diff --git a/figs/detail_control_bode_Kfb.pdf b/figs/detail_control_bode_Kfb.pdf
new file mode 100644
index 0000000..37bdb06
Binary files /dev/null and b/figs/detail_control_bode_Kfb.pdf differ
diff --git a/figs/detail_control_bode_Kfb.png b/figs/detail_control_bode_Kfb.png
new file mode 100644
index 0000000..ce79e58
Binary files /dev/null and b/figs/detail_control_bode_Kfb.png differ
diff --git a/figs/detail_control_bode_plot_loop_gain_robustness.pdf b/figs/detail_control_bode_plot_loop_gain_robustness.pdf
new file mode 100644
index 0000000..68c5c14
Binary files /dev/null and b/figs/detail_control_bode_plot_loop_gain_robustness.pdf differ
diff --git a/figs/detail_control_bode_plot_loop_gain_robustness.png b/figs/detail_control_bode_plot_loop_gain_robustness.png
new file mode 100644
index 0000000..15ecc6a
Binary files /dev/null and b/figs/detail_control_bode_plot_loop_gain_robustness.png differ
diff --git a/figs/detail_control_bode_plot_mech_sys.pdf b/figs/detail_control_bode_plot_mech_sys.pdf
new file mode 100644
index 0000000..d172b0b
--- /dev/null
+++ b/figs/detail_control_bode_plot_mech_sys.pdf
@@ -0,0 +1,1491 @@
+%PDF-1.4
+%����
+1 0 obj
+<<
+/Producer (Apache FOP Version 2.4.0-SNAPSHOT: PDFDocumentGraphics2D)
+/CreationDate (D:20250403161316+02'00')
+>>
+endobj
+2 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+3 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+4 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+5 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+6 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+7 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+8 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+9 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+10 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+11 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+12 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+13 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+14 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+15 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+16 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+17 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+18 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+19 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+20 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+21 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+22 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+23 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+24 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+25 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+26 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+27 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+28 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+29 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+30 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+31 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+32 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+33 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+34 0 obj
+<<
+/Type /ExtGState
+/CA 0.14901961
+>>
+endobj
+35 0 obj
+<<
+/Type /ExtGState
+/CA 0.14901961
+>>
+endobj
+36 0 obj
+<<
+/Type /ExtGState
+/CA 0.14901961
+>>
+endobj
+37 0 obj
+<<
+/Type /ExtGState
+/CA 0.14901961
+>>
+endobj
+38 0 obj
+<<
+/Type /ExtGState
+/CA 0.14901961
+>>
+endobj
+39 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+40 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+41 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+42 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+43 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+44 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+45 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+46 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+47 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+48 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+49 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+50 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+51 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+52 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+53 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+54 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+55 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+56 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+57 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+58 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+59 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+60 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+61 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+62 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+63 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+64 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+65 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+66 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+67 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+68 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+69 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+70 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+71 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+72 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+73 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+74 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+75 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+76 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+77 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+78 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+79 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+80 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+81 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+82 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+83 0 obj
+<<
+/Type /ExtGState
+/CA 0.14901961
+>>
+endobj
+84 0 obj
+<<
+/Type /ExtGState
+/CA 0.14901961
+>>
+endobj
+85 0 obj
+<<
+/Type /ExtGState
+/CA 0.14901961
+>>
+endobj
+86 0 obj
+<<
+/Type /ExtGState
+/ca 0.3019608
+>>
+endobj
+87 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+88 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+89 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+90 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+91 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+92 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+93 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+94 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+95 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+96 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+97 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+98 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+99 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+100 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+101 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+102 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+103 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+104 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+105 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+106 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+107 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+108 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+109 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+110 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+111 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+112 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+113 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+114 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+115 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+116 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+117 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+118 0 obj
+<<
+/Type /ExtGState
+/CA 0.2509804
+>>
+endobj
+119 0 obj
+<<
+/Type /ExtGState
+/CA 0.14901961
+>>
+endobj
+120 0 obj
+<<
+/Type /ExtGState
+/CA 0.14901961
+>>
+endobj
+121 0 obj
+<<
+/Type /ExtGState
+/CA 0.14901961
+>>
+endobj
+122 0 obj
+<<
+/Type /ExtGState
+/CA 0.14901961
+>>
+endobj
+123 0 obj
+<<
+/Type /ExtGState
+/CA 0.14901961
+>>
+endobj
+124 0 obj
+<<
+/Type /ExtGState
+/CA 0.14901961
+>>
+endobj
+125 0 obj
+<<
+/Type /ExtGState
+/CA 0.14901961
+>>
+endobj
+126 0 obj
+<<
+/Type /ExtGState
+/CA 0.14901961
+>>
+endobj
+127 0 obj
+<<
+/Type /ExtGState
+/CA 0.14901961
+>>
+endobj
+128 0 obj
+<<
+/Type /ExtGState
+/CA 0.14901961
+>>
+endobj
+129 0 obj
+<<
+/Type /ExtGState
+/CA 0.14901961
+>>
+endobj
+130 0 obj
+<<
+/Type /ExtGState
+/ca 0.3019608
+>>
+endobj
+131 0 obj
+<< /Length 132 0 R /Filter /FlateDecode >>
+stream
+x�ĽϮ,�r�9?O�_�n'��@��v�-@��54�!�wB���~�J2w^�[�[mK��WkW����F���_����������_�����ا����J������}��z/��Oi|�1BO��W���:����_)��?��=ٿ�������?~����W���������������G��O��������?��d���i"��W(�w=�ȱ�9��#��ye��9���q���c�G��!�<���x4�`�s�G��!�>�8�ӨGi!=�~����s���hi���c�G�ϡ�>�ҿS���X?z}��9���C���k�}����sh��|��������s/�!�~��G��!�O�'�G��1���7&��G�Z���7&�̱]M����x�V�� �|��$֏ޘ���2�z5�GoL�uk�k�Z���7&�̭�M8b~މ��7&�,�^�����x�`��(��\�GoL�u�Y�z��Go0��-f��j'��ޘ����`F���۱}��$^���䫝�>zc�[�Z��Nl�1��-fm�j'��ޘ����|��GoL�u��Ģ.vb��I�n1���vb��I�n1{LW;�}��$^��]�r��Go��[L���Nl�1��-f��j'��ޘ��S�v��GoL�a1�xL�A���������5�����c����O�߲y��8`�o��1`{q�GL��gL�߰e�U�.#Z}�l��:�7l��MC�Ls��F�ްdL�(zV������ɫ�xÒiq��{hc��}��$ްd6	�{�>B}Lb���I���l]�Y���ZR>���W'�:��I��4������Sx����w�#�x���O^�����&Ѵ�S]�oNb���I����D�߽�E(u�s�'�N�=ks�ȥ��q'�O^��{�2�.n!ä�?'�~�j��={S�.Z�Z����~��$޴�Q7_�i��xC�O^�ě�2��aj�}��$޴�A�Q�)��X��'�N�M{�w�i*��h���:��,f񻊾�d����:��,����b"r>���W'��-~7Y��ߚ�X?yu�Y�P	1���N�I���:��,f����������{�2��]e���Ж^��{�2�3�q����ɫ�x�R���PmWu���I�g)C���O���Z?xu
+����w��:�~��$޴�!�����2Y��ɫ�x�N��`�r����W'�<�I�
+�JxLb���I�g'��=&)s��N�=+9��QJe����W�޳�]v�r��&�^��{����(���7����Sx�Nv}�T�|��N�=+Y��e"|iSX?xu
+�YI�& L9O��~��޳���Nآ�Ǭ�:��,dJ�K��p���^�›���EF|� �^�»~�w���t��^�›^����S��~�jfӛ<�}8S�� �^�›<��μ���������ƫ�z��.l�.�ڣ��|��^=W��Z�c3����̪���r�8�x�*�D�hc��"��+��O�>=�~�����s�O��z}z��*��Z��q�5'�b#��5�C}q|v�y�+�C=��ɟj3$[qj��G���j>>�o�>=��j>>�o�>>�oj>>�o�>>�oj>>�o�>>�N><��*>>�o�>=���>>�oJ>>�o�>>�o
+>>�oj
>>�o�>>��8|x���3||�ߔ2|z��U1||��0||���.||�ߔ-||��T,||��+||�=p���~W���S���W���S���S���S����S����S�������G[�A�〔^;
~'Bdc�|x��UVⳣ_�#���"q�����Ɉ��ćG��E\�#><�E&�*���/WɈ���|x���U��ã_�'����*<q�����ʼn�ŇG�HM\�'><�Ec�:���/�W���~Q���L|x��h��c]�+�b��YqU����W���|ŇG��T\u+><�E��*X���/�W���~��JT|x��U��ã����*wq���������gG�
+\\%/><�E��u���Ӹؖ���~Ѳ��[|x��U��ã_�+�z}M���X�݌�"U�N~�߃\��S9�I�ˠog����_�c��?�(�<I��G�������F���m�O�韩����%%���.�+����������'��o꠼0�E�d�]�,�E�d�m�WFߕN��ߔ<ya���:��Z'���i�l��'r��ػ��6���&/�~Q3YGW���/2&���꙼0�E�d�]!�F������`���b�6���%/�~�*YGW���w��m�7�J^ዻ8�:��*%�����l��)O�>W�F�8W���,��������u�w�P^�"������_tO���@ye�E�d���ݕN֑ߔ<ye�]�d�M��W�Cvm�u�wEN^}5�O�䅱/j&���ʚ�0�E�d�]=�F�藬��+d���p�6��
+&��Œe�w�K^{�*Y�~S���ӮQ����X�c��$��o���w[��x,���)�e�w5Q���/(���0�.~����
+�Q�]�d
J�)�Jtb�;ق�鞼�o:'�{����c�'��o*����7e����'q�jf�F�>}z �W����c�7�����j�T�އ�l\�F�{�Ñ�-�m�OǶod�/�6�}�ཏ����O�����p��v_��l��F�{��Q���}�ǹo����?������p��F��2�g��7�����w߈r_��l��F�{��1�)�����z�f.l�>s�����t��F�|�ñ���}�G�od���?��*~_�`����>�gc�7:ߗ�?������p����e��F�o����?������p4�F�{����%��������ކ�pL��~�>�g��?����?��ڽ�����]��:��sR�����Ƿ�?�)�����O}�}����J����F���_�����������G�l������4Z~Vf��j����c���?���52��]6່2F_c�o�:BM6���
���)|����Z[+_��O������������?}������`W���l�����������&��[�&FM��YV��R���[����0��0��)�}��"3q�<�������_�o�|�ա�O~���M��-�O<�������_�o�|�ա�O�y>���a�t�B2!Y؄�]>蝡�q�����C/d����G���b�L���ds�?���f���R��f���A)c��f���AMCIv3��Ԙ�|�w7���Ԙ0/��r3��Ԡ�M�wW���bjh7c�?3�θ[���Cc��]R��?~j���erk�9f8>4�\E����nv��ɘM��l�f���1G�:�q󂆴����vz�xk+M?�w�$v$O	e�n	�Ŀ��P�Z	v���<҄�ѡ����=�	�|�>���ZqH��z���q�ő�A�;������snG4�|G�iG�(s��_�e%粵0�^t�[�C��N��}�ܫ.9N(��H������4�pd|ǔy��M��F
+zޚ_:�ʺcB=��k
+�ΫA����t�W�E>R�?�;��C��5��B���!�o��c�c���S��9�{�����]Z���ys�ƻ��hA|�:�����n͎����P����	���S�/�T�2�c&T�
+��X۟C��P|Z�\s��̆��l�f�s�6���u�n����6!_�mLH��$ �xc��z�+��RL�y���P�ɧG�`h���+�(]�1	SC��9�.6�8�ޣ޳0�*�1>
��Vj{�4��ԾyC*��!�������+�5�w$Z��Q�c)��0߸y�c�����]Ө)�yk�j>	�/9ŬfB�f_�)~��0��=-��*��C�X7nB����mB�B7]+fB��!&�R�M A�l
+�K�W�F�ѡ.s�N����g!Hӵ�oH�P��u�ڷ����b-��.��)c�������{�)��4���a�"߁��<��.�+"h�2���C���2�o��X�^\����c]`I�oTN�<��j5(rp�P�֚�-���x��AA�m9c�i��{���姙U}LC�>�%�W̼��1
��z�
"IC�:����u^q׆��\�,4=��	�U�+5�Ӟd��ZhH���ƅӉA����	�+*ZZ}Ρ����΢m����eY��%mKf��K3���s��ȑ=:�
�[F?�����_�B����ҫ���/ږdB�N�AO��K��,����9Ծ��>��m�3���?�d��o�e���{n�C�:�$:����J���V����|�*j�}���4R;�o�5~�(hA�����.��d��i�w�-�&�d�9J��k��%�jpc��4��ݪ}i���v�bϘ4=��,j��@ڗ�tHO�
ʘ��-U9G��=f�jg�
�!3q��b�.�q�A0����֒}Om(��
+6���Fi�����&�-���j�'Rd1j��h�h�E]�6W=�A�LXj�'�r�s�F�C��1���5�ؖ��MzK�elږ|[�i�)v.�%Gf��c�7�ۧ�d����Y�Z�s�C�z�c�7����?��|)�E�ߍ.&
+g�e���t1Q(�փC�mHd�������X�������e���7�os$������7�E����d
+JpH�֠�I莊��Uu�G���C��}��=qNC�o�32�m�<p*Ɣ����1��WA?��bl�\�EƤ�%�V.�<-��qBVR�:�E�%|O��+Y�2f_B#n�<�3
�0�@����[�k�[�P�X�X��g�2V~DK��fw6F�X��n�-�P>�x^,�S�f�\�?�Vv���r��Aݘ�Є��zHաvxʵ��F�e.���$FE��i��F�"A-�� ��-s����_�-�h��9��d�\cB�/����F�	*��t���ܑ&�e
���C�X?�cU���i���%���ˢ�s��#���j֒�{c#�⤬�8���k��n@�)�� G3�m��d�\o�C��nI�[!'mNB�V��&�F˵��>�	A`d^�9����Ʉm��HZ���m��d��pF|�.��֍���H5��s�A�dDŽVb�:-����F���d�ѕ���v�(O�S�O#�f��hܘ�Y)~߅�_��&�6k7����G��z�K1�C�ƿ�bt�d�1�������yJ'1���Ǫ1Դ�yq��'1��>V_�9��t3�	A̵CM(���v?�� "!��|�����/���+�Ĝs��ą�Ⱥ$��@'-�$�J���*aW'5�-j�J'-�!u���+=iy4�3m�v�R5Z^����ޙ�����u�^����r���!=��I�ғ���*�����r��d�{���^慘i�7_���9�,z�|�i������hQ3���*7$�ϥ���ѭi�$�^.(�%����$bT�KZ^� %��Յ�GH�6����r��7o����w����Z_8� QW�[Ir�NN�]CF�yO-ޅ���m��M:99�6�iT��\Pc#w�.?�$��w͇E���B�Ɉ���F��S��������JM/BH�H����ѓ�d�mz�E�V.H;q���Q������E�k�~7��r��|$�?7�NNN
+��h�7Xn���9qD��6�Mb=�����x���r��=�d��a�e��Z�>�.1�'+q�|a�M����@z�5u�R1V���<"ז`�+'�>����Tm�E�Z����-�\�B�>z7V.vh+%g��
c坂	����o�ܣ'-��f��I�i��\ m�߾�&[���r8Ii�{�J�]^��3"S-���e~��NZ.Hw��{B���lca�YE��1沙��t�r!z(�?����Mt��*��өXP�>LZ��Ɩ����S@9J���f�^j����(��\P��U����4���	6T@��Ws�jv��o�����'�����-���ZΚ�������rA	�>'_=\ދK�[>�R��˶�X�ͺ��b�U:yy�Ѓح-5�J�8~6�6i�
+��r��=c�@����:y9���^K �J'/�C����/�>����b��à��eЍv{0�B��8ؑ�C'-$>����h9�Q�Zӑ���+�ʵ�Az#���)A��{�����v9J'+rD(9I��`?x�}zݣ�G�������vN���pQkd�qC��t�rAZ�PX��B���k��	��<|[D���S�`c�%�;a�\�@2�z�ݿ�Z.HT���3,-7��;Y&-'�d�x����h�\���*��n�V-���Y��joI���3`�/����v��wC�1�-M����[;х����O�$�)��<���^�S�M���--�f����8�@<9a>VZh� ��4�8,�\P$0`�L��hy�~/qocEI��\�վ�>F��NVp�>�'9J'+�0�Z�����.�r94����;�퐟gL@N��r��� �d�h>���-dBE�Ca���;`H�����:�@��1Z.�iC�*�����.t�P�:y9D+:�;D}���Y
+�S��8��T�>��%�a���3`~��ʆ$�R_x9�v�Ik��0����PM��-׍����'�q���'-?(������م�㪊t��)E��q�á��~��V��Y�a�{@i!�C#G��I����y��%���d�@�t����ůP/<~�����}�#�bg�d�)=�9��z�4�������B�E-WiFS#P���\'񍚤A�N�Ɲ����'��@�����A�����C��sRs!�ڎ�5�BpbK��@����	MC��uj,>T>�9	�򟛇Bt9'5��k:rwc"g�I͡=]�h��)�)���JЫ^L������� �_[���U.��'5�����[zRsA����}Iѓ�7�[zA�z0sBݜ�x�Z*јy�8P����f��Of����6�����G�an�t����zN��r2sA2[���
+3�
@���&N.ғ�7s�t������`�p֪���"@�̼a1�̎l�0f.D��pۗ�"=��%&-H�l�|Nb�5Tm~5�ļ�3⫵Ɠ�sD+]�@��x��(Us2p
�''1op ͵6��I�-��zZ'1D��Fo�cYO�K����/�|�'1�U�Es*t�Obވ��|��WzsA�Kݹא�s~D�Vk�B�@O^�p�RH	'-7W�䖠œ�Ҟ�ˈ����{�C`S'��A���4�wL�I�9o�c�ѤA�����!��vyBZ�8�O�Y�|�py�������ux�rN�i0@�d�͎ƵD�W`%'+o"��p�؝���fl��q�eTH���]Fl�/4'���1f�÷؆�r!ĩ1�����ş��ѿ����{=�y�}��F�U�m�ȓ�s��x��F�Kz���9n�~3�v�rA�!s�����K"i͗&�+R^��k1�WN�c@������%A�ɖ�v"����69I3����F�N;B��''�ܵ�a3�ea_ŵ�+��o�d������wTR�l����Z	��s����rr�Jւ�f�������9fhG9z�''���ʗrCB����j����OR.{� ��A�q�rL��A0�/Sx���_Z��uBON�i;t����NN^9h�n��E����Z���J��	������I�+�1�;v�A���
��ٿTNN^��D
�E=9y�\�R-j�Ƀ��VNc�1J�.>)y%��g�ㄞ���uYd�r�����^e���Q��B�]K��v�oxB�L�Iɋu�{1�������Zܹ�!zRr��zs��C:)� L���(��F�3�u�N�O�<)�m=a���I��?�X#�6�'%/�\�򒞜��S�{џ��J�Œs񩏓�]g����C���,K����~��w>
+��B/��B�/���r�������׽����ɉgG���qzr����Y��g�����|����O�'�����QrU١���M>��#/���+���1!g��f����e7>����.��j�I^��ɹ��ɂ�'A������U3�zN/��<N]4�3��8�V�~Ԯ+œ��=y)���t�r�w��l3��)�LHh:8���5#�=r7Ho�t�=i��y
�*�F�zF�a��>'�NZnYKqw���'-�:�h�/6Z{=x�J������y��t��'=#�2w�[8�	�Oz�r�Z=�v69JO^�']�_���A��}�t�r�V�\�9-�¢-�����6�N�G'-����UOZ��$������X��k��3\Yb����V,����]5�@ca�pT�.OL���X����>se�NZ�٠v �f��g�G����	Ņ��t���@�D=��zZÂ�>�����M	M�'���u#�R|ua^��rY�HtۍR�K��[�L�����I9;*'����wB+�{s%#T��W&@����n�g8�p9�K��ω��,��a����ka?y���5m4K�x9��@�l��{\�'/DgY%F,�m���֞�9Q����X���X���"V��waA<�-��z�/�O^.^�����O�S`����^�T\���r���%^��������-�bBF�N0z�rx���`���t��%=��Φ�ܺ䂦e0j5�!X<����L��b:�95
�׏:�';������8\��9j�Qk����M;6�@������z�s���i��_k'=��!G�LS�gМ�Y�D�װ�$�@ڮkv6H��AЩy�Zwm.Bs�N�C"��.N&���[�%���{rt�{�5��N:'I��A�X;��Y��O�N�F�������`CK��9�b<���/j*�/��3��L���w�t���Iթ~8�(�Jo'W�'+����^f�x��4B��L�.��֭4B�_��7N��EQ�g�e��O�Nq�v?�R��N�NuD$P��0�;ِ�i��8�O�N��P��wd�N�N��v/l�]���'i��	Y�T�c���)��r�{����u�8�*/���
�{Q�I;y;��Y�.8֟ĝ
+�l���c|�v86��_��O�Nu�debO�Ny����v�.?�$�`Thτ֎t�wj/������(��E����(��X>	��_��&�d�`�8����Y콟�
+�@� $�^5OلaZ�ڛ�7�;Y<���������>C&��=i<X}���p���h��;R�r��
+;0���B�xk�;�<����;���^���b�d	��@P�x��!�\�
+���X�v���J	ǡI��iX16o�ZB��x J��}��y_�ٌ������{: X;�<��{��~�)�Ц5�n�?g��j?�9��e��#
�ia���Kb����G��GÂQz-Q�8o��G�WJ��ϔ���igZ3��#Y�`$Q��zrzJC8R.�^���6��Bt�{�k=ô���->�j�>��R7"�x�uѫ�V��BR�V錏���	(���.��y���S;���'�k)��o������U����LH>��.�f���r��{���X���=Ѵ��"���j0�vS��V}~/����Ѩ��؝c�!y�01e�J��3�N=�8o?��<2�'ͧ ����=����`}�~}JR�t�<�'��'����%xi�,�W���v�����s;�U�S���ב&����x&G�/�}�8�&�2Qf/�{�)Y�����]��t�}0-c�R;�(y�%��V_����d�`�����������������.��h^N
+O5�—���nj�WR)wA[���;e�_�6&�c���g4�Z����r���b����X��R0Q�4�"K<�?�0�—~�J:�?��n15��~&��ۏ�d�!��x��2��_�RN�&����RwK�'��R"�^GVJ;�0�?�h���PL����l�R�34O1́tz]�8c�Vh#s9��S�3:O�
G�&R���r3�A8eóK�p�Y�f�OZ�F���'�s=+N

K�����
j^��N�D�:�����?4Ă'v:
�K�$�f=Sg(��易�@ɦ��3`���V�RSN�����_z�j���S�C֬��1��
����`�X��KT�
�����L$�k�e[JN���0����x��̆��N�ث�%)��gF�g��Na�z�h��`�S�^��Z��-D�g�L���~��V7�S ��W[
+O� �n���K�)�@ԵQ�j�X|��������x��'w���םZ.#�B9�kx0�t/<5L���9�Vx*?��K������t��P-��s
��x��<��z��� ��ٸ��������:b��� A.��6�-.�N��D�6�ן����H�#Q�21�8�x��	�y��i(5*T
�9�3��J���@K���r��g���T�RkD�*;��N��~�eie���ƛ<7��|:��"A��3V���%��#�3)��Q����n������V�
+Y���Ô��̮�I���R�
+�e�K��-���*Q3Լ���P��V8��8N ��C��V��t�\�O/��=]�ꕲlpӮ��p�W���m�O���u�(s�/���`I�F��AKQ*KI�Km���U���j�(_���X/K-\v�Y�us��DD?QTl�zs��a���*�/��t���l�hS��aF~��w�ε9j8Π>���H�E5kgT��&]�~??��`EM�K�s�N��&B�^YC:]�+k�d�X�D��\��?���I�J�z8VN�¦�����!��������dY��������>��M������8]�����d9�
���V��@���K&�a�b�ǙO���c8��A�P�������Pפwd$?v{:�6��
?��>�t��^B�c��5���|	wѩ�����)_��-_<q�V�|I�A��{�ʔ��eo����&ё�G�5�'��&3�]�Lh���&��쇻�v'����G_��8ٿ�*i#�a.�ړ�S������DQړ�S�D�C;��R�J���-�俙O�oEIz{��Y�=#�T%!3��YN�OY�޻��'���#XX��"���SbD�cu�XS?ɿ�,�6�'���(#&��u/�����޵(N�O5Q'o	�5���St4���=���!����1��?���nn�=@������b ����S��9����R�J���wxR�ؓ�S�#�!r�5�'�Jݢ�X5�I��.����r?��U���[�Z���d�VdS(K�ǚ���)��=&��.�'�rF��(�c���)��z[6�W�R�J�K��/�u-K%+U+�u�n��R�J
+�qw���SL�_V<y��r2�h���ٱz-�d��x���E�duN�OI�gbybO�O	�vxn�L����y���4o�R��c�w�@=N�O��;I
v�j8�?��2�ė�Ğ̟�x�k�G�j�'�'��J��/���̟tjx�� /l��A��K%���q�XK�6$p��<�F��1����#5��y�H�;�2���0Ri�����[��)������k��
+��z�#�;D�	
+7�>FW�AA��L���s��<��!+#���`ru�%��`������L�M��pU��wo4��vp���۶�Q2fK�#v?�7�̓,�hi��X��z܌��P�N|��!u
���[,��7��
��>�݂N��G����b��^y+Tܼ\x�b͔k�A���NS��/,M��)��y��pQ���D~�t�Y�t�[d�j�<���=�,?��
V�q��k'sE�N�PE����O��as��0�pgq`�ڙ�$�A�!�-ia$�Ż��'*}��E/�v��xL���/,x�l7��j)T����V����$�ܝI%a�j3o����v<����a����汓��ݸ��)�Q��y�U�ݽ�^��N7�)�Dn���;���zg\*�ܷ;�O���O&k��Q�w���򬤔�GvYM��O�$WN)o�A��ˇ�(�o��'֣�}�ߓma�;l���c0����'k�:��7��B7��J��^hjM	��ߓ��{z�8�����qp����!K>���-&�'�ڹF��(7+���B��<e>DF�-�*bHw��'-�t��Q7$����`��?0��3�~ic�M�7S!�,�C"�
f��4IXO��N%���n55��y�N��qGp������'�����G.�H��C�~�&,�(�YeH)���=�y��[P�F�l�{��oRၷ�o�@���w��;�&L���t7�R��шF`���&RRo��]&$�-%��
+��=���ݳ+�D��f���4�ݚV��:#ᇨ��[+��G
w�e�d��g]y�H�U��*��aG��!�ZM�A��
��vX{�Qme$�fs�J,�`��Ѣ���v��M�
+���7l������P--�fs�v�F�A�"�$�ߎGh�{�Veα����Y�m}?W��z�!�L7�ܹ0V[���?W�U�q�pw�To��z�B�4@�8���/E��X�g�7X� �}�U���tq�n���-�=�@ʸ�� �귗.����;�}���f��9��
+��~�[��2�o�Ȼ�����=�aZ)-�L&pX��&3>��J���5N5�Vn�&]����@m��`���nQkE��#,�ɐ��r���/�0�����De�n����+D���1�K��V�B�d��}��%��)��n�>
+�]ўz<��i���`'"���C8�@����}}�!RQ:�rƷ�y�F�P�0�ӛJ��f�N#ze.�n,s��D2��n��8�DϤjU����z�i�����:J��γP$R��#{����
+an?��p����s-��Z��E�g�`KM�5>�zM�,2o��G AyS��\�h�,U���Ў3'L��#*��R��D
{^�v���>O��丕dI~�.up�޴S����Zp�,'Yơ���^u�����#���zN���0�`9�.%~(�<�y���@����=�왃���z]�M"�So���3�e!N]��W�y���0g�o�^*�-B��'���.^`IR�a)��&0/��}���K�\i-�3�>DŌr�-E�h-q<s�{K�(yg�+-z9+NQo�x*b/��s�hJ��yyk��"Ex���z���a���Te�����~vcϠX	.�{~�S�į�
+w�	��a��������"uE�E��^ݟ3�,p~X�2�3I	�,����H=�3�	,��}=d/e.�Ħǥ?��V={�H��)�={ᴕ=s����G��[���P+K��Ti#(�9�mvl��R�mbc��ÿ�T�#P6d�k��x9.�Az�P%{h�y�����4��`���cŞ�y|��q�����
�5���
�+�{י.�,{t������|ȹ����[BZ����yT7�i)��0������ɸ�4�)w�&�_�r�ȗ���z�I�
+��B�SX�LI��fZ
;���n�e
��8�#Z��B�+�G�����9��5D+���ĭpl�I2y�hTyӖM�Z5X���t�MS�[�$�h����`�w�g�lѯ0A�_zqѼ��pJ�O �B H��<��E^-C�:�9v����T�SԷ�c�0�&J��0���!hX���4_��d������
졝���Ag�:#�e�4|�
��	�ȥz�x�$
+P���â�MG��e�ά��ZDS����d��R�A��ݱ�r/�!]I������*1�H���c�p,)-vLS���;Sa�)��Z��X�l�ޤ(�Yⱨ߀�*���c��F	��h�X��c+s��$q�[�c�`��,yE�$rZ�ض��-�ek����.��%�	��bűE~�,�6O:���V����9�#TQB)��/.I`Zb�4m��J@a.S���##��3���D22�H�`�+?���Lo#��꒸�ZJ"�c@����VM�)
�P�A$Y��5gm,V`ٟ�O}��t�Ϳ�(f�X�=t�	���%����:���\A�RI��/�x����ջ�W�cIM$�^��.Ǧ����H��K��E��"<F>����0M^uWLi�.��T�^n�;�dl�^�^���%ѓ��
+��_KK�(R+��1�+X���R{��������G�h�͌�\]���Eb,a<����q��h�e�g�8�d�`�Q�	X?�?�b�[k'�G�y �|-7S���H��7��˰E��d��k��v� S2��+>�"
��I�=ګ�ڢ(]P�3���kl���	=�?����t�A���`���vh�'�7%�Lm�?��
+��~YєcP>�P]F�Ȇ�z�`O�o�w�Aw��VOH ��+�juQ�4%�LY}𙔅�#�@�?O�j5/���[/O������K�s"�L���u�V�3�ߔ��x�&�.�`��'K����J�<>M�,��ߨ����z��H�^Yr֬�/y�X?+"�w��^v��g!�CB�ޕz�_���L�M	�Y����Ek؟\)�����:��"�J�&����_¢�
+�>7�%m%gE
+���̻�R`'��&C��'J8���5+��c��ً^u�ͬ�������;�?�%�Ϙ�1/
+���*jn`�����7X�/�\��<r��˒�ȟ�nۃC'�'�Gj�9/�ߊź]�Qf|��8�Yٛ�i�Z���r�ർ��yl`�梆L�0��x#���h���VKS�+w�j��1�_�K���ZH�	B^���3�nsy@'����
+
|e���\ԌF�_AZ������'���P�v�[��k0�+�� �� ��)@��MKq���y"��’s�K\�մ[��������v�u�����������u�ݿ��|j\�P3��y�Tibybu��F�D�{`�����R�H,�@�7"�^�=I3O�>��Bfuq�М��Su��8�T�B%<��v:����F]ٿ�z�����Ǟ{��7z`a�9��>{^ץMj��'Ϣ=�
���/��V�DU�,4���|�U򩔵��,\���ȷX ��q���‰j���0���z�4,�hi^���^'U	����wy�?�p,��q=��N����	^;�R�"̛���u,��P�@Cװ��'�6+ʢ1
ف^Ԏ��/@
�q�ciK��B�Edڑ�Z���zL;��$<A������5�_���V�ReD����x�觱uy:{;��`(׎`w���+X&��� ��P?3”(�]<��h��m�����5x!̨��.�AE�W�X���Hht�H�YZF��R�d:�e Z�������
�j�fb�� D%�e-}����|�=���vz��Q���2�z�@h���D��Х,�B{m� �y��L����~���d
+��ǵ�����3D&Z�x�т0�$���4���Sc�Q��TK"#�3aBg�%v<��JW�i)Τ��x޿���u���ݒ�e��y�Fk��:��@_���4��0q;.�Kh�t����a𴪌5L���s���Y!K�2�c��ճ��j�=�.>@4WY�B+��N�w�%����%�
�4����ff[zjQ��;�g=O��	@D�gNjSZX�����x����@�����Xu�N@$RD�F/<�}q��@��/N@4�=��^�V��NC���Fh`�#���Z��i`��An=j^�������_����
+T}}�Z�H�\�7}-���Sj���.�7`���K�l%;`����ץ�'ON �K�8k�6e���"+ZE3y)�Z��ꏩ��r���)X�4�Y��@!�JG�Y��N���_ג�`�Va֬n�Z��Яk�m��!v:����0��N_y+(�1����o�C&�R�b�^�f�$X���k�G�&��i���V�&ß�Vg'���ҽ�<�S�3>�W����Z
�~Q��VE<.��ډx���Oe-Z�'k����a�B�Y"	�"j�畯���z�&$��n�G[��앜ԭ�,	_�Ѓxc�k�o-�#͠xiV���V�^����ѵJ�n���y��kq+5�yX��׵(����`l�ZLk����y��V�K�R��ì�]�w)�ד�ަh/�=(ro}b�#�$�a��^����1�⏽4M7���o͇��{x{4*qX���[�4z2�G��[ˮ5����>۫�Z�h�����x����ޤc+
��g׵�J��X
+m����P艊��F������g�{��P�<�cZR�؁���kY=�����[5>��q�j�U�d������:�g�@�*XU����ܰEm�y��L��]���Cin.Wuk_L�R���T�#a���ò�)���,K�Ӫ€�Ik��	��7���g+�-�����<��Z��&zb��=< Q�`4�]�q=�Cs��E�,ؑ�_�*����L)�$.@�Hh��S���!��ރ�7���u�=�76��p:Ƥ�c]�A�P�-��iVM�֩��޴H��a�J��h���>��ݦ}��O����l�)��7h�K�7��`��TG�Jت��U�?��.&T�f��U_�rN0~j�X� ժ���i�X�@:z�kX�k�6�h�LU�U��N����Y�r�M~����:݄�;�o_W]��,���mz>��O�in�"���?O�Ճ�����U�(wAs�x*�jEV�ӟRf��UN8i����#�6�a�q�Uj�����B�����s٫��U����d�����.2��EQWJ0w�v�)�fe���ĩ�(Xd��]wQ+SG�Z:W�Z��p�Hl�7z�Т$}��#7�-��e�jE�dW3�o-?��ܤ��!:�\\rS�|��)l�)�q�>��2��+��sd@��O%33��=�pW@��?�A�!�+��D�]������>���*�Y����۩�V��!1�*n�2*�(�:=����[/e3�����Qf֏��ݩ_�oh�Iy
+���w�:�{�],��o���6�=N���w��G�eB����3��F
+�tt�Or���h���Js�� �cnu�J8�)���a!���5�S7�D<K����&�H���ʔV\%��$�ꭟv)G��N&�?�M�x��U*W�H�O��M�Z��7��������uK�=;=\�v�Ĵ�ZKjpu�UK��h�;`��$��h�A��ڝ��"6���'G�D����&j�9��¨�������&LJ�����z���֝��m��rDh�&tʧr[1.S�q�]��R6~�"�Z+���p���&��-�1��-�6lF���–��,'�����Ԣ�c��X�a�,������m��3��'f2Ť����n&Ζ�>ƍ"���|K�6%_Ugq�W`�$���.��K�����z����wt�>�*S�!iD�ռ�]ޘg[tO��m�ȴz���l��N5e�[yQ���Œ_�ş&�Zś9(":����s���ϩlZ�$��r�rטfQНʙ�.Mm5,��S�E/Mex#��6'���盿Kh��Zg�O�)��8���r�z-M��U7�o;��s�}cwyp�V1�5�T�iYJ	�'��j����G��]Ŝ#[:iy�jW?���0�)�s
+���m�j��ma�n"�Ώ���;���$h$һ��&
+o:�n���h�G�9#8آAωNB����7���n	)�~��=�VD���k�[�(�->ަ�o�]c\���\�֫7��5�C7�-zs��@���������:�#��H����NjkX`I�r�s��-}�5q�C�k{ַ���9{[k���f��n�����m]��ޱk��@�{����5�h{�����&8�k�{'��K�U�>���tUCAm��X{bPD����v�A�o��i�ك��e��#{_��w�M	�ϖ�-*�����
+Ὠ�����#4��)�i��I(����S�Z�G
+Kgے�J��!1����P�B��m�W��%���K�{�hn޷6/5:��N.Kwb�٠q�)��B6V�f>k'�a�{]^����2���Ͱ�_�{��rxSк�֦[�aB����-]���'��i��Dik�T��퍃�����xo7�ijy�T[{��;ZF��G��?o����ϬݐxA�fʘ핖J�|�PZ:/u��)�o-���*Q�S�����I��1=���7T���@f�׵��F�8̞Wk*BA���u�^����׵�F�R����)�����L��Z��V���vXKW.J1�
+��a��ˋr�ߘ]��`(%
b�n�׾a��^a����
ԑyÙ�G�^S�m�i����{�3��nh4S-l�_�j�2�-�ޠ��e��S;�tk�WO/�����l�VI&���p��p�4�.z�����������t�ZO��o�����8D�=����̭!�-�|x﹥ėLفW��|m�WHyA֛-�p�˰>z�=��k0���wcm��J
����-�\�,��l�I�'L��־�>.�l˸������"�U"Ǥ�Z~4X���
�C�����6���vpk/�l�%����g�Ԫ�B�}#�+�-�R�kɤ4T�Pk�JGqeq���^�3\�菽f�!s�m]4Q���0�4�ޛ/��um;��c���}>I[�H���X����L"̠���Y1���։���_��ܠ�)��Dß����$������W*y�4�.��qi��-Ѱ�ΰK/O��Q���+�o
+O`6�]jx1'I6d��K�X��1<j���̈́F����[w�c�-[O[�l�M�:;���b�{�\�:��eoO�4ݵ�C�s��Q/T��k���Mh�i�w��6.(p7ˊ3��$L<�Oּ���~�X�Q�µ�g1�4
+׼����0�%�l���G��vp�
�ܵ�r1
3N�|�%m�Xy ����x)ץONC�`�4�����c��,�V��f���z�0]�v;g����R����W_�n֬t�r�����4EL��k�l�Ό����fw ���٤ۂa�#���6�р��kCp�=8���6�"�G[���8D�;�/��ӷ�)z�����E�V���oD�`m��+V�X��Kv"�g�ֻ��,�t�.�K��j�J��K�xĨqʇ7�_JsI;L���Zjs!�T�{�����!ux�p�Ki.UA�D?���Ç�XC�S��ɩ{an�΀>�p(?^N��riO�9	�F5S�'%�]�Q�;^�;�����	=9y�Kl������"S��Ó����r�Ӳ��
Z*rͷ�O�9�� ��ăz#o���ɩ���=¡xr�jRnD�
+''��I�"x��Լ�r.P�����CON٤��w�Lu)��D��f-��$*Vvn#�.��8a��)�R�˸�������[��ְ�쩖�����y179ռp���&o�V�*܄e��N;�l��|���$��'�rr�;��3h��mx�}u�����H��9�O������%�_�K�e��Ch�Ռ�D��T����t�d��M(�$�tC?|�Ne��u��Q�$
+��*���RxkY��k_^e)��s�����T���k����T“��t�U��OFn>S�s\���s^������)����^o�)@kև^\ݧ��r[K�%ݎׁ`��F�ɡ���q�|��,+���\�`MJ<�8Y�$�}��t�o�3���u�Y�=4/E�(�����
ZjlM�������z)|¤�T�rJ/3\��HJ^`k��T瀃�'��� ��u_ݩ�\�s�B��_ɋk9��v:z�N.Dk��MsZJk1�l��/+-��dD�g?|Ii)��U$�'Li��E ��r���I�M�Z�'�>�'j5�9�p2qrŵ��b��d�E���M'���C��qR\
+j-���~�=��eb��|	Ƴ��Bm���M�9��C���I��K��I�m空)v�,;q�qSƦ��?�'G���s��H1�d��χ�񱬒�,�H�v$q��*Zޞ��RIKZ�a;Ƅ�t�2V<�(�3whf�O>ެ�����bO>����[�\
+���$�+�*+S{�q ����A�E7����WX
+h	(�
+W-�ݯ'oV�AsJ���Y���o�_:�W�y;H���t�g⡆'�t�#<�1N6DI����8�8�h��-���xG�Z���'�(÷�ëf�V�Wk�l���&��!������G9��@�C�9�|�q w���c)��`��J_��R2B�y��R1D8����|�$�$���R/K�	R'�$�VO>n�)M{�Yp���|HLN;���|���x�'7����@y�&*�N%C\�Iȁ��}F��RY��T�K�,��b��u���Ar �}5�<ԃ�Uס4(<�x�b	�}s��I�M3�d��5=	y���h�ɔ�D�M\	Hw"��	jMOBnB�Y~U�\Jd�x�</	i�'!��k�;��LLu�Aȁ��E�+=	�i���W��Iȁ�l>�t�q��ײ�:҃���;K���6�H���Ma�ؗ�X ����ľ����Ԋ�9��5ϒYT��9�9�+�N>�9��/��:^Mh��A:��c�g)ŶTĚ.����𑖂X �-L��������h��t�2�Ao�a�R��ǹuF�^�A�f
x�B�<>NI	���L��Ǒʗ���)DT���0���Zh�<S����O�.��@��F%����o#�R�At���K���k&ٿ��9H��ݩ�$�de��r2r�q8�l�$�V����ݶBN?�L6������Q��oZY�_�I����$�x�q<}���N_(9���^�����ɭ��'�mg�X٫��[E�D��%Y��Jd��Й|ɓ�W*D���i,E�����tݤFH/sک��cZS�Dj�O��[�/Ƿ2
+�M�XH9�gꗜ�B��*�`���j��!t�N�����A%P>��[^�]��f��&p�$��#M�F=/��@�Z�v{�U��9"��[d[��=c�6v�	����?���)HH5<i9�ܐR\٫\�V�͵�{�+.P`��88�I�ɱ��g�a4����P��{}�
+W߀D�m�n���r�Tn�!ua� �>/,���N�9���uȋ[��7dʒPTO|\�^5����AKa�AC��nCZ�ZA���F���A���T��i�(�|.*�OFnK�Y���8Jā����NN�^D
+�'�}�O9����W*����\gʊ����Y-W��H+�~RrҦ.��`�b�6҄�����u�3H�����JN��T�;������f�Aa��T�E+l���+Ujf�-�^��1�A�%����� �z��8)���˵�P'��~0x+1m�J|(cX�')"{�oT�)o&ٟ=zEA+�G
�AH��QYͪ�١_�a�_m�
+`��&t�r+�
G�W�T��we^��$�HFu**����"�b���c,�H\��9�NN��"un/\�ӟ�n��
+P\	'ϱ:BJQ���Ղ��ATA�vv,U�F�byLb�Y5���Խd�rLePG����"6��7�J>���r�ԊDž���7$�N./W�<NV�=�êU3�$i���'�������Zp�A} ���A��� (y�JT�%��B�Q?��T����DJ�Ae��@�l�>
/S-h�$��4�J�������XUޓ�[nv?�;�����@.<l���j���P->����P#o�m-�)���i���ׇ����ylA�I�A���թt,p�=��թ���!�I�trr���Q�Gҗ�T�D��#�"�%-5!D�-gi��Q�V�:�'ovz�]�<X{���A�e��ե���Pl`�Z�^�Jo�p�-�C��Ɂ���!��7��O��T���p3��yI�uq7���
޼ 5��zk���4�YOJ@z�?��Ũn>Rה<p������AJ�P}w)$D	W�:T��b�����b� ia'��C	���5H�b��^�Bʁ(6��ҫ���k:�ά�
+mHڄNRnY��O�[^�����‘-�����xK')B��MRM)'����fM�VRn6"�ʫq#夿�ѳ�����SS�����g^bw����$�l�i���H�,���_r�)���34A�lM�m��f+ZH��_����P}_Hy�[m١���La��qP�1uN#��=ʒ6V�G%���[Kͩ�K)�	��\~�X�?�rV�:B�_ֱ�r��ח
+�^nj�75K4�o��̷1??#�����LF)���3���_�\7V�#���Sm��!p�n�ߋmNZNo����k,���6Z���8�tf����)����ՆV8����c�R��V^.�OI?�cV^N�j��U�_V^���������4�Au�崕�PfB+/G�F��l�<��
O��������A��S)CX��7R�h��n��RX��C	�"����߇;�������]|�*����btY}B�r�&T��J�AYX9c���L�*�T7VN
+��n��������AL^����G��.D+'�#���I����H���1�F�n/�W�������ɇ��g���5���[7���V�bR&���U��˅hk�+�J�1�q�*t���6^�J�V/$es��x�S�P7b�,suQy*=�4�B��r�1Ϙ�`���r@��p��׈�6oe3'���3�R���!g�^}ac�R� &uP�P�5�
K^�d��c<~p��V��
+�t�M��a&���RJ�������� �-m��L����Gݘ9?]>�
+���u"-�/5+1�O����KGy�*�.��qc�9?�,XާEF7c�#l�<{D�!/5��!���cl̜x}v���U��L{��Q�+-�nB�X������`������Q�wO��e��΋�^-*G�M�[�0�L��ލ�|L3�;)<�cq���&U^$�2�2?��D�L����w��K�2�#(a��
i7n�,�����N8�����=Gē�Яw܅��gY��"���`1U��Zpą����?~�����_~��C����D,Q[<��OɊ�e���?�:��N������ҟ�7�������+�/�Я�d�דCɝ���~{
y�Io�DG��q��\��a���k�اy*��!(�~�\C��}5�w�њ�w�K ��!G�\���4�6O���hG�/��8��S��-ū�1��&'���r�L��ͼ9���j
��9\��C�����p5َ;q���!"��58�
+ʸn(�)�ېA(��rݼ*Ā�[�C�p�(
BXl<����P�8�6e�"�׭� ������8�"޸��”������1�.�!m�-]x�#���ȐAH?[p�P=��J���I��5�x��J���54���z哎p_╅�<�۸�C�y���x
ʏ4�';�8 ��k�d4��ƕ�;�Z�����
�l]�}��=Գ7�����[]
�,��t��`�j��i��
+���?](�=�n�AD0�ƯΚA��L�kq�����14HO���7w�!�����jP)��{s]
�(�eX^��қ�l�5���:�q�:]��%w(̐���B�_֫�oG�ѿu�9�g�mqSrB(�M��4��5�a���_� ��.�x��8�t�p�A��r_�4�6����c:k@Ƞ�]�y�"y�h�l2h�=9tdW)�"Vɡ��~�s!��q
�B�u���j�!�	=q�����3�`��1�A?���q'n
$6=*��
�Zo�5�QI�h�l�w
er�h��(PB�՟�65	��#�jP}�5B�]^Xf߇Z�d�/-�`C2q7m
!�����Ά��|�Z��@�|��շ�Ad��@�7Hn��l�t�
+7�#���i���Q{����7���f_���8z��v�`��|���"U��� &��;�6CպA�шA�K���ٹ��E��Sڹ��U≴ہ�A�7�!�rJda�y>Sw6~���D��AXF̠��q�mD��/�J�y^���Ad}r���� #mB+#75FW����jްc;4��ʮ����y<�#WFN�n�s��H4��yRY6J./Gt��SQ�8w����D����X����z���܍���a�A��O��#b���x��v���K�3��i�A-L���۠�(揓o�f)��(ғ~��T]��r4o�����@ߠ�����B���l��|x��-�� �gX�i
+@H�Ϙ\ra�?"
+�ٽX�(���#�� Be�Ÿ�l�
}f`�y@b��[?n�!�o��\sJBN�<�T�L���G��)��8<cl�zA�xd_�{��kd}]lL)97���r`�9|]sy�q�6��3uRvO�Ė64ւ�=�h��Ld!�!(����j��5Q�<ihM��5���=�pK�
+�񿮉WT�~g�l-�H�-��5Nj�?��u�2Æ�.��wh�'cySr�<[��}]s�д�"���%���Y�W�e�
KK�_Z��}�r߳����tz��Z\0�D�5�����#[�l�Y��'"?7���뚕�?s�MM��)����Aϔ�5mD|>�z�r-�@�搮�����ɛ�2���&�l�A�3A3�֚C
+�i��I��!7�:T�yږ�
+$���X�\M�*��u͍�l��r�i�2j��$��i��HM�.z얽$כ�9��(�x�ݖ)L4��
ύ��%z���XkV2��
+�G��ˌ@�=�oˀ�@[h���M#�M�����m�_)�q��]2�T�2�<�3�} �GO��2�)����u�{�8m=����e�C(�����S���ޛ�o��h��!l�,֤xAL����Dz*�E��a���Y=d�Ǚ�o���=gnK�D1Z�)0%]�on[�D��{��Rx�qo=�W+�\i׫Zk�k@A���VA%-A^���S;��؋0h�ֈ��	��hq���~|� Am�/��JdXZ�ڠ���XQ#��s_R����[˰�>?��k_��aq/�Y+f�u*��AaӢ������:g���%�s�jz����]�@D��n�CH�p�<�}֢#k���r��T����ܛ[����:6��n�Z5��A�j��a�xg�X�*� �^��Uh��xa�Z�EH�RFi�XKĆS�I���2�E&��Э
��aʃ:��)�����PKݛ�\!;ӇZ����f��Vb��*v`�ǥ.�8�얫���|����<k��@s����S_+�v�]y�bCv3rInJ��	{Y�
��b�^��_'mɿ�VPR@O���nu�����.��Ukv�Eg�{�'�`��Dz��l�z*{u�ZN*��?'�{jg���GQ�Y��:$�G�Y��ڦ����J�9�õ���Z<3�����\�Yt[f1�Z�K�!���?��_.�欮H�U��Pm/3����?��;�H%�׵��=�;�C�u�x��xi�V<ݨX�u�2��Zг��^�-�K/�+�l��
~:������L�H�m���7TQ��j/>o��Y���k�:$�D����ܽʩh���e��)b�Q���7�D�E�/��)%�&��=!��y/�k�-�)��_�������l��J#��u�$��'���&d��jŷ�]��,ʴ]Ch�Lpi��V���(a�7x�g���/��D؂t_��IA%AUu�X��D��Spw�	z�q�t�����l^תp��#i�~]�.E���L���U�i%C�]�#n�~z&�D��M��r*���2��>�i�~��T�~�Sze���<Ew=z�"K�kf0)��<+�v�j�,�o�*����>�ܦ��\A}���,����\`f�r���y�mܛ����o�_6ј�M����J3<b�Jo�<M6g�B1�L�B.L8R��,t�v9����X�j�Sg��A����U���D���~�A��;��(��jQ:;��6٠�6����Ml�m��5Z���M�$㨝��])Y�rpA�]A�ht���w٥Ĩ��wb�jb�e���
+O�B]MbՅ�.0"j�ι�I��&�V|�U3~�—h-�U�.v��Gz�(���d�1R���u�m-k8�Br�U��e\�L����xY�ϊ)����0��S�n�Ù˹LI�Mi��+���E��+R!�T�ZT�Pɢ-��nZh����@EV�4�d
}˟�k�F���S�
�Q(�
:���%���2���u���A�UJNK�~�)@�Ub��.೩���*�tj����6+�B+r`��l�zV��Y�O5>�XSo#�k�����vuB�����ijr��nd����	������&��?]�p�2D�SY�ڈ���)>�9����Q���4V�Ek&�-�I�&ј���E�Ž֪7N��]R���Wʿ��H��e��ߤ'��]���*XIOX��T]\t��4�H�WW�\�1+!�ȩ��Hjb��oL�	qV����7�f��;�)�x��.��")��u�
+��՛���D<�D�|�E�)r�=XuL�ϗ%L����DS���j�r�%�ꬒ7��v��U�5�4�f�I�"�E���P{=�`�g���ؼ��&;j��n���"�J��1�ԩ%����⚳��ma���Gc�$.�k9��a҅�Dx���U{+���z��5�G��]�[���c7i`�|�ٙ`�?M����WbT��1���]L~����x�����y'6�dSit����+WV)�ؿ�j2C���$�J����j^֪���ISv�7�h+��ϵ+MO�1\~ӧ�����xW�f�C�]5}��f�kmzw��6G��z�>�"�mG��t����u�'���H��w��g6iޅ���!�6'�ʉ��Y���]�Q*��&]��G��T5_ϭ��l�S%�8%��}�*�N+6-�4�WAv�*�B�!�N�6����滉.���*�y�����<8z'�ߵ�M�ԡE�{�!}J۟��#E��V>�G�	�s
7�}��[��k�凊�z��S�><{��'.S��֮��?
+�MH)�]p(�%����vK~Hu��uC`W���= }b�ݓ������s�����S�e��@+�HB{�����j���֎�Ӷ��և�б6�jn�+�ϖ���[ϋ��T`iN�����:u���Èxi�7�ҕcл�Ȃ�k/��B���̗ Bh����4����?sk���މu�&$k�L�+��>���	m�r}4d�z�pt@�?���
+R�\C~�B$���mW�f-�1|�����u1�p�	�]a��Q���,�d�����4�l@C5Ra�t��R"�ƛӣ����&\YS���"�,��७���N�°����K��1�������Y�ti�Db��J���A��t�)�m��x�"bĎm}�h�|���i�m�c����"/m~豷S��B1L���a"��id����#�Z6���ODɋ���4�"e�<ڢ�=��4������T�0�Nڥ��ނ6����zaq�3�#����bs���[/��,��L!��V��-{k�ť�4�.°yz���w#�D���'׎d�
߰����H���+X���4�v����E8��b/���[�	�-�W;^��eK4O�;����2GZ1x�ҥ/\�����ӗ~r�$ix`��G:�ĕ�slk_g
+6z������J	�7���qN%f:�W�m�H
+e�K{>Yh�]~��#����f�[;�D�4%rX��m�J��׵� �"�n��g�BB�����G����Wj
+q^�$r�BI���[{+f�#��y[GƂʑ.��_�:9�A��̤^:@VKb�9P�Α�l2�;Nҁ����׸u��&��|��t��������1���6|o��ifK�e��K��pB���'A��;3���6{�ό�G�Ρ�[(YX"O���si2��BO�[o�Iir{��=�{ki����,�_��
+�b����-T�w��ȿ~�^eP����:��ȑ��\���4�y�_?��B�d�����,ͣ�֥�l�)��������8r�ųu�%�{�r��ߵ
���uq�0T�٫�l�K�e���>���n���ٮ��h���N�K�`<0b�	�݆q:O���xiR���Nl��47��$�7�}]z"��4IoK��R��O��3��iV~�n��<��K��f����m���?�_�����E���ޖ�L1���ƺZ�,�ibg��jD7�B��5��\J?�޻m[�T9���u�k��_vMν�7�1��c6(_���=s�gqؽ�8�֎#?qݻ�W�(4�����P%"�ybK�s���(����J�S�	ȥ�z5�<��Қ�dB(����H@t���g+���4�'FJn�7b���[6a)���֮�
q��(���ǹ�,:�ëe���ܓ��&��3G�ʋȄ�I��3I��"��l�[�����qӵ|*��S{D���
+���� � fK�v,��$�-Ť ���;kWזjR0���z?���B���W�7&&H��h������8y�*�I���r(,��¿S��|�����Z��N�oi\�'�cKAi���C��_�T�/k�u������J���'�S�Jav��?��	�Bl��^������ڒ+�y�z��g��?�a��%�0t{�Z6$Cطa���w|�$�ɪ]k��|.$T�Qs2g&����úJ5��pCf\�ҮRvȤX#����f�ި�&��xKKԏ�&���c�f�O9`�[�e�\�~�C�����c�I!v�����S+�Y�m��ZK3�+�K%YV��?�oAW������ܬ�Tų�(Z��\ww�x���`��z���/�D����{����cIb@3�'�F���������ԳS-�=-�`��ƒ��k�)���pH�Ih����r�&rY���x�eJp��Y�!��uV���EDo�ܗ>S��L���5}i4�*���-��/?��ڙ�nqn���=Ȝ5݋��K���~ΙK��+Kį印�lX�#~~��8�dF�ݤ؜m�򋗈��G�Bk'�
g	���z��Q1k8�u����1�����z|��ww�w�z���q|�{�cL�A�$�"��ݲ+��d3e�������e�%:�|0z�)���8��i/�����k�^���+�����=Cә8N�q��`M��tU�g�!��$Ә�F
+O�<c��)E�,m�c~Z�h?kVuZ|�1?�iTh�Vg�&�Rv�)/Ȍ�i\br-�D���H���[�P�f���0���f�{���}�a��APQ$�5V*!̨L��LE��iv� @���w�D~����ǜc�Sl�F��EV2��ҎJ�B�C����zm�"{���>]r�Jk+�)��Q?]r4St�3�~0L��5��nF�A
��!e@w��Cz�����i�C�Y��E3���"��ĥ-��0n+P�1?F��nsL�p?�X���g���6�ˌ��̋�l�w�����f��f�O����������̡�,�g��t�e�۪iIn�����oM((�g�&���v������f�SR��?�ܥ������(oS%���q*�MUBn��i��ݡ�6��1%�;��'0�޳�	����s�ng%��kà�#B
�3�z�F��ݡ?-���u��f�턤8ƴ�����;3\A^ZU�'D�&�Gy�U�^C��&��ПfCN�}ߙf��O�Y�?!��k'b7�@�ʌ��$�Q�p����E����2�;��>ŎP�-9��؟NE�#(�����ՠ/�L��~7��Qy�����uY]��D���?��򬚌��YŒ��J��N�53(q�M��r�h?�QZ)ֻ���͑�%Y�
+�M��2�%�hR�ҿJ�'�`���,
�`2]1'��P'��h�T,Ji3�B��_�����&���
���?H�0�t�Ju3��2�8`�E��fv]1�em�E�0	�ݕ,�#�\����t8`�`���J%��l׊���5����ʚ'��2��b+��|���H3w1�&2u;�(�N�|��v�nV��Jt�ڈK�7�5��b���-�A+e��a`7�os&&e��H���e�N
+@O'�����I�z4$���q
+�����Y�0�M��$���J[�Z����X_^����:e�X\���J7h�����l�c��ҧ��4J��V:$�bYB�n\Q�e�����P�/�y2�nͭzj
f��Zk\�u��1����M���NR�Ю���J*/=��^K_\�0��&:)Q�<��>ӌ��=ٞo��G�������lqT>�^@*� �ؕԅp�EP�l���p���Rv�}���D́,��K�+�l]}��T������q�2{�������B���8��G��,���nk��&��t�MHt�p�J()�ծsiy+��auK˫��br��B�/��;�O(T�t^G���W Yu��/����M��z��¡���
+6	��Dz|�5��}�J��ء�|�B*�b��A/�/���X�=��6��P�
+"����2��WZk%x�m�.eiն�K
�z�~M�Ơ�P^�	}��.@�[e+�x]��B�@�.lr���pVG���ҕT�_���X�ح���n&�|��4�X�����A�=˭֗
+l���V���x��#�b��f�r5��h�y�q�ya�ʛ�bK+l�Vh�<�@l���(�����*@3InC0y��vX��͞��w���Y��v���F�� ��au�������	`���-��g�a!�-����	hڭْ�_�M�����
�]��K�ӝI�Ȯ���jB2;a6�,,@7�h&X]X�RM��Y�X�LA஘�22������'ma�윓P�E��Y�T[X@�J�T�K~���%��V�6Y��<ɟ���-M�`e��Ȗ����K���ʮ�I-,@5�n�ۚ�O�Õ�nf�cQOya���t3A�UkahD5
+����U�P�Z�sMK�,�ϲ���lL�@A�jG�d���I,���	G\B5U��,�y�B|���2�@a��!{
+6Y�g��J,Լ���9-�ۢ��ּ�̂e,�l��P����"�5���K�
���\&��ZU��u��f�Q�2��v�m2����}kq\G����mo.z�h�,%��l�)�7y`7�k��$�r�e靥]��fZ�����5�����8���ɪ��R�d�Q������m���E�I�3��\�k�m�h���Pɰs9��3����@�
�4z#!f]��,
�@š��/��i�*�nk~�ڊ*�5�UV�-,�􁫢�9�K3U���H�*fm���#��`2� �V+V���.}��?.�~�c�Z�FZ�6v0����򈯞Ũ���.G �U=FG�O{y���\�j�3�3C�qSڌ��=OT�X�\k��?��*�aU�����l��-����;�M�MnЌ���e
+ֶ/�t��4�{4G�Ж�Z�B�U7�� �1��}%��d�`uy)[���v��h��Gٴz���$����gd]�ݼ-��`��7�2��e���m�T[��Tie�T,��>�ОxyE�eY��?X�����~��Qu��%�"?l���1/1�7��3���*c�}i����,tbl���t�O��ڗ&[��ڧ_�2	@�ʽ�@�a�g�QA�{߯��m�0ل��5����foe�ɰ�k����)�oni���/��[�m��8�z�}h��ڞ�W�.�@w�tA7g�O�~B�@�esiF�@�g������}�j�I�4Wf�O��ĺ���_�RY����~y	��osK�-PA����斦[m��X�؊���u����Yv����
+b�>�����M@�݊����[G�M�j��Qw�q��`M��aK�	����������aK�-���[�oUN ݵ^�/���	�F�L>�
+������K�|���J
�e:SJl��o�L�@k@n�<>�����,�l�d`~���Dl���ɚ惉ֶ0�p�V	�:-,]�`��X��X<F��J,�"c��������]�&d)$���fk�Slf�1��3��?�gy�������p��,䛦�E��x��[|�'��V5Y�m����������
+v�*aa��O_���� ]�Y5�ȸ��O_�������K���X�����W���
q]����\���U�S.a�.��*�?}�*�篢��cS'�q럾r��W����b�)5�b��W�"}�*T4e_/�?}�*�篂�Y����X�������I_�c��������ڙ4��۟�r�_;�heq������O_��ϯ��j>֋�O_�
+��?zʿ-۟�t�_=�)�9Mc��X�������I�c���������I9+&��e���e|~-�WZ��O_��ϯ�Z�۟�t�_B�b���~S�?}�2>��R��X7�?}�2>��R��X7�?}�2>��R7�X7�?}�2��WQr
+�uc�ӗ.��(��uc�ӗ.��(g&�uc�ӗ.��h3��u��������*���׍�O_��ϯ��U�uc�ӗ.��hC�j_7�?}�2>��6���֍�O_��kM��й^�0괡�w�䀴u:־���>9d����u0�OY�u�?}i���!���]N�>9d��c}z���ɑ�75�W���_>}
�׀�I���s\�������+�����]��O_A��Ёb'�MX���k���uM�/�]���q�;��3���~�w�H4���f��k_�{�}q����u��Gۗ��힇�7��Q3�-s����Ѯm��<ڵ㏽��G�����7���#(��^M������\۷���,�w����ڷ����ڷ����ڷ���lڷ���<ڷ���ڷ���#�w�_e�}�_��{�_e�}�_��}�_d�}�_��}�_$�}�_d߾}�����~������������������������������������������;گR��>�/r��=�����>�/���>�/��>�/�~�>�/~�>�/2}�>���{G�����|��?|������7��,�~Ub�����W
�7��,�~U_���"�W��7��,�~U\�����W��7��,�~UY��{�G{�n����y�g�����{��k�*��y�g���v����h����y�gq��^���Ve�
+��y�g9��B������<ګ��U���?˽_��;����U����?�_5��<����U����?K�_U��<����U����?��_u��<�^G�ͣ�j�_���<��H�U7��㿪�_��<��,�U)���?��_%��<���U���?+�_E��<����U
����uD���Ϳ�s�����o26�y���&^ݎ0z@K3�Z���/2"��?��?��򿆂7���˿~���	�?�׏�����_�����| ���p3����䆼чW��|�1v��ٱ<Rnz���`�'�P������槞�'FH?��yHv���HU˒����:�7���޸��O޹O����oO9�ÿ��}f���}b�?�u>��[��7ߺO��޺�?ԟ޺|�u�G��)�w�sPh��Y*KYT�	�(���/�׿3"��������r�6�p�����`���o���T*������2.��!��M7	u�R��'��1�����~����x�1�?�s���w��k���<���e��A:<�o��G�{��2M+p1���q��
+����kP���h����ƭg/�:�W����.�e�#~b��p�������y����O7,�~�#�����M���Z������V�
��3��R����s��N��ͳz9�Y����/IJB�aL���PI�z_b~��H,ԉd6�����(�X��-y
����~Ek�\�-��H� ��RQf%/j
���r��x������_���w<��S�#��}�3������Y���/ރ�[���G�@�ۿn�
P��o?���/��_P�O�[n��mU�a��1�G���߿E9������8����D6�����C��%l�R�!�Of�ZU����&A$\Cp���F�点�{��
+�F�w�u���kTw8��M��Y���;|���iT�΅���O=�B�gP�/���^��4h��;��a��J�{U�˂�����?D���4�������E�{̯����ir��S�{��'��P�8-�]���f]+a?6U���b���Ո
3*��e_���ˍ�0��KNc���̼���P�T�cf�q<S��2l�0�B�?��
Q���2���hbx��j��%y��p���b��[�_�*����T#/�m�B��c`��w�L�)u��b��Lc�EWZN�݂�r�e\I�8���)O����X�
+��8y)���v��+�����t��+�'���#/���U�B7#��=�����;�7&�:�����QM���`XH�vLy	u���DL��m���l��R�Eb�t;y)ƉrRW;�n'/�$0��ua���b]�_n�-N^`2E�/J�qI����Ws��	)�D���xW�/'$��$���Dvd3����+bڠH�}�L`�����}���e������v�l�->^��W6�Ŷ���]�X��&0yyeN��9|ӋN|���Ȍ�d������9�a��T����Hzp���3�с�F^�w9T�@t;y).G
+-F^
+�*��=`f奞S��ۗ#!��dY�벤�M�YV�V�-fn^81&�.�bߩv^9@\K�eL���z�)f����ড�b��#��n;/�.��L\�.a��R,�˭���R�q_zj�������,���JN�}x�2c���qal0je�� {ا����/c��X�[e����܆^��uɛo�2
���{aq�JfY)s%�ݎ^`��\�W��ܖ���Q,'X4G/�6�.3�d�^���u��ӧ�Ћ��X�5,.��&���g�_K/Ŋ��]����oK/ź�^-F�'�������v{z)&k o�����*��+N��A�n��*q�|�d��3O�$3O1�	�EgY4O/�1,˯i�᫧����y79
+�������m)��5���b	әj�[<��� ��i��+�_6�Qݮu����|MŮ3���c6�,��V)��^��jfX���|$hPS/��m<Yt.˘��k�Y�:�r[z)&K	K�bf��Ҹ+l��V�d�^���"�!ђ��l�^�U�p:���<��7E~hn�b�̻� 69o+Y^,��g'�d.�+K/�d-�c\���K1�a)ۯ�Y��%ƒg��O��K1y)8�U��e��`�X6^��Ӌ�6,�Zh^`1������c(K����,��+L����b��^
+��7�ܽ��$D��~@���K1�-�/:ZY,��d���ٜ+���bU���Ë�z��j�+-Fso�?a�M��'KF�^1���1K1y��R5����B�*�m<�y.;�>e��ù�5��J:F�~\e[i��것p�[l��q���6]͌%v��^�Ɏq�Q�-4��Ov�l夲X-4�L��ͯa��Q.Tz��P{=Y���*u��RLf��L}`��_,Ǐ�-�^`Yf�������z��ʾd�-�^��}�u\g]��`B��6^[��6�x�[�j�L�x�G�:4�0�@�O�j�f�^���S���&��3�D�
+�ܬ��j�J[�jH({�SR"��T@=}����B��S�T@0��r�llR����9��6��`�u&X]��: fN,����
+�0���+�*@1�,,�ی���%g���d��>��|4Vg�+���~��^�@�z[����	a�{3�0�vUYP�Q�@�ކC�1�C*�����������W����+����(��xЕ����6���buaj�]%RQ7c��k�Cn|�-L@�ݲ���\_��`A��dƐ	�ܛ	`�-/x���M& ��!OY����Gy'��%�j�	&\�zo�8=}�lbƢXZ��Q��[���&L�s�l������0��sMjZ{���8u�V�*�|H�XՃ���I��#/�M X�t�{�ƾЀ@�/�L�
YV���Wvsb��'� �\��M����	�C���ICs�����	�*8p�K���ț��EJ�?����H.7G�b���B0��(����6I�&�i��`u!'��&	��\��q�bA�Ep���I(��:v��D���EXW��n�Xy�6�z'�Hן�TLb����D8���d�Ņ�s��'=��@m�h���}eZ8������~]�Jd�T��L�`sV������AUt2���r/aM�Y��oJ�'B�mb2�n��b_�ę���т�����DŽ��*,?@G�lcMf7%�/ޡ������2��t�|Ȝ�
km����W�,ֲ)���o"*N��jߙ��/u|Č�olR�	�eo��"V��/��ڔ�u���.��V}������h��`}��sW�{��n�����u%��sw�����v�ԙ@�Ϋ�ca��;'8��E�S��غ&�i2����^�����nP8�#��/�(�BYO�x1�n ��>��4	@�/�/H�Ē���yX*�x{�L��h��L2s:e�M
+ �}H�)��PX�|4^4	@��UYr�a~��Rt ��m�ј�7L^!��tg
+N@1S>��R�B�JVj	#��d�h©e����n���@���y4�g
+N
+�1�,�nl��.@0����"��)���Ɨ��ξ8N���i6�^��|��t�]@0���[&3g2����Ƀ��2�Y�l8Y�dp�V��͂9�d
+L���<;��z�y�7(�Q�5�����ptëR��.c_�m��1�ь��Bڌ����B��`fz���p��/�,OƆ�K*�p0 �g,z�/���9F��W����b�
=)[�G�@=��B	�+�ڗZ��L��uv(Sa��ɽp��`����NBH[<jR�&�`\�c�&����].X(�
U��(��2.�.�?�@6N?v9�N�<��È8.����K��l�������kn	�+g8=_�A(�LT5����
h���iI��gzC������mD���+g2^�	���WH�}����qi(�����D�:3��P��f�%|1p�K�&�'��5M��+&�K������Wܯ%Du6������L;6�ei	���
+�|�-�?�2{_�2@aPĺ�uD��q�����?�0
+��(FV�%���G���\�]Y�������q-7o��@Y�֤�V��%��=b8�F�f��GIv�u	�9BaɊj=����e����8�F �or���`��l��J.�hT�Z���I�P�}eX� �}Qm��Dk�*A�`��5��W|�������l���/��}c^�y�S�� ��F��v7�d���6�/�?X�U=f��m	�+�Ex��?X��d�ξ��`�o�8=c�NH�˧���+��LV�^4�6���$��E�R��L�<"�cB�&���$w=���2u�	��ca�G	��+�d��"q��K%[1�L� ^����`4��hWY�&˰倵% k�F�`}���	�Ov2
63����M�2Gqr����b�/�)���5H����:��q ���>��R�]�o �b�l���������R��e;��l}��e������N�T$��d�F�R7SYm�4�Fa�(���80b=T�Jf��%��������%���M�a������5}�:\��\����ɟ��LVi��U��[Fʮ�.<	���w�:�y����4���b���^sal;����ɢ��by&��dї�No������.Г=�X��_0Ya�m�)��?X�y��l�0~�ȫ<3�`2u���2��A�ʔ5j�����h�i�n�B�G���θ�6�`�u;h�).�?��M�$~X� ����~6��Z
+�D��%�����>��xQ����!�l�4�0yಌٕ4��<��K��~@��_~Q4LV^��{�n9��d���q`3�K�%~6����Ѱ�D��#!r��7�g3�j��<L�����ت�v�gp]�_�5�f{������>g�2ow�/�,s�j8!������<��W�|d~�bk��H^�l�s,��`��C�j9�'h��ײ��h��È�� ��?��A>F^4�����(#�6�K���@YUo?[�ٌ��r����jY�l��–�_�Cja���ۻ
+H[a������D�*�ʱ�|{��4���VӕF�p���_0!�V�c��&��s�Lx>��&	���`~���~1����������N3��L�u��$��[Ÿ�*(�f��b��$��W�D�l��g��y�&DS6�8�%���Y�';ŗǿF��]�y��F��(e�i>ٯ���,�fssk��Q��˜;�Hx@tN�����G�7"'o|L�p����" �*�}���ϖ�_6{^ԓ�%�Wz����k��!���>>W��W��m��5�L���6WZ��_Vꮘ,Q�|�,�Q��Fʚ����`m��(L�٬�R�gP�J���Jqf�S�����i(c�A�%���#�P3�&�c%��M�^��X	������xO��l��U����� �#��ui�nTb�\.l��^1y���,��6��*W21�lV��r�&���-��J��ޑ �Z$�B��7m~&�x%�xE
+��b~%�4���X���M`%����1�bq��<j+�n�,�c�rqy��+�H)C�ay%�m��T	=G�</�N	�"DY�����+euH�P�@��L?��23�����iN��I�)��8t��d��vnU�;��z�‘��0�@%؃�*/[���&�Ѣ�+��(4�\\)�6�,�D_��S�w�u�b,���*�W���<$=�Z8���M�?6�����9{��J(�
<9��J���+r� p/]��(7`͕)��FmE�:�k�<`���(J����2L�y�v�I��@0�U�uC�
ir�F1�S�PZ8���P!kȤ�7��B�}eY8���.��/?���͒>ؼuI4�"<�n�ymr��m,DW�/��By��vY�@9�q�4���@Ќ�b~���Eyl;z�����s.$Vo@�H�Og
+�
7hC�ҥ�l��Z\KSJ�,��ξ�,,���F��޸XДm�d�6^[h�`m���MВ��J n��@�����ԓ[h@�h�CV�;�_h@#��!���l����n
+I�$��IV�
]X�^�в=ؔ ���ױ��h[�lҀ����1v�e���8l����*t�do�/��4=�H�+���ptm݀M@�h[��[x@���_��B&����U���F>�u��7��Y^�`�~`�4��eݴ�"$m��΢e>ge%�H����-N�aaSsrk�W����e�n�&t���H��rk�$�Ke��	�)��~P���p���uV\T+�b?I�����&�lC)+ X�Է����:ې<*�ҨW�ۂ����$�y���p�	�,��2�}�Z�'�,"��`�`��R4+�>`y�] y�����s8`���$��Qtޏ��������!�L4��'&�̳J=l/��W��[~��V5��&�J�Dz��c!Z��8q���)b�=`�u^�7&����d�&�	�.��|c�������2R�M�8�<~eCj�7��������[�����L�?�0��5�y��L?��å�Ru�HI�{��d�5�����
��a��JRꀍ���Q���p�ˏ8f�	� �k�}�dϖ@�4�hft��Y(]����&w�8���񱳽0N�rJ�e�#?P����=��Cӹ[�q����nl���Ui�k�ȾЉDt�Jhr�d�8�����i��_9�&��=������sI�]�v�0��$�}���f��p?钕�-��
�d�74�:`�&5b�V$ԑ������Fŀ��0?�w�F���c�z���d-H��zx~fZPs�dS&s����'��B��Q��S�^���]�t��8�A$����p)K���݆�ó��M������Q�',��B=`MB2��^���|�(��Z�&��JP�̡zz���(<`B�3�6'L�e�T�1JF�F�H�y��a������ϼ���<,rPʫuh�&�?~'�W-��w�B8'���O�S�S��a����e
hv7�6^Q²���'$k@�ތ��"�87=>uY$=N$��L��q�R�R�)ˀ�%n�P[	xr>�U��[g��L6n\9|��-��{�Y�u����F����
+�� ���o8\J�a���$u�0KR�� 꺆n5mZ�~��]WN��N���j\iݗ(W���V���
+�h�@���d[k�u%`����q�Ն'�k�ٟ6���:�BzO0y�����wVߋ?���Z{�hhv�v�F�a��=�z4��T��$��'Pגּ�	���&K8�3����]�����T�1�	���}��€���K��8�z�,��Iȩ�8/HD���tGH�8Hm��ㅑ\�q����j|�`�j����*I@s��߲�x"������&1`�;v������N!�����1���@�W��޻W%A�	�#��c�� �"/��P�����/�ZB���(ҹ��lP�@��8��Q��?�#pXI"UYr���
+����jy*u�������+��'LvP�H�f9���ǨV�}�bi��:`B�;GZ'��uw�*�M���f�`:g뛕U-d���M�I����"�#A���p;e	���1��:��*���0�����>�r;`Eÿ�v��@�W�����L����H��c�D�r?m]4vG���Տ<����p�*�L� ���<�������]{�G���R�i�!/)A\��p�j۰��aj�z��Y��ko���rdW`IX�&��p���}ci�#0�u��L�!t��0�p�`�ҫ뽖� ��9m	��fYY��ӫ;J<^X�����OX"s��R0��B?�UJp������p����c7�|5�0�;H�Ȅv����r�w�;��B���"�L{a�d��]�0�&�3�{'�N$z�\��>�C�J�1���F2h) �~�4v:P�ʿRQD��|$&��H����f�b{a��O�ld���+�	=�
+��=,��#�I��%jtR�Ve�9�H*9|���a�G�ȳ翏i��2�������!�B�(��M�X��������wr�\���[�cGh���T��p?�R�����;'������F9�,��5�4#u¢L�S�L.�r�wº�Z���Ҳ��}��ʑ2hŻ%XNUG�@�Ð�xcT=ya6�c����LϞ���jע��X��Fӂ���#j�B���?`���'ߗ��CO����0��k?(����F��#
=T��/^E�V,w���1z�����e���Su�|��D
kԬ��?���.�^�LY��U�T���g5YV^�oh0y:���0��A�X�4¾~�L*���0�N�7��Yn���|$M�����F�{>�M0��]kr^�����A��S�5�>���-y�<����_Ѐ�Qp�������G��.�{a��P��_OeYM��0j���,���fX�V|bM���i�^���@:��k>a�����o@c�J'0����}?�bl���0��Tu����Lc�0�~�I��G����*�JP��0�K��e���B�X���y=.��0���2�/�!��d8\�
+�:-,ybZ�[U���Q��aFhy�P�yaȔ��Q���#7:*{Xr� ᅑ������ځ	�0��0�}��gK3�k��J�^�k<X� ���M�����V�.��-4^GY%R8|=J���R���:;�KU��_�Y+j#����ƙ�"H
Y�}�X�e��N�0������II�<t�L|��jJ�;*���2K*��f<bha�t������nZ�$�v���2I2����:e��ߘ����I�/���4cr���F�?j�3mwxa�Hr���}[��d�i���va�>V-�մ�Al��x���Bim�:\	���\p���y9��KO)����Tܷw0WQ�g�?`N6���R�ĸݪ~^�㸴�L�T���ӊj���=#^�rx�����:`��r�ڐV���eݾ��%��~:��3p��i!<DIԼ_�P/Lf�u�x�ܐ}zc('X����
+@:l�	�o��/��P=w�ߊ20��q
+ƺxܹ��:XO��޽�2��͔e0Y[9ŕQ;�)��{�����#�&�6�6���O�3 G����T�lR��rV��'��ں�(��7p��t���A��|�/a��0��	N��	��`Z{�R8`���!�g��&�/��?�/�y�Y8@�*[;��E@>H��[�_��#�~�dC�@��eT{���u[oу�i|{cq����dq9|U���'L��^'��a�#y�$���9J0���������z\obYL���Q�~a��ˎ8��*Ώ��a�%	:�GO�+��C^��&�~���u��_��Y&����4��X�����.$4�y�Nd�r�ϡ�;d�X��M�W/�#y�ET(D	Z�aq�J�;��O��
:�C�r�Y�a��>dt�� ��d��2� ��!�p�G"���c
�gzaڡ�r<ĀN��9=\��7�S�����q� 3�;^�3�F��⸁>���,ب�<|�S�i��6��n�v|}�~�v��R�^>�����殢���	�޾n�V7�X�)��}���J-�L����}���t���������Ӣ��DnLKY����~�̽�#�~�� �o�bzSLX��%�\ٲ^��#���ȟ��"P>��9�a�/�!��s�߇غ?'.�C��7�$j�Mf�}(���A������%�<��t��_ޕ��{�6���D��N_�=9�"m����Q�.$RҪ�&+����0�DF���4�m^rF�ȟ��U#�����i%���6�?(ğ�(�!u�E�9YSeK<`���	S�`�[h�j��,�`q蜼0N����K�֮��	T9m�@a��o,�(W'��1oj�����(I.��%�Vhz�\�N{�^�1��I4��2o3��'�:_��ߘLY<���	5;�����,��+��h6����U�$���㫭�XE��8���[��:����B�Ng4μ�_3����2q{m)����Ң�bí��HP�ڬ	���>n4��47����S� �	�lm�Y�%=j����ȟ�L�P��I=S��m}q`��]-�zE-E��)���4��>���I�
�z���TҐ-�[��j�f}�>Z�3���*�>�8j�U�r�߰(d�/�_��'����f�/ئg��;2;f��� dI�9�!��' ���٨���Ld��~�k�ō6���t��l3��]��^�ÜdW�,#��T�nW�@1n�͊�*2��Z���]�"����L�|Hf0eާ4�*V�
4…S��Itd�[d�T{B��Gq���.	�{ѦR�&%���8X��P )ږ�D��C����������	�h��6v��̝W�2�V����V�څY�)D�Lw&��.W���[��d*��2�0�����`}UȜVӲY�jT�_H�3m�M� H+o�3�MG��%25��]V5@��*ǃ���>3m�U|d}u�2����:�؎�i���N��q�i
�d�Kb߸J�,�l�ٔ86i#Փ��7wI$��b��|��7�$��v����
+M�H��NSa.��@i�wb#�Q֫xIFM](�cB@��c�����?2TEB��U�U�
+'3tٛ-��`�����"�G�����V�5�M�b~>Թ؃e��fɲ�z���i�X�750�}FJ�d�V1S�����iH�Cs��%�J�Gz?Rg�&�܊=�M"
C�}�z�6i50L /��)�V(~�����F�"1W�[��4ǚn1�M5L��n��6������67����o�V���n�0Ѣ]���NW�����uL�LauS�S����ϭ�}��⭧��V�1��M-�l����2X�<~��"o��M��Me�Mmш���\n�`�&6��M{����o�F5�p������ѯ�g�t[W�H�i�+K
+�i���?Hh|+R�]
�O%K�=dJ�%�S,�>�ʙ`�l��&�;�R&���u:��,���#7}O����7��UT�Fn��]NLb�!.�ː�a�c�%�|)�>�V.lʞ�����U-U�)26W:�6�Ud��gc���g����S��	����l1W�Z���jȂ���֞U���I���f-شؤnQ?�Z�*��%r��Y�
c����q�n��ja��<��Uʷ�ʹL�Z>����|���t0���4�~<�����B�`�v���������*2\E^7D�W5e��	���o*�`D�F�6�f y��<5��d��b����m�񔘦��v��4u���x*Z[�����㩄
&�em�)h�V�<˰Uy���V_~<��
+^�677�o0$���n
+�`�cj���b]��[���=��C�� ��M�r?W�΋��J����{�ZW��K�|�h���ϭ����n���X�CoW�/F�d�0lU�WL"�n�իp�A-�v�w?�qN��䏯��ئ�o��=��C��~B�o���bQ�W[l��11�2���N�i�χ�=!�'
[�
+����<�V�Ţ��a�J��2a�d���D1&��Y/�|�H$Zp�Y6�/�ض�9=�!����!B1*�m�ٜ%�}��-&\�(�5�ڱ��jc����f���_��/���4CWTц��j��+Ԩ�����0/�g�;k]�$���7G0����9���2q`ӁL��lG��s�����"�9��V �h��osJC�1�C�V��Z���,��ʺUY�\t���?.0�?j�����=F�Uons?�3c?&]4�������[?.7����:7w†+m��᪣���jis���E;~>\|4�����0�!������j��G�T�w�!0�)�|c�(R���n�FDvZ{kle�D��>���dѓ��ܙ���J�۹	,�����
��ޢ�6�>Q��B�نm�REۂ��t7�sU��?�fV�fZ������d���9Z�iߊoí���2��w�.0�š9�m_��雩���``����i(��WB^~3>[���$<k�5���i��4��x����e�_�Q��l���g
��N�h����C��&{��������v?8��<��}��زR'������ȼCv�:x{I�s~��S���l�yӭ6y`2ݓŃ��grӆ����W4�Oոy�f~`˓�M�3��������z�RF��[rs��<l
+e��CZ�eoHʼn��WD��	F�n�~���/�<C��{��������>��#�BP�%�/�I~+u`�<47wJ�j�Z�r�Ļfh�>�0Ӕ�|yhr�(s�d�ޛ���������T�d�#�n����������E�55�>~X�F�.�e��HU�D�y_N�h�ȅE��j\��q*>e��~�r��,�`Ԫ�oU�޲���b�f/cX<����2���O��?^>��3�����n���E�������%A��x�v�\*Mn��e��"��u�o�$C��Pힾ��G��|��S#�[̉q��H�`�k����0t[�a}E>�ɦQ��O`�9�����������:�{��꧙)�E�=̻�rf/�hx/o�����K
_���YW�+ߵ;D�T�cr�2�^��a@<���nH���ė�fd����ۻ`s��U4N��8�3T�1�[�
+�K�nԍ1x}}?�d�%��f��cp�{+��h$���dX����_�bD�&,�ٴ�
��Q1ǟO�sUY����/��H֝O�6�zF's"��-����NB�g_m��aJ$�u������a
+}��`߹�ȫi}����yJ�Dy;�~���:�ji���u�pZ�hl+���6Z�w
 �)3��q;�B�y�;O���M���]�KF��WH@c
 �)��$�,4@���^e`� �R��!�3����B�PZH��Py����Bx���*XXH@ ]#�ZJu`��)�L+Y0B�0�n��7�1��[I5�	 �*���G��f���Sum!�W��1�`�U+�iݰ:Y�����dpea��U�[�\^X��)MK[�@�V�)����Z���	Q�ٻ����fb���	P�(y�v��(��I�2Sd�f�%^YX�X�m5l&8���X�!��������D���(�L�2)V�K�Ŷp̙�L#�������� �%/���H��|W?�qZ��M�ـs�fi¿Y��
��B��
+�؎;���`aa��useP�/,@0��u��G�V/@'vW^Gc�$���b�:�H`�x
p��V����r���fX鉗�E�j�p9j�'��B��Kv�n�l��B<G_�WKx�M��o�a��LK.�C��E;d�,��.��$��~�8{�A�f�
�|@¢h@`~H�+�K��9�z�dr�b�J��O�	�=Y8�^5�ԺY�}�iE0XU�5�R-���
+l��0	�ƒ����,˪�jwE�/���h�J�B�4?��	�pB�[o_@��l4��@#>�7
@F��Z�3�H��M�4\����  ��4M�6i��=�������1,�6ɨ��i�r���d��
��Igit��d������_4�L�]����N*+w��xi�`d_c����zV��9�ڹʣZx��7���M��4�*E����T���2:�o&�|d�Mq�f:@�%�W����ǁ�D�h@F�o"��8�6ZY��I3Q�=�����2���q��RhD��*�M$J��P�;?%�j����FT��N&�DQ���M&��s��ܖ��"�Ďb�*��՛���}$�EC�����P)�������B�6&'��e��#��MW�t�����ly�������K.�5�6���������T�Amz�%|�����]ivK����}�Qɒ��Up|n���M��4�ik;X[8�Ƿ7aA�PU
+@r� �LE���`�&c�Q��x-Q����F�@V�֑M����@ec�򳯌KA��Z
+G��X�ّ7ؤ�^{7�5�_�F�Fz�$���H�0o-J�?�XְUx���H���l2��K'�N
+��z���ɻ�� ��P�
+�dûvj45o
+�V�E3�&�*��U�
+,.�L��@<Q�@�M��L���1
+���5Q�NA�,�,��+:��@`qH�����y�����A7
@��S��t?)�4����`����C�K1��S�QÈ.�(2�n�F�3X\x��Sgo��B<>t��lA.��`z`�,:�N}��0ȘU
+cZh�X�:6�-�/4�l�kl�j�n�`m��Ҫ��ՕDr��YZ,�U����e�'����Z�ɾ�f.�l��*�V	��(x�h��A�v2�@�� }$
���~I����o�B�ښo��V�E���!�9Y�ьO�q�Vуʣ$C�neQ�P�I ��8��eҬ�e�]�v0@�BT,�,@���1�u��D|�e�:���,@�� 1��ȕ�Yf��r�H� ����~���mI�]�[9��T	-������{�u���뮪�Jjhh �@�PD[��r�=���J�@��$Os��:��p��i�ԟ�%�$��Z���
+����c���9`�4I���j�b�V���[k��bi�K��J�ב��6�[I@�A�\��B�+	Pר*`v�L��������Z�ѵ|,�7I��<�Iw�>|���⊣4�����C�g�δ���sE$`	�>���+	���^ݓ��J8d�+7�Z�]��0���;0�$��G��e�&	��n�l��c�8I��MC0��t�U]��+��b[��x]���SY)@�j,`y��4'?y�;���J�Lm(q��ȡ�x���o�-蛣�������ٌj���͆�d�'F͝
�T��+<
�l&�hYE���n��C�Voan+Pä���#�`�,�L�����&@�+�k��ί�T��̏h˰�4zT,�4��>T�L& ���zWH���u-~�t�5�0G����X�S�m`����[y�
qC{C0R&��qU�{�)�`Ͱj��U%UӸ�ɟz�[�@D �CXY�����m;�� �JJ����i6^)	<@b�񍗊X\���,H�U
+H4�D jdb�Jxd�yS��r�d���Gm����@��(k.6���&(�Hx(���ĦD ���2œU���^e,+Ј3��3��>0T+ƺ����'ږ�����2j䭍Qy�?r���uV��=�,�̏`�}P�
+<�=�su]:�Г���J�CI*��|�$��K�l�f?I�X�HZ�ۗa�h+N�J�<��Y�!���j�hm
V(\U�!Xk�V?i�ƚx��Q���Ucq��a��C+��I�����Hq\aok����ʅ��b�S�)�X?���~mV�Ԁ�7�N��A`z�
��~@��r ��P�`"w����Ʌ%���z���j͊Yo�l�i`������`߹������Ū�����>����[o��q|��w�����`��C�.����J8٠�Q:�j��@O=��6�Yo0�֊�n
@�Yop
+e@�YcZp��K����5X1y�=[(��]�����&�*��Z�)�X��!��J�4mq8��겒��r400\�#6��78��b��?*��}�
Vl�:�Yo��)�.� �4�4�K}�+��*y���~U�N��J���f=���Z��}���	����l�}��}m
VLX���������p�wk
��i�Gb�E�+����y����Xܝ�a	��(�����He ����2�0�[����Z��tT��P�w����v�ێl�a`��9Y�akk0Xkf�f��B�/��q-��{�ٴ�î%�����G�ؤ�z�I�+�����806\g���V��{e��T��`�8j��?֌r�'�7X1gZ�`�̹�a$�����Zop�.K�TͰ�p� �R�b�+
������7� !���e[_pNu����M�k_�bw���ؕ��)�l�:��%է��`w$�Ǣ`_���ȅ�D��bme�`��+��R��]p�K]	��W$�Р�k��)./�(��emVL�u��%� �Ms�ĕ���hj�B��P��������j��W`��������,�����/���m�%���~�t��5X��Fݡ���y���q��sY	��5]'��4Y����0����`�t%�|�k�Dw�}��$Ϧځ��k[�b�fo_��+$��u^���?W��z��us�gX�z�}j{�o�Sz��d�(ѳy����K�����Z9��6WD�˷b�L�=��x^ŗ����&���{�O>�uE����9���Pn���Q^��uS�5�"�)'�����Y����_��ռ$�u'�uxuq�;��d�_ɋ�3��0�a�?ٮ������^��v +̕���A���sW�
lc����ǵ+X�RG�Jvڝ�Ƚ��B��v "dK���@�=�
+0@�#�A7����d����;�+��e`w3�|bg�����L5��$�oe�;�8��2/��w(폽${+TȚ�]����y�u��.l���� ӡ�݅m #<g�L������ij�e���*T�h4��z'��m��u'�iT̏�``s4[�Ze��SG��[Sp-�.�Ao�O;H�.���:]!#�H4�8{K|�	@�)�c�^��%���^Dn�9����z��9��$���Hs��_�(o�u�{g-�ѹ��/w�|M�$/a�Vv����:r�`���X�e1m[ö���Q�������}��)��.���(�E�k
+�3����?{_]�@+xZ�����dfM�ޏ�������=���zD��z�C뷙2j�����$.�C�n���k,y��-���X�@�un����uW��խ���rs,ſ���i)=Z��Dz���kQ���	�E�����;�Ũq�F���/�!��f���ǁ�����c��x�A��J�t�Mϟ"����{����|�wHhHխ`��@E
m^
H3����u�tC]i� Z�Fa�>��d�/��,p��=�Uv������`��{�5`%�����V�o���U�N�˭>n/?ք�ʅ=�0Y�,ޗ �x�w�+P�Jҿ<05�;,����k}-�с��{YL�[�^�9X���}��������(zl;eR��v�%���́u�J}o��QKxi
 �m��C{��`2]}o�Z��L'���s�=b���~�X�a���`&��ޑ
X(X�����c�<)0+�|``�|l�����+���I<igg{�FO�Q�=�����#0-S��Ђ�Ӫ��q��ކ��=�g��\2_��[U��2�G�6�J^a>X�����Ҏ��*��u4����f�$L�UN=�X�Oiv�&1E����l��O�[�$��M�M������%b�`2QǑ��%�����RQ7Tܕ��a+��`яf�W��d��bUy��en�\;�o��3z��-���:���j����\iBSh=t���r?���\�C�rơʸW3��hLH����y�Ā�3�v���UD�q�q]�糟Kp��8g���s�ϧT�Ws�[����5"�|��	�71��1���qn�ot	��v-���{�����e��Ql;&TG5�+��x����=�%�"+�a�q&X�#������~z����:��O]����i-ؕB|��	�L�:�]Ά٪%ư��q��ڼ�n6Ŷ�h0ֈ�6wN�';^\ϽATWq���η>���8d�m{?��"\*Ǐ#}0y���T�N.��Xy$��j9���o�f������&X%l���y�Ȇ��z�S{�\���
�~�#k6,�~>�=`���3K���Yޞ]R�K����+�:QسY4�HD�l��I0�h
�?��30m"�۹'���׻����w�����B�#9H�ĉa$���bQi@8}�"�dvY)�#������X~��=P�����=c
+4|2>��Ȗ��N�	Z�0����n�8	-K���Xs�H���l9+z$�ٺ���+q
VG��#�]��d@>^yr����#�&/M�°=/�U�����܋�ģ���_�3��0����li��VS��*��8%`�vY��4~�T���URQ�h>4�+{)FAX<Q���*���
:Zy�^��=xeH�?JF�P'2�ǫ�eV+��KT���k;ȍ�1^�y@6/1+��
+i���|<�����*�A��N�?^?`�^%�{���
��G�ذ~&�SI4`:�&0y*�zx�A�0:l_�S`-�J>^eW�p����Z`��1|�y�V�h%�{y΁�Q��*++*����ǫ
���ఏ*6����̣�
y^�����SU��t�^kG��R���ђz���>���*	��Xfc�jխ���\O�s�G"�U�E�~."0|��<
+�Zu�:ɢ3��z/�(����WƝȖѻ��G5'�h�n������m"�ţ`J�+;��"��ڣV�Zo6�W�V���sm�����ǫ��������Z\4�I�ٓ�kx������E��Jd?J�i��������_	�G�r�&�����������hfj��I�Ԃ�����l���v-[�6Mɬf�\z)�F�ͬ0>���А5#�W�kyu��t0Y7}?T���9�����
+^��dn��+���@�K�Q
+*��V�_h��T>*�9�q%���u��4��h�������g���ba�[��fl�59��Ad������x�V¾�T���F�ӣC��4���Ii�
�u~T5u�p`K����m]([�	�oַ��֡����ق�Ŀ�>:bhݒeg�B�4��9�����������G�p������x��A��l<-�������?�������*���)��������������c4$_�*���i'�e��g����1�,P��R�e�@<��#��d��a�ff�,PĽZ?�e���V�9 �;��x怀�$:~<s@@��t�3@�(�Y�eK���fO���KD����h̞�zH��Ȃ���b-���Ţ���,��:�M>���I��ٶ�=��u[�xf��۲?`����IzLd����M�
+�ɟ�'H����?`�:���#��򶪿��J���K����Ѳ=�=����,��'�%��5�?`M[�?^�0����H�h�x�{�H���d��v�G�G]+�ܓ?`5q����[���x%�v
+�'�ڍ�1���X�J����%�P��J��-��>4��-'��~hſc�G�'��Tk�*<Z8X4#�W�,c)~��R!�.�����}�r?�ɖ������ߎi��Аwx�~��gwU�-���y>^�0$,��'P=�7�+�����=��ꜲM\Ex�3!��_�0�-����~�����] �UYC�#�f�{��OZ�^������܇��_o���Ѥ�������wZe���ݭ�����%��� Y�U����Iz*��������C���E�{���a��J����q���H�~ܞ�R;�C�L��6~���A�C~o��|���Y���+�V����]��CЫX}��$�~��G��fݏ����&a�`1iK���Uc#�S?i+��S?i+��S?i�)�S?i�S�S?`�i�{�g~�J,���Q�������D�����ʳ���+������=�vk6<2?*#1�՝왟�g��������>�d~д����9������#����Z�Ö���׾q����ù��}�Ƒ5ۍ$Җ��7�?I+��!�#�6��[�hHż?dsffzO���{o٬=�ÿT͒��>
��W���v儖�X-����A�Ef�hl��>`	��ξ����I�mɏ-�����Q�;�Q�x�}���u�{�'��⏼���k��>`Ȝ�C�'ᧀ��e[���Y]:���z-�un��%,ye~��{���$mS�[����K{�'i������T�U����$�޹`�̏�Y��%���$uT��xO���Ͷ��=�̯���]�F
+�iy$����[^զ>�� �]v��'~����]�#�bB���(�H@�Q���ǚ�Iڞ6��G��"}$~��W}�#��SV��%����?`Y�O��?	�F?���0���iO���I�J
+m$������Q�{
+\���T�1���#��}��'~�n����+)�$~T��
�G�1����������d�,�Z�����v3�{$~Пc����,�b���O���^������z�ە�ĺ��}$~�ɓ�Ʊ��Q
=�I#��w@	�(|$~����a��]�s�+񃜟М�˾'~���:$~���rJ�����OB�Tn���	�8Îk@�T�BKym����u��H��unR�x%~М��R��A�����>@���C��4ŸG�^&Q�kWJh�&mj��=타cvn���iN�%��C���4�#�c0��OR������i5�U�ďW�L˱��iD()N�Wjg��qBE�/��aa�����ᵿc�G�'!7҆��#��P��v{�Lޘ����}�j��H�ddd��=(�n��it@)&W�_���۞��}Л+W�Ǟ����\���~r��Pf����c
2%[�G��(j4}�-��+��M����=�n*}ݶ)�!�������F-�-���}�c�+�*�n�T�������H�d��h5����J��	�=��R��0�i��v<<�>`].��>�0�K	��A�VX�i��}Pv�s��W����W��\�v���������$��<��&E�I�!�k^NJmo-�0���m�p�rجN�?��rj�%ѥ�ϻ����f͇���^]�́7�&7�I�eR���v���9��1���D'��V٥��*�և$��$�b��
+�9?Kd��v	�̏�0�B�M�Qfy'�"�.xH(Z��:������E��"�P�D�^6UF��s��1G��<�!˸�@f(�mv�H�$�Kl���C�zsy~�U��ah?D.U�:�%�����V�Ï���&j����xhq��^$���	[�����������d:h���-7���ܴF���/�RNze�ʩ��)���$*���<~H��
+�ʻ��`Vl�>^ҭ�5�|~)�b�~�&�B�����/�Y�bAq+��i˷��C�k�x���ӑ8�l��%H�*����@!뭇Xo��U��M�׬�8��x�g~�U�.��C���v�cl��bLJ��`Y%�L�xM&��d"Z�9�:N�͂��,�E�xi;�°�|HB��^��)i���A��@Mp!o�P�߅�龒�LC{���(��#��d�Ns������U2�����YA�A�[�d�I��N-} �6��W}Q�>�'��Tz˅:[Tv�r�����H�S����%���N�P�1�{՗,�}x=��)o��`��o
+������%����!O夛r�~��B^�Y��C�����}�ګ7m�p9|�<Z2�ZD��X~}	K����گE�*חֿ���Y>^����a,@V���eH�������fd@�R>f���P�$��Y��	U��0���l�J�B3�1l
xl���`�v��U�s�$��hJ�4�G��Q�+����8����Mu����#
���ߢjc�pj~�bTm�����i`�ӐW1C�W}e�9M��aށ�
\f���~,��?�f!�ɛ��F�����\Y��$�'��i�>LMp�v��f@R��/�tK��n�B�mT�0_�<\��f{�nڂs�]f�0{�GBy�U�<Lb�[��|��HL��)
��w�afӘ����C��-������u���܁�7��O���,������o��\���M��9VI�pjD�yt�?����`���'�F]�eG�����#��h��/	�9�}l�}��.M��͞���UW���+ݼ�nP�g������"�yd/��Nyi,=\��z��@���v���O�Z�]����\�A��VP�|m/�+�M�H
l5�
+��Rث�y��v���|x��^��o���1^4���M�2�p���>�z�	�w3A��
�y�F��vr����FL�9>˗O���Ɓ�mӲ[���%�p�e���^�}�f5G��u��p�S��L���lU����#�ʃ�h�x��B�=���>���;����Jb������#�4�>��E����^Pm�e���r��t�}��a���u7A���f�N��O�<)���vX.nN�ؼ#�bN�~sx��U:Jl����P�wS�z��(���m{`�%��<Yy˴��E�r���>��P"'!���i�I�Eۖ����eS~��~�{>�9�t%�kN���'�,�f���&�u�LD�*�Q�Lݚ���XJ�wu���N���e?Υ��)8��enΪT�qa*^�#k��U%s�ݝ\jW9���7��l���X&����y�
+|8�'6��í>eWL)��+�S�<�a���rD���x:�f
+Tܥr�;�JD��F:�rljK9c- 7�\�F����ig��b���U��06V���+?��P�Ë�Gj������~�H���K�m�q�v~�,=�	I�gs���'D��8���Iw���X�vjvyٖƧV�j��
+ `�x�]S��h��-d��.Z�|���^��K먺�c�l����~���[v�,;������&XU���i�ID?L����r���f�{�t�U��9됚"�wn���ݺOu��e����;�\���<<ܵ��<<�7�w�88��f��'뛮S��<�5�B���<��*�������<�I�4��/ڵ`!O�#�`U�]	B/l����4�pH�y�+�P8�����s�(zu�ׂ]g@��Y�:y@�0�3Z����X3����`�Lmb�FQ�����S�6sPA��,-6�@�3�>Z�e�P"��&�0j4�a!jٙ�B�߆Y��
+(U5]F�Ě,b"9��ƅM�v���9�
��wk���؁�W�
T�|��zY�@r:h��Zh�`�q�63T��#hnܔ6i@�����Ѐ�ԗe��,jn��ݺoI��L��C�'���d�A�X��p��>v�V� �����Z2a��B�&��9Z�=������X�2�8����u��<����h�V��p�B0����M��9&��ͻ���z�u�$Oi��`]"�1Q��MP���P4�1�����d2$+@�������	Y��j�����.���yP	�=ì�Y���B���g���n��R$��#
+�6I�X����0�IH�Ssm��r�	��y��(e�O@�s�@�,΄T����
L�+4'+�B
+)7����&	�CVߢ���M�q���&���@�z%Z٤	Y�a�/$�h*�MP���
����B��m�(/���Yl8y�I������dҎ�j*6Y�K����M��*KV�Z� {���ҭ�(Iy��{0�^
+{�	.4��5#��&
��kŎ��
�9�P,.4����#{�`C��(�ˮ%��{��vɍ�Ӧl�I]�k���A(�����Ϝ��$���U�zxe�$_�;��}�TK�;�����H����\h�wO1���FsZ2dx��NJ�B��t�)&q���,��A������2���T�ΆK��G5T�r�?l�'�J\��}һ�r���crm.�b�R�B<�J�.T`P�mAQ��-�9�%�F�Kt6\_8�`Ŋ{�s��&���¤�r�u�c��B���oQ��e&��)�:�Pf-/$��i�:��8LWL���׆Ż���'��y��`y&��MOa$�_H�����#dc\H�'�"�
+�n`�(kP�q`��x��@1��zA�̝E/%YK0N�
+uӐR�:�հ�{��v�S�/�b�^G�`3P��-ڡ����B*=�Y�֞`�z,�,��Ѡ,Q����9c�� �	��`NK&E!�1��{2�4�/��+F헭��Z�e�F��ذs!�K����.lF�U�է�מ`0,���H����E-�{����YGJ
2��:=�Q�˜�'����2.9�%�c��*n����rv#���J����`!_,�����2�����D���&^�s_`��!��-������)���:�\�n���b������K3�M�ـWTf�Q�#qh�6F�C4����᏷6��o	������̖���Pl�b�[V���П����`H6.�&"����f�щ�^$A���n�
���aJ��	�����<��u��3C�!��dr7��%�����eߚS��?vrX�v-�C��'d3^B�hiRRO	V/��&��ԓo���D����dž�����m�h�m#w��c�h�V�\�)��́Dz�٤���wH&$�fSu���@�ݡ��f\��lo��aRp{��)yN��~�2�f����)��']~n%�fnj�8̜�ޯ3h|�N�
ֳ���1���J�_��������CaN�G�&ފa�@�55���s����k�F	wmN�@�~�����m^����`��a�;h?�f�ü3!��4�ݕ�Z��p�םP�7Ȍ�����D�ۣ��OѢ�MN��]�a��
I�(t�Ni'@}���6�rN0��E�CK��ՐI��٣���M��={�2tԇ�ᣴ�L�������<?@p�gn�Px�	���o��XV}�Fl�����97�r��]��]�]������ZdOH���h�ցi�y2��f�k�����Xq��T�㗣���鬗�$��
�h�>BK��iQWzNVlZ`�L����bG������x�BS�N�s;��̫�e���?�p�[M�.��{>z��s����HL��3�]�}�k�+��:���G������Ke�����:�;�l���;��6���v_	h���f�O�;�1����L���1V��оͲ�GH�h��Z�	v�^-����߈���д��y[�6�'���k��ʓq���v_+{���7��dddBK�#����N2{��>�N�|�e�o�qlc�t;�l��m?.�V��H
h^�&���kh���3��X��2%�4��;h�]F��a5�d����6�������
+�����м۽n����]�z�]F���]#�%B�v�\�W�]����9�Ho�]<{C3�x���h��2� Þu��Μ욜������l=���CH��#�$#ei��Ю�~�d�?|���q���_.��=���˱6p���y����!��/�����b��a�9;�����cb�=/��C�+;�d�1�|�Sd�l������d�l���)7�o���o�s��?��2f�%�?�����l���K�����]���MZ����E�'7�"=���F*=�d��n�<��Cb��fr�����%�۸�3�BK�߉��^��T`��K�ɩ���h�"��?4��wANv��Ή����?�F��>���?$T�೩-�h6�߆�L`��qc��q�Z�f?��Smnh��C�Ou�H�2�����ח�F���!->8�vv�м��!�������8���<��aߐ�?4ymZE�	�Ʃ!
+��;or��2A�?ʓ�]��\�i��C�ׇ�#m
+��CBߑ�nH��?��m����}(������ݻY�Zr��s�&!�.A��÷�k	�;��?4&q��s��a�|�r�'s��XK���x3qJv���T`������T`��6�<-4�#�14���?oOq@�ɫ�d�"#������s�}��oTtr-�sk�1��R��H���$���!�+�
�X��W'C�4�BO����������ZH���Okl�!���p��о%c{*2@����o2@��
+<��VW�f�y����s�-'��ܸ8��
��yM�}կJ��Q��hh��y9�5��`�/C����ho�G��6%��k������M�ɮ>P��|`��E9O�f�����N�ܪ`�ݍ��W���M��R������%��A�2�j�J��mL��J����@�
�#*�j��V�1�_9Zŀ����{�W����1�cT�>Y+����}�������ڤѢC��U1�ez#BǮ`o���!PyĭR1��[#��sZ1���A�ީ�}9��*��e��l��5�=�;��Ǩ��+xBEc��X0�W[u����?�
+�p�g���#v�6� ����7�+	��#:����+D��n���b�gD2�Ũ(�=�na��S���Ze+��Vel� T8�����X�����E�\��������h��v��u�t1#1�!!�Boh��P1�J�TXۣ1x(ZI����+��J8�{9��[I�l�
+	,P��M߭������[H�����¿q�J&�������x-{VXc�V%�z��ڮ$���UltK%���ޘj�TXn
+�X���z���N%��S2��}+	��l��9��AM�=C+$��]�jg�n%̣Q!Ce@�ߨQ�2+	����SY�ֻ%�h]߳r&3��_<5T��X%9)ص�Y���,TTNE�*��vɩ(�H:sf��g�\
+@SfK�q��"��L^����˰xU��7���i݁x4�z �����=͕�Xg��f���_E�{hi�f��B�+�x�\�
+Qך�w*0T&��V@t>��B+ ��o���;����W7f��+�I��������ZN
+v�kt���ӌιf'+	lx���+	l�γ���K�6֜�G6�V@K�7a�(��u��윊��3r�m^�(`pԣ��ٓ��v߱Ṓ��%�^I`�sI�ά��K�V���YI e��]�6Մ&�#W43�_ߕ�yf�,�+v�|Р11ث�v�S�ک `�OF���T��l�s��[8�U�!�����i��>�W�(5|}�Ȟ���]��0�����|u��{$�&��*���G�����?�S*l�W��
+l��0��4� �
+�a�O;�����[A`ϯ*�魂�'1<Z�/xZ� ��˜N��ԡi$��>+�X:�a�髂����}B+ �'=�k�����vZ�ӥ��v�v��V�H�ge6h�挿v*��p�;�����M�\��?�U��TF]��+����
+��jg��h����vƬ��*�eU@(��g�}u倍l�џV8�Y�\�7�`c3J��;8����z}h�86���[�W#RA��T�Gۙ��*yV�^`��[%�9*l�����3ge��M�x�'s��p��JK��*`e1��m��`Z���M�`��u�<�cW��4����0�^�虧2�����s�L:��*`�k6����Y|�?4��Bg�����y�ר���5܅�5+l؋�Gv1'�S�B��G
�n�O�8
טl���W�,&c1�i�1_,��@��`��N�
0Ɏ�=�0���S��6*̺�=%��)��r�ٞ<��5��Ч׳='(�<|���������=+`���ƳW%��+{��B��I���R	�43Z|��TؿzH6�����\�ӛ��������f�+�櫪Ф؂nw�C� ��&������[�نڨ`�=�}dV`]0�2+�W�ZN
+��>S�ve���l��?�kzuD�0�ѩ!��*`k(��A��+w�:r�0�MoQ��h���v>�ur��a��[\��t��f$4������P�����s@�����1���x#���b�8X��a��[F9<?���ȵ�:��S@�F����	�>�Ծ�Z�*�W��p�`e����@Ђ��~�Яc�y�ݳh��������!�
+endstream
+endobj
+132 0 obj
+61797
+endobj
+133 0 obj
+[131 0 R]
+endobj
+134 0 obj
+<<
+  /Resources 135 0 R
+  /Type /Page
+  /MediaBox [0 0 337 220]
+  /CropBox [0 0 337 220]
+  /BleedBox [0 0 337 220]
+  /TrimBox [0 0 337 220]
+  /Parent 136 0 R
+  /Contents 133 0 R
+>>
+endobj
+137 0 obj
+<<
+  /Type /FontDescriptor
+  /FontName /EAAAAA+mwa_cmr10
+  /FontBBox [-43 -250 1008 750]
+  /Flags 33
+  /CapHeight 683
+  /Ascent 750
+  /Descent -250
+  /ItalicAngle 0
+  /StemV 0
+  /MissingWidth 500
+  /FontFile2 138 0 R
+  /CIDSet 139 0 R
+>>
+endobj
+138 0 obj
+<<
+  /Length1 8056
+  /Length 140 0 R
+  /Filter /FlateDecode
+>>
+stream
+x��Y	t�Օ��ߴz��Ų�h�$�Z�Ȳbˋl˶�9��8^�ر�����
+I !���K�4'�94459�eZ&��ZN�n
+�2�vʤ��Cg(�����R�vF�O�{��}���}�ʀ���ہ��u�%i�Y��(��o�5mi�_s��?�򫭓������I*�o�m͵����K����>��gh|�u$m
+��:�s�Ƨg��RR�#j�36���k{��Ծ�ov��2@�Qj[���~�|y%��0G''��o��+�H|?�sp�O�'�����y ��!�P�Oݘ����3�_���M�
+sp��p
+�{�����Fh�Vh��:��!�~(�,.�#�.�����{�V^ν���8{�511�3�fgƙ.����5|��8��#������S���y�߃g�i���%)�3�%x���p���1��	����e	�V����A�K�jRS���*�B.x�e<H��c���u[۽���m�s��0�wJ�J�1�,����Oty=n��c
+����ρ��)du�F�P��렧e����Y�
+���uX��X3;�v��ai��9�栥�j���u��:�u��5گ����_�o�sG򎺚k��\�W�K�5�{=�ӱ�D!�5̱�}Û#�뼞�k���_���^�N/�8{]��J<+���0<�Hr�՚�.V��s���9�^GK��nx���ͩҽK�P���h���\	qAÃ��X�b�cu�9�k��u̅7w��y=��^SO�����z�x=5s�/$>T�!�"�c�d�˨<K�5���;�,�l�E9���(�W��Th��|RE~����+�I4>����KZM�6����i�V��NM�]�=����ʘDH�~=��|O!V^�q�(yJ�Yy�e�
+O�b7/v_�	�?��;��_c�8�k���s�T|�_���e:����o���
g)�C�L�ȁB#CV���$yLKa��w�?`	h{�$�/1�5:��"�ȣ�oϒ%!Dk9�?zH%��T+ɽ��<{��O�Ù�.��.P���֫u���dA`l�A1��x�)Ֆ�K���\%e�@)��jg3\�v���<�e������A���Q/~�.`ś�_�ӡ��˯~��gFn���w��ڃ$�$�9�'|P	�ኢBwA+튠CE���fI6w�)�N��pk��X���
+9�z�Z��]�VZt�0PZ�$5�u�(3&�v���l�/����HfҌ�(���d���U�۞��������Z��\��g���ڙ�m�?�G����}��M��[1��_j�}����ZqlSî�֕�'7M|g���-w�:>�Z]��`:��)9��0.��LzX:��,^fČ\E�C!*�X��U��^���3���䛓�@��z�\��6�Б�$Hh�!�m�@iY�Sqz�����j���u��.�������˹�XCyA^EE�*c��z�mY�<���/����`Ϛ�^��p�h1����{�wc�b�/ۖ�W��U8�e='�nl]q�\����Fgb�g�M>�Ɯ�rl��{����+tn��0�LGƀ6�RI&n�5
+#2�T%#C-�p�ڐţY2u��4@:U�^����:�_o
��U!�R9�%g_|qv��O���]��e�Əz�/�Qc��Q�*H>F� S�3��`�m5�شl�Q����AaH�!�u����٦hO3?l��!\���S@nWД�����V��|O�'�A�����<2��"^������“�q�”��'�Gc��6j����׿R%o=��o�F^y�L,Jw�z���%(�jh
+W�P�)N���E�	���Y�H%+�W�8l��Ѓ�f��я:ܠ���d)5d*�Ҳ\�d�K�"Y���T�P�W��%���j�B����0)V�:���W��W\޵�ܨ-�f�,j)���;�������F�uc��K��������DSUȕ_Q�?6�t�#�ϫ���+�
���mY���Ys�ꠈ��.�m���J����V��iY��a����g�R//@窼T��BST���s�dW�͕d@9Y̖҈��j���f�<r�S
+̖J�l�M�0N�0��W3���'7o$h�-a�K c#��$����t���%T#H$D������ٚ�}S՞eNS��4������u��YMe�v_���|W��OMM�nl8=q��s�k��|~�����Ug��s66��	O�����5��ir�,w�6_]�WR��9�	f�z��ކ�o�����㣑퍒�W7�b隸/v�P�W�R-G.]�T]�	��Y:>�Ȩ�;��LA�Tj$r!�Ԉ�p���Yr;�N,uT5vY�k1?�k�N���w7vUt�<��5���`�*j�Q���{�:�!J}�ہ;.��c�9�����]�I��gf��"'ɘ¤*��Q�:�E�)�����[������]͵�SOVY6"I�5�Q�Ц�5o$�,��H��q�9ǽf��1E�DEXb�)�&�~dJ�k�W��e�$0Y�<>ѫ4vQ"bv���^���w��5�V����PaOݞ���	><?]���ۏ4�����}0�MU7�I:�CI8/��^��Rh	�2�L��z��nC�������‚���,rܭM=���7QSeƕ��ڪj1@���Σ�~�}�,�jatm���p,�*.���7�u!�B���)T��F̳(T��+9yZ�&�!Ӫ�Q�)5��ȯ��(Z��B��I�`�����A��Ip�ߏ�h"�ʾ�w[I�B���8p2��m
�O�ӗw�G�j��~1�����e��$�u�$�U����7��M�س�Zw�g)'|m%|�������L&E�p:��y�t�	�Mžl���b��K]�9�H�v�>��jY�`�*ᬀ�}�Ό_��x�˧_���_�]�̨dZ}�s�λZ���{��;k&Ou�
���l�\�ʘ�"c_}z���m�F)y�%l�a(L�^r�N���c*��Ű-�,�N<�����q��Z?8ۺ�	d_5�(�)*F�f��t���q��l	�0���:އE���R�P�!	�v��>%����gc���w��Oo�=�nH@Ȯ�?L�k����1�lۿ(��:�T��to)�V%	˔�/�&�>��(Ya���b�q�$�qa�ڬI����;�$C����tq=�+�"�9�N�*]�*�R����dՙ�NS#?�)��f�@�I��S
+P
+!��A I
5����Q%�\��w~�ʛ��Gg�h�_�_���E���=�Zνw���q�ƛv!Hv��]��l#��.�hO�����VYO��m%�=EqY	D�!_~:��VhS�$�E�ɋ	��:���
+��K�|�\��7cA*�F��
+L�Mr��n�M���f�V�R&E�񲠟��au���_�gC�,y����WT[1~���^�ռ�b�^y���n���mn9v�ڶ�zF�3�Ņ����G��m�v��̡�2�������3-��+am�Ɂ&m�(r2��C�
+`�V�k���\�a6Ŋr��68!3ؕ�<����d�^<_AQp)�`HqUX�&��G||��7��Rѣ�3��
5G���M����'
+8��UW���o�U�lZ}���3}{_��������i,>�����i�T��W���*�^O8��8X�hkh?9��x�k�w�-?���Yf)�$�{���	�p��"�\�ȕh3��,P(Dsvیdf�[��\`�Ѹ���8��c�0�s���H�n�њ�yn�<�\�����w�g<0������@��`m4���mBV�Ÿ�{�
��g1[EH_���v�P�f̋�R�ZVkO�R�����d���e)���D��@v���6\�2�zݰ�[@�s"r˜A�셖�\��D�S\�d2�J�
��v����1�)�@��@fFD�^�v,��%xSxJ�Iv�,�_П�b$��31�FfkcW�ɵ=�o��}5����e]
W����4n_�[1�jJ/�=��U�������֧�O�7ᓱ����í��EwY�(
+����9C�+r]vn"�ϣ�4�4~}��Z�O����BЙ��M��|����4=�㽳W����}����g�B���5��e�3�;^��~u��ѼP(/7 �|n���lV�dB�D��\�.���B�{.�St�\�&C�R�M:5�k�I�m^g��	�K	"�o
�y��:��D_j
+2Lfn�vt½��;Z�/�5����o^�n3��lʈ��\9^��ԙ�o���r.=���S�˹�W���4�C�V��H�DӖ��Rc��Zz7ء"\hK�Jl3(	”&�v�F�%���bHfx��E�r�$�[\K���,��aZ<1��3=����~�������P��x2�'>I%�^���'1�н�H�N#3*�(��
+�z��\�<ߠOKNR��<�E�Kf�q.��N{�UT�N&��B?��(0��lر�22�I�¥˝3�,y�nL���P5�[��jA��_
��}�o#�a�!e�p�����,I�7i˪72ٸ����	���(n�
g%S�iD�V��Y�
+�Z`��f��m���9�r�iv�L����b�F�Y��h$sƁ�����]�*sz����Y�G��ۡR1�
��׫/w�X���`&>�p�h����
+�7�%�Ƀ
+BT?��Q�8�$F�6t�tcϔ(F����6;rPX�(��\��!q��%�X"�f�.y ��8#�M(�Yv���Ýn?�~���?ܿ���w�;W^�_^���Ѣ�-�EI��������\7r��̞���\�����w�s��\���qn�K��{M��Z3}6�_�ɦ�RVR��H��T�	�(��Z�
+�x�h9�iзX�R-�/k�%��GȚߘ��N�jG���7а���8O��0ꞹ�v>�W�F�gk���I"��s\�G�>?��rR��R�?3\��!�-r?�����'���m���&�y��7��uE��)�'˗K"��g�����r){�P��
+M4F�QX3��Ry"坃�4
+��a��DQ�D�k�J����8Ř�d��w��	CJ1��K&��hMj��;C[�n���T�psH�"(SMڙў#}��cM�ۻW��Z�SS�u���j�)��"]S�e~^%��OK=YW�<5#u����Q[{�~�ۊ���ø ޕxr��VFKf�������
+����.B2I�N�M�Gw�:ySJ�_ G���7�H+�U9Mƥy�^#uo<v�\{sť��y"�*k��/�rYD��*ֹP���5�K�S���B9��'<Nm�)ڹ��^�o����VpAil��.q�4�q0�s�q���&낈$�6�_��t�]��Ey����3l��n�S���u���y��R��b���.�yH¥u��F"���Ei�XGТe��@2V/�Y�o_�sT�^��'��?�0���0�`��,���YLLU��z�����J���j���8��KꫥqD��զ�� =i�]�=@#�h�i͕������}q�(��� l��a�(�*i�Az��>�������mCӖ��|Kqyy��R�75<fY鳬��M

��Yj��,��)K�����]���Ⓔ����,���E���������˪�]�c�:�`fH�M$�8�_L���Lߦ-�;��*�l�F���[h�v�X��4�¥d�J�tC^h���(��x�'vy�K��:�������-s�6U�<�s�&'�FԽ��|�}���N
+��ϰ�wf���]�Z8
+endstream
+endobj
+140 0 obj
+5826
+endobj
+139 0 obj
+<< /Length 141 0 R /Filter /FlateDecode >>
+stream
+x�k`����p�x�|	��u
+endstream
+endobj
+141 0 obj
+20
+endobj
+142 0 obj
+<<
+  /Type /Font
+  /Subtype /Type0
+  /BaseFont /EAAAAA+mwa_cmr10
+  /Encoding /Identity-H
+  /ToUnicode 143 0 R
+  /DescendantFonts [144 0 R]
+>>
+endobj
+144 0 obj
+<< /Type /Font
+/BaseFont /EAAAAA+mwa_cmr10 
+/CIDToGIDMap /Identity 
+/Subtype /CIDFontType2
+/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >>
+/FontDescriptor 137 0 R
+/DW 0
+/W [ 0 [365 500 500 500 500 500 916 500 500 555 276 388 555 555 443 276 833 500 750 276 500 500 651 391 526 443 526 750 443 333 500 500 680 555 394 ] ]
+>>
+endobj
+143 0 obj
+<< /Length 145 0 R /Filter /FlateDecode >>
+stream
+x�]��n�0E��
+/�E6�D�"U�*��C������������u�TK<�=���ѵ|*u7��������V��a��XC�N�`��S �}mv��\-�D}�ہ%�R�	��E�e�����jh�)j��7��v���_�j��fc~�'=��ϑV�]_j�Z��"�s(�����#>CLx�� E��%�Z�hw�ݸ���U�ߺ8a[����n�O�Q'$@1(A)(e��{J���#���@�A'P�)k<�k���)���g
+�Y�^���K!@�R�^���� w.�V����N�q�@E ��)�CM��ė-�'��ֽ�0�� ƧsLr��ʈ���3���N�ֺ��
�[mm�N������������
+endstream
+endobj
+145 0 obj
+387
+endobj
+146 0 obj
+<<
+  /Type /FontDescriptor
+  /FontName /EAAAAB+mwb_cmsy10
+  /FontBBox [11 -215 942 727]
+  /Flags 33
+  /CapHeight 0
+  /Ascent 727
+  /Descent -215
+  /ItalicAngle 0
+  /StemV 0
+  /MissingWidth 500
+  /FontFile2 147 0 R
+  /CIDSet 148 0 R
+>>
+endobj
+147 0 obj
+<<
+  /Length1 1968
+  /Length 149 0 R
+  /Filter /FlateDecode
+>>
+stream
+x��U]hW�����d��j~V�l�T���dc�.J��I5��%[�d��dv3�l\���@�%V��R�P|�"E&yh���b
+E�h+BK��>��(�g&��Z[����s��ιw�= �w�#�ʡ���O�f�H�#��9iodp����?�*M��7��ߚ.,L�|+��?J�s9��N���FHޞ#E�V���ɛrŹ��v�d�䪂5I\���8Y��ێ�~�di�(�[f�wH�pgJVyn�-4���c/͚%K��F���=��	=+�����6��q��*>�y��x'��2��Q����a'؆HU�_�������u�����m�8"���oBY��G�������a��1����>�2.R�O��]��F���q#���1�M�
�ֆ�낵���5U~�(���L�B�'emꈪ,w�ȼ��hs"��������L���JU����NUY}�	����vMJI9#k��4J��ˆ�]J&GF#Ԗi�u��.�r��}аqp4�b��K�#�94*w��[��;�lv#�̙b��w�)���*��9�*_Ӳ�h�$m^7��㚪J6/kˌ��.�2lA��v��Vb���!�y��-�h�Z�ݙ�-�Q0Y�ۜ�فΰ�H��U�!�+W4Jb9$�%i��5�f���
K�����OUȤ�tJ7U���UU�:���}�πs.�H�.?ڒ-2GGT�I�s�a�L��>nM�#�	EB��3�<�D<@D��@s1.���)��hNַ���<DV繯k{q[����:\>�z��)$|T��X�nn����t��1_
;���β�\�;r70ŭ��F��$$���KS&;��=�վ������v�����n~���;u���Io�{�Q9��	��F�G��\����ѽ���(���
�]|�?�+ObTS�a����0Oz����Q˾���i&֐t��r0C�<�!��=̓>�a�����}�a�B��ՋY�1��ho�����8U�z��`PMɣ@x1z���V�LT\]?i��'leW2i4)F��Y��M�=.��w�$�Pf<'+���$i���b��$�J�1�PVia6?�����R<��U$�(��PL6
+�Y�I����v����Y6g+f6��ь!kؐR�t�P0'��֌"�3+fA�(@ǩ��QE�l���&���by!N�Y�4�QJ-is�X��}�������n�Jeܢ���A<��������}*~�0������˅
+�mbk��oԊ��$?<��� N]�w���~p�
+endstream
+endobj
+149 0 obj
+1292
+endobj
+148 0 obj
+<< /Length 150 0 R /Filter /FlateDecode >>
+stream
+x�k�����
+endstream
+endobj
+150 0 obj
+9
+endobj
+151 0 obj
+<<
+  /Type /Font
+  /Subtype /Type0
+  /BaseFont /EAAAAB+mwb_cmsy10
+  /Encoding /Identity-H
+  /ToUnicode 152 0 R
+  /DescendantFonts [153 0 R]
+>>
+endobj
+153 0 obj
+<< /Type /Font
+/BaseFont /EAAAAB+mwb_cmsy10 
+/CIDToGIDMap /Identity 
+/Subtype /CIDFontType2
+/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >>
+/FontDescriptor 146 0 R
+/DW 0
+/W [ 0 [750 776 ] ]
+>>
+endobj
+152 0 obj
+<< /Length 154 0 R /Filter /FlateDecode >>
+stream
+x�]P�j�0��+���l����C�����ԒX��}��q z���0�h�[�l�E^��X�	g��Bp���j�V��&
+���:G�:g<�n,���	 ��g������/����'i$�F8������pB��:ͯh�e���`�s��������j�ՖAy�s�
+I��K����[�&�?��M5u�t�M��Q�PY�kwVv��8"��(��ep��:<�|�*>���}
+endstream
+endobj
+154 0 obj
+234
+endobj
+136 0 obj
+<< /Type /Pages
+/Count 1
+/Kids [134 0 R ] >>
+endobj
+155 0 obj
+<<
+  /Type /Catalog
+  /Pages 136 0 R
+  /Lang (x-unknown)
+>>
+endobj
+135 0 obj
+<<
+  /Font << /F405 142 0 R /F407 151 0 R >>
+  /ProcSet [/PDF /ImageB /ImageC /Text]
+  /ExtGState <<
+  /GS1 2 0 R
+  /GS2 3 0 R
+  /GS3 4 0 R
+  /GS4 5 0 R
+  /GS5 6 0 R
+  /GS6 7 0 R
+  /GS7 8 0 R
+  /GS8 9 0 R
+  /GS9 10 0 R
+  /GS10 11 0 R
+  /GS11 12 0 R
+  /GS12 13 0 R
+  /GS13 14 0 R
+  /GS14 15 0 R
+  /GS15 16 0 R
+  /GS16 17 0 R
+  /GS17 18 0 R
+  /GS18 19 0 R
+  /GS19 20 0 R
+  /GS20 21 0 R
+  /GS21 22 0 R
+  /GS22 23 0 R
+  /GS23 24 0 R
+  /GS24 25 0 R
+  /GS25 26 0 R
+  /GS26 27 0 R
+  /GS27 28 0 R
+  /GS28 29 0 R
+  /GS29 30 0 R
+  /GS30 31 0 R
+  /GS31 32 0 R
+  /GS32 33 0 R
+  /GS33 34 0 R
+  /GS34 35 0 R
+  /GS35 36 0 R
+  /GS36 37 0 R
+  /GS37 38 0 R
+  /GS38 39 0 R
+  /GS39 40 0 R
+  /GS40 41 0 R
+  /GS41 42 0 R
+  /GS42 43 0 R
+  /GS43 44 0 R
+  /GS44 45 0 R
+  /GS45 46 0 R
+  /GS46 47 0 R
+  /GS47 48 0 R
+  /GS48 49 0 R
+  /GS49 50 0 R
+  /GS50 51 0 R
+  /GS51 52 0 R
+  /GS52 53 0 R
+  /GS53 54 0 R
+  /GS54 55 0 R
+  /GS55 56 0 R
+  /GS56 57 0 R
+  /GS57 58 0 R
+  /GS58 59 0 R
+  /GS59 60 0 R
+  /GS60 61 0 R
+  /GS61 62 0 R
+  /GS62 63 0 R
+  /GS63 64 0 R
+  /GS64 65 0 R
+  /GS65 66 0 R
+  /GS66 67 0 R
+  /GS67 68 0 R
+  /GS68 69 0 R
+  /GS69 70 0 R
+  /GS70 71 0 R
+  /GS71 72 0 R
+  /GS72 73 0 R
+  /GS73 74 0 R
+  /GS74 75 0 R
+  /GS75 76 0 R
+  /GS76 77 0 R
+  /GS77 78 0 R
+  /GS78 79 0 R
+  /GS79 80 0 R
+  /GS80 81 0 R
+  /GS81 82 0 R
+  /GS82 83 0 R
+  /GS83 84 0 R
+  /GS84 85 0 R
+  /GS85 86 0 R
+  /GS86 87 0 R
+  /GS87 88 0 R
+  /GS88 89 0 R
+  /GS89 90 0 R
+  /GS90 91 0 R
+  /GS91 92 0 R
+  /GS92 93 0 R
+  /GS93 94 0 R
+  /GS94 95 0 R
+  /GS95 96 0 R
+  /GS96 97 0 R
+  /GS97 98 0 R
+  /GS98 99 0 R
+  /GS99 100 0 R
+  /GS100 101 0 R
+  /GS101 102 0 R
+  /GS102 103 0 R
+  /GS103 104 0 R
+  /GS104 105 0 R
+  /GS105 106 0 R
+  /GS106 107 0 R
+  /GS107 108 0 R
+  /GS108 109 0 R
+  /GS109 110 0 R
+  /GS110 111 0 R
+  /GS111 112 0 R
+  /GS112 113 0 R
+  /GS113 114 0 R
+  /GS114 115 0 R
+  /GS115 116 0 R
+  /GS116 117 0 R
+  /GS117 118 0 R
+  /GS118 119 0 R
+  /GS119 120 0 R
+  /GS120 121 0 R
+  /GS121 122 0 R
+  /GS122 123 0 R
+  /GS123 124 0 R
+  /GS124 125 0 R
+  /GS125 126 0 R
+  /GS126 127 0 R
+  /GS127 128 0 R
+  /GS128 129 0 R
+  /GS129 130 0 R
+>>
+>>
+endobj
+xref
+0 156
+0000000000 65535 f 
+0000000015 00000 n 
+0000000145 00000 n 
+0000000197 00000 n 
+0000000249 00000 n 
+0000000301 00000 n 
+0000000353 00000 n 
+0000000405 00000 n 
+0000000457 00000 n 
+0000000509 00000 n 
+0000000561 00000 n 
+0000000614 00000 n 
+0000000667 00000 n 
+0000000720 00000 n 
+0000000773 00000 n 
+0000000826 00000 n 
+0000000879 00000 n 
+0000000932 00000 n 
+0000000985 00000 n 
+0000001038 00000 n 
+0000001091 00000 n 
+0000001144 00000 n 
+0000001197 00000 n 
+0000001250 00000 n 
+0000001303 00000 n 
+0000001356 00000 n 
+0000001409 00000 n 
+0000001462 00000 n 
+0000001515 00000 n 
+0000001568 00000 n 
+0000001621 00000 n 
+0000001674 00000 n 
+0000001727 00000 n 
+0000001780 00000 n 
+0000001833 00000 n 
+0000001887 00000 n 
+0000001941 00000 n 
+0000001995 00000 n 
+0000002049 00000 n 
+0000002103 00000 n 
+0000002156 00000 n 
+0000002209 00000 n 
+0000002262 00000 n 
+0000002315 00000 n 
+0000002368 00000 n 
+0000002421 00000 n 
+0000002474 00000 n 
+0000002527 00000 n 
+0000002580 00000 n 
+0000002633 00000 n 
+0000002686 00000 n 
+0000002739 00000 n 
+0000002792 00000 n 
+0000002845 00000 n 
+0000002898 00000 n 
+0000002951 00000 n 
+0000003004 00000 n 
+0000003057 00000 n 
+0000003110 00000 n 
+0000003163 00000 n 
+0000003216 00000 n 
+0000003269 00000 n 
+0000003322 00000 n 
+0000003375 00000 n 
+0000003428 00000 n 
+0000003481 00000 n 
+0000003534 00000 n 
+0000003587 00000 n 
+0000003640 00000 n 
+0000003693 00000 n 
+0000003746 00000 n 
+0000003799 00000 n 
+0000003852 00000 n 
+0000003905 00000 n 
+0000003958 00000 n 
+0000004011 00000 n 
+0000004064 00000 n 
+0000004117 00000 n 
+0000004170 00000 n 
+0000004223 00000 n 
+0000004276 00000 n 
+0000004329 00000 n 
+0000004382 00000 n 
+0000004435 00000 n 
+0000004489 00000 n 
+0000004543 00000 n 
+0000004597 00000 n 
+0000004650 00000 n 
+0000004703 00000 n 
+0000004756 00000 n 
+0000004809 00000 n 
+0000004862 00000 n 
+0000004915 00000 n 
+0000004968 00000 n 
+0000005021 00000 n 
+0000005074 00000 n 
+0000005127 00000 n 
+0000005180 00000 n 
+0000005233 00000 n 
+0000005286 00000 n 
+0000005339 00000 n 
+0000005393 00000 n 
+0000005447 00000 n 
+0000005501 00000 n 
+0000005555 00000 n 
+0000005609 00000 n 
+0000005663 00000 n 
+0000005717 00000 n 
+0000005771 00000 n 
+0000005825 00000 n 
+0000005879 00000 n 
+0000005933 00000 n 
+0000005987 00000 n 
+0000006041 00000 n 
+0000006095 00000 n 
+0000006149 00000 n 
+0000006203 00000 n 
+0000006257 00000 n 
+0000006311 00000 n 
+0000006365 00000 n 
+0000006420 00000 n 
+0000006475 00000 n 
+0000006530 00000 n 
+0000006585 00000 n 
+0000006640 00000 n 
+0000006695 00000 n 
+0000006750 00000 n 
+0000006805 00000 n 
+0000006860 00000 n 
+0000006915 00000 n 
+0000006970 00000 n 
+0000007024 00000 n 
+0000068899 00000 n 
+0000068922 00000 n 
+0000068949 00000 n 
+0000079106 00000 n 
+0000078967 00000 n 
+0000069147 00000 n 
+0000069402 00000 n 
+0000075348 00000 n 
+0000075326 00000 n 
+0000075446 00000 n 
+0000075466 00000 n 
+0000075987 00000 n 
+0000075625 00000 n 
+0000076452 00000 n 
+0000076473 00000 n 
+0000076725 00000 n 
+0000078137 00000 n 
+0000078115 00000 n 
+0000078224 00000 n 
+0000078243 00000 n 
+0000078634 00000 n 
+0000078403 00000 n 
+0000078946 00000 n 
+0000079029 00000 n 
+trailer
+<<
+  /Root 155 0 R
+  /Info 1 0 R
+  /ID [<A6EB50757DB9EF1025130B744C8D8771> <A6EB50757DB9EF1025130B744C8D8771>]
+  /Size 156
+>>
+startxref
+81209
+%%EOF
diff --git a/figs/detail_control_bode_plot_mech_sys.png b/figs/detail_control_bode_plot_mech_sys.png
new file mode 100644
index 0000000..37f6caa
Binary files /dev/null and b/figs/detail_control_bode_plot_mech_sys.png differ
diff --git a/figs/detail_control_hinf_filters_result_weights.pdf b/figs/detail_control_hinf_filters_result_weights.pdf
new file mode 100644
index 0000000..47917d6
Binary files /dev/null and b/figs/detail_control_hinf_filters_result_weights.pdf differ
diff --git a/figs/detail_control_hinf_filters_result_weights.png b/figs/detail_control_hinf_filters_result_weights.png
new file mode 100644
index 0000000..5a9c645
Binary files /dev/null and b/figs/detail_control_hinf_filters_result_weights.png differ
diff --git a/figs/detail_control_input_uncertainty.pdf b/figs/detail_control_input_uncertainty.pdf
new file mode 100644
index 0000000..be43538
Binary files /dev/null and b/figs/detail_control_input_uncertainty.pdf differ
diff --git a/figs/detail_control_input_uncertainty.png b/figs/detail_control_input_uncertainty.png
new file mode 100644
index 0000000..4fac3c7
Binary files /dev/null and b/figs/detail_control_input_uncertainty.png differ
diff --git a/figs/detail_control_input_uncertainty.svg b/figs/detail_control_input_uncertainty.svg
new file mode 100644
index 0000000..60d23e4
--- /dev/null
+++ b/figs/detail_control_input_uncertainty.svg
@@ -0,0 +1,97 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="172.796" height="54.393" viewBox="0 0 172.796 54.393">
+<defs>
+<g>
+<g id="glyph-0-0">
+<path d="M 7.109375 -2.578125 C 7.109375 -2.65625 7.0625 -2.6875 6.984375 -2.6875 C 6.75 -2.6875 6.171875 -2.65625 5.9375 -2.65625 L 4.5625 -2.6875 C 4.46875 -2.6875 4.359375 -2.6875 4.359375 -2.5 C 4.359375 -2.390625 4.4375 -2.390625 4.65625 -2.390625 C 4.65625 -2.390625 4.953125 -2.390625 5.171875 -2.359375 C 5.4375 -2.34375 5.484375 -2.3125 5.484375 -2.171875 C 5.484375 -2.09375 5.375 -1.640625 5.28125 -1.28125 C 5 -0.203125 3.71875 -0.09375 3.375 -0.09375 C 2.421875 -0.09375 1.390625 -0.65625 1.390625 -2.15625 C 1.390625 -2.46875 1.484375 -4.09375 2.53125 -5.375 C 3.0625 -6.046875 4.015625 -6.640625 4.984375 -6.640625 C 6 -6.640625 6.578125 -5.890625 6.578125 -4.75 C 6.578125 -4.34375 6.546875 -4.34375 6.546875 -4.234375 C 6.546875 -4.140625 6.65625 -4.140625 6.6875 -4.140625 C 6.828125 -4.140625 6.828125 -4.15625 6.875 -4.34375 L 7.5 -6.859375 C 7.5 -6.875 7.46875 -6.953125 7.390625 -6.953125 C 7.359375 -6.953125 7.34375 -6.9375 7.234375 -6.828125 L 6.546875 -6.078125 C 6.453125 -6.21875 6 -6.953125 4.90625 -6.953125 C 2.71875 -6.953125 0.5 -4.765625 0.5 -2.484375 C 0.5 -0.921875 1.59375 0.21875 3.1875 0.21875 C 3.625 0.21875 4.0625 0.125 4.421875 -0.015625 C 4.90625 -0.21875 5.09375 -0.421875 5.28125 -0.625 C 5.359375 -0.375 5.625 -0.015625 5.71875 -0.015625 C 5.765625 -0.015625 5.78125 -0.046875 5.78125 -0.046875 C 5.8125 -0.0625 5.90625 -0.4375 5.953125 -0.65625 L 6.140625 -1.40625 C 6.1875 -1.578125 6.234375 -1.75 6.265625 -1.90625 C 6.375 -2.359375 6.390625 -2.375 6.953125 -2.390625 C 7 -2.390625 7.109375 -2.390625 7.109375 -2.578125 Z M 7.109375 -2.578125 "/>
+</g>
+<g id="glyph-0-1">
+<path d="M 6.8125 -3.671875 C 6.8125 -4.203125 6.546875 -4.359375 6.375 -4.359375 C 6.125 -4.359375 5.890625 -4.09375 5.890625 -3.890625 C 5.890625 -3.75 5.9375 -3.703125 6.03125 -3.625 C 6.140625 -3.515625 6.390625 -3.25 6.390625 -2.78125 C 6.390625 -2.4375 6.109375 -1.484375 5.84375 -0.96875 C 5.59375 -0.453125 5.25 -0.109375 4.765625 -0.109375 C 4.296875 -0.109375 4.03125 -0.40625 4.03125 -0.96875 C 4.03125 -1.25 4.09375 -1.546875 4.140625 -1.6875 L 4.5625 -3.34375 C 4.609375 -3.5625 4.703125 -3.921875 4.703125 -3.984375 C 4.703125 -4.15625 4.5625 -4.25 4.421875 -4.25 C 4.296875 -4.25 4.125 -4.171875 4.046875 -3.96875 C 4.015625 -3.90625 3.5625 -2.015625 3.484375 -1.765625 C 3.421875 -1.46875 3.40625 -1.296875 3.40625 -1.109375 C 3.40625 -1 3.40625 -0.984375 3.40625 -0.9375 C 3.1875 -0.421875 2.890625 -0.109375 2.5 -0.109375 C 1.71875 -0.109375 1.71875 -0.84375 1.71875 -1 C 1.71875 -1.328125 1.765625 -1.703125 2.234375 -2.921875 C 2.34375 -3.21875 2.390625 -3.359375 2.390625 -3.546875 C 2.390625 -4 2.078125 -4.359375 1.59375 -4.359375 C 0.65625 -4.359375 0.28125 -2.921875 0.28125 -2.84375 C 0.28125 -2.734375 0.40625 -2.734375 0.40625 -2.734375 C 0.5 -2.734375 0.515625 -2.765625 0.5625 -2.921875 C 0.828125 -3.828125 1.21875 -4.140625 1.5625 -4.140625 C 1.640625 -4.140625 1.796875 -4.125 1.796875 -3.8125 C 1.796875 -3.5625 1.703125 -3.296875 1.625 -3.125 C 1.1875 -1.96875 1.078125 -1.515625 1.078125 -1.140625 C 1.078125 -0.234375 1.734375 0.109375 2.46875 0.109375 C 2.640625 0.109375 3.109375 0.109375 3.5 -0.578125 C 3.75 0.046875 4.4375 0.109375 4.734375 0.109375 C 5.46875 0.109375 5.90625 -0.515625 6.15625 -1.109375 C 6.5 -1.875 6.8125 -3.1875 6.8125 -3.671875 Z M 6.8125 -3.671875 "/>
+</g>
+<g id="glyph-1-0">
+<path d="M 2.515625 -4.71875 C 2.578125 -4.875 2.578125 -4.953125 2.578125 -5 C 2.578125 -5.296875 2.3125 -5.515625 2.03125 -5.515625 C 1.640625 -5.515625 1.546875 -5.1875 1.515625 -5.0625 L 0.3125 -0.765625 C 0.3125 -0.71875 0.28125 -0.671875 0.28125 -0.625 C 0.28125 -0.515625 0.546875 -0.4375 0.625 -0.4375 C 0.625 -0.4375 0.6875 -0.4375 0.75 -0.578125 Z M 2.515625 -4.71875 "/>
+</g>
+<g id="glyph-2-0">
+<path d="M 8.015625 -2.96875 C 8.015625 -3.1875 7.828125 -3.1875 7.65625 -3.1875 L 4.5 -3.1875 L 4.5 -6.34375 C 4.5 -6.515625 4.5 -6.71875 4.296875 -6.71875 C 4.078125 -6.71875 4.078125 -6.515625 4.078125 -6.34375 L 4.078125 -3.1875 L 0.921875 -3.1875 C 0.75 -3.1875 0.546875 -3.1875 0.546875 -2.984375 C 0.546875 -2.765625 0.734375 -2.765625 0.921875 -2.765625 L 4.078125 -2.765625 L 4.078125 0.390625 C 4.078125 0.5625 4.078125 0.765625 4.28125 0.765625 C 4.5 0.765625 4.5 0.578125 4.5 0.390625 L 4.5 -2.765625 L 7.65625 -2.765625 C 7.828125 -2.765625 8.015625 -2.765625 8.015625 -2.96875 Z M 8.015625 -2.96875 "/>
+</g>
+<g id="glyph-3-0">
+<path d="M 7.734375 -0.078125 C 7.734375 -0.078125 7.734375 -0.109375 7.6875 -0.203125 L 4.359375 -6.875 C 4.28125 -7.015625 4.265625 -7.0625 4.09375 -7.0625 C 3.9375 -7.0625 3.921875 -7.015625 3.84375 -6.875 L 0.515625 -0.203125 C 0.46875 -0.109375 0.46875 -0.078125 0.46875 -0.078125 C 0.46875 0 0.515625 0 0.6875 0 L 7.515625 0 C 7.6875 0 7.734375 0 7.734375 -0.078125 Z M 6.4375 -0.75 L 1.125 -0.75 L 3.78125 -6.078125 Z M 6.4375 -0.75 "/>
+</g>
+<g id="glyph-4-0">
+<path d="M 3.6875 -4.609375 C 3.6875 -4.671875 3.640625 -4.703125 3.578125 -4.703125 C 3.4375 -4.703125 3.265625 -4.6875 3.125 -4.6875 L 2.65625 -4.671875 L 2.171875 -4.6875 C 2.03125 -4.6875 1.859375 -4.703125 1.703125 -4.703125 C 1.65625 -4.703125 1.5625 -4.703125 1.5625 -4.546875 C 1.5625 -4.453125 1.640625 -4.453125 1.78125 -4.453125 C 1.78125 -4.453125 1.921875 -4.453125 2.046875 -4.4375 C 2.1875 -4.4375 2.234375 -4.421875 2.234375 -4.34375 C 2.234375 -4.3125 2.21875 -4.265625 2.203125 -4.203125 L 1.28125 -0.546875 C 1.234375 -0.3125 1.21875 -0.25 0.703125 -0.25 C 0.515625 -0.25 0.4375 -0.25 0.4375 -0.09375 C 0.4375 -0.09375 0.4375 0 0.546875 0 C 0.765625 0 1.28125 -0.03125 1.484375 -0.03125 L 1.953125 -0.015625 C 2.109375 -0.015625 2.28125 0 2.4375 0 C 2.46875 0 2.578125 0 2.578125 -0.15625 C 2.578125 -0.25 2.5 -0.25 2.359375 -0.25 C 2.359375 -0.25 2.203125 -0.25 2.0625 -0.265625 C 1.90625 -0.28125 1.90625 -0.296875 1.90625 -0.359375 C 1.90625 -0.359375 1.90625 -0.40625 1.921875 -0.515625 L 2.84375 -4.15625 C 2.90625 -4.390625 2.921875 -4.453125 3.4375 -4.453125 C 3.609375 -4.453125 3.6875 -4.453125 3.6875 -4.609375 Z M 3.6875 -4.609375 "/>
+</g>
+</g>
+<clipPath id="clip-0">
+<path clip-rule="nonzero" d="M 12 0 L 161 0 L 161 53.792969 L 12 53.792969 Z M 12 0 "/>
+</clipPath>
+<clipPath id="clip-1">
+<path clip-rule="nonzero" d="M 85 17 L 128 17 L 128 53.792969 L 85 53.792969 Z M 85 17 "/>
+</clipPath>
+<clipPath id="clip-2">
+<path clip-rule="nonzero" d="M 80 22 L 113 22 L 113 53.792969 L 80 53.792969 Z M 80 22 "/>
+</clipPath>
+<clipPath id="clip-3">
+<path clip-rule="nonzero" d="M 110 22 L 144 22 L 144 53.792969 L 110 53.792969 Z M 110 22 "/>
+</clipPath>
+<clipPath id="clip-4">
+<path clip-rule="nonzero" d="M 151 22 L 171.742188 22 L 171.742188 53.792969 L 151 53.792969 Z M 151 22 "/>
+</clipPath>
+</defs>
+<path fill-rule="nonzero" fill="rgb(79.998779%, 79.998779%, 79.998779%)" fill-opacity="1" d="M 12.746094 52.804688 L 159.847656 52.804688 L 159.847656 0.988281 L 12.746094 0.988281 Z M 12.746094 52.804688 "/>
+<g clip-path="url(#clip-0)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-dasharray="2.98883 2.98883" stroke-miterlimit="10" d="M -130.926826 -14.978963 L 17.816319 -14.978963 L 17.816319 37.41569 L -130.926826 37.41569 Z M -130.926826 -14.978963 " transform="matrix(0.988964, 0, 0, -0.988964, 142.227964, 37.991038)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-0" x="146.105691" y="11.003209"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-1-0" x="153.852829" y="11.003209"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -11.337464 -8.505172 L 11.338579 -8.505172 L 11.338579 8.502847 L -11.337464 8.502847 Z M -11.337464 -8.505172 " transform="matrix(0.988964, 0, 0, -0.988964, 142.227964, 37.991038)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-0" x="138.355183" y="41.35747"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" d="M 113.699219 37.992188 C 113.699219 34.183594 110.613281 31.09375 106.804688 31.09375 C 102.996094 31.09375 99.90625 34.183594 99.90625 37.992188 C 99.90625 41.800781 102.996094 44.886719 106.804688 44.886719 C 110.613281 44.886719 113.699219 41.800781 113.699219 37.992188 Z M 113.699219 37.992188 "/>
+<g clip-path="url(#clip-1)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -28.847113 -0.00116224 C -28.847113 3.849934 -31.967488 6.974259 -35.818584 6.974259 C -39.669679 6.974259 -42.794004 3.849934 -42.794004 -0.00116224 C -42.794004 -3.852258 -39.669679 -6.972633 -35.818584 -6.972633 C -31.967488 -6.972633 -28.847113 -3.852258 -28.847113 -0.00116224 Z M -28.847113 -0.00116224 " transform="matrix(0.988964, 0, 0, -0.988964, 142.227964, 37.991038)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-0" x="102.51514" y="40.874856"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -72.429668 13.93388 L -49.753626 13.93388 L -49.753626 30.941899 L -72.429668 30.941899 Z M -72.429668 13.93388 " transform="matrix(0.988964, 0, 0, -0.988964, 142.227964, 37.991038)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-3-0" x="75.446217" y="18.589549"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-4-0" x="83.656593" y="20.06805"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -113.11304 13.93388 L -90.433047 13.93388 L -90.433047 30.941899 L -113.11304 30.941899 Z M -113.11304 13.93388 " transform="matrix(0.988964, 0, 0, -0.988964, 142.227964, 37.991038)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-1" x="35.792731" y="17.183243"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-4-0" x="42.846019" y="18.661744"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 20.628906 37.992188 C 20.628906 36.902344 19.746094 36.019531 18.65625 36.019531 C 17.570312 36.019531 16.6875 36.902344 16.6875 37.992188 C 16.6875 39.078125 17.570312 39.960938 18.65625 39.960938 C 19.746094 39.960938 20.628906 39.078125 20.628906 37.992188 Z M 20.628906 37.992188 "/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -124.950716 -0.00116224 L -124.950716 22.43789 L -118.243884 22.43789 " transform="matrix(0.988964, 0, 0, -0.988964, 142.227964, 37.991038)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053667 0.000209549 L 1.610095 1.682842 L 3.087336 0.000209549 L 1.610095 -1.682423 Z M 6.053667 0.000209549 " transform="matrix(0.988964, 0, 0, -0.988964, 22.481893, 15.800988)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -141.958735 -0.00116224 L -47.427169 -0.00116224 " transform="matrix(0.988964, 0, 0, -0.988964, 142.227964, 37.991038)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 98.503906 37.992188 L 94.109375 36.328125 L 95.570312 37.992188 L 94.109375 39.65625 Z M 98.503906 37.992188 "/>
+<g clip-path="url(#clip-2)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053012 -0.00116224 L 1.60944 1.68147 L 3.086681 -0.00116224 L 1.60944 -1.683795 Z M 6.053012 -0.00116224 " transform="matrix(0.988964, 0, 0, -0.988964, 92.517697, 37.991038)"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -89.935367 22.43789 L -77.560513 22.43789 " transform="matrix(0.988964, 0, 0, -0.988964, 142.227964, 37.991038)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.054999 0.000209549 L 1.607477 1.682842 L 3.088667 0.000209549 L 1.607477 -1.682423 Z M 6.054999 0.000209549 " transform="matrix(0.988964, 0, 0, -0.988964, 62.714952, 15.800988)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -49.255946 22.43789 L -35.818584 22.43789 L -35.818584 11.607423 " transform="matrix(0.988964, 0, 0, -0.988964, 142.227964, 37.991038)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053728 0.000466423 L 1.610156 1.683099 L 3.087397 0.000466423 L 1.610156 -1.682166 Z M 6.053728 0.000466423 " transform="matrix(0, 0.988964, 0.988964, 0, 106.804226, 23.704489)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -28.847113 -0.00116224 L -16.472258 -0.00116224 " transform="matrix(0.988964, 0, 0, -0.988964, 142.227964, 37.991038)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 129.117188 37.992188 L 124.722656 36.328125 L 126.1875 37.992188 L 124.722656 39.65625 Z M 129.117188 37.992188 "/>
+<g clip-path="url(#clip-3)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.051893 -0.00116224 L 1.608321 1.68147 L 3.089512 -0.00116224 L 1.608321 -1.683795 Z M 6.051893 -0.00116224 " transform="matrix(0.988964, 0, 0, -0.988964, 123.132085, 37.991038)"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 11.836259 -0.00116224 L 24.211113 -0.00116224 " transform="matrix(0.988964, 0, 0, -0.988964, 142.227964, 37.991038)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 169.351562 37.992188 L 164.957031 36.328125 L 166.417969 37.992188 L 164.957031 39.65625 Z M 169.351562 37.992188 "/>
+<g clip-path="url(#clip-4)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053225 -0.00116224 L 1.609653 1.68147 L 3.086894 -0.00116224 L 1.609653 -1.683795 Z M 6.053225 -0.00116224 " transform="matrix(0.988964, 0, 0, -0.988964, 163.365143, 37.991038)"/>
+</g>
+</svg>
diff --git a/figs/detail_control_mech_sys_alone.pdf b/figs/detail_control_mech_sys_alone.pdf
new file mode 100644
index 0000000..dd874a6
Binary files /dev/null and b/figs/detail_control_mech_sys_alone.pdf differ
diff --git a/figs/detail_control_mech_sys_alone.png b/figs/detail_control_mech_sys_alone.png
new file mode 100644
index 0000000..4271ff7
Binary files /dev/null and b/figs/detail_control_mech_sys_alone.png differ
diff --git a/figs/detail_control_mech_sys_alone.svg b/figs/detail_control_mech_sys_alone.svg
new file mode 100644
index 0000000..45c75a5
--- /dev/null
+++ b/figs/detail_control_mech_sys_alone.svg
@@ -0,0 +1,89 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="91.291" height="58.689" viewBox="0 0 91.291 58.689">
+<defs>
+<g>
+<g id="glyph-0-0">
+<path d="M 6.828125 -3.671875 C 6.828125 -4.21875 6.5625 -4.375 6.40625 -4.375 C 6.15625 -4.375 5.90625 -4.109375 5.90625 -3.890625 C 5.90625 -3.765625 5.96875 -3.703125 6.046875 -3.625 C 6.15625 -3.515625 6.40625 -3.265625 6.40625 -2.796875 C 6.40625 -2.453125 6.125 -1.484375 5.859375 -0.984375 C 5.609375 -0.453125 5.265625 -0.109375 4.78125 -0.109375 C 4.3125 -0.109375 4.046875 -0.40625 4.046875 -0.96875 C 4.046875 -1.25 4.109375 -1.546875 4.15625 -1.6875 L 4.5625 -3.359375 C 4.625 -3.578125 4.71875 -3.9375 4.71875 -4 C 4.71875 -4.171875 4.578125 -4.265625 4.4375 -4.265625 C 4.3125 -4.265625 4.140625 -4.1875 4.0625 -3.984375 C 4.03125 -3.921875 3.578125 -2.03125 3.5 -1.765625 C 3.4375 -1.46875 3.40625 -1.296875 3.40625 -1.125 C 3.40625 -1.015625 3.40625 -0.984375 3.421875 -0.9375 C 3.1875 -0.421875 2.890625 -0.109375 2.515625 -0.109375 C 1.71875 -0.109375 1.71875 -0.84375 1.71875 -1.015625 C 1.71875 -1.328125 1.765625 -1.71875 2.234375 -2.921875 C 2.34375 -3.21875 2.40625 -3.359375 2.40625 -3.5625 C 2.40625 -4 2.078125 -4.375 1.59375 -4.375 C 0.65625 -4.375 0.28125 -2.9375 0.28125 -2.84375 C 0.28125 -2.75 0.40625 -2.75 0.40625 -2.75 C 0.5 -2.75 0.515625 -2.765625 0.5625 -2.921875 C 0.828125 -3.84375 1.21875 -4.15625 1.5625 -4.15625 C 1.65625 -4.15625 1.8125 -4.140625 1.8125 -3.828125 C 1.8125 -3.578125 1.703125 -3.296875 1.625 -3.140625 C 1.203125 -1.96875 1.078125 -1.515625 1.078125 -1.140625 C 1.078125 -0.234375 1.734375 0.109375 2.484375 0.109375 C 2.65625 0.109375 3.109375 0.109375 3.515625 -0.578125 C 3.765625 0.046875 4.453125 0.109375 4.75 0.109375 C 5.484375 0.109375 5.921875 -0.515625 6.1875 -1.109375 C 6.515625 -1.875 6.828125 -3.203125 6.828125 -3.671875 Z M 6.828125 -3.671875 "/>
+</g>
+<g id="glyph-0-1">
+<path d="M 8.390625 -1.421875 C 8.390625 -1.515625 8.296875 -1.515625 8.265625 -1.515625 C 8.171875 -1.515625 8.171875 -1.484375 8.125 -1.328125 C 7.96875 -0.8125 7.65625 -0.109375 7.109375 -0.109375 C 6.9375 -0.109375 6.875 -0.203125 6.875 -0.4375 C 6.875 -0.6875 6.96875 -0.921875 7.046875 -1.140625 C 7.234375 -1.65625 7.65625 -2.75 7.65625 -3.3125 C 7.65625 -3.953125 7.265625 -4.375 6.515625 -4.375 C 5.78125 -4.375 5.265625 -3.9375 4.90625 -3.40625 C 4.890625 -3.546875 4.859375 -3.875 4.59375 -4.109375 C 4.34375 -4.328125 4.03125 -4.375 3.78125 -4.375 C 2.890625 -4.375 2.40625 -3.734375 2.234375 -3.515625 C 2.1875 -4.078125 1.765625 -4.375 1.328125 -4.375 C 0.875 -4.375 0.6875 -3.984375 0.59375 -3.8125 C 0.421875 -3.46875 0.28125 -2.875 0.28125 -2.84375 C 0.28125 -2.75 0.40625 -2.75 0.40625 -2.75 C 0.5 -2.75 0.515625 -2.765625 0.578125 -2.984375 C 0.734375 -3.671875 0.9375 -4.15625 1.296875 -4.15625 C 1.453125 -4.15625 1.609375 -4.078125 1.609375 -3.703125 C 1.609375 -3.484375 1.578125 -3.375 1.4375 -2.875 L 0.875 -0.578125 C 0.84375 -0.4375 0.78125 -0.203125 0.78125 -0.15625 C 0.78125 0.015625 0.921875 0.109375 1.0625 0.109375 C 1.1875 0.109375 1.359375 0.03125 1.4375 -0.171875 C 1.4375 -0.1875 1.5625 -0.65625 1.625 -0.90625 L 1.84375 -1.796875 C 1.90625 -2 1.953125 -2.21875 2 -2.453125 L 2.140625 -2.953125 C 2.28125 -3.25 2.8125 -4.15625 3.75 -4.15625 C 4.1875 -4.15625 4.28125 -3.78125 4.28125 -3.46875 C 4.28125 -3.21875 4.21875 -2.9375 4.140625 -2.640625 L 3.859375 -1.5 C 3.765625 -1.125 3.75 -1.0625 3.65625 -0.734375 C 3.625 -0.546875 3.53125 -0.203125 3.53125 -0.15625 C 3.53125 0.015625 3.671875 0.109375 3.8125 0.109375 C 4.125 0.109375 4.1875 -0.140625 4.265625 -0.453125 L 4.859375 -2.84375 C 4.890625 -2.96875 5.40625 -4.15625 6.484375 -4.15625 C 6.90625 -4.15625 7.015625 -3.8125 7.015625 -3.46875 C 7.015625 -2.890625 6.609375 -1.765625 6.40625 -1.25 C 6.3125 -1.015625 6.28125 -0.90625 6.28125 -0.703125 C 6.28125 -0.234375 6.625 0.109375 7.09375 0.109375 C 8.015625 0.109375 8.390625 -1.328125 8.390625 -1.421875 Z M 8.390625 -1.421875 "/>
+</g>
+<g id="glyph-0-2">
+<path d="M 4.84375 -1.421875 C 4.84375 -1.515625 4.75 -1.515625 4.734375 -1.515625 C 4.625 -1.515625 4.625 -1.46875 4.59375 -1.328125 C 4.390625 -0.609375 4.15625 -0.109375 3.734375 -0.109375 C 3.546875 -0.109375 3.40625 -0.21875 3.40625 -0.578125 C 3.40625 -0.734375 3.453125 -0.96875 3.484375 -1.125 C 3.53125 -1.296875 3.53125 -1.328125 3.53125 -1.4375 C 3.53125 -2.078125 2.90625 -2.359375 2.0625 -2.46875 C 2.375 -2.65625 2.6875 -2.96875 2.921875 -3.203125 C 3.390625 -3.734375 3.84375 -4.15625 4.328125 -4.15625 C 4.390625 -4.15625 4.40625 -4.15625 4.421875 -4.140625 C 4.546875 -4.125 4.546875 -4.125 4.625 -4.0625 C 4.65625 -4.0625 4.65625 -4.046875 4.671875 -4.03125 C 4.1875 -4 4.109375 -3.609375 4.109375 -3.484375 C 4.109375 -3.328125 4.21875 -3.140625 4.484375 -3.140625 C 4.734375 -3.140625 5.03125 -3.359375 5.03125 -3.75 C 5.03125 -4.046875 4.796875 -4.375 4.359375 -4.375 C 4.078125 -4.375 3.625 -4.296875 2.90625 -3.5 C 2.578125 -3.125 2.1875 -2.734375 1.8125 -2.578125 L 2.84375 -6.75 C 2.84375 -6.75 2.84375 -6.859375 2.703125 -6.859375 C 2.484375 -6.859375 1.765625 -6.78125 1.5 -6.765625 C 1.421875 -6.75 1.3125 -6.75 1.3125 -6.5625 C 1.3125 -6.453125 1.40625 -6.453125 1.546875 -6.453125 C 2.03125 -6.453125 2.046875 -6.375 2.046875 -6.28125 L 2.015625 -6.078125 L 0.578125 -0.390625 C 0.546875 -0.25 0.546875 -0.234375 0.546875 -0.171875 C 0.546875 0.0625 0.734375 0.109375 0.828125 0.109375 C 0.953125 0.109375 1.109375 0.015625 1.171875 -0.09375 C 1.21875 -0.1875 1.65625 -2.015625 1.71875 -2.265625 C 2.0625 -2.234375 2.875 -2.078125 2.875 -1.421875 C 2.875 -1.359375 2.875 -1.3125 2.84375 -1.21875 C 2.8125 -1.09375 2.796875 -0.984375 2.796875 -0.875 C 2.796875 -0.28125 3.1875 0.109375 3.703125 0.109375 C 4 0.109375 4.265625 -0.046875 4.484375 -0.421875 C 4.734375 -0.84375 4.84375 -1.421875 4.84375 -1.421875 Z M 4.84375 -1.421875 "/>
+</g>
+<g id="glyph-0-3">
+<path d="M 4.25 -1.0625 C 4.25 -1.125 4.1875 -1.1875 4.140625 -1.1875 C 4.078125 -1.1875 4.0625 -1.171875 4 -1.09375 C 3.21875 -0.109375 2.140625 -0.109375 2.03125 -0.109375 C 1.40625 -0.109375 1.140625 -0.59375 1.140625 -1.1875 C 1.140625 -1.59375 1.328125 -2.546875 1.671875 -3.171875 C 1.984375 -3.734375 2.515625 -4.15625 3.0625 -4.15625 C 3.40625 -4.15625 3.78125 -4.03125 3.921875 -3.765625 C 3.765625 -3.765625 3.625 -3.765625 3.484375 -3.625 C 3.328125 -3.46875 3.296875 -3.296875 3.296875 -3.234375 C 3.296875 -3 3.484375 -2.890625 3.671875 -2.890625 C 3.953125 -2.890625 4.21875 -3.125 4.21875 -3.515625 C 4.21875 -4 3.765625 -4.375 3.0625 -4.375 C 1.71875 -4.375 0.40625 -2.953125 0.40625 -1.5625 C 0.40625 -0.671875 0.984375 0.109375 2 0.109375 C 3.421875 0.109375 4.25 -0.9375 4.25 -1.0625 Z M 4.25 -1.0625 "/>
+</g>
+<g id="glyph-0-4">
+<path d="M 7.203125 -4.75 L 7.390625 -6.453125 C 7.421875 -6.71875 7.375 -6.71875 7.125 -6.71875 L 2.28125 -6.71875 C 2.09375 -6.71875 1.984375 -6.71875 1.984375 -6.53125 C 1.984375 -6.421875 2.078125 -6.421875 2.265625 -6.421875 C 2.625 -6.421875 2.90625 -6.421875 2.90625 -6.234375 C 2.90625 -6.203125 2.90625 -6.1875 2.859375 -6 L 1.546875 -0.765625 C 1.453125 -0.390625 1.4375 -0.3125 0.65625 -0.3125 C 0.484375 -0.3125 0.375 -0.3125 0.375 -0.125 C 0.375 0 0.5 0 0.53125 0 L 1.828125 -0.03125 L 3.296875 0 C 3.390625 0 3.515625 0 3.515625 -0.1875 C 3.515625 -0.265625 3.453125 -0.296875 3.453125 -0.296875 C 3.421875 -0.3125 3.40625 -0.3125 3.171875 -0.3125 C 2.953125 -0.3125 2.90625 -0.3125 2.65625 -0.328125 C 2.375 -0.359375 2.34375 -0.390625 2.34375 -0.53125 C 2.34375 -0.53125 2.34375 -0.609375 2.390625 -0.75 L 3 -3.21875 L 3.953125 -3.21875 C 4.703125 -3.21875 4.78125 -3.0625 4.78125 -2.765625 C 4.78125 -2.703125 4.78125 -2.578125 4.703125 -2.28125 C 4.6875 -2.234375 4.671875 -2.171875 4.671875 -2.171875 C 4.671875 -2.09375 4.734375 -2.0625 4.796875 -2.0625 C 4.890625 -2.0625 4.890625 -2.09375 4.9375 -2.265625 L 5.484375 -4.40625 C 5.515625 -4.515625 5.515625 -4.546875 5.515625 -4.5625 C 5.515625 -4.5625 5.5 -4.671875 5.40625 -4.671875 C 5.296875 -4.671875 5.296875 -4.625 5.25 -4.46875 C 5.046875 -3.703125 4.8125 -3.515625 3.96875 -3.515625 L 3.078125 -3.515625 L 3.703125 -6.03125 C 3.796875 -6.375 3.8125 -6.421875 4.25 -6.421875 L 5.546875 -6.421875 C 6.765625 -6.421875 7 -6.09375 7 -5.328125 C 7 -5.109375 7 -5.0625 6.96875 -4.796875 C 6.9375 -4.671875 6.9375 -4.65625 6.9375 -4.625 C 6.9375 -4.5625 6.96875 -4.5 7.0625 -4.5 C 7.171875 -4.5 7.1875 -4.5625 7.203125 -4.75 Z M 7.203125 -4.75 "/>
+</g>
+<g id="glyph-0-5">
+<path d="M 4.90625 -1.421875 C 4.90625 -1.515625 4.8125 -1.515625 4.78125 -1.515625 C 4.703125 -1.515625 4.671875 -1.46875 4.65625 -1.40625 C 4.328125 -0.34375 3.65625 -0.109375 3.34375 -0.109375 C 2.953125 -0.109375 2.796875 -0.421875 2.796875 -0.765625 C 2.796875 -0.984375 2.859375 -1.203125 2.96875 -1.625 L 3.296875 -2.984375 C 3.359375 -3.25 3.59375 -4.15625 4.28125 -4.15625 C 4.328125 -4.15625 4.5625 -4.15625 4.78125 -4.03125 C 4.5 -3.96875 4.296875 -3.734375 4.296875 -3.484375 C 4.296875 -3.328125 4.40625 -3.140625 4.671875 -3.140625 C 4.890625 -3.140625 5.21875 -3.328125 5.21875 -3.71875 C 5.21875 -4.234375 4.625 -4.375 4.296875 -4.375 C 3.71875 -4.375 3.375 -3.84375 3.25 -3.625 C 3 -4.265625 2.46875 -4.375 2.1875 -4.375 C 1.15625 -4.375 0.59375 -3.09375 0.59375 -2.84375 C 0.59375 -2.75 0.71875 -2.75 0.71875 -2.75 C 0.796875 -2.75 0.828125 -2.765625 0.84375 -2.859375 C 1.171875 -3.90625 1.828125 -4.15625 2.171875 -4.15625 C 2.359375 -4.15625 2.703125 -4.0625 2.703125 -3.484375 C 2.703125 -3.1875 2.53125 -2.515625 2.171875 -1.140625 C 2 -0.53125 1.65625 -0.109375 1.21875 -0.109375 C 1.171875 -0.109375 0.9375 -0.109375 0.734375 -0.234375 C 0.984375 -0.28125 1.203125 -0.5 1.203125 -0.765625 C 1.203125 -1.03125 0.984375 -1.125 0.828125 -1.125 C 0.53125 -1.125 0.28125 -0.859375 0.28125 -0.546875 C 0.28125 -0.09375 0.78125 0.109375 1.21875 0.109375 C 1.875 0.109375 2.21875 -0.578125 2.25 -0.640625 C 2.375 -0.28125 2.734375 0.109375 3.328125 0.109375 C 4.34375 0.109375 4.90625 -1.171875 4.90625 -1.421875 Z M 4.90625 -1.421875 "/>
+</g>
+</g>
+<clipPath id="clip-0">
+<path clip-rule="nonzero" d="M 60 30 L 90.585938 30 L 90.585938 58.308594 L 60 58.308594 Z M 60 30 "/>
+</clipPath>
+<clipPath id="clip-1">
+<path clip-rule="nonzero" d="M 9 0.0703125 L 72 0.0703125 L 72 25 L 9 25 Z M 9 0.0703125 "/>
+</clipPath>
+<clipPath id="clip-2">
+<path clip-rule="nonzero" d="M 2 12 L 30 12 L 30 58.308594 L 2 58.308594 Z M 2 12 "/>
+</clipPath>
+<clipPath id="clip-3">
+<path clip-rule="nonzero" d="M 49 37 L 81 37 L 81 58.308594 L 49 58.308594 Z M 49 37 "/>
+</clipPath>
+<clipPath id="clip-4">
+<path clip-rule="nonzero" d="M 60 0.0703125 L 90.585938 0.0703125 L 90.585938 30 L 60 30 Z M 60 0.0703125 "/>
+</clipPath>
+</defs>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -31.182234 0.00185348 L 31.181183 0.00185348 " transform="matrix(0.992293, 0, 0, -0.992293, 40.504427, 57.318245)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-dasharray="2.98883 2.98883" stroke-miterlimit="10" d="M 31.181183 0.00185348 L 39.684212 0.00185348 " transform="matrix(0.992293, 0, 0, -0.992293, 40.504427, 57.318245)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 35.432698 0.00185348 L 35.432698 9.540205 " transform="matrix(0.992293, 0, 0, -0.992293, 40.504427, 57.318245)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 75.664062 44.660156 L 73.996094 49.070312 L 75.664062 47.605469 L 77.335938 49.070312 Z M 75.664062 44.660156 "/>
+<g clip-path="url(#clip-0)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.055087 0.000372133 L 1.610679 1.681295 L 3.0869 0.000372133 L 1.610679 -1.684487 Z M 6.055087 0.000372133 " transform="matrix(0, -0.992293, -0.992293, 0, 75.664432, 50.668579)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-0" x="79.452939" y="45.381947"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" d="M 9.5625 23.5625 L 9.5625 1.0625 L 71.445312 1.0625 L 71.445312 23.5625 Z M 9.5625 23.5625 "/>
+<g clip-path="url(#clip-1)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -31.182234 34.017905 L -31.182234 56.692649 L 31.181183 56.692649 L 31.181183 34.017905 Z M -31.182234 34.017905 " transform="matrix(0.992293, 0, 0, -0.992293, 40.504427, 57.318245)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-1" x="36.164136" y="14.441244"/>
+</g>
+<g clip-path="url(#clip-2)">
+<path fill="none" stroke-width="0.79701" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -24.942743 0.00185348 L -24.942743 5.670539 L -27.434603 7.162506 L -22.45482 10.154312 L -27.434603 13.142182 L -22.45482 16.130052 L -27.434603 19.117922 L -22.45482 22.109728 L -27.434603 25.097598 L -24.942743 26.589565 L -24.942743 34.017905 " transform="matrix(0.992293, 0, 0, -0.992293, 40.504427, 57.318245)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-2" x="3.791553" y="43.873661"/>
+</g>
+<path fill="none" stroke-width="0.79701" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.376746 20.692557 L 6.376746 15.114412 L -6.377797 15.114412 L -6.377797 20.692557 " transform="matrix(0.992293, 0, 0, -0.992293, 40.504427, 57.318245)"/>
+<path fill="none" stroke-width="0.79701" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 3.585706 18.90141 L -3.586756 18.90141 " transform="matrix(0.992293, 0, 0, -0.992293, 40.504427, 57.318245)"/>
+<path fill="none" stroke-width="0.79701" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.000525287 0.00185348 L -0.000525287 15.114412 M -0.000525287 18.90141 L -0.000525287 34.017905 " transform="matrix(0.992293, 0, 0, -0.992293, 40.504427, 57.318245)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-3" x="26.910007" y="42.569787"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(89.99939%, 89.99939%, 89.99939%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 22.111286 24.093768 L 22.111286 9.922054 L 27.779972 9.922054 L 27.779972 24.093768 Z M 22.111286 24.093768 " transform="matrix(0.992293, 0, 0, -0.992293, 40.504427, 57.318245)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 24.945629 4.635217 L 24.945629 9.422107 " transform="matrix(0.992293, 0, 0, -0.992293, 40.504427, 57.318245)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 65.257812 55.910156 L 66.925781 51.5 L 65.257812 52.96875 L 63.585938 51.5 Z M 65.257812 55.910156 "/>
+<g clip-path="url(#clip-3)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053035 0.00118904 L 1.608628 1.682112 L 3.088785 0.00118904 L 1.608628 -1.68367 Z M 6.053035 0.00118904 " transform="matrix(0, 0.992293, 0.992293, 0, 65.256633, 49.903769)"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 24.945629 29.380605 L 24.945629 24.593715 " transform="matrix(0.992293, 0, 0, -0.992293, 40.504427, 57.318245)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.052807 -0.00118904 L 1.6084 1.68367 L 3.088557 -0.00118904 L 1.6084 -1.682112 Z M 6.052807 -0.00118904 " transform="matrix(0, -0.992293, -0.992293, 0, 65.256633, 30.978817)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-4" x="51.022738" y="43.819085"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-dasharray="2.98883 2.98883" stroke-miterlimit="10" d="M 31.181183 34.017905 L 39.684212 34.017905 " transform="matrix(0.992293, 0, 0, -0.992293, 40.504427, 57.318245)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 35.432698 34.017905 L 35.432698 43.556256 " transform="matrix(0.992293, 0, 0, -0.992293, 40.504427, 57.318245)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 75.664062 10.90625 L 73.996094 15.316406 L 75.664062 13.851562 L 77.335938 15.316406 Z M 75.664062 10.90625 "/>
+<g clip-path="url(#clip-4)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.055058 0.000372133 L 1.610651 1.681295 L 3.086871 0.000372133 L 1.610651 -1.684487 Z M 6.055058 0.000372133 " transform="matrix(0, -0.992293, -0.992293, 0, 75.664432, 16.914645)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-5" x="79.452939" y="11.629085"/>
+</g>
+</svg>
diff --git a/figs/detail_control_mech_sys_alone_ctrl.pdf b/figs/detail_control_mech_sys_alone_ctrl.pdf
new file mode 100644
index 0000000..e31f7e9
Binary files /dev/null and b/figs/detail_control_mech_sys_alone_ctrl.pdf differ
diff --git a/figs/detail_control_mech_sys_alone_ctrl.png b/figs/detail_control_mech_sys_alone_ctrl.png
new file mode 100644
index 0000000..6a8415c
Binary files /dev/null and b/figs/detail_control_mech_sys_alone_ctrl.png differ
diff --git a/figs/detail_control_mech_sys_alone_ctrl.svg b/figs/detail_control_mech_sys_alone_ctrl.svg
new file mode 100644
index 0000000..17d7b64
--- /dev/null
+++ b/figs/detail_control_mech_sys_alone_ctrl.svg
@@ -0,0 +1,146 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="196.508" height="77.001" viewBox="0 0 196.508 77.001">
+<defs>
+<g>
+<g id="glyph-0-0">
+<path d="M 6.796875 -3.65625 C 6.796875 -4.203125 6.53125 -4.34375 6.359375 -4.34375 C 6.109375 -4.34375 5.875 -4.09375 5.875 -3.875 C 5.875 -3.75 5.921875 -3.6875 6.015625 -3.609375 C 6.125 -3.5 6.375 -3.25 6.375 -2.765625 C 6.375 -2.4375 6.078125 -1.46875 5.828125 -0.96875 C 5.578125 -0.453125 5.234375 -0.109375 4.75 -0.109375 C 4.28125 -0.109375 4.015625 -0.40625 4.015625 -0.96875 C 4.015625 -1.234375 4.09375 -1.546875 4.125 -1.6875 L 4.546875 -3.328125 C 4.59375 -3.546875 4.6875 -3.90625 4.6875 -3.96875 C 4.6875 -4.140625 4.546875 -4.234375 4.40625 -4.234375 C 4.28125 -4.234375 4.109375 -4.15625 4.046875 -3.953125 C 4.015625 -3.890625 3.546875 -2.015625 3.484375 -1.765625 C 3.40625 -1.46875 3.390625 -1.28125 3.390625 -1.109375 C 3.390625 -1 3.390625 -0.984375 3.40625 -0.9375 C 3.171875 -0.40625 2.875 -0.109375 2.5 -0.109375 C 1.703125 -0.109375 1.703125 -0.828125 1.703125 -1 C 1.703125 -1.3125 1.765625 -1.703125 2.21875 -2.90625 C 2.328125 -3.203125 2.390625 -3.34375 2.390625 -3.53125 C 2.390625 -3.984375 2.0625 -4.34375 1.578125 -4.34375 C 0.65625 -4.34375 0.28125 -2.921875 0.28125 -2.828125 C 0.28125 -2.734375 0.40625 -2.734375 0.40625 -2.734375 C 0.5 -2.734375 0.515625 -2.75 0.5625 -2.90625 C 0.828125 -3.828125 1.203125 -4.125 1.546875 -4.125 C 1.640625 -4.125 1.796875 -4.125 1.796875 -3.796875 C 1.796875 -3.5625 1.6875 -3.28125 1.625 -3.109375 C 1.1875 -1.953125 1.078125 -1.5 1.078125 -1.125 C 1.078125 -0.234375 1.734375 0.109375 2.46875 0.109375 C 2.640625 0.109375 3.09375 0.109375 3.484375 -0.578125 C 3.75 0.046875 4.421875 0.109375 4.71875 0.109375 C 5.453125 0.109375 5.890625 -0.515625 6.140625 -1.09375 C 6.484375 -1.875 6.796875 -3.1875 6.796875 -3.65625 Z M 6.796875 -3.65625 "/>
+</g>
+<g id="glyph-0-1">
+<path d="M 8.328125 -1.40625 C 8.328125 -1.5 8.25 -1.5 8.21875 -1.5 C 8.125 -1.5 8.125 -1.46875 8.0625 -1.328125 C 7.921875 -0.8125 7.609375 -0.109375 7.0625 -0.109375 C 6.90625 -0.109375 6.828125 -0.203125 6.828125 -0.4375 C 6.828125 -0.671875 6.921875 -0.90625 7 -1.125 C 7.1875 -1.640625 7.609375 -2.734375 7.609375 -3.296875 C 7.609375 -3.9375 7.21875 -4.34375 6.484375 -4.34375 C 5.734375 -4.34375 5.234375 -3.90625 4.875 -3.390625 C 4.859375 -3.515625 4.828125 -3.859375 4.5625 -4.09375 C 4.3125 -4.296875 4 -4.34375 3.75 -4.34375 C 2.875 -4.34375 2.390625 -3.71875 2.21875 -3.484375 C 2.171875 -4.046875 1.765625 -4.34375 1.3125 -4.34375 C 0.859375 -4.34375 0.671875 -3.953125 0.59375 -3.78125 C 0.40625 -3.4375 0.28125 -2.859375 0.28125 -2.828125 C 0.28125 -2.734375 0.40625 -2.734375 0.40625 -2.734375 C 0.5 -2.734375 0.515625 -2.734375 0.5625 -2.953125 C 0.734375 -3.65625 0.9375 -4.125 1.28125 -4.125 C 1.4375 -4.125 1.59375 -4.046875 1.59375 -3.671875 C 1.59375 -3.46875 1.5625 -3.359375 1.4375 -2.84375 L 0.859375 -0.578125 C 0.828125 -0.4375 0.78125 -0.203125 0.78125 -0.15625 C 0.78125 0.015625 0.90625 0.109375 1.0625 0.109375 C 1.171875 0.109375 1.359375 0.03125 1.421875 -0.171875 C 1.4375 -0.1875 1.546875 -0.65625 1.609375 -0.890625 L 1.828125 -1.78125 C 1.890625 -2 1.953125 -2.21875 2 -2.4375 L 2.125 -2.921875 C 2.265625 -3.234375 2.796875 -4.125 3.71875 -4.125 C 4.171875 -4.125 4.25 -3.765625 4.25 -3.4375 C 4.25 -3.1875 4.1875 -2.921875 4.109375 -2.625 L 3.828125 -1.484375 C 3.734375 -1.125 3.71875 -1.0625 3.640625 -0.734375 C 3.59375 -0.546875 3.515625 -0.203125 3.515625 -0.15625 C 3.515625 0.015625 3.640625 0.109375 3.796875 0.109375 C 4.09375 0.109375 4.15625 -0.140625 4.234375 -0.453125 L 4.828125 -2.828125 C 4.859375 -2.953125 5.375 -4.125 6.453125 -4.125 C 6.875 -4.125 6.984375 -3.796875 6.984375 -3.4375 C 6.984375 -2.875 6.5625 -1.765625 6.375 -1.234375 C 6.28125 -1 6.234375 -0.890625 6.234375 -0.703125 C 6.234375 -0.234375 6.578125 0.109375 7.046875 0.109375 C 7.96875 0.109375 8.328125 -1.328125 8.328125 -1.40625 Z M 8.328125 -1.40625 "/>
+</g>
+<g id="glyph-0-2">
+<path d="M 4.8125 -1.40625 C 4.8125 -1.5 4.734375 -1.5 4.703125 -1.5 C 4.59375 -1.5 4.59375 -1.46875 4.5625 -1.328125 C 4.359375 -0.609375 4.140625 -0.109375 3.703125 -0.109375 C 3.515625 -0.109375 3.390625 -0.21875 3.390625 -0.5625 C 3.390625 -0.734375 3.4375 -0.96875 3.46875 -1.125 C 3.515625 -1.28125 3.515625 -1.328125 3.515625 -1.421875 C 3.515625 -2.0625 2.890625 -2.34375 2.046875 -2.453125 C 2.359375 -2.640625 2.671875 -2.953125 2.90625 -3.1875 C 3.375 -3.703125 3.828125 -4.125 4.3125 -4.125 C 4.359375 -4.125 4.375 -4.125 4.390625 -4.125 C 4.515625 -4.09375 4.515625 -4.09375 4.59375 -4.046875 C 4.625 -4.03125 4.625 -4.015625 4.640625 -4 C 4.171875 -3.96875 4.078125 -3.59375 4.078125 -3.46875 C 4.078125 -3.3125 4.1875 -3.125 4.453125 -3.125 C 4.703125 -3.125 5 -3.34375 5 -3.71875 C 5 -4.015625 4.765625 -4.34375 4.328125 -4.34375 C 4.046875 -4.34375 3.59375 -4.265625 2.890625 -3.484375 C 2.5625 -3.109375 2.171875 -2.71875 1.796875 -2.5625 L 2.828125 -6.71875 C 2.828125 -6.71875 2.828125 -6.828125 2.6875 -6.828125 C 2.46875 -6.828125 1.75 -6.734375 1.5 -6.71875 C 1.421875 -6.71875 1.3125 -6.703125 1.3125 -6.53125 C 1.3125 -6.40625 1.390625 -6.40625 1.546875 -6.40625 C 2.015625 -6.40625 2.03125 -6.34375 2.03125 -6.234375 L 2 -6.046875 L 0.578125 -0.390625 C 0.546875 -0.25 0.546875 -0.21875 0.546875 -0.171875 C 0.546875 0.0625 0.734375 0.109375 0.828125 0.109375 C 0.953125 0.109375 1.09375 0.015625 1.15625 -0.09375 C 1.203125 -0.1875 1.65625 -2 1.703125 -2.25 C 2.046875 -2.21875 2.84375 -2.0625 2.84375 -1.421875 C 2.84375 -1.34375 2.84375 -1.3125 2.828125 -1.203125 C 2.796875 -1.09375 2.78125 -0.96875 2.78125 -0.859375 C 2.78125 -0.28125 3.171875 0.109375 3.6875 0.109375 C 3.984375 0.109375 4.25 -0.046875 4.46875 -0.40625 C 4.703125 -0.84375 4.8125 -1.40625 4.8125 -1.40625 Z M 4.8125 -1.40625 "/>
+</g>
+<g id="glyph-0-3">
+<path d="M 4.21875 -1.046875 C 4.21875 -1.109375 4.171875 -1.171875 4.109375 -1.171875 C 4.0625 -1.171875 4.046875 -1.15625 3.984375 -1.078125 C 3.203125 -0.109375 2.125 -0.109375 2.015625 -0.109375 C 1.390625 -0.109375 1.125 -0.59375 1.125 -1.171875 C 1.125 -1.578125 1.328125 -2.53125 1.65625 -3.140625 C 1.96875 -3.703125 2.5 -4.125 3.046875 -4.125 C 3.375 -4.125 3.75 -4 3.890625 -3.734375 C 3.734375 -3.734375 3.59375 -3.734375 3.453125 -3.59375 C 3.296875 -3.453125 3.28125 -3.28125 3.28125 -3.21875 C 3.28125 -2.984375 3.453125 -2.875 3.640625 -2.875 C 3.9375 -2.875 4.203125 -3.109375 4.203125 -3.5 C 4.203125 -3.984375 3.734375 -4.34375 3.03125 -4.34375 C 1.703125 -4.34375 0.40625 -2.9375 0.40625 -1.546875 C 0.40625 -0.671875 0.96875 0.109375 2 0.109375 C 3.40625 0.109375 4.21875 -0.9375 4.21875 -1.046875 Z M 4.21875 -1.046875 "/>
+</g>
+<g id="glyph-0-4">
+<path d="M 4.875 -1.40625 C 4.875 -1.5 4.78125 -1.5 4.75 -1.5 C 4.671875 -1.5 4.65625 -1.46875 4.625 -1.390625 C 4.3125 -0.34375 3.640625 -0.109375 3.328125 -0.109375 C 2.9375 -0.109375 2.78125 -0.421875 2.78125 -0.75 C 2.78125 -0.96875 2.84375 -1.1875 2.953125 -1.625 L 3.28125 -2.96875 C 3.34375 -3.21875 3.5625 -4.125 4.25 -4.125 C 4.3125 -4.125 4.546875 -4.125 4.75 -4 C 4.46875 -3.953125 4.28125 -3.703125 4.28125 -3.46875 C 4.28125 -3.3125 4.390625 -3.125 4.65625 -3.125 C 4.859375 -3.125 5.171875 -3.296875 5.171875 -3.703125 C 5.171875 -4.203125 4.59375 -4.34375 4.265625 -4.34375 C 3.703125 -4.34375 3.34375 -3.828125 3.234375 -3.59375 C 2.984375 -4.25 2.453125 -4.34375 2.171875 -4.34375 C 1.15625 -4.34375 0.59375 -3.078125 0.59375 -2.828125 C 0.59375 -2.734375 0.703125 -2.734375 0.703125 -2.734375 C 0.78125 -2.734375 0.8125 -2.75 0.828125 -2.84375 C 1.171875 -3.875 1.8125 -4.125 2.15625 -4.125 C 2.34375 -4.125 2.6875 -4.046875 2.6875 -3.46875 C 2.6875 -3.171875 2.515625 -2.5 2.15625 -1.125 C 2 -0.515625 1.65625 -0.109375 1.21875 -0.109375 C 1.15625 -0.109375 0.9375 -0.109375 0.734375 -0.234375 C 0.96875 -0.28125 1.1875 -0.484375 1.1875 -0.765625 C 1.1875 -1.03125 0.96875 -1.109375 0.828125 -1.109375 C 0.53125 -1.109375 0.28125 -0.859375 0.28125 -0.546875 C 0.28125 -0.09375 0.78125 0.109375 1.203125 0.109375 C 1.859375 0.109375 2.21875 -0.578125 2.234375 -0.640625 C 2.359375 -0.28125 2.71875 0.109375 3.296875 0.109375 C 4.3125 0.109375 4.875 -1.15625 4.875 -1.40625 Z M 4.875 -1.40625 "/>
+</g>
+<g id="glyph-0-5">
+<path d="M 7.265625 -0.203125 C 7.265625 -0.296875 7.171875 -0.296875 7.078125 -0.296875 C 6.671875 -0.3125 6.546875 -0.40625 6.390625 -0.75 L 5 -3.96875 C 5 -4 4.953125 -4.078125 4.953125 -4.109375 C 4.953125 -4.109375 5.125 -4.25 5.234375 -4.328125 L 6.953125 -5.65625 C 7.875 -6.34375 8.265625 -6.375 8.5625 -6.40625 C 8.640625 -6.421875 8.734375 -6.421875 8.734375 -6.609375 C 8.734375 -6.640625 8.703125 -6.71875 8.625 -6.71875 C 8.40625 -6.71875 8.171875 -6.6875 7.9375 -6.6875 C 7.578125 -6.6875 7.1875 -6.71875 6.84375 -6.71875 C 6.765625 -6.71875 6.65625 -6.71875 6.65625 -6.515625 C 6.65625 -6.453125 6.703125 -6.421875 6.765625 -6.40625 C 6.984375 -6.390625 7.078125 -6.34375 7.078125 -6.203125 C 7.078125 -6.03125 6.78125 -5.796875 6.71875 -5.75 L 2.890625 -2.796875 L 3.671875 -5.953125 C 3.765625 -6.3125 3.78125 -6.40625 4.5 -6.40625 C 4.75 -6.40625 4.828125 -6.40625 4.828125 -6.609375 C 4.828125 -6.6875 4.75 -6.71875 4.703125 -6.71875 L 3.4375 -6.6875 L 2.171875 -6.71875 C 2.109375 -6.71875 1.96875 -6.71875 1.96875 -6.53125 C 1.96875 -6.40625 2.0625 -6.40625 2.265625 -6.40625 C 2.390625 -6.40625 2.5625 -6.390625 2.6875 -6.390625 C 2.84375 -6.375 2.90625 -6.34375 2.90625 -6.234375 C 2.90625 -6.1875 2.890625 -6.15625 2.859375 -6.046875 L 1.546875 -0.765625 C 1.4375 -0.390625 1.421875 -0.296875 0.65625 -0.296875 C 0.484375 -0.296875 0.375 -0.296875 0.375 -0.125 C 0.375 0 0.484375 0 0.515625 0 L 1.765625 -0.03125 L 2.390625 -0.015625 C 2.609375 -0.015625 2.828125 0 3.03125 0 C 3.109375 0 3.234375 0 3.234375 -0.203125 C 3.234375 -0.296875 3.140625 -0.296875 2.953125 -0.296875 C 2.59375 -0.296875 2.3125 -0.296875 2.3125 -0.484375 C 2.3125 -0.546875 2.375 -0.765625 2.40625 -0.90625 L 2.796875 -2.453125 L 4.265625 -3.59375 L 5.40625 -0.953125 C 5.515625 -0.6875 5.515625 -0.671875 5.515625 -0.609375 C 5.515625 -0.3125 5.09375 -0.296875 5.015625 -0.296875 C 4.90625 -0.296875 4.796875 -0.296875 4.796875 -0.109375 C 4.796875 0 4.9375 0 4.9375 0 C 5.328125 0 5.734375 -0.03125 6.125 -0.03125 C 6.34375 -0.03125 6.875 0 7.09375 0 C 7.140625 0 7.265625 0 7.265625 -0.203125 Z M 7.265625 -0.203125 "/>
+</g>
+<g id="glyph-0-6">
+<path d="M 7.0625 -0.203125 C 7.0625 -0.296875 6.96875 -0.296875 6.78125 -0.296875 C 6.421875 -0.296875 6.140625 -0.296875 6.140625 -0.484375 C 6.140625 -0.546875 6.15625 -0.59375 6.171875 -0.65625 L 7.5 -5.953125 C 7.59375 -6.3125 7.609375 -6.40625 8.328125 -6.40625 C 8.578125 -6.40625 8.65625 -6.40625 8.65625 -6.609375 C 8.65625 -6.71875 8.546875 -6.71875 8.515625 -6.71875 L 7.265625 -6.6875 L 6 -6.71875 C 5.921875 -6.71875 5.8125 -6.71875 5.8125 -6.515625 C 5.8125 -6.40625 5.890625 -6.40625 6.078125 -6.40625 C 6.078125 -6.40625 6.296875 -6.40625 6.453125 -6.390625 C 6.640625 -6.375 6.71875 -6.359375 6.71875 -6.234375 C 6.71875 -6.1875 6.71875 -6.171875 6.6875 -6.046875 L 6.09375 -3.640625 L 3.09375 -3.640625 L 3.671875 -5.953125 C 3.765625 -6.3125 3.796875 -6.40625 4.5 -6.40625 C 4.75 -6.40625 4.828125 -6.40625 4.828125 -6.609375 C 4.828125 -6.71875 4.734375 -6.71875 4.703125 -6.71875 L 3.4375 -6.6875 L 2.171875 -6.71875 C 2.09375 -6.71875 1.984375 -6.71875 1.984375 -6.515625 C 1.984375 -6.40625 2.078125 -6.40625 2.265625 -6.40625 C 2.265625 -6.40625 2.46875 -6.40625 2.640625 -6.390625 C 2.8125 -6.375 2.90625 -6.359375 2.90625 -6.234375 C 2.90625 -6.1875 2.890625 -6.15625 2.859375 -6.046875 L 1.546875 -0.765625 C 1.4375 -0.390625 1.421875 -0.296875 0.65625 -0.296875 C 0.46875 -0.296875 0.390625 -0.296875 0.390625 -0.109375 C 0.390625 0 0.515625 0 0.515625 0 L 1.765625 -0.03125 L 2.390625 -0.015625 C 2.609375 -0.015625 2.828125 0 3.03125 0 C 3.109375 0 3.234375 0 3.234375 -0.203125 C 3.234375 -0.296875 3.140625 -0.296875 2.953125 -0.296875 C 2.59375 -0.296875 2.3125 -0.296875 2.3125 -0.484375 C 2.3125 -0.546875 2.34375 -0.59375 2.34375 -0.65625 L 3.015625 -3.34375 L 6.015625 -3.34375 L 5.34375 -0.625 C 5.234375 -0.3125 5.046875 -0.296875 4.4375 -0.296875 C 4.296875 -0.296875 4.203125 -0.296875 4.203125 -0.109375 C 4.203125 0 4.34375 0 4.34375 0 L 5.59375 -0.03125 L 6.21875 -0.015625 C 6.4375 -0.015625 6.65625 0 6.859375 0 C 6.9375 0 7.0625 0 7.0625 -0.203125 Z M 7.0625 -0.203125 "/>
+</g>
+<g id="glyph-0-7">
+<path d="M 7.15625 -4.71875 L 7.34375 -6.421875 C 7.375 -6.6875 7.328125 -6.6875 7.09375 -6.6875 L 2.265625 -6.6875 C 2.078125 -6.6875 1.96875 -6.6875 1.96875 -6.484375 C 1.96875 -6.375 2.0625 -6.375 2.25 -6.375 C 2.609375 -6.375 2.890625 -6.375 2.890625 -6.203125 C 2.890625 -6.15625 2.890625 -6.140625 2.84375 -5.96875 L 1.546875 -0.765625 C 1.4375 -0.390625 1.421875 -0.296875 0.65625 -0.296875 C 0.484375 -0.296875 0.375 -0.296875 0.375 -0.125 C 0.375 0 0.484375 0 0.515625 0 L 1.8125 -0.03125 L 3.28125 0 C 3.375 0 3.484375 0 3.484375 -0.1875 C 3.484375 -0.265625 3.4375 -0.296875 3.4375 -0.296875 C 3.40625 -0.296875 3.375 -0.296875 3.15625 -0.296875 C 2.9375 -0.296875 2.890625 -0.296875 2.640625 -0.328125 C 2.359375 -0.359375 2.328125 -0.390625 2.328125 -0.515625 C 2.328125 -0.515625 2.328125 -0.59375 2.375 -0.75 L 2.984375 -3.1875 L 3.9375 -3.1875 C 4.671875 -3.1875 4.75 -3.03125 4.75 -2.75 C 4.75 -2.6875 4.75 -2.5625 4.671875 -2.265625 C 4.65625 -2.21875 4.65625 -2.15625 4.65625 -2.15625 C 4.65625 -2.078125 4.703125 -2.046875 4.765625 -2.046875 C 4.859375 -2.046875 4.859375 -2.078125 4.90625 -2.25 L 5.453125 -4.390625 C 5.484375 -4.484375 5.484375 -4.515625 5.484375 -4.546875 C 5.484375 -4.546875 5.46875 -4.65625 5.359375 -4.65625 C 5.265625 -4.65625 5.265625 -4.59375 5.21875 -4.4375 C 5.015625 -3.671875 4.78125 -3.5 3.953125 -3.5 L 3.0625 -3.5 L 3.6875 -6 C 3.78125 -6.34375 3.78125 -6.375 4.21875 -6.375 L 5.515625 -6.375 C 6.71875 -6.375 6.953125 -6.046875 6.953125 -5.296875 C 6.953125 -5.078125 6.953125 -5.03125 6.921875 -4.765625 C 6.90625 -4.640625 6.90625 -4.625 6.90625 -4.59375 C 6.90625 -4.546875 6.921875 -4.46875 7.015625 -4.46875 C 7.125 -4.46875 7.140625 -4.53125 7.15625 -4.71875 Z M 7.15625 -4.71875 "/>
+</g>
+<g id="glyph-0-8">
+<path d="M 5.609375 -1.40625 C 5.609375 -1.5 5.515625 -1.5 5.5 -1.5 C 5.390625 -1.5 5.390625 -1.46875 5.34375 -1.328125 C 5.15625 -0.65625 4.828125 -0.109375 4.34375 -0.109375 C 4.171875 -0.109375 4.109375 -0.203125 4.109375 -0.4375 C 4.109375 -0.671875 4.203125 -0.90625 4.28125 -1.125 C 4.46875 -1.65625 4.890625 -2.734375 4.890625 -3.296875 C 4.890625 -3.953125 4.46875 -4.34375 3.75 -4.34375 C 2.875 -4.34375 2.390625 -3.71875 2.21875 -3.484375 C 2.171875 -4.046875 1.765625 -4.34375 1.3125 -4.34375 C 0.859375 -4.34375 0.671875 -3.953125 0.578125 -3.78125 C 0.421875 -3.453125 0.28125 -2.875 0.28125 -2.828125 C 0.28125 -2.734375 0.40625 -2.734375 0.40625 -2.734375 C 0.5 -2.734375 0.515625 -2.734375 0.5625 -2.953125 C 0.734375 -3.65625 0.9375 -4.125 1.28125 -4.125 C 1.484375 -4.125 1.59375 -4 1.59375 -3.671875 C 1.59375 -3.46875 1.5625 -3.359375 1.4375 -2.84375 L 0.859375 -0.578125 C 0.828125 -0.4375 0.78125 -0.203125 0.78125 -0.15625 C 0.78125 0.015625 0.90625 0.109375 1.0625 0.109375 C 1.171875 0.109375 1.359375 0.03125 1.421875 -0.171875 C 1.4375 -0.1875 1.546875 -0.65625 1.609375 -0.890625 L 1.828125 -1.78125 C 1.890625 -2 1.953125 -2.21875 2 -2.4375 L 2.125 -2.921875 C 2.265625 -3.234375 2.796875 -4.125 3.71875 -4.125 C 4.171875 -4.125 4.25 -3.765625 4.25 -3.4375 C 4.25 -2.828125 3.78125 -1.578125 3.609375 -1.15625 C 3.53125 -0.921875 3.515625 -0.8125 3.515625 -0.703125 C 3.515625 -0.234375 3.859375 0.109375 4.328125 0.109375 C 5.25 0.109375 5.609375 -1.328125 5.609375 -1.40625 Z M 5.609375 -1.40625 "/>
+</g>
+<g id="glyph-0-9">
+<path d="M 4.28125 -3.703125 C 4.28125 -4.046875 3.96875 -4.34375 3.46875 -4.34375 C 2.828125 -4.34375 2.390625 -3.859375 2.21875 -3.59375 C 2.125 -4.03125 1.78125 -4.34375 1.3125 -4.34375 C 0.859375 -4.34375 0.671875 -3.953125 0.59375 -3.78125 C 0.40625 -3.453125 0.28125 -2.859375 0.28125 -2.828125 C 0.28125 -2.734375 0.40625 -2.734375 0.40625 -2.734375 C 0.5 -2.734375 0.515625 -2.734375 0.5625 -2.953125 C 0.734375 -3.65625 0.9375 -4.125 1.28125 -4.125 C 1.453125 -4.125 1.59375 -4.046875 1.59375 -3.671875 C 1.59375 -3.46875 1.5625 -3.359375 1.4375 -2.84375 L 0.859375 -0.578125 C 0.828125 -0.4375 0.78125 -0.203125 0.78125 -0.15625 C 0.78125 0.015625 0.90625 0.109375 1.0625 0.109375 C 1.171875 0.109375 1.359375 0.03125 1.421875 -0.171875 C 1.4375 -0.203125 1.78125 -1.546875 1.8125 -1.71875 L 2.125 -3 C 2.171875 -3.125 2.453125 -3.59375 2.6875 -3.796875 C 2.765625 -3.875 3.046875 -4.125 3.46875 -4.125 C 3.71875 -4.125 3.875 -4.015625 3.875 -4.015625 C 3.59375 -3.953125 3.375 -3.71875 3.375 -3.46875 C 3.375 -3.3125 3.484375 -3.125 3.75 -3.125 C 4.015625 -3.125 4.28125 -3.34375 4.28125 -3.703125 Z M 4.28125 -3.703125 "/>
+</g>
+<g id="glyph-1-0">
+<path d="M 8 -2.953125 C 8 -3.171875 7.8125 -3.171875 7.640625 -3.171875 L 4.484375 -3.171875 L 4.484375 -6.328125 C 4.484375 -6.5 4.484375 -6.6875 4.28125 -6.6875 C 4.0625 -6.6875 4.0625 -6.5 4.0625 -6.328125 L 4.0625 -3.171875 L 0.921875 -3.171875 C 0.75 -3.171875 0.546875 -3.171875 0.546875 -2.96875 C 0.546875 -2.765625 0.734375 -2.765625 0.921875 -2.765625 L 4.0625 -2.765625 L 4.0625 0.390625 C 4.0625 0.5625 4.0625 0.765625 4.265625 0.765625 C 4.484375 0.765625 4.484375 0.578125 4.484375 0.390625 L 4.484375 -2.765625 L 7.640625 -2.765625 C 7.796875 -2.765625 8 -2.765625 8 -2.953125 Z M 8 -2.953125 "/>
+</g>
+<g id="glyph-2-0">
+<path d="M 6.828125 -2.453125 C 6.828125 -2.65625 6.640625 -2.65625 6.5 -2.65625 L 1.140625 -2.65625 C 1 -2.65625 0.8125 -2.65625 0.8125 -2.453125 C 0.8125 -2.265625 1 -2.265625 1.140625 -2.265625 L 6.5 -2.265625 C 6.640625 -2.265625 6.828125 -2.265625 6.828125 -2.453125 Z M 6.828125 -2.453125 "/>
+</g>
+<g id="glyph-3-0">
+<path d="M 4.96875 -1.71875 C 4.96875 -1.734375 4.953125 -1.8125 4.84375 -1.8125 C 4.765625 -1.8125 4.75 -1.78125 4.71875 -1.671875 C 4.453125 -1.015625 4.140625 -0.25 2.890625 -0.25 L 2.109375 -0.25 C 1.890625 -0.25 1.890625 -0.25 1.890625 -0.3125 C 1.890625 -0.3125 1.890625 -0.359375 1.921875 -0.46875 L 2.84375 -4.140625 C 2.90625 -4.390625 2.921875 -4.453125 3.5625 -4.453125 C 3.765625 -4.453125 3.84375 -4.453125 3.84375 -4.609375 C 3.84375 -4.609375 3.828125 -4.703125 3.71875 -4.703125 C 3.5625 -4.703125 3.375 -4.6875 3.21875 -4.6875 L 2.65625 -4.671875 L 2.1875 -4.6875 C 2.046875 -4.6875 1.875 -4.703125 1.734375 -4.703125 C 1.6875 -4.703125 1.59375 -4.703125 1.59375 -4.546875 C 1.59375 -4.453125 1.671875 -4.453125 1.8125 -4.453125 C 1.8125 -4.453125 1.953125 -4.453125 2.078125 -4.4375 C 2.21875 -4.4375 2.234375 -4.421875 2.234375 -4.34375 C 2.234375 -4.34375 2.234375 -4.296875 2.203125 -4.203125 L 1.28125 -0.53125 C 1.21875 -0.296875 1.21875 -0.25 0.6875 -0.25 C 0.5625 -0.25 0.46875 -0.25 0.46875 -0.109375 C 0.46875 0 0.5625 0 0.6875 0 L 4.140625 0 C 4.328125 0 4.328125 0 4.375 -0.140625 C 4.453125 -0.328125 4.96875 -1.65625 4.96875 -1.71875 Z M 4.96875 -1.71875 "/>
+</g>
+</g>
+<clipPath id="clip-0">
+<path clip-rule="nonzero" d="M 60 48 L 92 48 L 92 76.015625 L 60 76.015625 Z M 60 48 "/>
+</clipPath>
+<clipPath id="clip-1">
+<path clip-rule="nonzero" d="M 3 30 L 31 30 L 31 76.015625 L 3 76.015625 Z M 3 30 "/>
+</clipPath>
+<clipPath id="clip-2">
+<path clip-rule="nonzero" d="M 50 55 L 82 55 L 82 76.015625 L 50 76.015625 Z M 50 55 "/>
+</clipPath>
+<clipPath id="clip-3">
+<path clip-rule="nonzero" d="M 146 37 L 189 37 L 189 76.015625 L 146 76.015625 Z M 146 37 "/>
+</clipPath>
+</defs>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -31.179852 -0.00169474 L 31.181351 -0.00169474 " transform="matrix(0.987192, 0, 0, -0.987192, 41.31176, 75.029577)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-dasharray="2.98883 2.98883" stroke-miterlimit="10" d="M 31.181351 -0.00169474 L 39.684791 -0.00169474 " transform="matrix(0.987192, 0, 0, -0.987192, 41.31176, 75.029577)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 35.431093 -0.00169474 L 35.431093 9.538461 " transform="matrix(0.987192, 0, 0, -0.987192, 41.31176, 75.029577)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 76.289062 62.4375 L 74.628906 66.824219 L 76.289062 65.367188 L 77.953125 66.824219 Z M 76.289062 62.4375 "/>
+<g clip-path="url(#clip-0)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.054135 0.00197747 L 1.610503 1.683672 L 3.086438 0.00197747 L 1.610503 -1.683674 Z M 6.054135 0.00197747 " transform="matrix(0, -0.987192, -0.987192, 0, 76.291015, 68.414095)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-0" x="80.060046" y="69.042256"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -31.179852 34.016025 L -31.179852 56.693186 L 31.181351 56.693186 L 31.181351 34.016025 Z M -31.179852 34.016025 " transform="matrix(0.987192, 0, 0, -0.987192, 41.31176, 75.029577)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-1" x="36.993781" y="32.372997"/>
+</g>
+<g clip-path="url(#clip-1)">
+<path fill="none" stroke-width="0.79701" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -24.943732 -0.00169474 L -24.943732 5.668585 L -27.436597 7.164304 L -22.454824 10.151785 L -27.436597 13.143224 L -22.454824 16.130705 L -27.436597 19.118187 L -22.454824 22.109625 L -27.436597 25.097107 L -24.943732 26.592826 L -24.943732 34.016025 " transform="matrix(0.987192, 0, 0, -0.987192, 41.31176, 75.029577)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-2" x="4.787619" y="61.654108"/>
+</g>
+<path fill="none" stroke-width="0.79701" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.375362 20.693045 L 6.375362 15.113775 L -6.377821 15.113775 L -6.377821 20.693045 " transform="matrix(0.987192, 0, 0, -0.987192, 41.31176, 75.029577)"/>
+<path fill="none" stroke-width="0.79701" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 3.585727 18.900556 L -3.588186 18.900556 " transform="matrix(0.987192, 0, 0, -0.987192, 41.31176, 75.029577)"/>
+<path fill="none" stroke-width="0.79701" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.000749094 -0.00169474 L 0.000749094 15.113775 M 0.000749094 18.900556 L 0.000749094 34.016025 " transform="matrix(0.987192, 0, 0, -0.987192, 41.31176, 75.029577)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-3" x="27.787226" y="60.356938"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(89.99939%, 89.99939%, 89.99939%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 22.108112 24.096004 L 22.108112 9.922284 L 27.778392 9.922284 L 27.778392 24.096004 Z M 22.108112 24.096004 " transform="matrix(0.987192, 0, 0, -0.987192, 41.31176, 75.029577)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 24.94523 4.631869 L 24.94523 9.42371 " transform="matrix(0.987192, 0, 0, -0.987192, 41.31176, 75.029577)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 65.9375 73.628906 L 67.597656 69.242188 L 65.9375 70.703125 L 64.273438 69.242188 Z M 65.9375 73.628906 "/>
+<g clip-path="url(#clip-2)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053217 0.000790335 L 1.609586 1.682485 L 3.089477 0.000790335 L 1.609586 -1.684861 Z M 6.053217 0.000790335 " transform="matrix(0, 0.987192, 0.987192, 0, 65.93672, 67.653217)"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 24.94523 29.382461 L 24.94523 24.594577 " transform="matrix(0.987192, 0, 0, -0.987192, 41.31176, 75.029577)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.051497 -0.000790335 L 1.607866 1.684861 L 3.087758 -0.000790335 L 1.607866 -1.682485 Z M 6.051497 -0.000790335 " transform="matrix(0, -0.987192, -0.987192, 0, 65.93672, 48.825554)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-dasharray="2.98883 2.98883" stroke-miterlimit="10" d="M 31.181351 34.016025 L 39.684791 34.016025 " transform="matrix(0.987192, 0, 0, -0.987192, 41.31176, 75.029577)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 35.431093 34.016025 L 35.431093 43.556181 " transform="matrix(0.987192, 0, 0, -0.987192, 41.31176, 75.029577)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.051818 0.00197747 L 1.608186 1.683672 L 3.088078 0.00197747 L 1.608186 -1.683674 Z M 6.051818 0.00197747 " transform="matrix(0, -0.987192, -0.987192, 0, 76.291015, 34.833683)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-4" x="80.060046" y="29.575294"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 58.040986 8.505703 L 80.718146 8.505703 L 80.718146 25.512584 L 58.040986 25.512584 Z M 58.040986 8.505703 " transform="matrix(0.987192, 0, 0, -0.987192, 41.31176, 75.029577)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-5" x="105.273924" y="61.599813"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" d="M 174.433594 58.238281 C 174.433594 54.4375 171.351562 51.355469 167.550781 51.355469 C 163.746094 51.355469 160.664062 54.4375 160.664062 58.238281 C 160.664062 62.042969 163.746094 65.125 167.550781 65.125 C 171.351562 65.125 174.433594 62.042969 174.433594 58.238281 Z M 174.433594 58.238281 "/>
+<g clip-path="url(#clip-3)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 134.848937 17.009144 C 134.848937 20.859236 131.72692 23.981253 127.876828 23.981253 C 124.022779 23.981253 120.900762 20.859236 120.900762 17.009144 C 120.900762 13.155095 124.022779 10.033078 127.876828 10.033078 C 131.72692 10.033078 134.848937 13.155095 134.848937 17.009144 Z M 134.848937 17.009144 " transform="matrix(0.987192, 0, 0, -0.987192, 41.31176, 75.029577)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-1-0" x="163.266537" y="61.118063"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-0" x="169.515464" y="48.568874"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 76.353654 48.189745 C 76.353654 52.039837 73.231637 55.161854 69.381544 55.161854 C 65.527496 55.161854 62.405478 52.039837 62.405478 48.189745 C 62.405478 44.339653 65.527496 41.213679 69.381544 41.213679 C 73.231637 41.213679 76.353654 44.339653 76.353654 48.189745 Z M 76.353654 48.189745 " transform="matrix(0.987192, 0, 0, -0.987192, 41.31176, 75.029577)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-1-0" x="105.520723" y="30.33642"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 93.859108 39.686304 L 116.536269 39.686304 L 116.536269 56.693186 L 93.859108 56.693186 Z M 93.859108 39.686304 " transform="matrix(0.987192, 0, 0, -0.987192, 41.31176, 75.029577)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-6" x="138.130646" y="30.080737"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-3-0" x="146.305586" y="31.555602"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 48.765944 48.189745 L 57.771914 48.189745 " transform="matrix(0.987192, 0, 0, -0.987192, 41.31176, 75.029577)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.054858 0.00027514 L 1.607269 1.68197 L 3.087161 0.00027514 L 1.607269 -1.68142 Z M 6.054858 0.00027514 " transform="matrix(0.987192, 0, 0, -0.987192, 95.542222, 27.457303)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 76.353654 48.189745 L 88.726971 48.189745 " transform="matrix(0.987192, 0, 0, -0.987192, 41.31176, 75.029577)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053874 0.00027514 L 1.610243 1.68197 L 3.086178 0.00027514 L 1.610243 -1.68142 Z M 6.053874 0.00027514 " transform="matrix(0.987192, 0, 0, -0.987192, 126.101787, 27.457303)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 117.034842 48.189745 L 127.876828 48.189745 L 127.876828 28.614817 " transform="matrix(0.987192, 0, 0, -0.987192, 41.31176, 75.029577)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.05222 0.000687814 L 1.608588 1.682383 L 3.08848 0.000687814 L 1.608588 -1.684964 Z M 6.05222 0.000687814 " transform="matrix(0, 0.987192, 0.987192, 0, 167.550102, 43.97842)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 120.900762 17.009144 L 85.850284 17.009144 " transform="matrix(0.987192, 0, 0, -0.987192, 41.31176, 75.029577)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.051723 -0.00111359 L 1.608092 1.684538 L 3.087983 -0.00111359 L 1.608092 -1.682808 Z M 6.051723 -0.00111359 " transform="matrix(-0.987192, 0, 0, 0.987192, 128.864839, 58.239381)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 57.542413 17.009144 L 33.828536 17.009144 " transform="matrix(0.987192, 0, 0, -0.987192, 41.31176, 75.029577)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.05286 -0.00111359 L 1.609229 1.684538 L 3.08912 -0.00111359 L 1.609229 -1.682808 Z M 6.05286 -0.00111359 " transform="matrix(-0.987192, 0, 0, 0.987192, 77.510493, 58.239381)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-7" x="73.902927" y="54.469323"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 69.381544 59.795418 L 69.381544 75.005854 " transform="matrix(0.987192, 0, 0, -0.987192, 41.31176, 75.029577)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053058 0.00154447 L 1.609427 1.683239 L 3.089318 0.00154447 L 1.609427 -1.684107 Z M 6.053058 0.00154447 " transform="matrix(0, 0.987192, 0.987192, 0, 109.803163, 13.196343)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-8" x="113.572263" y="8.989373"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 139.482501 17.009144 L 154.692937 17.009144 " transform="matrix(0.987192, 0, 0, -0.987192, 41.31176, 75.029577)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.052655 -0.00111359 L 1.609024 1.684538 L 3.088916 -0.00111359 L 1.609024 -1.682808 Z M 6.052655 -0.00111359 " transform="matrix(-0.987192, 0, 0, 0.987192, 181.811072, 58.239381)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-9" x="185.540557" y="54.469323"/>
+</g>
+</svg>
diff --git a/figs/detail_control_nyquist_robustness.pdf b/figs/detail_control_nyquist_robustness.pdf
new file mode 100644
index 0000000..d219f4a
Binary files /dev/null and b/figs/detail_control_nyquist_robustness.pdf differ
diff --git a/figs/detail_control_nyquist_robustness.png b/figs/detail_control_nyquist_robustness.png
new file mode 100644
index 0000000..6ae1524
Binary files /dev/null and b/figs/detail_control_nyquist_robustness.png differ
diff --git a/figs/detail_control_robust_perf.pdf b/figs/detail_control_robust_perf.pdf
new file mode 100644
index 0000000..b12b3f4
Binary files /dev/null and b/figs/detail_control_robust_perf.pdf differ
diff --git a/figs/detail_control_robust_perf.png b/figs/detail_control_robust_perf.png
new file mode 100644
index 0000000..7d27d6d
Binary files /dev/null and b/figs/detail_control_robust_perf.png differ
diff --git a/figs/detail_control_sf_arch.pdf b/figs/detail_control_sf_arch.pdf
new file mode 100644
index 0000000..432d753
Binary files /dev/null and b/figs/detail_control_sf_arch.pdf differ
diff --git a/figs/detail_control_sf_arch.png b/figs/detail_control_sf_arch.png
new file mode 100644
index 0000000..9607600
Binary files /dev/null and b/figs/detail_control_sf_arch.png differ
diff --git a/figs/detail_control_sf_arch.svg b/figs/detail_control_sf_arch.svg
new file mode 100644
index 0000000..435cdb8
--- /dev/null
+++ b/figs/detail_control_sf_arch.svg
@@ -0,0 +1,201 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="201.963" height="131.323" viewBox="0 0 201.963 131.323">
+<defs>
+<g>
+<g id="glyph-0-0">
+<path d="M 8.0625 -2.984375 C 8.0625 -3.203125 7.875 -3.203125 7.6875 -3.203125 L 4.515625 -3.203125 L 4.515625 -6.375 C 4.515625 -6.546875 4.515625 -6.75 4.3125 -6.75 C 4.09375 -6.75 4.09375 -6.5625 4.09375 -6.375 L 4.09375 -3.203125 L 0.921875 -3.203125 C 0.75 -3.203125 0.546875 -3.203125 0.546875 -3 C 0.546875 -2.78125 0.75 -2.78125 0.921875 -2.78125 L 4.09375 -2.78125 L 4.09375 0.390625 C 4.09375 0.5625 4.09375 0.765625 4.296875 0.765625 C 4.515625 0.765625 4.515625 0.578125 4.515625 0.390625 L 4.515625 -2.78125 L 7.6875 -2.78125 C 7.859375 -2.78125 8.0625 -2.78125 8.0625 -2.984375 Z M 8.0625 -2.984375 "/>
+</g>
+<g id="glyph-1-0">
+<path d="M 6.875 -2.484375 C 6.875 -2.671875 6.6875 -2.671875 6.546875 -2.671875 L 1.15625 -2.671875 C 1.015625 -2.671875 0.828125 -2.671875 0.828125 -2.484375 C 0.828125 -2.28125 1.015625 -2.28125 1.15625 -2.28125 L 6.546875 -2.28125 C 6.6875 -2.28125 6.875 -2.28125 6.875 -2.484375 Z M 6.875 -2.484375 "/>
+</g>
+<g id="glyph-2-0">
+<path d="M 4.859375 -1.421875 C 4.859375 -1.515625 4.765625 -1.515625 4.734375 -1.515625 C 4.640625 -1.515625 4.625 -1.46875 4.59375 -1.34375 C 4.390625 -0.609375 4.171875 -0.109375 3.734375 -0.109375 C 3.546875 -0.109375 3.421875 -0.21875 3.421875 -0.578125 C 3.421875 -0.75 3.453125 -0.96875 3.5 -1.125 C 3.53125 -1.296875 3.53125 -1.34375 3.53125 -1.4375 C 3.53125 -2.078125 2.90625 -2.375 2.078125 -2.484375 C 2.375 -2.65625 2.6875 -2.96875 2.921875 -3.203125 C 3.390625 -3.734375 3.859375 -4.15625 4.34375 -4.15625 C 4.390625 -4.15625 4.40625 -4.15625 4.421875 -4.15625 C 4.546875 -4.125 4.5625 -4.125 4.640625 -4.078125 C 4.65625 -4.0625 4.65625 -4.046875 4.671875 -4.03125 C 4.203125 -4 4.109375 -3.609375 4.109375 -3.5 C 4.109375 -3.34375 4.21875 -3.15625 4.484375 -3.15625 C 4.75 -3.15625 5.03125 -3.375 5.03125 -3.75 C 5.03125 -4.046875 4.796875 -4.375 4.359375 -4.375 C 4.078125 -4.375 3.625 -4.296875 2.90625 -3.5 C 2.578125 -3.125 2.1875 -2.734375 1.8125 -2.578125 L 2.84375 -6.765625 C 2.84375 -6.765625 2.84375 -6.875 2.71875 -6.875 C 2.484375 -6.875 1.765625 -6.796875 1.5 -6.78125 C 1.421875 -6.765625 1.3125 -6.75 1.3125 -6.578125 C 1.3125 -6.453125 1.40625 -6.453125 1.5625 -6.453125 C 2.03125 -6.453125 2.046875 -6.390625 2.046875 -6.296875 L 2.015625 -6.09375 L 0.578125 -0.390625 C 0.546875 -0.25 0.546875 -0.234375 0.546875 -0.171875 C 0.546875 0.0625 0.75 0.109375 0.828125 0.109375 C 0.953125 0.109375 1.109375 0.015625 1.171875 -0.09375 C 1.21875 -0.1875 1.671875 -2.015625 1.71875 -2.265625 C 2.0625 -2.234375 2.875 -2.078125 2.875 -1.421875 C 2.875 -1.359375 2.875 -1.3125 2.84375 -1.21875 C 2.828125 -1.09375 2.796875 -0.984375 2.796875 -0.875 C 2.796875 -0.28125 3.203125 0.109375 3.71875 0.109375 C 4.015625 0.109375 4.28125 -0.046875 4.5 -0.421875 C 4.75 -0.859375 4.859375 -1.421875 4.859375 -1.421875 Z M 4.859375 -1.421875 "/>
+</g>
+<g id="glyph-2-1">
+<path d="M 7.140625 -2.59375 C 7.140625 -2.671875 7.09375 -2.703125 7.015625 -2.703125 C 6.78125 -2.703125 6.203125 -2.671875 5.96875 -2.671875 L 4.59375 -2.703125 C 4.5 -2.703125 4.375 -2.703125 4.375 -2.5 C 4.375 -2.390625 4.453125 -2.390625 4.671875 -2.390625 C 4.671875 -2.390625 4.96875 -2.390625 5.203125 -2.375 C 5.453125 -2.34375 5.515625 -2.3125 5.515625 -2.1875 C 5.515625 -2.09375 5.40625 -1.65625 5.296875 -1.28125 C 5.015625 -0.203125 3.734375 -0.09375 3.390625 -0.09375 C 2.4375 -0.09375 1.390625 -0.65625 1.390625 -2.171875 C 1.390625 -2.484375 1.5 -4.109375 2.53125 -5.40625 C 3.078125 -6.078125 4.03125 -6.671875 5.015625 -6.671875 C 6.015625 -6.671875 6.609375 -5.90625 6.609375 -4.765625 C 6.609375 -4.375 6.578125 -4.359375 6.578125 -4.265625 C 6.578125 -4.15625 6.6875 -4.15625 6.71875 -4.15625 C 6.859375 -4.15625 6.859375 -4.1875 6.90625 -4.359375 L 7.53125 -6.890625 C 7.53125 -6.921875 7.515625 -6.984375 7.421875 -6.984375 C 7.390625 -6.984375 7.375 -6.96875 7.265625 -6.859375 L 6.578125 -6.109375 C 6.484375 -6.234375 6.03125 -6.984375 4.9375 -6.984375 C 2.71875 -6.984375 0.5 -4.796875 0.5 -2.5 C 0.5 -0.921875 1.59375 0.21875 3.203125 0.21875 C 3.640625 0.21875 4.078125 0.125 4.4375 -0.015625 C 4.9375 -0.21875 5.125 -0.421875 5.296875 -0.625 C 5.390625 -0.375 5.640625 -0.015625 5.75 -0.015625 C 5.796875 -0.015625 5.8125 -0.046875 5.8125 -0.046875 C 5.828125 -0.0625 5.9375 -0.453125 5.984375 -0.65625 L 6.171875 -1.421875 C 6.21875 -1.578125 6.265625 -1.75 6.296875 -1.921875 C 6.40625 -2.375 6.421875 -2.390625 6.984375 -2.390625 C 7.03125 -2.390625 7.140625 -2.40625 7.140625 -2.59375 Z M 7.140625 -2.59375 "/>
+</g>
+<g id="glyph-2-2">
+<path d="M 7.109375 -0.203125 C 7.109375 -0.3125 7.03125 -0.3125 6.828125 -0.3125 C 6.46875 -0.3125 6.1875 -0.3125 6.1875 -0.484375 C 6.1875 -0.546875 6.21875 -0.59375 6.21875 -0.65625 L 7.5625 -6 C 7.640625 -6.359375 7.671875 -6.453125 8.390625 -6.453125 C 8.640625 -6.453125 8.734375 -6.453125 8.734375 -6.65625 C 8.734375 -6.765625 8.625 -6.765625 8.59375 -6.765625 L 7.328125 -6.734375 L 6.046875 -6.765625 C 5.96875 -6.765625 5.859375 -6.765625 5.859375 -6.5625 C 5.859375 -6.453125 5.9375 -6.453125 6.125 -6.453125 C 6.125 -6.453125 6.34375 -6.453125 6.515625 -6.4375 C 6.6875 -6.421875 6.78125 -6.40625 6.78125 -6.28125 C 6.78125 -6.234375 6.765625 -6.21875 6.734375 -6.09375 L 6.140625 -3.671875 L 3.125 -3.671875 L 3.703125 -6 C 3.796875 -6.359375 3.828125 -6.453125 4.53125 -6.453125 C 4.796875 -6.453125 4.875 -6.453125 4.875 -6.65625 C 4.875 -6.765625 4.765625 -6.765625 4.734375 -6.765625 L 3.46875 -6.734375 L 2.1875 -6.765625 C 2.109375 -6.765625 2 -6.765625 2 -6.5625 C 2 -6.453125 2.09375 -6.453125 2.28125 -6.453125 C 2.28125 -6.453125 2.484375 -6.453125 2.65625 -6.4375 C 2.828125 -6.421875 2.921875 -6.40625 2.921875 -6.28125 C 2.921875 -6.234375 2.90625 -6.21875 2.875 -6.09375 L 1.5625 -0.765625 C 1.453125 -0.390625 1.4375 -0.3125 0.65625 -0.3125 C 0.46875 -0.3125 0.390625 -0.3125 0.390625 -0.109375 C 0.390625 0 0.53125 0 0.53125 0 L 1.78125 -0.03125 L 2.421875 -0.015625 C 2.640625 -0.015625 2.859375 0 3.0625 0 C 3.140625 0 3.265625 0 3.265625 -0.203125 C 3.265625 -0.3125 3.171875 -0.3125 2.984375 -0.3125 C 2.609375 -0.3125 2.34375 -0.3125 2.34375 -0.484375 C 2.34375 -0.546875 2.359375 -0.59375 2.375 -0.65625 L 3.046875 -3.375 L 6.0625 -3.375 L 5.375 -0.640625 C 5.28125 -0.3125 5.09375 -0.3125 4.484375 -0.3125 C 4.328125 -0.3125 4.234375 -0.3125 4.234375 -0.109375 C 4.234375 0 4.375 0 4.375 0 L 5.640625 -0.03125 L 6.265625 -0.015625 C 6.484375 -0.015625 6.703125 0 6.921875 0 C 7 0 7.109375 0 7.109375 -0.203125 Z M 7.109375 -0.203125 "/>
+</g>
+<g id="glyph-2-3">
+<path d="M 5.375 -1.421875 C 5.375 -1.515625 5.296875 -1.515625 5.265625 -1.515625 C 5.15625 -1.515625 5.15625 -1.46875 5.125 -1.34375 C 4.984375 -0.78125 4.796875 -0.109375 4.375 -0.109375 C 4.171875 -0.109375 4.078125 -0.234375 4.078125 -0.5625 C 4.078125 -0.78125 4.1875 -1.25 4.265625 -1.59375 L 4.546875 -2.671875 C 4.578125 -2.8125 4.671875 -3.1875 4.71875 -3.34375 C 4.765625 -3.5625 4.859375 -3.9375 4.859375 -4 C 4.859375 -4.1875 4.71875 -4.265625 4.578125 -4.265625 C 4.53125 -4.265625 4.265625 -4.265625 4.1875 -3.921875 L 3.453125 -0.9375 C 3.4375 -0.90625 3.046875 -0.109375 2.3125 -0.109375 C 1.796875 -0.109375 1.703125 -0.5625 1.703125 -0.921875 C 1.703125 -1.46875 1.984375 -2.265625 2.234375 -2.9375 C 2.359375 -3.234375 2.40625 -3.375 2.40625 -3.5625 C 2.40625 -4.015625 2.09375 -4.375 1.59375 -4.375 C 0.65625 -4.375 0.28125 -2.9375 0.28125 -2.859375 C 0.28125 -2.75 0.40625 -2.75 0.40625 -2.75 C 0.5 -2.75 0.515625 -2.78125 0.5625 -2.9375 C 0.8125 -3.796875 1.1875 -4.15625 1.5625 -4.15625 C 1.65625 -4.15625 1.8125 -4.15625 1.8125 -3.828125 C 1.8125 -3.59375 1.703125 -3.3125 1.640625 -3.15625 C 1.28125 -2.171875 1.0625 -1.5625 1.0625 -1.078125 C 1.0625 -0.140625 1.75 0.109375 2.28125 0.109375 C 2.9375 0.109375 3.296875 -0.34375 3.46875 -0.5625 C 3.578125 -0.15625 3.921875 0.109375 4.34375 0.109375 C 4.703125 0.109375 4.921875 -0.125 5.078125 -0.4375 C 5.25 -0.796875 5.375 -1.421875 5.375 -1.421875 Z M 5.375 -1.421875 "/>
+</g>
+<g id="glyph-2-4">
+<path d="M 5.65625 -1.421875 C 5.65625 -1.515625 5.5625 -1.515625 5.53125 -1.515625 C 5.4375 -1.515625 5.4375 -1.484375 5.390625 -1.34375 C 5.1875 -0.65625 4.859375 -0.109375 4.375 -0.109375 C 4.203125 -0.109375 4.140625 -0.203125 4.140625 -0.4375 C 4.140625 -0.6875 4.234375 -0.921875 4.3125 -1.140625 C 4.5 -1.671875 4.921875 -2.75 4.921875 -3.3125 C 4.921875 -3.984375 4.5 -4.375 3.78125 -4.375 C 2.890625 -4.375 2.40625 -3.75 2.234375 -3.515625 C 2.1875 -4.078125 1.78125 -4.375 1.328125 -4.375 C 0.875 -4.375 0.6875 -4 0.578125 -3.8125 C 0.421875 -3.484375 0.28125 -2.890625 0.28125 -2.859375 C 0.28125 -2.75 0.40625 -2.75 0.40625 -2.75 C 0.5 -2.75 0.515625 -2.765625 0.578125 -2.984375 C 0.75 -3.6875 0.9375 -4.15625 1.296875 -4.15625 C 1.5 -4.15625 1.609375 -4.03125 1.609375 -3.703125 C 1.609375 -3.5 1.578125 -3.390625 1.453125 -2.875 L 0.875 -0.578125 C 0.84375 -0.4375 0.78125 -0.203125 0.78125 -0.15625 C 0.78125 0.015625 0.921875 0.109375 1.0625 0.109375 C 1.1875 0.109375 1.359375 0.03125 1.4375 -0.171875 C 1.453125 -0.1875 1.5625 -0.65625 1.625 -0.90625 L 1.84375 -1.796875 C 1.90625 -2.015625 1.96875 -2.234375 2.015625 -2.453125 L 2.140625 -2.953125 C 2.28125 -3.265625 2.8125 -4.15625 3.75 -4.15625 C 4.203125 -4.15625 4.296875 -3.796875 4.296875 -3.46875 C 4.296875 -2.859375 3.796875 -1.578125 3.640625 -1.15625 C 3.5625 -0.9375 3.546875 -0.8125 3.546875 -0.703125 C 3.546875 -0.234375 3.890625 0.109375 4.359375 0.109375 C 5.296875 0.109375 5.65625 -1.34375 5.65625 -1.421875 Z M 5.65625 -1.421875 "/>
+</g>
+<g id="glyph-2-5">
+<path d="M 4.8125 -3.78125 C 4.859375 -3.90625 4.859375 -3.9375 4.859375 -4 C 4.859375 -4.1875 4.71875 -4.265625 4.5625 -4.265625 C 4.46875 -4.265625 4.3125 -4.203125 4.21875 -4.0625 C 4.203125 -4.015625 4.125 -3.703125 4.078125 -3.53125 L 3.890625 -2.734375 L 3.4375 -0.953125 C 3.390625 -0.796875 2.96875 -0.109375 2.3125 -0.109375 C 1.8125 -0.109375 1.703125 -0.546875 1.703125 -0.90625 C 1.703125 -1.359375 1.875 -1.984375 2.203125 -2.859375 C 2.375 -3.265625 2.40625 -3.375 2.40625 -3.5625 C 2.40625 -4.015625 2.09375 -4.375 1.59375 -4.375 C 0.65625 -4.375 0.28125 -2.9375 0.28125 -2.859375 C 0.28125 -2.75 0.40625 -2.75 0.40625 -2.75 C 0.5 -2.75 0.515625 -2.78125 0.5625 -2.9375 C 0.828125 -3.859375 1.234375 -4.15625 1.5625 -4.15625 C 1.640625 -4.15625 1.8125 -4.15625 1.8125 -3.84375 C 1.8125 -3.59375 1.71875 -3.34375 1.640625 -3.15625 C 1.25 -2.09375 1.0625 -1.53125 1.0625 -1.0625 C 1.0625 -0.1875 1.6875 0.109375 2.28125 0.109375 C 2.671875 0.109375 3 -0.0625 3.28125 -0.34375 C 3.15625 0.171875 3.03125 0.65625 2.640625 1.1875 C 2.375 1.53125 2 1.8125 1.546875 1.8125 C 1.40625 1.8125 0.953125 1.78125 0.796875 1.390625 C 0.953125 1.390625 1.078125 1.390625 1.21875 1.28125 C 1.3125 1.1875 1.421875 1.0625 1.421875 0.875 C 1.421875 0.5625 1.15625 0.53125 1.046875 0.53125 C 0.828125 0.53125 0.5 0.6875 0.5 1.171875 C 0.5 1.671875 0.9375 2.03125 1.546875 2.03125 C 2.5625 2.03125 3.59375 1.125 3.859375 0.015625 Z M 4.8125 -3.78125 "/>
+</g>
+<g id="glyph-2-6">
+<path d="M 4.3125 -3.734375 C 4.3125 -4.078125 4 -4.375 3.5 -4.375 C 2.859375 -4.375 2.421875 -3.890625 2.234375 -3.609375 C 2.15625 -4.0625 1.796875 -4.375 1.328125 -4.375 C 0.875 -4.375 0.6875 -4 0.59375 -3.8125 C 0.421875 -3.484375 0.28125 -2.875 0.28125 -2.859375 C 0.28125 -2.75 0.40625 -2.75 0.40625 -2.75 C 0.5 -2.75 0.515625 -2.765625 0.578125 -2.984375 C 0.75 -3.6875 0.9375 -4.15625 1.296875 -4.15625 C 1.46875 -4.15625 1.609375 -4.078125 1.609375 -3.703125 C 1.609375 -3.5 1.578125 -3.390625 1.453125 -2.875 L 0.875 -0.578125 C 0.84375 -0.4375 0.78125 -0.203125 0.78125 -0.15625 C 0.78125 0.015625 0.921875 0.109375 1.0625 0.109375 C 1.1875 0.109375 1.359375 0.03125 1.4375 -0.171875 C 1.453125 -0.203125 1.796875 -1.5625 1.828125 -1.734375 L 2.15625 -3.015625 C 2.1875 -3.15625 2.46875 -3.609375 2.703125 -3.828125 C 2.78125 -3.90625 3.078125 -4.15625 3.5 -4.15625 C 3.75 -4.15625 3.90625 -4.046875 3.90625 -4.046875 C 3.609375 -4 3.390625 -3.75 3.390625 -3.5 C 3.390625 -3.34375 3.5 -3.15625 3.78125 -3.15625 C 4.046875 -3.15625 4.3125 -3.375 4.3125 -3.734375 Z M 4.3125 -3.734375 "/>
+</g>
+<g id="glyph-2-7">
+<path d="M 4.9375 -1.421875 C 4.9375 -1.515625 4.84375 -1.515625 4.8125 -1.515625 C 4.71875 -1.515625 4.703125 -1.46875 4.671875 -1.34375 C 4.5 -0.6875 4.328125 -0.109375 3.921875 -0.109375 C 3.65625 -0.109375 3.625 -0.359375 3.625 -0.5625 C 3.625 -0.796875 3.640625 -0.875 3.6875 -1.046875 L 5.109375 -6.765625 C 5.109375 -6.765625 5.109375 -6.875 4.984375 -6.875 C 4.828125 -6.875 3.890625 -6.78125 3.71875 -6.765625 C 3.640625 -6.75 3.59375 -6.703125 3.59375 -6.578125 C 3.59375 -6.453125 3.671875 -6.453125 3.828125 -6.453125 C 4.296875 -6.453125 4.3125 -6.390625 4.3125 -6.296875 L 4.296875 -6.09375 L 3.6875 -3.75 C 3.515625 -4.109375 3.234375 -4.375 2.78125 -4.375 C 1.625 -4.375 0.390625 -2.921875 0.390625 -1.46875 C 0.390625 -0.546875 0.9375 0.109375 1.71875 0.109375 C 1.90625 0.109375 2.40625 0.0625 3 -0.640625 C 3.078125 -0.21875 3.421875 0.109375 3.90625 0.109375 C 4.25 0.109375 4.484375 -0.125 4.640625 -0.4375 C 4.796875 -0.796875 4.9375 -1.421875 4.9375 -1.421875 Z M 3.546875 -3.125 L 3.046875 -1.171875 C 3 -1 3 -0.984375 2.859375 -0.8125 C 2.421875 -0.265625 2.015625 -0.109375 1.734375 -0.109375 C 1.234375 -0.109375 1.09375 -0.65625 1.09375 -1.046875 C 1.09375 -1.53125 1.421875 -2.75 1.640625 -3.203125 C 1.953125 -3.796875 2.390625 -4.15625 2.796875 -4.15625 C 3.4375 -4.15625 3.578125 -3.34375 3.578125 -3.28125 C 3.578125 -3.234375 3.5625 -3.171875 3.546875 -3.125 Z M 3.546875 -3.125 "/>
+</g>
+<g id="glyph-3-0">
+<path d="M 2.078125 -3.5 C 2.078125 -3.71875 1.890625 -3.875 1.671875 -3.875 C 1.390625 -3.875 1.3125 -3.65625 1.296875 -3.5625 L 0.375 -0.5625 L 0.328125 -0.4375 C 0.328125 -0.359375 0.546875 -0.28125 0.609375 -0.28125 C 0.65625 -0.28125 0.6875 -0.3125 0.703125 -0.390625 L 2.015625 -3.28125 C 2.046875 -3.34375 2.078125 -3.40625 2.078125 -3.5 Z M 2.078125 -3.5 "/>
+</g>
+<g id="glyph-4-0">
+<path d="M 5.53125 -0.140625 C 5.53125 -0.25 5.46875 -0.25 5.3125 -0.25 C 5.203125 -0.25 5.171875 -0.25 5.046875 -0.265625 C 4.890625 -0.28125 4.890625 -0.296875 4.890625 -0.375 C 4.890625 -0.40625 4.90625 -0.484375 4.921875 -0.515625 L 5.828125 -4.171875 C 5.890625 -4.4375 5.90625 -4.484375 6.421875 -4.484375 C 6.578125 -4.484375 6.65625 -4.484375 6.65625 -4.640625 C 6.65625 -4.671875 6.640625 -4.734375 6.546875 -4.734375 C 6.34375 -4.734375 5.84375 -4.703125 5.640625 -4.703125 C 5.515625 -4.703125 5.28125 -4.703125 5.15625 -4.71875 C 5.015625 -4.71875 4.859375 -4.734375 4.71875 -4.734375 C 4.6875 -4.734375 4.578125 -4.734375 4.578125 -4.578125 C 4.578125 -4.484375 4.65625 -4.484375 4.796875 -4.484375 C 4.796875 -4.484375 4.9375 -4.484375 5.0625 -4.46875 C 5.203125 -4.453125 5.21875 -4.453125 5.21875 -4.375 C 5.21875 -4.375 5.21875 -4.328125 5.203125 -4.21875 L 4.78125 -2.59375 L 2.46875 -2.59375 L 2.859375 -4.203125 C 2.921875 -4.4375 2.9375 -4.484375 3.46875 -4.484375 C 3.59375 -4.484375 3.6875 -4.484375 3.6875 -4.640625 C 3.6875 -4.671875 3.65625 -4.734375 3.578125 -4.734375 C 3.375 -4.734375 2.859375 -4.703125 2.65625 -4.703125 C 2.546875 -4.703125 2.296875 -4.703125 2.1875 -4.71875 C 2.046875 -4.71875 1.875 -4.734375 1.75 -4.734375 C 1.703125 -4.734375 1.609375 -4.734375 1.609375 -4.578125 C 1.609375 -4.484375 1.6875 -4.484375 1.828125 -4.484375 C 1.828125 -4.484375 1.96875 -4.484375 2.09375 -4.46875 C 2.234375 -4.453125 2.25 -4.453125 2.25 -4.375 C 2.25 -4.375 2.25 -4.328125 2.21875 -4.21875 L 1.296875 -0.546875 C 1.234375 -0.3125 1.234375 -0.25 0.6875 -0.25 C 0.5625 -0.25 0.484375 -0.25 0.484375 -0.109375 C 0.484375 -0.03125 0.53125 0 0.59375 0 C 0.796875 0 1.296875 -0.03125 1.484375 -0.03125 C 1.609375 -0.03125 1.859375 -0.03125 1.96875 -0.015625 C 2.109375 -0.015625 2.28125 0 2.421875 0 C 2.453125 0 2.5625 0 2.5625 -0.140625 C 2.5625 -0.25 2.484375 -0.25 2.328125 -0.25 C 2.21875 -0.25 2.1875 -0.25 2.0625 -0.265625 C 1.921875 -0.28125 1.921875 -0.296875 1.921875 -0.375 C 1.921875 -0.375 1.921875 -0.421875 1.9375 -0.515625 L 2.40625 -2.34375 L 4.71875 -2.34375 L 4.28125 -0.546875 C 4.21875 -0.3125 4.203125 -0.25 3.65625 -0.25 C 3.546875 -0.25 3.453125 -0.25 3.453125 -0.109375 C 3.453125 -0.03125 3.5 0 3.5625 0 C 3.765625 0 4.265625 -0.03125 4.46875 -0.03125 C 4.578125 -0.03125 4.828125 -0.03125 4.953125 -0.015625 C 5.078125 -0.015625 5.265625 0 5.390625 0 C 5.421875 0 5.53125 0 5.53125 -0.140625 Z M 5.53125 -0.140625 "/>
+</g>
+<g id="glyph-4-1">
+<path d="M 5 -1.734375 C 5 -1.75 4.984375 -1.828125 4.890625 -1.828125 C 4.796875 -1.828125 4.78125 -1.796875 4.75 -1.671875 C 4.484375 -1.015625 4.171875 -0.25 2.90625 -0.25 L 2.125 -0.25 C 1.90625 -0.25 1.90625 -0.25 1.90625 -0.3125 C 1.90625 -0.3125 1.90625 -0.359375 1.921875 -0.46875 L 2.859375 -4.171875 C 2.921875 -4.421875 2.9375 -4.484375 3.578125 -4.484375 C 3.796875 -4.484375 3.859375 -4.484375 3.859375 -4.640625 C 3.859375 -4.640625 3.859375 -4.734375 3.75 -4.734375 C 3.59375 -4.734375 3.40625 -4.71875 3.234375 -4.71875 L 2.671875 -4.703125 L 2.203125 -4.71875 C 2.046875 -4.71875 1.890625 -4.734375 1.75 -4.734375 C 1.703125 -4.734375 1.609375 -4.734375 1.609375 -4.578125 C 1.609375 -4.484375 1.6875 -4.484375 1.828125 -4.484375 C 1.828125 -4.484375 1.96875 -4.484375 2.09375 -4.46875 C 2.234375 -4.453125 2.25 -4.453125 2.25 -4.375 C 2.25 -4.375 2.25 -4.328125 2.21875 -4.21875 L 1.296875 -0.546875 C 1.234375 -0.3125 1.21875 -0.25 0.6875 -0.25 C 0.5625 -0.25 0.484375 -0.25 0.484375 -0.109375 C 0.484375 0 0.5625 0 0.6875 0 L 4.171875 0 C 4.34375 0 4.359375 0 4.40625 -0.140625 C 4.484375 -0.328125 5 -1.671875 5 -1.734375 Z M 5 -1.734375 "/>
+</g>
+<g id="glyph-4-2">
+<path d="M 6.6875 -0.984375 C 6.6875 -1.078125 6.609375 -1.078125 6.578125 -1.078125 C 6.484375 -1.078125 6.484375 -1.046875 6.453125 -0.96875 C 6.296875 -0.40625 6 -0.125 5.71875 -0.125 C 5.578125 -0.125 5.546875 -0.21875 5.546875 -0.375 C 5.546875 -0.53125 5.578125 -0.625 5.703125 -0.921875 C 5.78125 -1.140625 6.078125 -1.875 6.078125 -2.265625 C 6.078125 -2.375 6.078125 -2.671875 5.8125 -2.875 C 5.703125 -2.96875 5.5 -3.0625 5.171875 -3.0625 C 4.546875 -3.0625 4.15625 -2.65625 3.9375 -2.359375 C 3.890625 -2.953125 3.390625 -3.0625 3.03125 -3.0625 C 2.46875 -3.0625 2.078125 -2.703125 1.859375 -2.421875 C 1.8125 -2.90625 1.40625 -3.0625 1.125 -3.0625 C 0.828125 -3.0625 0.671875 -2.84375 0.578125 -2.6875 C 0.421875 -2.421875 0.328125 -2.03125 0.328125 -2 C 0.328125 -1.90625 0.421875 -1.90625 0.4375 -1.90625 C 0.546875 -1.90625 0.546875 -1.921875 0.59375 -2.109375 C 0.703125 -2.53125 0.828125 -2.859375 1.109375 -2.859375 C 1.28125 -2.859375 1.328125 -2.71875 1.328125 -2.53125 C 1.328125 -2.390625 1.265625 -2.140625 1.21875 -1.953125 L 1.0625 -1.328125 L 0.84375 -0.4375 C 0.8125 -0.34375 0.78125 -0.171875 0.78125 -0.15625 C 0.78125 0 0.90625 0.0625 1.015625 0.0625 C 1.140625 0.0625 1.25 -0.015625 1.28125 -0.078125 C 1.3125 -0.140625 1.375 -0.375 1.40625 -0.515625 L 1.5625 -1.140625 C 1.609375 -1.296875 1.640625 -1.4375 1.671875 -1.609375 C 1.75 -1.890625 1.765625 -1.9375 1.96875 -2.234375 C 2.171875 -2.5 2.484375 -2.859375 3.015625 -2.859375 C 3.40625 -2.859375 3.421875 -2.515625 3.421875 -2.375 C 3.421875 -2.203125 3.40625 -2.109375 3.296875 -1.734375 L 3.015625 -0.5625 C 2.96875 -0.421875 2.90625 -0.1875 2.90625 -0.15625 C 2.90625 0 3.03125 0.0625 3.15625 0.0625 C 3.28125 0.0625 3.390625 -0.015625 3.421875 -0.078125 C 3.453125 -0.140625 3.515625 -0.375 3.546875 -0.515625 L 3.703125 -1.140625 C 3.734375 -1.296875 3.78125 -1.4375 3.8125 -1.609375 C 3.890625 -1.90625 3.890625 -1.921875 4.03125 -2.125 C 4.25 -2.46875 4.59375 -2.859375 5.140625 -2.859375 C 5.53125 -2.859375 5.546875 -2.546875 5.546875 -2.375 C 5.546875 -1.96875 5.25 -1.1875 5.140625 -0.90625 C 5.0625 -0.703125 5.03125 -0.640625 5.03125 -0.53125 C 5.03125 -0.15625 5.34375 0.0625 5.703125 0.0625 C 6.390625 0.0625 6.6875 -0.890625 6.6875 -0.984375 Z M 6.6875 -0.984375 "/>
+</g>
+<g id="glyph-4-3">
+<path d="M 3.859375 -2.609375 C 3.890625 -2.71875 3.890625 -2.71875 3.890625 -2.765625 C 3.890625 -2.90625 3.78125 -2.984375 3.65625 -2.984375 C 3.578125 -2.984375 3.453125 -2.953125 3.375 -2.828125 C 3.34375 -2.78125 3.296875 -2.5625 3.265625 -2.421875 L 3.109375 -1.84375 L 2.84375 -0.734375 C 2.84375 -0.734375 2.53125 -0.125 1.984375 -0.125 C 1.515625 -0.125 1.515625 -0.578125 1.515625 -0.703125 C 1.515625 -1.078125 1.671875 -1.515625 1.875 -2.046875 C 1.96875 -2.265625 2 -2.359375 2 -2.46875 C 2 -2.796875 1.71875 -3.0625 1.34375 -3.0625 C 0.640625 -3.0625 0.328125 -2.109375 0.328125 -2 C 0.328125 -1.90625 0.421875 -1.90625 0.4375 -1.90625 C 0.546875 -1.90625 0.546875 -1.9375 0.5625 -2.015625 C 0.75 -2.59375 1.046875 -2.859375 1.3125 -2.859375 C 1.4375 -2.859375 1.484375 -2.78125 1.484375 -2.625 C 1.484375 -2.46875 1.421875 -2.3125 1.390625 -2.21875 C 1.0625 -1.375 0.984375 -1.109375 0.984375 -0.8125 C 0.984375 -0.6875 0.984375 -0.375 1.265625 -0.140625 C 1.484375 0.03125 1.765625 0.0625 1.953125 0.0625 C 2.234375 0.0625 2.484375 -0.03125 2.71875 -0.25 C 2.625 0.140625 2.546875 0.4375 2.25 0.78125 C 2.0625 0.984375 1.796875 1.21875 1.421875 1.21875 C 1.375 1.21875 1.046875 1.21875 0.90625 0.984375 C 1.28125 0.953125 1.28125 0.609375 1.28125 0.609375 C 1.28125 0.390625 1.078125 0.34375 1 0.34375 C 0.828125 0.34375 0.609375 0.484375 0.609375 0.8125 C 0.609375 1.15625 0.9375 1.421875 1.421875 1.421875 C 2.125 1.421875 2.984375 0.875 3.203125 0 Z M 3.859375 -2.609375 "/>
+</g>
+</g>
+<clipPath id="clip-0">
+<path clip-rule="nonzero" d="M 71 100 L 114 100 L 114 130.648438 L 71 130.648438 Z M 71 100 "/>
+</clipPath>
+<clipPath id="clip-1">
+<path clip-rule="nonzero" d="M 109 112 L 133 112 L 133 130.648438 L 109 130.648438 Z M 109 112 "/>
+</clipPath>
+<clipPath id="clip-2">
+<path clip-rule="nonzero" d="M 152 100 L 195 100 L 195 130.648438 L 152 130.648438 Z M 152 100 "/>
+</clipPath>
+<clipPath id="clip-3">
+<path clip-rule="nonzero" d="M 86 105 L 120 105 L 120 130.648438 L 86 130.648438 Z M 86 105 "/>
+</clipPath>
+<clipPath id="clip-4">
+<path clip-rule="nonzero" d="M 168 105 L 201 105 L 201 130.648438 L 168 130.648438 Z M 168 105 "/>
+</clipPath>
+<clipPath id="clip-5">
+<path clip-rule="nonzero" d="M 180 11 L 201.425781 11 L 201.425781 44 L 180 44 Z M 180 11 "/>
+</clipPath>
+<clipPath id="clip-6">
+<path clip-rule="nonzero" d="M 0.5 27 L 18 27 L 18 29 L 0.5 29 Z M 0.5 27 "/>
+</clipPath>
+<clipPath id="clip-7">
+<path clip-rule="nonzero" d="M 120 105 L 153 105 L 153 130.648438 L 120 130.648438 Z M 120 105 "/>
+</clipPath>
+</defs>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.974289 -0.000529823 C 6.974289 3.851256 3.852811 6.972735 0.00102479 6.972735 C -3.850761 6.972735 -6.97224 3.851256 -6.97224 -0.000529823 C -6.97224 -3.852316 -3.850761 -6.973794 0.00102479 -6.973794 C 3.852811 -6.973794 6.974289 -3.852316 6.974289 -0.000529823 Z M 6.974289 -0.000529823 " transform="matrix(0.994871, 0, 0, -0.994871, 28.170855, 27.671348)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-0" x="23.856099" y="30.573387"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-1-0" x="18.479815" y="42.373555"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 24.482052 -8.505085 L 47.15694 -8.505085 L 47.15694 8.504026 L 24.482052 8.504026 Z M 24.482052 -8.505085 " transform="matrix(0.994871, 0, 0, -0.994871, 28.170855, 27.671348)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-0" x="61.070252" y="31.113602"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 82.168538 -8.505085 L 104.847353 -8.505085 L 104.847353 8.504026 L 82.168538 8.504026 Z M 82.168538 -8.505085 " transform="matrix(0.994871, 0, 0, -0.994871, 28.170855, 27.671348)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-1" x="115.912527" y="31.397141"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-3-0" x="123.705353" y="27.800681"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 136.301644 -0.000529823 C 136.301644 3.851256 133.180166 6.972735 129.32838 6.972735 C 125.476594 6.972735 122.355115 3.851256 122.355115 -0.000529823 C 122.355115 -3.852316 125.476594 -6.973794 129.32838 -6.973794 C 133.180166 -6.973794 136.301644 -3.852316 136.301644 -0.000529823 Z M 136.301644 -0.000529823 " transform="matrix(0.994871, 0, 0, -0.994871, 28.170855, 27.671348)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-0" x="152.518813" y="30.573387"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 53.325295 -34.513477 L 76.00411 -34.513477 L 76.00411 -17.508292 L 53.325295 -17.508292 Z M 53.325295 -34.513477 " transform="matrix(0.994871, 0, 0, -0.994871, 28.170855, 27.671348)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-1" x="88.606297" y="56.93449"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 53.325295 -69.529002 L 76.00411 -69.529002 L 76.00411 -52.51989 L 53.325295 -52.51989 Z M 53.325295 -69.529002 " transform="matrix(0.994871, 0, 0, -0.994871, 28.170855, 27.671348)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-2" x="84.624822" y="91.024747"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-4-0" x="92.863351" y="92.511084"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" d="M 99.441406 121.195312 C 99.441406 117.363281 96.335938 114.257812 92.503906 114.257812 C 88.671875 114.257812 85.566406 117.363281 85.566406 121.195312 C 85.566406 125.027344 88.671875 128.136719 92.503906 128.136719 C 96.335938 128.136719 99.441406 125.027344 99.441406 121.195312 Z M 99.441406 121.195312 "/>
+<g clip-path="url(#clip-0)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 71.637967 -94.006102 C 71.637967 -90.154316 68.516489 -87.032838 64.664702 -87.032838 C 60.812916 -87.032838 57.691438 -90.154316 57.691438 -94.006102 C 57.691438 -97.857888 60.812916 -100.983293 64.664702 -100.983293 C 68.516489 -100.983293 71.637967 -97.857888 71.637967 -94.006102 Z M 71.637967 -94.006102 " transform="matrix(0.994871, 0, 0, -0.994871, 28.170855, 27.671348)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-0" x="88.187456" y="124.09725"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" d="M 109.917969 129.65625 L 132.480469 129.65625 L 132.480469 112.738281 L 109.917969 112.738281 Z M 109.917969 129.65625 "/>
+<g clip-path="url(#clip-1)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 82.168538 -102.510658 L 104.847353 -102.510658 L 104.847353 -85.505473 L 82.168538 -85.505473 Z M 82.168538 -102.510658 " transform="matrix(0.994871, 0, 0, -0.994871, 28.170855, 27.671348)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-2" x="114.112805" y="123.839579"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-4-1" x="122.352329" y="125.325916"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" d="M 180.695312 121.195312 C 180.695312 117.363281 177.589844 114.257812 173.757812 114.257812 C 169.925781 114.257812 166.816406 117.363281 166.816406 121.195312 C 166.816406 125.027344 169.925781 128.136719 173.757812 128.136719 C 177.589844 128.136719 180.695312 125.027344 180.695312 121.195312 Z M 180.695312 121.195312 "/>
+<g clip-path="url(#clip-2)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 153.310755 -94.006102 C 153.310755 -90.154316 150.189277 -87.032838 146.337491 -87.032838 C 142.485705 -87.032838 139.3603 -90.154316 139.3603 -94.006102 C 139.3603 -97.857888 142.485705 -100.983293 146.337491 -100.983293 C 150.189277 -100.983293 153.310755 -97.857888 153.310755 -94.006102 Z M 153.310755 -94.006102 " transform="matrix(0.994871, 0, 0, -0.994871, 28.170855, 27.671348)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-0" x="169.439583" y="124.09725"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.974289 -0.000529823 L 19.350263 -0.000529823 " transform="matrix(0.994871, 0, 0, -0.994871, 28.170855, 27.671348)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.051978 -0.000529823 L 1.607307 1.68389 L 3.087555 -0.000529823 L 1.607307 -1.68495 Z M 6.051978 -0.000529823 " transform="matrix(0.994871, 0, 0, -0.994871, 44.596249, 27.671348)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 47.655591 -0.000529823 L 77.03675 -0.000529823 " transform="matrix(0.994871, 0, 0, -0.994871, 28.170855, 27.671348)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.052511 -0.000529823 L 1.60784 1.68389 L 3.088088 -0.000529823 L 1.60784 -1.68495 Z M 6.052511 -0.000529823 " transform="matrix(0.994871, 0, 0, -0.994871, 101.99025, 27.671348)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-3" x="99.949819" y="23.87293"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 64.664702 -0.000529823 L 64.664702 -12.376504 " transform="matrix(0.994871, 0, 0, -0.994871, 28.170855, 27.671348)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.052129 0.000712322 L 1.607458 1.681206 L 3.087706 0.000712322 L 1.607458 -1.683708 Z M 6.052129 0.000712322 " transform="matrix(0, 0.994871, 0.994871, 0, 92.503198, 37.158599)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 94.484375 27.671875 C 94.484375 26.578125 93.597656 25.6875 92.503906 25.6875 C 91.410156 25.6875 90.519531 26.578125 90.519531 27.671875 C 90.519531 28.765625 91.410156 29.652344 92.503906 29.652344 C 93.597656 29.652344 94.484375 28.765625 94.484375 27.671875 Z M 94.484375 27.671875 "/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 64.664702 -35.012128 L 64.664702 -47.388102 " transform="matrix(0.994871, 0, 0, -0.994871, 28.170855, 27.671348)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.054883 0.000712322 L 1.610213 1.681206 L 3.086534 0.000712322 L 1.610213 -1.683708 Z M 6.054883 0.000712322 " transform="matrix(0, 0.994871, 0.994871, 0, 92.503198, 71.991796)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 64.664702 -70.023726 L 64.664702 -82.3997 " transform="matrix(0.994871, 0, 0, -0.994871, 28.170855, 27.671348)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053712 0.000712322 L 1.609041 1.681206 L 3.089289 0.000712322 L 1.609041 -1.683708 Z M 6.053712 0.000712322 " transform="matrix(0, 0.994871, 0.994871, 0, 92.503198, 106.824993)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 81.673813 -94.006102 L 76.271104 -94.006102 " transform="matrix(0.994871, 0, 0, -0.994871, 28.170855, 27.671348)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 100.851562 121.195312 L 105.273438 122.871094 L 103.804688 121.195312 L 105.273438 119.523438 Z M 100.851562 121.195312 "/>
+<g clip-path="url(#clip-3)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.054577 -0.00158804 L 1.609907 1.682832 L 3.086228 -0.00158804 L 1.609907 -1.682082 Z M 6.054577 -0.00158804 " transform="matrix(-0.994871, 0, 0, 0.994871, 106.875087, 121.196892)"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 57.691438 -94.006102 L 0.00102479 -94.006102 L 0.00102479 -11.606932 " transform="matrix(0.994871, 0, 0, -0.994871, 28.170855, 27.671348)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.05475 -0.00102479 L 1.610079 1.683395 L 3.086401 -0.00102479 L 1.610079 -1.681519 Z M 6.05475 -0.00102479 " transform="matrix(0, -0.994871, -0.994871, 0, 28.170855, 42.043228)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 105.346004 -0.000529823 L 117.721978 -0.000529823 " transform="matrix(0.994871, 0, 0, -0.994871, 28.170855, 27.671348)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.051763 -0.000529823 L 1.607092 1.68389 L 3.087341 -0.000529823 L 1.607092 -1.68495 Z M 6.051763 -0.000529823 " transform="matrix(0.994871, 0, 0, -0.994871, 142.46365, 27.671348)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 157.943893 -94.006102 L 173.150792 -94.006102 " transform="matrix(0.994871, 0, 0, -0.994871, 28.170855, 27.671348)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 182.105469 121.195312 L 186.527344 122.871094 L 185.054688 121.195312 L 186.527344 119.523438 Z M 182.105469 121.195312 "/>
+<g clip-path="url(#clip-4)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053599 -0.00158804 L 1.608928 1.682832 L 3.089176 -0.00158804 L 1.608928 -1.682082 Z M 6.053599 -0.00158804 " transform="matrix(-0.994871, 0, 0, 0.994871, 188.12802, 121.196892)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-4" x="190.685058" y="117.396793"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 136.301644 -0.000529823 L 168.517655 -0.000529823 " transform="matrix(0.994871, 0, 0, -0.994871, 28.170855, 27.671348)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 199.023438 27.671875 L 194.601562 25.996094 L 196.074219 27.671875 L 194.601562 29.347656 Z M 199.023438 27.671875 "/>
+<g clip-path="url(#clip-5)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053066 -0.000529823 L 1.608395 1.68389 L 3.088643 -0.000529823 L 1.608395 -1.68495 Z M 6.053066 -0.000529823 " transform="matrix(0.994871, 0, 0, -0.994871, 193.001416, 27.671348)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-5" x="191.419273" y="21.945864"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 146.337491 -0.000529823 L 146.337491 -82.3997 " transform="matrix(0.994871, 0, 0, -0.994871, 28.170855, 27.671348)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053712 0.00169098 L 1.609041 1.682185 L 3.089289 0.00169098 L 1.609041 -1.682729 Z M 6.053712 0.00169098 " transform="matrix(0, 0.994871, 0.994871, 0, 173.75613, 106.824993)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 175.738281 27.671875 C 175.738281 26.578125 174.851562 25.6875 173.757812 25.6875 C 172.660156 25.6875 171.773438 26.578125 171.773438 27.671875 C 171.773438 28.765625 172.660156 29.652344 173.757812 29.652344 C 174.851562 29.652344 175.738281 28.765625 175.738281 27.671875 Z M 175.738281 27.671875 "/>
+<g clip-path="url(#clip-6)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -11.609303 -0.000529823 L -26.816203 -0.000529823 " transform="matrix(0.994871, 0, 0, -0.994871, 28.170855, 27.671348)"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.052378 -0.000529823 L 1.607707 1.68389 L 3.087955 -0.000529823 L 1.607707 -1.68495 Z M 6.052378 -0.000529823 " transform="matrix(0.994871, 0, 0, -0.994871, 13.798976, 27.671348)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-6" x="5.291802" y="23.87293"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 139.3603 -94.006102 L 109.979142 -94.006102 " transform="matrix(0.994871, 0, 0, -0.994871, 28.170855, 27.671348)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 134.386719 121.195312 L 138.808594 122.871094 L 137.339844 121.195312 L 138.808594 119.523438 Z M 134.386719 121.195312 "/>
+<g clip-path="url(#clip-7)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.05447 -0.00158804 L 1.609799 1.682832 L 3.086121 -0.00158804 L 1.609799 -1.682082 Z M 6.05447 -0.00158804 " transform="matrix(-0.994871, 0, 0, 0.994871, 140.410136, 121.196892)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-5" x="136.773982" y="115.469727"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-4-2" x="141.633927" y="116.956065"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 129.32838 11.605872 L 129.32838 26.816698 " transform="matrix(0.994871, 0, 0, -0.994871, 28.170855, 27.671348)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.051893 0.000409857 L 1.607222 1.68483 L 3.08747 0.000409857 L 1.607222 -1.68401 Z M 6.051893 0.000409857 " transform="matrix(0, 0.994871, 0.994871, 0, 156.83553, 13.299458)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-7" x="160.632983" y="11.674814"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-4-3" x="165.792385" y="13.162146"/>
+</g>
+</svg>
diff --git a/figs/detail_control_sf_arch_class.pdf b/figs/detail_control_sf_arch_class.pdf
new file mode 100644
index 0000000..efc07f9
Binary files /dev/null and b/figs/detail_control_sf_arch_class.pdf differ
diff --git a/figs/detail_control_sf_arch_class.png b/figs/detail_control_sf_arch_class.png
new file mode 100644
index 0000000..1a77087
Binary files /dev/null and b/figs/detail_control_sf_arch_class.png differ
diff --git a/figs/detail_control_sf_arch_class.svg b/figs/detail_control_sf_arch_class.svg
new file mode 100644
index 0000000..ad16d83
--- /dev/null
+++ b/figs/detail_control_sf_arch_class.svg
@@ -0,0 +1,142 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="191.983" height="75.525" viewBox="0 0 191.983 75.525">
+<defs>
+<g>
+<g id="glyph-0-0">
+<path d="M 8.0625 -2.984375 C 8.0625 -3.203125 7.859375 -3.203125 7.6875 -3.203125 L 4.515625 -3.203125 L 4.515625 -6.375 C 4.515625 -6.53125 4.515625 -6.734375 4.3125 -6.734375 C 4.09375 -6.734375 4.09375 -6.546875 4.09375 -6.375 L 4.09375 -3.203125 L 0.921875 -3.203125 C 0.75 -3.203125 0.546875 -3.203125 0.546875 -3 C 0.546875 -2.78125 0.734375 -2.78125 0.921875 -2.78125 L 4.09375 -2.78125 L 4.09375 0.390625 C 4.09375 0.5625 4.09375 0.765625 4.296875 0.765625 C 4.515625 0.765625 4.515625 0.578125 4.515625 0.390625 L 4.515625 -2.78125 L 7.6875 -2.78125 C 7.859375 -2.78125 8.0625 -2.78125 8.0625 -2.984375 Z M 8.0625 -2.984375 "/>
+</g>
+<g id="glyph-1-0">
+<path d="M 6.875 -2.484375 C 6.875 -2.671875 6.6875 -2.671875 6.546875 -2.671875 L 1.15625 -2.671875 C 1.015625 -2.671875 0.828125 -2.671875 0.828125 -2.484375 C 0.828125 -2.28125 1.015625 -2.28125 1.15625 -2.28125 L 6.546875 -2.28125 C 6.6875 -2.28125 6.875 -2.28125 6.875 -2.484375 Z M 6.875 -2.484375 "/>
+</g>
+<g id="glyph-2-0">
+<path d="M 7.328125 -0.203125 C 7.328125 -0.3125 7.21875 -0.3125 7.125 -0.3125 C 6.71875 -0.3125 6.59375 -0.40625 6.453125 -0.75 L 5.046875 -4 C 5.03125 -4.03125 5 -4.109375 5 -4.140625 C 5 -4.140625 5.171875 -4.296875 5.28125 -4.375 L 7.015625 -5.703125 C 7.9375 -6.390625 8.328125 -6.421875 8.625 -6.453125 C 8.703125 -6.46875 8.8125 -6.484375 8.8125 -6.65625 C 8.8125 -6.703125 8.78125 -6.765625 8.703125 -6.765625 C 8.484375 -6.765625 8.234375 -6.734375 8 -6.734375 C 7.640625 -6.734375 7.25 -6.765625 6.890625 -6.765625 C 6.828125 -6.765625 6.703125 -6.765625 6.703125 -6.5625 C 6.703125 -6.5 6.75 -6.46875 6.828125 -6.453125 C 7.046875 -6.4375 7.125 -6.390625 7.125 -6.25 C 7.125 -6.078125 6.828125 -5.84375 6.78125 -5.796875 L 2.90625 -2.828125 L 3.703125 -6 C 3.796875 -6.359375 3.8125 -6.453125 4.53125 -6.453125 C 4.78125 -6.453125 4.875 -6.453125 4.875 -6.65625 C 4.875 -6.75 4.796875 -6.765625 4.734375 -6.765625 L 3.46875 -6.734375 L 2.1875 -6.765625 C 2.125 -6.765625 1.984375 -6.765625 1.984375 -6.578125 C 1.984375 -6.453125 2.078125 -6.453125 2.28125 -6.453125 C 2.40625 -6.453125 2.578125 -6.453125 2.703125 -6.4375 C 2.859375 -6.421875 2.921875 -6.390625 2.921875 -6.28125 C 2.921875 -6.234375 2.90625 -6.21875 2.875 -6.09375 L 1.5625 -0.765625 C 1.453125 -0.390625 1.4375 -0.3125 0.65625 -0.3125 C 0.484375 -0.3125 0.375 -0.3125 0.375 -0.125 C 0.375 0 0.5 0 0.53125 0 L 1.78125 -0.03125 L 2.421875 -0.015625 C 2.640625 -0.015625 2.859375 0 3.0625 0 C 3.125 0 3.265625 0 3.265625 -0.203125 C 3.265625 -0.3125 3.171875 -0.3125 2.984375 -0.3125 C 2.609375 -0.3125 2.34375 -0.3125 2.34375 -0.484375 C 2.34375 -0.5625 2.390625 -0.765625 2.421875 -0.921875 L 2.828125 -2.484375 L 4.296875 -3.625 L 5.453125 -0.953125 C 5.5625 -0.6875 5.5625 -0.671875 5.5625 -0.609375 C 5.5625 -0.3125 5.140625 -0.3125 5.046875 -0.3125 C 4.9375 -0.3125 4.828125 -0.3125 4.828125 -0.109375 C 4.828125 0 4.96875 0 4.96875 0 C 5.375 0 5.78125 -0.03125 6.1875 -0.03125 C 6.40625 -0.03125 6.9375 0 7.15625 0 C 7.203125 0 7.328125 0 7.328125 -0.203125 Z M 7.328125 -0.203125 "/>
+</g>
+<g id="glyph-2-1">
+<path d="M 7.140625 -2.59375 C 7.140625 -2.671875 7.09375 -2.703125 7.015625 -2.703125 C 6.78125 -2.703125 6.203125 -2.671875 5.96875 -2.671875 L 4.59375 -2.703125 C 4.5 -2.703125 4.375 -2.703125 4.375 -2.5 C 4.375 -2.390625 4.453125 -2.390625 4.671875 -2.390625 C 4.671875 -2.390625 4.96875 -2.390625 5.203125 -2.375 C 5.453125 -2.34375 5.515625 -2.3125 5.515625 -2.1875 C 5.515625 -2.09375 5.40625 -1.65625 5.296875 -1.28125 C 5.015625 -0.203125 3.734375 -0.09375 3.390625 -0.09375 C 2.4375 -0.09375 1.390625 -0.65625 1.390625 -2.171875 C 1.390625 -2.484375 1.5 -4.109375 2.53125 -5.40625 C 3.078125 -6.078125 4.03125 -6.671875 5.015625 -6.671875 C 6.015625 -6.671875 6.609375 -5.90625 6.609375 -4.765625 C 6.609375 -4.375 6.578125 -4.359375 6.578125 -4.265625 C 6.578125 -4.15625 6.6875 -4.15625 6.71875 -4.15625 C 6.859375 -4.15625 6.859375 -4.1875 6.90625 -4.359375 L 7.53125 -6.890625 C 7.53125 -6.921875 7.515625 -6.984375 7.421875 -6.984375 C 7.390625 -6.984375 7.375 -6.96875 7.265625 -6.859375 L 6.578125 -6.109375 C 6.484375 -6.234375 6.03125 -6.984375 4.9375 -6.984375 C 2.71875 -6.984375 0.5 -4.796875 0.5 -2.5 C 0.5 -0.921875 1.59375 0.21875 3.203125 0.21875 C 3.640625 0.21875 4.078125 0.125 4.4375 -0.015625 C 4.9375 -0.21875 5.125 -0.421875 5.296875 -0.625 C 5.390625 -0.375 5.640625 -0.015625 5.75 -0.015625 C 5.796875 -0.015625 5.8125 -0.046875 5.8125 -0.046875 C 5.828125 -0.0625 5.9375 -0.453125 5.984375 -0.65625 L 6.171875 -1.421875 C 6.21875 -1.578125 6.265625 -1.75 6.296875 -1.921875 C 6.40625 -2.375 6.421875 -2.390625 6.984375 -2.390625 C 7.03125 -2.390625 7.140625 -2.40625 7.140625 -2.59375 Z M 7.140625 -2.59375 "/>
+</g>
+<g id="glyph-2-2">
+<path d="M 7.109375 -0.203125 C 7.109375 -0.3125 7.03125 -0.3125 6.828125 -0.3125 C 6.46875 -0.3125 6.1875 -0.3125 6.1875 -0.484375 C 6.1875 -0.546875 6.21875 -0.59375 6.21875 -0.65625 L 7.5625 -6 C 7.640625 -6.359375 7.671875 -6.453125 8.390625 -6.453125 C 8.640625 -6.453125 8.734375 -6.453125 8.734375 -6.65625 C 8.734375 -6.765625 8.625 -6.765625 8.59375 -6.765625 L 7.328125 -6.734375 L 6.046875 -6.765625 C 5.96875 -6.765625 5.859375 -6.765625 5.859375 -6.5625 C 5.859375 -6.453125 5.9375 -6.453125 6.125 -6.453125 C 6.125 -6.453125 6.34375 -6.453125 6.515625 -6.4375 C 6.6875 -6.421875 6.78125 -6.40625 6.78125 -6.28125 C 6.78125 -6.234375 6.765625 -6.21875 6.734375 -6.09375 L 6.140625 -3.671875 L 3.125 -3.671875 L 3.703125 -6 C 3.796875 -6.359375 3.828125 -6.453125 4.53125 -6.453125 C 4.796875 -6.453125 4.875 -6.453125 4.875 -6.65625 C 4.875 -6.765625 4.765625 -6.765625 4.734375 -6.765625 L 3.46875 -6.734375 L 2.1875 -6.765625 C 2.109375 -6.765625 2 -6.765625 2 -6.5625 C 2 -6.453125 2.09375 -6.453125 2.28125 -6.453125 C 2.28125 -6.453125 2.484375 -6.453125 2.65625 -6.4375 C 2.828125 -6.421875 2.921875 -6.40625 2.921875 -6.28125 C 2.921875 -6.234375 2.90625 -6.21875 2.875 -6.09375 L 1.5625 -0.765625 C 1.453125 -0.390625 1.4375 -0.3125 0.65625 -0.3125 C 0.46875 -0.3125 0.390625 -0.3125 0.390625 -0.109375 C 0.390625 0 0.53125 0 0.53125 0 L 1.78125 -0.03125 L 2.421875 -0.015625 C 2.640625 -0.015625 2.859375 0 3.0625 0 C 3.140625 0 3.265625 0 3.265625 -0.203125 C 3.265625 -0.3125 3.171875 -0.3125 2.984375 -0.3125 C 2.609375 -0.3125 2.34375 -0.3125 2.34375 -0.484375 C 2.34375 -0.546875 2.359375 -0.59375 2.375 -0.65625 L 3.046875 -3.375 L 6.0625 -3.375 L 5.375 -0.640625 C 5.28125 -0.3125 5.09375 -0.3125 4.484375 -0.3125 C 4.328125 -0.3125 4.234375 -0.3125 4.234375 -0.109375 C 4.234375 0 4.375 0 4.375 0 L 5.640625 -0.03125 L 6.265625 -0.015625 C 6.484375 -0.015625 6.703125 0 6.921875 0 C 7 0 7.109375 0 7.109375 -0.203125 Z M 7.109375 -0.203125 "/>
+</g>
+<g id="glyph-2-3">
+<path d="M 5.375 -1.421875 C 5.375 -1.515625 5.296875 -1.515625 5.265625 -1.515625 C 5.15625 -1.515625 5.15625 -1.46875 5.125 -1.34375 C 4.984375 -0.78125 4.796875 -0.109375 4.375 -0.109375 C 4.171875 -0.109375 4.078125 -0.234375 4.078125 -0.5625 C 4.078125 -0.78125 4.1875 -1.25 4.265625 -1.59375 L 4.546875 -2.671875 C 4.578125 -2.8125 4.671875 -3.1875 4.71875 -3.34375 C 4.765625 -3.5625 4.859375 -3.9375 4.859375 -4 C 4.859375 -4.1875 4.71875 -4.265625 4.578125 -4.265625 C 4.53125 -4.265625 4.265625 -4.265625 4.1875 -3.921875 L 3.453125 -0.9375 C 3.4375 -0.90625 3.046875 -0.109375 2.3125 -0.109375 C 1.796875 -0.109375 1.703125 -0.5625 1.703125 -0.921875 C 1.703125 -1.46875 1.984375 -2.265625 2.234375 -2.9375 C 2.359375 -3.234375 2.40625 -3.375 2.40625 -3.5625 C 2.40625 -4.015625 2.09375 -4.375 1.59375 -4.375 C 0.65625 -4.375 0.28125 -2.9375 0.28125 -2.859375 C 0.28125 -2.75 0.40625 -2.75 0.40625 -2.75 C 0.5 -2.75 0.515625 -2.78125 0.5625 -2.9375 C 0.8125 -3.796875 1.1875 -4.15625 1.5625 -4.15625 C 1.65625 -4.15625 1.8125 -4.15625 1.8125 -3.828125 C 1.8125 -3.59375 1.703125 -3.3125 1.640625 -3.15625 C 1.28125 -2.171875 1.0625 -1.5625 1.0625 -1.078125 C 1.0625 -0.140625 1.75 0.109375 2.28125 0.109375 C 2.9375 0.109375 3.296875 -0.34375 3.46875 -0.5625 C 3.578125 -0.15625 3.921875 0.109375 4.34375 0.109375 C 4.703125 0.109375 4.921875 -0.125 5.078125 -0.4375 C 5.25 -0.796875 5.375 -1.421875 5.375 -1.421875 Z M 5.375 -1.421875 "/>
+</g>
+<g id="glyph-2-4">
+<path d="M 5.65625 -1.421875 C 5.65625 -1.515625 5.5625 -1.515625 5.53125 -1.515625 C 5.4375 -1.515625 5.4375 -1.484375 5.390625 -1.34375 C 5.1875 -0.65625 4.859375 -0.109375 4.375 -0.109375 C 4.203125 -0.109375 4.140625 -0.203125 4.140625 -0.4375 C 4.140625 -0.6875 4.234375 -0.921875 4.3125 -1.140625 C 4.5 -1.671875 4.921875 -2.75 4.921875 -3.3125 C 4.921875 -3.984375 4.5 -4.375 3.78125 -4.375 C 2.890625 -4.375 2.40625 -3.75 2.234375 -3.515625 C 2.1875 -4.078125 1.78125 -4.375 1.328125 -4.375 C 0.875 -4.375 0.6875 -4 0.578125 -3.8125 C 0.421875 -3.484375 0.28125 -2.890625 0.28125 -2.859375 C 0.28125 -2.75 0.40625 -2.75 0.40625 -2.75 C 0.5 -2.75 0.515625 -2.765625 0.578125 -2.984375 C 0.75 -3.6875 0.9375 -4.15625 1.296875 -4.15625 C 1.5 -4.15625 1.609375 -4.03125 1.609375 -3.703125 C 1.609375 -3.5 1.578125 -3.390625 1.453125 -2.875 L 0.875 -0.578125 C 0.84375 -0.4375 0.78125 -0.203125 0.78125 -0.15625 C 0.78125 0.015625 0.921875 0.109375 1.0625 0.109375 C 1.1875 0.109375 1.359375 0.03125 1.4375 -0.171875 C 1.453125 -0.1875 1.5625 -0.65625 1.625 -0.90625 L 1.84375 -1.796875 C 1.90625 -2.015625 1.96875 -2.234375 2.015625 -2.453125 L 2.140625 -2.953125 C 2.28125 -3.265625 2.8125 -4.15625 3.75 -4.15625 C 4.203125 -4.15625 4.296875 -3.796875 4.296875 -3.46875 C 4.296875 -2.859375 3.796875 -1.578125 3.640625 -1.15625 C 3.5625 -0.9375 3.546875 -0.8125 3.546875 -0.703125 C 3.546875 -0.234375 3.890625 0.109375 4.359375 0.109375 C 5.296875 0.109375 5.65625 -1.34375 5.65625 -1.421875 Z M 5.65625 -1.421875 "/>
+</g>
+<g id="glyph-2-5">
+<path d="M 4.8125 -3.78125 C 4.859375 -3.90625 4.859375 -3.9375 4.859375 -4 C 4.859375 -4.1875 4.71875 -4.265625 4.5625 -4.265625 C 4.46875 -4.265625 4.3125 -4.203125 4.21875 -4.0625 C 4.203125 -4.015625 4.125 -3.703125 4.078125 -3.53125 L 3.890625 -2.734375 L 3.4375 -0.953125 C 3.390625 -0.796875 2.96875 -0.109375 2.3125 -0.109375 C 1.8125 -0.109375 1.703125 -0.546875 1.703125 -0.90625 C 1.703125 -1.359375 1.875 -1.984375 2.203125 -2.859375 C 2.375 -3.265625 2.40625 -3.375 2.40625 -3.5625 C 2.40625 -4.015625 2.09375 -4.375 1.59375 -4.375 C 0.65625 -4.375 0.28125 -2.9375 0.28125 -2.859375 C 0.28125 -2.75 0.40625 -2.75 0.40625 -2.75 C 0.5 -2.75 0.515625 -2.78125 0.5625 -2.9375 C 0.828125 -3.859375 1.234375 -4.15625 1.5625 -4.15625 C 1.640625 -4.15625 1.8125 -4.15625 1.8125 -3.84375 C 1.8125 -3.59375 1.71875 -3.34375 1.640625 -3.15625 C 1.25 -2.09375 1.0625 -1.53125 1.0625 -1.0625 C 1.0625 -0.1875 1.6875 0.109375 2.28125 0.109375 C 2.671875 0.109375 3 -0.0625 3.28125 -0.34375 C 3.15625 0.171875 3.03125 0.65625 2.640625 1.1875 C 2.375 1.53125 2 1.8125 1.546875 1.8125 C 1.40625 1.8125 0.953125 1.78125 0.796875 1.390625 C 0.953125 1.390625 1.078125 1.390625 1.21875 1.28125 C 1.3125 1.1875 1.421875 1.0625 1.421875 0.875 C 1.421875 0.5625 1.15625 0.53125 1.046875 0.53125 C 0.828125 0.53125 0.5 0.6875 0.5 1.171875 C 0.5 1.671875 0.9375 2.03125 1.546875 2.03125 C 2.5625 2.03125 3.59375 1.125 3.859375 0.015625 Z M 4.8125 -3.78125 "/>
+</g>
+<g id="glyph-2-6">
+<path d="M 4.3125 -3.734375 C 4.3125 -4.078125 4 -4.375 3.5 -4.375 C 2.859375 -4.375 2.421875 -3.890625 2.234375 -3.609375 C 2.15625 -4.0625 1.796875 -4.375 1.328125 -4.375 C 0.875 -4.375 0.6875 -4 0.59375 -3.8125 C 0.421875 -3.484375 0.28125 -2.875 0.28125 -2.859375 C 0.28125 -2.75 0.40625 -2.75 0.40625 -2.75 C 0.5 -2.75 0.515625 -2.765625 0.578125 -2.984375 C 0.75 -3.6875 0.9375 -4.15625 1.296875 -4.15625 C 1.46875 -4.15625 1.609375 -4.078125 1.609375 -3.703125 C 1.609375 -3.5 1.578125 -3.390625 1.453125 -2.875 L 0.875 -0.578125 C 0.84375 -0.4375 0.78125 -0.203125 0.78125 -0.15625 C 0.78125 0.015625 0.921875 0.109375 1.0625 0.109375 C 1.1875 0.109375 1.359375 0.03125 1.4375 -0.171875 C 1.453125 -0.203125 1.796875 -1.5625 1.828125 -1.734375 L 2.15625 -3.015625 C 2.1875 -3.15625 2.46875 -3.609375 2.703125 -3.828125 C 2.78125 -3.90625 3.078125 -4.15625 3.5 -4.15625 C 3.75 -4.15625 3.90625 -4.046875 3.90625 -4.046875 C 3.609375 -4 3.390625 -3.75 3.390625 -3.5 C 3.390625 -3.34375 3.5 -3.15625 3.78125 -3.15625 C 4.046875 -3.15625 4.3125 -3.375 4.3125 -3.734375 Z M 4.3125 -3.734375 "/>
+</g>
+<g id="glyph-2-7">
+<path d="M 4.9375 -1.421875 C 4.9375 -1.515625 4.84375 -1.515625 4.8125 -1.515625 C 4.71875 -1.515625 4.703125 -1.46875 4.671875 -1.34375 C 4.5 -0.6875 4.328125 -0.109375 3.921875 -0.109375 C 3.65625 -0.109375 3.625 -0.359375 3.625 -0.5625 C 3.625 -0.796875 3.640625 -0.875 3.6875 -1.046875 L 5.109375 -6.765625 C 5.109375 -6.765625 5.109375 -6.875 4.984375 -6.875 C 4.828125 -6.875 3.890625 -6.78125 3.71875 -6.765625 C 3.640625 -6.75 3.59375 -6.703125 3.59375 -6.578125 C 3.59375 -6.453125 3.671875 -6.453125 3.828125 -6.453125 C 4.296875 -6.453125 4.3125 -6.390625 4.3125 -6.296875 L 4.296875 -6.09375 L 3.6875 -3.75 C 3.515625 -4.109375 3.234375 -4.375 2.78125 -4.375 C 1.625 -4.375 0.390625 -2.921875 0.390625 -1.46875 C 0.390625 -0.546875 0.9375 0.109375 1.71875 0.109375 C 1.90625 0.109375 2.40625 0.0625 3 -0.640625 C 3.078125 -0.21875 3.421875 0.109375 3.90625 0.109375 C 4.25 0.109375 4.484375 -0.125 4.640625 -0.4375 C 4.796875 -0.796875 4.9375 -1.421875 4.9375 -1.421875 Z M 3.546875 -3.125 L 3.046875 -1.171875 C 3 -1 3 -0.984375 2.859375 -0.8125 C 2.421875 -0.265625 2.015625 -0.109375 1.734375 -0.109375 C 1.234375 -0.109375 1.09375 -0.65625 1.09375 -1.046875 C 1.09375 -1.53125 1.421875 -2.75 1.640625 -3.203125 C 1.953125 -3.796875 2.390625 -4.15625 2.796875 -4.15625 C 3.4375 -4.15625 3.578125 -3.34375 3.578125 -3.28125 C 3.578125 -3.234375 3.5625 -3.171875 3.546875 -3.125 Z M 3.546875 -3.125 "/>
+</g>
+<g id="glyph-3-0">
+<path d="M 2.078125 -3.5 C 2.078125 -3.71875 1.890625 -3.875 1.671875 -3.875 C 1.390625 -3.875 1.3125 -3.65625 1.296875 -3.5625 L 0.375 -0.5625 L 0.328125 -0.4375 C 0.328125 -0.359375 0.546875 -0.28125 0.609375 -0.28125 C 0.65625 -0.28125 0.6875 -0.3125 0.703125 -0.390625 L 2.015625 -3.28125 C 2.046875 -3.34375 2.078125 -3.40625 2.078125 -3.5 Z M 2.078125 -3.5 "/>
+</g>
+<g id="glyph-4-0">
+<path d="M 5 -1.734375 C 5 -1.75 4.984375 -1.828125 4.890625 -1.828125 C 4.796875 -1.828125 4.78125 -1.796875 4.75 -1.671875 C 4.484375 -1.015625 4.171875 -0.25 2.90625 -0.25 L 2.125 -0.25 C 1.90625 -0.25 1.90625 -0.25 1.90625 -0.3125 C 1.90625 -0.3125 1.90625 -0.359375 1.921875 -0.46875 L 2.859375 -4.171875 C 2.921875 -4.421875 2.9375 -4.484375 3.578125 -4.484375 C 3.796875 -4.484375 3.859375 -4.484375 3.859375 -4.640625 C 3.859375 -4.640625 3.859375 -4.734375 3.75 -4.734375 C 3.59375 -4.734375 3.40625 -4.71875 3.234375 -4.71875 L 2.671875 -4.703125 L 2.203125 -4.71875 C 2.046875 -4.71875 1.890625 -4.734375 1.75 -4.734375 C 1.703125 -4.734375 1.609375 -4.734375 1.609375 -4.578125 C 1.609375 -4.484375 1.6875 -4.484375 1.828125 -4.484375 C 1.828125 -4.484375 1.96875 -4.484375 2.09375 -4.46875 C 2.234375 -4.453125 2.25 -4.453125 2.25 -4.375 C 2.25 -4.375 2.25 -4.328125 2.21875 -4.21875 L 1.296875 -0.546875 C 1.234375 -0.3125 1.21875 -0.25 0.6875 -0.25 C 0.5625 -0.25 0.484375 -0.25 0.484375 -0.109375 C 0.484375 0 0.5625 0 0.6875 0 L 4.171875 0 C 4.34375 0 4.359375 0 4.40625 -0.140625 C 4.484375 -0.328125 5 -1.671875 5 -1.734375 Z M 5 -1.734375 "/>
+</g>
+<g id="glyph-4-1">
+<path d="M 3.859375 -2.609375 C 3.890625 -2.71875 3.890625 -2.71875 3.890625 -2.765625 C 3.890625 -2.90625 3.78125 -2.984375 3.65625 -2.984375 C 3.578125 -2.984375 3.453125 -2.953125 3.375 -2.828125 C 3.34375 -2.78125 3.296875 -2.5625 3.265625 -2.421875 L 3.109375 -1.84375 L 2.84375 -0.734375 C 2.84375 -0.734375 2.53125 -0.125 1.984375 -0.125 C 1.515625 -0.125 1.515625 -0.578125 1.515625 -0.703125 C 1.515625 -1.078125 1.671875 -1.515625 1.875 -2.046875 C 1.96875 -2.265625 2 -2.359375 2 -2.46875 C 2 -2.796875 1.71875 -3.0625 1.34375 -3.0625 C 0.640625 -3.0625 0.328125 -2.109375 0.328125 -2 C 0.328125 -1.90625 0.421875 -1.90625 0.4375 -1.90625 C 0.546875 -1.90625 0.546875 -1.9375 0.5625 -2.015625 C 0.75 -2.59375 1.046875 -2.859375 1.3125 -2.859375 C 1.4375 -2.859375 1.484375 -2.78125 1.484375 -2.625 C 1.484375 -2.46875 1.421875 -2.3125 1.390625 -2.21875 C 1.0625 -1.375 0.984375 -1.109375 0.984375 -0.8125 C 0.984375 -0.6875 0.984375 -0.375 1.265625 -0.140625 C 1.484375 0.03125 1.765625 0.0625 1.953125 0.0625 C 2.234375 0.0625 2.484375 -0.03125 2.71875 -0.25 C 2.625 0.140625 2.546875 0.4375 2.25 0.78125 C 2.0625 0.984375 1.796875 1.21875 1.421875 1.21875 C 1.375 1.21875 1.046875 1.21875 0.90625 0.984375 C 1.28125 0.953125 1.28125 0.609375 1.28125 0.609375 C 1.28125 0.390625 1.078125 0.34375 1 0.34375 C 0.828125 0.34375 0.609375 0.484375 0.609375 0.8125 C 0.609375 1.15625 0.9375 1.421875 1.421875 1.421875 C 2.125 1.421875 2.984375 0.875 3.203125 0 Z M 3.859375 -2.609375 "/>
+</g>
+</g>
+<clipPath id="clip-0">
+<path clip-rule="nonzero" d="M 142 44 L 185 44 L 185 75.054688 L 142 75.054688 Z M 142 44 "/>
+</clipPath>
+<clipPath id="clip-1">
+<path clip-rule="nonzero" d="M 158 49 L 191 49 L 191 75.054688 L 158 75.054688 Z M 158 49 "/>
+</clipPath>
+<clipPath id="clip-2">
+<path clip-rule="nonzero" d="M 170 11 L 191.375 11 L 191.375 44 L 170 44 Z M 170 11 "/>
+</clipPath>
+<clipPath id="clip-3">
+<path clip-rule="nonzero" d="M 103 49 L 136 49 L 136 75.054688 L 103 75.054688 Z M 103 49 "/>
+</clipPath>
+</defs>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.972069 -0.000465409 C 6.972069 3.851736 3.851 6.972805 -0.00120126 6.972805 C -3.853403 6.972805 -6.974472 3.851736 -6.974472 -0.000465409 C -6.974472 -3.852667 -3.853403 -6.973736 -0.00120126 -6.973736 C 3.851 -6.973736 6.972069 -3.852667 6.972069 -0.000465409 Z M 6.972069 -0.000465409 " transform="matrix(0.99375, 0, 0, -0.99375, 28.231663, 27.640162)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-0" x="23.921769" y="30.537937"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-1-0" x="18.551544" y="42.3258"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 24.479931 -8.502824 L 47.156818 -8.502824 L 47.156818 8.505824 L 24.479931 8.505824 Z M 24.479931 -8.502824 " transform="matrix(0.99375, 0, 0, -0.99375, 28.231663, 27.640162)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-0" x="59.268463" y="31.022888"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 65.163893 -8.502824 L 87.84078 -8.502824 L 87.84078 8.505824 L 65.163893 8.505824 Z M 65.163893 -8.502824 " transform="matrix(0.99375, 0, 0, -0.99375, 28.231663, 27.640162)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-1" x="98.97275" y="31.361756"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-3-0" x="106.756794" y="27.768356"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 119.295182 -0.000465409 C 119.295182 3.851736 116.170182 6.972805 112.321912 6.972805 C 108.469711 6.972805 105.344711 3.851736 105.344711 -0.000465409 C 105.344711 -3.852667 108.469711 -6.973736 112.321912 -6.973736 C 116.170182 -6.973736 119.295182 -3.852667 119.295182 -0.000465409 Z M 119.295182 -0.000465409 " transform="matrix(0.99375, 0, 0, -0.99375, 28.231663, 27.640162)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-0" x="135.538775" y="30.537937"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" d="M 170.664062 65.609375 C 170.664062 61.78125 167.5625 58.679688 163.734375 58.679688 C 159.90625 58.679688 156.804688 61.78125 156.804688 65.609375 C 156.804688 69.4375 159.90625 72.542969 163.734375 72.542969 C 167.5625 72.542969 170.664062 69.4375 170.664062 65.609375 Z M 170.664062 65.609375 "/>
+<g clip-path="url(#clip-0)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 143.328201 -38.208013 C 143.328201 -34.355811 140.207132 -31.234742 136.354931 -31.234742 C 132.50273 -31.234742 129.38166 -34.355811 129.38166 -38.208013 C 129.38166 -42.060214 132.50273 -45.185214 136.354931 -45.185214 C 140.207132 -45.185214 143.328201 -42.060214 143.328201 -38.208013 Z M 143.328201 -38.208013 " transform="matrix(0.99375, 0, 0, -0.99375, 28.231663, 27.640162)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-0" x="159.423556" y="68.508131"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 65.163893 -46.714302 L 87.84078 -46.714302 L 87.84078 -29.705654 L 65.163893 -29.705654 Z M 65.163893 -46.714302 " transform="matrix(0.99375, 0, 0, -0.99375, 28.231663, 27.640162)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-2" x="97.17605" y="68.25075"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-4-0" x="105.405294" y="69.735412"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.972069 -0.000465409 L 19.350214 -0.000465409 " transform="matrix(0.99375, 0, 0, -0.99375, 28.231663, 27.640162)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.051622 -0.000465409 L 1.609798 1.681925 L 3.087785 -0.000465409 L 1.609798 -1.682855 Z M 6.051622 -0.000465409 " transform="matrix(0.99375, 0, 0, -0.99375, 44.638545, 27.640162)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 47.656031 -0.000465409 L 60.030245 -0.000465409 " transform="matrix(0.99375, 0, 0, -0.99375, 28.231663, 27.640162)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053544 -0.000465409 L 1.607789 1.681925 L 3.085777 -0.000465409 L 1.607789 -1.682855 Z M 6.053544 -0.000465409 " transform="matrix(0.99375, 0, 0, -0.99375, 85.066322, 27.640162)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-3" x="83.029025" y="23.845031"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 88.336063 -0.000465409 L 100.714208 -0.000465409 " transform="matrix(0.99375, 0, 0, -0.99375, 28.231663, 27.640162)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.051526 -0.000465409 L 1.609702 1.681925 L 3.087689 -0.000465409 L 1.609702 -1.682855 Z M 6.051526 -0.000465409 " transform="matrix(0.99375, 0, 0, -0.99375, 125.494109, 27.640162)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 147.962635 -38.208013 L 163.170969 -38.208013 " transform="matrix(0.99375, 0, 0, -0.99375, 28.231663, 27.640162)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 172.074219 65.609375 L 176.492188 67.285156 L 175.023438 65.609375 L 176.492188 63.9375 Z M 172.074219 65.609375 "/>
+<g clip-path="url(#clip-1)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.054884 -0.00138742 L 1.609129 1.684933 L 3.087116 -0.00138742 L 1.609129 -1.683777 Z M 6.054884 -0.00138742 " transform="matrix(-0.99375, 0, 0, 0.99375, 178.091259, 65.610754)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-4" x="180.645087" y="61.815225"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 136.354931 -0.000465409 L 136.354931 -26.600308 " transform="matrix(0.99375, 0, 0, -0.99375, 28.231663, 27.640162)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.052307 -0.00118918 L 1.610483 1.681201 L 3.088471 -0.00118918 L 1.610483 -1.683579 Z M 6.052307 -0.00118918 " transform="matrix(0, 0.99375, 0.99375, 0, 163.735557, 51.255051)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 165.714844 27.640625 C 165.714844 26.546875 164.828125 25.660156 163.734375 25.660156 C 162.640625 25.660156 161.753906 26.546875 161.753906 27.640625 C 161.753906 28.734375 162.640625 29.621094 163.734375 29.621094 C 164.828125 29.621094 165.714844 28.734375 165.714844 27.640625 Z M 165.714844 27.640625 "/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 119.295182 -0.000465409 L 158.540465 -0.000465409 " transform="matrix(0.99375, 0, 0, -0.99375, 28.231663, 27.640162)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 188.976562 27.640625 L 184.558594 25.96875 L 186.027344 27.640625 L 184.558594 29.3125 Z M 188.976562 27.640625 "/>
+<g clip-path="url(#clip-2)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.055234 -0.000465409 L 1.609479 1.681925 L 3.087467 -0.000465409 L 1.609479 -1.682855 Z M 6.055234 -0.000465409 " transform="matrix(0.99375, 0, 0, -0.99375, 182.959174, 27.640162)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-5" x="181.378475" y="21.920137"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -11.608906 -0.000465409 L -26.817239 -0.000465409 " transform="matrix(0.99375, 0, 0, -0.99375, 28.231663, 27.640162)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.052473 -0.000465409 L 1.610649 1.681925 L 3.088637 -0.000465409 L 1.610649 -1.682855 Z M 6.052473 -0.000465409 " transform="matrix(0.99375, 0, 0, -0.99375, 13.87598, 27.640162)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-6" x="5.378394" y="23.845031"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 129.38166 -38.208013 L 92.970497 -38.208013 " transform="matrix(0.99375, 0, 0, -0.99375, 28.231663, 27.640162)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 117.425781 65.609375 L 121.84375 67.285156 L 120.375 65.609375 L 121.84375 63.9375 Z M 117.425781 65.609375 "/>
+<g clip-path="url(#clip-3)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.054972 -0.00138742 L 1.609217 1.684933 L 3.087205 -0.00138742 L 1.609217 -1.683777 Z M 6.054972 -0.00138742 " transform="matrix(-0.99375, 0, 0, 0.99375, 123.44291, 65.610754)"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 64.664679 -38.208013 L -0.00120126 -38.208013 L -0.00120126 -11.60817 " transform="matrix(0.99375, 0, 0, -0.99375, 28.231663, 27.640162)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053209 0.00120126 L 1.607454 1.683591 L 3.089373 0.00120126 L 1.607454 -1.681189 Z M 6.053209 0.00120126 " transform="matrix(0, -0.99375, -0.99375, 0, 28.231663, 41.995845)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 112.321912 11.607239 L 112.321912 26.815572 " transform="matrix(0.99375, 0, 0, -0.99375, 28.231663, 27.640162)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.05415 0.00178195 L 1.608395 1.684172 L 3.086383 0.00178195 L 1.608395 -1.684539 Z M 6.05415 0.00178195 " transform="matrix(0, 0.99375, 0.99375, 0, 139.849792, 13.28447)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-7" x="143.6438" y="11.661656"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-4-1" x="148.796394" y="13.146319"/>
+</g>
+</svg>
diff --git a/figs/detail_control_sf_arch_class_prefilter.pdf b/figs/detail_control_sf_arch_class_prefilter.pdf
new file mode 100644
index 0000000..8d5b5a5
Binary files /dev/null and b/figs/detail_control_sf_arch_class_prefilter.pdf differ
diff --git a/figs/detail_control_sf_arch_class_prefilter.png b/figs/detail_control_sf_arch_class_prefilter.png
new file mode 100644
index 0000000..bf760c4
Binary files /dev/null and b/figs/detail_control_sf_arch_class_prefilter.png differ
diff --git a/figs/detail_control_sf_arch_class_prefilter.svg b/figs/detail_control_sf_arch_class_prefilter.svg
new file mode 100644
index 0000000..8eb9988
--- /dev/null
+++ b/figs/detail_control_sf_arch_class_prefilter.svg
@@ -0,0 +1,154 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="226.995" height="67.021" viewBox="0 0 226.995 67.021">
+<defs>
+<g>
+<g id="glyph-0-0">
+<path d="M 7.984375 -2.953125 C 7.984375 -3.171875 7.796875 -3.171875 7.625 -3.171875 L 4.484375 -3.171875 L 4.484375 -6.3125 C 4.484375 -6.484375 4.484375 -6.6875 4.28125 -6.6875 C 4.0625 -6.6875 4.0625 -6.5 4.0625 -6.3125 L 4.0625 -3.171875 L 0.921875 -3.171875 C 0.75 -3.171875 0.546875 -3.171875 0.546875 -2.96875 C 0.546875 -2.75 0.734375 -2.75 0.921875 -2.75 L 4.0625 -2.75 L 4.0625 0.390625 C 4.0625 0.5625 4.0625 0.765625 4.265625 0.765625 C 4.484375 0.765625 4.484375 0.5625 4.484375 0.390625 L 4.484375 -2.75 L 7.625 -2.75 C 7.796875 -2.75 7.984375 -2.75 7.984375 -2.953125 Z M 7.984375 -2.953125 "/>
+</g>
+<g id="glyph-1-0">
+<path d="M 6.8125 -2.453125 C 6.8125 -2.65625 6.625 -2.65625 6.484375 -2.65625 L 1.140625 -2.65625 C 1 -2.65625 0.8125 -2.65625 0.8125 -2.453125 C 0.8125 -2.25 1 -2.25 1.140625 -2.25 L 6.484375 -2.25 C 6.625 -2.25 6.8125 -2.25 6.8125 -2.453125 Z M 6.8125 -2.453125 "/>
+</g>
+<g id="glyph-2-0">
+<path d="M 7.265625 -0.203125 C 7.265625 -0.296875 7.15625 -0.296875 7.0625 -0.296875 C 6.65625 -0.3125 6.53125 -0.40625 6.390625 -0.75 L 5 -3.96875 C 4.984375 -4 4.953125 -4.078125 4.953125 -4.109375 C 4.953125 -4.109375 5.125 -4.25 5.234375 -4.328125 L 6.953125 -5.65625 C 7.875 -6.328125 8.25 -6.375 8.546875 -6.390625 C 8.625 -6.40625 8.71875 -6.421875 8.71875 -6.59375 C 8.71875 -6.640625 8.6875 -6.703125 8.609375 -6.703125 C 8.40625 -6.703125 8.15625 -6.671875 7.921875 -6.671875 C 7.5625 -6.671875 7.1875 -6.703125 6.828125 -6.703125 C 6.765625 -6.703125 6.640625 -6.703125 6.640625 -6.5 C 6.640625 -6.4375 6.6875 -6.40625 6.765625 -6.390625 C 6.984375 -6.375 7.0625 -6.328125 7.0625 -6.1875 C 7.0625 -6.015625 6.765625 -5.796875 6.71875 -5.734375 L 2.890625 -2.796875 L 3.671875 -5.953125 C 3.765625 -6.296875 3.78125 -6.390625 4.5 -6.390625 C 4.734375 -6.390625 4.828125 -6.390625 4.828125 -6.59375 C 4.828125 -6.6875 4.75 -6.703125 4.6875 -6.703125 L 3.4375 -6.671875 L 2.171875 -6.703125 C 2.09375 -6.703125 1.96875 -6.703125 1.96875 -6.515625 C 1.96875 -6.390625 2.0625 -6.390625 2.25 -6.390625 C 2.390625 -6.390625 2.5625 -6.390625 2.671875 -6.375 C 2.828125 -6.359375 2.890625 -6.328125 2.890625 -6.21875 C 2.890625 -6.1875 2.890625 -6.15625 2.859375 -6.03125 L 1.546875 -0.765625 C 1.4375 -0.375 1.421875 -0.296875 0.640625 -0.296875 C 0.484375 -0.296875 0.375 -0.296875 0.375 -0.125 C 0.375 0 0.484375 0 0.515625 0 L 1.765625 -0.03125 L 2.390625 -0.015625 C 2.609375 -0.015625 2.828125 0 3.03125 0 C 3.09375 0 3.234375 0 3.234375 -0.203125 C 3.234375 -0.296875 3.140625 -0.296875 2.953125 -0.296875 C 2.59375 -0.296875 2.3125 -0.296875 2.3125 -0.484375 C 2.3125 -0.546875 2.375 -0.765625 2.40625 -0.90625 L 2.796875 -2.453125 L 4.265625 -3.59375 L 5.390625 -0.953125 C 5.515625 -0.6875 5.515625 -0.671875 5.515625 -0.609375 C 5.515625 -0.3125 5.09375 -0.296875 5 -0.296875 C 4.890625 -0.296875 4.78125 -0.296875 4.78125 -0.109375 C 4.78125 0 4.921875 0 4.921875 0 C 5.3125 0 5.734375 -0.03125 6.125 -0.03125 C 6.34375 -0.03125 6.875 0 7.078125 0 C 7.140625 0 7.265625 0 7.265625 -0.203125 Z M 7.265625 -0.203125 "/>
+</g>
+<g id="glyph-2-1">
+<path d="M 7.078125 -2.578125 C 7.078125 -2.640625 7.03125 -2.671875 6.953125 -2.671875 C 6.71875 -2.671875 6.140625 -2.65625 5.921875 -2.65625 L 4.546875 -2.671875 C 4.453125 -2.671875 4.34375 -2.671875 4.34375 -2.484375 C 4.34375 -2.375 4.421875 -2.375 4.625 -2.375 C 4.625 -2.375 4.921875 -2.375 5.15625 -2.359375 C 5.40625 -2.328125 5.453125 -2.296875 5.453125 -2.171875 C 5.453125 -2.078125 5.34375 -1.640625 5.25 -1.28125 C 4.96875 -0.203125 3.703125 -0.09375 3.359375 -0.09375 C 2.40625 -0.09375 1.390625 -0.640625 1.390625 -2.15625 C 1.390625 -2.453125 1.484375 -4.078125 2.515625 -5.34375 C 3.046875 -6.015625 4 -6.609375 4.96875 -6.609375 C 5.96875 -6.609375 6.546875 -5.859375 6.546875 -4.71875 C 6.546875 -4.328125 6.515625 -4.3125 6.515625 -4.21875 C 6.515625 -4.125 6.625 -4.125 6.65625 -4.125 C 6.796875 -4.125 6.796875 -4.140625 6.84375 -4.3125 L 7.453125 -6.8125 C 7.453125 -6.84375 7.4375 -6.921875 7.34375 -6.921875 C 7.3125 -6.921875 7.3125 -6.90625 7.203125 -6.796875 L 6.515625 -6.046875 C 6.421875 -6.1875 5.96875 -6.921875 4.890625 -6.921875 C 2.703125 -6.921875 0.484375 -4.75 0.484375 -2.46875 C 0.484375 -0.90625 1.578125 0.21875 3.171875 0.21875 C 3.59375 0.21875 4.046875 0.125 4.390625 -0.015625 C 4.890625 -0.21875 5.078125 -0.421875 5.25 -0.625 C 5.34375 -0.375 5.59375 -0.015625 5.6875 -0.015625 C 5.734375 -0.015625 5.765625 -0.046875 5.765625 -0.046875 C 5.78125 -0.0625 5.875 -0.4375 5.921875 -0.640625 L 6.109375 -1.40625 C 6.15625 -1.5625 6.203125 -1.734375 6.234375 -1.90625 C 6.34375 -2.34375 6.359375 -2.359375 6.921875 -2.375 C 6.96875 -2.375 7.078125 -2.390625 7.078125 -2.578125 Z M 7.078125 -2.578125 "/>
+</g>
+<g id="glyph-2-2">
+<path d="M 7.046875 -0.203125 C 7.046875 -0.296875 6.953125 -0.296875 6.765625 -0.296875 C 6.40625 -0.296875 6.140625 -0.296875 6.140625 -0.484375 C 6.140625 -0.546875 6.15625 -0.59375 6.15625 -0.640625 L 7.484375 -5.953125 C 7.578125 -6.296875 7.59375 -6.390625 8.3125 -6.390625 C 8.5625 -6.390625 8.640625 -6.390625 8.640625 -6.59375 C 8.640625 -6.703125 8.53125 -6.703125 8.5 -6.703125 L 7.25 -6.671875 L 5.984375 -6.703125 C 5.90625 -6.703125 5.796875 -6.703125 5.796875 -6.5 C 5.796875 -6.390625 5.890625 -6.390625 6.078125 -6.390625 C 6.078125 -6.390625 6.28125 -6.390625 6.453125 -6.375 C 6.625 -6.359375 6.71875 -6.34375 6.71875 -6.21875 C 6.71875 -6.1875 6.703125 -6.15625 6.671875 -6.03125 L 6.078125 -3.640625 L 3.09375 -3.640625 L 3.671875 -5.953125 C 3.765625 -6.296875 3.78125 -6.390625 4.5 -6.390625 C 4.75 -6.390625 4.828125 -6.390625 4.828125 -6.59375 C 4.828125 -6.703125 4.71875 -6.703125 4.6875 -6.703125 L 3.4375 -6.671875 L 2.171875 -6.703125 C 2.09375 -6.703125 1.984375 -6.703125 1.984375 -6.5 C 1.984375 -6.390625 2.078125 -6.390625 2.25 -6.390625 C 2.25 -6.390625 2.46875 -6.390625 2.625 -6.375 C 2.8125 -6.359375 2.890625 -6.34375 2.890625 -6.21875 C 2.890625 -6.1875 2.890625 -6.15625 2.859375 -6.03125 L 1.546875 -0.765625 C 1.4375 -0.375 1.421875 -0.296875 0.640625 -0.296875 C 0.46875 -0.296875 0.375 -0.296875 0.375 -0.109375 C 0.375 0 0.515625 0 0.515625 0 L 1.765625 -0.03125 L 2.390625 -0.015625 C 2.609375 -0.015625 2.828125 0 3.03125 0 C 3.109375 0 3.234375 0 3.234375 -0.203125 C 3.234375 -0.296875 3.140625 -0.296875 2.953125 -0.296875 C 2.59375 -0.296875 2.3125 -0.296875 2.3125 -0.484375 C 2.3125 -0.546875 2.328125 -0.59375 2.34375 -0.640625 L 3.015625 -3.34375 L 6 -3.34375 L 5.328125 -0.625 C 5.234375 -0.3125 5.046875 -0.296875 4.4375 -0.296875 C 4.28125 -0.296875 4.203125 -0.296875 4.203125 -0.109375 C 4.203125 0 4.34375 0 4.34375 0 L 5.578125 -0.03125 L 6.21875 -0.015625 C 6.421875 -0.015625 6.640625 0 6.84375 0 C 6.921875 0 7.046875 0 7.046875 -0.203125 Z M 7.046875 -0.203125 "/>
+</g>
+<g id="glyph-2-3">
+<path d="M 5.328125 -1.40625 C 5.328125 -1.5 5.234375 -1.5 5.203125 -1.5 C 5.109375 -1.5 5.109375 -1.46875 5.078125 -1.328125 C 4.9375 -0.78125 4.75 -0.109375 4.34375 -0.109375 C 4.125 -0.109375 4.03125 -0.234375 4.03125 -0.5625 C 4.03125 -0.78125 4.15625 -1.234375 4.234375 -1.578125 L 4.5 -2.640625 C 4.53125 -2.78125 4.625 -3.15625 4.671875 -3.3125 C 4.71875 -3.53125 4.8125 -3.90625 4.8125 -3.96875 C 4.8125 -4.140625 4.6875 -4.234375 4.53125 -4.234375 C 4.484375 -4.234375 4.234375 -4.21875 4.15625 -3.890625 L 3.421875 -0.9375 C 3.40625 -0.890625 3.015625 -0.109375 2.296875 -0.109375 C 1.78125 -0.109375 1.6875 -0.546875 1.6875 -0.90625 C 1.6875 -1.46875 1.96875 -2.234375 2.21875 -2.921875 C 2.328125 -3.203125 2.390625 -3.34375 2.390625 -3.53125 C 2.390625 -3.96875 2.078125 -4.34375 1.578125 -4.34375 C 0.640625 -4.34375 0.28125 -2.921875 0.28125 -2.828125 C 0.28125 -2.734375 0.40625 -2.734375 0.40625 -2.734375 C 0.5 -2.734375 0.515625 -2.75 0.5625 -2.90625 C 0.796875 -3.765625 1.171875 -4.125 1.546875 -4.125 C 1.640625 -4.125 1.796875 -4.109375 1.796875 -3.796875 C 1.796875 -3.5625 1.6875 -3.28125 1.625 -3.125 C 1.265625 -2.15625 1.0625 -1.546875 1.0625 -1.0625 C 1.0625 -0.140625 1.734375 0.109375 2.265625 0.109375 C 2.921875 0.109375 3.265625 -0.328125 3.4375 -0.546875 C 3.546875 -0.140625 3.890625 0.109375 4.3125 0.109375 C 4.65625 0.109375 4.875 -0.125 5.03125 -0.4375 C 5.203125 -0.78125 5.328125 -1.40625 5.328125 -1.40625 Z M 5.328125 -1.40625 "/>
+</g>
+<g id="glyph-2-4">
+<path d="M 5.609375 -1.40625 C 5.609375 -1.5 5.515625 -1.5 5.484375 -1.5 C 5.390625 -1.5 5.390625 -1.46875 5.34375 -1.328125 C 5.140625 -0.65625 4.8125 -0.109375 4.34375 -0.109375 C 4.171875 -0.109375 4.109375 -0.203125 4.109375 -0.4375 C 4.109375 -0.671875 4.1875 -0.90625 4.28125 -1.125 C 4.46875 -1.65625 4.875 -2.734375 4.875 -3.28125 C 4.875 -3.9375 4.453125 -4.34375 3.75 -4.34375 C 2.859375 -4.34375 2.390625 -3.703125 2.21875 -3.484375 C 2.171875 -4.03125 1.765625 -4.34375 1.3125 -4.34375 C 0.859375 -4.34375 0.671875 -3.953125 0.578125 -3.78125 C 0.421875 -3.4375 0.28125 -2.859375 0.28125 -2.828125 C 0.28125 -2.734375 0.40625 -2.734375 0.40625 -2.734375 C 0.5 -2.734375 0.515625 -2.734375 0.5625 -2.953125 C 0.734375 -3.65625 0.9375 -4.125 1.28125 -4.125 C 1.484375 -4.125 1.59375 -4 1.59375 -3.671875 C 1.59375 -3.46875 1.5625 -3.359375 1.4375 -2.84375 L 0.859375 -0.578125 C 0.828125 -0.4375 0.78125 -0.203125 0.78125 -0.15625 C 0.78125 0.015625 0.90625 0.109375 1.0625 0.109375 C 1.171875 0.109375 1.359375 0.03125 1.421875 -0.171875 C 1.4375 -0.1875 1.546875 -0.640625 1.609375 -0.890625 L 1.828125 -1.78125 C 1.890625 -1.984375 1.9375 -2.203125 1.984375 -2.4375 L 2.125 -2.921875 C 2.265625 -3.234375 2.78125 -4.125 3.71875 -4.125 C 4.15625 -4.125 4.25 -3.765625 4.25 -3.4375 C 4.25 -2.828125 3.765625 -1.5625 3.609375 -1.140625 C 3.515625 -0.921875 3.515625 -0.796875 3.515625 -0.703125 C 3.515625 -0.234375 3.859375 0.109375 4.3125 0.109375 C 5.234375 0.109375 5.609375 -1.328125 5.609375 -1.40625 Z M 5.609375 -1.40625 "/>
+</g>
+<g id="glyph-2-5">
+<path d="M 4.765625 -3.734375 C 4.8125 -3.875 4.8125 -3.890625 4.8125 -3.96875 C 4.8125 -4.140625 4.671875 -4.234375 4.53125 -4.234375 C 4.421875 -4.234375 4.265625 -4.171875 4.1875 -4.015625 C 4.15625 -3.96875 4.078125 -3.671875 4.046875 -3.5 L 3.84375 -2.703125 L 3.40625 -0.9375 C 3.359375 -0.796875 2.9375 -0.109375 2.296875 -0.109375 C 1.796875 -0.109375 1.6875 -0.546875 1.6875 -0.90625 C 1.6875 -1.359375 1.859375 -1.96875 2.1875 -2.828125 C 2.34375 -3.234375 2.390625 -3.34375 2.390625 -3.53125 C 2.390625 -3.96875 2.078125 -4.34375 1.578125 -4.34375 C 0.640625 -4.34375 0.28125 -2.921875 0.28125 -2.828125 C 0.28125 -2.734375 0.40625 -2.734375 0.40625 -2.734375 C 0.5 -2.734375 0.515625 -2.75 0.5625 -2.90625 C 0.828125 -3.828125 1.21875 -4.125 1.546875 -4.125 C 1.625 -4.125 1.796875 -4.125 1.796875 -3.8125 C 1.796875 -3.5625 1.703125 -3.3125 1.625 -3.125 C 1.234375 -2.078125 1.0625 -1.515625 1.0625 -1.0625 C 1.0625 -0.1875 1.671875 0.109375 2.25 0.109375 C 2.640625 0.109375 2.96875 -0.0625 3.25 -0.328125 C 3.125 0.171875 3 0.65625 2.609375 1.171875 C 2.359375 1.515625 1.984375 1.796875 1.53125 1.796875 C 1.390625 1.796875 0.953125 1.765625 0.78125 1.390625 C 0.9375 1.390625 1.0625 1.390625 1.203125 1.265625 C 1.3125 1.171875 1.40625 1.046875 1.40625 0.859375 C 1.40625 0.5625 1.140625 0.515625 1.046875 0.515625 C 0.8125 0.515625 0.484375 0.671875 0.484375 1.15625 C 0.484375 1.65625 0.921875 2.015625 1.53125 2.015625 C 2.546875 2.015625 3.546875 1.125 3.828125 0.015625 Z M 4.765625 -3.734375 "/>
+</g>
+<g id="glyph-2-6">
+<path d="M 4.28125 -3.703125 C 4.28125 -4.046875 3.96875 -4.34375 3.46875 -4.34375 C 2.828125 -4.34375 2.390625 -3.859375 2.203125 -3.578125 C 2.125 -4.015625 1.78125 -4.34375 1.3125 -4.34375 C 0.859375 -4.34375 0.671875 -3.953125 0.59375 -3.78125 C 0.40625 -3.4375 0.28125 -2.859375 0.28125 -2.828125 C 0.28125 -2.734375 0.40625 -2.734375 0.40625 -2.734375 C 0.5 -2.734375 0.515625 -2.734375 0.5625 -2.953125 C 0.734375 -3.65625 0.9375 -4.125 1.28125 -4.125 C 1.453125 -4.125 1.59375 -4.046875 1.59375 -3.671875 C 1.59375 -3.46875 1.5625 -3.359375 1.4375 -2.84375 L 0.859375 -0.578125 C 0.828125 -0.4375 0.78125 -0.203125 0.78125 -0.15625 C 0.78125 0.015625 0.90625 0.109375 1.0625 0.109375 C 1.171875 0.109375 1.359375 0.03125 1.421875 -0.171875 C 1.4375 -0.203125 1.78125 -1.546875 1.8125 -1.71875 L 2.125 -3 C 2.171875 -3.125 2.4375 -3.578125 2.671875 -3.796875 C 2.75 -3.859375 3.046875 -4.125 3.46875 -4.125 C 3.71875 -4.125 3.875 -4 3.875 -4 C 3.578125 -3.953125 3.359375 -3.71875 3.359375 -3.46875 C 3.359375 -3.3125 3.46875 -3.125 3.734375 -3.125 C 4 -3.125 4.28125 -3.34375 4.28125 -3.703125 Z M 4.28125 -3.703125 "/>
+</g>
+<g id="glyph-2-7">
+<path d="M 4.890625 -1.40625 C 4.890625 -1.5 4.796875 -1.5 4.765625 -1.5 C 4.671875 -1.5 4.65625 -1.46875 4.625 -1.328125 C 4.46875 -0.6875 4.28125 -0.109375 3.890625 -0.109375 C 3.625 -0.109375 3.59375 -0.359375 3.59375 -0.5625 C 3.59375 -0.796875 3.609375 -0.859375 3.65625 -1.03125 L 5.0625 -6.703125 C 5.0625 -6.703125 5.0625 -6.8125 4.9375 -6.8125 C 4.78125 -6.8125 3.859375 -6.71875 3.6875 -6.703125 C 3.609375 -6.6875 3.546875 -6.640625 3.546875 -6.515625 C 3.546875 -6.390625 3.640625 -6.390625 3.78125 -6.390625 C 4.265625 -6.390625 4.28125 -6.328125 4.28125 -6.234375 L 4.25 -6.03125 L 3.65625 -3.703125 C 3.484375 -4.078125 3.203125 -4.34375 2.75 -4.34375 C 1.609375 -4.34375 0.390625 -2.890625 0.390625 -1.46875 C 0.390625 -0.546875 0.9375 0.109375 1.703125 0.109375 C 1.890625 0.109375 2.390625 0.0625 2.96875 -0.625 C 3.046875 -0.21875 3.390625 0.109375 3.859375 0.109375 C 4.203125 0.109375 4.4375 -0.125 4.59375 -0.4375 C 4.765625 -0.78125 4.890625 -1.40625 4.890625 -1.40625 Z M 3.515625 -3.09375 L 3.015625 -1.171875 C 2.96875 -0.984375 2.96875 -0.96875 2.828125 -0.796875 C 2.390625 -0.265625 1.984375 -0.109375 1.71875 -0.109375 C 1.234375 -0.109375 1.09375 -0.640625 1.09375 -1.03125 C 1.09375 -1.515625 1.40625 -2.734375 1.625 -3.171875 C 1.9375 -3.765625 2.375 -4.125 2.765625 -4.125 C 3.40625 -4.125 3.546875 -3.3125 3.546875 -3.25 C 3.546875 -3.203125 3.515625 -3.140625 3.515625 -3.09375 Z M 3.515625 -3.09375 "/>
+</g>
+<g id="glyph-3-0">
+<path d="M 3.515625 -2.53125 C 3.515625 -2.890625 3.140625 -3.03125 2.796875 -3.03125 C 2.4375 -3.03125 2.125 -2.890625 1.828125 -2.546875 C 1.703125 -2.96875 1.28125 -3.03125 1.109375 -3.03125 C 0.859375 -3.03125 0.6875 -2.875 0.578125 -2.6875 C 0.421875 -2.40625 0.328125 -2.015625 0.328125 -1.984375 C 0.328125 -1.890625 0.421875 -1.890625 0.4375 -1.890625 C 0.53125 -1.890625 0.546875 -1.90625 0.59375 -2.09375 C 0.6875 -2.515625 0.828125 -2.84375 1.09375 -2.84375 C 1.265625 -2.84375 1.3125 -2.6875 1.3125 -2.5 C 1.3125 -2.375 1.265625 -2.125 1.203125 -1.9375 L 1.0625 -1.3125 L 0.84375 -0.4375 C 0.8125 -0.34375 0.765625 -0.171875 0.765625 -0.15625 C 0.765625 0 0.890625 0.0625 1 0.0625 C 1.109375 0.0625 1.25 0 1.296875 -0.125 C 1.3125 -0.171875 1.390625 -0.46875 1.4375 -0.640625 L 1.609375 -1.390625 C 1.625 -1.4375 1.78125 -2.046875 1.796875 -2.078125 C 1.8125 -2.140625 2 -2.484375 2.234375 -2.640625 C 2.296875 -2.703125 2.484375 -2.84375 2.78125 -2.84375 C 2.859375 -2.84375 3.03125 -2.828125 3.15625 -2.75 C 2.9375 -2.6875 2.859375 -2.484375 2.859375 -2.359375 C 2.859375 -2.21875 2.984375 -2.109375 3.140625 -2.109375 C 3.296875 -2.109375 3.515625 -2.234375 3.515625 -2.53125 Z M 3.515625 -2.53125 "/>
+</g>
+<g id="glyph-3-1">
+<path d="M 4.953125 -1.71875 C 4.953125 -1.734375 4.9375 -1.8125 4.84375 -1.8125 C 4.75 -1.8125 4.75 -1.78125 4.703125 -1.65625 C 4.4375 -1.015625 4.140625 -0.25 2.875 -0.25 L 2.109375 -0.25 C 1.890625 -0.25 1.890625 -0.25 1.890625 -0.3125 C 1.890625 -0.3125 1.890625 -0.359375 1.90625 -0.453125 L 2.828125 -4.125 C 2.890625 -4.375 2.921875 -4.453125 3.546875 -4.453125 C 3.765625 -4.453125 3.828125 -4.453125 3.828125 -4.59375 C 3.828125 -4.59375 3.828125 -4.703125 3.71875 -4.703125 C 3.546875 -4.703125 3.375 -4.6875 3.203125 -4.671875 L 2.171875 -4.671875 C 2.03125 -4.671875 1.875 -4.703125 1.734375 -4.703125 C 1.6875 -4.703125 1.59375 -4.703125 1.59375 -4.546875 C 1.59375 -4.453125 1.671875 -4.453125 1.8125 -4.453125 C 1.8125 -4.453125 1.953125 -4.453125 2.0625 -4.4375 C 2.21875 -4.421875 2.234375 -4.40625 2.234375 -4.34375 C 2.234375 -4.34375 2.234375 -4.296875 2.203125 -4.1875 L 1.28125 -0.53125 C 1.21875 -0.296875 1.203125 -0.25 0.6875 -0.25 C 0.5625 -0.25 0.46875 -0.25 0.46875 -0.109375 C 0.46875 0 0.5625 0 0.6875 0 L 4.140625 0 C 4.3125 0 4.3125 0 4.375 -0.140625 C 4.4375 -0.328125 4.953125 -1.65625 4.953125 -1.71875 Z M 4.953125 -1.71875 "/>
+</g>
+<g id="glyph-3-2">
+<path d="M 3.828125 -2.59375 C 3.84375 -2.6875 3.84375 -2.703125 3.84375 -2.75 C 3.84375 -2.875 3.734375 -2.96875 3.625 -2.96875 C 3.546875 -2.96875 3.421875 -2.921875 3.34375 -2.796875 C 3.328125 -2.75 3.265625 -2.53125 3.234375 -2.40625 L 3.09375 -1.828125 L 2.8125 -0.71875 C 2.8125 -0.71875 2.5 -0.125 1.96875 -0.125 C 1.5 -0.125 1.5 -0.578125 1.5 -0.6875 C 1.5 -1.0625 1.65625 -1.5 1.859375 -2.03125 C 1.953125 -2.25 1.984375 -2.328125 1.984375 -2.453125 C 1.984375 -2.78125 1.703125 -3.03125 1.328125 -3.03125 C 0.625 -3.03125 0.328125 -2.09375 0.328125 -1.984375 C 0.328125 -1.890625 0.421875 -1.890625 0.4375 -1.890625 C 0.53125 -1.890625 0.546875 -1.921875 0.5625 -2 C 0.734375 -2.578125 1.03125 -2.84375 1.3125 -2.84375 C 1.421875 -2.84375 1.484375 -2.765625 1.484375 -2.59375 C 1.484375 -2.4375 1.421875 -2.296875 1.375 -2.203125 C 1.046875 -1.359375 0.984375 -1.109375 0.984375 -0.796875 C 0.984375 -0.6875 0.984375 -0.359375 1.25 -0.140625 C 1.46875 0.03125 1.75 0.0625 1.9375 0.0625 C 2.21875 0.0625 2.46875 -0.03125 2.6875 -0.234375 C 2.59375 0.140625 2.515625 0.421875 2.234375 0.765625 C 2.046875 0.984375 1.78125 1.203125 1.40625 1.203125 C 1.359375 1.203125 1.03125 1.203125 0.890625 0.984375 C 1.265625 0.9375 1.265625 0.609375 1.265625 0.609375 C 1.265625 0.390625 1.0625 0.34375 1 0.34375 C 0.828125 0.34375 0.59375 0.484375 0.59375 0.796875 C 0.59375 1.140625 0.921875 1.40625 1.421875 1.40625 C 2.109375 1.40625 2.953125 0.859375 3.171875 0 Z M 3.828125 -2.59375 "/>
+</g>
+<g id="glyph-4-0">
+<path d="M 2.0625 -3.46875 C 2.0625 -3.671875 1.875 -3.84375 1.65625 -3.84375 C 1.375 -3.84375 1.3125 -3.609375 1.28125 -3.53125 L 0.359375 -0.546875 L 0.328125 -0.4375 C 0.328125 -0.34375 0.546875 -0.28125 0.59375 -0.28125 C 0.65625 -0.28125 0.671875 -0.3125 0.703125 -0.390625 L 2 -3.25 C 2.03125 -3.328125 2.0625 -3.375 2.0625 -3.46875 Z M 2.0625 -3.46875 "/>
+</g>
+</g>
+<clipPath id="clip-0">
+<path clip-rule="nonzero" d="M 177 35 L 219 35 L 219 66.054688 L 177 66.054688 Z M 177 35 "/>
+</clipPath>
+<clipPath id="clip-1">
+<path clip-rule="nonzero" d="M 192 41 L 225 41 L 225 66.054688 L 192 66.054688 Z M 192 41 "/>
+</clipPath>
+<clipPath id="clip-2">
+<path clip-rule="nonzero" d="M 204 11 L 225.359375 11 L 225.359375 43 L 204 43 Z M 204 11 "/>
+</clipPath>
+<clipPath id="clip-3">
+<path clip-rule="nonzero" d="M 161 41 L 194 41 L 194 66.054688 L 161 66.054688 Z M 161 41 "/>
+</clipPath>
+</defs>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.974614 -0.000509631 C 6.974614 3.851828 3.851525 6.974916 -0.000811925 6.974916 C -3.853149 6.974916 -6.972274 3.851828 -6.972274 -0.000509631 C -6.972274 -3.852847 -3.853149 -6.971972 -0.000811925 -6.971972 C 3.851525 -6.971972 6.974614 -3.852847 6.974614 -0.000509631 Z M 6.974614 -0.000509631 " transform="matrix(0.985603, 0, 0, -0.985603, 69.141425, 27.41356)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-0" x="64.866865" y="30.287578"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-1-0" x="59.540667" y="41.9788"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -47.156274 -8.505773 L -24.482178 -8.505773 L -24.482178 8.504754 L -47.156274 8.504754 Z M -47.156274 -8.505773 " transform="matrix(0.985603, 0, 0, -0.985603, 69.141425, 27.41356)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-0" x="27.494773" y="30.032307"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-3-0" x="35.833959" y="31.504798"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 24.480554 -8.505773 L 47.158614 -8.505773 L 47.158614 8.504754 L 24.480554 8.504754 Z M 24.480554 -8.505773 " transform="matrix(0.985603, 0, 0, -0.985603, 69.141425, 27.41356)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-0" x="99.923776" y="30.768553"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 65.163931 -8.505773 L 87.838028 -8.505773 L 87.838028 8.504754 L 65.163931 8.504754 Z M 65.163931 -8.505773 " transform="matrix(0.985603, 0, 0, -0.985603, 69.141425, 27.41356)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-1" x="139.302556" y="31.104643"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-4-0" x="147.022784" y="27.541689"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 119.294819 -0.000509631 C 119.294819 3.851828 116.171731 6.974916 112.319394 6.974916 C 108.467056 6.974916 105.347931 3.851828 105.347931 -0.000509631 C 105.347931 -3.852847 108.467056 -6.971972 112.319394 -6.971972 C 116.171731 -6.971972 119.294819 -3.852847 119.294819 -0.000509631 Z M 119.294819 -0.000509631 " transform="matrix(0.985603, 0, 0, -0.985603, 69.141425, 27.41356)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-0" x="175.567816" y="30.287578"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" d="M 204.820312 56.691406 C 204.820312 52.894531 201.742188 49.816406 197.945312 49.816406 C 194.152344 49.816406 191.074219 52.894531 191.074219 56.691406 C 191.074219 60.488281 194.152344 63.566406 197.945312 63.566406 C 201.742188 63.566406 204.820312 60.488281 204.820312 56.691406 Z M 204.820312 56.691406 "/>
+<g clip-path="url(#clip-0)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 137.660798 -29.705518 C 137.660798 -25.853181 134.53771 -22.730093 130.685372 -22.730093 C 126.836998 -22.730093 123.71391 -25.853181 123.71391 -29.705518 C 123.71391 -33.557855 126.836998 -36.680944 130.685372 -36.680944 C 134.53771 -36.680944 137.660798 -33.557855 137.660798 -29.705518 Z M 137.660798 -29.705518 " transform="matrix(0.985603, 0, 0, -0.985603, 69.141425, 27.41356)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-0" x="193.670386" y="59.564914"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 83.52991 -38.210781 L 106.20797 -38.210781 L 106.20797 -21.200255 L 83.52991 -21.200255 Z M 83.52991 -38.210781 " transform="matrix(0.985603, 0, 0, -0.985603, 69.141425, 27.41356)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-2" x="155.62217" y="59.309643"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-3-1" x="163.783948" y="60.782133"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.974614 -0.000509631 L 19.348068 -0.000509631 " transform="matrix(0.985603, 0, 0, -0.985603, 69.141425, 27.41356)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.052242 -0.000509631 L 1.609371 1.683897 L 3.087686 -0.000509631 L 1.609371 -1.684916 Z M 6.052242 -0.000509631 " transform="matrix(0.985603, 0, 0, -0.985603, 85.413799, 27.41356)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 47.654028 -0.000509631 L 60.031445 -0.000509631 " transform="matrix(0.985603, 0, 0, -0.985603, 69.141425, 27.41356)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053579 -0.000509631 L 1.610709 1.683897 L 3.089023 -0.000509631 L 1.610709 -1.684916 Z M 6.053579 -0.000509631 " transform="matrix(0.985603, 0, 0, -0.985603, 125.510137, 27.41356)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-3" x="123.488557" y="23.649543"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 88.337405 -0.000509631 L 100.710859 -0.000509631 " transform="matrix(0.985603, 0, 0, -0.985603, 69.141425, 27.41356)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.054906 -0.000509631 L 1.608073 1.683897 L 3.086387 -0.000509631 L 1.608073 -1.684916 Z M 6.054906 -0.000509631 " transform="matrix(0.985603, 0, 0, -0.985603, 165.606485, 27.41356)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 142.293907 -29.705518 L 157.505091 -29.705518 " transform="matrix(0.985603, 0, 0, -0.985603, 69.141425, 27.41356)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 206.21875 56.691406 L 210.597656 58.351562 L 209.140625 56.691406 L 210.597656 55.03125 Z M 206.21875 56.691406 "/>
+<g clip-path="url(#clip-1)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053177 0.000268136 L 1.610307 1.684675 L 3.088621 0.000268136 L 1.610307 -1.684139 Z M 6.053177 0.000268136 " transform="matrix(-0.985603, 0, 0, 0.985603, 212.184779, 56.691142)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-4" x="214.717936" y="52.926878"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 130.685372 -0.000509631 L 130.685372 -18.096983 " transform="matrix(0.985603, 0, 0, -0.985603, 69.141425, 27.41356)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.051968 -0.00148774 L 1.609097 1.682919 L 3.087412 -0.00148774 L 1.609097 -1.681931 Z M 6.051968 -0.00148774 " transform="matrix(0, 0.985603, 0.985603, 0, 197.946779, 42.453132)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 199.910156 27.414062 C 199.910156 26.328125 199.03125 25.449219 197.945312 25.449219 C 196.863281 25.449219 195.984375 26.328125 195.984375 27.414062 C 195.984375 28.5 196.863281 29.378906 197.945312 29.378906 C 199.03125 29.378906 199.910156 28.5 199.910156 27.414062 Z M 199.910156 27.414062 "/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 119.294819 -0.000509631 L 152.868018 -0.000509631 " transform="matrix(0.985603, 0, 0, -0.985603, 69.141425, 27.41356)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 222.980469 27.414062 L 218.597656 25.753906 L 220.054688 27.414062 L 218.597656 29.074219 Z M 222.980469 27.414062 "/>
+<g clip-path="url(#clip-2)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.054866 -0.000509631 L 1.608032 1.683897 L 3.086347 -0.000509631 L 1.608032 -1.684916 Z M 6.054866 -0.000509631 " transform="matrix(0.985603, 0, 0, -0.985603, 217.012775, 27.41356)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-5" x="215.445311" y="21.74043"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -52.288761 -0.000509631 L -67.499945 -0.000509631 " transform="matrix(0.985603, 0, 0, -0.985603, 69.141425, 27.41356)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053484 -0.000509631 L 1.610613 1.683897 L 3.088928 -0.000509631 L 1.610613 -1.684916 Z M 6.053484 -0.000509631 " transform="matrix(0.985603, 0, 0, -0.985603, 14.807106, 27.41356)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-6" x="6.379216" y="23.649543"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -23.982801 -0.000509631 L -11.609347 -0.000509631 " transform="matrix(0.985603, 0, 0, -0.985603, 69.141425, 27.41356)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.054831 -0.000509631 L 1.607997 1.683897 L 3.086312 -0.000509631 L 1.607997 -1.684916 Z M 6.054831 -0.000509631 " transform="matrix(0.985603, 0, 0, -0.985603, 54.903435, 27.41356)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 123.71391 -29.705518 L 111.336493 -29.705518 " transform="matrix(0.985603, 0, 0, -0.985603, 69.141425, 27.41356)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 175.707031 56.691406 L 180.089844 58.351562 L 178.632812 56.691406 L 180.089844 55.03125 Z M 175.707031 56.691406 "/>
+<g clip-path="url(#clip-3)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.054542 0.000268136 L 1.607708 1.684675 L 3.086022 0.000268136 L 1.607708 -1.684139 Z M 6.054542 0.000268136 " transform="matrix(-0.985603, 0, 0, 0.985603, 181.674405, 56.691142)"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 83.030533 -29.705518 L -0.000811925 -29.705518 L -0.000811925 -11.609045 " transform="matrix(0.985603, 0, 0, -0.985603, 69.141425, 27.41356)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.055133 0.000811925 L 1.608299 1.681255 L 3.086614 0.000811925 L 1.608299 -1.683595 Z M 6.055133 0.000811925 " transform="matrix(0, -0.985603, -0.985603, 0, 69.141425, 41.651551)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 112.319394 11.608025 L 112.319394 26.815246 " transform="matrix(0.985603, 0, 0, -0.985603, 69.141425, 27.41356)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.052199 -0.000736317 L 1.609329 1.68367 L 3.087643 -0.000736317 L 1.609329 -1.68118 Z M 6.052199 -0.000736317 " transform="matrix(0, 0.985603, 0.985603, 0, 179.844476, 13.17556)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-7" x="183.606394" y="11.566051"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-3-2" x="188.717731" y="13.038541"/>
+</g>
+</svg>
diff --git a/figs/detail_control_sf_arch_eq.pdf b/figs/detail_control_sf_arch_eq.pdf
new file mode 100644
index 0000000..7219665
Binary files /dev/null and b/figs/detail_control_sf_arch_eq.pdf differ
diff --git a/figs/detail_control_sf_arch_eq.png b/figs/detail_control_sf_arch_eq.png
new file mode 100644
index 0000000..257ecf3
Binary files /dev/null and b/figs/detail_control_sf_arch_eq.png differ
diff --git a/figs/detail_control_sf_arch_eq.svg b/figs/detail_control_sf_arch_eq.svg
new file mode 100644
index 0000000..0cee983
--- /dev/null
+++ b/figs/detail_control_sf_arch_eq.svg
@@ -0,0 +1,199 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="244.257" height="98.955" viewBox="0 0 244.257 98.955">
+<defs>
+<g>
+<g id="glyph-0-0">
+<path d="M 7.359375 -0.203125 C 7.359375 -0.3125 7.25 -0.3125 7.15625 -0.3125 C 6.75 -0.3125 6.625 -0.40625 6.46875 -0.75 L 5.0625 -4.015625 C 5.046875 -4.046875 5.015625 -4.125 5.015625 -4.15625 C 5.015625 -4.15625 5.1875 -4.296875 5.296875 -4.375 L 7.03125 -5.71875 C 7.96875 -6.40625 8.359375 -6.453125 8.65625 -6.484375 C 8.734375 -6.484375 8.828125 -6.5 8.828125 -6.671875 C 8.828125 -6.71875 8.796875 -6.78125 8.71875 -6.78125 C 8.5 -6.78125 8.265625 -6.75 8.015625 -6.75 C 7.65625 -6.75 7.28125 -6.78125 6.921875 -6.78125 C 6.84375 -6.78125 6.734375 -6.78125 6.734375 -6.59375 C 6.734375 -6.515625 6.78125 -6.484375 6.84375 -6.484375 C 7.0625 -6.453125 7.15625 -6.40625 7.15625 -6.265625 C 7.15625 -6.09375 6.859375 -5.859375 6.796875 -5.8125 L 2.921875 -2.828125 L 3.71875 -6.015625 C 3.8125 -6.375 3.828125 -6.484375 4.546875 -6.484375 C 4.796875 -6.484375 4.890625 -6.484375 4.890625 -6.671875 C 4.890625 -6.765625 4.8125 -6.78125 4.75 -6.78125 L 3.484375 -6.75 L 2.203125 -6.78125 C 2.125 -6.78125 2 -6.78125 2 -6.59375 C 2 -6.484375 2.09375 -6.484375 2.28125 -6.484375 C 2.421875 -6.484375 2.59375 -6.46875 2.71875 -6.453125 C 2.875 -6.4375 2.9375 -6.40625 2.9375 -6.296875 C 2.9375 -6.265625 2.921875 -6.234375 2.890625 -6.109375 L 1.5625 -0.78125 C 1.453125 -0.390625 1.4375 -0.3125 0.65625 -0.3125 C 0.484375 -0.3125 0.375 -0.3125 0.375 -0.125 C 0.375 0 0.5 0 0.53125 0 L 1.78125 -0.03125 L 2.421875 -0.015625 C 2.640625 -0.015625 2.859375 0 3.078125 0 C 3.140625 0 3.265625 0 3.265625 -0.203125 C 3.265625 -0.3125 3.1875 -0.3125 2.984375 -0.3125 C 2.625 -0.3125 2.34375 -0.3125 2.34375 -0.484375 C 2.34375 -0.5625 2.40625 -0.78125 2.4375 -0.921875 L 2.828125 -2.484375 L 4.3125 -3.640625 L 5.46875 -0.96875 C 5.578125 -0.703125 5.578125 -0.671875 5.578125 -0.609375 C 5.578125 -0.3125 5.15625 -0.3125 5.0625 -0.3125 C 4.953125 -0.3125 4.84375 -0.3125 4.84375 -0.109375 C 4.84375 0 4.984375 0 4.984375 0 C 5.390625 0 5.796875 -0.03125 6.203125 -0.03125 C 6.421875 -0.03125 6.953125 0 7.171875 0 C 7.21875 0 7.359375 0 7.359375 -0.203125 Z M 7.359375 -0.203125 "/>
+</g>
+<g id="glyph-0-1">
+<path d="M 4.875 -1.421875 C 4.875 -1.515625 4.78125 -1.515625 4.75 -1.515625 C 4.65625 -1.515625 4.640625 -1.484375 4.609375 -1.34375 C 4.40625 -0.609375 4.1875 -0.109375 3.75 -0.109375 C 3.5625 -0.109375 3.421875 -0.21875 3.421875 -0.578125 C 3.421875 -0.75 3.46875 -0.96875 3.515625 -1.140625 C 3.546875 -1.296875 3.546875 -1.34375 3.546875 -1.4375 C 3.546875 -2.09375 2.921875 -2.375 2.078125 -2.484375 C 2.390625 -2.65625 2.703125 -2.984375 2.9375 -3.21875 C 3.40625 -3.75 3.859375 -4.171875 4.359375 -4.171875 C 4.40625 -4.171875 4.421875 -4.171875 4.4375 -4.15625 C 4.5625 -4.140625 4.578125 -4.140625 4.65625 -4.078125 C 4.671875 -4.078125 4.671875 -4.0625 4.6875 -4.046875 C 4.21875 -4.015625 4.125 -3.625 4.125 -3.515625 C 4.125 -3.34375 4.234375 -3.15625 4.5 -3.15625 C 4.765625 -3.15625 5.046875 -3.375 5.046875 -3.765625 C 5.046875 -4.0625 4.8125 -4.390625 4.375 -4.390625 C 4.09375 -4.390625 3.640625 -4.3125 2.921875 -3.515625 C 2.578125 -3.140625 2.203125 -2.75 1.8125 -2.59375 L 2.859375 -6.78125 C 2.859375 -6.78125 2.859375 -6.890625 2.71875 -6.890625 C 2.5 -6.890625 1.765625 -6.8125 1.515625 -6.796875 C 1.4375 -6.78125 1.328125 -6.78125 1.328125 -6.59375 C 1.328125 -6.484375 1.40625 -6.484375 1.5625 -6.484375 C 2.03125 -6.484375 2.0625 -6.40625 2.0625 -6.3125 L 2.03125 -6.109375 L 0.59375 -0.390625 C 0.546875 -0.25 0.546875 -0.234375 0.546875 -0.171875 C 0.546875 0.0625 0.75 0.109375 0.828125 0.109375 C 0.96875 0.109375 1.109375 0.015625 1.171875 -0.09375 C 1.21875 -0.1875 1.671875 -2.03125 1.734375 -2.28125 C 2.0625 -2.25 2.875 -2.09375 2.875 -1.4375 C 2.875 -1.359375 2.875 -1.328125 2.859375 -1.21875 C 2.828125 -1.109375 2.8125 -0.984375 2.8125 -0.875 C 2.8125 -0.28125 3.203125 0.109375 3.734375 0.109375 C 4.03125 0.109375 4.296875 -0.046875 4.515625 -0.421875 C 4.765625 -0.859375 4.875 -1.421875 4.875 -1.421875 Z M 4.875 -1.421875 "/>
+</g>
+<g id="glyph-0-2">
+<path d="M 7.171875 -2.609375 C 7.171875 -2.671875 7.109375 -2.71875 7.03125 -2.71875 C 6.8125 -2.71875 6.21875 -2.6875 6 -2.6875 L 4.59375 -2.71875 C 4.515625 -2.71875 4.390625 -2.71875 4.390625 -2.515625 C 4.390625 -2.40625 4.46875 -2.40625 4.6875 -2.40625 C 4.6875 -2.40625 4.984375 -2.40625 5.21875 -2.390625 C 5.46875 -2.359375 5.53125 -2.328125 5.53125 -2.203125 C 5.53125 -2.109375 5.421875 -1.65625 5.3125 -1.296875 C 5.03125 -0.203125 3.75 -0.09375 3.40625 -0.09375 C 2.4375 -0.09375 1.40625 -0.65625 1.40625 -2.171875 C 1.40625 -2.484375 1.5 -4.125 2.546875 -5.421875 C 3.078125 -6.09375 4.046875 -6.703125 5.03125 -6.703125 C 6.046875 -6.703125 6.625 -5.9375 6.625 -4.78125 C 6.625 -4.375 6.59375 -4.375 6.59375 -4.265625 C 6.59375 -4.171875 6.703125 -4.171875 6.75 -4.171875 C 6.875 -4.171875 6.875 -4.1875 6.921875 -4.375 L 7.546875 -6.90625 C 7.546875 -6.9375 7.53125 -7 7.4375 -7 C 7.40625 -7 7.40625 -7 7.296875 -6.890625 L 6.59375 -6.125 C 6.515625 -6.265625 6.046875 -7 4.953125 -7 C 2.734375 -7 0.5 -4.8125 0.5 -2.5 C 0.5 -0.921875 1.59375 0.21875 3.203125 0.21875 C 3.640625 0.21875 4.09375 0.125 4.453125 -0.015625 C 4.953125 -0.21875 5.140625 -0.421875 5.3125 -0.625 C 5.40625 -0.375 5.671875 -0.015625 5.765625 -0.015625 C 5.8125 -0.015625 5.828125 -0.046875 5.828125 -0.046875 C 5.859375 -0.0625 5.953125 -0.453125 6 -0.65625 L 6.1875 -1.421875 C 6.234375 -1.59375 6.28125 -1.765625 6.3125 -1.921875 C 6.421875 -2.375 6.4375 -2.390625 7 -2.40625 C 7.0625 -2.40625 7.171875 -2.421875 7.171875 -2.609375 Z M 7.171875 -2.609375 "/>
+</g>
+<g id="glyph-0-3">
+<path d="M 7.140625 -0.203125 C 7.140625 -0.3125 7.046875 -0.3125 6.859375 -0.3125 C 6.484375 -0.3125 6.21875 -0.3125 6.21875 -0.484375 C 6.21875 -0.546875 6.234375 -0.59375 6.234375 -0.65625 L 7.578125 -6.015625 C 7.671875 -6.375 7.6875 -6.484375 8.421875 -6.484375 C 8.671875 -6.484375 8.75 -6.484375 8.75 -6.671875 C 8.75 -6.78125 8.640625 -6.78125 8.609375 -6.78125 L 7.34375 -6.75 L 6.0625 -6.78125 C 5.984375 -6.78125 5.875 -6.78125 5.875 -6.59375 C 5.875 -6.484375 5.96875 -6.484375 6.15625 -6.484375 C 6.15625 -6.484375 6.359375 -6.484375 6.53125 -6.453125 C 6.703125 -6.4375 6.796875 -6.421875 6.796875 -6.296875 C 6.796875 -6.265625 6.78125 -6.234375 6.75 -6.109375 L 6.15625 -3.6875 L 3.125 -3.6875 L 3.71875 -6.015625 C 3.8125 -6.375 3.828125 -6.484375 4.546875 -6.484375 C 4.8125 -6.484375 4.890625 -6.484375 4.890625 -6.671875 C 4.890625 -6.78125 4.78125 -6.78125 4.75 -6.78125 L 3.484375 -6.75 L 2.203125 -6.78125 C 2.109375 -6.78125 2 -6.78125 2 -6.59375 C 2 -6.484375 2.09375 -6.484375 2.28125 -6.484375 C 2.28125 -6.484375 2.5 -6.484375 2.65625 -6.453125 C 2.84375 -6.4375 2.9375 -6.421875 2.9375 -6.296875 C 2.9375 -6.265625 2.921875 -6.234375 2.890625 -6.109375 L 1.5625 -0.78125 C 1.453125 -0.390625 1.4375 -0.3125 0.65625 -0.3125 C 0.484375 -0.3125 0.390625 -0.3125 0.390625 -0.109375 C 0.390625 0 0.53125 0 0.53125 0 L 1.78125 -0.03125 L 2.421875 -0.015625 C 2.640625 -0.015625 2.859375 0 3.078125 0 C 3.15625 0 3.265625 0 3.265625 -0.203125 C 3.265625 -0.3125 3.1875 -0.3125 2.984375 -0.3125 C 2.625 -0.3125 2.34375 -0.3125 2.34375 -0.484375 C 2.34375 -0.546875 2.359375 -0.59375 2.375 -0.65625 L 3.046875 -3.375 L 6.078125 -3.375 L 5.390625 -0.640625 C 5.296875 -0.3125 5.109375 -0.3125 4.484375 -0.3125 C 4.34375 -0.3125 4.25 -0.3125 4.25 -0.109375 C 4.25 0 4.390625 0 4.390625 0 L 5.65625 -0.03125 L 6.296875 -0.015625 C 6.515625 -0.015625 6.734375 0 6.9375 0 C 7.015625 0 7.140625 0 7.140625 -0.203125 Z M 7.140625 -0.203125 "/>
+</g>
+<g id="glyph-0-4">
+<path d="M 5.390625 -1.421875 C 5.390625 -1.515625 5.3125 -1.515625 5.28125 -1.515625 C 5.171875 -1.515625 5.171875 -1.484375 5.140625 -1.34375 C 5 -0.78125 4.8125 -0.109375 4.390625 -0.109375 C 4.1875 -0.109375 4.078125 -0.234375 4.078125 -0.5625 C 4.078125 -0.78125 4.203125 -1.25 4.28125 -1.59375 L 4.5625 -2.671875 C 4.59375 -2.828125 4.6875 -3.203125 4.734375 -3.34375 C 4.78125 -3.578125 4.875 -3.953125 4.875 -4.015625 C 4.875 -4.1875 4.734375 -4.28125 4.59375 -4.28125 C 4.546875 -4.28125 4.28125 -4.265625 4.203125 -3.9375 L 3.453125 -0.9375 C 3.453125 -0.90625 3.046875 -0.109375 2.328125 -0.109375 C 1.8125 -0.109375 1.703125 -0.5625 1.703125 -0.921875 C 1.703125 -1.484375 1.984375 -2.265625 2.25 -2.953125 C 2.359375 -3.25 2.421875 -3.390625 2.421875 -3.578125 C 2.421875 -4.03125 2.09375 -4.390625 1.59375 -4.390625 C 0.65625 -4.390625 0.28125 -2.953125 0.28125 -2.859375 C 0.28125 -2.765625 0.40625 -2.765625 0.40625 -2.765625 C 0.5 -2.765625 0.515625 -2.78125 0.5625 -2.9375 C 0.8125 -3.8125 1.1875 -4.171875 1.5625 -4.171875 C 1.65625 -4.171875 1.8125 -4.15625 1.8125 -3.84375 C 1.8125 -3.609375 1.703125 -3.3125 1.65625 -3.171875 C 1.28125 -2.1875 1.078125 -1.5625 1.078125 -1.078125 C 1.078125 -0.140625 1.765625 0.109375 2.296875 0.109375 C 2.953125 0.109375 3.3125 -0.34375 3.484375 -0.5625 C 3.59375 -0.15625 3.9375 0.109375 4.359375 0.109375 C 4.703125 0.109375 4.9375 -0.125 5.09375 -0.4375 C 5.265625 -0.796875 5.390625 -1.421875 5.390625 -1.421875 Z M 5.390625 -1.421875 "/>
+</g>
+<g id="glyph-0-5">
+<path d="M 5.671875 -1.421875 C 5.671875 -1.515625 5.578125 -1.515625 5.5625 -1.515625 C 5.453125 -1.515625 5.453125 -1.484375 5.40625 -1.34375 C 5.203125 -0.671875 4.875 -0.109375 4.390625 -0.109375 C 4.21875 -0.109375 4.15625 -0.203125 4.15625 -0.4375 C 4.15625 -0.6875 4.25 -0.921875 4.328125 -1.140625 C 4.515625 -1.671875 4.9375 -2.765625 4.9375 -3.328125 C 4.9375 -4 4.515625 -4.390625 3.796875 -4.390625 C 2.90625 -4.390625 2.421875 -3.75 2.25 -3.53125 C 2.203125 -4.078125 1.78125 -4.390625 1.328125 -4.390625 C 0.875 -4.390625 0.6875 -4 0.59375 -3.828125 C 0.421875 -3.484375 0.28125 -2.90625 0.28125 -2.859375 C 0.28125 -2.765625 0.40625 -2.765625 0.40625 -2.765625 C 0.5 -2.765625 0.515625 -2.765625 0.578125 -2.984375 C 0.75 -3.703125 0.9375 -4.171875 1.296875 -4.171875 C 1.5 -4.171875 1.609375 -4.046875 1.609375 -3.71875 C 1.609375 -3.515625 1.578125 -3.40625 1.453125 -2.875 L 0.875 -0.59375 C 0.84375 -0.4375 0.78125 -0.203125 0.78125 -0.15625 C 0.78125 0.015625 0.921875 0.109375 1.078125 0.109375 C 1.1875 0.109375 1.375 0.03125 1.4375 -0.171875 C 1.453125 -0.1875 1.5625 -0.65625 1.625 -0.90625 L 1.84375 -1.796875 C 1.90625 -2.015625 1.96875 -2.234375 2.015625 -2.46875 L 2.140625 -2.96875 C 2.296875 -3.265625 2.828125 -4.171875 3.765625 -4.171875 C 4.21875 -4.171875 4.296875 -3.8125 4.296875 -3.484375 C 4.296875 -2.859375 3.8125 -1.59375 3.65625 -1.15625 C 3.5625 -0.9375 3.5625 -0.8125 3.5625 -0.703125 C 3.5625 -0.234375 3.90625 0.109375 4.375 0.109375 C 5.3125 0.109375 5.671875 -1.34375 5.671875 -1.421875 Z M 5.671875 -1.421875 "/>
+</g>
+<g id="glyph-0-6">
+<path d="M 4.828125 -3.78125 C 4.875 -3.921875 4.875 -3.9375 4.875 -4.015625 C 4.875 -4.1875 4.734375 -4.28125 4.578125 -4.28125 C 4.484375 -4.28125 4.328125 -4.21875 4.234375 -4.078125 C 4.21875 -4.03125 4.140625 -3.71875 4.09375 -3.53125 L 3.890625 -2.75 L 3.453125 -0.953125 C 3.40625 -0.8125 2.984375 -0.109375 2.328125 -0.109375 C 1.8125 -0.109375 1.703125 -0.546875 1.703125 -0.921875 C 1.703125 -1.375 1.875 -1.984375 2.21875 -2.859375 C 2.375 -3.265625 2.421875 -3.375 2.421875 -3.578125 C 2.421875 -4.03125 2.09375 -4.390625 1.59375 -4.390625 C 0.65625 -4.390625 0.28125 -2.953125 0.28125 -2.859375 C 0.28125 -2.765625 0.40625 -2.765625 0.40625 -2.765625 C 0.5 -2.765625 0.515625 -2.78125 0.5625 -2.9375 C 0.828125 -3.875 1.234375 -4.171875 1.5625 -4.171875 C 1.65625 -4.171875 1.8125 -4.171875 1.8125 -3.859375 C 1.8125 -3.609375 1.71875 -3.34375 1.65625 -3.15625 C 1.25 -2.109375 1.078125 -1.546875 1.078125 -1.078125 C 1.078125 -0.1875 1.703125 0.109375 2.28125 0.109375 C 2.671875 0.109375 3.015625 -0.0625 3.296875 -0.34375 C 3.15625 0.171875 3.046875 0.671875 2.640625 1.1875 C 2.390625 1.53125 2 1.8125 1.546875 1.8125 C 1.40625 1.8125 0.96875 1.78125 0.796875 1.40625 C 0.953125 1.40625 1.078125 1.40625 1.21875 1.28125 C 1.328125 1.1875 1.421875 1.0625 1.421875 0.875 C 1.421875 0.5625 1.15625 0.53125 1.046875 0.53125 C 0.828125 0.53125 0.5 0.6875 0.5 1.171875 C 0.5 1.671875 0.9375 2.03125 1.546875 2.03125 C 2.578125 2.03125 3.59375 1.140625 3.875 0.015625 Z M 4.828125 -3.78125 "/>
+</g>
+<g id="glyph-0-7">
+<path d="M 4.328125 -3.75 C 4.328125 -4.09375 4.015625 -4.390625 3.515625 -4.390625 C 2.859375 -4.390625 2.421875 -3.90625 2.234375 -3.625 C 2.15625 -4.078125 1.796875 -4.390625 1.328125 -4.390625 C 0.875 -4.390625 0.6875 -4 0.59375 -3.828125 C 0.421875 -3.484375 0.28125 -2.890625 0.28125 -2.859375 C 0.28125 -2.765625 0.40625 -2.765625 0.40625 -2.765625 C 0.5 -2.765625 0.515625 -2.765625 0.578125 -2.984375 C 0.75 -3.703125 0.9375 -4.171875 1.296875 -4.171875 C 1.46875 -4.171875 1.609375 -4.09375 1.609375 -3.71875 C 1.609375 -3.515625 1.578125 -3.40625 1.453125 -2.875 L 0.875 -0.59375 C 0.84375 -0.4375 0.78125 -0.203125 0.78125 -0.15625 C 0.78125 0.015625 0.921875 0.109375 1.078125 0.109375 C 1.1875 0.109375 1.375 0.03125 1.4375 -0.171875 C 1.453125 -0.203125 1.796875 -1.5625 1.84375 -1.734375 L 2.15625 -3.03125 C 2.203125 -3.15625 2.46875 -3.625 2.71875 -3.84375 C 2.796875 -3.921875 3.078125 -4.171875 3.515625 -4.171875 C 3.765625 -4.171875 3.921875 -4.046875 3.921875 -4.046875 C 3.625 -4 3.40625 -3.765625 3.40625 -3.515625 C 3.40625 -3.34375 3.515625 -3.15625 3.78125 -3.15625 C 4.046875 -3.15625 4.328125 -3.390625 4.328125 -3.75 Z M 4.328125 -3.75 "/>
+</g>
+<g id="glyph-0-8">
+<path d="M 4.953125 -1.421875 C 4.953125 -1.515625 4.859375 -1.515625 4.828125 -1.515625 C 4.734375 -1.515625 4.71875 -1.484375 4.6875 -1.34375 C 4.515625 -0.703125 4.34375 -0.109375 3.9375 -0.109375 C 3.671875 -0.109375 3.640625 -0.375 3.640625 -0.5625 C 3.640625 -0.8125 3.65625 -0.875 3.703125 -1.046875 L 5.125 -6.78125 C 5.125 -6.78125 5.125 -6.890625 5 -6.890625 C 4.84375 -6.890625 3.90625 -6.8125 3.734375 -6.78125 C 3.65625 -6.78125 3.59375 -6.734375 3.59375 -6.59375 C 3.59375 -6.484375 3.6875 -6.484375 3.828125 -6.484375 C 4.3125 -6.484375 4.328125 -6.40625 4.328125 -6.3125 L 4.296875 -6.109375 L 3.703125 -3.75 C 3.53125 -4.125 3.234375 -4.390625 2.796875 -4.390625 C 1.625 -4.390625 0.390625 -2.9375 0.390625 -1.484375 C 0.390625 -0.546875 0.9375 0.109375 1.71875 0.109375 C 1.921875 0.109375 2.421875 0.0625 3.015625 -0.640625 C 3.09375 -0.21875 3.4375 0.109375 3.921875 0.109375 C 4.265625 0.109375 4.484375 -0.125 4.65625 -0.4375 C 4.8125 -0.796875 4.953125 -1.421875 4.953125 -1.421875 Z M 3.5625 -3.125 L 3.0625 -1.1875 C 3.015625 -1 3.015625 -0.984375 2.859375 -0.8125 C 2.421875 -0.265625 2.015625 -0.109375 1.734375 -0.109375 C 1.25 -0.109375 1.109375 -0.65625 1.109375 -1.046875 C 1.109375 -1.546875 1.421875 -2.765625 1.65625 -3.21875 C 1.953125 -3.8125 2.40625 -4.171875 2.796875 -4.171875 C 3.453125 -4.171875 3.59375 -3.359375 3.59375 -3.296875 C 3.59375 -3.234375 3.5625 -3.1875 3.5625 -3.125 Z M 3.5625 -3.125 "/>
+</g>
+<g id="glyph-1-0">
+<path d="M 8.09375 -2.984375 C 8.09375 -3.203125 7.890625 -3.203125 7.71875 -3.203125 L 4.53125 -3.203125 L 4.53125 -6.390625 C 4.53125 -6.5625 4.53125 -6.765625 4.328125 -6.765625 C 4.109375 -6.765625 4.109375 -6.578125 4.109375 -6.390625 L 4.109375 -3.203125 L 0.921875 -3.203125 C 0.75 -3.203125 0.546875 -3.203125 0.546875 -3 C 0.546875 -2.78125 0.75 -2.78125 0.921875 -2.78125 L 4.109375 -2.78125 L 4.109375 0.390625 C 4.109375 0.5625 4.109375 0.765625 4.3125 0.765625 C 4.53125 0.765625 4.53125 0.578125 4.53125 0.390625 L 4.53125 -2.78125 L 7.71875 -2.78125 C 7.875 -2.78125 8.09375 -2.78125 8.09375 -2.984375 Z M 8.09375 -2.984375 "/>
+</g>
+<g id="glyph-2-0">
+<path d="M 6.890625 -2.484375 C 6.890625 -2.6875 6.703125 -2.6875 6.5625 -2.6875 L 1.15625 -2.6875 C 1.015625 -2.6875 0.828125 -2.6875 0.828125 -2.484375 C 0.828125 -2.28125 1.015625 -2.28125 1.15625 -2.28125 L 6.5625 -2.28125 C 6.703125 -2.28125 6.890625 -2.28125 6.890625 -2.484375 Z M 6.890625 -2.484375 "/>
+</g>
+<g id="glyph-3-0">
+<path d="M 2.078125 -3.5 C 2.078125 -3.71875 1.890625 -3.890625 1.671875 -3.890625 C 1.390625 -3.890625 1.328125 -3.65625 1.296875 -3.5625 L 0.375 -0.5625 L 0.328125 -0.4375 C 0.328125 -0.359375 0.546875 -0.28125 0.609375 -0.28125 C 0.65625 -0.28125 0.6875 -0.3125 0.703125 -0.390625 L 2.015625 -3.28125 C 2.046875 -3.359375 2.078125 -3.40625 2.078125 -3.5 Z M 2.078125 -3.5 "/>
+</g>
+<g id="glyph-4-0">
+<path d="M 5.546875 -0.140625 C 5.546875 -0.25 5.484375 -0.25 5.3125 -0.25 C 5.203125 -0.25 5.1875 -0.25 5.0625 -0.265625 C 4.90625 -0.28125 4.90625 -0.296875 4.90625 -0.375 C 4.90625 -0.40625 4.921875 -0.484375 4.9375 -0.515625 L 5.84375 -4.1875 C 5.90625 -4.4375 5.921875 -4.5 6.4375 -4.5 C 6.59375 -4.5 6.671875 -4.5 6.671875 -4.65625 C 6.671875 -4.671875 6.65625 -4.75 6.5625 -4.75 C 6.359375 -4.75 5.859375 -4.71875 5.65625 -4.71875 C 5.53125 -4.71875 5.296875 -4.71875 5.171875 -4.734375 C 5.03125 -4.734375 4.875 -4.75 4.734375 -4.75 C 4.6875 -4.75 4.59375 -4.75 4.59375 -4.59375 C 4.59375 -4.5 4.671875 -4.5 4.8125 -4.5 C 4.8125 -4.5 4.953125 -4.5 5.078125 -4.484375 C 5.21875 -4.46875 5.234375 -4.453125 5.234375 -4.390625 C 5.234375 -4.390625 5.234375 -4.34375 5.203125 -4.234375 L 4.796875 -2.59375 L 2.46875 -2.59375 L 2.875 -4.203125 C 2.9375 -4.4375 2.953125 -4.5 3.484375 -4.5 C 3.609375 -4.5 3.6875 -4.5 3.6875 -4.65625 C 3.6875 -4.671875 3.671875 -4.75 3.578125 -4.75 C 3.375 -4.75 2.875 -4.71875 2.671875 -4.71875 C 2.546875 -4.71875 2.3125 -4.71875 2.1875 -4.734375 C 2.046875 -4.734375 1.890625 -4.75 1.75 -4.75 C 1.703125 -4.75 1.609375 -4.75 1.609375 -4.59375 C 1.609375 -4.5 1.6875 -4.5 1.828125 -4.5 C 1.828125 -4.5 1.96875 -4.5 2.09375 -4.484375 C 2.234375 -4.46875 2.25 -4.453125 2.25 -4.390625 C 2.25 -4.390625 2.25 -4.34375 2.21875 -4.234375 L 1.296875 -0.546875 C 1.25 -0.3125 1.234375 -0.25 0.6875 -0.25 C 0.5625 -0.25 0.484375 -0.25 0.484375 -0.109375 C 0.484375 -0.03125 0.53125 0 0.59375 0 C 0.796875 0 1.296875 -0.03125 1.5 -0.03125 C 1.609375 -0.03125 1.859375 -0.03125 1.96875 -0.015625 C 2.109375 -0.015625 2.28125 0 2.421875 0 C 2.453125 0 2.5625 0 2.5625 -0.140625 C 2.5625 -0.25 2.5 -0.25 2.34375 -0.25 C 2.21875 -0.25 2.203125 -0.25 2.078125 -0.265625 C 1.921875 -0.28125 1.921875 -0.296875 1.921875 -0.375 C 1.921875 -0.375 1.921875 -0.421875 1.953125 -0.515625 L 2.40625 -2.34375 L 4.734375 -2.34375 L 4.28125 -0.546875 C 4.234375 -0.3125 4.21875 -0.25 3.671875 -0.25 C 3.546875 -0.25 3.46875 -0.25 3.46875 -0.109375 C 3.46875 -0.03125 3.515625 0 3.578125 0 C 3.78125 0 4.28125 -0.03125 4.484375 -0.03125 C 4.59375 -0.03125 4.84375 -0.03125 4.953125 -0.015625 C 5.09375 -0.015625 5.265625 0 5.40625 0 C 5.4375 0 5.546875 0 5.546875 -0.140625 Z M 5.546875 -0.140625 "/>
+</g>
+<g id="glyph-4-1">
+<path d="M 5.015625 -1.734375 C 5.015625 -1.75 5 -1.828125 4.890625 -1.828125 C 4.8125 -1.828125 4.796875 -1.796875 4.75 -1.6875 C 4.484375 -1.015625 4.1875 -0.25 2.90625 -0.25 L 2.125 -0.25 C 1.90625 -0.25 1.90625 -0.25 1.90625 -0.3125 C 1.90625 -0.3125 1.90625 -0.359375 1.9375 -0.46875 L 2.859375 -4.171875 C 2.921875 -4.421875 2.953125 -4.5 3.59375 -4.5 C 3.796875 -4.5 3.875 -4.5 3.875 -4.65625 C 3.875 -4.65625 3.859375 -4.75 3.75 -4.75 C 3.59375 -4.75 3.40625 -4.734375 3.234375 -4.734375 L 2.6875 -4.71875 L 2.203125 -4.734375 C 2.0625 -4.734375 1.890625 -4.75 1.75 -4.75 C 1.703125 -4.75 1.609375 -4.75 1.609375 -4.59375 C 1.609375 -4.5 1.6875 -4.5 1.828125 -4.5 C 1.828125 -4.5 1.96875 -4.5 2.09375 -4.484375 C 2.234375 -4.46875 2.25 -4.453125 2.25 -4.390625 C 2.25 -4.390625 2.25 -4.34375 2.21875 -4.234375 L 1.296875 -0.546875 C 1.234375 -0.3125 1.21875 -0.25 0.6875 -0.25 C 0.5625 -0.25 0.484375 -0.25 0.484375 -0.109375 C 0.484375 0 0.5625 0 0.6875 0 L 4.1875 0 C 4.359375 0 4.359375 0 4.421875 -0.140625 C 4.484375 -0.328125 5.015625 -1.671875 5.015625 -1.734375 Z M 5.015625 -1.734375 "/>
+</g>
+<g id="glyph-4-2">
+<path d="M 6.703125 -1 C 6.703125 -1.078125 6.625 -1.078125 6.59375 -1.078125 C 6.5 -1.078125 6.5 -1.046875 6.46875 -0.96875 C 6.3125 -0.40625 6 -0.125 5.734375 -0.125 C 5.578125 -0.125 5.5625 -0.21875 5.5625 -0.375 C 5.5625 -0.53125 5.59375 -0.625 5.71875 -0.9375 C 5.796875 -1.140625 6.078125 -1.890625 6.078125 -2.28125 C 6.078125 -2.390625 6.078125 -2.671875 5.828125 -2.875 C 5.703125 -2.96875 5.5 -3.0625 5.1875 -3.0625 C 4.546875 -3.0625 4.171875 -2.65625 3.953125 -2.359375 C 3.890625 -2.953125 3.40625 -3.0625 3.046875 -3.0625 C 2.46875 -3.0625 2.078125 -2.71875 1.875 -2.4375 C 1.828125 -2.90625 1.40625 -3.0625 1.125 -3.0625 C 0.828125 -3.0625 0.671875 -2.84375 0.578125 -2.6875 C 0.421875 -2.4375 0.328125 -2.03125 0.328125 -2 C 0.328125 -1.90625 0.421875 -1.90625 0.4375 -1.90625 C 0.546875 -1.90625 0.546875 -1.9375 0.59375 -2.125 C 0.703125 -2.53125 0.828125 -2.875 1.109375 -2.875 C 1.28125 -2.875 1.328125 -2.71875 1.328125 -2.53125 C 1.328125 -2.40625 1.265625 -2.140625 1.21875 -1.953125 L 1.078125 -1.328125 L 0.84375 -0.4375 C 0.828125 -0.34375 0.78125 -0.171875 0.78125 -0.15625 C 0.78125 0 0.90625 0.0625 1.015625 0.0625 C 1.140625 0.0625 1.25 -0.015625 1.28125 -0.078125 C 1.328125 -0.140625 1.375 -0.375 1.40625 -0.515625 L 1.5625 -1.140625 C 1.609375 -1.296875 1.640625 -1.453125 1.6875 -1.609375 C 1.765625 -1.890625 1.765625 -1.953125 1.96875 -2.234375 C 2.171875 -2.515625 2.5 -2.875 3.015625 -2.875 C 3.421875 -2.875 3.421875 -2.515625 3.421875 -2.390625 C 3.421875 -2.21875 3.40625 -2.125 3.3125 -1.734375 L 3.015625 -0.5625 C 2.984375 -0.421875 2.921875 -0.1875 2.921875 -0.15625 C 2.921875 0 3.046875 0.0625 3.15625 0.0625 C 3.28125 0.0625 3.390625 -0.015625 3.421875 -0.078125 C 3.46875 -0.140625 3.515625 -0.375 3.546875 -0.515625 L 3.703125 -1.140625 C 3.75 -1.296875 3.796875 -1.453125 3.828125 -1.609375 C 3.90625 -1.90625 3.90625 -1.921875 4.046875 -2.140625 C 4.265625 -2.46875 4.609375 -2.875 5.15625 -2.875 C 5.546875 -2.875 5.5625 -2.546875 5.5625 -2.390625 C 5.5625 -1.96875 5.265625 -1.203125 5.15625 -0.90625 C 5.078125 -0.703125 5.046875 -0.640625 5.046875 -0.53125 C 5.046875 -0.15625 5.359375 0.0625 5.703125 0.0625 C 6.40625 0.0625 6.703125 -0.890625 6.703125 -1 Z M 6.703125 -1 "/>
+</g>
+<g id="glyph-4-3">
+<path d="M 3.859375 -2.625 C 3.890625 -2.71875 3.890625 -2.734375 3.890625 -2.78125 C 3.890625 -2.90625 3.78125 -3 3.671875 -3 C 3.59375 -3 3.453125 -2.96875 3.375 -2.828125 C 3.359375 -2.78125 3.296875 -2.5625 3.265625 -2.421875 L 3.125 -1.84375 L 2.84375 -0.734375 C 2.84375 -0.734375 2.53125 -0.125 1.984375 -0.125 C 1.515625 -0.125 1.515625 -0.578125 1.515625 -0.703125 C 1.515625 -1.078125 1.671875 -1.515625 1.890625 -2.046875 C 1.96875 -2.28125 2 -2.359375 2 -2.46875 C 2 -2.8125 1.71875 -3.0625 1.34375 -3.0625 C 0.640625 -3.0625 0.328125 -2.125 0.328125 -2 C 0.328125 -1.90625 0.421875 -1.90625 0.4375 -1.90625 C 0.546875 -1.90625 0.546875 -1.953125 0.5625 -2.015625 C 0.75 -2.59375 1.046875 -2.875 1.328125 -2.875 C 1.4375 -2.875 1.5 -2.796875 1.5 -2.625 C 1.5 -2.46875 1.4375 -2.3125 1.390625 -2.21875 C 1.0625 -1.375 1 -1.125 1 -0.8125 C 1 -0.703125 1 -0.375 1.265625 -0.140625 C 1.484375 0.03125 1.765625 0.0625 1.953125 0.0625 C 2.234375 0.0625 2.484375 -0.03125 2.71875 -0.25 C 2.625 0.140625 2.546875 0.4375 2.265625 0.78125 C 2.078125 1 1.796875 1.21875 1.421875 1.21875 C 1.375 1.21875 1.046875 1.21875 0.90625 1 C 1.28125 0.953125 1.28125 0.609375 1.28125 0.609375 C 1.28125 0.390625 1.078125 0.34375 1.015625 0.34375 C 0.828125 0.34375 0.609375 0.484375 0.609375 0.8125 C 0.609375 1.15625 0.9375 1.421875 1.4375 1.421875 C 2.140625 1.421875 2.984375 0.875 3.203125 0 Z M 3.859375 -2.625 "/>
+</g>
+</g>
+<clipPath id="clip-0">
+<path clip-rule="nonzero" d="M 156 80 L 181 80 L 181 98.78125 L 156 98.78125 Z M 156 80 "/>
+</clipPath>
+<clipPath id="clip-1">
+<path clip-rule="nonzero" d="M 194 68 L 237 68 L 237 98.78125 L 194 98.78125 Z M 194 68 "/>
+</clipPath>
+<clipPath id="clip-2">
+<path clip-rule="nonzero" d="M 226 88 L 243.515625 88 L 243.515625 90 L 226 90 Z M 226 88 "/>
+</clipPath>
+<clipPath id="clip-3">
+<path clip-rule="nonzero" d="M 210 73 L 243 73 L 243 98.78125 L 210 98.78125 Z M 210 73 "/>
+</clipPath>
+<clipPath id="clip-4">
+<path clip-rule="nonzero" d="M 222 13 L 243.515625 13 L 243.515625 45 L 222 45 Z M 222 13 "/>
+</clipPath>
+<clipPath id="clip-5">
+<path clip-rule="nonzero" d="M 167 73 L 201 73 L 201 98.78125 L 167 98.78125 Z M 167 73 "/>
+</clipPath>
+</defs>
+<path fill-rule="nonzero" fill="rgb(79.998779%, 79.998779%, 79.998779%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-dasharray="2.98883 2.98883" stroke-miterlimit="10" d="M 16.167035 -46.1633 L 111.941862 -46.1633 L 111.941862 13.983949 L 16.167035 13.983949 Z M 16.167035 -46.1633 " transform="matrix(0.996967, 0, 0, -0.996967, 27.72965, 28.968885)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-0" x="87.01531" y="10.724382"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.975097 0.000135116 C 6.975097 3.851659 3.852346 6.974411 0.000821453 6.974411 C -3.850703 6.974411 -6.973454 3.851659 -6.973454 0.000135116 C -6.973454 -3.851389 -3.850703 -6.97414 0.000821453 -6.97414 C 3.852346 -6.97414 6.975097 -3.851389 6.975097 0.000135116 Z M 6.975097 0.000135116 " transform="matrix(0.996967, 0, 0, -0.996967, 27.72965, 28.968885)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-1-0" x="23.405802" y="31.876041"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-0" x="18.018191" y="43.702068"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 37.928342 0.000135116 C 37.928342 3.851659 34.809509 6.974411 30.957985 6.974411 C 27.102543 6.974411 23.983709 3.851659 23.983709 0.000135116 C 23.983709 -3.851389 27.102543 -6.97414 30.957985 -6.97414 C 34.809509 -6.97414 37.928342 -3.851389 37.928342 0.000135116 Z M 37.928342 0.000135116 " transform="matrix(0.996967, 0, 0, -0.996967, 27.72965, 28.968885)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-1-0" x="54.267924" y="31.876041"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-2-0" x="48.880312" y="43.702068"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 55.434558 -8.502212 L 78.112708 -8.502212 L 78.112708 8.502482 L 55.434558 8.502482 Z M 55.434558 -8.502212 " transform="matrix(0.996967, 0, 0, -0.996967, 27.72965, 28.968885)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-1" x="91.559487" y="32.417395"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 130.133751 -8.502212 L 152.811901 -8.502212 L 152.811901 8.502482 L 130.133751 8.502482 Z M 130.133751 -8.502212 " transform="matrix(0.996967, 0, 0, -0.996967, 27.72965, 28.968885)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-2" x="163.47473" y="32.702527"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-3-0" x="171.283975" y="29.097493"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 184.266667 0.000135116 C 184.266667 3.851659 181.143916 6.974411 177.292392 6.974411 C 173.440867 6.974411 170.318116 3.851659 170.318116 0.000135116 C 170.318116 -3.851389 173.440867 -6.97414 177.292392 -6.97414 C 181.143916 -6.97414 184.266667 -3.851389 184.266667 0.000135116 Z M 184.266667 0.000135116 " transform="matrix(0.996967, 0, 0, -0.996967, 27.72965, 28.968885)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-1-0" x="200.158143" y="31.876041"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 73.442294 -40.681833 L 96.116526 -40.681833 L 96.116526 -23.67322 L 73.442294 -23.67322 Z M 73.442294 -40.681833 " transform="matrix(0.996967, 0, 0, -0.996967, 27.72965, 28.968885)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-2" x="108.346423" y="64.44198"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 37.43074 -40.681833 L 60.10889 -40.681833 L 60.10889 -23.67322 L 37.43074 -23.67322 Z M 37.43074 -40.681833 " transform="matrix(0.996967, 0, 0, -0.996967, 27.72965, 28.968885)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-3" x="68.456763" y="63.697245"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-4-0" x="76.713646" y="65.186714"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" d="M 157.46875 97.789062 L 180.078125 97.789062 L 180.078125 80.832031 L 157.46875 80.832031 Z M 157.46875 97.789062 "/>
+<g clip-path="url(#clip-0)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 130.133751 -69.02952 L 152.811901 -69.02952 L 152.811901 -52.020908 L 130.133751 -52.020908 Z M 130.133751 -69.02952 " transform="matrix(0.996967, 0, 0, -0.996967, 27.72965, 28.968885)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-3" x="161.671216" y="91.958279"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-4-1" x="169.928099" y="93.447748"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(100%, 100%, 100%)" fill-opacity="1" d="M 222.742188 89.308594 C 222.742188 85.46875 219.628906 82.355469 215.789062 82.355469 C 211.949219 82.355469 208.835938 85.46875 208.835938 89.308594 C 208.835938 93.148438 211.949219 96.261719 215.789062 96.261719 C 219.628906 96.261719 222.742188 93.148438 222.742188 89.308594 Z M 222.742188 89.308594 "/>
+<g clip-path="url(#clip-1)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 195.605742 -60.523255 C 195.605742 -56.671731 192.482991 -53.54898 188.631467 -53.54898 C 184.779942 -53.54898 181.657191 -56.671731 181.657191 -60.523255 C 181.657191 -64.374779 184.779942 -67.497531 188.631467 -67.497531 C 192.482991 -67.497531 195.605742 -64.374779 195.605742 -60.523255 Z M 195.605742 -60.523255 " transform="matrix(0.996967, 0, 0, -0.996967, 27.72965, 28.968885)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-1-0" x="211.461759" y="92.216493"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.975097 0.000135116 L 19.348559 0.000135116 " transform="matrix(0.996967, 0, 0, -0.996967, 27.72965, 28.968885)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.055276 0.000135116 L 1.608195 1.684932 L 3.089249 0.000135116 L 1.608195 -1.684662 Z M 6.055276 0.000135116 " transform="matrix(0.996967, 0, 0, -0.996967, 44.18965, 28.968885)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 37.928342 0.000135116 L 50.305723 0.000135116 " transform="matrix(0.996967, 0, 0, -0.996967, 27.72965, 28.968885)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.052481 0.000135116 L 1.609319 1.684932 L 3.086455 0.000135116 L 1.609319 -1.684662 Z M 6.052481 0.000135116 " transform="matrix(0.996967, 0, 0, -0.996967, 75.051812, 28.968885)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 78.610311 0.000135116 L 125.000997 0.000135116 " transform="matrix(0.996967, 0, 0, -0.996967, 27.72965, 28.968885)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053534 0.000135116 L 1.610372 1.684932 L 3.087508 0.000135116 L 1.610372 -1.684662 Z M 6.053534 0.000135116 " transform="matrix(0.996967, 0, 0, -0.996967, 149.523418, 28.968885)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-4" x="147.478389" y="25.161466"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 153.309503 0.000135116 L 165.682965 0.000135116 " transform="matrix(0.996967, 0, 0, -0.996967, 27.72965, 28.968885)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053452 0.000135116 L 1.61029 1.684932 L 3.087426 0.000135116 L 1.61029 -1.684662 Z M 6.053452 0.000135116 " transform="matrix(0.996967, 0, 0, -0.996967, 190.082093, 28.968885)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 106.957998 0.000135116 L 106.957998 -32.179486 L 101.249279 -32.179486 " transform="matrix(0.996967, 0, 0, -0.996967, 27.72965, 28.968885)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.052189 0.00156576 L 1.609027 1.682445 L 3.086163 0.00156576 L 1.609027 -1.683231 Z M 6.052189 0.00156576 " transform="matrix(-0.996967, 0, 0, 0.996967, 131.502585, 61.04922)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 136.351562 28.96875 C 136.351562 27.871094 135.460938 26.980469 134.363281 26.980469 C 133.265625 26.980469 132.378906 27.871094 132.378906 28.96875 C 132.378906 30.066406 133.265625 30.957031 134.363281 30.957031 C 135.460938 30.957031 136.351562 30.066406 136.351562 28.96875 Z M 136.351562 28.96875 "/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 72.940773 -32.179486 L 65.241643 -32.179486 " transform="matrix(0.996967, 0, 0, -0.996967, 27.72965, 28.968885)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.054684 0.00156576 L 1.607603 1.682445 L 3.088657 0.00156576 L 1.607603 -1.683231 Z M 6.054684 0.00156576 " transform="matrix(-0.996967, 0, 0, 0.996967, 95.602728, 61.04922)"/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 36.933137 -32.179486 L 30.957985 -32.179486 L 30.957985 -11.609291 " transform="matrix(0.996967, 0, 0, -0.996967, 27.72965, 28.968885)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053466 -0.00194504 L 1.610304 1.682852 L 3.087439 -0.00194504 L 1.610304 -1.682824 Z M 6.053466 -0.00194504 " transform="matrix(0, -0.996967, -0.996967, 0, 58.591811, 43.371045)"/>
+<g clip-path="url(#clip-2)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 200.236974 -60.523255 L 215.447164 -60.523255 " transform="matrix(0.996967, 0, 0, -0.996967, 27.72965, 28.968885)"/>
+</g>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 224.15625 89.308594 L 228.585938 90.988281 L 227.113281 89.308594 L 228.585938 87.632812 Z M 224.15625 89.308594 "/>
+<g clip-path="url(#clip-3)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.052704 -0.00146492 L 1.609542 1.683332 L 3.086678 -0.00146492 L 1.609542 -1.682344 Z M 6.052704 -0.00146492 " transform="matrix(-0.996967, 0, 0, 0.996967, 230.190598, 89.310054)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-5" x="232.751997" y="85.501918"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 184.266667 0.000135116 L 210.812014 0.000135116 " transform="matrix(0.996967, 0, 0, -0.996967, 27.72965, 28.968885)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 241.109375 28.96875 L 236.679688 27.289062 L 238.152344 28.96875 L 236.679688 30.648438 Z M 241.109375 28.96875 "/>
+<g clip-path="url(#clip-4)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.05347 0.000135116 L 1.610308 1.684932 L 3.087444 0.000135116 L 1.610308 -1.684662 Z M 6.05347 0.000135116 " transform="matrix(0.996967, 0, 0, -0.996967, 235.074263, 28.968885)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-6" x="233.487759" y="23.230341"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 188.631467 0.000135116 L 188.631467 -48.917747 " transform="matrix(0.996967, 0, 0, -0.996967, 27.72965, 28.968885)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.051876 0.000636507 L 1.608714 1.681515 L 3.085849 0.000636507 L 1.608714 -1.68416 Z M 6.051876 0.000636507 " transform="matrix(0, 0.996967, 0.996967, 0, 215.788428, 74.907884)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 217.773438 28.96875 C 217.773438 27.871094 216.886719 26.980469 215.789062 26.980469 C 214.691406 26.980469 213.800781 27.871094 213.800781 28.96875 C 213.800781 30.066406 214.691406 30.957031 215.789062 30.957031 C 216.886719 30.957031 217.773438 30.066406 217.773438 28.96875 Z M 217.773438 28.96875 "/>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -11.608605 0.000135116 L -26.814876 0.000135116 " transform="matrix(0.996967, 0, 0, -0.996967, 27.72965, 28.968885)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.054152 0.000135116 L 1.607072 1.684932 L 3.088126 0.000135116 L 1.607072 -1.684662 Z M 6.054152 0.000135116 " transform="matrix(0.996967, 0, 0, -0.996967, 13.327489, 28.968885)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-7" x="4.802392" y="25.161466"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 181.657191 -60.523255 L 157.944654 -60.523255 " transform="matrix(0.996967, 0, 0, -0.996967, 27.72965, 28.968885)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" d="M 181.988281 89.308594 L 186.421875 90.988281 L 184.945312 89.308594 L 186.421875 87.632812 Z M 181.988281 89.308594 "/>
+<g clip-path="url(#clip-5)">
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.054333 -0.00146492 L 1.607252 1.683332 L 3.088306 -0.00146492 L 1.607252 -1.682344 Z M 6.054333 -0.00146492 " transform="matrix(-0.996967, 0, 0, 0.996967, 188.024253, 89.310054)"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-6" x="184.380138" y="83.570792"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-4-2" x="189.250324" y="85.060262"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 177.292392 11.605643 L 177.292392 26.815833 " transform="matrix(0.996967, 0, 0, -0.996967, 27.72965, 28.968885)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053205 0.000121526 L 1.610043 1.684918 L 3.087179 0.000121526 L 1.610043 -1.684675 Z M 6.053205 0.000121526 " transform="matrix(0, 0.996967, 0.996967, 0, 204.484254, 14.566714)"/>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-0-8" x="208.289409" y="12.938647"/>
+</g>
+<g fill="rgb(0%, 0%, 0%)" fill-opacity="1">
+<use xlink:href="#glyph-4-3" x="213.458685" y="14.428116"/>
+</g>
+<path fill="none" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 129.636148 -60.523255 L 0.000821453 -60.523255 L 0.000821453 -11.609291 " transform="matrix(0.996967, 0, 0, -0.996967, 27.72965, 28.968885)"/>
+<path fill-rule="nonzero" fill="rgb(0%, 0%, 0%)" fill-opacity="1" stroke-width="0.99628" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.053466 -0.000821453 L 1.610304 1.683975 L 3.087439 -0.000821453 L 1.610304 -1.6817 Z M 6.053466 -0.000821453 " transform="matrix(0, -0.996967, -0.996967, 0, 27.72965, 43.371045)"/>
+</svg>
diff --git a/figs/detail_control_spec_S_T.pdf b/figs/detail_control_spec_S_T.pdf
new file mode 100644
index 0000000..19774df
Binary files /dev/null and b/figs/detail_control_spec_S_T.pdf differ
diff --git a/figs/detail_control_spec_S_T.png b/figs/detail_control_spec_S_T.png
new file mode 100644
index 0000000..c7710bd
Binary files /dev/null and b/figs/detail_control_spec_S_T.png differ
diff --git a/matlab/src/plotMagUncertainty.m b/matlab/src/plotMagUncertainty.m
new file mode 100644
index 0000000..b8253f8
--- /dev/null
+++ b/matlab/src/plotMagUncertainty.m
@@ -0,0 +1,42 @@
+  function [p] = plotMagUncertainty(W, freqs, args)
+  % plotMagUncertainty -
+  %
+  % Syntax: [p] = plotMagUncertainty(W, freqs, args)
+  %
+  % Inputs:
+  %    - W     - Multiplicative Uncertainty Weight
+  %    - freqs - Frequency Vector [Hz]
+  %    - args  - Optional Arguments:
+  %      - G
+  %      - color_i
+  %      - opacity
+  %
+  % Outputs:
+  %    - p - Plot Handle
+
+      arguments
+      W
+      freqs double {mustBeNumeric, mustBeNonnegative}
+      args.G = tf(1)
+      args.color_i (1,1) double {mustBeInteger, mustBeNonnegative} = 0
+      args.opacity (1,1) double {mustBeNumeric, mustBeNonnegative} = 0.3
+      args.DisplayName char = ''
+  end
+
+  % Get defaults colors
+  colors = get(groot, 'defaultAxesColorOrder');
+
+  p = patch([freqs flip(freqs)], ...
+            [abs(squeeze(freqresp(args.G, freqs, 'Hz'))).*(1 + abs(squeeze(freqresp(W, freqs, 'Hz')))); ...
+             flip(abs(squeeze(freqresp(args.G, freqs, 'Hz'))).*max(1 - abs(squeeze(freqresp(W, freqs, 'Hz'))), 1e-6))], 'w', ...
+            'DisplayName', args.DisplayName);
+
+  if args.color_i == 0
+      p.FaceColor = [0; 0; 0];
+  else
+      p.FaceColor = colors(args.color_i, :);
+  end
+  p.EdgeColor = 'none';
+  p.FaceAlpha = args.opacity;
+
+   end
diff --git a/matlab/src/plotPhaseUncertainty.m b/matlab/src/plotPhaseUncertainty.m
new file mode 100644
index 0000000..6a7b450
--- /dev/null
+++ b/matlab/src/plotPhaseUncertainty.m
@@ -0,0 +1,47 @@
+  function [p] = plotPhaseUncertainty(W, freqs, args)
+  % plotPhaseUncertainty -
+  %
+  % Syntax: [p] = plotPhaseUncertainty(W, freqs, args)
+  %
+  % Inputs:
+  %    - W     - Multiplicative Uncertainty Weight
+  %    - freqs - Frequency Vector [Hz]
+  %    - args  - Optional Arguments:
+  %      - G
+  %      - color_i
+  %      - opacity
+  %
+  % Outputs:
+  %    - p - Plot Handle
+
+  arguments
+      W
+      freqs double {mustBeNumeric, mustBeNonnegative}
+      args.G = tf(1)
+      args.color_i (1,1) double {mustBeInteger, mustBeNonnegative} = 0
+      args.opacity (1,1) double {mustBeNumeric, mustBePositive} = 0.3
+      args.DisplayName char = ''
+  end
+
+  % Get defaults colors
+  colors = get(groot, 'defaultAxesColorOrder');
+
+  % Compute Phase Uncertainty
+  Dphi = 180/pi*asin(abs(squeeze(freqresp(W, freqs, 'Hz'))));
+  Dphi(abs(squeeze(freqresp(W, freqs, 'Hz'))) > 1) = 360;
+
+  % Compute Plant Phase
+  G_ang = 180/pi*angle(squeeze(freqresp(args.G, freqs, 'Hz')));
+
+  p = patch([freqs flip(freqs)], [G_ang+Dphi; flip(G_ang-Dphi)], 'w', ...
+            'DisplayName', args.DisplayName);
+
+  if args.color_i == 0
+      p.FaceColor = [0; 0; 0];
+  else
+      p.FaceColor = colors(args.color_i, :);
+  end
+  p.EdgeColor = 'none';
+  p.FaceAlpha = args.opacity;
+
+  end
diff --git a/nass-control.bib b/nass-control.bib
index 4971909..cdf5212 100644
--- a/nass-control.bib
+++ b/nass-control.bib
@@ -424,3 +424,41 @@
   keywords        = {complementary filters},
 }
 
+
+
+@article{oomen18_advan_motion_contr_precis_mechat,
+  author          = {Tom Oomen},
+  title           = {Advanced Motion Control for Precision Mechatronics:
+                  Control, Identification, and Learning of Complex Systems},
+  journal         = {IEEJ Journal of Industry Applications},
+  volume          = 7,
+  number          = 2,
+  pages           = {127-140},
+  year            = 2018,
+  doi             = {10.1541/ieejjia.7.127},
+  url             = {https://doi.org/10.1541/ieejjia.7.127},
+  keywords        = {favorite},
+}
+
+
+
+@inproceedings{collette14_vibrat,
+  author          = {Collette, C. and Matichard, F},
+  title           = {Vibration control of flexible structures using fusion of
+                  inertial sensors and hyper-stable actuator-sensor pairs},
+  booktitle       = {International Conference on Noise and Vibration Engineering
+                  (ISMA2014)},
+  year            = 2014,
+  keywords        = {sensor fusion},
+}
+
+
+
+@techreport{bibel92_guidel_h,
+  author          = {Bibel, John E and Malyevac, D Stephen},
+  institution     = {NAVAL SURFACE WARFARE CENTER DAHLGREN DIV VA},
+  title           = {Guidelines for the selection of weighting functions for
+                  H-infinity control},
+  year            = 1992,
+}
+
diff --git a/nass-control.org b/nass-control.org
index e79fb85..69f0797 100644
--- a/nass-control.org
+++ b/nass-control.org
@@ -123,19 +123,46 @@ CLOSED: [2025-04-03 Thu 12:01]
 - [X] Feedback control based on complementary filters:
   [[file:~/Cloud/research/papers/dehaeze20_virtu_senso_fusio/index.org][file:~/Cloud/research/papers/dehaeze20_virtu_senso_fusio/index.org]]
 
-** TODO [#A] Copy Paper about Complementary Filter Design
-SCHEDULED: <2025-04-03 Thu>
+** DONE [#A] Copy Paper about Complementary Filter Design
+CLOSED: [2025-04-03 Thu 15:25] SCHEDULED: <2025-04-03 Thu>
 
 [[file:~/Cloud/research/papers/dehaeze21_desig_compl_filte/journal/dehaeze21_desig_compl_filte.org][file:~/Cloud/research/papers/dehaeze21_desig_compl_filte/journal/dehaeze21_desig_compl_filte.org]]
 
-- [ ] Copy Matlab Code: [[file:~/Cloud/research/papers/dehaeze21_desig_compl_filte/matlab/dehaeze21_desig_compl_filte_matlab.org]]
+- [X] Copy Matlab Code: [[file:~/Cloud/research/papers/dehaeze21_desig_compl_filte/matlab/dehaeze21_desig_compl_filte_matlab.org]]
 - [X] Copy Tikz Code: [[file:~/Cloud/research/papers/dehaeze21_desig_compl_filte/tikz/dehaeze21_desig_compl_filte_tikz.org]]
-- [ ] Rework all labels:
+- [X] Rework all labels:
+  - [X] sections
+  - [X] equations
+  - [X] tables
+
+** DONE [#A] Copy paper about closed-loop control with complementary filters
+CLOSED: [2025-04-03 Thu 16:30] SCHEDULED: <2025-04-03 Thu>
+
+file:~/Cloud/research/papers/dehaeze20_virtu_senso_fusio/index.org
+
+- [X] Copy Content
+- [X] Change citation format
+- [X] Copy Tikz figures
+- [X] Copy Matlab Code
+- [X] Rework all labels
+  - [X] sections
+  - [X] equations
+  - [X] tables
+
+** TODO [#A] Copy paper about Decoupling Control
+SCHEDULED: <2025-04-03 Thu>
+
+file:~/Cloud/research/matlab/decoupling-strategies/svd-control.org
+
+- [ ] Copy Content
+- [ ] Copy Tikz figures
+- [ ] Copy Matlab Code
+- [ ] Rework all labels
   - [ ] sections
   - [ ] equations
   - [ ] tables
 
-** TODO [#A] Review of control for Stewart platforms?
+** TODO [#B] Review of control for Stewart platforms?
 
 [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org::*Control][Control]]
 
@@ -393,7 +420,7 @@ Based on that, this paper introduces a new way to design complementary filters u
 #+end_src
 
 ** Sensor Fusion and Complementary Filters Requirements
-<<sec:detail_control_sensor_fusion_requirements>>
+<<ssec:detail_control_sensor_fusion_requirements>>
 *** Introduction                                                      :ignore:
 
 Complementary filtering provides a framework for fusing signals from different sensors.
@@ -401,7 +428,6 @@ As the effectiveness of the fusion depends on the proper design of the complemen
 These requirements are discussed in this section.
 
 *** Sensor Fusion Architecture
-<<sec:detail_control_sensor_fusion>>
 
 A general sensor fusion architecture using complementary filters is shown in Fig. ref:fig:detail_control_sensor_fusion_overview where several sensors (here two) are measuring the same physical quantity $x$.
 The two sensors output signals $\hat{x}_1$ and $\hat{x}_2$ are estimates of $x$.
@@ -462,7 +488,6 @@ Therefore, a pair of complementary filter needs to satisfy the following conditi
 It will soon become clear why the complementary property is important for the sensor fusion architecture.
 
 *** Sensor Models and Sensor Normalization
-<<sec:detail_control_sensor_models>>
 
 In order to study such sensor fusion architecture, a model for the sensors is required.
 Such model is shown in Fig. ref:fig:detail_control_sensor_model and consists of a linear time invariant (LTI) system $G_i(s)$ representing the sensor dynamics and an input $n_i$ representing the sensor noise.
@@ -601,7 +626,6 @@ The super sensor output is therefore equal to:
 [[file:figs/detail_control_fusion_super_sensor.png]]
 
 *** Noise Sensor Filtering
-<<sec:detail_control_noise_filtering>>
 
 In this section, it is supposed that all the sensors are perfectly normalized, such that:
 
@@ -641,7 +665,6 @@ In such case, to lower the noise of the super sensor, the norm $|H_1(j\omega)|$
 Hence, by properly shaping the norm of the complementary filters, it is possible to reduce the noise of the super sensor.
 
 *** Sensor Fusion Robustness
-<<sec:detail_control_fusion_robustness>>
 
 In practical systems the sensor normalization is not perfect and condition eqref:eq:detail_control_perfect_dynamics is not verified.
 
@@ -856,17 +879,16 @@ As it is generally desired to limit the maximum phase added by the super sensor,
 Typically, the norm of the complementary filter $|H_i(j\omega)|$ should be made small when $|w_i(j\omega)|$ is large, i.e., at frequencies where the sensor dynamics is uncertain.
 
 ** Complementary Filters Shaping
-<<sec:detail_control_hinf_method>>
+<<ssec:detail_control_hinf_method>>
 *** Introduction                                                     :ignore:
 
-As shown in Section ref:sec:detail_control_sensor_fusion_requirements, the noise and robustness of the super sensor are a function of the complementary filters' norm.
+As shown in Section ref:ssec:detail_control_sensor_fusion_requirements, the noise and robustness of the super sensor are a function of the complementary filters' norm.
 Therefore, a synthesis method of complementary filters that allows to shape their norm would be of great use.
 In this section, such synthesis is proposed by writing the synthesis objective as a standard $\mathcal{H}_\infty$ optimization problem.
 As weighting functions are used to represent the wanted complementary filters' shape during the synthesis, their proper design is discussed.
 Finally, the synthesis method is validated on an simple example.
 
 *** Synthesis Objective
-<<sec:detail_control_synthesis_objective>>
 
 The synthesis objective is to shape the norm of two filters $H_1(s)$ and $H_2(s)$ while ensuring their complementary property eqref:eq:detail_control_comp_filter.
 This is equivalent as to finding proper and stable transfer functions $H_1(s)$ and $H_2(s)$ such that conditions eqref:eq:detail_control_hinf_cond_complementarity, eqref:eq:detail_control_hinf_cond_h1 and eqref:eq:detail_control_hinf_cond_h2 are satisfied.
@@ -882,7 +904,6 @@ This is equivalent as to finding proper and stable transfer functions $H_1(s)$ a
 $W_1(s)$ and $W_2(s)$ are two weighting transfer functions that are carefully chosen to specify the maximum wanted norm of the complementary filters during the synthesis.
 
 *** Shaping of Complementary Filters using $\mathcal{H}_\infty$ synthesis
-<<sec:detail_control_hinf_synthesis>>
 
 In this section, it is shown that the synthesis objective can be easily expressed as a standard $\mathcal{H}_\infty$ optimization problem and therefore solved using convenient tools readily available.
 
@@ -995,7 +1016,6 @@ Hence, the optimization may be a little bit conservative with respect to the set
 In practice, this is however not an found to be an issue.
 
 *** Weighting Functions Design
-<<sec:detail_control_hinf_weighting_func>>
 
 Weighting functions are used during the synthesis to specify the maximum allowed complementary filters' norm.
 The proper design of these weighting functions is of primary importance for the success of the presented $\mathcal{H}_\infty$ synthesis of complementary filters.
@@ -1084,7 +1104,6 @@ exportFig('figs/detail_control_weight_formula.pdf', 'width', 'wide', 'height', '
 [[file:figs/detail_control_weight_formula.png]]
 
 *** Validation of the proposed synthesis method
-<<sec:detail_control_hinf_example>>
 
 The proposed methodology for the design of complementary filters is now applied on a simple example.
 Let's suppose two complementary filters $H_1(s)$ and $H_2(s)$ have to be designed such that:
@@ -1247,7 +1266,7 @@ This simple example illustrates the fact that the proposed methodology for compl
 A more complex real life example is taken up in the next section.
 
 ** "Closed-Loop" complementary filters
-<<sec:detail_control_closed_loop_complementary_filters>>
+<<ssec:detail_control_closed_loop_complementary_filters>>
 
 An alternative way to implement complementary filters is by using a fundamental property of the classical feedback architecture shown in Fig. ref:fig:detail_control_feedback_sensor_fusion.
 This idea is discussed in [[cite:&mahony05_compl_filter_desig_special_orthog;&plummer06_optim_compl_filter_their_applic_motion_measur;&jensen13_basic_uas]].
@@ -1434,7 +1453,7 @@ As an example, two "closed-loop" complementary filters are designed using the $\
 The weighting functions are designed using formula eqref:eq:detail_control_weight_formula with parameters shown in Table ref:tab:detail_control_weights_params.
 After synthesis, a filter $L(s)$ is obtained whose magnitude is shown in Fig. ref:fig:detail_control_hinf_filters_results_mixed_sensitivity by the black dashed line.
 The "closed-loop" complementary filters are compared with the inverse magnitude of the weighting functions in Fig. ref:fig:detail_control_hinf_filters_results_mixed_sensitivity confirming that the synthesis is successful.
-The obtained "closed-loop" complementary filters are indeed equal to the ones obtained in Section ref:sec:detail_control_hinf_example.
+The obtained "closed-loop" complementary filters are indeed equal to the ones obtained in Section ref:ssec:detail_control_hinf_method.
 
 #+begin_src matlab
 %% Design of "Closed-loop" complementary filters
@@ -1628,7 +1647,7 @@ The synthesis objective is to compute a set of $n$ stable transfer functions $[H
 
 $[W_1(s),\ W_2(s),\ \dots,\ W_n(s)]$ are weighting transfer functions that are chosen to specify the maximum complementary filters' norm during the synthesis.
 
-Such synthesis objective is closely related to the one described in Section ref:sec:detail_control_synthesis_objective, and indeed the proposed synthesis method is a generalization of the one presented in Section ref:sec:detail_control_hinf_synthesis.
+Such synthesis objective is closely related to the one described in Section ref:ssec:detail_control_hinf_method, and indeed the proposed synthesis method is a generalization of the one previously presented.
 
 A set of $n$ complementary filters can be shaped by applying the standard $\mathcal{H}_\infty$ synthesis to the generalized plant $P_n(s)$ described by eqref:eq:detail_control_generalized_plant_n_filters.
 
@@ -1977,6 +1996,33 @@ In this section, an alternative is proposed in which complementary filters are u
 It is presented for a SISO system, but can be generalized to MIMO if decoupling is sufficient.
 It will be experimentally demonstrated with the NASS.
 
+*Paper's introduction*:
+
+*Model based control*
+
+*SISO control design methods*
+- frequency domain techniques
+- manual loop-shaping - key idea: modification of the controller such that the open-loop is made according to specifications [[cite:&oomen18_advan_motion_contr_precis_mechat]].
+This works well because the open loop transfer function is linearly dependent of the controller.
+
+However, the specifications are given in terms of the final system performance, i.e. as closed-loop specifications.
+
+*Norm-based control*
+$\hinf$ loop-shaping [[cite:&skogestad07_multiv_feedb_contr]]. Far from standard in industry as it requires lot of efforts.
+
+
+Problem of robustness to plant uncertainty:
+- Trade off performance / robustness. Difficult to obtain high performance in presence of high uncertainty.
+- Robust control $\mu\text{-synthesis}$. Takes a lot of effort to model the plant uncertainty.
+- Sensor fusion: combines two sensors using complementary filters. The high frequency sensor is collocated with the actuator in order to ensure the stability of the system even in presence of uncertainty. [[cite:&collette15_sensor_fusion_method_high_perfor;&collette14_vibrat]]
+
+Complementary filters: [[cite:&hua05_low_ligo]].
+
+In this paper, we propose a new controller synthesis method
+- based on the use of complementary high pass and low pass filters
+- inverse based control
+- direct translation of requirements such as disturbance rejection and robustness to plant uncertainty
+
 ** Matlab Init                                              :noexport:ignore:
 #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
 <<matlab-dir>>
@@ -1998,11 +2044,922 @@ It will be experimentally demonstrated with the NASS.
 <<m-init-other>>
 #+end_src
 
+** Control Architecture
+ <<ssec:detail_control_control_arch>>
+**** Virtual Sensor Fusion
+Let's consider the control architecture represented in Fig. ref:fig:detail_control_sf_arch where $G^\prime$ is the physical plant to control, $G$ is a model of the plant, $k$ is a gain, $H_L$ and $H_H$ are complementary filters ($H_L + H_H = 1$ in the complex sense).
+The signals are the reference signal $r$, the output perturbation $d_y$, the measurement noise $n$ and the control input $u$.
+
+#+begin_src latex :file detail_control_sf_arch.pdf
+\tikzset{block/.default={0.8cm}{0.6cm}}
+\tikzset{addb/.append style={scale=0.7}}
+\tikzset{node distance=0.6}
+\def\cdist{0.7}
+
+\begin{tikzpicture}
+  \node[addb={+}{}{}{}{-}] (addfb) at (0, 0){};
+  \node[block, right=of addfb] (K){$k$};
+  \node[block, right=1.2 of K] (G){$G^\prime$};
+  \node[addb={+}{}{}{}{}, right=of G] (adddy){};
+  \coordinate[] (KG) at ($0.5*(K.east)+0.5*(G.west)$);
+  \node[block, below=of KG] (Gm){$G$};
+  \node[block, below=of Gm] (Hh){$H_H$};
+  \node[addb={+}{}{}{}{}, below=of Hh] (addsf){};
+  \node[block] (Hl) at (addsf-|G) {$H_L$};
+  \node[addb={+}{}{}{}{}, right=1.2 of Hl] (addn) {};
+
+
+  \draw[->] (addfb.east) -- (K.west) node[above left]{};
+  \draw[->] (K.east) -- (G.west) node[above left]{$u$};
+  \draw[->] (KG) node[branch]{} -- (Gm.north);
+  \draw[->] (Gm.south) -- (Hh.north);
+  \draw[->] (Hh.south) -- (addsf.north) node[above left]{};
+  \draw[->] (Hl.west) -- (addsf.east);
+  \draw[->] (addsf.west) -| (addfb.south) node[below right]{};
+  \draw[->] (G.east) -- (adddy.west);
+  \draw[<-] (addn.east) -- ++(\cdist, 0) coordinate[](endpos) node[above left]{$n$};
+  \draw[->] (adddy.east) -- (G-|endpos) node[above left]{$y$};
+  \draw[->] (adddy-|addn) node[branch]{} -- (addn.north);
+  \draw[<-] (addfb.west) -- ++(-\cdist, 0) node[above right]{$r$};
+  \draw[->] (addn.west) -- (Hl.east) node[above right]{$y_m$};
+  \draw[<-] (adddy.north) -- ++(0, \cdist) node[below right]{$d_y$};
+\end{tikzpicture}
+#+end_src
+
+#+name: fig:detail_control_sf_arch
+#+caption: Sensor Fusion Architecture
+#+RESULTS:
+[[file:figs/detail_control_sf_arch.png]]
+
+The dynamics of the closed-loop system is described by the following equations
+\begin{alignat}{5}
+y &= \frac{1+kGH_H}{1+L} dy &&+ \frac{kG^{\prime}}{1+L} r &&- \frac{kG^{\prime}H_L}{1+L} n \\
+u &= -\frac{kH_L}{1+L}   dy &&+ \frac{k}{1+L}           r &&- \frac{kH_L}{1+L}  n
+\end{alignat}
+with $L = k(G H_H + G^\prime H_L)$.
+
+The idea of using such architecture comes from sensor fusion [[cite:&collette14_vibrat;&collette15_sensor_fusion_method_high_perfor]] where we use two sensors.
+One is measuring the quantity that is required to control, the other is collocated with the actuator in such a way that stability is guaranteed.
+The first one is low pass filtered in order to obtain good performance at low frequencies and the second one is high pass filtered to benefits from its good dynamical properties.
+
+Here, the second sensor is replaced by a model $G$ of the plant which is assumed to be stable and minimum phase.
+
+
+One may think that the control architecture shown in Fig. ref:fig:detail_control_sf_arch is a multi-loop system, but because no non-linear saturation-type element is present in the inner-loop (containing $k$, $G$ and $H_H$ which are all numerically implemented), the structure is equivalent to the architecture shown in Fig. ref:fig:detail_control_sf_arch_eq.
+
+#+begin_src latex :file detail_control_sf_arch_eq.pdf
+\tikzset{block/.default={0.8cm}{0.6cm}}
+\tikzset{addb/.append style={scale=0.7}}
+\tikzset{node distance=0.6}
+\def\cdist{0.7}
+
+\begin{tikzpicture}
+  \node[addb={+}{}{}{}{-}] (addfb) at (0, 0){};
+  \node[addb={+}{}{}{}{-}, right=of addfb] (addK){};
+  \node[block, right=of addK] (K){$k$};
+  \node[block, right=1.8 of K] (G){$G^\prime$};
+  \node[addb={+}{}{}{}{}, right=of G] (adddy){};
+  \node[block, below right=0.5 and -0.2 of K] (Gm){$G$};
+  \node[block, below left =0.5 and -0.2 of K] (Hh){$H_H$};
+  \node[block, below=1.5 of G] (Hl) {$H_L$};
+  \node[addb={+}{}{}{}{}, right=1 of Hl] (addn) {};
+
+  \draw[->] (addfb.east) -- (addK.west);
+  \draw[->] (addK.east) -- (K.west);
+  \draw[->] (K.east) -- (G.west) node[above left]{$u$};
+  \draw[->] (G.east) -- (adddy.west);
+  \draw[->] ($(G.west)+(-0.8, 0)$) node[branch](sffb){} |- (Gm.east);
+  \draw[->] (Gm.west) -- (Hh.east);
+  \draw[->] (Hh.west) -| (addK.south);
+  \draw[<-] (addn.east) -- ++(\cdist, 0) coordinate[](endpos) node[above left]{$n$};
+  \draw[->] (adddy.east) -- (G-|endpos) node[above left]{$y$};
+  \draw[->] (adddy-|addn) node[branch]{} -- (addn.north);
+  \draw[<-] (addfb.west) -- ++(-\cdist, 0) node[above right]{$r$};
+  \draw[->] (addn.west) -- (Hl.east) node[above right]{$y_m$};
+  \draw[<-] (adddy.north) -- ++(0, \cdist) node[below right]{$d_y$};
+  \draw[->] (Hl.west) -| (addfb.south) node[below right]{};
+
+  \begin{scope}[on background layer]
+    \node[fit={($(addK.west|-Hh.south)+(-0.1, 0)$) (K.north-|sffb)}, inner sep=5pt, draw, fill=black!20!white, dashed, label={$K$}] (Kfb) {};
+  \end{scope}
+\end{tikzpicture}
+#+end_src
+
+#+name: fig:detail_control_sf_arch_eq
+#+caption: Equivalent feedback architecture
+#+RESULTS:
+[[file:figs/detail_control_sf_arch_eq.png]]
+
+The dynamics of the system can be rewritten as follow
+\begin{alignat}{5}
+y &=  \frac{1}{1+G^{\prime} K H_L}     dy &&+ \frac{G^{\prime} K}{1+G^{\prime} K H_L} r &&- \frac{G^{\prime} K H_L}{1+G^{\prime} K H_L} n \\
+u &= \frac{-K H_L}{1+G^{\prime} K H_L} dy &&+ \frac{K}{1+G^{\prime} K H_L}            r &&- \frac{K H_L}{1+G^{\prime} K H_L}   n
+\end{alignat}
+with $K = \frac{k}{1 + H_H G k}$
+
+**** Asymptotic behavior
+We now want to study the asymptotic system obtained when using very high value of $k$
+\begin{equation}
+  \lim_{k\to\infty} K = \lim_{k\to\infty} \frac{k}{1+H_H G k} = \left( H_H G \right)^{-1}
+\end{equation}
+If the obtained $K$ is improper, a low pass filter can be added to have its causal realization.
+
+Also, we want $K$ to be stable, so $G$ and $H_H$ must be minimum phase transfer functions.
+
+For now on, we will consider the resulting control architecture as shown on Fig. ref:fig:detail_control_sf_arch_class where the only "tuning parameters" are the complementary filters.
+
+#+begin_src latex :file detail_control_sf_arch_class.pdf
+\tikzset{block/.default={0.8cm}{0.6cm}}
+\tikzset{addb/.append style={scale=0.7}}
+\tikzset{node distance=0.6}
+\def\cdist{0.7}
+
+\begin{tikzpicture}
+  \node[addb={+}{}{}{}{-}] (addfb) at (0, 0){};
+  \node[block, right=of addfb] (K){$K$};
+  \node[block, right=of K] (G){$G^\prime$};
+  \node[addb={+}{}{}{}{}, right=of G] (adddy){};
+  \node[addb={+}{}{}{}{}, below right=and 0.5 of adddy] (addn) {};
+  \node[block] (Hh) at (G|-addn) {$H_L$};
+
+  \draw[->] (addfb.east) -- (K.west) node[above left]{};
+  \draw[->] (K.east) -- (G.west) node[above left]{$u$};
+  \draw[->] (G.east) -- (adddy.west);
+  \draw[<-] (addn.east) -- ++(\cdist, 0) coordinate[](endpos) node[above left]{$n$};
+  \draw[->] (G-|addn)node[branch]{} -- (addn.north);
+  \draw[->] (adddy.east) -- (G-|endpos) node[above left]{$y$};
+  \draw[<-] (addfb.west) -- ++(-\cdist, 0) node[above right]{$r$};
+  \draw[->] (addn.west) -- (Hh.east);
+  \draw[->] (Hh.west) -| (addfb.south);
+  \draw[<-] (adddy.north) -- ++(0, \cdist) node[below right]{$d_y$};
+\end{tikzpicture}
+#+end_src
+
+#+name: fig:detail_control_sf_arch_class
+#+caption: Equivalent classical feedback control architecture
+#+RESULTS:
+[[file:figs/detail_control_sf_arch_class.png]]
+
+The equations describing the dynamics of the closed-loop system are
+\begin{align}
+  y &= \frac{ H_H         dy + G^{\prime} G^{-1} r - G^{\prime} G^{-1} H_L n }{H_H + G^\prime G^{-1} H_L} \label{eq:detail_control_cl_system_y}\\
+  u &= \frac{ -G^{-1} H_L dy + G^{-1}            r - G^{-1} H_L            n }{H_H + G^\prime G^{-1} H_L} \label{eq:detail_control_cl_system_u}
+\end{align}
+
+At frequencies where the model is accurate: $G^{-1} G^{\prime} \approx 1$, $H_H + G^\prime G^{-1} H_L \approx H_H + H_L = 1$ and
+\begin{align}
+y        &=  H_H        dy +         r - H_L         n \label{eq:detail_control_cl_performance_y} \\
+u        &= -G^{-1} H_L dy + G^{-1}  r - G^{-1} H_L  n \label{eq:detail_control_cl_performance_u}
+\end{align}
+
+We obtain a sensitivity transfer function equals to the high pass filter $S = \frac{y}{dy} = H_H$ and a transmissibility transfer function equals to the low pass filter $T = \frac{y}{n} = H_L$.
+
+Assuming that we have a good model of the plant, we have then that the closed-loop behavior of the system converges to the designed complementary filters.
+
+** Translating the performance requirements into the shapes of the complementary filters
+ <<ssec:detail_control_trans_perf>>
+**** Introduction                                                  :ignore:
+ The required performance specifications in a feedback system can usually be translated into requirements on the upper bounds of $\abs{S(j\w)}$ and $|T(j\omega)|$ [[cite:&bibel92_guidel_h]].
+The process of designing a controller $K(s)$ in order to obtain the desired shapes of $\abs{S(j\w)}$ and $\abs{T(j\w)}$ is called loop shaping.
+
+The equations eqref:eq:detail_control_cl_system_y and eqref:eq:detail_control_cl_system_u describing the dynamics of the studied feedback architecture are not written in terms of $K$ but in terms of the complementary filters $H_L$ and $H_H$.
+
+In this section, we then translate the typical specifications into the desired shapes of the complementary filters $H_L$ and $H_H$.\\
+
+**** Nominal Stability (NS)
+The closed-loop system is stable if all its elements are stable ($K$, $G^\prime$ and $H_L$) and if the sensitivity function ($S = \frac{1}{1 + G^\prime K H_L}$) is stable.
+
+For the nominal system ($G^\prime = G$), we have $S = H_H$.
+
+Nominal stability is then guaranteed if $H_L$, $H_H$ and $G$ are stable and if $G$ and $H_H$ are minimum phase (to have $K$ stable).
+
+Thus we must design stable and minimum phase complementary filters.\\
+
+**** Nominal Performance (NP)
+Typical performance specifications can usually be translated into upper bounds on $|S(j\omega)|$ and $|T(j\omega)|$.
+
+Two performance weights $w_H$ and $w_L$ are defined in such a way that performance specifications are satisfied if
+\begin{equation}
+  |w_H(j\omega) S(j\omega)| \le 1,\ |w_L(j\omega) T(j\omega)| \le 1 \quad \forall\omega
+\end{equation}
+
+For the nominal system, we have $S = H_H$ and $T = H_L$, and then nominal performance is ensured by requiring
+
+\begin{subnumcases}{\text{NP} \Leftrightarrow}\label{eq:detail_control_nominal_performance}
+  |w_H(j\omega) H_H(j\omega)| \le 1 \quad \forall\omega \label{eq:detail_control_nominal_perf_hh}\\
+  |w_L(j\omega) H_L(j\omega)| \le 1 \quad \forall\omega \label{eq:detail_control_nominal_perf_hl}
+\end{subnumcases}
+
+The translation of typical performance requirements on the shapes of the complementary filters is discussed below:
+- for disturbance rejections, make $|S| = |H_H|$ small
+- for noise attenuation, make $|T| = |H_L|$ small
+- for control energy reduction, make $|KS| = |G^{-1}|$ small
+
+We may have other requirements in terms of stability margins, maximum or minimum closed-loop bandwidth.\\
+
+**** Closed-Loop Bandwidth
+The closed-loop bandwidth $\w_B$ can be defined as the frequency where $\abs{S(j\w)}$ first crosses $\frac{1}{\sqrt{2}}$ from below.
+
+If one wants the closed-loop bandwidth to be at least $\w_B^*$ (e.g. to stabilize an unstable pole), one can required that $|S(j\omega)| \le \frac{1}{\sqrt{2}}$ below $\omega_B^*$ by designing $w_H$ such that $|w_H(j\omega)| \ge \sqrt{2}$ for $\omega \le \omega_B^*$.
+
+Similarly, if one wants the closed-loop bandwidth to be less than $\w_B^*$, one can approximately require that the magnitude of $T$ is less than $\frac{1}{\sqrt{2}}$ at frequencies above $\w_B^*$ by designing $w_L$ such that $|w_L(j\omega)| \ge \sqrt{2}$ for $\omega \ge \omega_B^*$.\\
+
+**** Classical stability margins
+Gain margin (GM) and phase margin (PM) are usual specifications on controlled system.
+Minimum GM and PM can be guaranteed by limiting the maximum magnitude of the sensibility function $M_S = \max_{\omega} |S(j\omega)|$:
+\begin{equation}
+  \text{GM} \geq \frac{M_S}{M_S-1}; \quad \text{PM} \geq \frac{1}{M_S}
+\end{equation}
+
+Thus, having $M_S \le 2$ guarantees a gain margin of at least $2$ and a phase margin of at least $\SI{29}{\degree}$.
+
+For the nominal system $M_S = \max_\omega |S| = \max_\omega |H_H|$, so one can design $w_H$ so that $|w_H(j\omega)| \ge 1/2$ in order to have
+\begin{equation}
+  |H_H(j\omega)| \le 2 \quad \forall\omega
+\end{equation}
+and thus obtain acceptable stability margins.\\
+
+**** Response time to change of reference signal
+For the nominal system, the model is accurate and the transfer function from reference signal $r$ to output $y$ is $1$ eqref:eq:detail_control_cl_performance_y and does not depends of the complementary filters.
+
+However, one can add a pre-filter as shown in Fig. ref:fig:detail_control_sf_arch_class_prefilter.
+
+#+begin_src latex :file detail_control_sf_arch_class_prefilter.pdf
+\tikzset{block/.default={0.8cm}{0.6cm}}
+\tikzset{addb/.append style={scale=0.7}}
+\tikzset{node distance=0.6}
+\def\cdist{0.7}
+
+\begin{tikzpicture}
+  \node[addb={+}{}{}{}{-}] (addfb) at (0, 0){};
+  \node[block, left=of addfb] (Kr){$K_r$};
+  \node[block, right=of addfb] (K){$K$};
+  \node[block, right=of K] (G){$G^\prime$};
+  \node[addb={+}{}{}{}{}, right=of G] (adddy){};
+  \node[addb={+}{}{}{}{}, below right=0.7 and 0.3 of adddy] (addn) {};
+  \node[block, left=of addn] (Hl) {$H_L$};
+
+  \draw[->] (addfb.east) -- (K.west) node[above left]{};
+  \draw[->] (K.east) -- (G.west) node[above left]{$u$};
+  \draw[->] (G.east) -- (adddy.west);
+  \draw[<-] (addn.east) -- ++(\cdist, 0) coordinate[](endpos) node[above left]{$n$};
+  \draw[->] (G-|addn)node[branch]{} -- (addn.north);
+  \draw[->] (adddy.east) -- (G-|endpos) node[above left]{$y$};
+  \draw[<-] (Kr.west) -- ++(-\cdist, 0) node[above right]{$r$};
+  \draw[->] (Kr.east) -- (addfb.west);
+  \draw[->] (addn.west) -- (Hl.east);
+  \draw[->] (Hl.west) -| (addfb.south);
+  \draw[<-] (adddy.north) -- ++(0, \cdist) node[below right]{$d_y$};
+\end{tikzpicture}
+#+end_src
+
+#+name: fig:detail_control_sf_arch_class_prefilter
+#+caption: Prefilter used to limit input usage
+#+RESULTS:
+[[file:figs/detail_control_sf_arch_class_prefilter.png]]
+
+The transfer function from $y$ to $r$ becomes $\frac{y}{r} = K_r$ and $K_r$ can we chosen to obtain acceptable response to change of the reference signal.
+Typically, $K_r$ is a low pass filter of the form
+\begin{equation}
+  K_r(s) = \frac{1}{1 + \tau s}
+\end{equation}
+with $\tau$ corresponding to the desired response time.\\
+
+**** Input usage
+Input usage due to disturbances $d_y$ and measurement noise $n$ is determined by $\big|\frac{u}{d_y}\big| = \big|\frac{u}{n}\big| = \big|G^{-1}H_L\big|$.
+Thus it can be limited by setting an upper bound on $|H_L|$.
+
+
+Input usage due to reference signal $r$ is determined by $\big|\frac{u}{r}\big| = \big|G^{-1} K_r\big|$ when using a pre-filter (Fig. ref:fig:detail_control_sf_arch_class_prefilter) and $\big|\frac{u}{r}\big| = \big|G^{-1}\big|$ otherwise.
+
+Proper choice of $|K_r|$ is then useful to limit input usage due to change of reference signal.\\
+
+**** Robust Stability (RS)
+Robustness stability represents the ability of the control system to remain stable even though there are differences between the actual system $G^\prime$ and the model $G$ that was used to design the controller.
+These differences can have various origins such as unmodelled dynamics or non-linearities.
+
+To represent the differences between the model and the actual system, one can choose to use the general input multiplicative uncertainty as represented in Fig. ref:fig:detail_control_input_uncertainty.
+
+#+begin_src latex :file detail_control_input_uncertainty.pdf
+\tikzset{block/.default={0.8cm}{0.6cm}}
+\tikzset{addb/.append style={scale=0.7}}
+\tikzset{node distance=0.6}
+\def\cdist{0.7}
+
+\begin{tikzpicture}
+  % Blocs
+  \node[block] (G) {$G$};
+
+  \node[addb, left= of G] (addi) {};
+  \node[block, above left=0.3 and 0.3 of addi] (deltai) {$\Delta_I$};
+  \node[block, left= of deltai] (wi) {$w_I$};
+  \node[branch] (branch) at ($(wi.west|-addi)+(-0.4, 0)$) {};
+
+  % Connections and labels
+  \draw[->] (branch.center) |- (wi.west);
+  \draw[->] ($(branch)+(-0.6, 0)$) -- (addi.west);
+  \draw[->] (wi.east) -- (deltai.west);
+  \draw[->] (deltai.east) -| (addi.north);
+  \draw[->] (addi.east) -- (G.west);
+  \draw[->] (G.east) -- ++(0.6, 0);
+
+  \begin{scope}[on background layer]
+    \node[fit={(branch|-wi.north) (G.south east)}, inner sep=6pt, draw, dashed, fill=black!20!white] (Gp) {};
+    \node[below left] at (Gp.north east) {$G\prime$};
+  \end{scope}
+\end{tikzpicture}
+#+end_src
+
+#+name: fig:detail_control_input_uncertainty
+#+caption: Input multiplicative uncertainty
+#+RESULTS:
+[[file:figs/detail_control_input_uncertainty.png]]
+
+Then, the set of possible perturbed plant is described by
+
+\begin{equation}\label{eq:detail_control_multiplicative_uncertainty}
+  \Pi_i: \quad G_p(s) = G(s)\big(1 + w_I(s)\Delta_I(s)\big); \quad \abs{\Delta_I(j\w)} \le 1 \ \forall\w
+\end{equation}
+and $w_I$ should be chosen such that all possible plants $G^\prime$ are contained in the set $\Pi_i$.
+
+Using input multiplicative uncertainty, robust stability is equivalent to have [[cite:&skogestad07_multiv_feedb_contr]]:
+\begin{align*}
+  \text{RS} \Leftrightarrow & |w_I T| \le 1 \quad \forall G^\prime \in \Pi_I, \ \forall\omega \\
+  \Leftrightarrow & \left| w_I \frac{G^\prime K H_L}{1 + G^\prime K H_L} \right| \le 1 \quad \forall G^\prime \in \Pi_I ,\ \forall\omega \\
+  \Leftrightarrow & \left| w_I \frac{G^\prime G^{-1} {H_H}^{-1} H_L}{1 + G^\prime G^{-1} {H_H}^{-1} H_L} \right| \le 1 \quad \forall G^\prime \in \Pi_I ,\ \forall\omega \\
+  \Leftrightarrow & \left| w_I \frac{(1 + w_I \Delta) {H_H}^{-1} H_L}{1 + (1 + w_I \Delta) {H_H}^{-1} H_L} \right| \le 1 \quad \forall \Delta, \ |\Delta| \le 1 ,\ \forall\omega \\
+  \Leftrightarrow & \left| w_I \frac{(1 + w_I \Delta) H_L}{1 + w_I \Delta H_L} \right| \le 1 \quad \forall \Delta, \ |\Delta| \le 1 ,\ \forall\omega \\
+  \Leftrightarrow & \left| H_L w_I \right| \frac{1 + |w_I|}{1 - |w_I H_L|} \le 1, \quad 1 - |w_I H_L| > 0 \quad \forall\omega \\
+  \Leftrightarrow & \left| H_L w_I \right| (2 + |w_I|) \le 1, \quad 1 - |w_I H_L| > 0 \quad \forall\omega \\
+  \Leftrightarrow & \left| H_L w_I \right| (2 + |w_I|) \le 1 \quad \forall\omega
+\end{align*}
+
+
+Robust stability is then guaranteed by having the low pass filter $H_L$ satisfying eqref:eq:detail_control_robust_stability.
+
+\begin{equation}\label{eq:detail_control_robust_stability}
+  \text{RS} \Leftrightarrow |H_L| \le \frac{1}{|w_I| (2 + |w_I|)}\quad \forall \omega
+\end{equation}
+
+To ensure robust stability condition eqref:eq:detail_control_nominal_perf_hl can be used if $w_L$ is designed in such a way that $|w_L| \ge |w_I| (2 + |w_I|)$.\\
+
+**** Robust Performance (RP)
+Robust performance is a property for a controlled system to have its performance guaranteed even though the dynamics of the plant is changing within specified bounds.
+
+For robust performance, we then require to have the performance condition valid for all possible plants in the defined uncertainty set:
+\begin{subnumcases}{\text{RP} \Leftrightarrow}
+  |w_H S| \le 1 \quad \forall G^\prime \in \Pi_I, \ \forall\omega \label{eq:detail_control_robust_perf_S}\\
+  |w_L T| \le 1 \quad \forall G^\prime \in \Pi_I, \ \forall\omega \label{eq:detail_control_robust_perf_T}
+\end{subnumcases}
+
+Let's transform condition eqref:eq:detail_control_robust_perf_S into a condition on the complementary filters
+\begin{align*}
+  & \left| w_H S \right| \le 1 \quad \forall G^\prime \in \Pi_I, \ \forall\omega \\
+  \Leftrightarrow & \left| w_H \frac{1}{1 + G^\prime G^{-1} H_H^{-1} H_L} \right| \le 1 \quad \forall G^\prime \in \Pi_I, \ \forall\omega \\
+  \Leftrightarrow & \left| \frac{w_H H_H}{1 + \Delta w_I H_L} \right| \le 1 \quad \forall \Delta, \ |\Delta| \le 1, \ \forall\omega \\
+  \Leftrightarrow & \frac{|w_H H_H|}{1 - |w_I H_L|} \le 1, \ \forall\omega \\
+  \Leftrightarrow & | w_H H_H | + | w_I H_L | \le 1, \ \forall\omega \\
+\end{align*}
+
+The same can be done with condition eqref:eq:detail_control_robust_perf_T
+\begin{align*}
+  & \left| w_L T \right| \le 1 \quad \forall G^\prime \in \Pi_I, \ \forall\omega \\
+  \Leftrightarrow & \left| w_L \frac{G^\prime G^{-1} H_H^{-1} H_L}{1 + G^\prime G^{-1} H_H^{-1} H_L} \right| \le 1 \quad \forall G^\prime \in \Pi_I, \ \forall\omega \\
+  \Leftrightarrow & \left| w_L H_L \frac{1 + w_I \Delta}{1 + w_I \Delta H_L} \right| \le 1 \quad \forall \Delta, \ |\Delta| \le 1, \ \forall\omega \\
+  \Leftrightarrow & \left| w_L H_L \right| \frac{1 + |w_I|}{1 - |w_I H_L|} \le 1 \quad \forall\omega \\
+  \Leftrightarrow & \left| H_L \right| \le \frac{1}{|w_L| (1 + |w_I|) + |w_I|} \quad \forall\omega \\
+\end{align*}
+
+Robust performance is then guaranteed if eqref:eq:detail_control_robust_perf_a and eqref:eq:detail_control_robust_perf_b are satisfied.
+
+\begin{subnumcases}\label{eq:detail_control_robust_performance}
+{\text{RP} \Leftrightarrow}
+  | w_H H_H | + | w_I H_L | \le 1, \ \forall\omega \label{eq:detail_control_robust_perf_a}\\
+  \left| H_L \right| \le \frac{1}{|w_L| (1 + |w_I|) + |w_I|} \quad \forall\omega \label{eq:detail_control_robust_perf_b}
+\end{subnumcases}
+
+One should be aware than when looking for a robust performance condition, only the worst case is evaluated and using the robust stability condition may lead to conservative control.
+
+** TODO [#C] Analytical formulas for complementary filters?
+<<ssec:detail_control_analytical_complementary_filters>>
+
+** Numerical Example
+<<ssec:detail_control_simulations>>
+**** Procedure
+
+In order to apply this control technique, we propose the following procedure:
+1. Identify the plant to be controlled in order to obtain $G$
+2. Design the weighting function $w_I$ such that all possible plants $G^\prime$ are contained in the set $\Pi_i$
+3. Translate the performance requirements into upper bounds on the complementary filters (as explained in Sec. ref:ssec:detail_control_trans_perf)
+4. Design the weighting functions $w_H$ and $w_L$ and generate the complementary filters using $\hinf\text{-synthesis}$ (as further explained in Sec. ref:ssec:detail_control_hinf_method).
+   If the synthesis fails to give filters satisfying the upper bounds previously defined, either the requirements have to be reworked or a better model $G$ that will permits to have a smaller $w_I$ should be obtained.
+   If one does not want to use the $\mathcal{H}_\infty$ synthesis, one can use pre-made complementary filters given in Sec. ref:ssec:detail_control_analytical_complementary_filters.
+6. If $K = \left( G H_H \right)^{-1}$ is not proper, a low pass filter should be added
+7. Design a pre-filter $K_r$ if requirements on input usage or response to reference change are not met
+8. Control implementation: Filter the measurement with $H_L$, implement the controller $K$ and the pre-filter $K_r$ as shown on Fig. ref:fig:detail_control_sf_arch_class_prefilter
+
+**** Plant
+Let's consider the problem of controlling an active vibration isolation system that consist of a mass $m$ to be isolated, a piezoelectric actuator and a geophone.
+
+We represent this system by a mass-spring-damper system as shown Fig. ref:fig:detail_control_mech_sys_alone where $m$ typically represents the mass of the payload to be isolated, $k$ and $c$ represent respectively the stiffness and damping of the mount.
+$w$ is the ground motion.
+The values for the parameters of the models are
+\[ m = \SI{20}{\kg}; \quad k = 10^4\si{\N/\m}; \quad c = 10^2\si{\N\per(\m\per\s)} \]
+
+#+begin_src latex :file detail_control_mech_sys_alone.pdf
+\tikzset{block/.default={0.8cm}{0.6cm}}
+\tikzset{addb/.append style={scale=0.7}}
+\tikzset{node distance=0.6}
+\def\cdist{0.7}
+
+\begin{tikzpicture}
+  % ====================
+  % Parameters
+  % ====================
+  \def\massw{2.2}  % Width of the masses
+  \def\massh{0.8}  % Height of the masses
+  \def\spaceh{1.2} % Height of the springs/dampers
+  \def\dispw{0.3}  % Width of the dashed line for the displacement
+  \def\disph{0.5}  % Height of the arrow for the displacements
+  \def\bracs{0.05} % Brace spacing vertically
+  \def\brach{-10pt} % Brace shift horizontaly
+  % ====================
+
+
+  % ====================
+  % Ground
+  % ====================
+  \draw (-0.5*\massw, 0) -- (0.5*\massw, 0);
+  \draw[dashed] (0.5*\massw, 0) -- ++(\dispw, 0);
+  \draw[->] (0.5*\massw+0.5*\dispw, 0) -- ++(0, \disph) node[right]{$w$};
+  % ====================
+
+  \begin{scope}[shift={(0, 0)}]
+    % Mass
+    \draw[fill=white] (-0.5*\massw, \spaceh) rectangle (0.5*\massw, \spaceh+\massh) node[pos=0.5]{$m$};
+
+    % Spring, Damper, and Actuator
+    \draw[spring] (-0.4*\massw, 0) -- (-0.4*\massw, \spaceh) node[midway, left=0.1]{$k$};
+    \draw[damper] (0, 0)           -- ( 0, \spaceh)          node[midway, left=0.2]{$c$};
+    \draw[actuator] ( 0.4*\massw, 0) -- (	0.4*\massw, \spaceh) node[midway, left=0.1](F){$F$};
+
+    % Displacements
+    \draw[dashed] (0.5*\massw, \spaceh) -- ++(\dispw, 0);
+    \draw[->] (0.5*\massw+0.5*\dispw, \spaceh) -- ++(0, \disph) node[right]{$x$};
+
+    % Legend
+    % \draw[decorate, decoration={brace, amplitude=8pt}, xshift=\brach] %
+    % (-0.5*\massw, \bracs) -- (-0.5*\massw, \spaceh+\massh-\bracs) %
+    % node[midway,rotate=90,anchor=south,yshift=10pt]{};
+  \end{scope}
+\end{tikzpicture}
+#+end_src
+
+#+name: fig:detail_control_mech_sys_alone
+#+caption: Model of the positioning system
+#+RESULTS:
+[[file:figs/detail_control_mech_sys_alone.png]]
+
+The model of the plant $G(s)$ from actuator force $F$ to displacement $x$ is then
+\begin{equation}
+G(s) = \frac{1}{m s^2 + c s + k}
+\end{equation}
+
+Its bode plot is shown on Fig. ref:fig:detail_control_bode_plot_mech_sys.
+
+#+begin_src matlab
+m = 10;  % mass [kg]
+k = 1e4; % stiffness [N/m]
+c = 1e2; % damping [N/(m/s)]
+
+G = 1/(m*s^2 + c*s + k);
+
+% The uncertainty weight
+wI = generateWF('n', 2, 'w0', 2*pi*80, 'G0', 0.1, 'Ginf', 10, 'Gc', 1);
+#+end_src
+
+#+begin_src matlab :exports none :results none
+%% description
+figure;
+tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
+
+% Magnitude
+ax1 = nexttile([2,1]);
+hold on;
+plotMagUncertainty(wI, freqs, 'G', G, 'DisplayName', '$G$');
+plot(freqs, abs(squeeze(freqresp(G, freqs, 'Hz'))), 'k-');
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]);
+ylim([1e-8, 1e-3]);
+hold off;
+
+% Phase
+ax2 = nexttile;
+hold on;
+plotPhaseUncertainty(wI, freqs, 'G', G);
+plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G, freqs, 'Hz')))), 'k-');
+set(gca,'xscale','log');
+yticks(-360:90:90);
+ylim([-360 90]);
+xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
+hold off;
+
+linkaxes([ax1,ax2],'x');
+xlim([freqs(1), freqs(end)]);
+#+end_src
+
+#+begin_src matlab :tangle no :exports results :results file replace
+exportFig('figs/detail_control_bode_plot_mech_sys.pdf', 'width', 'wide', 'height', 600);
+#+end_src
+
+#+name: fig:detail_control_bode_plot_mech_sys
+#+caption: Bode plot of the transfer function $G(s)$ from $F$ to $x$
+#+RESULTS:
+[[file:figs/detail_control_bode_plot_mech_sys.png]]
+
+**** Requirements
+The control objective is to isolate the displacement $x$ of the mass from the ground motion $w$.
+
+The disturbance rejection should be at least $10$ at $\SI{2}{\hertz}$ and with a slope of $-2$ below $\SI{2}{\hertz}$ until a rejection of $10^4$.
+
+Closed-loop bandwidth should be less than $\SI{20}{\hertz}$ (because of time delay induced by limited sampling frequency?).
+
+Noise attenuation should be at least $10$ above $\SI{40}{\hertz}$ and $100$ above $\SI{500}{\hertz}$
+
+Robustness to unmodelled dynamics.
+We model the uncertainty on the dynamics of the plant by a multiplicative weight
+\begin{equation}
+  w_I(s) = \frac{\tau s + r_0}{(\tau/r_\infty) s + 1}
+\end{equation}
+where $r_0=0.1$ is the relative uncertainty at steady-state, $1/\tau=\SI{100}{\hertz}$ is the frequency at which the relative uncertainty reaches $\SI{100}{\percent}$, and $r_\infty=10$ is the magnitude of the weight at high frequency.
+
+All the requirements on $H_L$ and $H_H$ are represented on Fig. ref:fig:detail_control_spec_S_T.
+
+- [ ] TODO: Make Matlab code to plot the specifications
+
+#+begin_src matlab :exports none :results none
+%% Specifications
+figure;
+hold on;
+plot([100, 1000], [0.1, 0.001], ':', 'color', colors(1,:), 'DisplayName', '$|T|$ - Upper bound');
+plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'color', colors(2,:), 'DisplayName', '$|S|$ - Upper bound');
+plot(freqs, 1./abs(squeeze(freqresp(wI, freqs, 'Hz'))), ':', 'color', colors(1,:), 'HandleVisibility', 'off');
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+xlabel('Frequency [Hz]'); ylabel('Magnitude');
+hold off;
+xlim([freqs(1), freqs(end)]);
+ylim([1e-3, 10]);
+xticks([0.1, 1, 10, 100, 1000]);
+legend('location', 'northeast', 'FontSize', 8);
+#+end_src
+
+#+begin_src matlab :tangle no :exports results :results file replace
+exportFig('figs/detail_control_spec_S_T.pdf', 'width', 'half', 'height', 'normal');
+#+end_src
+
+#+name: fig:detail_control_spec_S_T_obtained_filters
+#+caption: Caption with reference to sub figure (\subref{fig:detail_control_spec_S_T}) (\subref{detail_control_hinf_filters_result_weights})
+#+attr_latex: :options [htbp]
+#+begin_figure
+#+attr_latex: :caption \subcaption{\label{fig:detail_control_spec_S_T}Closed loop specifications}
+#+attr_latex: :options {0.49\textwidth}
+#+begin_subfigure
+#+attr_latex: :width 0.95\linewidth
+[[file:figs/detail_control_spec_S_T.png]]
+#+end_subfigure
+#+attr_latex: :caption \subcaption{\label{fig:detail_control_hinf_filters_result_weights}Obtained complementary filters}
+#+attr_latex: :options {0.49\textwidth}
+#+begin_subfigure
+#+attr_latex: :width 0.95\linewidth
+[[file:figs/detail_control_hinf_filters_result_weights.png]]
+#+end_subfigure
+#+end_figure
+
+**** Design of the filters
+
+*Or maybe use analytical formulas as proposed here: [[file:~/Cloud/research/papers/dehaeze20_virtu_senso_fusio/matlab/index.org::*Complementary filters using analytical formula][Complementary filters using analytical formula]]*
+
+We then design $w_L$ and $w_H$ such that their magnitude are below the upper bounds shown on Fig. ref:fig:detail_control_hinf_filters_result_weights.
+\begin{subequations}
+  \begin{align}
+    w_L &= \frac{(s+22.36)^2}{0.005(s+1000)^2}\\
+    w_H &= \frac{1}{0.0005(s+0.4472)^2}
+  \end{align}
+\end{subequations}
+
+#+begin_src matlab
+omegab = 2*pi*9;
+wH = (omegab)^2/(s + omegab*sqrt(1e-5))^2;
+omegab = 2*pi*28;
+wL = (s + omegab/(4.5)^(1/3))^3/(s*(1e-4)^(1/3) + omegab)^3;
+
+P = [0   wL;
+     wH -wH;
+     1   0];
+
+[Hl_hinf, ~, gamma, ~] = hinfsyn(P, 1, 1,'TOLGAM', 0.001, 'METHOD', 'ric', 'DISPLAY', 'on');
+
+Hh_hinf = 1 - Hl_hinf;
+#+end_src
+
+After the $\hinf\text{-synthesis}$, we obtain $H_L$ and $H_H$, and we plot their magnitude on phase on Fig. ref:fig:detail_control_hinf_filters_result_weights.
+
+\begin{subequations}
+  \begin{align}
+    H_L &= \frac{0.0063957 (s+1016) (s+985.4) (s+26.99)}{(s+57.99) (s^2 + 65.77s + 2981)}\\
+    H_H &= \frac{0.9936 (s+111.1) (s^2 + 0.3988s + 0.08464)}{(s+57.99) (s^2 + 65.77s + 2981)}
+  \end{align}
+\end{subequations}
+
+#+begin_src matlab :exports none :results none
+%% Bode plot of the obtained complementary filters
+figure;
+hold on;
+set(gca,'ColorOrderIndex',1)
+plot(freqs, 1./abs(squeeze(freqresp(wL, freqs, 'Hz'))), '--', 'DisplayName', '$w_L$');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, 1./abs(squeeze(freqresp(wH, freqs, 'Hz'))), '--', 'DisplayName', '$w_H$');
+
+set(gca,'ColorOrderIndex',1)
+plot(freqs, abs(squeeze(freqresp(Hl_hinf, freqs, 'Hz'))), '-', 'DisplayName', '$H_L$ - $\mathcal{H}_\infty$');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, abs(squeeze(freqresp(Hh_hinf, freqs, 'Hz'))), '-', 'DisplayName', '$H_H$ - $\mathcal{H}_\infty$');
+hold off;
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+xlabel('Frequency [Hz]'); ylabel('Magnitude');
+ylim([1e-3, 10]);
+xlim([freqs(1), freqs(end)]);
+legend('location', 'southeast', 'FontSize', 8);
+#+end_src
+
+#+begin_src matlab :tangle no :exports results :results file replace
+exportFig('figs/detail_control_hinf_filters_result_weights.pdf', 'width', 'half', 'height', 'normal');
+#+end_src
+
+**** Controller analysis
+The controller is $K = \left( H_H G \right)^{-1}$.
+A low pass filter is added to $K$ so that it is proper and implementable.
+
+The obtained controller is shown on Fig. ref:fig:detail_control_bode_Kfb.
+
+#+begin_src matlab
+omega = 2*pi*500;
+K = 1/(Hh_hinf*G) * 1/((1+s/omega)*(1+s/omega+(s/omega)^2));
+K = zpk(minreal(K));
+#+end_src
+
+#+begin_src matlab :exports none :results none
+%% Bode plot of the controller K
+figure;
+tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
+
+% Magnitude
+ax1 = nexttile([2, 1]);
+hold on;
+plot(freqs, abs(squeeze(freqresp(K, freqs, 'Hz'))), 'k-');
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
+ylim([8e3, 1e8])
+hold off;
+
+% Phase
+ax2 = nexttile;
+hold on;
+plot(freqs, 180/pi*angle(squeeze(freqresp(K, freqs, 'Hz'))), 'k-');
+set(gca,'xscale','log');
+yticks(-180:90:180);
+ylim([-180 180]);
+xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
+hold off;
+
+linkaxes([ax1,ax2],'x');
+xlim([freqs(1), freqs(end)]);
+#+end_src
+
+#+begin_src matlab :tangle no :exports results :results file replace
+exportFig('figs/detail_control_bode_Kfb.pdf', 'width', 'half', 'height', 600);
+#+end_src
+
+It is implemented as shown on Fig. ref:fig:detail_control_mech_sys_alone_ctrl.
+
+#+begin_src latex :file detail_control_mech_sys_alone_ctrl.pdf
+\tikzset{block/.default={0.8cm}{0.6cm}}
+\tikzset{addb/.append style={scale=0.7}}
+\tikzset{node distance=0.6}
+\def\cdist{0.7}
+
+\begin{tikzpicture}
+  % ====================
+  % Parameters
+  % ====================
+  \def\massw{2.2}  % Width of the masses
+  \def\massh{0.8}  % Height of the masses
+  \def\spaceh{1.2} % Height of the springs/dampers
+  \def\dispw{0.3}  % Width of the dashed line for the displacement
+  \def\disph{0.5}  % Height of the arrow for the displacements
+  \def\bracs{0.05} % Brace spacing vertically
+  \def\brach{-10pt} % Brace shift horizontaly
+  % ====================
+
+
+  % ====================
+  % Ground
+  % ====================
+  \draw (-0.5*\massw, 0) -- (0.5*\massw, 0);
+  \draw[dashed] (0.5*\massw, 0) -- ++(\dispw, 0);
+  \draw[->] (0.5*\massw+0.5*\dispw, 0) -- ++(0, \disph) node[below right]{$w$};
+  % ====================
+
+  \begin{scope}[shift={(0, 0)}]
+    % Mass
+    \draw[fill=white] (-0.5*\massw, \spaceh) rectangle (0.5*\massw, \spaceh+\massh) node[pos=0.5]{$m$};
+
+    % Spring, Damper, and Actuator
+    \draw[spring] (-0.4*\massw, 0) -- (-0.4*\massw, \spaceh) node[midway, left=0.1]{$k$};
+    \draw[damper] (0, 0)           -- ( 0, \spaceh)          node[midway, left=0.2]{$c$};
+    \draw[actuator] ( 0.4*\massw, 0) -- (	0.4*\massw, \spaceh) coordinate[midway, right=0.15](F);
+
+    % Displacements
+    \draw[dashed] (0.5*\massw, \spaceh) -- ++(\dispw, 0);
+    \draw[->] (0.5*\massw+0.5*\dispw, \spaceh) -- ++(0, \disph) node[right](x){$x$};
+  \end{scope}
+
+  \node[block, right=1 of F] (Kfb) {$K$};
+  \node[addb={+}{}{-}{}{}, right=2*\cdist of Kfb] (add) {};
+  \node[addb] (addn) at (x-|Kfb) {};
+  \node[block, right=of addn] (Hl) {$H_L$};
+
+  \draw[->] (x) -- (addn.west);
+  \draw[->] (addn.east) -- (Hl.west);
+  \draw[->] (Hl.east) -| (add.north);
+  \draw[->] (add.west) -- (Kfb.east);
+  \draw[->] (Kfb.west) -- (F) node[above right]{$F$};
+  \draw[<-] (addn.north) -- ++(0,\cdist) node[below right]{$n$};
+  \draw[<-] (add.east) -- ++(\cdist,0) node[above left]{$r$};
+\end{tikzpicture}
+#+end_src
+
+#+name: fig:detail_control_mech_sys_alone_ctrl
+#+caption: Control of a positioning system
+#+RESULTS:
+[[file:figs/detail_control_mech_sys_alone_ctrl.png]]
+
+#+begin_src matlab :exports none :results none
+%% Bode plot of the loop gain K G H_L
+figure;
+tiledlayout(3, 1, 'TileSpacing', 'Compact', 'Padding', 'None');
+
+% Magnitude
+ax1 = nexttile([2, 1]);
+hold on;
+plot(freqs, abs(squeeze(freqresp(K*G*Hl_hinf, freqs, 'Hz'))), 'k-');
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+set(gca, 'XTickLabel',[]);
+ylabel('Loop Gain');
+hold off;
+ylim([1e-3, 1e2])
+
+% Phase
+ax2 = nexttile;
+hold on;
+plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(K*G*Hl_hinf, freqs, 'Hz')))), 'k-');
+set(gca,'xscale','log');
+yticks(-270:90:0);
+ylim([-270 0]);
+xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
+hold off;
+
+linkaxes([ax1,ax2],'x');
+xlim([freqs(1), freqs(end)]);
+#+end_src
+
+#+begin_src matlab :tangle no :exports results :results file replace
+exportFig('figs/detail_control_bode_plot_loop_gain_robustness.pdf', 'width', 'half', 'height', 600);
+#+end_src
+
+#+name: fig:detail_control_bode_Kfb_loop_gain
+#+caption: Caption with reference to sub figure (\subref{fig:detail_control_bode_Kfb}) (\subref{fig:detail_control_bode_plot_loop_gain_robustness})
+#+attr_latex: :options [htbp]
+#+begin_figure
+#+attr_latex: :caption \subcaption{\label{fig:detail_control_bode_Kfb}Controller $K$}
+#+attr_latex: :options {0.49\textwidth}
+#+begin_subfigure
+#+attr_latex: :width 0.95\linewidth
+[[file:figs/detail_control_bode_Kfb.png]]
+#+end_subfigure
+#+attr_latex: :caption \subcaption{\label{fig:detail_control_bode_plot_loop_gain_robustness}Loop Gain}
+#+attr_latex: :options {0.49\textwidth}
+#+begin_subfigure
+#+attr_latex: :width 0.95\linewidth
+[[file:figs/detail_control_bode_plot_loop_gain_robustness.png]]
+#+end_subfigure
+#+end_figure
+
+**** Robustness analysis
+The robust stability can be access on the nyquist plot (Fig. ref:fig:detail_control_nyquist_robustness).
+
+#+begin_src matlab
+Gds = usample(G*(1+wI*ultidyn('Delta', [1 1])), 20);
+
+S = 1/(K*G*Hl_hinf + 1);
+T = K*G*Hl_hinf/(K*G*Hl_hinf + 1);
+
+Ts = Gds*K*Hl_hinf/(Gds*K*Hl_hinf + 1);
+Ss = 1/(Gds*K*Hl_hinf + 1);
+#+end_src
+
+#+begin_src matlab :exports none :results none
+%% Nyquist plot of the uncertain system
+freqs_nyquist = logspace(0, 4, 100);
+
+figure;
+hold on;
+for i=1:length(Gds)
+    plot(real(squeeze(freqresp(Gds(:, :, i)*K*Hl_hinf, freqs_nyquist, 'Hz'))), imag(squeeze(freqresp(Gds(:, :, i)*K*Hl_hinf, freqs_nyquist, 'Hz'))), 'color', [0, 0, 0, 0.1]);
+end
+plot(real(squeeze(freqresp(G*K*Hl_hinf, freqs_nyquist, 'Hz'))), imag(squeeze(freqresp(G*K*Hl_hinf, freqs_nyquist, 'Hz'))), 'k');
+hold off;
+axis equal
+xlim([-1.4, 0.2]); ylim([-1.4, 0.2]);
+xticks(-1.4:0.2:0.2); yticks(-1.4:0.2:0.2);
+xlabel('Real Part'); ylabel('Imaginary Part');
+#+end_src
+
+#+begin_src matlab :tangle no :exports results :results file replace
+exportFig('figs/detail_control_nyquist_robustness', 'width', 'half', 'height', 'normal');
+#+end_src
+
+The robust performance is shown on Fig. ref:fig:detail_control_robust_perf.
+
+#+begin_src matlab :exports none :results none
+%% Robust Performance
+figure;
+hold on;
+for i=1:length(Gds)
+    plot(freqs, abs(squeeze(freqresp(Ts(:, :, i), freqs, 'Hz'))), 'color', [0, 0.4470, 0.7410, 0.1]     , 'HandleVisibility', 'off');
+    plot(freqs, abs(squeeze(freqresp(Ss(:, :, i), freqs, 'Hz'))), 'color', [0.8500, 0.3250, 0.0980, 0.1], 'HandleVisibility', 'off');
+end
+
+set(gca,'ColorOrderIndex',1)
+plot(freqs, abs(squeeze(freqresp(G*K*Hl_hinf/(1+G*K*Hl_hinf), freqs, 'Hz'))), 'DisplayName', '$|T|$');
+set(gca,'ColorOrderIndex',2)
+plot(freqs, abs(squeeze(freqresp(1/(1+G*K*Hl_hinf), freqs, 'Hz'))), 'DisplayName', '$|S|$');
+
+set(gca,'ColorOrderIndex',1)
+plot([100, 1000], [0.1, 0.001], ':', 'DisplayName', '$|T|$ - Spec.');
+set(gca,'ColorOrderIndex',2)
+plot([0.1, 0.2, 2], [0.001, 0.001, 0.1], ':', 'DisplayName', '$|S|$ - Spec.');
+
+set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
+hold off;
+xlabel('Frequency [Hz]'); ylabel('Magnitude');
+xlim([freqs(1), freqs(end)]);
+ylim([1e-4, 5]);
+xticks([0.1, 1, 10, 100, 1000]);
+legend('location', 'southeast', 'FontSize', 8, 'NumColumns', 2);
+#+end_src
+
+#+begin_src matlab :tangle no :exports results :results file replace
+exportFig('figs/detail_control_robust_perf.pdf', 'width', 'half', 'height', 'normal');
+#+end_src
+
+#+name: fig:fig_label
+#+caption: Caption with reference to sub figure (\subref{fig:detail_control_nyquist_robustness}) (\subref{fig:detail_control_robust_perf})
+#+attr_latex: :options [htbp]
+#+begin_figure
+#+attr_latex: :caption \subcaption{\label{fig:detail_control_nyquist_robustness}Robust Stability}
+#+attr_latex: :options {0.49\textwidth}
+#+begin_subfigure
+#+attr_latex: :scale 0.8
+[[file:figs/detail_control_nyquist_robustness.png]]
+#+end_subfigure
+#+attr_latex: :caption \subcaption{\label{fig:detail_control_robust_perf}Robust performance}
+#+attr_latex: :options {0.49\textwidth}
+#+begin_subfigure
+#+attr_latex: :scale 0.8
+[[file:figs/detail_control_robust_perf.png]]
+#+end_subfigure
+#+end_figure
+
+** TODO [#C] Experimental Validation?
+<<ssec:detail_control_exp_validation>>
+
+[[file:~/Cloud/research/papers/dehaeze20_virtu_senso_fusio/matlab/index.org::*Experimental Validation][Experimental Validation]]
+
 ** Conclusion
 :PROPERTIES:
 :UNNUMBERED: t
 :END:
 
+- [ ] Discuss how useful it is as the bandwidth can be changed in real time with analytical formulas of second order complementary filters.
+  Maybe make a section about that.
+  Maybe give analytical formulas of second order complementary filters in the digital domain?
+- [ ] Say that it will be validated with the nano-hexapod
+- [ ] Disadvantages:
+  - not optimal
+  - computationally intensive?
+  - lead to inverse control which may not be wanted in many cases. Add reference.
+
 * Conclusion
 :PROPERTIES:
 :UNNUMBERED: t
@@ -2100,6 +3057,104 @@ P = [W1 -W1;
 H1 = 1 - H2;
 #+end_src
 
+** =plotMagUncertainty=
+
+#+begin_src matlab :tangle matlab/src/plotMagUncertainty.m :comments none :mkdirp yes :eval no
+  function [p] = plotMagUncertainty(W, freqs, args)
+  % plotMagUncertainty -
+  %
+  % Syntax: [p] = plotMagUncertainty(W, freqs, args)
+  %
+  % Inputs:
+  %    - W     - Multiplicative Uncertainty Weight
+  %    - freqs - Frequency Vector [Hz]
+  %    - args  - Optional Arguments:
+  %      - G
+  %      - color_i
+  %      - opacity
+  %
+  % Outputs:
+  %    - p - Plot Handle
+
+      arguments
+      W
+      freqs double {mustBeNumeric, mustBeNonnegative}
+      args.G = tf(1)
+      args.color_i (1,1) double {mustBeInteger, mustBeNonnegative} = 0
+      args.opacity (1,1) double {mustBeNumeric, mustBeNonnegative} = 0.3
+      args.DisplayName char = ''
+  end
+
+  % Get defaults colors
+  colors = get(groot, 'defaultAxesColorOrder');
+
+  p = patch([freqs flip(freqs)], ...
+            [abs(squeeze(freqresp(args.G, freqs, 'Hz'))).*(1 + abs(squeeze(freqresp(W, freqs, 'Hz')))); ...
+             flip(abs(squeeze(freqresp(args.G, freqs, 'Hz'))).*max(1 - abs(squeeze(freqresp(W, freqs, 'Hz'))), 1e-6))], 'w', ...
+            'DisplayName', args.DisplayName);
+
+  if args.color_i == 0
+      p.FaceColor = [0; 0; 0];
+  else
+      p.FaceColor = colors(args.color_i, :);
+  end
+  p.EdgeColor = 'none';
+  p.FaceAlpha = args.opacity;
+
+   end
+#+end_src
+
+** =plotPhaseUncertainty=
+
+#+begin_src matlab :tangle matlab/src/plotPhaseUncertainty.m :comments none :mkdirp yes :eval no
+  function [p] = plotPhaseUncertainty(W, freqs, args)
+  % plotPhaseUncertainty -
+  %
+  % Syntax: [p] = plotPhaseUncertainty(W, freqs, args)
+  %
+  % Inputs:
+  %    - W     - Multiplicative Uncertainty Weight
+  %    - freqs - Frequency Vector [Hz]
+  %    - args  - Optional Arguments:
+  %      - G
+  %      - color_i
+  %      - opacity
+  %
+  % Outputs:
+  %    - p - Plot Handle
+
+  arguments
+      W
+      freqs double {mustBeNumeric, mustBeNonnegative}
+      args.G = tf(1)
+      args.color_i (1,1) double {mustBeInteger, mustBeNonnegative} = 0
+      args.opacity (1,1) double {mustBeNumeric, mustBePositive} = 0.3
+      args.DisplayName char = ''
+  end
+
+  % Get defaults colors
+  colors = get(groot, 'defaultAxesColorOrder');
+
+  % Compute Phase Uncertainty
+  Dphi = 180/pi*asin(abs(squeeze(freqresp(W, freqs, 'Hz'))));
+  Dphi(abs(squeeze(freqresp(W, freqs, 'Hz'))) > 1) = 360;
+
+  % Compute Plant Phase
+  G_ang = 180/pi*angle(squeeze(freqresp(args.G, freqs, 'Hz')));
+
+  p = patch([freqs flip(freqs)], [G_ang+Dphi; flip(G_ang-Dphi)], 'w', ...
+            'DisplayName', args.DisplayName);
+
+  if args.color_i == 0
+      p.FaceColor = [0; 0; 0];
+  else
+      p.FaceColor = colors(args.color_i, :);
+  end
+  p.EdgeColor = 'none';
+  p.FaceAlpha = args.opacity;
+
+  end
+#+end_src
 * Helping Functions                                                 :noexport:
 ** Initialize Path
 #+NAME: m-init-path
diff --git a/nass-control.pdf b/nass-control.pdf
index 7e62e93..da171a6 100644
Binary files a/nass-control.pdf and b/nass-control.pdf differ
diff --git a/nass-control.tex b/nass-control.tex
index e023a59..2b7a846 100644
--- a/nass-control.tex
+++ b/nass-control.tex
@@ -1,4 +1,4 @@
-% Created 2025-04-03 Thu 15:24
+% Created 2025-04-03 Thu 17:13
 % Intended LaTeX compiler: pdflatex
 \documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
 
@@ -25,6 +25,7 @@ Several considerations:
 \item Section \ref{sec:detail_control_optimization}: How to design the controller
 \end{itemize}
 \chapter{Multiple Sensor Control}
+\label{sec:orgacbb166}
 \label{sec:detail_control_multiple_sensor}
 
 \textbf{Look at what was done in the introduction \href{file:///home/thomas/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A0-nass-introduction/nass-introduction.org}{Stewart platforms: Control architecture}}
@@ -142,12 +143,13 @@ Although many design methods of complementary filters have been proposed in the
 Fortunately, both the robustness of the fusion and the super sensor characteristics can be linked to the magnitude of the complementary filters \cite{dehaeze19_compl_filter_shapin_using_synth}.
 Based on that, this paper introduces a new way to design complementary filters using the \(\mathcal{H}_\infty\) synthesis which allows to shape the complementary filters' magnitude in an easy and intuitive way.
 \section{Sensor Fusion and Complementary Filters Requirements}
-\label{sec:detail_control_sensor_fusion_requirements}
+\label{sec:org9733630}
+\label{ssec:detail_control_sensor_fusion_requirements}
 Complementary filtering provides a framework for fusing signals from different sensors.
 As the effectiveness of the fusion depends on the proper design of the complementary filters, they are expected to fulfill certain requirements.
 These requirements are discussed in this section.
 \subsection{Sensor Fusion Architecture}
-\label{sec:detail_control_sensor_fusion}
+\label{sec:org45e5dc5}
 
 A general sensor fusion architecture using complementary filters is shown in Fig. \ref{fig:detail_control_sensor_fusion_overview} where several sensors (here two) are measuring the same physical quantity \(x\).
 The two sensors output signals \(\hat{x}_1\) and \(\hat{x}_2\) are estimates of \(x\).
@@ -172,7 +174,7 @@ Therefore, a pair of complementary filter needs to satisfy the following conditi
 
 It will soon become clear why the complementary property is important for the sensor fusion architecture.
 \subsection{Sensor Models and Sensor Normalization}
-\label{sec:detail_control_sensor_models}
+\label{sec:org117d609}
 
 In order to study such sensor fusion architecture, a model for the sensors is required.
 Such model is shown in Fig. \ref{fig:detail_control_sensor_model} and consists of a linear time invariant (LTI) system \(G_i(s)\) representing the sensor dynamics and an input \(n_i\) representing the sensor noise.
@@ -216,7 +218,7 @@ The super sensor output is therefore equal to:
 \caption{\label{fig:detail_control_fusion_super_sensor}Sensor fusion architecture with two normalized sensors.}
 \end{figure}
 \subsection{Noise Sensor Filtering}
-\label{sec:detail_control_noise_filtering}
+\label{sec:orgb1cc291}
 
 In this section, it is supposed that all the sensors are perfectly normalized, such that:
 
@@ -255,7 +257,7 @@ However, the two sensors have usually high noise levels over distinct frequency
 In such case, to lower the noise of the super sensor, the norm \(|H_1(j\omega)|\) has to be small when \(\Phi_{n_1}(\omega)\) is larger than \(\Phi_{n_2}(\omega)\) and the norm \(|H_2(j\omega)|\) has to be small when \(\Phi_{n_2}(\omega)\) is larger than \(\Phi_{n_1}(\omega)\).
 Hence, by properly shaping the norm of the complementary filters, it is possible to reduce the noise of the super sensor.
 \subsection{Sensor Fusion Robustness}
-\label{sec:detail_control_fusion_robustness}
+\label{sec:orgc1bccc3}
 
 In practical systems the sensor normalization is not perfect and condition \eqref{eq:detail_control_perfect_dynamics} is not verified.
 
@@ -315,14 +317,15 @@ For instance, the phase \(\Delta\phi(\omega)\) added by the super sensor dynamic
 As it is generally desired to limit the maximum phase added by the super sensor, \(H_1(s)\) and \(H_2(s)\) should be designed such that \(\Delta \phi\) is bounded to acceptable values.
 Typically, the norm of the complementary filter \(|H_i(j\omega)|\) should be made small when \(|w_i(j\omega)|\) is large, i.e., at frequencies where the sensor dynamics is uncertain.
 \section{Complementary Filters Shaping}
-\label{sec:detail_control_hinf_method}
-As shown in Section \ref{sec:detail_control_sensor_fusion_requirements}, the noise and robustness of the super sensor are a function of the complementary filters' norm.
+\label{sec:org48106a8}
+\label{ssec:detail_control_hinf_method}
+As shown in Section \ref{ssec:detail_control_sensor_fusion_requirements}, the noise and robustness of the super sensor are a function of the complementary filters' norm.
 Therefore, a synthesis method of complementary filters that allows to shape their norm would be of great use.
 In this section, such synthesis is proposed by writing the synthesis objective as a standard \(\mathcal{H}_\infty\) optimization problem.
 As weighting functions are used to represent the wanted complementary filters' shape during the synthesis, their proper design is discussed.
 Finally, the synthesis method is validated on an simple example.
 \subsection{Synthesis Objective}
-\label{sec:detail_control_synthesis_objective}
+\label{sec:org8a4a881}
 
 The synthesis objective is to shape the norm of two filters \(H_1(s)\) and \(H_2(s)\) while ensuring their complementary property \eqref{eq:detail_control_comp_filter}.
 This is equivalent as to finding proper and stable transfer functions \(H_1(s)\) and \(H_2(s)\) such that conditions \eqref{eq:detail_control_hinf_cond_complementarity}, \eqref{eq:detail_control_hinf_cond_h1} and \eqref{eq:detail_control_hinf_cond_h2} are satisfied.
@@ -337,7 +340,7 @@ This is equivalent as to finding proper and stable transfer functions \(H_1(s)\)
 
 \(W_1(s)\) and \(W_2(s)\) are two weighting transfer functions that are carefully chosen to specify the maximum wanted norm of the complementary filters during the synthesis.
 \subsection{Shaping of Complementary Filters using \(\mathcal{H}_\infty\) synthesis}
-\label{sec:detail_control_hinf_synthesis}
+\label{sec:org2122803}
 
 In this section, it is shown that the synthesis objective can be easily expressed as a standard \(\mathcal{H}_\infty\) optimization problem and therefore solved using convenient tools readily available.
 
@@ -385,7 +388,7 @@ Note that there is only an implication between the \(\mathcal{H}_\infty\) norm c
 Hence, the optimization may be a little bit conservative with respect to the set of filters on which it is performed, see \cite[Chap. 2.8.3]{skogestad07_multiv_feedb_contr}.
 In practice, this is however not an found to be an issue.
 \subsection{Weighting Functions Design}
-\label{sec:detail_control_hinf_weighting_func}
+\label{sec:orgaaf1d4a}
 
 Weighting functions are used during the synthesis to specify the maximum allowed complementary filters' norm.
 The proper design of these weighting functions is of primary importance for the success of the presented \(\mathcal{H}_\infty\) synthesis of complementary filters.
@@ -431,7 +434,7 @@ The typical magnitude of a weighting function generated using \eqref{eq:detail_c
 \caption{\label{fig:detail_control_weight_formula}Magnitude of a weighting function generated using formula \eqref{eq:detail_control_weight_formula}, \(G_0 = 1e^{-3}\), \(G_\infty = 10\), \(\omega_c = \SI{10}{Hz}\), \(G_c = 2\), \(n = 3\).}
 \end{figure}
 \subsection{Validation of the proposed synthesis method}
-\label{sec:detail_control_hinf_example}
+\label{sec:org6a4ff6e}
 
 The proposed methodology for the design of complementary filters is now applied on a simple example.
 Let's suppose two complementary filters \(H_1(s)\) and \(H_2(s)\) have to be designed such that:
@@ -500,7 +503,8 @@ As expected, the obtained filters are of order \(5\), that is the sum of the wei
 This simple example illustrates the fact that the proposed methodology for complementary filters shaping is easy to use and effective.
 A more complex real life example is taken up in the next section.
 \section{``Closed-Loop'' complementary filters}
-\label{sec:detail_control_closed_loop_complementary_filters}
+\label{sec:org8c07343}
+\label{ssec:detail_control_closed_loop_complementary_filters}
 
 An alternative way to implement complementary filters is by using a fundamental property of the classical feedback architecture shown in Fig. \ref{fig:detail_control_feedback_sensor_fusion}.
 This idea is discussed in \cite{mahony05_compl_filter_desig_special_orthog,plummer06_optim_compl_filter_their_applic_motion_measur,jensen13_basic_uas}.
@@ -581,7 +585,7 @@ As an example, two ``closed-loop'' complementary filters are designed using the
 The weighting functions are designed using formula \eqref{eq:detail_control_weight_formula} with parameters shown in Table \ref{tab:detail_control_weights_params}.
 After synthesis, a filter \(L(s)\) is obtained whose magnitude is shown in Fig. \ref{fig:detail_control_hinf_filters_results_mixed_sensitivity} by the black dashed line.
 The ``closed-loop'' complementary filters are compared with the inverse magnitude of the weighting functions in Fig. \ref{fig:detail_control_hinf_filters_results_mixed_sensitivity} confirming that the synthesis is successful.
-The obtained ``closed-loop'' complementary filters are indeed equal to the ones obtained in Section \ref{sec:detail_control_hinf_example}.
+The obtained ``closed-loop'' complementary filters are indeed equal to the ones obtained in Section \ref{ssec:detail_control_hinf_method}.
 
 \begin{figure}[htbp]
 \centering
@@ -589,6 +593,7 @@ The obtained ``closed-loop'' complementary filters are indeed equal to the ones
 \caption{\label{fig:detail_control_hinf_filters_results_mixed_sensitivity}Bode plot of the obtained complementary filters after \(\mathcal{H}_\infty\) mixed-sensitivity synthesis}
 \end{figure}
 \section{Synthesis of a set of three complementary filters}
+\label{sec:org7f588fb}
 \label{sec:detail_control_hinf_three_comp_filters}
 
 Some applications may require to merge more than two sensors \cite{stoten01_fusion_kinet_data_using_compos_filter,fonseca15_compl}.
@@ -628,7 +633,7 @@ The synthesis objective is to compute a set of \(n\) stable transfer functions \
 
 \([W_1(s),\ W_2(s),\ \dots,\ W_n(s)]\) are weighting transfer functions that are chosen to specify the maximum complementary filters' norm during the synthesis.
 
-Such synthesis objective is closely related to the one described in Section \ref{sec:detail_control_synthesis_objective}, and indeed the proposed synthesis method is a generalization of the one presented in Section \ref{sec:detail_control_hinf_synthesis}.
+Such synthesis objective is closely related to the one described in Section \ref{ssec:detail_control_hinf_method}, and indeed the proposed synthesis method is a generalization of the one previously presented.
 
 A set of \(n\) complementary filters can be shaped by applying the standard \(\mathcal{H}_\infty\) synthesis to the generalized plant \(P_n(s)\) described by \eqref{eq:detail_control_generalized_plant_n_filters}.
 
@@ -700,6 +705,7 @@ Figure \ref{fig:detail_control_three_complementary_filters_results} displays the
 \caption{\label{fig:detail_control_three_complementary_filters_results}Bode plot of the inverse weighting functions and of the three complementary filters obtained using the \(\mathcal{H}_\infty\) synthesis}
 \end{figure}
 \section*{Conclusion}
+\label{sec:org9b71274}
 A new method for designing complementary filters using the \(\mathcal{H}_\infty\) synthesis has been proposed.
 It allows to shape the magnitude of the filters by the use of weighting functions during the synthesis.
 This is very valuable in practice as the characteristics of the super sensor are linked to the complementary filters' magnitude.
@@ -709,6 +715,7 @@ Several examples were used to emphasize the simplicity and the effectiveness of
 However, the shaping of the complementary filters' magnitude does not allow to directly optimize the super sensor noise and dynamical characteristics.
 Future work will aim at developing a complementary filter synthesis method that minimizes the super sensor noise while ensuring the robustness of the fusion.
 \chapter{Decoupling Strategies}
+\label{sec:orgb61bade}
 \label{sec:detail_control_decoupling}
 
 When dealing with MIMO systems, a typical strategy is to:
@@ -734,26 +741,33 @@ Review of decoupling strategies for Stewart platforms:
 Maybe simpler.
 \end{itemize}
 \section{Interaction Analysis}
+\label{sec:org4e38e50}
 
 \section{Decentralized Control (actuator frame)}
+\label{sec:orgbcd61c7}
 
 \section{Center of Stiffness and center of Mass}
+\label{sec:orgb312846}
 
 \begin{itemize}
 \item Example
 \item Show
 \end{itemize}
 \section{Modal Decoupling}
+\label{sec:orgd3c8cf1}
 
 \section{Data Based Decoupling}
+\label{sec:orgc72c6af}
 
 \begin{itemize}
 \item Static decoupling
 \item SVD
 \end{itemize}
 \section*{Conclusion}
+\label{sec:org3802e66}
 Table that compares all the strategies.
 \chapter{Closed-Loop Shaping using Complementary Filters}
+\label{sec:orgdd912f0}
 \label{sec:detail_control_optimization}
 
 Performance of a feedback control is dictated by closed-loop transfer functions.
@@ -780,8 +794,461 @@ Other strategy: Model Based Design:
 In this section, an alternative is proposed in which complementary filters are used for closed-loop shaping.
 It is presented for a SISO system, but can be generalized to MIMO if decoupling is sufficient.
 It will be experimentally demonstrated with the NASS.
+
+\textbf{Paper's introduction}:
+
+\textbf{Model based control}
+
+\textbf{SISO control design methods}
+\begin{itemize}
+\item frequency domain techniques
+\item manual loop-shaping - key idea: modification of the controller such that the open-loop is made according to specifications \cite{oomen18_advan_motion_contr_precis_mechat}.
+\end{itemize}
+This works well because the open loop transfer function is linearly dependent of the controller.
+
+However, the specifications are given in terms of the final system performance, i.e. as closed-loop specifications.
+
+\textbf{Norm-based control}
+\(\hinf\) loop-shaping \cite{skogestad07_multiv_feedb_contr}. Far from standard in industry as it requires lot of efforts.
+
+
+Problem of robustness to plant uncertainty:
+\begin{itemize}
+\item Trade off performance / robustness. Difficult to obtain high performance in presence of high uncertainty.
+\item Robust control \(\mu\text{-synthesis}\). Takes a lot of effort to model the plant uncertainty.
+\item Sensor fusion: combines two sensors using complementary filters. The high frequency sensor is collocated with the actuator in order to ensure the stability of the system even in presence of uncertainty. \cite{collette15_sensor_fusion_method_high_perfor,collette14_vibrat}
+\end{itemize}
+
+Complementary filters: \cite{hua05_low_ligo}.
+
+In this paper, we propose a new controller synthesis method
+\begin{itemize}
+\item based on the use of complementary high pass and low pass filters
+\item inverse based control
+\item direct translation of requirements such as disturbance rejection and robustness to plant uncertainty
+\end{itemize}
+\section{Control Architecture}
+\label{sec:orgbad19e8}
+\label{ssec:detail_control_control_arch}
+\paragraph{Virtual Sensor Fusion}
+\label{sec:org5db8fac}
+Let's consider the control architecture represented in Fig. \ref{fig:detail_control_sf_arch} where \(G^\prime\) is the physical plant to control, \(G\) is a model of the plant, \(k\) is a gain, \(H_L\) and \(H_H\) are complementary filters (\(H_L + H_H = 1\) in the complex sense).
+The signals are the reference signal \(r\), the output perturbation \(d_y\), the measurement noise \(n\) and the control input \(u\).
+
+\begin{figure}[htbp]
+\centering
+\includegraphics[scale=1]{figs/detail_control_sf_arch.png}
+\caption{\label{fig:detail_control_sf_arch}Sensor Fusion Architecture}
+\end{figure}
+
+The dynamics of the closed-loop system is described by the following equations
+\begin{alignat}{5}
+y &= \frac{1+kGH_H}{1+L} dy &&+ \frac{kG^{\prime}}{1+L} r &&- \frac{kG^{\prime}H_L}{1+L} n \\
+u &= -\frac{kH_L}{1+L}   dy &&+ \frac{k}{1+L}           r &&- \frac{kH_L}{1+L}  n
+\end{alignat}
+with \(L = k(G H_H + G^\prime H_L)\).
+
+The idea of using such architecture comes from sensor fusion \cite{collette14_vibrat,collette15_sensor_fusion_method_high_perfor} where we use two sensors.
+One is measuring the quantity that is required to control, the other is collocated with the actuator in such a way that stability is guaranteed.
+The first one is low pass filtered in order to obtain good performance at low frequencies and the second one is high pass filtered to benefits from its good dynamical properties.
+
+Here, the second sensor is replaced by a model \(G\) of the plant which is assumed to be stable and minimum phase.
+
+
+One may think that the control architecture shown in Fig. \ref{fig:detail_control_sf_arch} is a multi-loop system, but because no non-linear saturation-type element is present in the inner-loop (containing \(k\), \(G\) and \(H_H\) which are all numerically implemented), the structure is equivalent to the architecture shown in Fig. \ref{fig:detail_control_sf_arch_eq}.
+
+\begin{figure}[htbp]
+\centering
+\includegraphics[scale=1]{figs/detail_control_sf_arch_eq.png}
+\caption{\label{fig:detail_control_sf_arch_eq}Equivalent feedback architecture}
+\end{figure}
+
+The dynamics of the system can be rewritten as follow
+\begin{alignat}{5}
+y &=  \frac{1}{1+G^{\prime} K H_L}     dy &&+ \frac{G^{\prime} K}{1+G^{\prime} K H_L} r &&- \frac{G^{\prime} K H_L}{1+G^{\prime} K H_L} n \\
+u &= \frac{-K H_L}{1+G^{\prime} K H_L} dy &&+ \frac{K}{1+G^{\prime} K H_L}            r &&- \frac{K H_L}{1+G^{\prime} K H_L}   n
+\end{alignat}
+with \(K = \frac{k}{1 + H_H G k}\)
+\paragraph{Asymptotic behavior}
+\label{sec:orgb964791}
+We now want to study the asymptotic system obtained when using very high value of \(k\)
+\begin{equation}
+  \lim_{k\to\infty} K = \lim_{k\to\infty} \frac{k}{1+H_H G k} = \left( H_H G \right)^{-1}
+\end{equation}
+If the obtained \(K\) is improper, a low pass filter can be added to have its causal realization.
+
+Also, we want \(K\) to be stable, so \(G\) and \(H_H\) must be minimum phase transfer functions.
+
+For now on, we will consider the resulting control architecture as shown on Fig. \ref{fig:detail_control_sf_arch_class} where the only ``tuning parameters'' are the complementary filters.
+
+\begin{figure}[htbp]
+\centering
+\includegraphics[scale=1]{figs/detail_control_sf_arch_class.png}
+\caption{\label{fig:detail_control_sf_arch_class}Equivalent classical feedback control architecture}
+\end{figure}
+
+The equations describing the dynamics of the closed-loop system are
+\begin{align}
+  y &= \frac{ H_H         dy + G^{\prime} G^{-1} r - G^{\prime} G^{-1} H_L n }{H_H + G^\prime G^{-1} H_L} \label{eq:detail_control_cl_system_y}\\
+  u &= \frac{ -G^{-1} H_L dy + G^{-1}            r - G^{-1} H_L            n }{H_H + G^\prime G^{-1} H_L} \label{eq:detail_control_cl_system_u}
+\end{align}
+
+At frequencies where the model is accurate: \(G^{-1} G^{\prime} \approx 1\), \(H_H + G^\prime G^{-1} H_L \approx H_H + H_L = 1\) and
+\begin{align}
+y        &=  H_H        dy +         r - H_L         n \label{eq:detail_control_cl_performance_y} \\
+u        &= -G^{-1} H_L dy + G^{-1}  r - G^{-1} H_L  n \label{eq:detail_control_cl_performance_u}
+\end{align}
+
+We obtain a sensitivity transfer function equals to the high pass filter \(S = \frac{y}{dy} = H_H\) and a transmissibility transfer function equals to the low pass filter \(T = \frac{y}{n} = H_L\).
+
+Assuming that we have a good model of the plant, we have then that the closed-loop behavior of the system converges to the designed complementary filters.
+\section{Translating the performance requirements into the shapes of the complementary filters}
+\label{sec:org1e41339}
+\label{ssec:detail_control_trans_perf}
+ The required performance specifications in a feedback system can usually be translated into requirements on the upper bounds of \(\abs{S(j\w)}\) and \(|T(j\omega)|\) \cite{bibel92_guidel_h}.
+The process of designing a controller \(K(s)\) in order to obtain the desired shapes of \(\abs{S(j\w)}\) and \(\abs{T(j\w)}\) is called loop shaping.
+
+The equations \eqref{eq:detail_control_cl_system_y} and \eqref{eq:detail_control_cl_system_u} describing the dynamics of the studied feedback architecture are not written in terms of \(K\) but in terms of the complementary filters \(H_L\) and \(H_H\).
+
+In this section, we then translate the typical specifications into the desired shapes of the complementary filters \(H_L\) and \(H_H\).\\
+\paragraph{Nominal Stability (NS)}
+\label{sec:org747119c}
+The closed-loop system is stable if all its elements are stable (\(K\), \(G^\prime\) and \(H_L\)) and if the sensitivity function (\(S = \frac{1}{1 + G^\prime K H_L}\)) is stable.
+
+For the nominal system (\(G^\prime = G\)), we have \(S = H_H\).
+
+Nominal stability is then guaranteed if \(H_L\), \(H_H\) and \(G\) are stable and if \(G\) and \(H_H\) are minimum phase (to have \(K\) stable).
+
+Thus we must design stable and minimum phase complementary filters.\\
+\paragraph{Nominal Performance (NP)}
+\label{sec:org7e3c875}
+Typical performance specifications can usually be translated into upper bounds on \(|S(j\omega)|\) and \(|T(j\omega)|\).
+
+Two performance weights \(w_H\) and \(w_L\) are defined in such a way that performance specifications are satisfied if
+\begin{equation}
+  |w_H(j\omega) S(j\omega)| \le 1,\ |w_L(j\omega) T(j\omega)| \le 1 \quad \forall\omega
+\end{equation}
+
+For the nominal system, we have \(S = H_H\) and \(T = H_L\), and then nominal performance is ensured by requiring
+
+\begin{subnumcases}{\text{NP} \Leftrightarrow}\label{eq:detail_control_nominal_performance}
+  |w_H(j\omega) H_H(j\omega)| \le 1 \quad \forall\omega \label{eq:detail_control_nominal_perf_hh}\\
+  |w_L(j\omega) H_L(j\omega)| \le 1 \quad \forall\omega \label{eq:detail_control_nominal_perf_hl}
+\end{subnumcases}
+
+The translation of typical performance requirements on the shapes of the complementary filters is discussed below:
+\begin{itemize}
+\item for disturbance rejections, make \(|S| = |H_H|\) small
+\item for noise attenuation, make \(|T| = |H_L|\) small
+\item for control energy reduction, make \(|KS| = |G^{-1}|\) small
+\end{itemize}
+
+We may have other requirements in terms of stability margins, maximum or minimum closed-loop bandwidth.\\
+\paragraph{Closed-Loop Bandwidth}
+\label{sec:org91bb5c7}
+The closed-loop bandwidth \(\w_B\) can be defined as the frequency where \(\abs{S(j\w)}\) first crosses \(\frac{1}{\sqrt{2}}\) from below.
+
+If one wants the closed-loop bandwidth to be at least \(\w_B^*\) (e.g. to stabilize an unstable pole), one can required that \(|S(j\omega)| \le \frac{1}{\sqrt{2}}\) below \(\omega_B^*\) by designing \(w_H\) such that \(|w_H(j\omega)| \ge \sqrt{2}\) for \(\omega \le \omega_B^*\).
+
+Similarly, if one wants the closed-loop bandwidth to be less than \(\w_B^*\), one can approximately require that the magnitude of \(T\) is less than \(\frac{1}{\sqrt{2}}\) at frequencies above \(\w_B^*\) by designing \(w_L\) such that \(|w_L(j\omega)| \ge \sqrt{2}\) for \(\omega \ge \omega_B^*\).\\
+\paragraph{Classical stability margins}
+\label{sec:org17bfb04}
+Gain margin (GM) and phase margin (PM) are usual specifications on controlled system.
+Minimum GM and PM can be guaranteed by limiting the maximum magnitude of the sensibility function \(M_S = \max_{\omega} |S(j\omega)|\):
+\begin{equation}
+  \text{GM} \geq \frac{M_S}{M_S-1}; \quad \text{PM} \geq \frac{1}{M_S}
+\end{equation}
+
+Thus, having \(M_S \le 2\) guarantees a gain margin of at least \(2\) and a phase margin of at least \(\SI{29}{\degree}\).
+
+For the nominal system \(M_S = \max_\omega |S| = \max_\omega |H_H|\), so one can design \(w_H\) so that \(|w_H(j\omega)| \ge 1/2\) in order to have
+\begin{equation}
+  |H_H(j\omega)| \le 2 \quad \forall\omega
+\end{equation}
+and thus obtain acceptable stability margins.\\
+\paragraph{Response time to change of reference signal}
+\label{sec:org555bdc0}
+For the nominal system, the model is accurate and the transfer function from reference signal \(r\) to output \(y\) is \(1\) \eqref{eq:detail_control_cl_performance_y} and does not depends of the complementary filters.
+
+However, one can add a pre-filter as shown in Fig. \ref{fig:detail_control_sf_arch_class_prefilter}.
+
+\begin{figure}[htbp]
+\centering
+\includegraphics[scale=1]{figs/detail_control_sf_arch_class_prefilter.png}
+\caption{\label{fig:detail_control_sf_arch_class_prefilter}Prefilter used to limit input usage}
+\end{figure}
+
+The transfer function from \(y\) to \(r\) becomes \(\frac{y}{r} = K_r\) and \(K_r\) can we chosen to obtain acceptable response to change of the reference signal.
+Typically, \(K_r\) is a low pass filter of the form
+\begin{equation}
+  K_r(s) = \frac{1}{1 + \tau s}
+\end{equation}
+with \(\tau\) corresponding to the desired response time.\\
+\paragraph{Input usage}
+\label{sec:orgaed43be}
+Input usage due to disturbances \(d_y\) and measurement noise \(n\) is determined by \(\big|\frac{u}{d_y}\big| = \big|\frac{u}{n}\big| = \big|G^{-1}H_L\big|\).
+Thus it can be limited by setting an upper bound on \(|H_L|\).
+
+
+Input usage due to reference signal \(r\) is determined by \(\big|\frac{u}{r}\big| = \big|G^{-1} K_r\big|\) when using a pre-filter (Fig. \ref{fig:detail_control_sf_arch_class_prefilter}) and \(\big|\frac{u}{r}\big| = \big|G^{-1}\big|\) otherwise.
+
+Proper choice of \(|K_r|\) is then useful to limit input usage due to change of reference signal.\\
+\paragraph{Robust Stability (RS)}
+\label{sec:org3210a2c}
+Robustness stability represents the ability of the control system to remain stable even though there are differences between the actual system \(G^\prime\) and the model \(G\) that was used to design the controller.
+These differences can have various origins such as unmodelled dynamics or non-linearities.
+
+To represent the differences between the model and the actual system, one can choose to use the general input multiplicative uncertainty as represented in Fig. \ref{fig:detail_control_input_uncertainty}.
+
+\begin{figure}[htbp]
+\centering
+\includegraphics[scale=1]{figs/detail_control_input_uncertainty.png}
+\caption{\label{fig:detail_control_input_uncertainty}Input multiplicative uncertainty}
+\end{figure}
+
+Then, the set of possible perturbed plant is described by
+
+\begin{equation}\label{eq:detail_control_multiplicative_uncertainty}
+  \Pi_i: \quad G_p(s) = G(s)\big(1 + w_I(s)\Delta_I(s)\big); \quad \abs{\Delta_I(j\w)} \le 1 \ \forall\w
+\end{equation}
+and \(w_I\) should be chosen such that all possible plants \(G^\prime\) are contained in the set \(\Pi_i\).
+
+Using input multiplicative uncertainty, robust stability is equivalent to have \cite{skogestad07_multiv_feedb_contr}:
+\begin{align*}
+  \text{RS} \Leftrightarrow & |w_I T| \le 1 \quad \forall G^\prime \in \Pi_I, \ \forall\omega \\
+  \Leftrightarrow & \left| w_I \frac{G^\prime K H_L}{1 + G^\prime K H_L} \right| \le 1 \quad \forall G^\prime \in \Pi_I ,\ \forall\omega \\
+  \Leftrightarrow & \left| w_I \frac{G^\prime G^{-1} {H_H}^{-1} H_L}{1 + G^\prime G^{-1} {H_H}^{-1} H_L} \right| \le 1 \quad \forall G^\prime \in \Pi_I ,\ \forall\omega \\
+  \Leftrightarrow & \left| w_I \frac{(1 + w_I \Delta) {H_H}^{-1} H_L}{1 + (1 + w_I \Delta) {H_H}^{-1} H_L} \right| \le 1 \quad \forall \Delta, \ |\Delta| \le 1 ,\ \forall\omega \\
+  \Leftrightarrow & \left| w_I \frac{(1 + w_I \Delta) H_L}{1 + w_I \Delta H_L} \right| \le 1 \quad \forall \Delta, \ |\Delta| \le 1 ,\ \forall\omega \\
+  \Leftrightarrow & \left| H_L w_I \right| \frac{1 + |w_I|}{1 - |w_I H_L|} \le 1, \quad 1 - |w_I H_L| > 0 \quad \forall\omega \\
+  \Leftrightarrow & \left| H_L w_I \right| (2 + |w_I|) \le 1, \quad 1 - |w_I H_L| > 0 \quad \forall\omega \\
+  \Leftrightarrow & \left| H_L w_I \right| (2 + |w_I|) \le 1 \quad \forall\omega
+\end{align*}
+
+
+Robust stability is then guaranteed by having the low pass filter \(H_L\) satisfying \eqref{eq:detail_control_robust_stability}.
+
+\begin{equation}\label{eq:detail_control_robust_stability}
+  \text{RS} \Leftrightarrow |H_L| \le \frac{1}{|w_I| (2 + |w_I|)}\quad \forall \omega
+\end{equation}
+
+To ensure robust stability condition \eqref{eq:detail_control_nominal_perf_hl} can be used if \(w_L\) is designed in such a way that \(|w_L| \ge |w_I| (2 + |w_I|)\).\\
+\paragraph{Robust Performance (RP)}
+\label{sec:org73ddee1}
+Robust performance is a property for a controlled system to have its performance guaranteed even though the dynamics of the plant is changing within specified bounds.
+
+For robust performance, we then require to have the performance condition valid for all possible plants in the defined uncertainty set:
+\begin{subnumcases}{\text{RP} \Leftrightarrow}
+  |w_H S| \le 1 \quad \forall G^\prime \in \Pi_I, \ \forall\omega \label{eq:detail_control_robust_perf_S}\\
+  |w_L T| \le 1 \quad \forall G^\prime \in \Pi_I, \ \forall\omega \label{eq:detail_control_robust_perf_T}
+\end{subnumcases}
+
+Let's transform condition \eqref{eq:detail_control_robust_perf_S} into a condition on the complementary filters
+\begin{align*}
+  & \left| w_H S \right| \le 1 \quad \forall G^\prime \in \Pi_I, \ \forall\omega \\
+  \Leftrightarrow & \left| w_H \frac{1}{1 + G^\prime G^{-1} H_H^{-1} H_L} \right| \le 1 \quad \forall G^\prime \in \Pi_I, \ \forall\omega \\
+  \Leftrightarrow & \left| \frac{w_H H_H}{1 + \Delta w_I H_L} \right| \le 1 \quad \forall \Delta, \ |\Delta| \le 1, \ \forall\omega \\
+  \Leftrightarrow & \frac{|w_H H_H|}{1 - |w_I H_L|} \le 1, \ \forall\omega \\
+  \Leftrightarrow & | w_H H_H | + | w_I H_L | \le 1, \ \forall\omega \\
+\end{align*}
+
+The same can be done with condition \eqref{eq:detail_control_robust_perf_T}
+\begin{align*}
+  & \left| w_L T \right| \le 1 \quad \forall G^\prime \in \Pi_I, \ \forall\omega \\
+  \Leftrightarrow & \left| w_L \frac{G^\prime G^{-1} H_H^{-1} H_L}{1 + G^\prime G^{-1} H_H^{-1} H_L} \right| \le 1 \quad \forall G^\prime \in \Pi_I, \ \forall\omega \\
+  \Leftrightarrow & \left| w_L H_L \frac{1 + w_I \Delta}{1 + w_I \Delta H_L} \right| \le 1 \quad \forall \Delta, \ |\Delta| \le 1, \ \forall\omega \\
+  \Leftrightarrow & \left| w_L H_L \right| \frac{1 + |w_I|}{1 - |w_I H_L|} \le 1 \quad \forall\omega \\
+  \Leftrightarrow & \left| H_L \right| \le \frac{1}{|w_L| (1 + |w_I|) + |w_I|} \quad \forall\omega \\
+\end{align*}
+
+Robust performance is then guaranteed if \eqref{eq:detail_control_robust_perf_a} and \eqref{eq:detail_control_robust_perf_b} are satisfied.
+
+\begin{subnumcases}\label{eq:detail_control_robust_performance}
+{\text{RP} \Leftrightarrow}
+  | w_H H_H | + | w_I H_L | \le 1, \ \forall\omega \label{eq:detail_control_robust_perf_a}\\
+  \left| H_L \right| \le \frac{1}{|w_L| (1 + |w_I|) + |w_I|} \quad \forall\omega \label{eq:detail_control_robust_perf_b}
+\end{subnumcases}
+
+One should be aware than when looking for a robust performance condition, only the worst case is evaluated and using the robust stability condition may lead to conservative control.
+\section{Analytical formulas for complementary filters?}
+\label{sec:org23bab6a}
+\label{ssec:detail_control_analytical_complementary_filters}
+\section{Numerical Example}
+\label{sec:org082409f}
+\label{ssec:detail_control_simulations}
+\paragraph{Procedure}
+\label{sec:orgebbfce4}
+
+In order to apply this control technique, we propose the following procedure:
+\begin{enumerate}
+\item Identify the plant to be controlled in order to obtain \(G\)
+\item Design the weighting function \(w_I\) such that all possible plants \(G^\prime\) are contained in the set \(\Pi_i\)
+\item Translate the performance requirements into upper bounds on the complementary filters (as explained in Sec. \ref{ssec:detail_control_trans_perf})
+\item Design the weighting functions \(w_H\) and \(w_L\) and generate the complementary filters using \(\hinf\text{-synthesis}\) (as further explained in Sec. \ref{ssec:detail_control_hinf_method}).
+If the synthesis fails to give filters satisfying the upper bounds previously defined, either the requirements have to be reworked or a better model \(G\) that will permits to have a smaller \(w_I\) should be obtained.
+If one does not want to use the \(\mathcal{H}_\infty\) synthesis, one can use pre-made complementary filters given in Sec. \ref{ssec:detail_control_analytical_complementary_filters}.
+\item If \(K = \left( G H_H \right)^{-1}\) is not proper, a low pass filter should be added
+\item Design a pre-filter \(K_r\) if requirements on input usage or response to reference change are not met
+\item Control implementation: Filter the measurement with \(H_L\), implement the controller \(K\) and the pre-filter \(K_r\) as shown on Fig. \ref{fig:detail_control_sf_arch_class_prefilter}
+\end{enumerate}
+\paragraph{Plant}
+\label{sec:orgfc350fc}
+Let's consider the problem of controlling an active vibration isolation system that consist of a mass \(m\) to be isolated, a piezoelectric actuator and a geophone.
+
+We represent this system by a mass-spring-damper system as shown Fig. \ref{fig:detail_control_mech_sys_alone} where \(m\) typically represents the mass of the payload to be isolated, \(k\) and \(c\) represent respectively the stiffness and damping of the mount.
+\(w\) is the ground motion.
+The values for the parameters of the models are
+\[ m = \SI{20}{\kg}; \quad k = 10^4\si{\N/\m}; \quad c = 10^2\si{\N\per(\m\per\s)} \]
+
+\begin{figure}[htbp]
+\centering
+\includegraphics[scale=1]{figs/detail_control_mech_sys_alone.png}
+\caption{\label{fig:detail_control_mech_sys_alone}Model of the positioning system}
+\end{figure}
+
+The model of the plant \(G(s)\) from actuator force \(F\) to displacement \(x\) is then
+\begin{equation}
+G(s) = \frac{1}{m s^2 + c s + k}
+\end{equation}
+
+Its bode plot is shown on Fig. \ref{fig:detail_control_bode_plot_mech_sys}.
+
+\begin{figure}[htbp]
+\centering
+\includegraphics[scale=1]{figs/detail_control_bode_plot_mech_sys.png}
+\caption{\label{fig:detail_control_bode_plot_mech_sys}Bode plot of the transfer function \(G(s)\) from \(F\) to \(x\)}
+\end{figure}
+\paragraph{Requirements}
+\label{sec:orgd766e8b}
+The control objective is to isolate the displacement \(x\) of the mass from the ground motion \(w\).
+
+The disturbance rejection should be at least \(10\) at \(\SI{2}{\hertz}\) and with a slope of \(-2\) below \(\SI{2}{\hertz}\) until a rejection of \(10^4\).
+
+Closed-loop bandwidth should be less than \(\SI{20}{\hertz}\) (because of time delay induced by limited sampling frequency?).
+
+Noise attenuation should be at least \(10\) above \(\SI{40}{\hertz}\) and \(100\) above \(\SI{500}{\hertz}\)
+
+Robustness to unmodelled dynamics.
+We model the uncertainty on the dynamics of the plant by a multiplicative weight
+\begin{equation}
+  w_I(s) = \frac{\tau s + r_0}{(\tau/r_\infty) s + 1}
+\end{equation}
+where \(r_0=0.1\) is the relative uncertainty at steady-state, \(1/\tau=\SI{100}{\hertz}\) is the frequency at which the relative uncertainty reaches \(\SI{100}{\percent}\), and \(r_\infty=10\) is the magnitude of the weight at high frequency.
+
+All the requirements on \(H_L\) and \(H_H\) are represented on Fig. \ref{fig:detail_control_spec_S_T}.
+
+\begin{itemize}
+\item[{$\square$}] TODO: Make Matlab code to plot the specifications
+\end{itemize}
+
+\begin{figure}[htbp]
+\begin{subfigure}{0.49\textwidth}
+\begin{center}
+\includegraphics[scale=1,width=0.95\linewidth]{figs/detail_control_spec_S_T.png}
+\end{center}
+\subcaption{\label{fig:detail_control_spec_S_T}Closed loop specifications}
+\end{subfigure}
+\begin{subfigure}{0.49\textwidth}
+\begin{center}
+\includegraphics[scale=1,width=0.95\linewidth]{figs/detail_control_hinf_filters_result_weights.png}
+\end{center}
+\subcaption{\label{fig:detail_control_hinf_filters_result_weights}Obtained complementary filters}
+\end{subfigure}
+\caption{\label{fig:detail_control_spec_S_T_obtained_filters}Caption with reference to sub figure (\subref{fig:detail_control_spec_S_T}) (\subref{detail_control_hinf_filters_result_weights})}
+\end{figure}
+\paragraph{Design of the filters}
+\label{sec:org11f2da3}
+
+\textbf{Or maybe use analytical formulas as proposed here: \href{file:///home/thomas/Cloud/research/papers/dehaeze20\_virtu\_senso\_fusio/matlab/index.org}{Complementary filters using analytical formula}}
+
+We then design \(w_L\) and \(w_H\) such that their magnitude are below the upper bounds shown on Fig. \ref{fig:detail_control_hinf_filters_result_weights}.
+\begin{subequations}
+  \begin{align}
+    w_L &= \frac{(s+22.36)^2}{0.005(s+1000)^2}\\
+    w_H &= \frac{1}{0.0005(s+0.4472)^2}
+  \end{align}
+\end{subequations}
+
+After the \(\hinf\text{-synthesis}\), we obtain \(H_L\) and \(H_H\), and we plot their magnitude on phase on Fig. \ref{fig:detail_control_hinf_filters_result_weights}.
+
+\begin{subequations}
+  \begin{align}
+    H_L &= \frac{0.0063957 (s+1016) (s+985.4) (s+26.99)}{(s+57.99) (s^2 + 65.77s + 2981)}\\
+    H_H &= \frac{0.9936 (s+111.1) (s^2 + 0.3988s + 0.08464)}{(s+57.99) (s^2 + 65.77s + 2981)}
+  \end{align}
+\end{subequations}
+\paragraph{Controller analysis}
+\label{sec:orgbd9d52a}
+The controller is \(K = \left( H_H G \right)^{-1}\).
+A low pass filter is added to \(K\) so that it is proper and implementable.
+
+The obtained controller is shown on Fig. \ref{fig:detail_control_bode_Kfb}.
+
+It is implemented as shown on Fig. \ref{fig:detail_control_mech_sys_alone_ctrl}.
+
+\begin{figure}[htbp]
+\centering
+\includegraphics[scale=1]{figs/detail_control_mech_sys_alone_ctrl.png}
+\caption{\label{fig:detail_control_mech_sys_alone_ctrl}Control of a positioning system}
+\end{figure}
+
+\begin{figure}[htbp]
+\begin{subfigure}{0.49\textwidth}
+\begin{center}
+\includegraphics[scale=1,width=0.95\linewidth]{figs/detail_control_bode_Kfb.png}
+\end{center}
+\subcaption{\label{fig:detail_control_bode_Kfb}Controller $K$}
+\end{subfigure}
+\begin{subfigure}{0.49\textwidth}
+\begin{center}
+\includegraphics[scale=1,width=0.95\linewidth]{figs/detail_control_bode_plot_loop_gain_robustness.png}
+\end{center}
+\subcaption{\label{fig:detail_control_bode_plot_loop_gain_robustness}Loop Gain}
+\end{subfigure}
+\caption{\label{fig:detail_control_bode_Kfb_loop_gain}Caption with reference to sub figure (\subref{fig:detail_control_bode_Kfb}) (\subref{fig:detail_control_bode_plot_loop_gain_robustness})}
+\end{figure}
+\paragraph{Robustness analysis}
+\label{sec:org85bb3dc}
+The robust stability can be access on the nyquist plot (Fig. \ref{fig:detail_control_nyquist_robustness}).
+
+The robust performance is shown on Fig. \ref{fig:detail_control_robust_perf}.
+
+\begin{figure}[htbp]
+\begin{subfigure}{0.49\textwidth}
+\begin{center}
+\includegraphics[scale=1,scale=0.8]{figs/detail_control_nyquist_robustness.png}
+\end{center}
+\subcaption{\label{fig:detail_control_nyquist_robustness}Robust Stability}
+\end{subfigure}
+\begin{subfigure}{0.49\textwidth}
+\begin{center}
+\includegraphics[scale=1,scale=0.8]{figs/detail_control_robust_perf.png}
+\end{center}
+\subcaption{\label{fig:detail_control_robust_perf}Robust performance}
+\end{subfigure}
+\caption{\label{fig:fig_label}Caption with reference to sub figure (\subref{fig:detail_control_nyquist_robustness}) (\subref{fig:detail_control_robust_perf})}
+\end{figure}
+\section{Experimental Validation?}
+\label{sec:org8a7211e}
+\label{ssec:detail_control_exp_validation}
+
+\href{file:///home/thomas/Cloud/research/papers/dehaeze20\_virtu\_senso\_fusio/matlab/index.org}{Experimental Validation}
 \section*{Conclusion}
+\label{sec:org40e7289}
+\begin{itemize}
+\item[{$\square$}] Discuss how useful it is as the bandwidth can be changed in real time with analytical formulas of second order complementary filters.
+Maybe make a section about that.
+Maybe give analytical formulas of second order complementary filters in the digital domain?
+\item[{$\square$}] Say that it will be validated with the nano-hexapod
+\item[{$\square$}] Disadvantages:
+\begin{itemize}
+\item not optimal
+\item computationally intensive?
+\item lead to inverse control which may not be wanted in many cases. Add reference.
+\end{itemize}
+\end{itemize}
 \chapter*{Conclusion}
+\label{sec:orgcbb5ce3}
 \label{sec:detail_control_conclusion}
 \printbibliography[heading=bibintoc,title={Bibliography}]
 \end{document}