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When controlling a MIMO system (specifically parallel manipulator such as the Stewart platform?)

Several considerations:

• Section 1: How to most effectively use/combine multiple sensors

• Section 2: How to decouple a system

• Section 3: How to design the controller

3



1 Multiple Sensor Control

Look at what was done in the introduction Stewart platforms: Control architecture

Different control objectives:

• Vibration Control

• Position Control

Sometimes, the two objectives are simultaneous, as is the case for the NASS, in that case it is usually
beneficial to combine multiple sensors in the control architecture.

Explain why multiple sensors are sometimes beneficial:

• collocated sensor that guarantee stability, but is still useful to damp modes outside the bandwidth
of the controller using sensor measuring the performance objective

• Noise optimization

Several architectures (Figure 1.1):

• HAC-LAC (Figure 1.1a) [1], [2], [3], [4], [5], [6]

• Sensor Fusion (Figure 1.1c) [7], [8], [9]

• Two Sensor control (Figure 1.1b) [7], [9], [10], [11]

□ Explain basic idea for three strategies:

– HAC-LAC: sequential control.

– Sensor Fusion: use different sensors in different frequency regions for different reasons: noise,
robustness, . . .

– Two sensor control: idea is to have the maximum control on how both sensors are utilized.
Theoretically, this could give the best performances (as sensor fusion is a special case of two
sensor control). But it may be more complex to tune and analyze.

Comparison between “two sensor control” and “sensor fusion” is given in [10].

The use of multiple sensors have already been used for the Stewart platform. Table 1.1

Cascaded control / HAC-LAC Architecture was already discussed during the conceptual phase. This is
a very comprehensive approach that proved to give good performances.
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Figure 1.1: Different control strategies when using multiple sensors. High Authority Control / Low
Authority Control (a). Sensor Fusion (c). Two-Sensor Control (b)

Table 1.1: Review of Stewart platforms integrating multiple sensors

Actuators Sensors Control Main Object Reference

MagnetostrictiveForce (collocated), Accelerometers Two layers: Decentralized IFF, Robust Adaptive Control Two layer control for active damping and vibration isolation [1]
Piezoelectric Force Sensor + Accelerometer HAC-LAC (IFF + FxLMS) Dynamic Model + Vibration Control [3]
Voice
Coil

Accelerometer (collocated), ext. Rx/Ry sensors Cartesian acceleration feedback (isolation) + 2DoF pointing control (external sensor) Decoupling, both vibration + pointing control [4]

Voice
Coil

Geophone + Eddy Current (Struts, collocated) Decentralized (Sky Hook) + Centralized (modal) Control [5]

Voice
Coil

Force sensors (strus) + accelerometer (cartesian) Decentralized Force Feedback + Centralized H2 control based on accelerometers [6]

Voice
Coil

Force (HF) and Inertial (LF) Sensor Fusion, Two Sensor Control [7], [8]

Voice
Coil

Force (HF) and Inertial (LF) Sensor Fusion, LQG, Decentralized Combine force/inertial sensors. Comparison of force sensor and inertial sensors. Issue on non-minimum phase zero [9]

Piezoelectric Force, Position Vibration isolation, Model-Based, Modal control: 6x PI controllers Stiffness of flexible joints is compensated using feedback, then the system is decoupled in the modal space [12]
Voice
Coil

Force, LVDT, Geophones LQG, Force + geophones for vibration, LVDT for pointing Centralized control is no better than decentralized. Geophone + Force MISO control is good [13], [14]

Voice
Coil

Force IFF, centralized (decouple) + decentralized (coupled) Specific geometry: decoupled force plant. Better perf with centralized IFF [15], [16], [17]
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On the other hand of the spectrum, the two sensor approach yields to more control design freedom.
But it is also more complex.

In this section, we wish to study if sensor fusion can be an option for multi-sensor control:

• may be used to optimize the noise characteristics

• optimize the dynamical uncertainty

1.1 Sensor fusion - Introduction

Measuring a physical quantity using sensors is always subject to several limitations. First, the accuracy
of the measurement is affected by several noise sources, such as electrical noise of the conditioning
electronics being used. Second, the frequency range in which the measurement is relevant is bounded
by the bandwidth of the sensor. One way to overcome these limitations is to combine several sensors
using a technique called “sensor fusion” [18]. Fortunately, a wide variety of sensors exists, each with
different characteristics. By carefully choosing the fused sensors, a so called “super sensor” is obtained
that can combines benefits of the individual sensors.

In some situations, sensor fusion is used to increase the bandwidth of the measurement [19], [20], [21].
For instance, in [19] the bandwidth of a position sensor is increased by fusing it with an accelerometer
providing the high frequency motion information. For other applications, sensor fusion is used to obtain
an estimate of the measured quantity with lower noise [22], [23], [24], [25]. More recently, the fusion of
sensors measuring different physical quantities has been proposed to obtain interesting properties for
control [11], [26]. In [26], an inertial sensor used for active vibration isolation is fused with a sensor
collocated with the actuator for improving the stability margins of the feedback controller.

Practical applications of sensor fusion are numerous. It is widely used for the attitude estimation of
several autonomous vehicles such as unmanned aerial vehicle [27], [28], [29] and underwater vehicles
[30], [31]. Naturally, it is of great benefits for high performance positioning control as shown in [11],
[19], [20], [21]. Sensor fusion was also shown to be a key technology to improve the performance of
active vibration isolation systems [8]. Emblematic examples are the isolation stages of gravitational
wave detectors [26], [32] such as the ones used at the LIGO [22], [23] and at the Virgo [33].

There are mainly two ways to perform sensor fusion: either using a set of complementary filters [34] or
using Kalman filtering [35]. For sensor fusion applications, both methods are sharing many relationships
[25], [35], [36], [37]. However, for Kalman filtering, assumptions must be made about the probabilistic
character of the sensor noises [25] whereas it is not the case with complementary filters. Furthermore, the
advantages of complementary filters over Kalman filtering for sensor fusion are their general applicability,
their low computational cost [36], and the fact that they are intuitive as their effects can be easily
interpreted in the frequency domain.

A set of filters is said to be complementary if the sum of their transfer functions is equal to one at all
frequencies. In the early days of complementary filtering, analog circuits were employed to physically
realize the filters [34]. Analog complementary filters are still used today [11], [38], but most of the time
they are now implemented digitally as it allows for much more flexibility.

Several design methods have been developed over the years to optimize complementary filters. The
easiest way to design complementary filters is to use analytical formulas. Depending on the application,
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the formulas used are of first order [11], [28], [39], second order [27], [29], [40] or even higher orders [19],
[20], [26], [40], [41].

As the characteristics of the super sensor depends on the proper design of the complementary filters
[42], several optimization techniques have been developed. Some are based on the finding of optimal
parameters of analytical formulas [21], [29], [37], while other are using convex optimization tools [22],
[23] such as linear matrix inequalities [30]. As shown in [24], the design of complementary filters can also
be linked to the standard mixed-sensitivity control problem. Therefore, all the powerful tools developed
for the classical control theory can also be used for the design of complementary filters. For instance,
in [29] the two gains of a Proportional Integral (PI) controller are optimized to minimize the noise of
the super sensor.

The common objective of all these complementary filters design methods is to obtain a super sensor
that has desired characteristics, usually in terms of noise and dynamics. Moreover, as reported in
[20], [24], phase shifts and magnitude bumps of the super sensors dynamics can be observed if either
the complementary filters are poorly designed or if the sensors are not well calibrated. Hence, the
robustness of the fusion is also of concern when designing the complementary filters. Although many
design methods of complementary filters have been proposed in the literature, no simple method that
allows to specify the desired super sensor characteristic while ensuring good fusion robustness has been
proposed.

Fortunately, both the robustness of the fusion and the super sensor characteristics can be linked to
the magnitude of the complementary filters [42]. Based on that, this work introduces a new way to
design complementary filters using the H∞ synthesis which allows to shape the complementary filters’
magnitude in an easy and intuitive way.

1.2 Sensor Fusion and Complementary Filters Requirements

Complementary filtering provides a framework for fusing signals from different sensors. As the effec-
tiveness of the fusion depends on the proper design of the complementary filters, they are expected to
fulfill certain requirements. These requirements are discussed in this section.

Sensor Fusion Architecture A general sensor fusion architecture using complementary filters is shown
in Figure 1.2 where several sensors (here two) are measuring the same physical quantity x. The two sen-
sors output signals x̂1 and x̂2 are estimates of x. These estimates are then filtered out by complementary
filters and combined to form a new estimate x̂.

The resulting sensor, termed as “super sensor”, can have larger bandwidth and better noise character-
istics in comparison to the individual sensors. This means that the super sensor provides an estimate
x̂ of x which can be more accurate over a larger frequency band than the outputs of the individual
sensors.

The complementary property of filters H1(s) and H2(s) implies that the sum of their transfer functions
is equal to one (1.1). That is, unity magnitude and zero phase at all frequencies.

H1(s) +H2(s) = 1 (1.1)
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Figure 1.2: Schematic of a sensor fusion architecture using complementary filters.

Sensor Models and Sensor Normalization In order to study such sensor fusion architecture, a model
for the sensors is required. Such model is shown in Figure 1.3a and consists of a linear time invariant
(LTI) system Gi(s) representing the sensor dynamics and an input ni representing the sensor noise. The
model input x is the measured physical quantity and its output x̃i is the “raw” output of the sensor.

Before filtering the sensor outputs x̃i by the complementary filters, the sensors are usually normalized
to simplify the fusion. This normalization consists of using an estimate Ĝi(s) of the sensor dynamics
Gi(s), and filtering the sensor output by the inverse of this estimate Ĝ−1

i (s) as shown in Figure 1.3b.

It is here supposed that the sensor inverse Ĝ−1
i (s) is proper and stable. This way, the units of the

estimates x̂i are equal to the units of the physical quantity x. The sensor dynamics estimate Ĝi(s) can
be a simple gain or a more complex transfer function.

Sensor

+ Gi(s)x

ni

x̃i

(a) Basic sensor model consisting of a noise input ni

and a linear time invariant transfer function Gi(s)

Normalized
sensorSensor

+ Gi(s) Ĝ−1
i (s)

x

ni

x̃i x̂i

(b) Normalized sensors using the inverse of an esti-
mate Ĝ

Figure 1.3: Sensor models with and without normalization.

Two normalized sensors are then combined to form a super sensor as shown in Figure 1.4. The two
sensors are measuring the same physical quantity x with dynamics G1(s) and G2(s), and with uncor-
related noises n1 and n2. The signals from both normalized sensors are fed into two complementary
filters H1(s) and H2(s) and then combined to yield an estimate x̂ of x. The super sensor output x̂ is
therefore described by (1.2).

x̂ =
(
H1(s)Ĝ

−1
1 (s)G1(s) +H2(s)Ĝ

−1
2 (s)G2(s)

)
x+H1(s)Ĝ

−1
1 (s)G1(s)n1 +H2(s)Ĝ

−1
2 (s)G2(s)n2 (1.2)

Noise Sensor Filtering First, suppose that all the sensors are perfectly normalized (1.3). The effect
of a non-perfect normalization will be discussed afterwards.

x̂i

x
= Ĝi(s)Gi(s) = 1 (1.3)
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Figure 1.4: Sensor fusion architecture with two normalized sensors.

Provided (1.3) is verified, the super sensor output x̂ is then equal to x plus the filtered noise of both
sensors (1.4). From (1.4), the complementary filters H1(s) and H2(s) are shown to only operate on the
noise of the sensors. Thus, this sensor fusion architecture permits to filter the noise of both sensors
without introducing any distortion in the physical quantity to be measured. This is why the two filters
must be complementary.

x̂ = x+H1(s)n1 +H2(s)n2 (1.4)

The estimation error δx, defined as the difference between the sensor output x̂ and the measured
quantity x, is computed for the super sensor (1.5).

δx ≜ x̂− x = H1(s)n1 +H2(s)n2 (1.5)

As shown in (1.6), the Power Spectral Density (PSD) of the estimation error Φδx depends both on the
norm of the two complementary filters and on the PSD of the noise sources Φn1

and Φn2
.

Φδx(ω) = |H1(jω)|2 Φn1
(ω) + |H2(jω)|2 Φn2

(ω) (1.6)

If the two sensors have identical noise characteristics, Φn1
(ω) = Φn2

(ω), a simple averaging (H1(s) =
H2(s) = 0.5) is what would minimize the super sensor noise. This is the simplest form of sensor fusion
with complementary filters.

However, the two sensors have usually high noise levels over distinct frequency regions. In such case,
to lower the noise of the super sensor, the norm |H1(jω)| has to be small when Φn1

(ω) is larger than
Φn2

(ω) and the norm |H2(jω)| has to be small when Φn2
(ω) is larger than Φn1

(ω). Hence, by properly
shaping the norm of the complementary filters, it is possible to minimize the noise of the super sensor.

Sensor Fusion Robustness In practical systems the sensor normalization is not perfect and condition
(1.3) is not verified.

In order to study such imperfection, a multiplicative input uncertainty is added to the sensor dynamics
(Figure 1.5a). The nominal model is the estimated model used for the normalization Ĝi(s), ∆i(s) is
any stable transfer function satisfying |∆i(jω)| ≤ 1, ∀ω, and wi(s) is a weighting transfer function
representing the magnitude of the uncertainty. The weight wi(s) is chosen such that the real sensor
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dynamics Gi(jω) is contained in the uncertain region represented by a circle in the complex plane,
centered on 1 and with a radius equal to |wi(jω)|.

As the nominal sensor dynamics is taken as the normalized filter, the normalized sensor can be further
simplified as shown in Figure 1.5b.

Normalized
sensorSensor

w1(s) ∆1(s)

+ + Ĝ1(s) Ĝ−1
1 (s)

x

n1
x̃1 x̂1

(a) Sensor with multiplicative input uncertainty

Normalized
sensor

w1(s) ∆1(s)

+ +x
n1

x̂1

(b) Simplified sensor model

Figure 1.5: Sensor models with dynamical uncertainty

The sensor fusion architecture with the sensor models including dynamical uncertainty is shown in
Figure 1.6a. The super sensor dynamics (1.7) is no longer equal to 1 and now depends on the sensor
dynamical uncertainty weights wi(s) as well as on the complementary filters Hi(s). The dynamical
uncertainty of the super sensor can be graphically represented in the complex plane by a circle centered
on 1 with a radius equal to |w1(jω)H1(jω)|+ |w2(jω)H2(jω)| (Figure 1.6b).

x̂

x
= 1 + w1(s)H1(s)∆1(s) + w2(s)H2(s)∆2(s) (1.7)

Super SensorNormalized
sensor 1

Normalized
sensor 2

w1(s)

w2(s)

∆1(s)

∆2(s)

+

+

+

+

H1(s)

H2(s)

+x

n1

n2

x̂1

x̂2

x̂

(a) Sensor Fusion Architecture

1

|w1H1|
|w2H2|

|w1H1| + |w2H2|

Re

Im

∆ϕmax

(b) Uncertainty regions

Figure 1.6: Sensor fusion architecture with sensor dynamics uncertainty (a). Uncertainty region (b)
of the super sensor dynamics in the complex plane (grey circle). The contribution of both
sensors 1 and 2 to the total uncertainty are represented respectively by a blue circle and
a red circle. The frequency dependency ω is here omitted.

The super sensor dynamical uncertainty, and hence the robustness of the fusion, clearly depends on the
complementary filters’ norm. For instance, the phase ∆ϕ(ω) added by the super sensor dynamics at
frequency ω is bounded by ∆ϕmax(ω) which can be found by drawing a tangent from the origin to the
uncertainty circle of the super sensor (Figure 1.6b) and that is mathematically described by (1.8).

∆ϕmax(ω) = arcsin
(
|w1(jω)H1(jω)|+ |w2(jω)H2(jω)|

)
(1.8)

As it is generally desired to limit the maximum phase added by the super sensor, H1(s) andH2(s) should
be designed such that ∆ϕ is bounded to acceptable values. Typically, the norm of the complementary
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filter |Hi(jω)| should be made small when |wi(jω)| is large, i.e., at frequencies where the sensor dynamics
is uncertain.

1.3 Complementary Filters Shaping

As shown in Section 1.2, the noise and robustness of the super sensor are a function of the complementary
filters’ norm. Therefore, a synthesis method of complementary filters that allows to shape their norm
would be of great use. In this section, such synthesis is proposed by writing the synthesis objective
as a standard H∞ optimization problem. As weighting functions are used to represent the wanted
complementary filters’ shape during the synthesis, their proper design is discussed. Finally, the synthesis
method is validated on an simple example.

Synthesis Objective The synthesis objective is to shape the norm of two filters H1(s) and H2(s) while
ensuring their complementary property (1.1). This is equivalent as to finding proper and stable transfer
functions H1(s) and H2(s) such that conditions (1.9a), (1.9b) and (1.9c) are satisfied. W1(s) and W2(s)
are two weighting transfer functions that are carefully chosen to specify the maximum wanted norm of
the complementary filters during the synthesis.

H1(s) +H2(s) = 1 (1.9a)

|H1(jω)| ≤
1

|W1(jω)|
∀ω (1.9b)

|H2(jω)| ≤
1

|W2(jω)|
∀ω (1.9c)

Shaping of Complementary Filters using H∞ synthesis The synthesis objective can be easily ex-
pressed as a standard H∞ optimization problem and therefore solved using convenient tools readily
available. Consider the generalized plant P (s) shown in Figure 1.7a and mathematically described by
(1.10).

z1z2
v

 = P (s)

[
w
u

]
; P (s) =

W1(s) −W1(s)
0 W2(s)
1 0

 (1.10)

Applying the standard H∞ synthesis to the generalized plant P (s) is then equivalent as finding a stable
filter H2(s) which based on v, generates a signal u such that the H∞ norm of the system in Figure 1.7b
from w to [z1, z2] is less than one (1.11).

∥∥∥∥(1−H2(s))W1(s)
H2(s)W2(s)

∥∥∥∥
∞

≤ 1 (1.11)

By then defining H1(s) to be the complementary of H2(s) (1.12), the H∞ synthesis objective becomes
equivalent to (1.13) which ensures that (1.9b) and (1.9c) are satisfied.
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(b) Generalized plant with the synthesized filter

Figure 1.7: Architecture for the H∞ synthesis of complementary filters

H1(s) ≜ 1−H2(s) (1.12)

∥∥∥∥H1(s)W1(s)
H2(s)W2(s)

∥∥∥∥
∞

≤ 1 (1.13)

Therefore, applying the H∞ synthesis to the standard plant P (s) (1.10) will generate two filters H2(s)
and H1(s) ≜ 1 − H2(s) that are complementary (1.9) and such that there norms are bellow specified
bounds (1.9b), (1.9c).

Note that there is only an implication between the H∞ norm condition (1.13) and the initial synthe-
sis objectives (1.9b) and (1.9c) and not an equivalence. Hence, the optimization may be a little bit
conservative with respect to the set of filters on which it is performed, see [43, Chap. 2.8.3].

Weighting Functions Design Weighting functions are used during the synthesis to specify the maxi-
mum allowed complementary filters’ norm. The proper design of these weighting functions is of primary
importance for the success of the presented H∞ synthesis of complementary filters.

First, only proper and stable transfer functions should be used. Second, the order of the weighting
functions should stay reasonably small in order to reduce the computational costs associated with the
solving of the optimization problem and for the physical implementation of the filters (the synthesized
filters’ order being equal to the sum of the weighting functions’ order). Third, one should not forget
the fundamental limitations imposed by the complementary property (1.1). This implies for instance
that |H1(jω)| and |H2(jω)| cannot be made small at the same frequency.

When designing complementary filters, it is usually desired to specify their slopes, their “blending”
frequency and their maximum gains at low and high frequency. To easily express these specifications,
formula (1.14) is proposed to help with the design of weighting functions. The parameters in formula
(1.14) are G0 = limω→0 |W (jω)| the low frequency gain, G∞ = limω→∞ |W (jω)| the high frequency
gain, Gc = |W (jωc)| the gain at a specific frequency ωc in rad/s and n the slope between high and low
frequency, which also corresponds to the order of the weighting function. The typical magnitude of a
weighting function generated using (1.14) is shown in Figure 1.8.
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W (s) =


1
ωc

√
1−(G0

Gc
)

2
n

1−( Gc
G∞ )

2
n
s+

(
G0

Gc

) 1
n

(
1

G∞

) 1
n 1

ωc

√
1−(G0

Gc
)

2
n

1−( Gc
G∞ )

2
n
s+

(
1
Gc

) 1
n


n

(1.14)

Validation of the proposed synthesis method The proposed methodology for the design of comple-
mentary filters is now applied on a simple example. Let’s suppose two complementary filters H1(s) and
H2(s) have to be designed such that:

• the blending frequency is around 10Hz.

• the slope of |H1(jω)| is +2 below 10Hz. Its low frequency gain is 10−3.

• the slope of |H2(jω)| is −3 above 10Hz. Its high frequency gain is 10−3.

The first step is to translate the above requirements by properly designing the weighting functions.
The proposed formula (1.14) is here used for such purpose. Parameters used are summarized in Table
1.2. The inverse magnitudes of the designed weighting functions, which are representing the maximum
allowed norms of the complementary filters, are shown by the dashed lines in Figure 1.9.

Parameter W1(s) W2(s)

G0 0.1 1000
G∞ 1000 0.1
ωc 2π · 10 2π · 10
Gc 0.45 0.45
n 2 3

Table 1.2: Parameters for W1(s) and W2(s)
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Figure 1.9: Weights and obtained filters

The standard H∞ synthesis is then applied to the generalized plant of Figure 1.7a. The filter H2(s)
that minimizes the H∞ norm between w and [z1, z2]

T is obtained. The H∞ norm is here found to be
close to one which indicates that the synthesis is successful: the complementary filters norms are below
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the maximum specified upper bounds. This is confirmed by the bode plots of the obtained complemen-
tary filters in Figure 1.9. This simple example illustrates the fact that the proposed methodology for
complementary filters shaping is easy to use and effective.

1.4 Synthesis of a set of three complementary filters

Some applications may require to merge more than two sensors [37], [40]. For instance at the LIGO,
three sensors (an LVDT, a seismometer and a geophone) are merged to form a super sensor [41].

When merging n > 2 sensors using complementary filters, two architectures can be used as shown in
Figure 1.10. The fusion can either be done in a “sequential” way where n−1 sets of two complementary
filters are used (Figure 1.10a), or in a “parallel” way where one set of n complementary filters is used
(Figure 1.10b).

In the first case, typical sensor fusion synthesis techniques can be used. However, when a parallel
architecture is used, a new synthesis method for a set of more than two complementary filters is required
as only simple analytical formulas have been proposed in the literature [37], [40]. A generalization of
the proposed synthesis method of complementary filters is presented in this section.

Sensor 2

Sensor 1

Sensor 3

H1(s)

H2(s)
+ H ′

1(s)

H ′
2(s)

+
x

x̂1

x̂2

x̂3

x̂12

x̂

(a) Sequential fusion

Sensor 2

Sensor 1

Sensor 3

H1(s)

H2(s)

H3(s)

+x

x̂1

x̂2

x̂3

x̂

(b) Parallel fusion

Figure 1.10: Possible sensor fusion architecture when more than two sensors are to be merged

The synthesis objective is to compute a set of n stable transfer functions [H1(s), H2(s), . . . , Hn(s)]
such that conditions (1.15a) and (1.15b) are satisfied.

n∑
i=1

Hi(s) = 1 (1.15a)

|Hi(jω)| <
1

|Wi(jω)|
, ∀ω, i = 1 . . . n (1.15b)

[W1(s), W2(s), . . . , Wn(s)] are weighting transfer functions that are chosen to specify the maximum
complementary filters’ norm during the synthesis.

Such synthesis objective is closely related to the one described in Section 1.3, and indeed the proposed
synthesis method is a generalization of the one previously presented. A set of n complementary filters
can be shaped by applying the standard H∞ synthesis to the generalized plant Pn(s) described by
(1.16).

14




z1
...
zn
v

 = Pn(s)


w
u1

...
un−1

 ; Pn(s) =



W1 −W1 . . . . . . −W1

0 W2 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 Wn

1 0 . . . . . . 0


(1.16)

If the synthesis if successful, a set of n − 1 filters [H2(s), H3(s), . . . , Hn(s)] are obtained such that
(1.17) is verified.

∥∥∥∥∥∥∥∥∥
(1− [H2(s) +H3(s) + · · ·+Hn(s)])W1(s)

H2(s)W2(s)
...

Hn(s)Wn(s)

∥∥∥∥∥∥∥∥∥
∞

≤ 1 (1.17)

H1(s) is then defined using (1.18) which is ensuring the complementary property for the set of n filters
(1.15a). Condition (1.15b) is satisfied thanks to (1.17).

H1(s) ≜ 1−
[
H2(s) +H3(s) + · · ·+Hn(s)

]
(1.18)

An example is given to validate the proposed method for the synthesis of a set of three complementary
filters. The sensors to be merged are a displacement sensor from DC up to 1Hz, a geophone from 1 to
10Hz and an accelerometer above 10Hz. Three weighting functions are designed using formula (1.14)
and their inverse magnitude are shown in Figure 1.11b (dashed curves).

Consider the generalized plant P3(s) shown in Figure 1.11a which is also described by (1.19).


z1
z2
z3
v

 = P3(s)

w
u1

u2

 ; P3(s) =


W1(s) −W1(s) −W1(s)

0 W2(s) 0
0 0 W3(s)
1 0 0

 (1.19)

The standard H∞ synthesis is performed on the generalized plant P3(s). Two filters H2(s) and H3(s)
are obtained such that the H∞ norm of the closed-loop transfer from w to [z1, z2, z3] of the system
in Figure 1.11a is less than one. Filter H1(s) is defined using (1.20) thus ensuring the complementary
property of the obtained set of filters.

H1(s) ≜ 1−
[
H2(s) +H3(s)

]
(1.20)

Figure 1.11b displays the three synthesized complementary filters (solid lines) which confirms that the
synthesis is successful.
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(a) Generalized plant with the synthesized filter
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(b) Weights and obtained filters

Figure 1.11: Architecture for the H∞ synthesis of three complementary filters (a). Bode plot of the
inverse weighting functions and of the three obtained complementary filters (b)

Conclusion

A new method for designing complementary filters using the H∞ synthesis has been proposed. It allows
to shape the magnitude of the filters by the use of weighting functions during the synthesis. This is
very valuable in practice as the characteristics of the super sensor are linked to the complementary
filters’ magnitude. Therefore typical sensor fusion objectives can be translated into requirements on the
magnitudes of the filters. Several examples were used to emphasize the simplicity and the effectiveness
of the proposed method.

However, the shaping of the complementary filters’ magnitude does not allow to directly optimize the
super sensor noise and dynamical characteristics. Future work will aim at developing a complementary
filter synthesis method that minimizes the super sensor noise while ensuring the robustness of the
fusion.

• Talk about the possibility to use H2 to minimize the RMS value of the super sensor noise? (or
maybe make a section about that?) There is a draft paper about that.

• For the NASS, it was shown that the HAC-IFF strategy works fine and is easy to understand and
tune

• It would be very interesting to see how sensor fusion (probably between the force sensor and the
external metrology) compares in term of performance and robustness
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2 Decoupling

When dealing with MIMO systems, a typical strategy is to:

• First decouple the plant dynamics (discussed in this section)

• Apply SISO control for the decoupled plant (discussed in section 3)

Another strategy would be to apply a multivariable control synthesis to the coupled system. Strangely,
while H-infinity synthesis is a mature technology, it use for the control of Stewart platform is not yet
demonstrated. From [14]:

xperimental closed-loop control results using the hexapod have shown that controllers
designed using a decentralized single-strut design work well when compared to full
multivariable methodologies.

⊠ Review of Decoupling Strategies for stewart platforms

□ Add some citations about different methods

□ Maybe transform table into text

Table 2.1: Litterature review about decoupling strategy for Stewart platform control

Actuators Sensors Control Reference

APA Eddy current displacement Decentralized (struts) PI + LPF control [44]
PZT
Piezo

Strain Gauge Decentralized position feedback [45]

Voice
Coil

Force Cartesian frame decoupling [46]

Voice
Coil

Force Cartesian Frame, Jacobians, IFF [15], [16], [17]

Hydraulic LVDT Decentralized (strut) vs Centralized (cartesian) [47]
Voice
Coil

Accelerometer (collocated), ext. Rx/Ry sensors Cartesian acceleration feedback (isolation) + 2DoF pointing control (external sensor) [4]

Voice
Coil

Accelerometer in each leg Centralized Vibration Control, PI, Skyhook [48]

Voice
Coil

Geophone + Eddy Current (Struts, collocated) Decentralized (Sky Hook) + Centralized (modal) Control [5]

Piezoelectric Force, Position Vibration isolation, Model-Based, Modal control: 6x PI controllers [12]

PZT Geophone (struts) H-Infinity and mu-synthesis [49]
Voice
Coil

Force sensors (struts) + accelerometer (cartesian) Decentralized Force Feedback + Centralized H2 control based on accelerometers [6]

Voice
Coil

Accelerometers MIMO H-Infinity, active damping [50]

The goal of this section is to compare the use of several methods for the decoupling of parallel manip-
ulators.

It is structured as follow:
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• Section 2.1: the model used to compare/test decoupling strategies is presented

• Section 2.3: decoupling using Jacobian matrices is presented

• Section 2.4: modal decoupling is presented

• Section 2.5: SVD decoupling is presented

• Section 2.6: the three decoupling methods are applied on the test model and compared

• Conclusions are drawn on the three decoupling methods

2.1 Test Model

• Instead of comparing the decoupling strategies using the Stewart platform, a similar yet much
simpler parallel manipulator is used instead

• to render the analysis simpler, the system of Figure 2.1 is used

• It has 3DoF, and has 3 parallels struts whose model is shown in Figure 2.1b

• It is quite similar to the Stewart platform (parallel architecture, as many struts as DoF)

Two frames are defined:

• {M} with origin OM at the Center of mass of the solid body

• {K} with origin OK at the Center of mass of the parallel manipulator

(a) Geometrical parameters (b) Strut model

Figure 2.1: 3DoF model used to study decoupling strategies

First, the equation of motion are derived. Expressing the second law of Newton on the suspended mass,
expressed at its center of mass gives

M{M}Ẍ {M}(t) =
∑

F{M}(t) (2.1)
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with X {M} the two translation and one rotation expressed with respect to the center of mass and F{M}
forces and torque applied at the center of mass.

X {M} =

 x
y
Rz

 , F{M} =

Fx

Fy

Mz

 (2.2)

In order to map the spring, damping and actuator forces to XY forces and Z torque expressed at the
center of mass, the Jacobian matrix J{M} is used.

J{M} =

1 0 ha

0 1 −la
0 1 la

 (2.3)

Then, the equation of motion linking the actuator forces τ to the motion of the massX {M} is obtained.

M{M}Ẍ {M}(t) + J t
{M}CJ{M}Ẋ {M}(t) + J t

{M}KJ{M}X {M}(t) = J t
{M}τ (t) (2.4)

Matrices representing the payload inertia as well as the actuator stiffness and damping are shown in

M{M} =

m 0 0
0 m 0
0 0 I

 , K =

k 0 0
0 k 0
0 0 k

 , C =

c 0 0
0 c 0
0 0 c

 (2.5)

Parameters used for the following analysis are summarized in table 2.2.

Table 2.2: Model parameters

Parameter Description Value

la 0.5m
ha 0.2m
k Actuator stiffness 10N/µm
c Actuator damping 200Ns/m
m Payload mass 40 kg
I Payload rotational inertia 5 kgm2

2.2 Control in the frame of the struts

Let’s first study the obtained dynamics in the frame of the struts. The equation of motion linking
actuator forces τ to strut relative motion L is obtained from (2.4) by mapping the cartesian motion of
the mass to the relative motion of the struts using the Jacobian matrix J{M} (2.3) .

The transfer function from τ to L is shown in equation (2.6).

G{L}
τ L
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L
τ
(s) = GL(s) =

(
J−t
{M}M{M}J

−1
{M}s

2 + Cs+K
)−1

(2.6)

At low frequency the plant converges to a diagonal constant matrix whose diagonal elements are linked
to the actuator stiffnesses (2.7).

GL(jω) −−−→
ω→0

K−1 (2.7)

At high frequency, the plant converges to the mass matrix mapped in the frame of the struts, which is
in general highly non-diagonal.

The magnitude of the coupled plant GL is shown in Figure 2.2. This confirms that at low frequency
(below the first suspension mode), the plant is well decoupled. Depending on the symmetry in the
system, some diagonal elements may be equal (such as for struts 2 and 3 in this example).
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Figure 2.2: Magnitude of the coupled plant.

2.3 Jacobian Decoupling

Jacobian Matrix As already explained, the Jacobian matrix can be used to both convert strut velocity
L̇ to payload velocity and angular velocity Ẋ {O} and Convert actuators forces τ to forces/torque applied
on the payload F{O} (2.8).
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Ẋ {O} = J{O}L̇, L̇ = J−1
{O}Ẋ {O} (2.8a)

F{O} = J t
{O}τ , τ = J−t

{O}F{O} (2.8b)

The obtained plan (Figure 2.3) has inputs and outputs that have physical meaning:

• F{O} are forces/torques applied on the payload at the origin of frame {O}

• X {O} are translations/rotation of the payload expressed in frame {O}

G{O}

G{L}J−T
{O} J−1

{O}
F{O} τ L X {O}

Figure 2.3: Block diagram of the transfer function from F{O} to X {O}

X {O}

F{O}
(s) = G{O}(s) =

(
J t
{O}J

−T
{M}M{M}J

−1
{M}J{O}s

2 + J t
{O}CJ{O}s+ J t

{O}KJ{O}

)−1

(2.9)

The frame {O} can be any chosen frame, but the decoupling properties depends on the chosen frame
{O}. There are two natural choices: the center of mass {M} and the center of stiffness {K}. Note that
the Jacobian matrix is only based on the geometry of the system and does not depend on the physical
properties such as mass and stiffness.

Center Of Mass If the center of mass is chosen as the decoupling frame. The Jacobian matrix and
its inverse are expressed in (2.10).

J{M} =

1 0 ha

0 1 −la
0 1 la

 , J−1
{M} =

1 ha

2la
−ha

2la
0 1

2
1
2

0 −1
2la

1
2la

 (2.10)

G{M}

G{L}J−T
{M} J−1

{M}
F{M} τ L X {M}

Analytical formula of the plant is (2.11).

X {M}

F{M}
(s) = G{M}(s) =

(
M{M}s

2 + J t
{M}CJ{M}s+ J t

{M}KJ{M}

)−1

(2.11)

At high frequency, converges towards the inverse of the mass matrix, which is a diagonal matrix (2.12).
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G{M}(jω) −−−−→
ω→∞

−ω2M−1
{M} = −ω2

1/m 0 0
0 1/m 0
0 0 1/I

 (2.12)

Plant is therefore well decoupled above the suspension mode with the highest frequency. Such strategy
is usually applied on systems with low frequency suspension modes, such that the plant corresponds to
decoupled mass lines.

□ Reference to some papers about vibration isolation or ASML?

The coupling at low frequency can easily be understood physically. When a static (or with frequency
lower than the suspension modes) force is applied at the center of mass, rotation is induced by the
stiffness of the first actuator, not in line with the force application point. this is illustrated in Figure
2.4b.
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Dx;fMg=Mz;fMg
Rz;fMg=Fx;fMg
Dx;fMg=Fx;fMg
Dy;fMg=Fy;fMg
Rz;fMg=Mz;fMg

(a) Dynamics at the CoM (b) Static force applied at the CoM

Figure 2.4: Plant decoupled using the Jacobian matrix expresssed at the center of mass (a). The
physical reason for low frequency coupling is illustrated in (b).

Center Of Stiffness

G{K}

G{L}J−T
{K} J−1

{K}
F{K} τ L X {K}

J{K} =

1 0 0
0 1 −la
0 1 la

 , J−1
{K} =

1 0 0
0 1

2
1
2

0 −1
2la

1
2la

 (2.13)

Frame {K} is chosen such that J t
{K}KJ{K} is diagonal. Typically, it can me made based on physical

reasoning as is the case here.
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X {K}

F{K}
(s) = G{K}(s) =

(
J t
{K}J

−T
{M}M{M}J

−1
{M}J{K}s

2 + J t
{K}CJ{K}s+ J t

{K}KJ{K}

)−1

(2.14)

Plant is well decoupled below the suspension mode with the lowest frequency. This is usually suited for
systems which high stiffness.

G{K}(jω) −−−→
ω→0

J−1
{K}K

−1J−t
{K} (2.15)

□ Make a schematic where the thing is deformed at high frequency rotating about the center of mass

100 101 102 103

Frequency [Hz]

10!10

10!8

10!6

10!4

K
a
g
n
it
u
d
e

Dx;fKg=Fx;fKg
Dy;fKg=Fy;fKg
Rz;fKg=Mz;fKg

Dx;fKg=Mz;fKg
Rz;fKg=Fx;fKg

(a) Dynamics at the CoK (b) High frequency force applied at the CoK

Figure 2.5: Plant decoupled using the Jacobian matrix expresssed at the center of stiffness (a). The
physical reason for low frequency coupling is illustrated in (b).

2.4 Modal Decoupling

Let’s consider a system with the following equations of motion:

M ẍ+ Cẋ+Kx = F (2.16)

And the measurement output is a combination of the motion variable x:

y = Coxx+ Covẋ (2.17)

Let’s make a change of variables:

x = Φxm (2.18)

with:

• xm the modal amplitudes
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• Φ a matrix whose columns are the modes shapes of the system

And we map the actuator forces:
F = JT τ (2.19)

The equations of motion become:

MΦẍm + CΦẋm +KΦxm = JT τ (2.20)

And the measured output is:
y = CoxΦxm + CovΦẋm (2.21)

By pre-multiplying the EoM by ΦT :

ΦTMΦẍm +ΦTCΦẋm +ΦTKΦxm = ΦTJT τ (2.22)

And we note:

• Mm = ΦTMΦ = diag(µi) the modal mass matrix

• Cm = ΦTCΦ = diag(2ξiµiωi) (classical damping)

• Km = ΦTKΦ = diag(µiω
2
i ) the modal stiffness matrix

And we have:
ẍm + 2ΞΩẋm +Ω2xm = µ−1ΦTJT τ (2.23)

with:

• µ = diag(µi)

• Ω = diag(ωi)

• Ξ = diag(ξi)

And we call the modal input matrix:

Bm = µ−1ΦTJT (2.24)

And the modal output matrices:

Cm = CoxΦ+ CovΦs (2.25)

Let’s note the “modal input”:
τm = Bmτ (2.26)

The transfer function from τm to xm is:

xm

τm
=

(
Ins

2 + 2ΞΩs+Ω2
)−1

(2.27)
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which is a diagonal transfer function matrix. We therefore have decoupling of the dynamics from τm
to xm.

We now expressed the transfer function from input τ to output y as a function of the “modal vari-
ables”:

y

τ
= (Cox + sCov) Φ︸ ︷︷ ︸

Cm

(
Ins

2 + 2ΞΩs+Ω2
)−1︸ ︷︷ ︸

diagonal

(
µ−1ΦTJT

)︸ ︷︷ ︸
Bm

(2.28)

By inverting Bm and Cm and using them as shown in Figure 2.6, we can see that we control the system
in the “modal space” in which it is decoupled.

Gm

GB−1
m C−1

m

τm τ y xm

Figure 2.6: Modal Decoupling Architecture

The system Gm(s) shown in Figure 2.6 is diagonal (??).

Modal decoupling requires to have the equations of motion of the system. From the equations of motion
(and more precisely the mass and stiffness matrices), the mode shapes Φ are computed.

Then, the system can be decoupled in the modal space. The obtained system on the diagonal are second
order resonant systems which can be easily controlled.

Using this decoupling strategy, it is possible to control each mode individually.

Example For the system in Figure 2.1a, we have:

x =

 x
y
Rz

 (2.29)

y = L = Jx; Cox = J ; Cov = 0 (2.30)

M =

m 0 0
0 m 0
0 0 I

 ; K = J ′

k 0 0
0 k 0
0 0 k

 J ; C = J ′

c 0 0
0 c 0
0 0 c

 J (2.31)

In order to apply the architecture shown in Figure 2.6, we need to compute Cox, Cov, Φ, µ and J .

□ Is it possible to obtained the analytical formulas for decoupling matrices?

2.5 SVD Decoupling

Singular Value Decomposition
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• Introduction to SVD brunton22˙data

• Applied to parallel manipulator?

Singular value is used a lot for multivariable control [43]. Used to study directions in multivariable
systems

Control Architecture

□ SVD controllers described in [43, chapt. 3.5.4]

□ Check if inverse U and V should be used or just U and V matrices, Use correct notations.

□ Have notation for the measured FRF and for the real approximation

G(jω) =

0 0 0
0 0 0
0 0 0

 real−−−−−−−−−−→
approximation

0 0 0
0 0 0
0 0 0

 −−−→
SV D

U =, V = (2.32)

Procedure:

• Identify the dynamics of the system from inputs to outputs (can be obtained experimentally)
Frequency Response Function, which is a complex matrix obtained for several frequency points.

• Choose a frequency where we want to decouple the system (usually, the crossover frequency is a
good choice)

• Compute a real approximation of the system’s response at that frequency As real V and U matrices
need to be obtained, a real approximation of the complex measured response needs to be computed.
kouvaritakis79˙theor˙pract˙charac˙locus˙desig˙method: real matrix that preserves the most
orthogonality in directions with the input complex matrix

• Perform a Singular Value Decomposition of the real approximation. Unitary U and V matrices
are then obtained such that: V-t Greal U-1 is a diagonal matrix

• Use the singular input and output matrices to decouple the system as shown in Figure 2.7

Gsvd(s) = U−1G(s)V −T

figs/detail_control_decoupling_svd.pdf

Figure 2.7: Decoupled plant GSV D using the Singular Value Decomposition

In order to apply the Singular Value Decomposition, we need to have the Frequency Response Function
of the system, at least near the frequency where we wish to decouple the system. The FRF can be
experimentally obtained or based from a model.
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This method ensure good decoupling near the chosen frequency, but no guaranteed decoupling away
from this frequency.

Also, it depends on how good the real approximation of the FRF is, therefore it might be less good for
plants with high damping.

This method is quite general and can be applied to any type of system. The inputs and outputs are
ordered from higher gain to lower gain at the chosen frequency.

□ Do we loose any physical meaning of the obtained inputs and outputs?

□ Can we take advantage of the fact that U and V are unitary?

Example

□ Analytical formulas in this case?

□ Maybe show the complex and real response matrices.

□ At least, show the obtained matrices

□ Do we have something special when applying SVD to a collocated MIMO system?

• Verify why such a good decoupling is obtained!

GSV D(s) = (2.33)
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Figure 2.8: Svd plant Gm(s)

Table 2.3: Real approximate of G at the decoupling frequency ωc

-8e-06 2.1e-06 -2.1e-06
2.1e-06 -1.3e-06 -2.5e-08
-2.1e-06 -2.5e-08 -1.3e-06
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2.6 Comparison

Table 2.4: Comparison of decoupling strategies

Jacobian Modal SVD

Philosophy Topology Driven Physics Driven Data Driven

Requirements Known geometry Known equations of motion Identified FRF

Decoupling Matrices Decoupling using J obtained
from geometry

Decoupling using Φ obtained
from modal decomposition

Decoupling using U and V
obtained from SVD

Decoupled Plant G{O} = J−1
{O}GJ−T

{O} Gm = C−1
m GB−1

m Gsvd(s) = U−1G(s)V −T

Implemented Controller K{O} = J−T
{O}Kd(s)J

−1
{O} Km = B−1

m Kd(s)C
−1
m Ksvd(s) = V −TKd(s)U

−1

Physical Interpretation Forces/Torques to Displace-
ment/Rotation in chosen
frame

Inputs to excite individual
modes

Directions of max to min con-
trollability/observability

Output to sense individual
modes

Decoupling Properties Decoupling at low or high fre-
quency depending on the cho-
sen frame

Good decoupling at all fre-
quencies

Good decoupling near the
chosen frequency

Pros Physical inputs / outputs Target specific modes Good Decoupling near the
crossover

Good decoupling at High fre-
quency (diagonal mass ma-
trix if Jacobian taken at the
CoM)

2nd order diagonal plant Very General

Good decoupling at Low fre-
quency (if Jacobian taken at
specific point)
Easy integration of meaning-
ful reference inputs

Cons Coupling between force/rota-
tion may be high at low fre-
quency (non diagonal terms
in K)

Need analytical equations Loose the physical meaning
of inputs /outputs

Limited to parallel mecha-
nisms (?)

Decoupling depends on the
real approximation validity

If good decoupling at all fre-
quencies =¿ requires specific
mechanical architecture

Diagonal plants may not be
easy to control

Applicability Parallel Mechanisms Systems whose dynamics
that can be expressed with
M and K matrices

Very general

Only small motion for the Ja-
cobian matrix to stay con-
stant

Need FRF data (either exper-
imentally or analytically)

Conclusion

The three proposed methods clearly have a lot in common as they all tend to make system more
decoupled by pre and/or post multiplying by a constant matrix However, the three methods also differs
by a number of points which are summarized in Table 2.4.

Other decoupling strategies could be included in this study, such as:

• DC decoupling: pre-multiply the plant by G(0)−1

• full decoupling: pre-multiply the plant by G(s)−1
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Conclusion about NASS:

• Prefer to use Jacobian decoupling as we get more physical interpretation

• Also, it is possible to take into account different specifications in the different DoF
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3 Closed-Loop Shaping using Complementary
Filters

Performance of a feedback control is dictated by closed-loop transfer functions. For instance sensitivity,
transmissibility, etc. . . Gang of Four.

There are several ways to design a controller to obtain a given performance.

Decoupled Open-Loop Shaping:

• As shown in previous section, once the plant is decoupled: open loop shaping

• Explain procedure when applying open-loop shaping

• Lead, Lag, Notches, Check Stability, c2d, etc. . .

• But this is open-loop shaping, and it does not directly work on the closed loop transfer functions

Other strategy: Model Based Design:

• Multivariable Control

• Talk about Caio’s thesis?

• Review of model based design (LQG, H-Infinity) applied to Stewart platform

• Difficulty to specify robustness to change of payload mass

In this section, an alternative is proposed in which complementary filters are used for closed-loop
shaping. It is presented for a SISO system, but can be generalized to MIMO if decoupling is sufficient.
It will be experimentally demonstrated with the NASS.

Paper’s introduction:

Model based control

SISO control design methods

• frequency domain techniques

• manual loop-shaping - key idea: modification of the controller such that the open-loop is made ac-
cording to specifications [51]. This works well because the open loop transfer function is linearly de-
pendent of the controller. Different techniques for open loop shaping lurie02˙system˙archit˙trades˙using˙bode
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However, the specifications are given in terms of the final system performance, i.e. as closed-loop
specifications.

Norm-based control loop-shaping [43]. Far from standard in industry as it requires lot of efforts.

Problem of robustness to plant uncertainty:

• Trade off performance / robustness. Difficult to obtain high performance in presence of high
uncertainty.

• Robust control µ-synthesis. Takes a lot of effort to model the plant uncertainty.

• Sensor fusion: combines two sensors using complementary filters. The high frequency sensor is
collocated with the actuator in order to ensure the stability of the system even in presence of
uncertainty. [26], [52]

Complementary filters: [22].

In this paper, we propose a new controller synthesis method

• based on the use of complementary high pass and low pass filters

• inverse based control

• direct translation of requirements such as disturbance rejection and robustness to plant uncertainty

3.1 Control Architecture

Virtual Sensor Fusion Let’s consider the control architecture represented in Figure 3.1 where G′ is the
physical plant to control, G is a model of the plant, k is a gain, HL and HH are complementary filters
(HL +HH = 1 in the complex sense). The signals are the reference signal r, the output perturbation
dy, the measurement noise n and the control input u.

+
−

k G′ +

G

HH

+ HL +

u

n

yr

ym

dy

Figure 3.1: Sensor Fusion Architecture
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The dynamics of the closed-loop system is described by the following equations

y =
1 + kGHH

1 + L
dy +

kG′

1 + L
r − kG′HL

1 + L
n (3.1)

u = − kHL

1 + L
dy +

k

1 + L
r − kHL

1 + L
n (3.2)

with L = k(GHH +G′HL).

The idea of using such architecture comes from sensor fusion [26], [52] where we use two sensors. One
is measuring the quantity that is required to control, the other is collocated with the actuator in such a
way that stability is guaranteed. The first one is low pass filtered in order to obtain good performance at
low frequencies and the second one is high pass filtered to benefits from its good dynamical properties.

Here, the second sensor is replaced by a model G of the plant which is assumed to be stable and
minimum phase.

One may think that the control architecture shown in Figure 3.1 is a multi-loop system, but because
no non-linear saturation-type element is present in the inner-loop (containing k, G and HH which are
all numerically implemented), the structure is equivalent to the architecture shown in Figure 3.2.

K

+
−

+
−

k G′ +

GHH

HL +

u

n

yr

ym

dy

Figure 3.2: Equivalent feedback architecture

The dynamics of the system can be rewritten as follow

y =
1

1 +G′KHL
dy +

G′K

1 +G′KHL
r − G′KHL

1 +G′KHL
n (3.3)

u =
−KHL

1 +G′KHL
dy +

K

1 +G′KHL
r − KHL

1 +G′KHL
n (3.4)

with K = k
1+HHGk

Asymptotic behavior We now want to study the asymptotic system obtained when using very high
value of k

lim
k→∞

K = lim
k→∞

k

1 +HHGk
= (HHG)

−1
(3.5)

If the obtained K is improper, a low pass filter can be added to have its causal realization.

Also, we want K to be stable, so G and HH must be minimum phase transfer functions.

For now on, we will consider the resulting control architecture as shown on Figure 3.3 where the only
“tuning parameters” are the complementary filters.
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+
−

K G′ +

+HL

u

n

yr
dy

Figure 3.3: Equivalent classical feedback control architecture

The equations describing the dynamics of the closed-loop system are

y =
HHdy +G′G−1r −G′G−1HLn

HH +G′G−1HL
(3.6)

u =
−G−1HLdy +G−1r −G−1HLn

HH +G′G−1HL
(3.7)

At frequencies where the model is accurate: G−1G′ ≈ 1, HH +G′G−1HL ≈ HH +HL = 1 and

y = HHdy + r −HLn (3.8)

u = −G−1HLdy +G−1r −G−1HLn (3.9)

We obtain a sensitivity transfer function equals to the high pass filter S = y
dy = HH and a transmissi-

bility transfer function equals to the low pass filter T = y
n = HL.

Assuming that we have a good model of the plant, we have then that the closed-loop behavior of the
system converges to the designed complementary filters.

3.2 Translating the performance requirements into the shapes of
the complementary filters

The required performance specifications in a feedback system can usually be translated into requirements
on the upper bounds of S(j) and |T (jω)| [53]. The process of designing a controller K(s) in order to
obtain the desired shapes of S(j) and T (j) is called loop shaping.

The equations (3.6) and (3.7) describing the dynamics of the studied feedback architecture are not
written in terms of K but in terms of the complementary filters HL and HH .

In this section, we then translate the typical specifications into the desired shapes of the complementary
filters HL and HH .

Nominal Stability (NS) The closed-loop system is stable if all its elements are stable (K, G′ and HL)
and if the sensitivity function (S = 1

1+G′KHL
) is stable.

For the nominal system (G′ = G), we have S = HH .
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Nominal stability is then guaranteed if HL, HH and G are stable and if G and HH are minimum phase
(to have K stable).

Thus we must design stable and minimum phase complementary filters.

Nominal Performance (NP) Typical performance specifications can usually be translated into upper
bounds on |S(jω)| and |T (jω)|.

Two performance weights wH and wL are defined in such a way that performance specifications are
satisfied if

|wH(jω)S(jω)| ≤ 1, |wL(jω)T (jω)| ≤ 1 ∀ω (3.10)

For the nominal system, we have S = HH and T = HL, and then nominal performance is ensured by
requiring

NP ⇔ |wH(jω)HH(jω)| ≤ 1 ∀ω
|wL(jω)HL(jω)| ≤ 1 ∀ω

The translation of typical performance requirements on the shapes of the complementary filters is
discussed below:

• for disturbance rejections, make |S| = |HH | small

• for noise attenuation, make |T | = |HL| small

• for control energy reduction, make |KS| = |G−1| small

We may have other requirements in terms of stability margins, maximum or minimum closed-loop band-
width.

Closed-Loop Bandwidth The closed-loop bandwidth B can be defined as the frequency where S(j)
first crosses 1√

2
from below.

If one wants the closed-loop bandwidth to be at least ∗
B (e.g. to stabilize an unstable pole), one can

required that |S(jω)| ≤ 1√
2
below ω∗

B by designing wH such that |wH(jω)| ≥
√
2 for ω ≤ ω∗

B .

Similarly, if one wants the closed-loop bandwidth to be less than ∗
B , one can approximately require that

the magnitude of T is less than 1√
2
at frequencies above ∗

B by designing wL such that |wL(jω)| ≥
√
2

for ω ≥ ω∗
B .

Classical stability margins Gain margin (GM) and phase margin (PM) are usual specifications on
controlled system. Minimum GM and PM can be guaranteed by limiting the maximum magnitude of
the sensibility function MS = maxω |S(jω)|:

GM ≥ MS

MS − 1
; PM ≥ 1

MS
(3.11)
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Thus, having MS ≤ 2 guarantees a gain margin of at least 2 and a phase margin of at least 29.

For the nominal system MS = maxω |S| = maxω |HH |, so one can design wH so that |wH(jω)| ≥ 1/2
in order to have

|HH(jω)| ≤ 2 ∀ω (3.12)

and thus obtain acceptable stability margins.

Response time to change of reference signal For the nominal system, the model is accurate and the
transfer function from reference signal r to output y is 1 (3.8) and does not depends of the complementary
filters.

However, one can add a pre-filter as shown in Figure 3.4.

+
−

Kr K G′ +

+HL

u

n

yr
dy

Figure 3.4: Prefilter used to limit input usage

The transfer function from y to r becomes y
r = Kr and Kr can we chosen to obtain acceptable response

to change of the reference signal. Typically, Kr is a low pass filter of the form

Kr(s) =
1

1 + τs
(3.13)

with τ corresponding to the desired response time.

Input usage Input usage due to disturbances dy and measurement noise n is determined by
∣∣ u
dy

∣∣ =∣∣u
n

∣∣ = ∣∣G−1HL

∣∣. Thus it can be limited by setting an upper bound on |HL|.

Input usage due to reference signal r is determined by
∣∣u
r

∣∣ = ∣∣G−1Kr

∣∣ when using a pre-filter (Figure

3.4) and
∣∣u
r

∣∣ = ∣∣G−1
∣∣ otherwise.

Proper choice of |Kr| is then useful to limit input usage due to change of reference signal.

Robust Stability (RS) Robustness stability represents the ability of the control system to remain
stable even though there are differences between the actual system G′ and the model G that was used
to design the controller. These differences can have various origins such as unmodelled dynamics or
non-linearities.

To represent the differences between the model and the actual system, one can choose to use the general
input multiplicative uncertainty as represented in Figure 3.5.

Then, the set of possible perturbed plant is described by
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G′

G+

∆IwI

Figure 3.5: Input multiplicative uncertainty

Πi : Gp(s) = G(s)
(
1 + wI(s)∆I(s)

)
; ∆I(j) ≤ 1 ∀ (3.14)

and wI should be chosen such that all possible plants G′ are contained in the set Πi.

Using input multiplicative uncertainty, robust stability is equivalent to have [43]:

RS ⇔|wIT | ≤ 1 ∀G′ ∈ ΠI , ∀ω

⇔
∣∣∣∣wI

G′KHL

1 +G′KHL

∣∣∣∣ ≤ 1 ∀G′ ∈ ΠI , ∀ω

⇔
∣∣∣∣wI

G′G−1HH
−1HL

1 +G′G−1HH
−1HL

∣∣∣∣ ≤ 1 ∀G′ ∈ ΠI , ∀ω

⇔
∣∣∣∣wI

(1 + wI∆)HH
−1HL

1 + (1 + wI∆)HH
−1HL

∣∣∣∣ ≤ 1 ∀∆, |∆| ≤ 1, ∀ω

⇔
∣∣∣∣wI

(1 + wI∆)HL

1 + wI∆HL

∣∣∣∣ ≤ 1 ∀∆, |∆| ≤ 1, ∀ω

⇔|HLwI |
1 + |wI |

1− |wIHL|
≤ 1, 1− |wIHL| > 0 ∀ω

⇔|HLwI | (2 + |wI |) ≤ 1, 1− |wIHL| > 0 ∀ω
⇔|HLwI | (2 + |wI |) ≤ 1 ∀ω

Robust stability is then guaranteed by having the low pass filter HL satisfying (3.15).

RS ⇔ |HL| ≤
1

|wI |(2 + |wI |)
∀ω (3.15)

To ensure robust stability condition (3.2) can be used if wL is designed in such a way that |wL| ≥
|wI |(2 + |wI |).

Robust Performance (RP) Robust performance is a property for a controlled system to have its
performance guaranteed even though the dynamics of the plant is changing within specified bounds.

For robust performance, we then require to have the performance condition valid for all possible plants
in the defined uncertainty set: RP ⇔ |wHS| ≤ 1 ∀G′ ∈ ΠI , ∀ω
|wLT | ≤ 1 ∀G′ ∈ ΠI , ∀ω
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Let’s transform condition (3.2) into a condition on the complementary filters

|wHS| ≤ 1 ∀G′ ∈ ΠI , ∀ω

⇔
∣∣∣∣wH

1

1 +G′G−1H−1
H HL

∣∣∣∣ ≤ 1 ∀G′ ∈ ΠI , ∀ω

⇔
∣∣∣∣ wHHH

1 + ∆wIHL

∣∣∣∣ ≤ 1 ∀∆, |∆| ≤ 1, ∀ω

⇔ |wHHH |
1− |wIHL|

≤ 1, ∀ω

⇔|wHHH |+ |wIHL| ≤ 1, ∀ω

The same can be done with condition (3.2)

|wLT | ≤ 1 ∀G′ ∈ ΠI , ∀ω

⇔
∣∣∣∣wL

G′G−1H−1
H HL

1 +G′G−1H−1
H HL

∣∣∣∣ ≤ 1 ∀G′ ∈ ΠI , ∀ω

⇔
∣∣∣∣wLHL

1 + wI∆

1 + wI∆HL

∣∣∣∣ ≤ 1 ∀∆, |∆| ≤ 1, ∀ω

⇔|wLHL|
1 + |wI |

1− |wIHL|
≤ 1 ∀ω

⇔|HL| ≤
1

|wL|(1 + |wI |) + |wI |
∀ω

Robust performance is then guaranteed if (3.2) and (3.2) are satisfied.

RP ⇔ |wHHH |+ |wIHL| ≤ 1, ∀ω
|HL| ≤ 1

|wL|(1+|wI |)+|wI | ∀ω

One should be aware than when looking for a robust performance condition, only the worst case is
evaluated and using the robust stability condition may lead to conservative control.

3.3 Analytical formulas for complementary filters?

3.4 Numerical Example

Procedure In order to apply this control technique, we propose the following procedure:

1. Identify the plant to be controlled in order to obtain G

2. Design the weighting function wI such that all possible plants G′ are contained in the set Πi

3. Translate the performance requirements into upper bounds on the complementary filters (as ex-
plained in Sec. 3.2)
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4. Design the weighting functions wH and wL and generate the complementary filters using -synthesis
(as further explained in Sec. 1.3). If the synthesis fails to give filters satisfying the upper bounds
previously defined, either the requirements have to be reworked or a better model G that will
permits to have a smaller wI should be obtained. If one does not want to use the H∞ synthesis,
one can use pre-made complementary filters given in Sec. 3.3.

5. If K = (GHH)
−1

is not proper, a low pass filter should be added

6. Design a pre-filter Kr if requirements on input usage or response to reference change are not met

7. Control implementation: Filter the measurement with HL, implement the controller K and the
pre-filter Kr as shown on Figure 3.4

Plant Let’s consider the problem of controlling an active vibration isolation system that consist of a
mass m to be isolated, a piezoelectric actuator and a geophone.

We represent this system by a mass-spring-damper system as shown Figure 3.6 where m typically
represents the mass of the payload to be isolated, k and c represent respectively the stiffness and
damping of the mount. w is the ground motion. The values for the parameters of the models are

m = 20; k = 104/; c = 102()

w

m

k c F

x

Figure 3.6: Model of the positioning system

The model of the plant G(s) from actuator force F to displacement x is then

G(s) =
1

ms2 + cs+ k
(3.16)

Its bode plot is shown on Figure 3.7.

Requirements The control objective is to isolate the displacement x of the mass from the ground
motion w.

The disturbance rejection should be at least 10 at 2 and with a slope of −2 below 2 until a rejection of
104.

Closed-loop bandwidth should be less than 20 (because of time delay induced by limited sampling
frequency?).

Noise attenuation should be at least 10 above 40 and 100 above 500

Robustness to unmodelled dynamics. We model the uncertainty on the dynamics of the plant by a
multiplicative weight

wI(s) =
τs+ r0

(τ/r∞)s+ 1
(3.17)
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Figure 3.7: Bode plot of the transfer function G(s) from F to x

where r0 = 0.1 is the relative uncertainty at steady-state, 1/τ = 100 is the frequency at which the
relative uncertainty reaches 100, and r∞ = 10 is the magnitude of the weight at high frequency.

All the requirements on HL and HH are represented on Figure 3.8a.

□ TODO: Make Matlab code to plot the specifications

10!1 100 101 102 103

Frequency [Hz]

10!3

10!2

10!1

100

101

M
a
g
n
it
u
d
e

jT j - Upper bound
jSj - Upper bound

(a) Closed loop specifications
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Figure 3.8: Caption with reference to sub figure (a) (b)

Design of the filters Or maybe use analytical formulas as proposed here: Complementary
filters using analytical formula
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We then design wL and wH such that their magnitude are below the upper bounds shown on Figure
3.8b.

wL =
(s+ 22.36)2

0.005(s+ 1000)2
(3.18a)

wH =
1

0.0005(s+ 0.4472)2
(3.18b)

After the -synthesis, we obtain HL and HH , and we plot their magnitude on phase on Figure 3.8b.

HL =
0.0063957(s+ 1016)(s+ 985.4)(s+ 26.99)

(s+ 57.99)(s2 + 65.77s+ 2981)
(3.19a)

HH =
0.9936(s+ 111.1)(s2 + 0.3988s+ 0.08464)

(s+ 57.99)(s2 + 65.77s+ 2981)
(3.19b)

Controller analysis The controller is K = (HHG)
−1

. A low pass filter is added to K so that it is
proper and implementable.

The obtained controller is shown on Figure 3.10a.

It is implemented as shown on Figure 3.9.

w

m

k c

x

K +
−

+ HL

F

n

r

Figure 3.9: Control of a positioning system

Robustness analysis The robust stability can be access on the nyquist plot (Figure 3.11a).

The robust performance is shown on Figure 3.11b.

3.5 Experimental Validation?

Experimental Validation

Conclusion

□ Discuss how useful it is as the bandwidth can be changed in real time with analytical formulas
of second order complementary filters. Maybe make a section about that. Maybe give analytical
formulas of second order complementary filters in the digital domain?

40

file:///home/thomas/Cloud/research/papers/dehaeze20_virtu_senso_fusio/matlab/index.org


104

106

108

M
ag

n
it
u
d
e

10!1 100 101 102 103

Frequency [Hz]

-180

-90

0

90

180

P
h
as

e
[d

eg
]

(a) Controller K

10!2

100

102

L
o
op

G
ai

n
10!1 100 101 102 103

Frequency [Hz]

-270

-180

-90

0

P
h
as

e
[d

eg
]

(b) Loop Gain

Figure 3.10: Caption with reference to sub figure (a) (b)

-1
.4

-1
.2 -1

-0
.8

-0
.6

-0
.4

-0
.2 0
0.
2

Real Part

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Im
a
g
in

a
ry

P
a
rt

(a) Robust Stability

10!1 100 101 102 103

Frequency [Hz]

10!4

10!2

100

M
a
g
n
it
u
d
e

jT j
jSj

jT j - Spec.
jSj - Spec.

(b) Robust performance

Figure 3.11: Caption with reference to sub figure (a) (b)

41



□ Say that it will be validated with the nano-hexapod

□ Disadvantages:

– not optimal

– computationally intensive?

– lead to inverse control which may not be wanted in many cases. Add reference.
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Conclusion
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