristics (Φn1
(ω) = Φn2

(ω)), simple averaging (H1(s) =
H2(s) = 0.5) would minimize the super sensor noise. This represents the simplest form of sensor fusion
using complementary filters.

However, sensors typically exhibit high noise levels in different frequency regions. In such cases, to
reduce the noise of the super sensor, the norm |H1(jω)| should be minimized when Φn1

(ω) exceeds
Φn2

(ω), and the norm |H2(jω)| should be minimized when Φn2
(ω) exceeds Φn1

(ω). Therefore, by
appropriately shaping the norm of the complementary filters, the noise of the super sensor can be
minimized.

Sensor Fusion Robustness

In practical systems, sensor normalization is rarely perfect, and condition (1.3) is not fully satisfied.

To analyze such imperfections, a multiplicative input uncertainty is incorporated into the sensor dy-
namics (Figure 1.5a). The nominal model is the estimated model used for normalization Ĝi(s), ∆i(s)
is any stable transfer function satisfying |∆i(jω)| ≤ 1, ∀ω, and wi(s) is a weighting transfer function
representing the magnitude of uncertainty. The weight wi(s) is selected such that the actual sensor
dynamics Gi(jω) remains within the uncertain region represented by a circle in the complex plane,
centered on 1 with a radius equal to |wi(jω)|.

Since the nominal sensor dynamics is taken as the normalized filter, the normalized sensor model can
be further simplified as shown in Figure 1.5b.

The sensor fusion architecture incorporating sensor models with dynamical uncertainty is illustrated in
Figure 1.6a. The super sensor dynamics (1.7) is no longer unity but depends on the sensor dynamical
uncertainty weights wi(s) and the complementary filters Hi(s). The dynamical uncertainty of the super
sensor can be graphically represented in the complex plane by a circle centered on 1 with a radius equal
to |w1(jω)H1(jω)|+ |w2(jω)H2(jω)| (Figure 1.6b).
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sensorSensor

w1(s) ∆1(s)

+ + Ĝ1(s) Ĝ−1
1 (s)

x

n1
x̃1 x̂1

(a) Sensor with multiplicative input uncertainty

Normalized
sensor

w1(s) ∆1(s)

+ +x
n1

x̂1

(b) Simplified sensor model

Figure 1.5: Sensor models with dynamical uncertainty

The sensor fusion architecture with the sensor models including dynamical uncertainty is shown in
Figure 1.6a. The super sensor dynamics (1.7) is no longer equal to 1 and now depends on the sensor
dynamical uncertainty weights wi(s) as well as on the complementary filters Hi(s). The dynamical
uncertainty of the super sensor can be graphically represented in the complex plane by a circle centered
on 1 with a radius equal to |w1(jω)H1(jω)|+ |w2(jω)H2(jω)| (Figure 1.6b).

x̂

x
= 1 + w1(s)H1(s)∆1(s) + w2(s)H2(s)∆2(s) (1.7)

Super SensorNormalized
sensor 1

Normalized
sensor 2

w1(s)

w2(s)

∆1(s)

∆2(s)

+

+

+

+

H1(s)

H2(s)

+x

n1

n2

x̂1

x̂2

x̂

(a) Sensor Fusion Architecture

1

|w1H1|
|w2H2|

|w1H1| + |w2H2|

Re

Im

∆ϕmax

(b) Uncertainty regions

Figure 1.6: Sensor fusion architecture with sensor dynamics uncertainty (a). Uncertainty region (b)
of the super sensor dynamics in the complex plane (grey circle). The contribution of both
sensors 1 and 2 to the total uncertainty are represented respectively by a blue circle and
a red circle. The frequency dependency ω is here omitted.

The super sensor dynamical uncertainty, and consequently the robustness of the fusion, clearly depends
on the complementary filters’ norm. As it is generally desired to limit the dynamical uncertainty of
the super sensor, the norm of the complementary filter |Hi(jω)| should be made small when |wi(jω)| is
large, i.e., at frequencies where the sensor dynamics is uncertain.

1.3 Complementary Filters Shaping

As established in Section 1.2, the super sensor’s noise characteristics and robustness are directly depen-
dent on the complementary filters’ norm. A synthesis method enabling precise shaping of these norms
would therefore offer substantial practical benefits. This section develops such an approach by formu-
lating the design objective as a standard H∞ optimization problem. The methodology for designing
appropriate weighting functions (which specify desired complementary filter shapes during synthesis) is
examined in detail, and the efficacy of the proposed method is validated with a simple example.
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Synthesis Objective

The primary objective is to shape the norms of two filters H1(s) and H2(s) while ensuring they maintain
their complementary property as defined in (1.1). This is equivalent to finding proper and stable transfer
functionsH1(s) andH2(s) that satisfy conditions (1.8a), (1.8b), and (1.8c). Weighting transfer functions
W1(s) and W2(s) are strategically selected to define the maximum desired norm of the complementary
filters during the synthesis process.

H1(s) +H2(s) = 1 (1.8a)

|H1(jω)| ≤
1

|W1(jω)|
∀ω (1.8b)

|H2(jω)| ≤
1

|W2(jω)|
∀ω (1.8c)

Shaping of Complementary Filters using H∞ synthesis

The synthesis objective can be readily expressed as a standard H∞ optimization problem and solved
using widely available computational tools. Consider the generalized plant P (s) illustrated in Figure
1.7a and mathematically described by (1.9).

z1z2
v

 = P (s)

[
w
u

]
; P (s) =

W1(s) −W1(s)
0 W2(s)
1 0

 (1.9)

P (s)

H2(s)

W1(s)

W2(s)

+
−

w

u

v

z1

z2

(a) Generalized plant

P (s)

H2(s)

W1(s)

W2(s)

+
−

w z1

z2

(b) Generalized plant with the synthesized filter

Figure 1.7: Architecture for the H∞ synthesis of complementary filters

Applying standard H∞ synthesis to the generalized plant P (s) is equivalent to finding a stable filter
H2(s) that, based on input v, generates an output signal u such that the H∞ norm of the system shown
in Figure 1.7b from w to [z1, z2] does not exceed unity, as expressed in (1.10).

∥∥∥∥(1−H2(s))W1(s)
H2(s)W2(s)

∥∥∥∥
∞

≤ 1 (1.10)
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By defining H1(s) as the complement of H2(s) ((1.11)), the H∞ synthesis objective becomes equivalent
to (1.12), ensuring that conditions (1.8b) and (1.8c) are satisfied.

H1(s) ≜ 1−H2(s) (1.11)

∥∥∥∥H1(s)W1(s)
H2(s)W2(s)

∥∥∥∥
∞

≤ 1 (1.12)

Therefore, applying H∞ synthesis to the standard plant P (s) ((1.9)) generates two filters, H2(s) and
H1(s) ≜ 1−H2(s), that are complementary as required by (1.8), with norms bounded by the specified
constraints in (1.8b) and (1.8c).

It should be noted that there exists only an implication (not an equivalence) between the H∞ norm
condition in (1.12) and the initial synthesis objectives in (1.8b) and (1.8c). Consequently, the optimiza-
tion may be somewhat conservative with respect to the set of filters on which it operates (see [43, Chap.
2.8.3]).

Weighting Functions Design

Weighting functions play a crucial role during synthesis by specifying the maximum allowable norms for
the complementary filters. The proper design of these weighting functions is essential for the successful
implementation of the proposed H∞ synthesis approach.

Three key considerations should guide the design of weighting functions. First, only proper and stable
transfer functions should be employed. Second, the order of the weighting functions should remain
reasonably small to minimize computational costs associated with solving the optimization problem and
to facilitate practical implementation of the filters (as the order of the synthesized filters equals the sum
of the weighting functions’ orders). Third, the fundamental limitations imposed by the complementary
property ((1.1)) must be respected, which implies that |H1(jω)| and |H2(jω)| cannot both be made
small at the same frequency.

When designing complementary filters, it is typically desirable to specify their slopes, “blending” fre-
quency, and maximum gains at low and high frequencies. To facilitate the expression of these specifica-
tions, formula (1.13) is proposed for the design of weighting functions. The parameters in this formula
are G0 = limω→0 |W (jω)| (the low-frequency gain), G∞ = limω→∞ |W (jω)| (the high-frequency gain),
Gc = |W (jωc)| (the gain at a specific frequency ωc in rad/s), and n (the slope between high and low fre-
quency, which also corresponds to the order of the weighting function). The typical magnitude response
of a weighting function generated using (1.13) is illustrated in Figure 1.8.
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Figure 1.8: Magnitude of a weighting function
generated using (1.13), G0 = 10−3,
G∞ = 10, ωc = 10Hz, Gc = 2, n = 3.
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(1.13)

Validation of the proposed synthesis method

The proposed methodology for designing complementary filters is now applied to a simple example.
Consider the design of two complementary filters H1(s) and H2(s) with the following requirements:

• The blending frequency should be approximately 10Hz

• The slope of |H1(jω)| should be +2 below 10Hz, with a low-frequency gain of 10−3

• The slope of |H2(jω)| should be −3 above 10Hz, with a high-frequency gain of 10−3

The first step involves translating these requirements by appropriately designing the weighting functions.
The formula proposed in (1.13) is employed for this purpose. The parameters used are summarized in
Table 1.1. The inverse magnitudes of the designed weighting functions, which represent the maximum
allowable norms of the complementary filters, are depicted by the dashed lines in Figure 1.9.

Parameter W1(s) W2(s)

G0 0.1 1000
G∞ 1000 0.1
ωc 2π · 10 2π · 10
Gc 0.45 0.45
n 2 3

Table 1.1: Parameters for W1(s) and W2(s)
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Figure 1.9: Weights and obtained filters

Standard H∞ synthesis is then applied to the generalized plant shown in Figure 1.7a. This yields the
filter H2(s) that minimizes the H∞ norm from input w to outputs [z1, z2]

⊺. The resulting H∞ norm is
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found to be close to unity, indicating successful synthesis: the norms of the complementary filters remain
below the specified upper bounds. This is confirmed by the Bode plots of the obtained complementary
filters in Figure 1.9. This straightforward example demonstrates that the proposed methodology for
shaping complementary filters is both simple and effective.

1.4 Synthesis of a set of three complementary filters

Certain applications necessitate the fusion of more than two sensors [37], [40]. At LIGO, for example,
a super sensor is formed by merging three distinct sensors: an LVDT, a seismometer, and a geophone
[41].

For merging n > 2 sensors with complementary filters, two architectural approaches are possible, as
illustrated in Figure 1.10. Fusion can be implemented either “sequentially,” utilizing n− 1 sets of two
complementary filters (Figure 1.10a), or “in parallel,” employing a single set of n complementary filters
(Figure 1.10b).

While conventional sensor fusion synthesis techniques can be applied to the sequential approach, par-
allel architecture implementation requires a novel synthesis method for multiple complementary filters.
Previous literature has offered only simple analytical formulas for this purpose [37], [40]. This section
presents a generalization of the proposed complementary filter synthesis method to address this gap.

Sensor 2

Sensor 1

Sensor 3

H1(s)

H2(s)
+ H ′

1(s)

H ′
2(s)

+
x

x̂1

x̂2

x̂3

x̂12

x̂

(a) Sequential fusion

Sensor 2

Sensor 1

Sensor 3

H1(s)

H2(s)

H3(s)

+x

x̂1

x̂2

x̂3

x̂

(b) Parallel fusion

Figure 1.10: Possible sensor fusion architecture when more than two sensors are to be merged

The synthesis objective is to compute a set of n stable transfer functions [H1(s), H2(s), . . . , Hn(s)]
that satisfy conditions (1.14a) and (1.14b).

n∑
i=1

Hi(s) = 1 (1.14a)

|Hi(jω)| <
1

|Wi(jω)|
, ∀ω, i = 1 . . . n (1.14b)

The transfer functions [W1(s), W2(s), . . . , Wn(s)] are weights selected to specify the maximum com-
plementary filters’ norm during synthesis.

This synthesis objective is closely related to the one described in Section 1.3, and the proposed synthesis
method represents a generalization of the approach previously presented. A set of n complementary
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filters can be shaped by applying standard H∞ synthesis to the generalized plant Pn(s) described by
(1.15).


z1
...
zn
v

 = Pn(s)


w
u1

...
un−1

 ; Pn(s) =



W1 −W1 . . . . . . −W1

0 W2 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 Wn

1 0 . . . . . . 0


(1.15)

If the synthesis is successful, a set of n−1 filters [H2(s), H3(s), . . . , Hn(s)] is obtained such that (1.16)
is satisfied.

∥∥∥∥∥∥∥∥∥
(1− [H2(s) +H3(s) + · · ·+Hn(s)])W1(s)

H2(s)W2(s)
...

Hn(s)Wn(s)

∥∥∥∥∥∥∥∥∥
∞

≤ 1 (1.16)

H1(s) is then defined using (1.17), which ensures the complementary property for the set of n filters
(1.14a). Condition (1.14b) is satisfied through (1.16).

H1(s) ≜ 1−
[
H2(s) +H3(s) + · · ·+Hn(s)

]
(1.17)

To validate the proposed method for synthesizing a set of three complementary filters, an example
is provided. The sensors to be merged are a displacement sensor (effective from DC up to 1Hz), a
geophone (effective from 1 to 10Hz), and an accelerometer (effective above 10Hz). Three weighting
functions are designed using formula (1.13), and their inverse magnitudes are shown in Figure 1.11b
(dashed curves).

Consider the generalized plant P3(s) shown in Figure 1.11a, which is also described by (1.18).


z1
z2
z3
v

 = P3(s)

w
u1

u2

 ; P3(s) =


W1(s) −W1(s) −W1(s)

0 W2(s) 0
0 0 W3(s)
1 0 0

 (1.18)

Standard H∞ synthesis is performed on the generalized plant P3(s). Two filters, H2(s) and H3(s), are
obtained such that the H∞ norm of the closed-loop transfer from w to [z1, z2, z3] of the system in
Figure 1.11a is less than one. Filter H1(s) is defined using (1.19), thus ensuring the complementary
property of the obtained set of filters.

H1(s) ≜ 1−
[
H2(s) +H3(s)

]
(1.19)

Figure 1.11b displays the three synthesized complementary filters (solid lines), confirming the successful
synthesis.
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Figure 1.11: Architecture for the H∞ synthesis of three complementary filters (a). Bode plot of the
inverse weighting functions and of the three obtained complementary filters (b)

Conclusion

A new method for designing complementary filters using the H∞ synthesis has been proposed. This
approach allows shaping of the filter magnitudes through the use of weighting functions during synthesis.
This capability is particularly valuable in practice since the characteristics of the super sensor are directly
linked to the complementary filters’ magnitude. Consequently, typical sensor fusion objectives can be
effectively translated into requirements on the magnitudes of the filters.

For the Nano Active Stabilization System (NASS), the High Authority Control-Integral Force Feedback
(HAC-IFF) strategy was found to perform well and to offer the advantages of being both intuitive to
understand and straightforward to tune. Looking forward, it would be interesting to investigate how
sensor fusion (particularly between the force sensor and external metrology) compares to the HAC-IFF
approach in terms of performance and robustness.
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2 Decoupling

The control of parallel manipulators (and any MIMO system in general) typically involves a two-step
approach: first decoupling the plant dynamics using various strategies, which will be discussed in this
section, followed by the application of SISO control for the decoupled plant (discussed in section 3).

When sensors are integrated within the struts, decentralized control may be applied, as the system is
already well decoupled at low frequency. For instance, [44] implemented a system where each strut
consists of piezoelectric stack actuators and eddy current displacement sensors, with separate PI con-
trollers for each strut. A similar control architecture was proposed in [45] using strain gauge sensors
integrated in each strut.

An alternative strategy involves decoupling the system in the Cartesian frame using Jacobian matrices.
As demonstrated during the study of Stewart platform kinematics, Jacobian matrices can be utilized
to map actuator forces to forces and torques applied on the top platform. This approach enables the
implementation of controllers in a defined frame. It has been applied with various sensor types including
force sensors [17], relative displacement sensors [47], and inertial sensors [4], [48]. The Cartesian frame
in which the system is decoupled is typically chosen at the point of interest (i.e., where the motion is
of interest) or at the center of mass.

Modal control represents another noteworthy decoupling strategy, wherein the “local” plant inputs and
outputs are mapped to the modal space. In this approach, multiple SISO plants, each corresponding
to a single mode, can be controlled independently. This decoupling strategy has been implemented for
active damping applications [54], which is logical as it is often desirable to dampen specific modes. The
strategy has also been employed in [5] for vibration isolation purposes using geophones, and in [12]
using force sensors.

Another completely different strategy, is to use implement a multivariable control directly on the coupled
system. H∞ and µ-synthesis were applied to a Stewart platform model in [49]. In [6], decentralized force
feedback was first applied, followed by H2 synthesis for vibration isolation based on accelerometers. H∞
synthesis was also employed in [50] for active damping based on accelerometers. [14] compared H∞
synthesis with decentralized control in the frame of the struts. Their experimental closed-loop results
indicated that the H∞ controller did not outperform the decentralized controller in the frame of the
struts. These limitations were attributed to the model’s poor ability to predict off-diagonal dynamics,
which is crucial for H∞ synthesis.

The purpose of this section is to compare several methods for the decoupling of parallel manipulators,
an analysis that appears to be lacking in the literature. The analysis begins in Section 2.1 with the
introduction of a simplified parallel manipulator model that serves as the foundation for evaluating var-
ious decoupling strategies. Sections 2.3 through 2.5 systematically examine three distinct approaches:
Jacobian matrix decoupling, modal decoupling, and Singular Value Decomposition (SVD) decoupling,
respectively. The comparative assessment of these three methodologies, along with concluding observa-
tions, is provided in Section 2.6.
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2.1 Test Model

Instead of utilizing the Stewart platform for comparing decoupling strategies, a simplified parallel
manipulator is employed to facilitate a more straightforward analysis. The system illustrated in Figure
2.1 is used for this purpose. It possesses three degrees of freedom (DoF) and incorporates three parallel
struts. Being a fully parallel manipulator, it is therefore quite similar to the Stewart platform.

Two reference frames are defined within this model: frame {M} with origin OM at the center of mass
of the solid body, and frame {K} with origin OK at the center of stiffness of the parallel manipulator.

Figure 2.1: Model used to compare decoupling strategies

Description Value

la 0.5m
ha 0.2m
k Actuator stiffness 10N/µm
c Actuator damping 200Ns/m
m Payload mass 40 kg
I Payload Rz inertia 5 kgm2

Table 2.1: Model parameters

The equations of motion are derived by applying Newton’s second law to the suspended mass, expressed
at its center of mass (2.1), where X {M} represents the two translations and one rotation with respect
to the center of mass, and F{M} denotes the forces and torque applied at the center of mass.

M{M}Ẍ {M}(t) =
∑

F{M}(t), X {M} =

 x
y
Rz

 , F{M} =

Fx

Fy

Mz

 (2.1)

The Jacobian matrix J{M} is employed to map the spring, damping, and actuator forces to XY forces
and Z torque expressed at the center of mass (2.2).

J{M} =

1 0 ha

0 1 −la
0 1 la

 (2.2)

Subsequently, the equation of motion relating the actuator forces τ to the motion of the mass X {M} is
derived (2.3).

M{M}Ẍ {M}(t) + J⊺
{M}CJ{M}Ẋ {M}(t) + J⊺

{M}KJ{M}X {M}(t) = J⊺
{M}τ (t) (2.3)

The matrices representing the payload inertia, actuator stiffness, and damping are shown in (2.4).
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M{M} =

m 0 0
0 m 0
0 0 I

 , K =

k 0 0
0 k 0
0 0 k

 , C =

c 0 0
0 c 0
0 0 c

 (2.4)

The parameters employed for the subsequent analysis are summarized in Table 2.1, which includes
values for geometric parameters (la, ha), mechanical properties (actuator stiffness k and damping c),
and inertial characteristics (payload mass m and rotational inertia I).

2.2 Control in the frame of the struts

The dynamics in the frame of the struts are first examined. The equation of motion relating actuator
forces τ to strut relative motion L is derived from equation (2.3) by mapping the Cartesian motion
of the mass to the relative motion of the struts using the Jacobian matrix J{M} defined in (2.2). The
obtained transfer function from τ to L is shown in (2.5).

L
τ
(s) = GL(s) =

(
J−⊺
{M}M{M}J

−1
{M}s

2 + Cs+K
)−1

(2.5)

At low frequencies, the plant converges to a diagonal constant matrix whose diagonal elements are
related to the actuator stiffnesses (2.6). At high frequencies, the plant converges to the mass matrix
mapped in the frame of the struts, which is generally highly non-diagonal.

GL(jω) −−−→
ω→0

K−1 (2.6)

The magnitude of the coupled plant GL is illustrated in Figure 2.2. This representation confirms that
at low frequencies (below the first suspension mode), the plant is well decoupled. Depending on the
symmetry present in the system, certain diagonal elements may exhibit identical values, as demonstrated
for struts 2 and 3 in this example.

2.3 Jacobian Decoupling

Jacobian Matrix

The Jacobian matrix serves a dual purpose in the decoupling process: it converts strut velocity L̇ to
payload velocity and angular velocity Ẋ {O}, and it transforms actuator forces τ to forces/torque applied
on the payload F{O}, as expressed in equation (2.7).

Ẋ {O} = J{O}L̇, L̇ = J−1
{O}Ẋ {O} (2.7a)

F{O} = J⊺
{O}τ , τ = J−⊺

{O}F{O} (2.7b)

The resulting plant (Figure 2.3) have inputs and outputs with clear physical interpretations:
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Figure 2.2: Model dynamics from actuator forces to relative displacement sensor of each strut.

• F{O} represents forces/torques applied on the payload at the origin of frame {O}

• X {O} represents translations/rotation of the payload expressed in frame {O}

G{O}

G{L}J−⊺
{O} J−1

{O}
F{O} τ L X {O}

Figure 2.3: Block diagram of the transfer function from F{O} to X {O}

The transfer function from F{O} to X {O}, denoted G{O}(s) can be computed using (2.8).

X {O}

F{O}
(s) = G{O}(s) =

(
J⊺
{O}J

−⊺
{M}M{M}J

−1
{M}J{O}s

2 + J⊺
{O}CJ{O}s+ J⊺

{O}KJ{O}

)−1

(2.8)

The frame {O} can be selected according to specific requirements, but the decoupling properties are
significantly influenced by this choice. Two natural reference frames are particularly relevant: the center
of mass and the center of stiffness.

Center Of Mass

When the decoupling frame is located at the center of mass (frame {M} in Figure 2.1), the Jacobian
matrix and its inverse are expressed as in (2.9).
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J{M} =

1 0 ha

0 1 −la
0 1 la

 , J−1
{M} =

1 ha

2la
−ha

2la
0 1

2
1
2

0 −1
2la

1
2la

 (2.9)

Analytical formula of the plant G{M}(s) is derived (2.10).

X {M}

F{M}
(s) = G{M}(s) =

(
M{M}s

2 + J⊺
{M}CJ{M}s+ J⊺

{M}KJ{M}

)−1

(2.10)

At high frequencies, the plant converges to the inverse of the mass matrix, which is a diagonal matrix
(2.11).

G{M}(jω) −−−−→
ω→∞

−ω2M−1
{M} = −ω2

1/m 0 0
0 1/m 0
0 0 1/I

 (2.11)

Consequently, the plant exhibits effective decoupling at frequencies above the highest suspension mode
as shown in Figure 2.4a. This strategy is typically employed in systems with low-frequency suspension
modes butler11˙posit˙contr˙lithog˙equip, where the plant approximates decoupled mass lines.

The low-frequency coupling observed in this configuration has a clear physical interpretation. When a
static force is applied at the center of mass, the suspended mass rotates around the center of stiffness.
This rotation is due to torque induced by the stiffness of the first actuator (i.e. the one on the left side),
which is not aligned with the force application point. This phenomenon is illustrated in Figure 2.4b.
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(a) Dynamics at the CoM (b) Static force applied at the CoM

Figure 2.4: Plant decoupled using the Jacobian matrix expresssed at the center of mass (a). The
physical reason for low frequency coupling is illustrated in (b).

Center Of Stiffness

When the decoupling frame is located at the center of stiffness, the Jacobian matrix and its inverse are
expressed as in (2.12).
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J{K} =

1 0 0
0 1 −la
0 1 la

 , J−1
{K} =

1 0 0
0 1

2
1
2

0 −1
2la

1
2la

 (2.12)

The frame {K} was selected based on physical reasoning, positioned in line with the side strut and
equidistant between the two vertical struts. However, it could alternatively be determined through
analytical methods to ensure that J⊺

{K}KJ{K} forms a diagonal matrix. It should be noted that the

existence of such a center of stiffness (i.e. a frame {K} for which J⊺
{K}KJ{K} is diagonal) is not

guaranteed for arbitrary systems. This property is typically achievable only in systems exhibiting
specific symmetrical characteristics, as is the case in the present example.

The analytical expression for the plant in this configuration was then computed 2.13.

X {K}

F{K}
(s) = G{K}(s) =

(
J⊺
{K}J

−⊺
{M}M{M}J

−1
{M}J{K}s

2 + J⊺
{K}CJ{K}s+ J⊺

{K}KJ{K}

)−1

(2.13)

Figure 2.5 presents the dynamics of the plant when decoupled using the Jacobian matrix expressed at
the center of stiffness. The plant is well decoupled below the suspension mode with the lowest frequency
(2.14), making it particularly suitable for systems with high stiffness.

G{K}(jω) −−−→
ω→0

J−1
{K}K

−1J−⊺
{K} (2.14)

The physical reason for high-frequency coupling is illustrated in Figure 2.5b. When a high-frequency
force is applied at a point not aligned with the center of mass, it induces rotation around the center of
mass. This phenomenon explains the coupling observed between different degrees of freedom at higher
frequencies.
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Figure 2.5: Plant decoupled using the Jacobian matrix expresssed at the center of stiffness (a). The
physical reason for high frequency coupling is illustrated in (b).
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2.4 Modal Decoupling

Modal decoupling represents an approach based on the principle that a mechanical system’s behavior
can be understood as a combination of contributions from various modes [51].

To convert the dynamics in the modal space, the equation of motion are first written with respect to
the center of mass (2.15).

M{M}Ẍ {M}(t) +C{M}Ẋ {M}(t) +K{M}X {M}(t) = J⊺
{M}τ (t) (2.15)

For modal decoupling, a change of variables is introduced (2.16) where Xm represents the modal
amplitudes and Φ is a n × n1 matrix whose columns correspond to the mode shapes of the system,
computed from M{M} and K{M}.

X {M} = ΦXm (2.16)

By pre-multiplying equation (2.15) by Φ⊺ and applying the change of variable (2.16), a new set of
equations of motion is obtained (2.17) where τm represents the modal input, while Mm, Cm, and Km

denote the modal mass, damping, and stiffness matrices respectively.

Φ⊺MΦ︸ ︷︷ ︸
Mm

Ẍm(t) +Φ⊺CΦ︸ ︷︷ ︸
Cm

Ẋm(t) +Φ⊺KΦ︸ ︷︷ ︸
Km

Xm(t) = Φ⊺J⊺τ (t)︸ ︷︷ ︸
τm(t)

(2.17)

The inherent mathematical structure of the mass, damping, and stiffness matrices [55, chapt. 8] ensures
that modal matrices are diagonal [2, chapt. 2.3]. This diagonalization transforms equation (2.17) into
a set of n decoupled equations, enabling independent control of each mode without cross-interaction.

To implement this approach from a decentralized plant, the architecture shown in Figure 2.6 is employed.
Inputs of the decoupling plant are the modal modal inputs τm and the outputs are the modal amplitudes
Xm. This implementation requires knowledge of the system’s equations of motion, from which the mode
shapes matrixΦ is derived. The resulting decoupled system features diagonal elements each representing
second-order resonant systems that are straightforward to control individually.

Gm

G{L}J−⊺
{M}Φ−⊺ J−1

{M} Φ−1
τm

F{M} τ L X {M} X m

Figure 2.6: Modal Decoupling Architecture

Modal decoupling was then applied to the test model. First, the eigenvectors Φ of M−1
{M}K{M} were

computed (2.18). While analytical derivation of eigenvectors could be obtained for such a simple system,
they are typically computed numerically for practical applications.

1n corresponds to the number of degrees of freedom, here n = 3
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Φ =

 I−h2
am−2l2am−α
2ham

0
I−h2

am−2l2am+α
2ham

0 1 0
1 0 1

 , α =

√
(I +m(h2

a − 2l2a))
2
+ 8m2h2

al
2
a (2.18)

The numerical values for the eigenvector matrix and its inverse are shown in (2.19).

Φ =

−0.905 0 −0.058
0 1 0

0.424 0 −0.998

 , Φ−1 =

−1.075 0 0.063
0 1 0

−0.457 0 −0.975

 (2.19)

The two computed matrices were implemented in the control architecture of Figure 2.6, resulting in three
distinct second order plants as depicted in Figure 2.7a. Each of these diagonal elements corresponds to
a specific mode, as shown in Figure 2.7b, resulting in a perfectly decoupled system.
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(a) Decoupled plant in modal space (b) Individually controlled modes

Figure 2.7: Plant using modal decoupling consists of second order plants (a) which can be used to
invidiually address different modes illustrated in (b)

2.5 SVD Decoupling

Singular Value Decomposition

Singular Value Decomposition (SVD) represents a powerful mathematical tool with extensive appli-
cations in data analysis [56, chapt. 1] and multivariable control systems [43], where it is particularly
valuable for analyzing directional properties in multivariable systems.

The SVD constitutes a unique matrix decomposition applicable to any complex matrix X ∈ Cn×m,
expressed as:

X = UΣV H (2.20)
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where U ∈ Cn×n and V ∈ Cm×m are unitary matrices with orthonormal columns, and Σ ∈ Rn×n is a
diagonal matrix with real, non-negative entries. For real matrices X, the resulting U and V matrices
are also real, making them suitable for decoupling applications.

Decoupling using the SVD

The procedure for SVD-based decoupling begins with identifying the system dynamics from inputs to
outputs, typically represented as a Frequency Response Function (FRF), which yields a complex matrix
G(ωi) for multiple frequency points ωi. A specific frequency is then selected for optimal decoupling,
with the targeted crossover frequency ωc often serving as an appropriate choice.

Since real matrices are required for the decoupling transformation, a real approximation of the complex
measured response at the selected frequency must be computed. In this work, the method proposed in
[57] was used as it preserves maximal orthogonality in the directional properties of the input complex
matrix.

Following this approximation, a real matrix G̃(ωc) is obtained, and SVD is performed on this matrix.
The resulting (real) unitary matrices U and V are structured such that V −⊺G̃(ωc)U

−1 forms a diagonal
matrix. These singular input and output matrices are then applied to decouple the system as illustrated
in Figure 2.8, and the decoupled plant is described by (2.21).

GSVD(s) = U−1G{L}(s)V
−⊺ (2.21)

GSVD

G{L}V −⊺ U−1u τ L y

Figure 2.8: Decoupled plant GSVD using the Singular Value Decomposition

Implementation of SVD decoupling requires access to the system’s FRF, at least in the vicinity of
the desired decoupling frequency. This information can be obtained either experimentally or derived
from a model. While this approach ensures effective decoupling near the chosen frequency, it provides
no guarantees regarding decoupling performance away from this frequency. Furthermore, the quality
of decoupling depends significantly on the accuracy of the real approximation, potentially limiting its
effectiveness for plants with high damping.

Example

Plant decoupling using the Singular Value Decomposition was then applied on the test model. A
decoupling frequency of 100Hz was used. The plant response at that frequency, as well as its real
approximation and the obtained U and V matrices are shown in (2.22).

25



G{L}(ωc = 2π · 100) = 10−9

−99− j2.6 74 + j4.2 −74− j4.2
74 + j4.2 −247− j9.7 102 + j7.0
−74− j4.2 102 + j7.0 −247− j9.7


real−−−−−−−−−→

approximation
G̃{L}(ωc) = 10−9

−99 74 −74
74 −247 102
−74 102 −247


−−−−−−−−−→

SVD
U =

 0.34 0 0.94
−0.66 0.71 0.24
0.66 0.71 −0.24

 , V =

−0.34 0 −0.94
0.66 −0.71 −0.24
−0.66 −0.71 0.24


(2.22)

Using these U and V matrices, the decoupled plant is computed according to equation (2.21). The
resulting plant, depicted in Figure 2.9, exhibits remarkable decoupling across a broad frequency range,
extending well beyond the vicinity of ωc. Additionally, the diagonal terms manifest as second-order
dynamic systems, facilitating straightforward controller design.
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Figure 2.9: Plant dynamics GSVD(s) obtained after decoupling using Singular Value Decomposition

As it was surprising to obtain such a good decoupling at all frequencies, a variant system with identical
dynamics but different sensor configurations was examined. Instead of using relative motion sensors
aligned with the struts, three relative motion sensors were positioned as shown in Figure 2.10a. Although
Jacobian matrices could theoretically map between these different sensor arrangements, application of
the same SVD decoupling procedure yielded the plant response shown in Figure 2.10b, which exhibits
significantly greater coupling. Notably, the coupling demonstrates local minima near the decoupling fre-
quency, consistent with the fact that the decoupling matrices were derived specifically for that frequency
point.

The exceptional performance of SVD decoupling on the plant with collocated sensors warrants fur-
ther investigation. This effectiveness may be attributed to the symmetrical properties of the plant,
as evidenced in the Bode plots of the decentralized plant shown in Figure 2.2. The phenomenon po-
tentially relates to previous research on SVD controllers applied to systems with specific symmetrical
characteristics [58].
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(a) Alternative location of sensors
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(b) Obtained decoupled plant

Figure 2.10: Application of SVD decoupling on a system schematically shown in (a). The obtained
decoupled plant is shown in (b).

2.6 Comparison of decoupling strategies

While the three proposed decoupling methods may appear similar in their mathematical implementation
(each involving pre-multiplication and post-multiplication of the plant with constant matrices), they
differ significantly in their underlying approaches and practical implications, as summarized in Table
2.2.

Each method employs a distinct conceptual framework: Jacobian decoupling is “topology-driven”,
relying on the geometric configuration of the system; modal decoupling is “physics-driven”, based on
the system’s dynamical equations; and SVD decoupling is “data-driven”, utilizing measured frequency
response functions.

The physical interpretation of decoupled plant inputs and outputs varies considerably among these
methods. With Jacobian decoupling, inputs and outputs retain clear physical meaning, corresponding
to forces/torques and translations/rotations in a specified reference frame. Modal decoupling arranges
inputs to excite individual modes, with outputs combined to measure these modes separately. For SVD
decoupling, inputs and outputs represent special directions ordered by decreasing controllability and
observability at the chosen frequency, though physical interpretation becomes challenging for parallel
manipulators.

This difference in interpretation relates directly to the “control space” in which the controllers operate.
When these “control spaces” meaningfully relate to the control objectives, controllers can be tuned
to directly match specific requirements. For Jacobian decoupling, the controller typically operates in
a frame positioned at the point where motion needs to be controlled, for instance where the light
is focused in the NASS application. Modal decoupling provides a natural framework when specific
vibrational modes require targeted control. SVD decoupling generally results in a loss of physical
meaning for the “control space”, potentially complicating the process of relating controller design to
practical system requirements.

The quality of decoupling achieved through these methods also exhibits distinct characteristics. Jaco-
bian decoupling performance depends on the chosen reference frame, with optimal decoupling at low
frequencies when aligned at the center of stiffness, or at high frequencies when aligned with the center
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of mass. Systems designed with coincident centers of mass and stiffness may achieve excellent decou-
pling using this approach. Modal decoupling offers good decoupling across all frequencies, though its
effectiveness relies on the accuracy of the system model, with discrepancies potentially resulting in sig-
nificant off-diagonal elements. The diagonal elements typically manifest as second-order low-pass filters,
facilitating straightforward control design. SVD decoupling can be implemented using measured data
without requiring a model, with optimal performance near the chosen decoupling frequency, though its
effectiveness may diminish at other frequencies and depends on the quality of the real approximation
of the response at the selected frequency point.

Table 2.2: Comparison of decoupling strategies

Jacobian Modal SVD

Philosophy Topology Driven Physics Driven Data Driven

Requirements Known geometry Known equations of motion Identified FRF

Decoupling Matrices Decoupling using J{O} ob-
tained from geometry

Decoupling using Φ obtained
from modal decomposition

Decoupling using U and V ob-
tained from SVD

Decoupled Plant G{O}(s) = J−1
{O}GL(s)J−⊺

{O} Gm(s) = Φ−1GX (s)Φ−⊺ GSVD(s) = U−1G(s)V −⊺

Controller K{O}(s) = J−⊺
{O}Kd(s)J

−1
{O} Km(s) = Φ−⊺Kd(s)Φ

−1 KSVD(s) = V −⊺Kd(s)U
−1

Interpretation Forces/Torques to Displace-
ment/Rotation in chosen
frame

Inputs to excite individual
modes

Directions of max to min con-
trollability/observability

Output to sense individual
modes

Properties Decoupling at low or high fre-
quency depending on the cho-
sen frame

Good decoupling at all fre-
quencies

Good decoupling near the cho-
sen frequency

Pros Physical inputs / outputs Target specific modes Good Decoupling near the
crossover

Good decoupling at High fre-
quency (diagonal mass matrix
if Jacobian taken at the CoM)

2nd order diagonal plant Very General

Good decoupling at Low fre-
quency (if Jacobian taken at
specific point)
Easy integration of meaningful
reference inputs

Cons Coupling between force/rota-
tion may be high at low fre-
quency (non diagonal terms in
K)

Need analytical equations Loose the physical meaning of
inputs /outputs

Limited to parallel mecha-
nisms (?)

Decoupling depends on the
real approximation validity

If good decoupling at all fre-
quencies =¿ requires specific
mechanical architecture

Diagonal plants may not be
easy to control

Applicability Parallel Mechanisms Systems whose dynamics that
can be expressed with M and
K matrices

Very general

Only small motion for the Ja-
cobian matrix to stay constant

Need FRF data (either experi-
mentally or analytically)
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3 Closed-Loop Shaping using Complementary
Filters

Once the system is properly decoupled using one of the approaches described in Section 2, a diagonal
controller can be tuned. This consists in tuning several SISO controllers. There are several ways to
design a controller to obtain a given performance while ensuring good robustness properties.

Performances of a feedback system (such as response time, disturbance rejection, ) depends on the
obtained closed-loop transfer functions. For instance sensitivity, transmissibility, etc. . . Gang of Four.
The specifications can usually be expressed in terms of the shape of these closed-loop transfer functions
[43, chapt. 3].

In some cases, “fixed” controller structures are used, with as PI and PID controllers. In such case the
controller coefficients are manually tuned to obtain acceptable performance and robustness. In many
cases, PID+LPF can already lead to performances close to optimal, depending on the plant.

Decoupled Open-Loop Shaping:

• Explain procedure when applying open-loop shaping schmidt20˙desig˙high˙perfor˙mechat˙third˙revis˙edition
steinbuch16˙model˙based

he key idea of loop-shaping is the modification of the controller such that the
open- loop is made according to specifications. The reason this works so well, is
that the controller enters linearly into the open-loop transfer l(j!) = g(j!)k(j!),
so that it is fast and easy to reason what is to be changed in the controller.
However, in practice all specifications are of course given in terms of the final
system performance, i.e. as closed-loop specifications. So we should convert the
closed loop specs into specs on the open-loop.

• The controller is usually manually tuned using a series of Integrators, Leads, Lags, Notches, low
pass filters

• There are lots of tools to check stability, robustness margins and performances

• Open-Loop shaping is very popular as the open-loop gain depends linearly on the controller. So
the open-loop transfer function can easily be shaped by modifying the controller response.

• Different techniques for open loop shaping (choice of optimal open-loop gain shape) [60]

• But this is open-loop shaping, and it does not directly work on the closed loop transfer functions

• The huge advantage of this technique, is that one can tune the controllers based on the measured
FRF of the system. No plant model is required.
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• This is what was done during the conceptual phase after the plan was decoupled in the frame of
the struts.

Model based control:

• Review of model based design (LQG, H-Infinity) applied to Stewart platformMultivariable Control
loop-shaping [43].

• Difficulty to specify robustness to change of payload mass

• Requires high level of expertise. Far from standard in industry. Application to Stewart platforms
is not demonstrated (or performance increased compared to decoupled control and manual loop
shaping).

In this section, an alternative controller synthesis scheme is proposed in which complementary filters are
used for directly shaping the closed-loop transfer functions. In this paper, we propose a new controller
synthesis method

• based on the use of complementary high pass and low pass filters

• inverse based control

• direct translation of requirements such as disturbance rejection and robustness to plant uncertainty

3.1 Control Architecture

Virtual Sensor Fusion

Let’s consider the control architecture represented in Figure 3.1 where G′ is the physical plant to control,
G is a model of the plant, k is a gain, HL and HH are complementary filters (HL(s)+HH(s) = 1). The
signals are the reference signal r, the output perturbation dy, the measurement noise n and the control
input u.

RT controller

+
−

k G′ +

G

HH

+ HL +

u

n

yr

ym

dy

Figure 3.1: Sensor Fusion Architecture

The dynamics of the closed-loop system is described by (3.1) with L = k(GHH +G′HL).
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y =
1 + kGHH

1 + L
dy +

kG′

1 + L
r − kG′HL

1 + L
n (3.1a)

u = − kHL

1 + L
dy +

k

1 + L
r − kHL

1 + L
n (3.1b)

The idea of using such architecture comes from sensor fusion [26], [61] where two sensors are used. One
is measuring the quantity that is required to control, the other is collocated with the actuator in such a
way that stability is guaranteed. The first one is low pass filtered in order to obtain good performance at
low frequencies and the second one is high pass filtered to benefits from its good dynamical properties.

Here, the second sensor is replaced by a modelG of the plant which is assumed to be stable and minimum
phase. This lead to the idea of virtual sensor fusion presented in verma20˙virtual˙sensor˙fusion˙high˙precis˙contr.

One may think that the control architecture shown in Figure 3.1 is a multi-loop system, but because
no non-linear saturation-type element is present in the inner-loop (containing k, G and HH which are
all numerically implemented), the structure is equivalent to the architecture shown in Figure 3.2.

+
−

+
−

k G′ +

GHH

HL +

u

n

yr

ym

dy

Figure 3.2: Equivalent feedback architecture

The dynamics of the system can be rewritten (3.2) with K = k
1+HHGk .

y =
1

1 +G′KHL
dy +

G′K

1 +G′KHL
r − G′KHL

1 +G′KHL
n (3.2a)

u =
−KHL

1 +G′KHL
dy +

K

1 +G′KHL
r − KHL

1 +G′KHL
n (3.2b)

Asymptotic behavior

Let’s take the extreme case of very high values for k. In that case K(s) converges to plant inverse
multiply by the inverse of the high pass filter (3.3).

lim
k→∞

K(s) = lim
k→∞

k

1 +HH(s)G(s)k
= (HH(s)G(s))

−1
(3.3)

If the obtained K is improper, a low pass filter can be added to have its causal realization. Also, we
want K to be stable, so G and HH must be minimum phase transfer functions.

31



With this assumptions, the resulting control architecture is shown on Figure 3.3. The only “tuning
parameters” are the complementary filters HL and HH .

RT controller

+
−

K G′ +

+HL

u

n

yr
dy

Figure 3.3: Equivalent classical feedback control architecture

The equations describing the dynamics of the closed-loop system of Figure 3.3

y =
HHdy +G′G−1r −G′G−1HLn

HH +G′G−1HL
(3.4a)

u =
−G−1HLdy +G−1r −G−1HLn

HH +G′G−1HL
(3.4b)

At frequencies where the model is accurate: G−1G′ ≈ 1, HH + G′G−1HL ≈ HH + HL = 1 and the
closed loop transfer functions are described by (3.5).

y = HHdy + r −HLn (3.5a)

u = −G−1HLdy +G−1r −G−1HLn (3.5b)

The obtained sensitivity transfer function equals to the high pass filter S = y
dy = HH and the trans-

missibility transfer function equals to the low pass filter T = y
n = HL.

Assuming that we have a good model of the plant, we have then that the closed-loop behavior of the
system converges to the designed complementary filters.

3.2 Translating the performance requirements into the shapes of
the complementary filters

The required performance specifications in a feedback system can usually be translated into requirements
on the upper bounds of |S(jω)| and |T (jω)| [62]. The process of designing a controller K(s) in order
to obtain the desired shapes of |S(jω)| and |T (jω)| is called closed-loop shaping.

The equations (3.4a) and (3.4b) describing the dynamics of the studied feedback architecture are not
written in terms of the controller K(s) but in terms of the complementary filters HL(s) and HH(s).
The typical specifications are then translated into the desired shapes of the complementary filters.
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Nominal Stability (NS)

The closed-loop system is stable if all its elements are stable (K, G′ and HL) and if the sensitivity
function (S = 1

1+G′KHL
) is stable. For the nominal system (G′ = G), the sensitivity transfer function

is equal to the high pass filter: S(s) = HH(s).

Nominal stability is then guaranteed if HL, HH and G are stable and if G and HH are minimum phase
(to have K stable). Therefore stable and minimum phase complementary filters need to be used.

Nominal Performance (NP)

Two performance weights wH and wL are here defined in such a way that performance specifications
are satisfied is (3.6) is satisfied.

|wH(jω)S(jω)| ≤ 1 ∀ω (3.6a)

|wL(jω)T (jω)| ≤ 1 ∀ω (3.6b)

For the nominal system, we have S = HH and T = HL, and then nominal performance is ensured by
requiring (??).

NP ⇐⇒
{|wH(jω)HH(jω)| ≤ 1 ∀ω
|wL(jω)HL(jω)| ≤ 1 ∀ω

(3.7)

(3.8)

The translation of typical performance requirements on the shapes of the complementary filters is
discussed below:

• for disturbance rejections, make |S| = |HH | small

• for noise attenuation, make |T | = |HL| small

• closed-loop bandwidth can be limited by requiring that |T | is less than 1√
2
above the maximum

wanted bandwidth

Therefore, by properly choosing the shape of the complementary filters, the nominal performance spec-
ifications can be addressed.

Classical stability margins (gain and phase margins) can also be linked to the maximum amplitude of
the sensitivity transfer function.

□ Add reference

Typically, having |S|∞ ≤ 2 guarantees a gain margin of at least 2 and a phase margin of at least 29◦.
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Response time to change of reference signal

For the nominal system, the model is accurate and the transfer function from reference signal r to
output y is 1 (3.5a) and does not depends of the complementary filters.

However, one can add a pre-filter as shown in Figure 3.4.

+
−

Kr K G′ +

+HL

u

n

yr
dy

Figure 3.4: Prefilter used to limit input usage

The transfer function from y to r becomes y
r = Kr and Kr can we chosen to obtain acceptable response

to change of the reference signal. Typically, Kr is a low pass filter of the form

Kr(s) =
1

1 + τs
(3.9)

with τ corresponding to the desired response time.

Input usage

Input usage due to disturbances dy and measurement noise n is determined by
∣∣ u
dy

∣∣ = ∣∣u
n

∣∣ = ∣∣G−1HL

∣∣.
Thus it can be limited by setting an upper bound on |HL|.

Input usage due to reference signal r is determined by
∣∣u
r

∣∣ = ∣∣G−1Kr

∣∣ when using a pre-filter (Figure

3.4) and
∣∣u
r

∣∣ = ∣∣G−1
∣∣ otherwise.

Proper choice of |Kr| is then useful to limit input usage due to change of reference signal.

Robust Stability (RS)

Robustness stability represents the ability of the control system to remain stable even though there are
differences between the actual system G′ and the model G that was used for the design of the controller.
These differences can have various origins such as unmodelled dynamics or non-linearities.

To represent the differences between the model and the actual system, the input multiplicative uncer-
tainty as represented in Figure 3.5a is used.

Then, the set of possible plant is described by (3.10). wI should be chosen such that all possible plants
G′ are contained in the set Πi.

Πi : G′(s) = G(s)
(
1 + wI(s)∆I(s)

)
; |∆I(jω)| ≤ 1 ∀ω (3.10)
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G′

G+

∆IwI

(a) Input multiplicative uncertainty

ReIm

(b) Nyquist plot - Effect of multiplicative uncertainty

Figure 3.5: Input multiplicative uncertainty to model the differences between the model and the phys-
ical plant (a). Effect of this uncertainty is displayed on the Nyquist plot (b)

Considering input multiplicative uncertainty, the robust stability property can be derived graphically
from the Nyquist plot (Figure 3.5b), and (3.11) is obtained, as proposed in [43, chapt. 7.5.1].

RS ⇐⇒ |wI(jω)L(jω)| ≤ |1 + L(jω)| ∀ω (3.11)

After some algebraic manipulations, robust stability is then guaranteed by having the low pass filter
HL satisfying (3.12).

RS ⇐⇒ |wI(jω)HL(jω)| ≤ 1 ∀ω (3.12)

Robust Performance (RP)

Robust performance is a property for a controlled system to have its performance guaranteed even
though the dynamics of the plant is changing within specified bounds.

For robust performance, we then require to have the performance condition valid for all possible plants
in the defined uncertainty set (3.13).

RP ⇐⇒ |wH(jω)S(jω)| ≤ 1 ∀G′ ∈ ΠI , ∀ω (3.13)

Let’s transform condition (3.13) into a condition on the complementary filters (3.14).

RP ⇐⇒ |wH(jω)HH(jω)|+ |wI(jω)HL(jω)| ≤ 1, ∀ω (3.14)

Obtained condition for robust performance combines both the NP and RS conditions. If both NP and
RS conditions are fulfilled, the robust performance will be fulfilled with a factor 2 [43, chapt. 7.6].
Therefore, for SISO systems, robust stability and nominal performance are usually sufficient.
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3.3 Complementary filter design

As was explained in Section 1, complementary filters can easily be shaped with the standard H∞
synthesis. As requirements can usually be expressed as upper bounds on the complementary filters’
magnitude, this method is very well suited.

However, analytical formulas for complementary filters may also be used.

For some applications, first order complementary filters (3.15) are sufficient.

HL(s) =
1

1 + s/ω0
(3.15a)

HH(s) =
s/ω0

1 + s/ω0
(3.15b)

They can be expressed analytically in the digital domain using the Bilinear transformation. In such
case, digital filters (3.16) are obtained.

HL(z
−1) =

Tsω0 + Tsω0z
−1

Tsω0 + 2 + (Tsω0 − 2)z−1
(3.16a)

HH(z−1) =
2− 2z−1

Tsω0 + 2 + (Tsω0 − 2)z−1
(3.16b)

The main advantage of having analytical formulas for the complementary filters is that the parameter
ω0 may be modified in real time. This is illustrated in Figure 3.6. Therefore, the performance and
robustness of different control bandwidth can be tested very quickly.

RT controller

+
−

H−1
H G−1 G′ +

+HL

•ω0

u

n

yr
dy

Figure 3.6: Implemented digital complementary filters with parameter ω0 that can be changed in real
time

For many applications, slope of +2 is wanted at low frequency for the sensitivity transfer function (to
follow ramp inputs for instance), and a slope of −2 for the complementary sensitivity transfer function.
In that case, complementary filters shown in equation (3.17) are proposed.
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HL(s) =
(1 + α)( s

ω0
) + 1(

( s
ω0

) + 1
)(

( s
ω0

)2 + α( s
ω0

) + 1
) (3.17a)

HH(s) =
( s
ω0

)2
(
( s
ω0

) + 1 + α
)

(
( s
ω0

) + 1
)(

( s
ω0

)2 + α( s
ω0

) + 1
) (3.17b)

The effect of α and ω0 and the obtained shape of the complementary filters is shown in Figure 3.7.
Such filters can also be implemented in the digital domain with analytical formulas, such as α and ω0

can be changed in real time.
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Figure 3.7: Shape of proposed analytical complementary filters. Effect of α (a) and ω0 (b) are shown.

3.4 Numerical Example

Procedure

In order to apply this control technique, we propose the following procedure:

1. Identify the plant to be controlled in order to obtain the plant model G

2. Design the weighting function wI such that all possible plants G′ are contained in the set Πi

3. Translate the performance requirements into upper bounds on the complementary filters (as ex-
plained in Section 3.2)

4. Design the weighting functions wH and wL and generate the complementary filters usingH∞-synthesis
(as was explained in Section 1.3). If the synthesis fails to give filters satisfying the upper bounds
previously defined, either the requirements have to be reworked or a better model G that will
permits to have a smaller wI should be obtained. For simple cases, analytical formulas of com-
plementary filters given in Section 3.3 can be used.

37



5. If K(s) = (G(s)HH(s))
−1

is not proper, low pass filters should be added high a high corner
frequency

Plant

• To test this control architecture, a simple test model is used (Figure 3.8a).

• This model is quite similar to many positioning stages for Synchrotrons. A payload (i.e. sample)
with mass m = 5 is positioned on top of the stage. The goal is to position the sample with
respect to the x-ray. It is supposed that the relative position y between the payload an the x-
ray is measured (typically the relative position between the focusing optics and the sample is
performed). There are some disturbance forces acting on the positioning stability, such as stage
vibration dw and direct forces applied on the sample dF (for instance cable forces). The positioning
stage itself has a stiffness k, an internal damping c and the force F can be controlled.

The model of the plant G(s) from actuator force F to displacement y is then

G(s) =
1

ms2 + cs+ k
(3.18)

The values for the parameters of the models are m = 20 kg, k = 1N/µm and c = 102N/(m/s).

The plant dynamics has some uncertainty related to the limited support compliance, unmodeled flexible
dynamics, dynamics of the payload, etc. A multiplicative input uncertainty weight wI(s) is used to
specify the amount of uncertainty as a function of frequency (3.19).

wI(s) = 10 · (s+ 100)2

(s+ 1000)2
(3.19)

The nominal plant dynamics as well as the entire set of possible plants Πi are shown in Figure 3.8b.

Requirements and choice of complementary filters

As explained in Section 3.2, nominal performance requirements can be expressed as upper bounds on
the complementary filter shapes.

• Be able to follow ramp inputs (i.e. constant velocity scans) with no steady-state tracking error.
This requires to have a +2 slope at low frequency for |S(jω)|

• Filter the measurement noise above 300Hz as the sensor noise is high (say a filtering factor of 100
is needed above that frequency).

• As much disturbance rejection as possible.

The second requirement is to have robust stability meaning that the plant should remain stable while
considering the dynamical uncertainties modelled with wI
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(a) Test model
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(b) Bode plot of G(s) and associated uncertainty set

Figure 3.8: Schematic of the test system (a). Bode plot of the transfer function G(s) from F to y and
the associated uncertainty set (b).

• The low-pass complementary filter magnitude |HL(jω)| should be bellow the inverse magnitude
of the uncertainty weight magnitude |wI(jω)| (3.12)

Robust performance is ensured by simultaneous NP and RS.

All the requirements on HL and HH are represented on Figure 3.9a.
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(b) Bode plot of K(s) ·HL(s)

Figure 3.9: Performance requirement and complementary filters used (a). Obtained controller from
the complementary filters and the plant inverse is shown in (b).

While the H∞ synthesis of complementary filters could be used, for this simple examples with simple
requirements, analytical formulas of complementary filters were used.

For this simple example, analytical formulas proposed to have +2 and -2 slopes (3.17) were used. α = 1
and ω0 = 2π · 20 were used.
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Controller analysis

The controller to be implemented is K(s) = G̃−1(s)H−1
H (s), with G̃−1(s) is the plant inverse which

needs to be stable and proper. Therefore, some low pass filters are added at high frequency (3.20).

G̃−1(s) =
ms2 + cs+ k

1 + s
2π·1000 +

(
s

2π·1000
)2 (3.20)

The obtained bode plot of the controller times the complementary high pass filter is shown in Figure
3.9b.

• two integrators are present at low frequency to be able to follow ramp inputs

• a notch is located at the plant resonance (inverse)

• a lead is added near the bandwidth around 20Hz

Robustness and Performance analysis

The robust stability can be access on the Nyquist plot (Figure 3.10a). Even when considering all the
possible plants in the uncertainty set, the nyquist plot stays away from the unstable point, indicating
good robustness.

The performance is evaluated by looking at the closed-loop sensitivity and complementary sensitivity
transfer functions (Figure 3.10b).
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Figure 3.10: Validation of Robust stability with the Nyquist plot (a) and validation of the nominal
and robust performance with the magnitude of the closed-loop transfer functions (b)
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Conclusion

□ Say that the presented control architecture in this section No ambition to overcome fundamental
limitations of current architectures. Very similar to Internal Model Control saxena12˙advan˙inter˙model˙contr˙techn
Had no time to proceed to an extensive literature review to find similar control architecture and
to compare them. Whether the propose architecture has advantages compared to already excising
architecture in the literature is not clear.

□ The control architecture was presented for a SISO system, but can be applied to MIMO if decou-
pling is sufficient. It will be experimentally demonstrated with the NASS.

□ Discuss how useful it is as the bandwidth can be changed in real time with analytical formulas
of second order complementary filters. Maybe make a section about that. Maybe give analytical
formulas of second order complementary filters in the digital domain?

□ Disadvantages:

– not optimal

– computationally intensive?

– lead to inverse control which may not be wanted in many cases. Add reference.
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