diff --git a/figs/detail_control_coupled_plant_bode.pdf b/figs/detail_control_coupled_plant_bode.pdf index 497851b..952cc4e 100644 --- a/figs/detail_control_coupled_plant_bode.pdf +++ b/figs/detail_control_coupled_plant_bode.pdf @@ -3,7 +3,7 @@ 1 0 obj << /Producer (Apache FOP Version 2.4.0-SNAPSHOT: PDFDocumentGraphics2D) -/CreationDate (D:20250403174135+02'00') +/CreationDate (D:20250404210523+02'00') >> endobj 2 0 obj @@ -21,7 +21,7 @@ endobj 4 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 5 0 obj @@ -165,13 +165,13 @@ endobj 28 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 29 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 30 0 obj @@ -237,19 +237,19 @@ endobj 40 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 41 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 42 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 43 0 obj @@ -267,7 +267,7 @@ endobj 45 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 46 0 obj @@ -381,19 +381,19 @@ endobj 64 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 65 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 66 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 67 0 obj @@ -483,19 +483,19 @@ endobj 81 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 82 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 83 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 84 0 obj @@ -513,7 +513,7 @@ endobj 86 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 87 0 obj @@ -555,13 +555,13 @@ endobj 93 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 94 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 95 0 obj @@ -729,19 +729,19 @@ endobj 122 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 123 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 124 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 125 0 obj @@ -759,7 +759,7 @@ endobj 127 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 128 0 obj @@ -771,19 +771,19 @@ endobj 129 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 130 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 131 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 132 0 obj @@ -945,13 +945,13 @@ endobj 158 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 159 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 160 0 obj @@ -975,19 +975,19 @@ endobj 163 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 164 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 165 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 166 0 obj @@ -1005,7 +1005,7 @@ endobj 168 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 169 0 obj @@ -1161,19 +1161,19 @@ endobj 194 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 195 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 196 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 197 0 obj @@ -1221,19 +1221,19 @@ endobj 204 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 205 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 206 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 207 0 obj @@ -1251,7 +1251,7 @@ endobj 209 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 210 0 obj @@ -1335,13 +1335,13 @@ endobj 223 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 224 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 225 0 obj @@ -1467,19 +1467,19 @@ endobj 245 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 246 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 247 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 248 0 obj @@ -1497,7 +1497,7 @@ endobj 250 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 251 0 obj @@ -1551,19 +1551,19 @@ endobj 259 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 260 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 261 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 262 0 obj @@ -1713,13 +1713,13 @@ endobj 286 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 287 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 288 0 obj @@ -1731,7 +1731,7 @@ endobj 289 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 290 0 obj @@ -1743,7 +1743,7 @@ endobj 291 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 292 0 obj @@ -1941,37 +1941,37 @@ endobj 324 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 325 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 326 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 327 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 328 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 329 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 330 0 obj @@ -1989,7 +1989,7 @@ endobj 332 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 333 0 obj @@ -2115,13 +2115,13 @@ endobj 353 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 354 0 obj << /Type /ExtGState -/CA 0.2509804 +/CA 0.14901961 >> endobj 355 0 obj @@ -2205,350 +2205,1727 @@ endobj 368 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 369 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 370 0 obj << /Type /ExtGState -/CA 0.14901961 +/CA 0.2509804 >> endobj 371 0 obj -<< /Length 372 0 R /Filter /FlateDecode >> -stream -xˎSSTUn3-Oj.uq_%IuU{)zߒ=qoI~Re˷$?J{M_es$[Yy[ROYkc|-iiĴ#v%9{5[RVoYڰ3[rUs逿Wth%9M5{ߒ}{eqo9(i1K -ozN/˽÷>PE+%9 S]֓lso}NC>˽÷>Б.pSw-iRek?|Ks1!ߒ-5Yqo=4wcG`#bEzBSKH:|CFz|lOE l{ c*Z#QY :~ZM@[ *nߌ~njq@9|@ը7XM73-oL@)Ο^ώt|oO/S^ЕLȅuJ}I"! Btǽ+y+d<.<8E^u\xy%qEcRAG6AW4C^֕|ŽK+""d0.|XK"1U JS^dɉWWD>f%D^IO\di7rJv˺SNt>7]s\׸w%}ƝK 34.|La SN$G^rV܉SN|w/%*.|LL >d$ S$9?B2|x/d!DlלC6GQ/F|Q %U'?\(1//O2_Q+_] 2EI b'q?\e(/ -,e"BEmI b*e JEEI _S> -}E:ʓ*(< }A1r/S,#1!GiY|.|ŧ/[|.|Z]|.| -G/_|.|}声a|.|(jc|.|HG/e|*|t#>Q *OG4>S뒰2oRk4sJ*뽤>qukvhZCXM@z7QJ5w4V%5wL~ER0994b65BleJ؈e|ꫠ9x, ~5Fʱ,S פS-̣CxbpqMbjdkJ/[j|]5 f>ft_DuxM2z4-Ш5ױFrl˓ňWa1KKBW_QK,iر 2BЮ[V`wӖfgYp:d[,嫇ٻ`h<ٮ =T,EN?+YF;!S.gcqES} p *pH-ˌHY[muY$eigVYzߖVcfV* E2ioʨ3i7ԛ'K?[m̬Ҋ?1TWECg`[?[՞tX䚯 )^-}5 >, =Ӱ=F9J l݆>kvM1n:WF`#x^׹kԛhL4Z=Z%hZ;>@z^Ɩ̤{Ɛ<649c9?ڮ՟xO,:!,mJ鈉gj lg.oMHY>wQ1z%0HmL1ρZSqhdZeˤȦ~ڑĔz##uƌ6f`X;;MmI7Hmך0ll+ZؐE;&-s'棢Ѷriږ|TI(;?AE\|Ɗl9Utmݜw0}nbg:&Iiq??-Iva}[n>,2tv?iے`HH6-1ֶ?SR2zַ/V9K;Ba:&uM>bܨbG>!Q8ݷo&WLj:J`2dxʻcdW[}oV{[EQȆ`gDHX̹@kJڍ -13hzLAN3?,G&&V;, ä*KɯcRYIFHDo.)yOQ؜IIlVp8E`QL3_Rxchr0-z` r-OYi9%Ymui.Ҧ?S&Lyp0iz͆Iɵ!@gB۲R4AZc qf69se6 2l̕7duyByZ;/=AWd5,2.k7ru`ʺ$lb|a. 'oR [K -uNYv&ӘK ٰqIV  `-CIisLLn8~&GFxei:.SNJJA)̀P2_)!j$m]ݫR:5*z hP$-A©픦Meax~p43;SiKH\Xpr!JƑ^t#}}skqp%Q܈OMIF=N"׀"J9)ؔ 1IIM#oO|L; VIa-IAy\- օEBc^mcU֠/ {ah.E) om+-\ɕ2BYm#MGXm񫸤 9P="[ D1['n[ȼ(I& <9F)NV&Y l>])nTP5 Ut-/3KKG+"aRrMSwŷdZ,~oҿMjV+1H6e 6 M\"Ha/e4'kT&ӂµ +m(tdjAH'M7MiJtqhe-Įt NBCigS^n/p)+-Pf8 ˇĤN8 ^u+c~K -f8iij&Wȟmj cuv7sg +MfjL*Ka L|jInd~܆Ig[>xRƤE)ɫajLJJ0͋u u77Lnֈ.kw&0օrm(,9*,$rLKFm -8MYLf`#@ z03+$*i&O6?lS5^ `T(aZ$/d Ӧ`dJ˜n}J]D:ɣ`8'a) ŮYҗW[21̄5&|0XFC`s [5^}BnaZ6Fv,]%dL+bXwj0Kv#qa?EZZ1Ry Ly`}Nv,њ䡼'Y2FX8]Լ@e9?3Yvli߉B&0!$̜ñ'u) -֓!JnSc䒻,}9Our`=c"EuJX |w}T a?ځI_f0 g)!;qqs(PjuH=ב.~B5[1^5HHTڒ˜RXmsii'DSaaR$7jcZ)R&NJLks$B֘y-Ҥ-5`)HkjJb:&7+Bo`eW걥o8݊5l&:VHV5ӡ31}5;ʭe;-wP"׾#$N@mJ50"ںdVKձIF_d-"zG "߯$0K~vLOMZM=$5&L 8u}16*ہjV{/c89&,U5#N̘elc i@\;SHZ;I1r+odؒM0E2нOa^8ۖ\H5i=*saT?3Rq9 ;pfGV?rO 1H3尻`R"z2b*2g@`dtXp[ΣKVAywӨAJ 4$R 5@ģ3%,g`Yϔ"[+uݛVfҽ' z2fcNB`זa:zƥ ;3,^z$naG`rxjIy= -Lp+n2}bHum?%hs1ı4_ֻbQ6I`3]8֘0,L=&T)yq,a L*ӇEܖ&lUOV6.c6,),QL;%Z]Z"qx/͟#Gn1RK}#د U.}+| E:œ1qOm`1L^~MHypl)+HPQ4#ߤ5[`R@DA”TL'}vҪ2q#I!hE|NlAQV6$&ܖ8rXGt |"J :XNعE,Y\SQGY&­Zh|0it\Qk~ -"TӠp2IY4$iR-Bard e22K|JuC GJ_oeyD Z`+dU 9Oċd-j~J :G@n@SM4x.uK^#a:TZ\۵$mr$˥yخvl0<2kZaӶE9u軥pJ;0KOkX>XoLn=y+}a- "YIiOQQJF -=ҿY2`,)^YkzWs6i=9׸iHʏnh|c=؅u,CU>[wrdٝr>ŧK/Qr`T%_"!+F] i [/6,/\ mX QmtMs lcXFF +|P"hwMt:+/])1ΑN`2m %`a'Qd=HeIqc{SuD0cGdi}m"ڇ \PjxuA77ϴS[K H_nɜ.MA>X WmIߑ?2UZLO,)CxoT2r->ks_#6\r:R1ǥ*Lo*g@3&thD'y9 nQU<}&u-"/F^pZܮCvk- = Dp~ hT:Dj޵0]Q= `0tnq$#B ֻ~ԥ 1)IQjjf&̣8P&cH@$?Nv9k[U=p6 "um'Uyݎȶ} -R2_$It<Z"{PiRuxZI'4Rtje&OR-$G(.[Cu {-uPurc4 -?G-(I˜56?kuMVz7o%b_f6ajpǃRP7=hQXJ,/(7o57S +RdX*[c~ۤEIe N?ye#M$ -43rX9R}A~ ${qr&ЧJtXܢYKH5xbE@p߄9ܷ{{Z.qEְ9@dhg f -ܬlÊ 1*lƙ"b߅i8j$[dᶘcG&ήhE̪9NCŢ4)oo_3#g6W<܈^ -b̕۵c5PY:0j'[:7_dڸzR=M&$϶ -*&(uK.ytBfOH?0}R^A@i֦ϾW.yl>0Z 2Asvy+QYCVn0n)Pdg1G%&aaI|È5CckJi4˶Ӵ#LQƀĴ -?jj`((=LOPq˃G^('BV@OW93ƮŸ?80d]3 -# v}*il5ܟ?r&d׀ce1Nhhܭ0.XF -yjL3um'!gd`3oji -[2d2Q 1 +ipMsf)VVa<xL!\0eP60 -@2qs&O V%[,WsH Vl=N?ubea+?(FpzI¼Tvc(%">KY4#mլ`\J^-[ՂrGWOU؊ZavO!;"V:!QXej jYOђZl+5\?}3) -`R.@Cx4 .^m&5`sR doI/Г FYFo瀸CR-d+jP21nRa #슩HfCRv4J7(iq`\la]r+7r-2%π|y5,J#p(?MZ 7d0F W^%d_dɇeGf2 -{G>ZHޑ -!YoAi!^|!4-C$: -bxvgHA!e\h-u\`83D )<^-bޡF:]Ć̆M"a [G ET"1։FzBQƯq575IAk/VYb'|D#kN B>d0L[bvm iC$|J9} -oo~ȩLjZeJn!YG r+2W(<|fXdn/+"z>)g$_WDzN#","x?)s$_Z螞}b^D%ED'E?/+\# B:E\&{kω{dd4}i3/#/1"Iubg4WHzhDjF?NL& -A#^'FD_i:6+d~R{MFD?jEd~QaO"2/*"9uYK~Nw=-JE>NȽ´։xQ/-"9u_DE?N$½(9ubK ~N_=F=Nyi9_dDsD(:5" -?#VtxX:6" -W#U'Fs/06"I܆ ]ݠG猙Uu$_~ƷP>_ zP?-߸Z9?9T惐a(5*[DAOs^ԕ4ʕvΛɼ@$1c BS^䕤%,Ƀ++B{%2#BH. =D^I\zˆ<^Z̃K"y)rI) JS^%|ǃ++Bϙ{RrB$;. =e7^Is|ITsIG5>W>|ATϓD5|'/j|QyCI܏F5>Ww>J{AT㋺Gj|QyZG/j|QyB_r$Q/j6OB_xK|HcTQ+ Ad"A ?% A+ >E Q <D"q_(G ;"A+9D"Q  -8ȟj|.|͓Q'wenD[T( [LZOXGjY# -g +Y*;53`[^ewi”LeGFoAWgEGe,7ka<6;Bh6WgeT9sۆ)`h \,xi͍A -Gʣ7'ȭ|B ѰI׽V0iz7ǀS}T`=XP}cuEz‍` L3^lH - y~ΣPp#V1ނ,th ;Z[`F 5Ϸ91#5yc7j՛@C-zP{EљAhBB*\ a۠ѯza4>卩z`=:Lf43yKm0H =K4)=GxX]n-R^xxcʄc{ka F|zmNkUK'&GX_F?^[A[mMlޣ _`0T k8GO#R+47p5_49Y4'I?>ZphC|@ovCbh Q -h8,Pռ 4Р < tZ\[z:#K;t^%0Ͳ%A.,Pa1ct 45aeΎXtz9.k{ލ8.q+u -&ü] )oZLk3n%rUa.i_ [st ljƋ+Chc4UvbHPoDF6hډ} u+XG[jU ٿM*/>:?"0d94Y00=J>p:u^mʝL#!3 -iOswF_u:StBzhu=w`n_EwX.ֈCr(XM#jzFYskGgϞgds״G ۟ D+BMNi a8Gl0`֬-RTmB v#sA E4ЁO!v-L+%3hҽBz1`m4u£CGpB@OT60,䔰`AQXeu/֯z -oxLKvSB׌?Xwρѣ}OaBݺat*ln^;0$|aOU#aZZ*(ޮcWUyEc5/",nb8lM52N0af#SUv&9r7J 8 r^?\{{`8Ú35YGp:x~6J:437^NkFIuZSazMm 1}?(4,lX]iIfi^3;ף3Եu8d7ZB=CcpLg6-I(ݶ]p&JMFC;\3toKgэ.{~8sֆ[7i; L mx yhnR=ݭxIZ>A|d뻛ukfF/fmk=p*`j0Qb`.4cѦ=C#,,Wä1#9CϴvBeWӜl,}zqXvxr ->ijSlt:iqܛrg L[z-ԭa8*w8i¥rz;2nkT1q9;€bo N 1I s`mJήt<fSłS'0xƍZ1UNo$7rԝчI N-Rg'/ϣ7oB M HGV6ͮQP = ؐaGB.a>&Pjπ^3`+wÂIB'"KtC[NRLV`~ɍޠHvd {NBJ#Iw3#AB0n95,̐1H ]gHuiLz>p_]b갰rCso"a lL.(h̪h98_?HG,,FV kZ~H8PM8!LOVAV5k ~aFk9?qwNڅi9o+O&MRցEU3`ᮗ0rKT39䌊Axh@8ͭsa) liGd#Ą},f(1^Sh8b&QYGx; Mzp%dj#!S 'lp:vuIxV! ji08 Rn;0(x_|Ahu X6Ew7箣tn `iW=gDгA?buFwzBqj;l ty -tcf;yabm 4T2D!c;B ',3aLw#j mo6Bu0 Iј4p"_n`ӜkǦ{\JrF%?/"%. [;aLrM@ ڿ6&FS+Nvϛw46`riA'$F_GCr'j˲4&X:wDIn#Tdw ==~!f ?[m0J49H0&_b' ᩗTK0΁y6g$ z|aF?0؊dԠۤN) 01o'Ql!Ndâ1gA`RN Xx>F1B"1t9#L`:R1 kc0x\t`rc/Zr@>I%^'0x!TGރvPdfieihFz+ K~sԥ! ?,L\1  ^ܑ$!p5v@s@8O -K?PȜpR oIrhGD1[w CL -UKSVwR:غv Zt%F0Jl\ +Rͭ}V/5<" SO؄XSކtf2[ָHړlR%Qai$O[(?rTGD)^{f߃Qaǃ$vh;a77΋m(}}fo њ%`8VX=uvC+4X#Sb ,wgv0O ~nXɂwVN`zdCK˪ ÁӪ@3ɂI]7<yK۷u"M%m o#%&xKP&5[(,=ܶ;LD Cڬ-vAs)\HN -&gph1by4d9J;(T8U;`quik`“l30}u^A 0V.MpM yò%D^Iڤ4~<*-5d"<;,gk]#ȆaxIKBӍ2^֣1s0]PeX(G1P<َet@yv08gaYa7~DrsD6K\`'HUl$a =vߦea5$SEv]1V+mz>!td%d7PJF`r23DLΤG;"gD#KoR7˃NܭDs7ƇN-8'YyeVbMb:8Oc?,DL<}-rf0) <[YDDLZYtCk͛)d!t|r۱2t\']YaYb4U/[=##p;`,iWRtd!-o j='ɇm-n?E‹[t@SVF۳ \:ޖ] -= \-W -&M܉7P)D߈шQ.c#0\?}k30 `VL&iN΃9wx|1>jVLH\fC$p\9rb{,$֨b* 4hZce]ǍC6ĬUyϩQ\!僓DbN֎KAǥCԒ,}z.T7u6J= E> ->6H$XXCcmЂ F|+V*b4-:[y-Acwks#qNWj#}9 Hd$+XnR4ǝC+)[0 ǥCf7ŹfZk m8Z=|'K=*3S-'+čC7aqhr++/(ҫ'I]lơ%%FRQdbt> p84W^w:ed2up ]8|>֏TAXq?|,74uA/!!5Ix$[Huh+rB -bcezFYr`oHi8ŵ-؈!,٬zea:)$p7]KhsCWߔSP`;^;DžC l|n|Q}C -[6&,*9n4_[6o xn8rAU(\; E -62aqQ n8<۷* -dB1nTKآ|b@5nN&MƀFiyzq$pmH7i(\ia?&d\vr\΁mCa#>spI{fm;;`vpRu (N ۆj B$|3ڌ}E$.<# l|\6\AkLr 2.͏쎫c㮡lbdm Vl ovЪ --кi(+Ņ1iFeɆibMa|(ikQ 1=i+\^\؁/?nKC?[9Qi+Z# Աs;.޳Qo}4dn`!"x4V Wr+cLi-p4o.ؾ4㬛3ԭWdxUhݮb9걋IvPv9(.@ܰ7Vdn7 7Z±O c0EUÍ,ޒt#kEVsNfոEh(ڑQIvѐܽ[EC(qLaN `vPXc"pgq%'=mBn 7]_/gH48[Ү,a<}k>Z2P?8A-a{{@:vZ@gv qϐZ!H}`h.^CiH *x!QI&!6BJaG ӊP!RG's$0 -h 49yRnb F!+<.E$^.!kx7-˷ćt4>!p4#Kg=}4#$p4~zg/<ZECAo p\4jU僺%!!L9$ҩ&ĉy@xqLT`ZC dX?8̓!dnlh*1 )9  Cp3/y6B fD6[V6ۆŊ0)sK|j_Qy]\ۆ`H9ۆJLF|C6TUx$Fp6[\~Y*~V~[qmF$+9QQ 6A֏ۆŊ7kfۆ`qlcx+}6;1Cq@Y~ۍ`m0mH/TaEq6qQ-)ql/-4#^.aʭ.ibmChvw0CF1E*r=~`e=\#s8.+)&.Vj7K\NrV=QxlШkMuX]\_ڡ1l~Ęd{`֎{jY!/H;ĽCɽI/\"XeibiOTnE÷o ך^Y? o<)s?4;6̎2]/[o:_ WMۿO!~R27Hr?)&Ad~GW:\W4(n9 KjbߞSbb-Xon3XA'mh.wNm_pU?Ae NيɄ]"7}#ɏ>,f^ @u{_A'2 fs؇N }JI]#0jHNJ~d0W5}"@%~ dge?m|fuW~0W6>s&@^R# 'uؙck~V(9Fāg#39;t+cI'qÄ?N#_0Ϫq:L`@5LܳİK&I]vbڐK&Ieȸ!W6Lļ15 ";1pH% &;1q -zȁ+D&I-vbK&Ivc@9LܓZA -A~R;$Q~R;$a~R<}D?NГ׬r -k뜐 -Zs$5槄'/5?eZ"_Ak~ΰ| -Zsj,%'5?'S> }G.哸5?O^Ak~Λe0$TY+h)O2_Ak~N$T'50)7sNK{ )rZǜI+hOWКR('/5?N"_Ak~JE*9| -QrIKhO)ȗКR!'/5?@"_Ak8/5?<_Ak~Ju|_@k~Jq|^@kz_~D7η=6N^QKb_ԗ|tғ7*=K}A㫂ғW8%=}A2ҳ9+H4EI b_Ս"UY _T UY b_ľ"UqY _ž q{A^o&1qզR_\g(1/*LO2_Q+ _T E=I b!_T> -}E4䡆$G!_T>{ED䋺G|Q1(Q/jEOB_\%zrC>2E}I b#_Tퟏ|Qz~>>P3\޶Ez4|zUBjPeutaB:$ћzta-YVaͣ +-1V*"qêq8XVFG9lmXV&x +wy@ф%<s &`m9@ф#Vmф 3JF[LkZnA={ 4g'$'){6 +df+Am&4kфZk2GV-{;9{;0x}a4,h'hJM/k4@]?[g6IGVR?6&tYZ:VS3/0Qr-#~a˃ΆfQhJ.m6` e +)]I:ڰ)m}{`h -f9N`eSj̒֏6WҩlxOGV -+vaՓM>ڰ)|z;E$c$F[GV:RE7xO:1yVN,Y]+X +|a9JA%X?#ۺY4r<%|Z#Gx7ytr{~ڭw'vlARHхuʩm+0BC9˭ p26n]X7d kGKE[Msߺnҡف帵[Vw[ikg7oi٫Wta [CօuÎ:grE[MLYxta%mA# fb#J-(XGVo^Gv} -Ym.:i[. ]twхUƜr [֍vx 0,kL=n,;6[ Nw` 1`7=ݾuaD#/#$ºhTڣ ºoc]J3 ul~av mX'}KW`I*txv -e%0 &5U'gX!37 XutİE >:6gnXI֍2щZg13_{J|xJL Q70DӷNZY2kX TҁA 'vZ5щ5Ca)XrYvĚ -['V(PzޝamtbPUM̥X?:S$ G'VaZ'Xubm[9щu_Df֞lu6oX'$?&L0ttAMظubS:NF%UMy!@ֈMՔm,)[VP̬֣4]넃F2gъVU$֊UXj8G+V٬kh?^y1(dIS[+VCcLX1eg`֋U'VG/a$P1y:oVR!z][6 h/ߞ'Xyr$+]CKы6M-7^q9ڜk8ZM@J~%4FN`cG'Vf¦щ.?֎N 4z  -дo; ÏV`iʴuJub -A8o(VATرybu&nwi׳ xQ щ щոaJiNFBĆh -Es::ZAN h 8d -6^Fޣ#ьըn4@=zB)q/E/V?AuИYRsVPav ;T3Ųp5]Xa;:iCR{ -K -Rp#qta%E*?^ԗWEIFVKÃx5aS.ku6ŷGVK[х5[BFaE.ƒ}dK۱\>gb6х+Y}`'5Èg?`k8BwntEGVr|j`*''NDta֦Iq ]Na OC-vta5r*6.Silͣ k&!)х5'# aB5x&#v(%A" Ė_g D4F7<[˱=XO:Zvq˼Mȣk5~1h X8:D Z5}GU9KzCp4_5>6}tu*!}i{*řN64 GU3UcZ[{0ia}Qw4 x鼕f#;h%ClBd`:>_5y8p&T]Hjh$3!3OgNoDgCAIAF.4~$`%>YĨc4%?+PSf//֞dJ7 -= 6aHQ6oݖ`X$ ֆcSyN7 D ݁9[E;"7lPWT~?6>`ii#iwDGux{wW\ F<&!GP=-]=6D˾ȿ'!3WG7X -1 Qg)MjIV}8@Aw:fC:-`)Ytjධ 0_Jd 4dmvdY+y=yDSլ#$]7#*RV=Ͷuz΍mǓ ;t'q䈯<`G`z%1ڌAGNġ;ɥZ6#< L66KLn`-x0,xRSse֋8P^^\sa)#1` -K"Et>'1γ66~ͅ%8`0A*Cq\I,,L4NP7E6P,{+b нr]R ˅%e]@~B+{msm'O+R̕{ZfB[Dob; z%X iVr'deR(PNIy|DZm} ƳպfJۊ+F 1j] 5M|a{tTh-HV}0ս@XϾpIM/ uHX%e-q,9{Dx0@x$k\Liu"[JJ6К* Ԟ *b-%CBz 'ʂu'@:F*N\E\H/Pz kS't l\ P@՘{MV )s₅P2l3> $=TiyHf p4fAAЦړ%0!1,>mpi='\'+ -?@TZ[d8fHg,-4u@DQIYn7P0Qj"Ss[㓴Ip8Zb@"k[/-cWsIh9Y"r$\f<+ D _A{ghQe=aPE'AJu[Sd=S- JfslAlǴ* !҉R{TqBE%]"3hODr3\o]Y{_FC|% {mF>~RϥIv4]OlLվRipTxL35`6ԟDײ:ˠLhrQu5 deOP ѽ^ Z`tTz[&%97+y,NLn0.=NzV>'4(d{c/ybx+ Ka4Y1N{iK3g%>(ZG396Afs\B+UԀR, *? Kga^wNKT9b~FRFt:ݖN%ԏJKU"+e&{~Y;DH)7֩йKMYܮT|s\K8$xwV:1K^`O2tSPJr-qFG.O,ވ⊳x <[i!HX'=9q}EJDW˧qYLr"y[ngWBRDB{(_+ݣtA+\ׇ%PGVV}ҒA?;á%A!y'7RLrNg8@O.R\#,\S6y"K\ bֵx+.yٝQJLfi8zn\Pm/n]UsԤ!A2fzwZF> ;)}t7~L1F2MFPB$:'WCۤ1BgȘHW'8zK&uڄ..jyJ6;UiKXbKemT\o g:K,Tq)i$i砸.Z" b`)/K\Sdž-D)H띜0؞[Fkpv^p1 -Bⶠ&]BFF}9ײSqʅ`t7m!>ѝK]'5Z1rށ|Bԩ.Plg^ؖwטe#tAR'ixZRR)4INDQ~a?$u"u;59R:+vrHl3"TWP^ R#=otY>sl+@tEA{ r1YѺXm*-.nE+6L. mv+5]SAJg̃*t<פDwh7Ƞvݍbma wjn&Ǥsq|Lw DiOVbvF|;^-h(?]Dm6FA2( -؈\ZHry5J)vfDՏ;?jä# =!x -lt{{'{[R>YݓvtqΒܮg Aŵ3[LBջۏ`jR&B(r88vܰ j04\](09\7ED%eB”BpkCG@&eR$xEF!B6غr8$S$=UC~J_t`] EQOW -C{Y`6hY-6;NҕRE){syN-$ù7(XN>euUPuqTu"=fkX -ŵd]66`ͶJ}!^%ع*!JH.0HZi$'{;P(-6j/Pv=3)=AO]B^\+Ĝ-j(koxKԏ̜QXV%) 5c;@zv:9|x˒ʌz.lJ.Ə<>*IŝZعxN+;H/CY}2[(e㎐ XSJ=nAR\zs飦n;N -_+gOsNb]5l ݘ:Wq|tcd.n] AnJ\G;&{ ~LꙪs\ z\ms<ȦDc[1{aۆLyQPoPё]ǔ 3ta~$ɔL.$j"?2"`%-KtI\ Y|1h^yh։s+G72@]Qcs|RVƫcsh]6}lN. 7(oNd3{:ZE#~#yLZmOkJ._1xӖ-:O?z;C͝'M9= -g)QQ.j|_Nse>$jiTtF{3ed1(e/k峬Oqh 8~QI5HVW'$^Z}"IrVQ1S3S{T9rڷ ՓdKUAR:~UMQK3 ⎭nOg(`_힀T -N6OgjdwLJ,s2aAjT5Wm}t,FKS_X*ZȪtTdUV'`gVڙ?Yy+yp.(M1gZkA(@F -\`T@q+Djȫ 8czQq1đ({>Q ~/=q5q [;n'5Uܨ|Ok0qި?|Okzv{ܨ?|Kp}Mo[q~MsqҪ̇|Ok %|?|Okz̛/*[2*|Q״Vavѝq~QoyC2=/jo:[k\q ~Mo{>=Ks}7bK[)/yQG_}~(U=kK7Ȍ'OF~3fϙ-BAEF"tyAg7Qd~Ч#zbJ+{Uݺd|Bxvx;ɕ1oeJ}\2޲\R[AϤTxAL* [ϤPx1L;ϤLy!L [ϤHxLj+r'{)'g@ne= -yz|H|.Ȼǝ'ROt -|& ǝgRϘ [O8yѸDj;Ϥ4eaO܊z&Oȭħ#OOJ|&/4ȝ'!O|HJ|*ǝgψKwI|"4ǝgO¾xB}ZV3'ԇtƍOOcJ|&ŝ'O|H[J|*tŝgψKSI|"_LD>=q+<ӑ;IHOqAK;e!B^b_s>|CBoS|.἗Hś2+|ъTN["4d|sy7D-(|%B\ c_a>|C>r'-ƽ70({oc||/*9e#E 7D3>Wo>xu2Ѹؼ1ϵJN[3e!2A6ɼ՘B\ #_T`|GN]g}@E2Ι0}?AΉQ8$en~giO{<3WxL''xl !eA{ßςFw7|--kQ̘;^W_wwѾxPr . М7S=JuqR?=`8̌~ A!1O4BxܣYmb.WwIPOw t 绤¾]R;f{WRFP <ަ9(p6)\Haq  e;w_;Ѐd:,[fda {dc CQ-ivhdǞCyhscR" ZOCPkʸ5B-Ȟ\s ~ϋڳɥT"áڄ9,vy(HC`ك2Dٺ -gGA_m2f]12Ns֠]XƠ5c3=|7a[@zrWJ7ČxԐȜݤtѤP0(j풇'9XqGb0&i czgaL̫0U:h&EX9\L6Q:F-I-EEN(3)3*3 -#cf!L^fd4^}\.Ljdr΍5 7ISWu@_'`9?LרdLdkb n&K%8 y0itKuj1+d9#Lu]T -;9o<3Lr0j$b"{naM --v2eOYqyj1hPcG7b6[ ƉnImpISl<#zxv8=-J1fCaXՂ^s c[hĠf0.xµC2iLijtZ2Y~`GCn VNd9Ϟ$Z\)c59>Ukp&ǵHQAUͲ ͢`<0-4)GbiNTt~g` Ӥ&Y g0WFFƋ0 f@ 'hk0Ap7bMc8mLru1̽Y`8YYEͨ[h1O -c[!Q+]t\ q:MWJtival1 ņc3}<,w6SlҬ. L*ցi Kh:e*6xq^#f-IP 1єuC"kQ 3K60]ehz6]+FލAq |b<#}gh~|%=#w%{\ ]tժ~9fj`$+E^ZHZG\ .iջbR96MgtStҒQ!EhGyM:blDC֥ b9s7ք)qX2]dr6&ARݘ:$Gb 'wn2OfN .P9$񛣠#]o>3 -)j. ]cw6f2^˲d[f;cϸ\nhYW3j7k\=ȓs׎A`i곭OM.mr`G Rڭ&+XMʫc|).m-Ed~6y_Y4O}o^W_9PL0X77wbC3 m$si7]CL &m(];.pJn&)$;1z0H%6W@=V?3-ZυLTN58Sv-FÞ5hA=cUg[H|`µRd.IrmAPv3Y's1p媗!>Ȗp] h1\0(ZR@: r0SʃROh,9jx raCxƸdzӽ_MLpuXYv΄;7zbk&s)c_w 4M;LVY1C4p)Jt,!ݶ1D - -XgN0:ڱ>ubZWn= I\xJ)w )MB~iq˖Ӫ Yts`נ%~J7ǧAe!˳9 Fm[b-6T:]YLs&]P#ƒgw T i,C1b#㜵Yt3TP6$$- !i]QCyujZ - K/UNM*(ж잘vq0&ar 4ri=NjIm*L/|y-_.H\L'(_yb/>T΅gc 5'0|4gsn#&ß\ȵzEvl1\fʃ&;SC"Nw8Zek;)Dr '|^'>%4+954 \ȐDўFټS'j&ݧj>%#!=t?}R*51iAu^Nn#"ZE ` ћ0mRT R&6ƨDkƋ-I mj)ˆ ®m9.ɵ=lԕ.gZX-8ɡ1+h'R?$ښz[A¡ƩR%XPi{Jﮝ v]:-KqàX16AӷhaeGD̗JLM0x.e.)C@pIX!H~[!i nz0ӎ1 [~X I -m@KnCNW(LwɡC*'EHɸ#'v -[4Xߒ!a+əZZ#3"®D |LLgfKXs*0N>N B%G\t#un{@qE'(6_m$zd:iz)W%-LyZAɅ|w R"T`ZYkDT'3CnIl@tU9j8mN_ C%1yml)||U]u6=:c}6fm%]V|'iNM26W'\ȸ 5X12GcL!dpJMfQEM:Ƚ)]!iI͐t ɔ_>`~[8@;16EMa'FF;16vJyC!!o|2aNƝbhBo'2ڡU7 F?ޙBGǘH(f5coCOXt<rircR:W?ˆ%G=7{0lyDD9[36*"1f L 8&# kr`r{+V,t8@Rq_j_Egr(W\چ ^;C \3k‚0[| HAc4;7Բn]{ےCqO8Ii'lN%ƪ̶(ed7w8dԞ=7Qm C#7`8TLܤ>/9 {SNpؤy"usoLFZ? 4ʓi2K|%R`9+[> -U/\b0-4#~`XMy;X LX1\U ǚdAí+[xL8+/AFvl[)*ӗ&  -YtbĐ0dk*I]iaܩ0Uuö0$T܂Α,ld;GO:f`rTVt I#tFu_kowL{w>nMl(-ǀI>h a Ģ9;!|[|';ۇS|?T*8:NPq){0#y͏iٴ+L7 J \~ 3U4UFW ->),t6{m`_cIF[@8ҽߤR68CuPG瞏Icq -;u!]ޒ``2t= }tZ?  8מDsNLIO ; 4;tN>t"&_wR^ -VI҇~ xHaоd]>t$)f2h44͆`o:?‘ҥ0F:0L^` hCDQvۘTO=u 1Kp`[/hɖ]qҎվ:c2V>wxxu0$Ύ?^0_X|5PHxU(WE{b&+ 78l)kcYߗ-,3A&ݶ\݌9mbJfLuqN״˓Wʝ^<_5:i\(Pbu WFD[lLH}b#\<8t%~eZp!'4tJI&tă-]ڭR6WQxd5\ib麟K#lЋ@k \}lbdkkP'}%:-QtqZ}K_:'%s)Gxxv>I3~mu㌟Md/ʋ;fFLxU;d#x91\8_%`OEN`RoQ,ƸD2DӖ/]|}pJi#2"Ga -ǙUl_D±˞ᡕl ʈ"[RNJ?d bL2!l2 C; EW@-d=Hlp%)Pd4<\ z҂O-p* N]+Q}f Uͯԙ#{;j*Ɍ-tmhw4 E2 'J~'>Nf(r=@ v-#;+Ct1KFzq#aWQKF 2303LCIiBĶEoY_)Z]x{c+_6WJ`bjl^0I9tGQv[`1ɉjY&$֪MU"pQUazyɐւhب!d&=RRt3HPzNK#~9)qu4Q]#/ck(%NSb:+Cȿ2Nbws -HC͚k64mtNL<~+cR!$)"5`˻$Y{<0Zs:O7F=pRs; zGԖOO!0̳y8SŊP#R51!-0$#+s L "Δ$C6lbj_3kdb*cFZ=^ۺ\] eqnu "J jY1ݝ 4DXgb&B:+U -y?&ʽX4oD3!MoR7;dg$0j2 -f?Ą7$fK@Sc^zlY/[jFAga]1h.Gwt"bDنJh`d]pxtӜT. -A5Tܖt Rr:0VgvdGbC׆nijR-(X71;1ԗta`̶2*F*q;-9&I< -I%O.fc|v*+vE9 Wyb|=Zu}q(A<n;2N@ d}gwPjxwsde*4KqyB*b:W0rtVE߈ݹls-0o -(t̤skrxfQTzߺ~iXuZy [!X&c}&jÂECoкx] fQ0y3nX%i-Ӕ)$D$m܅X%zAmZm8ڨGZV\m^>!̮9&3H6{Ң#ji*9f@EJFp`}NȔ &t_0mїR3sL\9/Yᗧ@?3C=ػ Gbިw߳L hz#u_s ^NY;+ !dYy Zн^%Vj9鄰D~J?e&~`Ka0Gjl - lR_\SW -m#;wرkB=P'q]KՕ-tTqvؤD?KC(̎jFШG";Ӳ`xS2;{[e`ј$'5?pH#rr`giMh%&MJ9sܵ;ьX!d#urgxmw-: D%r%]LT<̓nc*$*;;{>(6@JCGxINTq> -G¹A03F|v3/=go[RX1(wk?l8Lm1!ݒӒ*Y+y)ίwK;_ݟ/|WІY|Q=E?챽&M ϐY{R1$?%fNj,J1./ʾg,&i Y+$Y3kr'3"%"ɛ<%!Or'SVCVSgFd>"yJCJN3L;i?mYbr-žI<#1r+l3B+2I<%>r'3")2J<%!r'SB3(w2H<%!ur'3B?r&⾙|C*or|.(u2+}QϕDN[kCd|sQ7D9}(eB\ _~>|C>ws's7(ǽ7D9(%({or|.}Q/Fe#E7D9>׉>(2師 Q%N[@e!AG9((B\ _Tx|G㶖NSʊ1c*]֣2$ɵъ' fC0`6 t#{p1uh3ҷaI9˝j -6!21Ag<gbY*cdRlc&=d1$z2i%;;D=:*tOhDYCƠ -n2ZL| -lk0kp wʞ w2vMHkB۞^yi Le@2t[IhrΘ:#Oe2CObCE*Z n - k0h;> iOA3<)98|!1FiCBz[gڀSG.%5ho im/4& #{B0``FccSSEr1w&*'k\̍5&gHen<r1̹Z`^r1c"Ax%æ{T3-Ez1Ƽi͜iLB+'G#-BsL]ةC$c \K&q%uH}c^dj|*+Y*(LТZЏ5F31ŔRzX[t0V214xJ-޵0+쐌b#9-.n B?ccfƴm;fbґ[|w^As#L<5\x֌`Zn2crK컵 u -0m$4\F)Mg IhL`PlLḱ:cp>c{ /5A/*7qSM m&M+FearCশޒYexp&fCO5R۱y yځtax -d@C^hw&K!iZ2nǼeb2U{$CQ;(XsZfy3朂1`1S -lR`1(?jE vI^7v{0|-rJ}ؔ?ciVb|u; -[NT\kLOȶ+|wX~㬱 -+'SvcRۋ[lk, dOe Klҋ Y0 5i .D#R<3&C{(xZe*zwԃa44k>Pؼ,ox6K9tR͜ G.WXR|tָ*=xOp.06$!}Oc ],x`X:m mm0ًlF,痡W`?; ψ-1S-؆n&yM{tsIn^{&FGF?Z@,RLwnfN01EZ0{hLؓ`i`͟GP4?|$`w-0-ؙcԷ~"Hvb!lG9H`npSFY`-Q^VYcpM2\QV%%vr̀O2Fz$zYg5 ѓ#Dv+IX0=l79ء׊ G(J$-^: ejppaW^c'),G| k> inoL*eZ}&w^4N'֞\a`m e3x"T=FHr3%63$H"1#0c'['A(=H罢`Le>81ztT E TIv@ҡDHlכ2>EZˉ"X1u$S"gbo0ž h6.S;%tG]#aYȷvAdU݅sn;;}]@3=A#w 1ZNl#$Tߏ 2%4d4#ڙDA޻Ey]ց !s|؜z SoUFp#oIXur;UıHpHkۛ,(~9.t8kWVulQ)FI/rdJRom$%G#rv۾]\:|?-v -#c;ƈfܦl".uyf3>"S,hFJSF8]7CV"@@d`b"O1L~)wMd̂ZPu檨FIF!vfzF9ؐAyL:_7h$/xJvu85/<8r[p$MǑXM:INUtHʺ(#?>e$AW DdpBmיly-#Gbc8V[3q:m,'1ljcB@JldC9'aXYpzbꑘޖVCexd8tzO>j%+} -VI8Sk y0--)1!Ieo*1m`6_y>ŋ.4␫ $4}ZNXX xd873KO@`2ejt2:mpK -=Lr%/,acBzE\ezK=!J=\ ç;I,챺[>y 5Kҡs5:'Վs'@@rij ,:B¿Tʘ,G{wf_s43Ѩ$9ٳEWICu\ҝ$Ny5yNKb6vO"1Dsq&#S_*c 0< '\6Ҥ#wS6upe3 %k'DZYE~]>Pqf(9qE'[BWȀD3_+cjL< -}#$Rٚ8r*V2Vp Lsl)~F귓 RJW;mzzrO{i8PW @ zdt:[JMaTJ#RK&pH~]̯yF'7P? -3A_YFW'lN(jc4|j[d"XM{g5" -a-w(#魶-^%m;pw=y֘wM(\=$$PmU2;q_F^^l2Z/jL/gu} EAwR5 -;a-]ɺT{ ފ~l0$@1-HMk ε$Qc.l-k4D>?2Yd"F. >= [l6P_@0{eD1F[F׏es^rlg{BAilc*PX -RHVqF Dƈ*`@km+'sjQ]L-jI,8QgxM^Ն3q:J6n+ YBm:O>bnC)"i)ruL}uT!@}+3"rrp'>! ^=-2 -,'`@-#g9+c REKghd`|Ćv у[06R@Yhe Rm]Xn5̇3d X6s[ y {# J9ew7T? -1뢉,L="dcYpA6W j\Q0J٩0])svi=!i`$A´U1}p  - =}*aBJ8E< ,A(2j)>kjhudH%1-%uv#w7p,jR[f][Zpxĸ$1o]Wlj2Ja:̲p=9A9@oW|IGkC%HӋ1it]ΞX]|*IC~4DȂ42!qԛ n}NU|(_wm/:Rze :)Y"lѪ-+)9 Fl3lC-n%6WdƧ}hY[yj+t}4HaItA3Fbcr 14FbZ֏NUU#DbX@\-`5#m3NǁKBrܥ!Z J1V>Zca*`>l~mY5H`H0l,Fܠ=3S: X[`Wf`쯾dI8T:`H3jbRfZeA G !k%ed^%2?q ՋJ٢k Rpx1u+/"&cԣL"XLk?]:Yw%vH0JeUo9q+cnu{X)l;Ҷ :bpڕn1DmQ;;w-:ZnlP#C AbGb%FbGVǜ}DB_hc(/V$nWҺX`zF!(=#4lNGj;rJbsuGg6#+" 88=hQ l;#h{$&G$9 =LqD}X_`Y-<;=c ߎjzeX~-4_H0d_H7`#2@tߝ{(=lD4v&V{$U4ȏ%Q&]ޑX]N1Olhdd0Vw$pʚع#tQ#CYxrq vS1uî0Qj?&6V$ؤV4F g6p -.fO M:"O_q˿ ߨ:<_]P/!;=57iD_%O?׿M/mׯ_S@裴;ꄓU\rڣ_q#F|{0쫫# eu b]b g޿]v>{:3w(c3&ρq#ï'uGr}_$1qG6}_,nXgH?OY$? E?OY  EWE߳X3^_~R`ϐXx{Q=[!)Xg-g -,{A߿MZ`Y hyE $e?Af`/v?Gj`/G~_fl}X)~Q=hX'oX܋끦d`'5#]b)Wu=ma+@tyUX&{1@S.{3gX ,U]vOk`OXa5WuEsoXϰX) Q= ~Q= X/G:d?ł`/jGZ  _f+Eiy—6v0evE'"E3W%w#a%*s_}5㘙3*ۜyml-;:3r w}؏5>c̭֟oB?C}qlZ~7B~fCy׋gP?\w꽘]^̻q~z=fonE;1EI;r32yT'~L|ˣwpG?\>|wG哸~ȱ}Coz|U|( qG?Ab_K}K"G?A" _>J}C 䫒|QL( _>J}C$1s's<pȃ7CN}uR"QGEE}WUbQF<}}|Qm L量%FE7DI-}qJ#RU=7J$}ђjH#^r_r''p3g6a[ I2=J`&zi^$a!`}<]1F0< -8fԘ֨$kGTr _5N2T $gI*/W - -Iw5][~&Cwʍ݋Y0I a?j^@05LRkے: x1Lؼ }Aa&q& v6n$7=D`!bMF0$Q4IGYfߦIn&>0X`! {2=}͓IzקX$b~+5y'1XȟE5O҄6%3`A -WLdIn5k N'Y#r5k ik$䵚y9ND;gpL'^780(xA>巕#~QD,&Nk73wV5cyg[X_%t -n0BeH (S?l,aj^"\66YtsoA+ѶX 1y1u -{ɾBYi"Ax&ڀ3_x.d۟d;UFNADFGs$"8;jtlzl/if߽7%A5=e^R2M[dy11,~  9a9߂pO΄}Y(ppF3BeYKoe`:5*˖u B-"&6hN$D: -Bf3䍟gB>;$GsMo lG*T}"_V6:7[p۷X\:f~*Rx;Od0 A`c]e"7yhx9pnh|M$D8zC*{RL#N3UF]К i׳ aqj> !lń8(9T 3Q5Ӈ=cpg Cu!kp- FXHnJe9`zтL@{n`쮑bT!"~[Y`pt'a09A,~t0r{wjA};WPVCo!6L։*DBIm+T*=EazTC=sI B1^J|{S8jƴ"atsS{)IU(B{-M,`JC2^ -UXYAHrz親 -*9Q͚>nL*2iBb C;BmV B#f}kfl4vg ɒenRαá 1h ؂3?HX3s85Q̚=ƴ#eXm0pC.)k>k:ohɐ$:XvZ|W&਻eLbEG m@7kgszQrhgbbv-x&NR+x4pq}쐺ۏ 䔕yjv(33QMC?m~LyHj89tsT=EK3%ܑhR|煎xD{1_`lc_` s%m0 - -ּitUvb')STy$zќyE5gVȣ[ҭNj3O{bC"oVjR]6gYz3644qcAhiނnRhGwoub0BvjsՁ)9a -uL> T"k BM7뱚CMODR#BdI㖩{rIԉ)ѓK#J -Qs"sydӦ2YPOA[A6g|X`:q|HD'Dʗ?‡>1# +Aޏ( ^Zx4~MA`Fs|LQ 9퓮/~1MD$b{x{%hG/pAچsDTM$K$l t8uoyKQPpO_E\NK \*9@)O*3eJO,t?_!"_cs97Kp wꈔy(RȖp $UrFM ;>`;t7|{>#wĸ:ay]Ftz#Gmq(Thaq5#|dF@)gQuIOFrʍa+"ssr(Ɯ_R? `Ӡa4N(ޤ%Fnc^o9c0us;T` -a}km5iǜ+@pQpJu=q(0ks@DW3r*)ٜ!2uQpc 뤽8vzow̙0?It3yrs–;ceҙDun/&@ cpRN~5F QQoy+`o<>]0#u3h Hyܘi3hZV|"?TX+C2 %QT¹ԡB_/iaڱ@"IYyo"COpi`n0|KB9{50EXZ4>}s' Z_gT N]{fQ=\q.CZHXrI̳%O2J^ƈKmɔ-7CvGCf)0n'ӛ? jKz_&G8Qi,-F1+DmH,rRY7sA&~+N -HV9/k0w"};~ڼÐ^A-8 f:#z< -Εo˄#<oyK¼F5 JZ![E2V8VVr՝qVqH5fGv:p܏J +qYOfҘ *K5Q"X7ͮBqaW6#9k`n>EPH=BǎRϹ`M, m[vصPZMCC||Bt *U#L :9ZNٸSNS&wԌ!(~0a)J9)=JuɻpfR1qSK( (A(,vG  -QøP5׀7 %Varu0ihׁdQiNL^fM0z d v 3DSiU "XXCr'ֵ%5j!׎ }#>ŐLɄ^$vlqc;!x]++oŝUOoݭY)ZESB95*Xumn]?=#*"IqEMMݭ^@sFPVyMMa =:l7mZ-a'+GU\2z8ʵ!^-m2Cgͅ#kAiљdQމXPO ߻-1kNmu"J"):ECTKt4_P1脵#SKI($G8{kP_*Q2i:{x!=a1߄,^+d]\ *{+E&nz;T-,=iH5OciovMN,ZTDq:݋oIR[58p~e{Boz\Tߓ-"?F`#@ q֭|>VR Rh~Kݩ -A*'9>Iʹ@mN[liJ):+ɣByaU0w6G#ta_*p70?[C} du8D-r[<{Ze2FR\t@sO߷qWy#Exfo-~  xܢٻǡ ZAlRocyUஒ>_~ 'iۃIvё惌#sDJ:RF@9nW$}rcUCjQw2AY9 &mbu]2ؼQXz*j*1goq3_VXv->-*7h -$XIbKʎ%t` v\Q9[Idݭ[[7όXeGis5y_y q=(ˣؕKP_t#7/f$`Y,N%[Ǡ*~(P*tvٸ zlA!#?#|%-j#knL N\*vJ;mK%`]T00Udv:nl])Sdr ۍK}s[ X B[qbi?Iև;;}ҥ/uI&/p=qqTǺuej-M=:3lu2nyW3r_-oK_?|I*avQ[֗>vEe"x̢s-%Im?8n70Sg&v,n뾛@+^H#h^1bNUͱ['W^夝LIJac ƹsP?>şq"&27sF2&IFKx^X.VZ>-J t*|`vSTHU~ 3*Rv2=V -lyQWKA$~ Ssx 3S#[|"EV󿤯/d) _om7L#g+? 4Awp/?rhJWїrNnfQÓ;-Pn|}v7x@r#EKG9Nx~>ld ohħ?}_&UECӟ-]gC+?|Ou&R鐒=y}a|т@ =7UN}K_':k~:_=y]-?W*+ U߆HZ,Dy]q8hu>[ϟ-9䞧zWOi>\8tu>{g>ǿ|O54|u{CuĜ:b>\qF|LkP/x:=?Zmǿ|O5Wy:-z8wn3P[umΔoߗйN߽K8|; ǯH_%_P(7H;\T* _9z|tσއ7o`Z.Iwh lL+*`]>(/K7ûnbimyEO2W\d|TTJ=^2~w1ףI_R/GAW*W>$^_86*>^_\px~EsIK_/Tگ|.?IRa"rԟ*gRHu~AKQJO'S:^_\(xb~y.?T)"0$yI_߯TƯ{vϲ~ٱy?RnாT$^+_\Ux~ES5Is_$^*_\=ї"}JR6 V%r1GYWT%^*_\ x,~ESIֺ_$^*_\~>$D_k///$}&sqyNN<@v=O|!$wE~ GVd)x<כ2?xsErO/~5[Yo:e~"cE,v?@M-t? DkO]sIo[]bR>xsEIG_/<@뵀xs!Y'ro@6%x"gq,Y72?, /"?Y'o_~ Eg84?DI]zx(deuȎ% f?oq~#e?9 - (4ncA{ч -*o:cF:F7x+OB߽7{yx+|䝼wo]7hχ?LS[uBZ6h+p M/BoswbtR!7$KS!wn綠i`i::x۟~J(TݧyH>%?0SRa>Iaate6v|aTcJQbƞ ALP—iT-()9\=@S#ba|(J ^NRBlv9\=gl - '1X߱WC[ ĺvmj EqH`85W2)Lo=50xT&7_`ϑ"ot`|ζ* k<,I;!6Ƹ3VQ[)fwܙ 5^Ƃ)9aad׎f\Iӿ!5bc80ml5^O=bjzgn6 Fl9IV\\ G om4}o}lgR12PI`>3ƒf<`席!ߴ^'],1Aj ]й xNcOl`B^0ӧ kAux&/Vs1|Z`H߿AYtv V]^;Xcbq=xf{ ]Mh&Yp'cPU`0F-4vJC1]㖇@dÙv&y8t l#<;z; ʁ{ 21Mlz!A f3z}чɍesu|?m.tʌ FfB7fb#Fm=Q1ya#Ľ`D|T8<D%qIdL8)ݥd$QobINtyaX%;\z}=1M;Ҡ3ǬnR0\*[`P2ݞ>w(rY4#r2Yw?}IV\:O-im7V! >RY}JW?%cgR^[0X3,;؍e:+ӍmHQua4P#! -iY-3Unc=_5#D@b H\86{0}7졊˝R\ tr4(Lԡ7cd( x`6LLEl +'O)m槃j-dpꦋǩA$ A'a]OQ /f3|B?=1Y8*,l*/3L~&7H`oR9n!}gDw`PHhF= Ll83-3309N0t:)͎ 븁i LNkg<0 |ND)K`rure^0]} ؄Bbzxrpu0|'4}bl]fiŤ~!~ Rc Ae FKRP5zX 8ጘ'}l8d n-(k:P>,ԛa7VL/XvܭK2z>{hөR%k .A?I"g7نq|dK}QmH6`VUM(x`ylL(B ~ jf\ؒH%IxLpF]?AaU0'p0Y$`J'Q':ؓG BՁ"e&HŜБ%$hC+I5ht "'qc1$KDđ&/[hc2.Ӳffz - y}qO߉h֢cfɍgzVVZ]`H70S+0>-I@ͮ([.I9WlΉlL^ c8:CM%1'|̀e]4NgmsE,2kI U -kTg9kN'fJZƜ;0~d3$w:a: ,9%KaJ/XePombm7JK8Q -raM=!>%#!&V=XjH&FCuitְY%d$Xy0^Sz f8UfZ;ɾHk -Qsza!~xwlќow^bq8 6QAd ^8lF*]qI3D?VMzb' -c -YvO)< [}tK 5+l IPgCrw-obpɖHaH4mI Ffmn%1wcz9f3+3sRi+ -3[@` l'e.)C{}ISLBΟ}ô'ا遂rLpPI+Ƥ Kb 679}u9tJkj&R1<'\%6͌LD/dCذRpp8AxgȱFy3 +{b98w|$E 蠌L͐ 0N]X1z fI"[N_'?1 Vu ֬ù4&%AXla*Ԛ=! FvjB*g^J0-d Ypq y7M8sXV:rpa UvxIxcNV Z`^==X퍀)T_G|'A/F ޘ$E3c`mQq!;&Yr>Ő%՛~I %r@&w 1l0&V!?=G|.vM.AZ4c`"0"TXT,@p$W2;wHT`6ݢZL#H0,N^eP$OӘN'?31)pɉ|@՘+SFġzTas:+ g:)c"c3G]kR?`2!en6Nc"7oa}CMlBM d2tg}Ny[',"Bu`UfF, --c~|b@nyCt}]/Uܲ KxOs =ank)8 r)}Ē&h΄5MN:$ϯRCqc3&vvpnHd@z'K*Dl"K -'K;ɜ$Il 5YxyF;~iZ^a:]ky/hj׶N2#2}Y -Iu!u="ڙmv1+Sm`8 X )M֑x#ډ)֋¡1 m -K ߏ0 V-ybsj^Eי%7(@ }cS&8MEhbC":cL }#r-΄o)/:yJE;<dC ,!|=($C*Н6'!~z'7Wd֫ኖcB h~TeY+pIMC\1X -Hr(?rYD8sۣ^ Q|Еёւ<0U`6"F|LR>q\ڳ˘sl=!Hr+آ@/[U$.Θ6LA8o֮K@V+H/_sQͰsB#GqU#Xu_aG=oAx[lK2H熻FEĕthm٠wu) DR4b#z;p~j}r)_nB)ҶRjTVғE1i/Xb!u* 4j8jľeظ牾}i!(:k%1(tDzv?rw`TTxO܍XFÓv\]inX`eQB(B -3.²32 a;RnZȧp=z8F8G%ziE&mZeЪFS(Գ$C#~-o8?.46h){@փTC("izbwNӔ+54&MRW^FKnj:+OВԓO$?,vFdPbi3Ԉ\8lOϾ2Jp2#epoB3{Mɮuw>sg0r$"cO{#$֙n93ҿzv+2x{B8)fck8#q͆l1ώ&TWBhAb"}n -͹2rw{F`a"vctA.ߤųfL 5!^0\v{:nwi7E+r5枃;)Q:XlGbR -˛.$e^QIՆT$LQ!폒f@;qDH2"WFEAll_lvNԛ hu= -qjqwJBfhpݏ@47,oRI+8DZe@~Bzf; kFsu;tmjCr=+: ʠ`U -F'{w֤=&m%3'Fr =t4Ep-'jTAuĤZ>rp($"ڙ9<}Ajmt&ء-oG7 |[ܝ=1No?/֜U ۩nŅ-~; 5jkh]+#x̓ <&`bFU)\g%L33߃KWPˌj"9B>߭嫥,sD?]Pc^tMLj2D^:{l/u#Rh:M'O;ckevojiƩ}pS_f`ˤwmBr(]qqK\íXs\?yD GFRӉm@7gX1Ѻ"=޺'[S_#1J(nދ}F޲~ SŒ-=]Gz.P_#Y*OI͕ϓEΟUR -\zۭʱڲSbZB<a5u rdɝĸ5+BǦU&i mޖ}BK'+n]1Rpt02#NaIPДx$mz ס)٥]{v`Q.ȐgJUB 2Ձ:+VuFr$zF#r!v2Be p/iݙu8ca 5u`:=x 4Rd,E+g\3vpO(+ҫqp1 S$K;GNc_4]?;1t{OGKأC x\iucH(u-Iq^ꞈ)RjZhߦ&KֽX3Zl #zԯ&=;uUFIsl'&ŝP$5 ådhɸ%]'M`]T;Szcqir_g0 wrhbL6VA1:(},.1j͏8[z]r9t+s,~ Wchr֡m6wId42?4M8ǤY\(a*Ќ[ܨ@T[EC+sGEfF_T`ODAoo&DLKpdN!G(Iq`A30 *+J7Y(zf`q~|m;-7gtq8v U৅3N -ul_.(`;;VC'uCXe).`f ln1Ԙp:NZ\R^2H1t%Ok&kmLOǞ$~ msct#mоF7ьҕ9|qp$oImG`z3o䕓i9sЖ懔.YS ֞&ZBnMM…{mꌡ2שJO&AN`sU>K, )c =0E* `#7o!9:kP!DC-ΫL˟T㖼ؘ}x@CK-l̀1R=$/RGҗeN)4q -U`LV;}]<ےݣۖY?51Qʨ:X !|ACV"QJbo;%[/Ȁ^marEpCUԂjSz(u1ܺ+>NP0%n_Ɠ0)6$(/i)m+غ$=ǖH U,{b#qXЧ:;9"`}QcqS^^ mLk4M1(iQFi+1ꋢgXl =Iu)oq`Ԃ sEוL=wkJzL_GTL _Twdp1Zs -^daZw]7_F:&؃JAD\uNƬ&aq#^++`K:oNv-iGT޳olo~ÞY}̒,'%Pp!5ePPY2{f, DeC B\2^:y[V{r9d%#w[z{ogg)Q//7&o[ ۉ1nk1? zߐ/]X]B䟿{R}s?_5 J?(槻" S'WvJT_]H=Dt,NFt_=Ǽ zLal")qf/75}_[W$4׭i~*61 -PE#hA;VD~C;Coxw 7Dpc7g வxp"^]?_a?. ێoxp~K>>s;}<߃!ߌ2~=khw71{už|jgwwk)Qԕ%/5'WWNKA*/UGWDd^_Rz`EKQJ%/'WJJOW"(JQ"KKBO2/ᯈ|)?R$$JRhz~IsIR%/'Wj?r RvxŹ}-?ȼV"J(J u+"_2// })? R$$BIȗ++BGq,_Rtv~EkQ楲/eGWD>ןD^(_ZXy~IKEI%ϥ'jꗲ3/5G?H =LJ|zr<@Mr|$YwE~ R‹d9Fx,k2?xsEO^j덃girj,Yw ^d~grU"Y7 ~"r@"Y͓߮xsY'_/<@-xs}Y'o @녁xsSY'O/<e8Pr2F^718\Rbht81.145tN $15R?3,hcR -H/4g EH$L qӁ]*]<ç9+,y5ua]Hj2؎^M*PG~ -rǺǀ㌡ VSvtHj˯dbj3C>7v螝`~(CD;caØ{7)ichSf'a27fr!XwX3%@mR}=0yC=3F}?`n=ۼ3^6'vtd|O^(c&,V`΅.lhT;6-ըd7$`9{o6{97gO,(ཛྷ;&[7]m 0c ЫcXwa3gMʁSR[lUSW 3Oe ,y>gc9O+t`Xw>A?;$OX@<; Hbq,L>eJeL,&A+~ fCR-m* 9~pݷe ԉrPؤVL -r|K)퉙B֤&y!<[ŜlGBq1D$.;VIqb XnA$& ˠ^}9{_}c=7.1Blu+GOg:0bЩ' 1_"<4*חddG:-1FX3=~G -kb7p1`־$O4pKLߞڝ*̈́E1'ؐSbFu0m -1eZd AysKڒIҩGY%tlPӞ9"*|U՜2W%\g6M Cb?OR?~yIM js:kAa( F)|c! -U*09zuP*zN+4G#ĚHKoV'3JkyL~sa&E9uF!TUL[XJL> ? -0F8]!5#8XvHU LG2mR=t~ͤ1њju_G!FK -8t; "D5MmQ6n?=hSp3| O - s?B:K?)ᘶn9 -fngJ' ͉nX2]y+%z;:=o_)tNX&C~pn*T [dvvS@2QFN(Zl@BY)- ->)Dtm}Þz09Gt8\2! sxҐݘ b~T"*V XKVIݰ8 q?HXS5k賕?'(wcE():d8 ݽe 5+-b'n:ŭ"ghYͺW0ŒmӘv V`&]v X]{ cH̤Gb=\`r:]bs8ڏdPJ=sD75so ջbs5o,`83,gD)[|8| e:%zww# -Q5lVV9Y.%Fy2؍qwoWDޚ0&F9ֵ|ϸԩB{bЏ;am};E#^'f#[ffFj,^$0eƫE-p7XWʮcYg0b!_)l%C5!}^L#%ڲjw_\ f6cE)#d .$#K Of;{Fs{TG 6bY8&u{dDM{DaW]wZ8j`CRm6 gY Sw3mOwRDK:=uny9]DЯ}^g}OI$40Нg_x;z:ږ+O u#2trNh2 -Yz|NRu'0u,ZN <.H~Mm(T!d-R?g4|[M#+iQ W]I+ -^!jͫY]Mh" -O}ᝇЇ{Kz4a7@̸nzpOG[Oj1wh G_`B?!$OJhQRX*G$X<%)LA&&~E'pͼ-1E -'w@'3 tbtYV''FpZHjsP2FA gHIDT=K9{2̱- "@W03 x{̀=*(ZȊASx=fQ8MSMZmϰL7]«VYؚi[{PrN)JhuJ40i59InH d;0`whjm}N$cP5t*e:ʹI^DC%FA9Ӫ&.Q"MIEɏ|( ?h -@'6eRU4b L JrvotQK`0Jr?qr }E - Fh@Ǒ5*0ˆp|d.6v(Ç=&>xhO;yu'^Td#ќO igB[K?$G(NUpЛhiŷؐ|wEbijo;ݳ@Id#gt0ae(E#."AܙlhwۡVc C>Ĺ Tȵ$V,+ -l\X΂5)'PX]2l5qž4Nf+fHb-wTζ_3DgQIA-,=Ohc}Ɉ$"ʤ'Ʒ{vE7$GK ?B9RbfFlk<`DѱJlkYf}.#T~[Lj^d_a1BLL&7] lt?]j8v`YزghOL;DDa#`#2m3'UdL@:n6sjf[@ pFceFu Ո&d9+muubcS9}2`؀%#V?.3->{(_: ExZfl覎9 -&^'Ln.+맗S[S,"41f{*P.E(K=B#[=ٺ;3s.}D7݊r<Ӳj7_}ԉ~:1yWTRO\2 -Vc0yv:`YG˝sjU]`zwsM8#1ٓJ1T$৕Gfe ?&m?4~ i:{pNj)%ZiP`H44=`l눃r8$2,3Zw}L>[u `-s6Rp<uDC<\G:9-DnQDrojуK\ۉ(O+o#y] D36mGD X[unXV쫯c_FP;uuh Hb%g!mƶ`)aH? Р́6g0s]F@ HϠzK`m]F+ksԚH98x!eD776bƺۻʊCJh5iuBLމRY3ɖ"%{FWm~q3WD7&^R?^@(ԆH9plE'J=Ba8Ԏ?lE[_rO_ص ijN?^gxӝ9_C Qd4|Y3/ H}=gR7]xQΜCL#PM׆gKPYA_qJ\'Gd.K^i}E} Goߗ}5OʘON~Zq~_-|eE_'x s@}eE_N@P NRŸZq~:?=kcA-KsBxPhZƄZu<7WƅZuP_;26^ZS]^"|Q 6{8+sF-yE_7j?e/H}iT "+G-y e_Cj?e/I2—6v2e=A?ta9ts}~WsΌ*čh3bmɠſ}sA?!{ߙ~gkwnO"6 -) -\˻BJ٨-2[l?)P+ww}I?(n|_4S᫄Mu/(+ۿ2=o.ڢb2;vz?T3cIܷ[oKcm'o_ӷ%Ј:J8~E]m)|P~E 7H8h \*q7o`:}o3砏⍀*crgW tKwhA*`Q"rD*t~c>>uKߣ!=ԋywsg1`ٳOzx R`|KmU'X?_K_d~E'X?_j2?Z"qR ̏~KMU'X?_K_d~*#//2?Zr"Ov]b^>ZϗO~쿈kUGX?_+_~4EX?_+_d~^ˬ/%Wi`|KU'X?_J_D~*#/B?RR"Wa|H =TbyCωat*7W~"rË;]kxǻ b?xsE.1J@«_|"wW^~"«"w^~ j‹OdA\Jxyw^~ Zy5tȋCrxț /R?ysUgEixȻ b?ysUF`x݅yskE2$+HDMȒ*$n'HDݽWȕ*%"HD/IeȪ\RjMcYNlFd`7r 2m4{C!Ǟ=\FkYddD}ìB6f\Fk$;lk41יX]Ɍ@5̘`>LDsLddF[H&3K%s&3vLw@dX[AXMf`A“A6h2clg6w&c: -X_Ɍm$)؀v&3&8<LKCF?)&:NvF[`=3Xc)Z=v,~iP1.1fQI#<ƒ^ -Š|`&{lr7/<䛎Txt5`~&snAY Jv.FT{9ؑo:-Ցl頗r%6)ThKd31PL-zuƢ$ai$&ԦLS7t`0{"13C2QL?/s7.*q=t4Vo`Z7s hǙ`N::lG./ .0`փ S Nz ;wj`,F{Y:=6[v808G16LF09.ecLy`0z0\&[I,] 7\|GW`G<%vSbpET.7d7EGytƚ};1m2أs5cڿ5klmdrKP؊Py жZ\͘w\uOMy䩇/ Piv%1&{ܢmOQ wR#>֋*ܙY`R23xia+c(# )eiWsi{½#a'XK[ =hz83۸cd5( > HfNJ#'qV_1sIPpqFh?SL7%m&vnc - 1GME1Gb)3;>\3vs;/l#)`iCzGsa˼ꟻT #cRm|d|6p`1 ;s5x0fy'ͽ紭Lsۈ(($iX]Ng{jYN v[S;/< -YtA'u icO"sb l#f=ZfQigc&FF2t0f!K /;M,1VEM1^,crĠT4yL,GB=y v4v.IHr*r)8hrz<"KJQ{_8`?5Fh?y8Re-d+ZHc Q gVI/E%1670GVR[+29=Ju A_h-\R{ -Lv_GPxCAazǖf3WL߅R`d(V )yJ3&g c\~K<>Bk2nuJ5 پmzP uh0#OX4aYJ{ O_ _x-_nAYA0{)Ӏ)o --q_";  `)}-[b:PC!A' F.;EjC>*n3<)w=k=,tW/2V?Žϴв<e3jEޒkzQ, -26H2LFHD= h&{mMB -LBbYubr@_0"Y&ܚ"h'}t\`T&FLJJ%6Fk8M@z`Et{Kmt^@&b쐁# -r_KzKMmA0V^n_Wm `+ ^sF"8)!кF y!vMt+B^ orbH]>°rNm$eĭv\M$?vBw i;Ʒdn~NrnåsemaǍqO(A*u//ɕc#O - Az9euOUFh9k ڻϫXn#Ǜ1}ObzE} ;Raj"QM0CnP;E3@yߐ֖{ R>Eٮg*,Vmv3t4Hr^I [ʄɹ5kٜS7>iA$v aN'Tc44Jܐx,V0rHDGYal(##Yym nG ά%91LnzCS>V4̟$aAPu19e]#tRu-mQ`-K@T/rH7AQV4V1It6҈ ~+nWn;5';!@vhT̉>a .:ϚtF Z-dAO-VEL'O+$zr"v3Nc")AK,†+SBw⨔qLQBEGV.d@e%rgTC6Rx&…$B~kNpӇ 8c$S>Dr=u"Dmo@1u:3_ dGI+Y4}&ОO EP-Yg0_*12!oUǖ8ylH+ 5H2 z~s$RáE-hSQt#zJܘMo`P=xfòx6u)ZITZt]0=hޗ0W -b 22E6<9umAF)a|sڄ F|)0T&')|av ;Ȗezz.]?"ufwv`Qg%aqs- z9u6kTtd+FūTpnʆ?Pp -ͨ *@e3WX#e -m7[r\g0Iz ȆI':Jt~(wH NoC.vή&;:2-3FvrW*~2t=A^-2lhN(.%GpFVjT ǒ -Tx_7]KU( ~' \()k*}o , [찤NSIY_Gqw_˯uE]gp"%hh&224XE20=ΰR*v,E{,TD w;wP+`Pi׳))R0 -3M -cj2HJ؂;ؤ_mNi{ 9nvӾ^S_,ffW!,xeJI>rsAO2FcP>r,D1*@.= -TqKԎyM.\<ŋ T nmrY4Ko M -Lbg:#GsO&pŕli0Օ0砄Aԅʸ^lƏ7H $7j~994L(A $[oT^B@"7b,&WyIwk%5t~}zZ&UjP4\#g ⏟+nݑ]\$$7i3{e6UQw<]xM ^2 duz7Y3HSwѿ<p}#xcn6HG3fD=j~CxczAИ!jEL5 ʐA|)/fE/q=o:$DcʽM^(bJ Sd ݳ#ܠ=oԽcxl&F8k9 T@ [(.FR'VKqchs2dDA C3h#Tj{d`!*N\78N!O JM^wh˶Yohcn^KO)sz ! BHIle^'[ oGf|Oș %M!d+0ܣ gjaљm+WMƜI mгqA#\5pIAR]}Jr!hv4`j<P6n &̰)זщ;9viP:%aB+d47Q/L( MwMg折)ty0tj,BΜ$O{JQyƃR@R2?T=NMFK5lZ&jD xkPqWf}r^R3:t)_گ{@VʴZ YKNҪT{AD լF[C2ў' >Ly i\pLA7cpդ)klt0߷sbk049j -4SبYSS[R=U@;\eR_KP6?kgdW=ՓksȷLLMn3H5r٤ @OqRUB&xjt;58_ ;0x14E{oKJGJQ#L82P{38kg,S@C;6ذVȗV1R:#'+O*lE -`rHY8l UJ>E`76;Rt!T0HP*PG1b)ՠb#7L _bU VW?W*o/˹_XfXO]?Sv!]]V/A`^N_&|oI5o7oxWc[ˠs)Ngkywnk糱?/Ox> -endstream +<< +/Type /ExtGState +/CA 0.2509804 +>> endobj 372 0 obj -91552 +<< +/Type /ExtGState +/CA 0.2509804 +>> endobj 373 0 obj -[371 0 R] +<< +/Type /ExtGState +/CA 0.2509804 +>> endobj 374 0 obj << - /Resources 375 0 R +/Type /ExtGState +/CA 0.2509804 +>> +endobj +375 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +376 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +377 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +378 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +379 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +380 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +381 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +382 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +383 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +384 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +385 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +386 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +387 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +388 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +389 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +390 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +391 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +392 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +393 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +394 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +395 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +396 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +397 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +398 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +399 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +400 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +401 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +402 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +403 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +404 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +405 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +406 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +407 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +408 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +409 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +410 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +411 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +412 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +413 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +414 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +415 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +416 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +417 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +418 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +419 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +420 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +421 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +422 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +423 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +424 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +425 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +426 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +427 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +428 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +429 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +430 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +431 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +432 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +433 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +434 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +435 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +436 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +437 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +438 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +439 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +440 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +441 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +442 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +443 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +444 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +445 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +446 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +447 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +448 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +449 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +450 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +451 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +452 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +453 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +454 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +455 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +456 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +457 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +458 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +459 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +460 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +461 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +462 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +463 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +464 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +465 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +466 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +467 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +468 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +469 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +470 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +471 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +472 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +473 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +474 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +475 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +476 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +477 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +478 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +479 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +480 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +481 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +482 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +483 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +484 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +485 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +486 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +487 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +488 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +489 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +490 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +491 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +492 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +493 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +494 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +495 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +496 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +497 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +498 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +499 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +500 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +501 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +502 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +503 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +504 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +505 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +506 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +507 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +508 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +509 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +510 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +511 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +512 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +513 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +514 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +515 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +516 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +517 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +518 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +519 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +520 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +521 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +522 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +523 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +524 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +525 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +526 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +527 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +528 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +529 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +530 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +531 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +532 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +533 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +534 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +535 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +536 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +537 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +538 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +539 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +540 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +541 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +542 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +543 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +544 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +545 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +546 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +547 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +548 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +549 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +550 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +551 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +552 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +553 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +554 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +555 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +556 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +557 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +558 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +559 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +560 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +561 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +562 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +563 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +564 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +565 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +566 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +567 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +568 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +569 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +570 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +571 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +572 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +573 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +574 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +575 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +576 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +577 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +578 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +579 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +580 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +581 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +582 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +583 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +584 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +585 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +586 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +587 0 obj +<< /Length 588 0 R /Filter /FlateDecode >> +stream +xˮ$K7?OQ/Л~Q@`$4 ^_3dVTfvUʰw.7oI?5׿rv.K;P_J?_{(׿Z?׿no;nt,_WߏWr-_9Yl L^ҬYK/ + n|9J}K/ + ^+fo|][C!/(x-U{*ҋ7k\l;CpE}/zNK/ +}ɭR{uWT>ҫW^e>JzW%N_]<'ҫW_eK]s/*}UӔA"+}_}\ƪ.*}Uj+-)vJ]zU +5WχY~5XR˳kҫSʹzҫ`-կ4R9VåW%Z._O&8$/*} JnE&|5Xs\|5XKr~zKJ~_ſ^ rr.!IH +nzSF-k5ө^f1LK:?]5^ +TKdb49~%K&ȭ(LJ]xI7rjs- pȽ]xI7tɭ_eBK,q:B֐|$ ){Y|$t-voW^_LK\㎯Tnz~%W +6bz~ 75VK_e:8Kj*9n^MUW~%Yr_~+/IΒ|oꬒNɷ+/IJr^CK/O/${ktwnItR%{E4CK)i.E_xIr3~%[||_ /k_xIt֘_% %YR=rW /j2iX; /G9[b/${Y~%ߌ̬TR-{TwMqi}CKrYͯho^{hW WdoHya%I;1/H-K\?vc{WU>!} .9 eW>J&D>~%.43Bt߰>#7  3Bl߱>$ 6g0|Fo ‡=i#B*|H߳>#'!D|Fo;g!?|H>#7 }K? u_O.}&_?ӱ?!vL'3"O|"Y?Ӯ?!^Lgb3#")$O|"S?ӫ?!E̫'3"xLO|"L?S?")̝'il鏈|$E?Ӥ?!7iO|"`?S?!y'3 "O|"Y?Ӯ?!]̷GZ3" 돈> ]ZOTr^ʽ`MdXA}3{κ{.ώmD|j}q%Iwo̬'FM{wD>P$C#.2;a!}taAAkLw43.(woq) $w|d?H|'][wD>DCG#A;}Yܵ{e]&-"7y0ؿ{'M[7>r!!KuOo1oߢ!rk ݿ!d]A~?o߭?I {9Ϧ< E} Q2?*y?,y ~I()_l/v? @ac?8yO~Q'$郟7?@d~ B?DŮ'H#b$wiKxdd~"S#H(QR +?o;E~ GH,A'R hr]>^yO$~ )?@ݟO3Q ? +b|-OO6( ny7{KG?rChkrMڢ _gj[DFDi'("_=޺me1Ϸ-azz*HYW(}[NN_?rr^0'ǯo/kA&w_}󫴏|_R>1~!Dŗ⧘27@W.lyqmFΣ3Fǣ M'I?EXk]7=nfc4M1灑*5"˜jSdz`m u#VV;r[ͿBg˝n%&xfZWTZ +?َg:هe|9,iuMx&8ӁV-Fil~iVjP;NfY4ctY libN;gşr}mk2z1(HvbĚlKT7bXYǓdMUۺs:D3Y5G䉕ˆJ:ֹcu7S`Z 32 g̽G b uCT-$iQ)~ZeӚ\gTOw +95<ؓ观vcwZ1dJ{59҅ijȔƔw L2+eEc3MC+ )514drr1`҄#:W{~*f^rZ4xH_>)+a&Ρt!Cj(y˲|S;daN/96GR;ẗҋmC2ˁi]v(%_aJG(mC23F+|&CJ_P;Z'}`2m+’TJ,䒥kG/>G@Z5$S yYuJQ3kt@HR;\hԈF&[xZ$I?FJ|nr*RMa90K`CcGu$ &S@/'|UoAz5@E"l$lH}JDJD>Io`}hVuhfHxɋ-W$3wv%0cS/-;YCY!Q;Z1&l -h%ڷ:|HfR.07d2[}`C3|ɜ~1ۿ :c +hZG5^%ez+Nݦ KܓhrFC1BC),>\9)7L/n!aXY|TH Y +6 +7( &/LΎ<&C.v`H8<ҤTI `_!1m&Qڻ4)L&T +=#&2 G6nJ`zݏW63PDFݔK%]4a 529}c!"8DB2b} ;6:$4d 6-}Ĥ0;R+)CA->mӜ=F$cS0 +E=&GHa) l⌻01? Kb}TʆELuMUsJ}1 irs鮑6 AA`CFi`#r2&4LM6i-^E +K,)ͧS[*aXfDjo{6B3B0B7n+skpQΔBԼUHELjߡ_Z=1Q2y7wêOyE=2]DoF_,Iкi-B-5bIf9ԒQZL"gQ _Ƀ=5e>5 +c`MeK &‚U;iqH$GYv.. AkiTh\⍬yD0n.$ )YwKf3> _1IUB CvdahҼclŜ>1͓cSؑL-zt,L!IXqݲ^bnA17J%P LCԖƪlTT`l +un~4N4),j-u5lJpB&_:1L[ױPط^je|ITa2[f m +x`7oFl?4"3Mdr{t)P+ (} LfU3' ƒZo VZm ҇}FBF_6lW25 ôG`8P &W4ENsz.u.O +`:1hvrK{jl.twAvIȪ090sYYXV42†m:jXNR']YBWs H/(HumJDΆiZ$.>ga!b74 *5 8ߠ.8 Jkp8bh18Τ?Ha?城d k1a2CxR2ۑqL|:Aֈ~5\ l7"z9N36-)٠Uu 8elʎ%5oKkw b5S:91fɅyb"G7Cg7tUxVV lb׈ jR|ұFG!SP=baN>dATS]2}&\ +R;f,#V~`xr|TfuP.9C71mM_zw6V/%Ξ'y}=6u}V<[ר\޺ CJsKG ߜ]:; En`3\Ǫ^v\0]UBw-jw&8~h0)Z9#&'} EdSlPC,1ځ͓2%uyR +,BGZͭ6~Ky")!I8$ (r,ȩ90xpJ t̪8}, < @7iTNG"R LS<%89(xQ[+Ram޾HQ4oaPuATIHR(!oL@unbIyn Jzȣ*CΘWVܒzoS"jڊ݉G`á¯2L烰!߳`8)e}%1*u9fX޲ÿ!J1a~.8&oL@r`%A[ӇLN:{?|cjaҏF%S)i w 1+G=,-׆ej=ŝUPC41LP1zn{N٨5,b0Bu?d%5+ɋ%1G kDҞ}}Al݃SVl幵MzתX Φ5/\O¿IBSӡlܺX#̍,7=au8Ȣ^/-0FЂ>4wlS5Rz' ++ ز-Ň akSQZz =ݟE?I(CVtc (aDk#7@z"?:*+ Y+9Ek@#p3XލW6|tFfZ`.`gMj(L_gM3D_fBC 6;GΔ34Q^;Qc>$:8 SNmcL0/[qzA&e/34 +;LJcZV|k^0ŝ#q~lr`A B1uhiJY烼^v! n˴9IꏳUcīSVnɝ;w +IɆwI:*>uI j,I}vv`IHU`QufG<`%*n(oԃֆ[<(Ʀ 4= + +VA(.Oޘ&>o + 7&́(Qc MsaKփE(ANב$z` ݊2ҬiRwӴB5EY+V50qug n-,`^vrzP# i啯j RA4^ +<ٚA*6eCz_Q\A:{)P?6j/TT%yB#չ52y1*:҃%h :fv7R$Sy$Fi>@ɶp +FXOTiz3M +7'EaV:R2>oOy#{Jީ@1  ^qV|MR-k&{]aؠ\W ,#MyQaab+d 8m0~|q!sQ7Xv־WUO5P6zm;o01B(OυH/ j3At):5b88*lBf])hk@ٷTTd9:{ˈH .?ij$o|(C6&QPE֖G`uȔUvf7HF~Zna6%~ 4j\Y4l0k>e! GX>/E*%)p\ P5&0,_/cgk[|>DDi6LstFZ ii뀼Հ5 FshICšB Z3x QvVqԭm_2U*}MqN+oNp)A $6Ȓ"WTJX-fB#z [St${|0dm`$WHۉ*K}"fIĒ04g:G!5~P'Cݜֲ N`5cL7m=~fmE5g@Y0EJX }o2d徜, Ojrϭfґ3ǯ`BaV!n?jf`҅[\~ +|Y-IOz{W1!;o7>^HQ-D%!y)<ݹt nDѨg/h}+*#%O.2!)l K; 36[$MC7FcAR%b +&68áLJ}ɊBwfb@(+sI=UzNeͳ1]6,,lVc3t:~H` 0EXdM堹X<tNãZJ@CA~]5v=/-Wqhb,{(J^6ډ6 Jʋ +^:@lݡ59PBd͋;[g뫛7atBw{Cs'k& ֲa۵SUX܆^; n Vw!*5w$Ks7ݭ-Q% 9HW={V۵5/3>+Գ;PW~Qgv_UڢzJ6מ2`'iPL9\{wSG p o%'uF jHW5i ;G +DZB/ER@s7imd#D}܊tT=O4>ꑲt +:ƖV=; CxylB>ϖd.džUzsTF:Y 0f~rI~3m5=6HHk>k;ov )"i9_lqۂg8''(tsc#2jQ[bF:r0j8}N&laZ`^GӷfSٔ2 *Ը{v'YdwF6*t +߼= P8K| YWqi}v[gtcm[59&4L-yR^wl+59QtE5(26$ƌM8Xa7oQ-Ik66(<=tgpp4Ԡ]@ɞ=|r^ dUl(7pƤT rJkGjW%q';JŞSP:! L9 ={5v|ۃ+GS0CHĖnmtg釴 A˰1Pm>aVШf }ͩ ~_ohfdkαF=1b]ezGg[=Z84FCX҆e%(Rv39Nc+E mu2@mtC-h"2V1L*&P.:Ӑmx5e:FX,(r6Ft?~f+a bplQH+`{Wր< 1iVz/ZJ^dè o@c_i0ߙAr(\.q;l#KGދ0^N),oZNwqX}!aF;0ݔL+*O & Ȉt S/f RaCdhyEðIO LcKثaջ"I+!`^xeqXTg;šOkfMo`<^bHxYc]^KnI_Ν!QwVqw4'zYk0O]d_x?" G?rUEol +ǚrVJ$-ˆI8U8^1կ.~׿p霍eYӛHvG//kw>*U&=[ֈx_4$%!~U}vBt KJK]^<t,!~U}ɓ4^\ޗlWs^\!NˠKҫw=hzQN[΀=I/IKJ~_cFȴCҫXƣx5֘v°_!~UkҳxƠ}^åW%&x5"pUk1&~åW%&܉pUIxu$.*}H8=KJ~_å%u".*}vz/94Vۿ+t97<<~_٘Y=ou}"c<^&rj.|]yI/z\ +/ 2rߐɷK/"B4ĮV}蜾8$!v5SF#r!v5T.))WlH+$O}Q"w| }t>!7l 3BÁ>#7̇CB:|HQ'KF@b|By Og'D>1֟D~&YB] O$gZGD>ԟ R@3_A ODg'D>19ӟD~&KB'%i?^'3/"τ菈5?!XL'F3"O|P??!wQߙa,o }?|'];D>qdCG3[.-[BhB% [BOboiGF];wD>S2% 2;Bwĺtзxo }?}p'wrLK{gM[7D>Qo#i $ȷ|bECG-.~"7oy^c!晁 ȷ8o|DEG.;#߽AG.[A#!}`WHp`ֿyp?COgf >nEӀI7.IO7(Q h$_4xt/< @~ IM7Q (_lt{e~ MO2?nGH7b[~I ?_HyL7'ϧnm?|\ 93n?_vP;a-}qj[Nv^HϜe!\ƺ᜔"sͩql}>q6Gl8؏ُ2agFjQ8U~2mk|aXwf^9SOٿyp/,ʻ;gjFI]sry@Ҕu*r✎9;Nj(_?tZFv,}h|q(g +YRY{jr`{=ݑcayTK/l~-K:|uj40}C;qđ1q Q$ZI)V*>|sNIoVMΓbAgjڭ~5Kq@J9`욟ْ[@t7=Jvԋ0O>8~DT@N1NuvO3rZ- Nthq"ac$͆'ҀIS7pJ}Lgcsj+^349X-M=& LnHӜisjC29O\Q=f[i/;v16 n>x`N3 Tg 庎$9 zٙOXva|9ΔZ(OlxoԼhYKyٙvB@ +;YJfI`;-WV10T;s4főMsKjv4֛8"WsOUhnP,n'KahuR7Hwz*=*f`zqcdzv38ޠ]q8q4hy 5Z\8jmqZ$r煉ܾY8f#rW`U<"Ǯ`H!;SSEx]fdv`SD$,-7LM$U٨҇~]5✴lqۿfG]SD.s`fps)S09O33Jil`s +ݛyZ APs'"jB9N74L>$˩i䁴Ώ )~qu2<:k r|\h *oH3iMˆA7 4kűBiDMd6'Ƒc͕ +C>;t0Gd4u/ȡqalGJi^f(7+" <ˎcJzNLb ?%.(m K5WAIc'G&fm!k-0tP+q|tv*LC8N}s9XŴ+:pMhg8(S95waNd^i4#0}-h?AWs[Sƭ i;OםE?3L<0_Iw ,מ` o) -S^c/9Ѕs+݁󳊱y,}?p3 yB1}4;jVs4wr笐l¬9Ӝ:||Fa89}5Lo.Ov[ %r`23c^ Ryþ'&EdaZc ?OLI75W,AbY J@'+/d;}XNS0;1OUr=0RNcB[@24C*dW0p &#gl&wN V*Hk~;XWR_/890 8?0"]9gB}lnadd{r>Q/MۄFD; +>jW3tOj-!S#0mH/(X&ߏtLJvqlV7kϕ :9-}<v,HWvh,NҍX:\@&瀺o?|]CǭgIU#0Y0ҀX&Ma~Nrfr$ͱރSNXuPX & 鮯0-5 I0RǨʿILN8rk LkصQ~r*--!_OK7~G2=3 i>iH iדd5Z18,)2ܔ3t_Ū0TN4C|qe _RS ,mϰ–4h͂} yr}4l/'=gq .LcJvNN땹IFZ*&'pI; +[7YD3Yp3;3D^Q<Ӗ@i2఍ʜ/0"o.s}K3Y:b=~ +p.t¤T}>jISI8bUM$yK!v=''ΌIUP.Yǯ4m]558bL%֒?pQ^,s#ɠAi9ּmhD GD(ѧBeUbn/}F]*HDrCtIl"#(%TV@iuX&vHC&a!n@&- }+$ D/ͦ|7"PaZ4E)֑$Jaݎȸdzg73]0ROrĠ1E =ѯLWEԕwr0 )ٙ-{hݲ7YX]H[))NPPmU W'SJ20i2ٽMwgYmR$)Z v$=j*k9arXZjAu(~lI1aUJLƔCׁ3C_Pnl=#gqKWqĤϪarvK0yRV4t=6?mba^iDW°6J`8֥'QnMx2O+#Q2" +(u0ރyq@ gbb/F^3TIOM =\).jAQfMSF< Gpq&0Ʉ61 jrs`dY [5MW" Hc9 IHJF*8 [xMJ쟅 +:N@ =j;eeê1 ( Vx$u'Њ|Ly;9]$v9Y\if`Ua5xR-2OPdSNZIz؈a|==wjKY!Vl We7[_)Jۑn4Lã`FOO+0eQޖ5 68t~ZUXaEs4(q&k1wSғ4Ur ^-)Q3 OaiUlX]Xz@XHr\ .LfU@RR +\u4+H"0&a8~l~Adf®cdK' Bf;wt{ l|EBI_Xqlzz'XrlªI &MRH[!5,J`zqV_^WcbBX=4)tC}1skjqZpUH{@dgg27xJXIh8/b,ziij\!sE UR6^XxT8t +L\ +ײ`zg8z@ A15KbߊpЪ@=rII{ F#|_nC P@3S +|K`+2n5O*~ϞdGLCA x=xNs29@dsu+]vp6 X&RN.aFOQJ%&].U deե͋ &_v ZN2P!1E2L_5]N2Km3>2 s@Íl sj`&_ D 2.:P`2+ʺ2LɗFF(d~7=13/| äF1>@`hN>a;J^=@H9+ǃ&hqN>aa;ŘdXG}{p9@t3pЁ6@ 2P9df2L#v NӼῶq,erꁝ Ê #0>2L_nU;AA)1!2lw78t.]Z=Fe]| BYA7>sv,겄۠pU_.>TL0U.><-5YAZ.><IV2l.>XuH0B+] v^o dn 09N|AՎE2Jo ÆWJAG NBKsdXAYjGlA6*(΃( ŀΠq+%>P;d}{1ʱdpSdʁ] (dzy6tt#R8 A!Ȗw."mGlaH v?.BiMb! +Rw>A@(r@Ф?-)$1"^,C2] A֛_K97ڍl^AhW"l7BX"]| '~6n| Lq6ݠqHBmmU쒳 z> q=ɼe9ۭBqOcEol L nR`ES.6tatp&E"aI2t;@`TQ|+EuW +i)9Ynt  }Yot 0O.:fe1:X IKzgD]t M\jQ(@8D2-{(GY# [`XGyot =^vсs:Loi=OǬ72դE" 䩊E"X$<2Y" >@$52d Xu}'Y]~#6!@R"q\Wqc 䚘jI"SPR#-ƍD0hlMYʟdNv5J9^Dp5ΜF~T=tW־Ӂ˱bFktj6_t +pj|g`t eIT(;@4$ *̎)gv +ϱ]n| ahldKǓ\d ZHPK 729́]\ j%+Yö Q5ݸ@0W#e!.z`Ԗ{8QK3Q| "Baj ߏ_}ܸ@do䌏X@.."qQb#]iؼ/3AS(: +a{޸@䦖Cq}j`ROw"C%oUX^T |]T oa#. +Tj5ayrQ_km +D%E$zN+3 +dES^uH'yѴzʹvH+ '6w?N:fYW`B&*!,Q摀 +[)Wl;HA`2R~v(܁ =I rj uƌhqU],E((jq9,Bm7r0z`9]2ٓ_QFG ] *Ҁy;9^GJ/7rtxv?v^Bej-ƍ LjNL!d4FɁa㹑5'00qR B$v\w]!,4o!8 <" $w4&v-aʸ^$!*Nxh=HBNcI~ZfA~.xW.ҡ#ĖwbAb~͓[`GL#dlfPʍ#d#45f=#D +`GVh9zn$'Ls^vq]sw1bk7 L +#TIް0却o! ȇNs(B֋MZ4-"_>W& +f8.QJw`G+P}{4Jap2H.z4;9BF[\#I_XTn E}q;pu7P%#V9Bպh׹B + L1ZL(DqC~FAي^ S.n$9tQد1T ofi:ɘB^%]Ԡ DF8M7j{A] $vwz1Lq&x5Nf;_3V= ZL6 B&`3B~U vQ(DD +ѰuьOnԠe[+h5Al-C:sSh^Aj[`5j01>AT(2%`3FWM] pPp5%]~=)o vjN' + +W} +(\(7j1հ3n&R%ŷ]] п] ?;]O6͟ o`7" n5{&A0߸A ʹKYW|тz1yu,4znc,O m5 e$c0͂`q[ ks5 ̱H*-d##D*_'c]غA,+vح1T'Q! +&sf f +)dKvm7XA8abY[au-Y{;,kG,.r=-ꁝ }̌2*- rLfis)Vˉ*hdYf_5dibkk.ʁbMVC @ ڷ+~h{]ٙ$;sOq^v/t:A@[%@SLi#?33-;t׉ nnef;WS}ZcE,;; V눍>%O% =29L悟s`tisuY ,50[=ӟ0+<pFA?eoC]_N! OF$/jM??Mz`o!+Xyz]`̍PY- FU\ܿa]IOhŠFDk˟+ZVww;Gdbğ :K./? y܊^~7r7  +fw |[ʒ}r_46KoEkւE/-z//Vh?Lۢ @Ѭ/- [QåEEomAtڵ֤IUk/C~_ɢ_A۔k0z{~Y LJІ㵷a4iLzSko $h󵷅cj󵷅d'Ey@{d.-&K0tmuY2e+|@#0c?otm72]~.tm7r<]~O ,ltm#jh3mo]f߳87H?TGGwn>Q.-tg @GӈMV7h(}ҽ &#[9i݄LeM%3q݄\y 3y݄M &˅&I&Ui4iM:=ʉߟ̎S}vnLh7v#Oߘn?g-ݜn?h5݄.M &SvnLr7jun?h}k争PgK&CvŎ;#?k}kP]f#HvVhG&Cv.ѷF56j7qvRwF5eDn?_Y}kP]f#(wy펣yc;e{KFeֻy7FOwoz7C؃1#\ +3#aycHJvPo?QO6M95#B1WWw_wAM=g1?,?p+?)!͡xF=񈈟y1؟%؟O؟8k6SB/B~$[<$'Cb"X<$'jCb"U<$':Sb R<$' +3b/g\Eݠ J@}%?!Byy_Oл'D^hW"/t+gMC^X/DG^/G^X/G^/G^X/Dgp 3J~F)+ q aΗz!hpeOO8iJh~=KBL2y hN峘}\pڢ Ku-#8SOpg]2z.8ɼQ?pG\(N-2;w^Bo z) 8 SpK$N]-[I{v+( $ ( $+( $ $#S(MkQڭrBnT$)#R px,kAr;"/;ewD^XGw7D^hwDn,7\ah7D^Y7D^hwD^XGww3{ݠxa%ޡrbl{*?O ,(>CG8f--!E!Z>tYUiSp@WkMpDỦWkGp@܈*WCߴ { ]'ߵ} MÁBߵJ} ]'ߵ} ]cBׄQ sT"7] RL+8| 4M(8 }"Yoz\>x6p?`MBt՜ʼn'q2oxߙ,Vw P,X\l( 6)W r4bm6(Fe9U) i + %bm2OA6У%&A`s>(,&o`۠XRhkQdG.bmʼU}T,,C ͓ͅaκ}MmbmK[Hm}Nz-}Z2jk%dNxg̉5RBdҔ㗬X&+[ikt_xmPMcc۠XYh2%A6G\6(=MmP,jߒA67-o yFsMeR׳,Xkambm<1Ʊ6&2KTI6O6&t(F6(RzZ`?5bmT@aXbU6'f_G}Nj)kł%&-s@۠X}bmWeT&łi룶I6JLo]\'j^ܲ55Y͉igv[fXG=96\mя_QXʖul=}N s1>űmP cԨO02>.lb&)Rmbmbե}PR`a`۠X;[ $/U[bkbf-6'UӦ5mN \mT16gpPK`ۘXj_))6pT1}J,Zbh`ۘXȐwyƘXi96l+u2{`ۜX&DpH6'%cdu`X&RjuTgjORG=6^1S5gYcb98(k`>r+Ҝrjv +rwG{,6ml+s:LIg`)R:MME$2U&T&6>%VvVɬn#i5RJ`)1BVHs72wv.~w8&l;em)s(8a16[o-962WoSbs0$CfCbmo sl`K`X K / M^ⅇr`XF&j23}H,CZÐX2Jl״;ꟛa+TaX7Ti`cb;bS(2,ZLm|nˌi)mLͦzAcbmuAY16 {arKۘXZRZmcbdړU,msbm^Ed[Nl7kJmb߬mP)A6\n5= eyOK +lkubmnYI6o]ZfDcۤXӞ㭗yk)T`ۤX +MJݎ5BmR,u%&łz=y.X0._mb-xK6)L;q,MO;mbs'lL{גeŒӋ3CA6(ֲ+7m .6(6-Rzss:bJmbHmP,\GM1֪łQѧ# %(-yZł%9~gŦeB}'ԃmb2s[]&~gebV #&_tqR>'V xrl &_+όZ9!Z=WuĂ͜>Ml̉Rgaq^>'l~>lZE6'L1;ݰe# uJ`ۜX0죾9:G9`X]|N,6'65|Bn +V)&7B5`]A:dO% MkЭs۠X0VGcA?Rt>X-"*0JIj}sĂCr¶9$ʁg?lmsbt{-yKk5[͉eַToYǷTk}(~IJeJMX沏e@ +dv[]<MgYIiU6Ot r%P뀙): +O cYuMc +pZSvYώɮ+ ? l"I/D4Yh芿4ұ@D@ŋdRW[25Ja3,ӗ+%]\f#l׊c:BF5C].a5LoV {Xhs9- >3?y[0t{-IAcjR$ǫ +/Hcoear.Lo,ɝ9EǀT6 +l鄟pBNؓ2xli-JIz L\vds ?|v#ңZ+TH,rTXMNυ̺ڔIusKz<]pz%䃰63e]8uiм63Cށ@:dQLZ+V]s0yX޹Ii6HK$/],_GX k~βR-,U13x^Q,˖\Ork h!x rԬ:ZV~=& #@e`d:訖3?AFZMEd|r-'LKPQ-50L>)W;b?\[ɔU[dP}`u ' ~Y1Ln#RljѨP-[q3ǻ|}'ޕ0N%Jw=v5l!!D摝 +(u"SDGŭ8A$8""M+gM<XVnxϒ)㯳\PcMK  wJ~N:›+iR7 Oe~6c7`C" fNN%ofogW(3þ̶l&׀n%d;gea +w,w'#[&F)4$;YwSPW!dI~3e&w NV8Y7&P-#+W-:TNIXaxAP0ڗ?d6OJ2@Uaa2Gq¥|pazh \-8Ϡ @B7z`g.у֠8 d6p#%귏 !-`h7`!;GPi6MF2-[Y7i/m4!Faؒs䯓l'djL6*إ@dnܸB--"ʢ h7Ĥ/\b'7ʐZ}3w7,n!C5d hC3) x Թ[0qP9d`ס7Q`dM}pMhQK=ru.C8C`+l!9}rJWq24C DjRBb)Dgn"[۰Dq`ױ֝Ed`1W[F#֬i@N^@L" ܨDa$V0Pzl,"9KdLk DԻAPF(2S(2PJ) pT%8msIEJqK*ā\F+2IY%hI)64X[C\, Pq TxN.2pFy@XK.[.z0JDdC.|L7脋@^NHE<@=12PIlF202yZ6@NIB+tZK'@AҝM{YɀՁ$-OHH  7^? <1H< NuP7c P!ձH[L* pg#٪cPBnt$[sF} D$v}_38H79/?&e~Lی)j`'$S$ZM% I2DCk&;Uo, lg%ʛf9$YV e)eBWۢqg ]?8ބm;}h9ALOsn3#%OSuHi|I<&z|Kc_bɜߚ .xr ӠZj.Ьy`;= LkOI`i#0 z;~ (j=HLJK KN'Y٬Gv\-ec6΂@%}\YJҜe _{N;M {l`NS#.Rvm`z̞6 O,9ZIm r.RȐ͖^we\|%@FпV;IVZ!< tw9q C=?ūIKЙ0!ul%V~N[L}܉KX:Zbĥ^nf&Rn^Bia]7HU~.gm<ܸK`[>p]zO- CתDnU'Փs%~ 0R ųēG6UdQ,tO~vN}; wÉh]OS!%k5y?Y[^»|N*.)tKch P?!CXwQ"pKjbc0u(ZXw.D+Ά"9/ubZP6}UF sV2O'Mcjo VT1s ɢ0tYcZ`pFAw饯 kPBX\5Q޳FRԣRi#l 2p)>ޣ(sl&(WJgH1DecI@~BRѤI_s󤠸L6(ڈRPc4 @`<@ \NqM%R̨^(E{6 w.ek>x)^ʚ)Ur*)s羖AOփp0w0Ĉ{SQÐ|;VNțY$;!V08SϡSD8BÝ9E{ENK^XY TqK˝8jzvmƞ2MLy.Dwji+6pVeTe + {Kdmm;+4=R:n:A5g覇 +rdҺi|+d)8<; +T:b. ?c(ހ$NBK ѳ YD//Zf7 8Op{!ZMn}`~"3 JWu)Zѐq;תБB+ 0VfKF[ļJLξk^2UvSLNŻj%́n5RBvi0RWN•gÝW3﫶e~ܙ?'+EZ35ĭ2M{_xɻ{cMv`\/wbOӎeg\5;6pg\y"% GժT< fLmMt \Qu0}ȋFt--2y`HKi1!O+ Zҩ8A6sb/l[Yf U- 6A.UAN ~EIȺZ~k?^uF<9ͳcJ{ GNj:= XXyFJ\/*Y.&V><1D=4@rY9Ppk& +-bqNKW٪-{XMV7oNjsni mͻYT)eӬni+fՍmFw1}rZYuY 觃gE Xx5r*fu+| pYuRV,8xVG^BϊQq6)xVX!xVBn9aݍfEd}-ZxV5 j9r6Ƴ"ʥ w֝gE)r<+jëzfu2P9ϊiT*˫m<+J{dY"<+kD|>`CkuHGK`YYMRnFz pYYJptڄN +r 54p`bHhgA 4Ʋ$ʧ-;:un,+kZkVƲz81|agYeIMlu3*[HJfײ'|eel[13mYVWVadjɱ \fe}wSӔ ްW`ZOn4+@}m k5V"C.i#ZYkl#ZL9 ZY3c=Im2A&ZJDZu`YęRFvn3Dl;7D+k=MFC-u'ZYGQ>yY S@EAج(6xV8:=]'7vu _7}A'7V}Zc D+0?"CAffkmD+bN)rkD+@[_ ZYʶםhe8ʚlpcYqr6uORvhO-lF5GM?E6^''yomΡ?w B](>Zwܚ_.iaQiғ?։K~$%Äi37BmV|7Atw@Y䧟%tO 8pr=ز>@.T]dݰX8}gmYt,T>VJ[j?V?`w]/4 w.wƈlt kKe.T&d//{/G6we36N1QT4eWo^z_}&_ސ}z-C åez0$P-+KJ*FZ1J!x}Z'A!p}Z+j/4d//V+wu K˾J]5f9]z_}Vi a5//VL#6ejpjU!x}Z͐<>\z[vժ鴼Λpzm#8#HZL[Pmg䝓1RJkQ%V$-0Fv \0AɲC{?T:mϻ/'5`0w @G`Ri%}T6s\yKtDCI]"oc%K=ևÕD߷\4P{Z&GqVY}P+LsBA}/'3Uhx= j=ӕD0>NW*:ㅷVI=Gq4W8^xOgzrd'3Vl*q?.'CFh/'C ص9pu9pȣ9puXWcc[549pVGx2NWʝ<qVx=轓9p4W^yP+LsŦx=lt=Csأ,#f@LYojr% +_bob&zBzzT?+|\<'捯k_?+?*?P(w!MxFlg@xFg@xF5́xF䇇5?ZOcUПG k3BL<$> wY.z{Pz%zpzexzvztмB~w?"~!v?!J~at?!~r?!J~p?!~!o?!J~am?"~k? ʾyecza0c W  W  W /BB#B/TvBZ#BiDܦr^=r%UX_N.Iƛ)ػISnY|RQ>6e<]m-")\NptsIz"Gwn< ީ#\.pxnsIz"Gw<$ީ#rWpC̹ (N=B?HWpGxCxGx9"oF8@kCB ߴ8|$D" "(|8"7-B*6 7m.2,!'i 9.|Ӂ,k ]."?M' t} c" t| p+p׎gi%pHᵋY!tsYaoz\>xxpoe>|8RN}yl3^癡lCrKY0ߏ9\313Z>\ 4D~1MOy J W* +zG[^#{Qfob廯}|'򝜿z7oca._K|paٺiCus/F$1 +~}I{}[$._;cbNX̴~'?&A+ZR~'v}J)iϒSB7wR理VKNTIҿ_kR<"r-6׊Qf1w̿.aù1xV`MO>ϱ0*+6'@/$^݊,SϋִՇ@ +Z*hGZqљktyg%ɋWW7P6VjX扩e bk[|HlyfoX;4VazXa0X jCٰoaZ7`SW.Ӛt\>avZц%Ok`T$rkٵ$l!_^ ӫUma6m Lgᢟw egtՀ ٙj稯R>[Iݹ0ɵ/ԺYaKM/(ҵܻ,ZV cdeifhȜ|9CǐA-VfϞeYw_65TV&%;ٔpލDTje 薺I nݟsYа2-=Za)A:mav~"ICN \/.}Y?<&pq`:jlt`3ذAs70imԌAد=r qgcd;]8=0ޕ{nYg/z^gux'@_q홁FHZU +! +_j`L.⅟"gc$d םj WM`bt0Dzp1-ؙ(ݻř[Wby+~ B|k~&LLfe궔]*I}4, LA}0#V!ڠcV&2Rb0p@rwgv@=[c~eԘʹы٠,:}i2l[V>v~m`&u^ Ӌ*meĨm _ Udզ L[A˽̠m}lXXQns&3]CxкU+`uW֜Aڋ +3]N)Fբn-ɜZ6a[S^f ^jw! gޏչ0R L{v &lթS[1e 5Vs'>1SV4[a6\{ ړa3I6[a8 z$zQ +~C90=\iG ͂گ>ee`8Hh+MZMidB-s2X2[CV꣱a\ osT߃ 5 LQ:Zv` sa&B裝19׸s-i-nFk=0gIsi2`ڑf ˬ+)Gh(͂pO⪑L< C%٩'&wݭ[iIKoR\RT ͋]o0lxz) ;Z%,Â490Q$`oN)~,-u_t=YPV@zx=6#YmTO5)651ϼXFρ^Ҥ#;^[oIn6aH mnb`̤.~ HEK5%MEfߺ|y&h.UvazlS=i5k)wWº6ǺarQdS4oҝL:e%^ޕ4u5,6Ʈo`ZndBW RҿŜK[a:ds%V&ƎJ5?3ueO"#J57<К`ePto_? O_0'Yk[O i9&=UGGPEFOSq*&;DFC|U;/.^Xi L9hRˆLHH7lZp9PaDz3v:I6}]qMH:cú Zz`WLǏ)hV_ 1 ӎu/2&gCHY +`dMa}!]V)Y7OtqJT) r.WYp\827>"gZVvo=I׼0 3902kR C/v څ:{wː%u9|!qZ昶u[Ѿ!3+@^Z=0:Ydi2U-w(^Ɓ-K.ujI5GfVis`2h3;V8‰[).,u;J`}A%U_rat +bʶCr-1(|7L_u\LeD r1]B<`6y-H-=$'?eOv)sL-+4[SE,-cz?,ZRZzϦ_f3+L[[f=RB7%cZڇ3 +N +N/FVe9,1}8>dԑ죊0X3O|jW3RV6o~Y+]p P(qˌW7LYHg%uaƨ2aMNeu9#d 3&cٺZf-q/y &OF'*)asr(;[ +_-k L?Z{HkF9CD~RքL~S[`/q!/#WZ6+T/Y@Fo #HfG4X  5S¾/nJS43?@=ඐ@S4C)e2$6̶d,3!-xݕQz(nHێ$Ki`EF]/qRvr50RV,:0B2jQ&8fτiʃ4|?O0m]X~ĕf`Rlm`A?8! ],50W䞎וv :ddZHă֎**fY6/+dX'+2dLv~e m9?V~h.L1O+6ôp=Dm5smn`g݃ s!5Aar L%a߂^$ebGe)|0q:܅M0s`YZY,B,aH@d1tJA:'XBr$Ҿ;0_XZx|!hMl+bX] r%&c- +ߙL}`BaTjd]!Veˏ !:,'f9-_81EGY +\z2nϖ2y.km|8uξfos;Xp) Yj1|@Q(,ş<>'?@tck0`2n'-m"lNnq2j=0^:1mjda/la8&&taMpu+LHk഑.`K36n],0Ra,P/ kh[:. 6AH=- yͶrgEjV#*octZij'Ⱥ5de/sյe9)N1 ? B/淂AשPZ@%УPțe@Lنl{J; L^`w6Ss`d-:(Lԡ"҃nrsn-k`ZR#6!L[DGkxV['iMEa^E +lw/% W;6/L_1+Еako('b$W<5noA<od";g20Ƅ1ߩ}W\=y'WdNHIﶼO͝9BKb+C1|]t2E |*x*} m.^\`-^`g [_\ %_w捍&SW'8FNvZ,΅I ̣Z,#+1bxlYVdy˧Lȑl3 N.PFx-A3U  &'CG/ɤ\#⢭JN۷dZ1;!Gx?i[,oF,Eäuv,hC9wJ퐕Q 64N[<0WkyLS8 6%lh[Ry٘ UvX~ N9v~Bu.S!F4Zv+uY/GQ԰Lu Cg)zбeS`z޴Vbɟl,Y=Z)êfD9Lj^Ҋ~NVG \f, 8'quNőqf*I>?dՎliF0]2NE%i@K þLR' ΅& Tc0dJ-Il8VpZ zr7Q `) ~E,ʿREJ%2SNeaJF5+)C",~V:b"Q Aϰ\,)U1yBIL +$LW4ix" p%Hy9-I.93Ynڇ9=!9ŘzilP3:qb(@vKd# )+} טT 1bFm+g1-zt\7Nj] +g֒?jc&TЫ1<V\uQ`Xp!G.Hp6%-t-/5=m w^uiT,=0S%%݁[7%aW?ZjA7:cZSQfiNdc_d/sךr&G&#]tGSIxY +t''Ncp#7IbvL#DpB>䋼 t&0mVF #;\DrUDU&;H~ojJBKD 8EMP L紜ib䟳Sz<"$k@Y=B&IfljVd3NJOXF!L3px@+Yov{yP5nW7L'ٌXсNlVqT?%[5tlY(Y^RE-GL%\s jI X阡D;f01R9K`>2)2[J6:ԉh,1dɹ^NˀQL\\;6)~*,_ځL5\ɭ*n|9#99@#Vن )J0ց*9`ZƄg4t\?ٽ7!&or߻MLd%wE"Sh?#- ;f%ŭk9|7;|7Wzq +;LGDF[_esCtRW9;')bqNlzT?Q`[C&۫PHgs $, MN1ʘT:Ű11/l mxb: t-;T) QE_+7&[|խ Čiho|XZi☎Tb9{)Q^t%vvv͐s^1e +8kdȀ)ڕ f5G 830%yu}/"iD_aa5w6dU;1I3j+e +Ba^R:[ƏRQRRq%O烲8HnAmDlT`9yJd{  I#O}I7aM(20٨u~jV2kmĕ5Alz2CwLfu "Z<0[pU`o~ IJo:is4TTEA\3k*u7e lE|"%$F9L&'ֳ7C+6`WXꥂ5@$*pp~A: 6w O&2l P'o5MEi+]VPId%Χ hi7[1$;&sbC>=xebL6$@&F%ojg%oa +C*WGFrhX{@V=` me"R49㼂F@ر=$+AI> m 7wh l+̱Z|9݂IV翓T}(840R>lUge(O4{j^#@_ F[b9(JMV ٽHc~$G,'7RFFN"-+Ԓn< +:(jZy+=|*aT]Zu9?yD[ b,(H^,a-TsY!\<ϼ;%eL1'lmI&֫}ZhŜݷx6>գxLt:RmV0}&w qA謎ł9t +;|Z;OdkЧsW^u-0PЦ1&gJ֒}%0)_o*풊++BmVI&:-J=krL`vuc;FEew&< +E 3ؚG%i؀Ɇ-m^)[u1R(uiuhU܂&Vҋn +dA1G`)QYG!*&^om$S4iy,`QI}"<6]~Gn[Ƃ9MwpZt6}n=F@ժm$9zhOIȱd]]-0-M_Ova +/ bjmb:/Xgrc&tS="KOЖpf?+W* ݏ@F0ǐoW9?s#Vƿ?#lh`/O.Rb-SdeQԲ`qQq"M (Yn>4dr>?#Poo#k5[QܑnhN(⇜.5d}!F/X}r_ˎR!x}l+$n>^z_|_6YBඤ!x}lW`U8e{Kȶ*;"åeeWHmIt[Rip,p'MkFћ0d//kxtgMrZ-օ7w}ZLNU./{$K˾\&9]z_}-P)q$K˾Ŗ:]kgKtm^[:ӥek Ʉpzm2ἿOޗ}_u:xN|鼿Oޗ}_u" }zm8HZj/3^7gnޑoʡg~LSÕ$uK&F6чKɾLv%͘F{k&Lx9Õ$a>\zOzdS)6هKD/9i}M{[[=M'ナe,ar#+ILYf2;3Jz#+IL}"{?`V{?aGNޓ󢀣9^yOg ]_Ozt=ٟ0>8^yOgBl.'3mFmtWޓ6#|Wޒ>e:T{?fTIӥd(L=+IPv2}}=_ޓQ'=r459KLѐh9+ILY}p4=}ptNޓtWޓsa9K:8wؘIYD\nx. chϗ7o~;u7h&zqv="b>'fm-~.\wQ͖ -?Q*?({?&_?% gп&<<##B8<$l>=!3BM<#3B`J<##BF<$I # WOJw{qYKO_O_Oҵ_O_O_8O2_ڏP_XO Rg? ⅄~B}B~Bv~BoB~Bh½~Dh˥'^/lp_h֏=?qkPz%jpzehzfzdдB~g?"_UBF#B?T">`a@=G+{j跓{ lASa޳哐}XpJfu-8S-pK:$N;wD^"y)8ɼSpK$N)Q["/;[B7I{;.,;t;ڕyKyGyKyJPBoqo =sO2ooO2?2O~ݩ#Z py,KQz["wD^G*n 0OBPo =SO2opopO2Gqo︟W:A=^QB-gI &WQ- +-I-gI ɅyA$XͲ ~;Vs?E=~9E׮g^E>~Eo\>~x~xm#p@EipDᛎ^[\d~gO쇓=:d%4EA3X'Trǚ5^LՓ!!̙8>MsL.2S2/M6Ȧjq1Nȇ`S5xsz`86Mه-.9TmZ5恔tu_tdåLTZ/.Tscd΁mc {[| q5Z: Zhԙ #}Rg5sJ<9x:#6_mn[Ǒ` *s^O6PjZ?Hjx,5Ssv5HNl~,uA.˳=MKz` óe!11-Ĺw_ Ie +\ay|c(Cɶ>˱i#lf13Z K>I6>WHhZه-J*ړ͢qlmPa7,f滗l@UsbpoF`Xeaa`a0myuMoIP81 2ᛙb^-=rK]wW3|v,ŮF"I5yaBP`PĘ9L;:yUt6;1;To 2Zغ `J+˓zM2d;==9ܫߺ\B1=yNeu$GHf;㩬z-|Ӭ#ف1SbLm޹hy%M<&4&Ct}3 ZԿubcFj<$-1֡b<1jqIH0+cZSoڙj~s[8 [tX2OMS3{1EN3XnRbd5gbb[OyK"Kke0ܞt81 ټ䤧WTTt{TeG&Ν) wG4UMI #?pgf_Օ`Xa~/wط&˱ 1e(]zߎLGR @ٚVwi`Jɴ\`ShbʶYqG ^j:Y$#Ze5ej257)IT_ eLLM=SNJ&5:֭"δ0|/(RftLlX)hέu+5s &MzN)V=^r`C&[#KMsIWJ%hTcSGe-OP,ղS +E9v7LzY}]ø* +!dm4) Bl= 3́M:$;d}dڪ DԴT =4VcutY0{ܣ޽7ϔW}P1sO}ئi U󬞭~;2rk`rq1a%>{=J+J4(lZA1]g&6JB3r@Di@*Ft:Ұ,?@+nQ2 +Nlc,Cb^SGI_CR/2ڼhc2f0x-o%})_xD1HͩFn 3$7YF8ґ;.uwe:03/{f%ڽS5 o|^&Ƃ"pYFsXe|3hE׻G2NiLV1=~6}D Lcwrky"Lߧ[y0L:-FS²FJ [Ep[~ZeY*o4cRvVvi_d7Ó?k!'C! Gm~ɆX&E"T# tJ^'޳KMě%^YG×V¶fip:adӀXARX%#KP+dSOFq BnCoɯHij@doe ˊeJ@226665wEȡPt[A#G\Xx0yt~,*DmF` u:)N}rc?c1Ȕ\d LOs~9-L + +xݩ64 6eyv ˻HÒ\02Ͻ5SL獐sS,">9 (ȍd68Ġa3T`]0azk%0 ]d:C j6K{p(LF F4"BeuLTOSx'Jy~e~Pm}r%,?>Wwbfcil7Zv0 -i6wȄ./~Jad{?CR{zwr$j|ӧUo[2]F͚g3" uFȆT8'%w]<$C.vb20R)d@>X 4,E͗sZȽBldQbKYnS?+R%kcl iaHb&QLa2dh'څinbGa08Y2cG#OC]%uѨŚgli-?NbhVLYx*qRW D>&9Ii24ӵϰakIEx`VgSb8 W^K\",dyM% +GF^oo۳O;F4"4b]cTG0cS/ӺozBcj5׍c|n=3adrC36)]ŀĨCFNN)L7H鷃k77 +Lэgj5dݹJ7Gk9 ̇{F +vƺAŠ\ݽ1Ym}makR;Af`r< }1WNudGj* K]eǂϤ W@?+RcKMXX`Kv CH.gOFvR4y#%[Nr"bt>"%?%enga6i&{X/=7Oς|LPͮf](B䧬TOW֧RvI8I=?b suݳ`BS+2Zw$F0o+l Ф1 dA%I_^k|zl&p+B3 t0?O>Ȱ(BMHjtckp;zW/cje!vm<70iENΨkoAJ$$ jv|R +vI\;(BjS1rdIG˂ !3|O,U AsՠV ǒpvXo K Ffi$4* V v +I څ 4HLlޱ 4?)}A(xf ْ%OAmG!2S!qqgt"wmua'Ai/k $Y&f4"i*`ÚMKۅ!4p'܆VHAyڙw/+3l0,)?;BI}yfZa5=/3P#",=R9: Btr0ARTi~xnv?Io`'AK?#UI,> E[7a N<5/!R՗DNtr"`mR|B򃠭;v1 Gc_ARw bO+"!7l F7>ﺜn;A4/n,7!{v-ؖXk\BU7; Bѱ[hE~ !JYzl v,?# +I꤈n `Bhֱ 7?I"Ǵ~/!a~-IδW`'C U[d&;Bvچ +QV/Nvq"I8e̅!ۗۅ"ԍ*!F]A֗N:IBv%D+*n,$ѯbF[]SyQNl H#%d>o>0`7n* ѩM`[{O-oeX]2meAjgKS8va !LpDe: +7@'KȎ?|APȪ#]+hȚMŸ)b,t]XBlDa͒O/m@.,!x֚][ﶔ+I_p" K(II!4 +;V4* 64#{ Yx/`մaYfTmv҄*Y ;iBl5#'H4!:Y0 +-& UԜv҄,j ƅ&T~Q8 UzA`MW7/iev*F;OhE  5 A*<I?iBN4!(){L;a'Mތ-:., qACx ;YBtg;YB Ƙd v#vv0 +,!99 K(re;YBTfW6,'У%dLvNXOkv1c\2.$! #o{ٷ"Z^vR46{J@'C*orb| CԎ`'CK4kۅ!$Łj|b"ސY*<(Bp$'qB؅"Zcx2z>V,k=aX4XLqjz|a~+'CȖȀ. !X9+CHucдUUuP dHU7' +7&V9Ar4`qnH4 \Yv!ua' 3̮4#D@S? ɡ' }hvxܱ5l\AöQ-*=b?p9H蒋D *  Nzr$ך'Jm?HЃ:J H]4,ySW L~/퀩17Nt3lX Ñ=Awq5 =tIcpY0lx^iv҃H9c-IP4m3 +yBȸi EOŽ[ug_I&GNv҃X9ci vleL~*t~k'K ^o~)Vw ^Gt \q2PJWT"gK@?ȒlJ|Ќ:A$[rֺ6E [a7}b%IxdvHZ(!;ox'Au0)w;B~r!cA&V`s; BŶє qblN!66fOvPaBᦠ d'9Nrx"3"~kHG99w@?- U Xpv +dU+XڪDŽIF⾴>*΃~k9VXZ&~P12#Ț٢JyNz||$g;A +{;Bc[dO [MsVIBb)nx ĻHJm [!>y@({lzg4EU=6!o *!:A/m3;B_M!:p'lA!m I1!;֕caV>iA`A1O ds~M2?hPf^8'?flcW9%`?BFć`?(V J|1vNu۲`?]%P=Ah8Y^ #i`Zt%j y;A w}ޖ_ |LJi v0Zl|&V6AF;A:i6aecaqŻha7s\qSy0,#Pk cY8 Q T Sp_;Gdh/Sa],v΍v7S1.`sNv`& |7Ep>b)80\\>AF9$HͨJ€EQ]A8v6;Y`ٲM <ϬrJuNrd'Kƀ +uc"eX +]Px Lf(֝k%'d88mG>H`B:V 6NvE]GsAB>>.sB`y2Dk%&KӢ,XD;7 ^pU9W Hp _V +i,P;8 Ƀ5 ;~ ӅV ¹v^LÈYdAy{r)Cdyv0H7ȱH,-;A`,qhy,DFuP/HQ> ^%Y~H &h<.^PrܡE bON^P>Z`/?mk}1{ C*N];AŎc(G lca,Ġ`2 %8w`1N#E *ͨmcbP;bبnP;yAkz.M5̚oCJ_`/LI ^d3(gpzц}KQHCnUZTy ,AQ(;h N J̠b/VZTG4c>ĉ+"Ez8+8=!b'54?c߇ܠҌK1v +˔itP֝T * *y7oP.0Av"1>;A*i*7'51nˏ;A9LrRGkUzr*w+ e :N*ݎf1[ Y#vr(ΊZGu~9P-a]q!;A{@d#N\r +;AIa]v tPƹTm7y5ߔ $Wlsӿ򯸴ۿIvw~{#'5٭7IAM??m۶??׿sX( 5ɲuG9vK~A1qһ[~f͛nk3td;)=|B /9ҫSCLvYdlC d.=/{.ۖ+e\le_/=/{.;ۉΜS륧euٰ;[Cvya!%}lb2\粯 j'9˥ee"_T_o۳ii۵祿8Qܯ=/uM&% 祿daIf 祿2zI^{Zzy]I|T*kK]Qܯ=/uop%ryٯ4Kf_ju4oמM JΪ~h!vy?t;Lfvn{kKۡ ?۵h2k"t]{^4݊O~O`S#&:gHU^+}egi^joWe墭\Q7d_.='ʄC= )#r9?PT&N8"r9?R.곞ɾ\zN vU5KO o?Q&HU~*(X)m_zN<1NC9?pL1n +r9?eFL7rj3'W^sߙU\<'Ni7rj3;o +v9?fٖ~ +z)Ź)ۥPQDPq^A; K ^V6/WSa^yNO»p5wv9?losL^zNO%<%pT9 +ω.K; K 6K#9 +ω.Kc +z9?e +vȾ^zNYVvPnCm80\<',qa]zNfO2J<'hDj~J~" m{~>Q[_dǬ[M͏(AciI702#*{~xo MBn7[D|OxoMbRIw$w=&&$PCȷl7&/$;ś~Ǹx Mb#WG=!Cea(%d/A'';>?!0OLw}C#7-BHzzϔ4}zE#3-bݟoHL~E#3-b(ܟX.}OϜ}$&E##3K-bo GgB{O[>ҽ?S!\?BNar.0zzċwu>۹u[ΊwtN_[^٣ȇ- 7MxEVW$"a U+{^&=/ }rpރW>l5|eK"d%ւ"aKU+{ ^m[ .2_S"aU+{^e&/*[B_3 +$akM+{~ޤ#*-|qpփW>4|eK"; n"_jǝW/m1xIÎW$&-/|ApVW;BWilx%})pږW>|eK";n"_"W/m xINW$&/%OW/mA&]A6j-=%! ă7 :Q_ i/BxDW D>D)Jtg!QJʅV? RH~hJv%r ~*D+{: R=˃2] + +5ˤ>Z`g!Ѣ-_6,BdTƇ?3_ + +OVYH0 TvR+B:+e; RZJ\z2'oz$ZP!6v|un% +큝D){=\E.D\DK)QlwlUuZTNI.Ղ4QK4Rv8vrFR>tYM*YJZb5g,%*R*RJ4S]Skɰ:YzDe*{g%w%*lH\`g-Ѭ.簺`g-Qa^>!Z}ZTjO;kR\ISKZ93[K0o=ve!Tډ(b.S:FK8)Q'壖hܖ +O*R,` ,%*LsIR**%륖hzhYYKTtZIQLRKƛcg-4ԤbK-D-rCd>ʻN!,l>lDYlUibGaM6.DmSV7F1эr6[b$T5.w?BU#vYLTz g)Qzd@aj(=){_ Y+AqYAzS@ +C)S=^g. DrKĈfghj5kx{`r ;&Er#Loܭn/"Wi􍼊k|Y=xV&\Jt\-T +Ox ǖ O>-M㘆Bg)TStccKIudCJ RP+MixX?vPpYk|ʿP޴z멃E~"ܠ0}y]L"nCg+ Tʋ{@JYtbx9K/;dN.LA.K1(3f *ˬ??k+4؋n㾌9Q-X ]7i6Mg %dQ]F0am P{ ǎH&c{6JV|n 0{#&뚑PK珴^98U3t&äɐ4'98a.\B„I90y4Έ\b/t)"{@YŰL\}.W5tN썼xHVh3 ]Lp$G**iG&f`4[B2:}> +W2Y'HHTrOithxV6~Uz~*ZV0r+rT=6ki 3_0~S`24btl;k|3NMtt+/m*ٖbqȇH5ղh`!ٸnN*+ca/w:*VS]*He_P_ڗ#h lF` +e$6'hr19awlr5$ne[v7 +0-gIƮA #xpА?bvk`*vO:t {I]DJi T M*C$L +C$+u$HfSIwL{`ideKrYbtru]-FFƸ04I˔^l',?KƩ{IVmLoO$?4lɨBEak!;Ws5bPVNJo1YzQmG+eG,I=8r<؄[!Ǜw& bڝ$_P}ELAPmdt5[d5O;*7f ѲŴdjX +H ;)_He6W`-"]$IoU ΉSGaDGGz?w1LhӒ<:$>VN(4ڜ.uT}n#,RkMkr'-r]226WLX;5.A80m ZA̱uG@v9$OvrnEc4*@Ԅua&4n[%N)pdz`%An[q- :F&(it kΜHZ>[JiҪo`5u2K5!M%|;10R.+(s ^RAwcAD0lԓ#%t ̯C]#| +O z j0' j). )tN0A&-|XW&HZTUa[X1'q.m/֋a]D:I~ 雽 +K [NaD1 bNs`10Υ:]hpEvɟOհyU%.EHqw+GV1:L1{`$]'RmKp*X`8*yQ#JE[Tul-;`KPq(TZu遶dkB̺[bl +#Q=* k"%ubJc&63XYƳ0["[lX& +zZN"DþٿّP֘4t&$7'ȁXe0b~s" #9iJm!a1m،ܣa]]1I8W$t !OlIKL[vOjJv;^9 a5;B`Beݣs`ELC3+]A2TsYrt9B@jM(Cv2gXn !b9v04`{'bIYF'CȰ!'Jyw]Hޚ?s !|&y. ztTA#β< B`$v fK`AȰm:@g;)B%!=/x˖p'K@Ei3 X7x TW`:B-"w)>dK^|A)SrL-ιaYȟ*.d!T,'[ȿC&int! ֓0d]biDn꣎<"7cF~߮-IdSQe~4#"I`kPI/YNUsßa[K98{ؼD ߆|j"dyI5"42}S 5"ޗ+-pd#2 l#`̲< H MG?MWZdX#=@B.gZ ([Ccq4Nx6vRH28s(;0Q~r!!ʴB\Qg;*$"òO<1ZK #jfdiHE`>Gd55$zD Fb@_c^:$@ #yu-T05k4Ne 0Ӎ׭)}))|]m8 $2vO enD@8H*e=N"ujVuHNeFǚ+%c L$KuXS2{FF &Rfh;8N*R6" +G"QCk;HVyLc#``33n8 q]--n䐺#zAH"2$OC+ kQӣis$]8ILMuuT4+H[(²sdP\076e6qY>%/{D4y_AMB#:qcMB)Ihh\Ovzc^`1zblCbpBP'Y!fXas+P( % ?%xv2L ^v5jbv.jh萔Rٓ2mc[N@kv_"uiAS\Lmtk <%^ܜ7aJ@(@y Fu4&g GO1L*XAd"o$vF +')۞2icaR]iNSdpkcLܱK_ #,W|2`iD=d3s"_l&ߌa/3S!YLT0P>d&|b#JS}8ycz,6ȝ&a=Jc +$55[ؑz6(wVpX^Jd{AkRT)3 kJM#߁7FY{' vvtR`H3h0llbf,F(Rf#;;( ^ +9@BT,/SIwsxl9Nd] “:q #!Y;sA7>`LLѤA7 n Xl1&8O; I9 ~fQee6c[A~2 +n;3[ƔO`U*P' ˂Me0/0\Re/0G~r͎u +@rۜxp s0HPVX:IP$Ԩ@ ) +S,uX# h% +em -;P⭧XHxOԔxС ͸"REfM.A=Xbe-7B9H? JHAzXxpl&{ =(s(6axQ c[af~,&{rwc*(V(S*ZQ=T˃HӲvWj1wmn{k萔{2g[ ,g)WX-I@1L'K(>%4)@( FIm礅uvX f(•!"5zNv8RqB–\f}ŏ*ݕ;^oFB1VI 'j):bէG i +^̱ `Mq܄r7H 沺D0xja=gn4S-p^Sn۶N^vDraq84Dnb%{۝u5% f`m1Yv˄+K6vLOrLؿdAT=/rtPqtH$x*q%xҨlx7o ͇4Ul4̷7oe"{k}.E dЃ +֛m*KK`Wxl=T(E `SuƢuK8c9b`_ k\$ 4;aH"$uX~n <\ 14FxkEk;gשKg f'θr2 V c'*iͼn^b3aH%㯅%vKk͘K;kXӗ8OZ኷\5T +|h4٢`W] dn{CdOX{ij=LNʸ <`b۳'CfĒ}HwڞJmĔ}FL[6L0k(*ŎY '1e4^r`xd+nǙg1툉x* o,>哶lOО3(Nfy@l|3D&֩4\#2 wNo5l MmLei8sLŶgL [ppQCpfX(G :Bbc"uPRkӍL0<}M{De/]ibtc<WVTష4'mo1v:+>0hg==HzTE[YMIlx9s1r\SKI2$8AY}A<浳g,0j4[&,0y~ٓvn?N衖PǡMk,6F62wJbXX-OFOx6vCK +i8&3]Nnb> rŝrtn[XhqtQs'8itr_x dXq~&{K"=_8s3`Xq' e928H2 saNlYxD"׎[8'FDkq=sW?ng@rlq3ۂC_fɎo]8]J3.ᴷ7IQo?Pt|YrQG>b8 Nva4 snZn߮r|}ζЃ2٦'^a}k +0Ÿ6rafr>4'>?RÜߔO8r[L=n\7ba Gqeef]^ٸ=]_aɚød_/=/.{ld_/=/,;q(z}ٶMK˞YCҳH.C#wZjg^[^K8o6d_/=/u8L݄e)[n}Z ث䢯WV˜ħշK~]e)>|˥e}׵l֮!j륧ek5;Jn,%zyٯk5p,- 5^/=/uƒɨe Jvoe\ӝ^z^ZXJog=˥eV8K8򌤥-_oAa#_xQJmY{׵v-j;^WU.kZ-$_<'Jۼ B 2V֏q ɗ+ω2ѷBs$_L=5m7*˕Du(z;e_xNV+^T+O?\\ Pokylnz9?\V w>\yN5Wĝ J^>WC͵]Loei|:uks֮ O .?`[|]yNtXsjֱ ՞v9?aE=yiZ5msjҵqj|m;CmsR?t+O?\Vv>\yN5Wֺ ڽE}\<'ziggegĔip=,nD}3i'Pk~:O{ ]V-BmrQ Wz/iP,#n{~Cxo -BOI_'#{~Cxo8 9=BaEI_!"y MBߺ[ =B!XG7̊Rp)#ś5{=BMI=>}{)vAߟDG';>?!OT7D~&'r;>R?!Omj?ug;\w33zcPo?@1"=B@b'?I9JPq_ȣ{ ӄ &^M)Y^ +G+br da6g&چM흒%_@ oXJB V$K}!q|PEBsj%A%S|(o}~~SJ_ !/ +Yq8F~8YY1~ rM_v,3|`[ثoitCm"Ad(fS97[ݖ0o}WA{E}KM+{^6|/{A} U+{^xߺwWD޷DwzW{E}M+{^݄=G1-yWY{AVė"&x/o +|e+[n_{ rjwҞWD޶$u7{ݳeaU+^$]$q}zWl{EmM ^/* zǻ|ec+"on_ؐW6 ww]e_pW6ڽ"& v/|OwƺWDDs7/l{%q7wYp7II{. /zcn2ߑ<|]_ /y~2ߐD⠟oH#܎yχܥ!ű>wH&|>A>s<|CJ{BߑT|pσO+|qdσ7$ !7ir-܅!i@7oI/|>. '=ge#ũ?Bߐf|σO4|qσ7ngn>wioH7|q];O|CY>"?)>wH;|q~σ7$> S_sÕp-بޚjCO4BAIpiϥL=?=׳toPPA3W~,h>vςܛ J}.e}< HzGgO{~蕯伥OW=Rg^v\V +Kڀ(yRҙ*廬?[m5?B7WbLi>~! /T)_%;b}AiM^}]B!`]RKqRwImUwRHT\/MSKɿF5j9Mc +{1,dQ;'鷒 (.1 +z{^Vgk!|mͅ@wa S7'IYrcJ/,6j[ݖa%r^y9Kx[ySg-q߾) u_\dPڭ^ZXt8LzZaRS#&^g7q85 [n8/q i|K0uD(kEa^]Xo,K5{yAeXPta{ DYN}u<؛W;MXR]VvV?-5cI4X%Ymd_>a0իRZ6Q<{LLu0J,ޢL=e^gfdh؄_'b}zslH)#z`dؓajr9Vig,KHPQR'PڹW.o.qNIh47H[M?Aն5=+{y "jgq$嬾I]C_W>QD_<Ȓ4k. N o=,L_P?tO+fiVF@ .hh|c#aZѰk\Ь[Q]]\&IGX.SV;4ǥ&a[)m/Hff%ܷ[jg`jC_KiT{ڡBݦ L<_0K/qjLsN!*V>mX PR$30iŲs..XԪ.L=եhƍ֧\Q(u75L)Z^1Y`3IRUKMUM] X8PXү1w!cƁ4CsY0M%8/= tA5 7cȢYxEk^IYVfN?} C2ha#OW6YE.[uk] 0 NlhIEqWđ3LFaaou2]ZcwHe5; ǨiV%!UKs0 DCb~¦ݞ*Zc mOMmoԔC_&m+_vfy7,KCȱbC)fT#Z@?ywo8 ͘ KWla4&^ SOi6 l9]^¤< K%yOFH4MnV0hkEj疰\NK[tqHe8l55 sƶT'pIf_ Ly:jTYlu" e_0e7>T['S +/3KSbC]J;&?F}\e&;PV4ܥd xԖ5HVŁ"M##Loq:w'./Ֆۍ3)>7^ S-ⓤr|l\^Jk(&XAi0f 4dp4G`KC1iH60VɧFqԥj|8+7RQ3M4I4o= n:0k gupaobDEaݬ04;5z+)f>-2D]ZR?cLS _E}PeLV4R^Őbm8BVuM=ġ5ɀK +&˘FL=&Q肵桦N,X-NwL40&z}=[Q>r reյ¤ԝI\nhW4Nd -յodf 3&?HEduq$ ŨW P;0_uL6<74CԑDŽi baHk^cQJ05ԯkAl=䇢X~\j #JMCm +5;;8Qz^ñQP2G64Ӱ)@((K*{db9zO +C;7$_g5&4\?SؾKk)<|[b߀W1 ݧ `9‹H5\n&40)ܞoN?)9!OJ+ؠ¦t1Iu* cRo҄=2W[w8DR MEtYq'Ray4 U0jM' i/]l26Iʗ"]=.]Aʹ.y& /&S0ֿ:Q @>BNMN? $ ٰdPr_z@Ki>rխcLNyqJ;,f3$/]JY_72maRvÃxӆ Np LV7R:v[ YfԦ;DvLCoG&joj\fI%k!V;*T}cD9ʾ/TaԻ\0՟I2),c\'Q4^{@$ąW Ktg:ӳ)0kY3j1el$Ku +b !Ma?vyF$]s'i8Xw9"t_iip6Ì,@#;\"u_.n%dj8O}rݫt0Zt~ܠbeZ^)|;}ð2/R*I#zMdS{9$5Z=8zE ,=S<+U&qm.[a#]YX'(_ L +Q4jB&nM|F۱둶 +LMSI-{xs.f4 ӤGuU^Vb[44RHlj0nHjn60[<%;}}X3rK}x_z'i\4s"ߥ5vOV% _ZsKm>=қKj$B{PV™fqF.+0_Yh?!qȯOS3lhj yɿRr LtÉ.#%IZqL"y#:{x˵vq'GKkFies ^b]L'ݻaO'\^N# +%6l';03j Z$WaRdIM|s[ q& AP C2+rAj HnN|zob'nt!wT[$Ym#X&%R@!G**XdІ.A*،a$t-g{8l5"ba=B?RY!,e 뇯Rn5.>244r,d_&-8NT4ϔ5ȁhHZ;. u7;b Rݍ#]!Pb9euQar)2`+W\ ^eK!fn'{AE20h65ٺyؽlU|cKgM*B6˛LPUjImėr_ےm3 UB! +]"eha2-^g9&3Ӣ+~n>Lv^~9-ھ%ɵ%Gn^xՉP=5ifrw >dfa%KfI|"8# 4cW#!ao/(%3 +7]rȄ\k8 +GYG(3_,8,G:Tm`uhfVNrnWОcL 68lJ( +';  1\B }P$=?a'`%cVѮ! % OtbI6' C.%ȧ{{iAMXV~S8s'X_x𔱹̪goG{b0<-8°18 '`݈86NƧُpaJRZy~9F,bc,?PpK=Ɯ[@a[LlPo5L'{AXþ{Pirz j!&&j7 0(:xoVijJmD?:=0XiFBfH: I V\x|hLGjvv(O (QlKØ)9CIRNf~ iL`|"VaSK0zwGڱ/`Y~8޽{`WwmM[J4lAife>Ds)bǸ!}t 1U 9GO ! nec*(\sR-м a[G! JAH +5jb0t'0+1Tthg'P-ǩo2^G̎_LCBzO2#%&Xv)Dî( c\mib/kM]EۘtO3:K ++xhXlhB-]PuM5SۍGVd+'Al,Y݂`NP~L68Z"[0U 5 F 96y0VFDh["o*Ӯv$(&Y`2" ӯL}2+oTcdi:$#ŶO)Gde55tJ5413FִNBM־~`Vɩ:!c1PZ b8OSG(]:1^ +!֩F`:'~;%ǘδB6dG^I hak1AhE}d4ݫ3JO'*L,+0uCڌx2T=5>{8dX PҶ6cH F^!>&fO<y})5* |ҍS۵;_gVl+*5%w.tkU5fßN3'^*L䮡f3<̅Hfv-=6ABSUeΡku\NM_)fV 3$ +Pc^9' Psy~&tDT]TV 1YN"^PR qz8Xe(. ҫ WX}~I1zRns]tX,+LLU=)qcޚHҔͲ0?W.0Pi +RKEd$(u+kCY[an;~3LרhA}>2Muj&\dUbt?ؽ$ڱ&/gb{}HW%V`*63-^+SPמ feRf ++LVM;m7 Ä~^U1$\N;eC"0XUdd qYLQf=ʬnD8xJ4ec<լkRՉUZfP2ӏ-g$l, )#N M +cIk[` i_ž?KN?RJ~vWn34"HY%^4\<Z^6.UǠ~EP80gept՚?a R*lVaUWo\%΁,J?^y, O^rtwx~NS!vfV(ĬɆpV]{Aor4<)77֨zEXdjhEmO'Àu`Fx9AKj˫~ g4>v]e.+ۏAZc$b? ԧƢEHh&S:b9nʜ~&VrQx\-Ժ9,L`ʚlƞ2LvzJ' $PUjKC:.T֒ذ6 0ޡ 0k㠫Bݎm +a@m(ry.bD|0f]E +X7>fc=I +4L $kŽ1{/ +s" +KZc&XZnBbcGqA$+QK.:b0&FEp:cVv)jBL%jÄȤ b:D61i~t0ʎ,x\9iaR#휂$_)51(.VUC.Itn+HmMͰ6ìx.bSDRbR,M +iLlD/ղ.<>a,xV {F +UQ͜h,݂BYυ +5eh/EF{?}_PjV3{d-p6nC!A*4hjkD<SBFOMlԉ'"KMgk)E&&W*ϦY:Uf ƪnÂi&ЬUI\ Pݨf0ya6{g; I7` [bfU[DȆ`^n_>sG 'WkL_^2X۲]D}3dUBcWmm ; &\-*ii4Ԓ-d@B +oSv&.8.ʴvF`MgAi[YJ%|vBetM{W-l֨nfb:ɃgKLLLo}ݸ +sOra<7>|j6WFHԁ9=*I[Z=1R^SF@d=yѲeO#_΍ 5aa0N!5bK .Ho#%{(1:yE1YcZզAYZSb 2qZmUVkZbV~TkKJ4Ԑ2@Z+NbL>PР)3&^ +&ڡm@r6hU֤sfXR);oLh؋?V rEig 3C +t&;sͰ=+3J%p[Z/T ɔTֲK)D])k0cv6sHqX(63rf߽yrY! t/rь(꛵iX:BM*JSb ~ 鳁:=LnU/.*X-CVVls@]Y׼_eHl/U\~&֕JޟZ)Dҩ5H:M1X(rY +Օ2N: ee3lIMN-Y2bi%bYE;V:D_5=̜1tcWG5|+K_&RW{0!&]X=&NDo}-4ivNop'k^4f5R@1jk1>}^Qld- ,.T/r.9erÿ?OBl +lH\@Zӗjw#2>Uvt(.&\bƿqW)Ϸ 9)1g D,+ϏybmZD'lpVQ4" +F4\\ү~cfЍ#YU8Q푿7_Jvŧ; wA^,l[e.ߗDe.{ܗA;ަel6KL Ҧ0e.;ܗثZ }~x_6;FfrzGNoVQy S}#L$;A,ܖ$Fyȇ^}_t>eḇ=i^}_19cde>?z]}-ƈ&yeSQ<|ZLGMk15$.kd?^}_56}>z]}֘4{.^k`)<|z)~uZgpq?|z+>zYv:ek"ij<Ӿ t]n^nak"o1vғDޞ#y'IL2c{D&n{0JCkk&IqSkK3/G~C/I6"i>>zIxG/?}|3%54VTk[XW%9k`zdz5ojԧ9>yML -kamkax#'H.כ,?}&=}VHJ}O^6+d>&=mVȕ^ΌK{: +z5iNz5o0 ~#'I~S%}p~75Xd!9?zM:܂GdHxO^ =dOjb]fd59 9(L%YzCS>=e_úi`GDc ղDؿ> ]"~T|F\D?'>#g }F|DO ? >#g{п'<|FL!'D@xa3B`J|F!Oz >"ٓRmALGLg"'>ӵ0?! /O}ff!kD% KB= /O}]abB3 B_ڟUGL¶//4} ~~B3_ B_۟Bgj'>sд?  ?#B*xB_::SQ_DXQ.[jr/Lq/ol+8Q%wEe7ƺ؇Gݶ WSA >xC<)rbO NTfNy"3?Tra <Jn).&ϑ +UB 4y%vk*!yo$_YUB cO b~PC@eC2~_a*v4 +o` -=oc.;zWJMU]o\sDߦl!ECȧ^Cܜ|X'A>6=|jemz.;Eݩݻ%VA杢;;HyZȧS2["dީϻ%A¼;B +Nw*n|{yUz ;jNiw|.;eު%Ar;"Nwn|{yTPw +UYwKc%݃%uD>=ȼSK MS؝Z;Vsm!^OEy;yD>V=QwGs)V=-OwBXx F-Ow2KNq/TcwJSlwGsq)VOUu;uD>=QWwGs)VA-OtBTX9 F ݭS)VYմXcQߴ +zA2?~Qtz7퀞~ Уi$ᇇ?O~5ϣ(ᇯM~d~kwG?|IyF>O2?M'?<&UvR1(oZ=HkOG?|m$tz7~ ϓ?|I~nkGi?|Q'_<@k7'~ϣO$ᇯ{d~ᛎ=2?~8ח96-h™\_ٮ86gxn3RH>Gw)o,9kN2,̱> ,Ղ9|0E}/c{\gՌ/5 +} N).ړ.Rl^9ZhT4͇Erwg:/O__Wpa\m{ {j~.ck:1NcM;aޣ] +$T|l!18*}{R01M_-vx ˲]QqEx1pD%Ƕձ^Y:{qc,:&brҕttpcӳ޺BXoGFָ4bphÈWÄ+9kNsY&8ŗ xا,;Ǩ1̂fUrѧ4-6X e^esDɁỲXU_9۔:׆a#%DHƎa6ؼLL`rҷ$ ᡬcCmPSlxQ^o}9ivdaJ8kC~oK [YʜXl~*^(qb)q6 ]-Zϩ۰Vvb눰!P!9f[-,lZ+c9і?~q鍙g9CEsj9ɋ/GyPpiʭ+e;.ri49Qͪ/ވˁjEN4TN6НX y$u;V3fkC94bN-9pբk؄z5ax5= qzP>ɕ'wbظjsD`/`75M0lތeá/3a\4 qa}Z}429xS9SfXc+`ᔁ%k#H-9V8١cCaw¨}k\9l'tcWG 5{sfvhώUIuPhfaėi]Kd!l +-j1h- ؖAfm Ouhu^U8cղW c8T4.E\>~8ֳJuRi\х]GSb票pi'5ϕ-e`|o6d!ۍ ]55ŀAMG:QY[khtq l +!;=qA t$4dî@?%KT]Tp776pPY NevÊFƺjh1ﮰͬ7LKlkNiP"KX?6v6,L ǰᔴ.,_YRfc8jV`4O40LD=ѽzHAu5Ѿ\oEO b/`_z)1VZ ik`TZrq71ɴ/!x$q84 4Bs涳 ҕxr ʋ234k^+7b + >hQ'Ywaa侰 L\e+N( b0h9M,$Rx0,&0Zmx ô#40Y*"gɰ~ 7$p}ec.}C©,,@%~=&F&H䶹v =`Ta WÄ,TlbT6`ݽ[\d[Xb~8i`uxN-P); + p. rtİiE' +MΥ{bX~8}jl@5GӦ&q$rIa90.Mh)KjNם{یW>0vu2p0jk 1G +]ߪz]%(cM<-ydxE]Pp81cqǑQ`OA9r=G;1ĭjMӼ Y(.#qX@xBa 1uP +OtSx µƈ _9&qc:Snsca)SQgCgTҰaK#3R17uMȖzcV__g8['߆/}Xa$XdtpvW6S]dW*n7.uS pǓ[dX0~R8i6\.jưOIU ʱUcC+j`c׎+GJc׳])S`({ ?q<5#|އ#:V`8e@dXS +ffQ Í+=,цn+Ql7bq Kđ Utx<(3WV"Ⱦ5V7lTSكMYF).)a[fޡTA\=1]&'leh4B1pq.q,X<𱯘 1i N @*wk75Pt0(ecSV&Fh%EX"iI܀ñTc1ᆯQ;hs_\X8/`b1xU1uhMK +`'Aī9K d +@cOXWPT'ְ2؈)QKڑ91.sQI Gt`߱”+a\Lp=-̱:5zæ6o! lnEӭ̅)B rydaC~AX6PT41 P9;V= s e^h{?L/+dvnR ; +ΚkiphQV [X|kn_z(bPR3,1Q}x1O0d13x5a0 . ;bɵcᜱV[%ع.4yJ{C .Y +2IY%L'HXnO% :{4 )uө +|F9Nzfr'E9AN7nl?y0`w_֘l$, OHA&߀X)H\oFRE17 [ alb&lVVtnI 6-Hs Stlтi'hAm^ aelт3a'tlтۡ%olj̍ئ ü_ D65$r|W 5-v"mjC$XiM bY~3Ԡ` ۰E b)AdGe=F8Ą67($QnPaD.gBH xl +A<}/<6M "=X_X9A*3=M inE oI6b ƝA;S63AR(::A0㥄r:`XM 'Ş&%*mA "K̠huqql1hK۠&j~: GI "7ѷ65v||^RD73f|xN3ɱ "#M4DnA&^V/bY**$v2YwV (."ұ.>]  ֟59A ʄꃡ;AgcLw3t&vf3TwXz#/= 0lZP4|Ђľ`v::tЂ:MӎmZ먮V{9YAz;7+f,'F&:z%7~?`(]N `)jw$/ #YAd +k,R,{ mVlj$A[ f"^F\a_ _i #xy6%B`4%.~ߩ=6%doR%lH6%<>ADω-N=hRPa~ɢ:M T8A4B "1Y2Y8Aڸ_ gx1Ƥ)I̅ŠE +*I083 +3Q%6-X-[1z 21(-ܰM "31H~[Ġ157!)J Ҽq*do&I1tc<"ЗEJ +m&Sު) aBu".fyq欈ac1bXt_Fd9y&\ :ݪ E; FbP[E ,ҫr [ࠡc$ ̫?T}:AzerT7; 0a^[ -22̯W36kBNZi?%T;AV_7H1s=A(GƓ$ʆ@yRO¢K_Xz(( 6Z lv)cǶUAVR^ئQCx VonN2(cij8A sP*px XaqvbT(69<$"xȓ_pl2ӴvD9bS:Љ-rm"d{S =P0IzPfi^VsClӃhμ`ئцV-݀o]}bmz +ن4Ď<6?QnT<@~GhAGsK ryFmw -RPh&):y5aDT, 5$ý Y Zٌ<Z u&wh3dE*m3znUe"5ouRd[ k!2,gMݛUM"k6g*ŪL%cm3I +Y_zZWoONfVG~̠<:>]qw~_T`4g1߸ q6|;ߐQL?6`<7 VosHo7mױڞ+-Փmq\>DG_I'(F77)>[QWr}K{%;ޖ=쇏^˦TЧeioM}$^2#}~z_6C03Ϗ^ˮdcFe7d3SMGeow$붤pU~O1i{V&.&CcK?| >ȠSkp{Q~~gk4{Y<~:-\[q)uu{}.V},=3dgKCyvgKCӅ^ >{].hnuoh$q>{]n':WdMܗ!"'+rM9PּWzz#M?$S.o(+8ڴM% ]EO#Nk7TPT8ꔢL87~y*w&JJʄ?>;O% %#P1TTPϣP%T 3s$ľ6 U0$q4:pޘ*oܙJMm4*{R%]]82UU77&JitW>1UfO#TT W=R/OPwuHUo$U W=<;N%M]<ح^{JwFJzij FRt{S=D(T S=F;#Q%M4#UoF7Tɾ3"Uk{f*ž8*UfOS)T~S=P[S%]m8KPwuLU1JUeOU)HU +j~ggJ.{ƝQ>˱w5w +y^T]~.@"%9*!ٿH&W_BG3M?02>#*gCBn<`!?1+>$'JŇĥ؟H{CbM|H%>%ɠ Cb_|HOċq!?Q->%ŇD'Vg\'orLAR\G+> $/O}f!B3- SB_(L 'R'nY\}&y%~D3+#bi_ޟ;gLJ' +Vg>K?! ?+g#b_g*WzG>s?"jx#b_)p/BLweI,ȿج? q 7a(_%ojuAM56{gs!NwQ~wDS!o|g|#bfvY6/2̞phDV98aC|]VwHYwүH+ \9o$_<>868o>'KwoϔU?~CAV ?I1_{[.l0ilM[do\utfl!E"1Cȧ^D{Q|j}mz.=ȼS! :S؝;s!^!Ou;D>=QwGs)V-O}BX F-O|2Nq/TwJSwGs)VOz;{D>=QwGs})V-OuyBX FaޭS)VAYU/xwM~ M{GC|ӘIߵ$zPw͈~ M'G|׀YjH⛦CO>ГO%i4,ߴzwͅ~ 8]['O|PY(k%,!˃_OГO.5$o = w~"]gga|SY1&$aGŃeVL/gw öFptA-]DnA>uû-aIûB\CnamSj6/=[Pþ&gw 6ΰ=[X,w{(-쪥jb=tlV+ na6Flgw Bv&9"nauN%%w ʡY ûPlM( {#%1[XXû4>na٪xnb; {t\ִLb{t0T-]sF(=Vmjɡ=[Je1[X +>؞- N-b{r79X:&w sa؞-,⫶m&Z1[X؞- %؞- ?^ٓ aWNhO5BvlMb=&wkk1=[fTgna*SqnfKinaܒ;Gw o*kXډ€D۔n|tle<"a4l%]B_na@Sb{t71NMlCpvqbrl&G+'w{ct"Ꭽ݂Vpnb?8d{X8c{vw{(3û4l==[u͗ûu +:Z1[rwkUE| R nbPHY8.zkvLl&MZb-,'w).-,9AӻplWձ= rc~0jؚMOoa7ǵx lTSށ3 ãIS¤c{7Cf=8x Ub͚Hà8ұ=Xq1[V%'M̆'o 5r|L{b{71迡oBºv->Rm)b6'!$tu| 1 ,} 8gi.tǑ!Nl Y4//Uɕ@.yX8iLmc 🌦k0_)Z$}AϦXG nlyG ZxxdX`v IWHXS#A4Rc4,\kADpH %h;*)8\2q _q°` dǰ#{gݱC00.JHfc8W",M(fJ3VpeXX׈s V8J `mox2bF#.j#a{ueǰ?a܅6cX\EV0l$A{ q2rA,b/`xD*bڑpK%vx4םP1W^+@Z=^eo[r )CMqeX0=EaL0 .ƈVX~ kpu7a}'\jv8d (uBwTa~`ᡛёحϨ1*HL8KjS+k.Yw 7~l%F OXU}/_ +m܋+2*9pch4 ]2&a1PbX.5D![RxZְv$tڞFZ"coUڅa0ڡyYp-9\Pxzu2uװfTX6Oо vt E 5mbg: M-`]WXEbyirmG؊ǰ#*Y0G%۲$m S>J @1Ӽ2&]K`H gwesY Xf&ݹ SRtVaM)% 6: CʱV25'2mbxq,;]Î=*-DZd+:nHqЖq <9]3ʹw5Z WA1+{B /2cnau'/bHՌLC=e{H섇9{)A3_dtEO*ǩ/jBPߨ4FR4 ۦ;148zT*aؑ^8@m5<ګ6%?$s݅ݩICz8LrϊstUR\Jbob f1H 0<l'%R(HH3ŬtӰ%0dURﭸaD]tp0h=E7*$z򉘽`BQ6ݾCbyEj&$_9^F݁A7&5Hf +%^}@ώ[{Q01ݤq˸Y6P VZ@(LH +ܧ_'NTpŏʂ皞BC +`TL,71Ɍ] =a[`7ax= +ʅ_bpV W_{ӠԼq~ g~1C x$s.*#6°d3G9]nD rQZaX\8gEفa_PbT#0E)ɘa˃m58a'0բZPtOÒ JqvP(.XT s0J;:=0|CfO5<+)+Z$>ᐙ2ȹ`Ċ_clTZrhTJ|Z'\+dȖ!o} &Ja&X;3kĆyKRIkc8G > X"'kaa *15.(%Q6 r րiq^yEɟ;$x&l7!ڐʛ-Xx8tfvÓn&C=0jU-=,cLC+b$׾ ;vi]GuiRPMmrag0Vy B$A'6lf=LM-A#%lh$0ݎ~m9z_(ATHɶc{B+"4~~ hF6?^>~PVV3Μ~[ЦeFZVɰM?;H2Ay|fRh:M v#f#9>)[Z069lmE p'A92eǴzrl2*/[X>A _gT&e>M69(XP܈g kh[D?-JL[xj6;A\`$lMb 4G;A'А8 1y]ݱMboL,Mb&0&cl5A3JdeX%Àxl=(QA%pJ$i1l'i\ukfFoČ8]&x0f;Cԭcs 'a<nCe1Ÿ1S_&<8k n +SjuCƃC'T&Exپm|?EĴtz4"q<")0D"&)aZՌ$`<%bU`9DU6&bLZ@nݿXB38<=$p3"5sLpQTJ};)XpR F \"`qmRQ 21"N1ƃ9 n^@x7-\8E:6Zr:#u[$* T<䢂G]{|`qSvF`|>E p!0ֹi+A0sΰ&bDNG[gl8vpHÂ-/I2+ If $1 @ʺoa z'DK}k3a2 \$qt9̓t1\rp.ԫTf5v! dÓSXg$AkOOtY#d(ДS.vo }}(1PHJlLj `nFW@Zqf~m.4%<'So+9j]~n#Lʳ ",1]#_P  :+C+F^YC1܌VSPNȪIKH DWeiKԵX%߲N2#VGg`O,阧PdO([łPFt!w_%j0Bf/1"6VEM_:ȱ)\(/e Fh-RfobqhQ+lF%@zb$*nXr]$&Q,ь ,T'MpӘ2c{P<(b)y. F'=j`^5_';U#b^26Z>f":t&]8>1V rU&CW,{bMj5V^͉SMi[ }NS Waӄk8HMLx._5Ę@FYlK>EzkT+As="63H +7I]o 7U2 &f%Ia " ~FH`ĝM wpqjev^!{*]m4rnSSL}*GPqsQSPpJ0N-ʕ:8Fe ib`Đtf}Nرa:5Ԡ{X&;5E'Nz_wfDwMT8hY5P pb30'/0&9O, \ YO] ,-d1{=esig2ȺCMg('qlSKU=Lz7DBKg|m +Ąٵ~FQ[l(i0,q zV狃If=P2Ej+ue'8P +Mj0q6 4' T=K\_X&-3o +%ؼ B4&Cz 'wrP҄0sYoE'je= FfIHjx8AlSͲ^0^w`8Q\HQAfEn +^`\:_Ů{VȌ6v6T]%p݀dIքOBM].pG.dGQ0%s3 U-70R%$_E)k.+QiO*D14?.U)R^Sg\R;:(%E}K&̬ WpI2+ЎTXJS'z Jّwb{i #Ȫi^/$] +tb^)v#/evmN4Rp.<*co2E'Vq)xphA ipR_i|iLfC^/|$1SlL,S F%Uri)ڪGi8c n8yx3`:UhBӒ`hq XEcb k_M9U?=IV +k`etΪM`Rq5BТ$oiKS^xq>v r~7c=HÝ +FO,YU'Es_ďj Hc'eEL +Zq_I5tYuagUW,xKu'mزXa x^t؈0>A1XP#c{阁 [1Ő7۪*fTm;E`p(R'P2{lw1P" +s4mR3L%W:'FaH+El~ يud+#kVnD}+~XؕX@ccO<Llpd+&XV$ +Ͷ[8{@pX`EAR;vsF"[ѷm +l_#d, r{Y?V&0PZ [5H_lžs-Vs7ʼ'VRBwZ)l V?iv9]t Wc!U sSZS\_BZWH1T+#Q^a$t|.fQ0ثr$*[!>rP୺KpSm|n?&AW Ufu/Vl{қ`x*%[|Zg%-̗~upsZ~Nݼnnn}yҶ 8L)ȴRAnu&3tuP\y_Պׂo \+6_*>!sqw\٬ys1mDDеSө˪*WǾ \+Yԧj__\!F[[kgr=Hs׵_4ryF lO+d+yy +̺sd+\#ui.l!Z}`[c;^/l+Ua(dTՉQL6ي νEb.k}97يq4B"[1'ӅE"XS6aPmA*AvwJŋTIc5 \+/WGpqK礉-W3nMj꘦Պ`voj8&we|lSejEJ +nL+B0:VhZiSVoe`^TFg{\7Պ w;_̲v7_ W.jeXXqt?T+$:\T+>g`~vrp >Iv .USḢekE4MjdPJI"X0E"8xS1_DA8ߧ@gi[BHwIKKx!"QX_WOJPo< 1Q+xeVm[A Ȋ}cVwbVҒpv+H m֫3rh[A)DNr&l%$Ȯ;RKJ@^d[8i+Ӊ] +|63G>Ĥ2 cA[AMbVB؆|eV5KbV>bVB/e\*I[ ]jj%l%4@u &m%4f}_uĆEkv!_  УaAz3h+֑s[C3&6u>x +endstream +endobj +588 0 obj +113544 +endobj +589 0 obj +[587 0 R] +endobj +590 0 obj +<< + /Resources 591 0 R /Type /Page /MediaBox [0 0 450 300] /CropBox [0 0 450 300] /BleedBox [0 0 450 300] /TrimBox [0 0 450 300] - /Parent 376 0 R - /Contents 373 0 R + /Parent 592 0 R + /Contents 589 0 R >> endobj -377 0 obj +593 0 obj << /Type /FontDescriptor /FontName /EAAAAA+mwa_cmr10 @@ -2560,82 +3937,88 @@ endobj /ItalicAngle 0 /StemV 0 /MissingWidth 500 - /FontFile2 378 0 R - /CIDSet 379 0 R + /FontFile2 594 0 R + /CIDSet 595 0 R >> endobj -378 0 obj +594 0 obj << - /Length1 6348 - /Length 380 0 R + /Length1 6604 + /Length 596 0 R /Filter /FlateDecode >> stream -xX tוߤ_eKbY^Xm-%K»̀1+6d44d뒦)p2PIg29RH9$9$30Ӟ,6mw}}wy ,6ln.]lecj3~0 gg:_< Oh~dvn7_2>4rǧgwI{923cߴ^^K5'ͷ'F?E|)-ZR$y=/->w! 98O30 B7tC 4@D! !"%)O'C|7>lZko`gf~|{p]KZcZZ_U> /y8+k,o(< 6wAat!}$]H;:hrYJT*cy:V۱cΖ[=KIk^$ɐ祿$Sp$ ΖsȺZl$ޖZösر^;=^зW"8czժk%u }}MICO/ɯ5)h@ - ̩O)@,PS9zg|-ڟd?Fvh#٣x!TԟWp3<'??2D9V -az!]m-UO-x{A42JIP:N@DYYzMP p0 -:xa٫*\(?V\lKa`e,8cy2"(nA Tw0j}$,bF#p5v:~7_| -/s)?~ cGd'Fnޓ>[IӤ4[e1%JJ#AwJ걜7}W-oض&p#u@C1 -z4Oyf0!@[FUШ F)d$L0 KV~a)8T (77̻ cmCbu<6+s,M)EAÕh0X`7"ojI-puٴaEDBdhl:H4 9lm;^͵3]/_,Q^]-LcUEsv}/ws|ߦ=%јnUEY(5 r]yjgu[sO88GڃIzi"FBvJqXJl|y[x/(-xxyyrJ)ZŔv9q9|q̫L_a?cAoXENf(uX B!䗉.u+ -Z DWܲ}t $! 4~/bVzh'T[ZV{SrSE6o=7o ]j꩛l֖MOtMJ[<6W vmoz~ԤOؓ6uە̦uu7UFe9ו,VX"*bU -Pp\9vՓS2t]tSJ`vՃN`nB\Y:2|/Y%^*$Lk&WyGG7V-n:w6 vFNS?}j~DG_=]g׌)Xwrx{x\_䳸wjTxJM#px}jjo?z᩶J#Ti /cU +(ˡ6շ3mHQK߶/R)r>Ki3W,Ō\褘)Jݟd4PN}}jFaTZ%rbRX84DW&T!Ɓ:(i#`vq[> pGoS⁆~{c3͎ONl'6Оvx#M-~=n2*uzŭR)N=w_Hope8n)`&eCnL%RI[*sH(Ag9C޼JcF,S5ӿ~bwx-ؖ>k:k7łVLb -Qar W( q _)4]6rVUTHV T 6-/s5uڊo'WY#:(PNk}}C(,Z |@V~#UHw&`_;!sѨalZr<=w=xytɺ} -r%a2vQආa;lvC\ш;j^:)tf7MTC1oQmn%%RG6tE%oG-D[pڍmDpoO/řKKWз6hBo,Jwt=\zjF_:\btݖȆVOW|:JNc[Iɝ@aED(n)"礳z%ʶqˤ7!9!UR:jqdvwW>qK$}ͷ:߾KjRyx(ֵzwHKW:LbG[scW"WucETjk܅rLhR)Th$drT (׍M's:CMog|X.@M:ym &6h//X{NsU/yW&B8UmhLefRL Y6/0/O%WoB[P+--1h9Sh*ZTu&:%_?Z.NYdF b;\ѝK֔,U5|ԒcT/{/Suu%awcbqFOja硂8RMQWUVAz-Y*| {z f+F:Tbj*Q[]xv׊=M;S' -Nv痙}d3̯xJɭZ\x3-VͥV{m -GV1E*_IԒ+NN7 oM)n&B?2is23 .3?3+H@oNi3OwtzakY4](`vչM\mFŚ"n0I-rg]:pB>~ -[!vY`_޶o̜K=:9G)JSvRiߛ=GS D<R{v3z -cj;͟JSH!ORFnUj;?sTJTx;G2zǕo<̧Vj5v+z N}3Q8C3yh ~Vi"/!>BEI>C6=\靼r>]C4u3hMvś{:C3I] }4C746DN$D#іbcfi|k^<ZV9H~=0 r&m2h5P >[`i4k!@idZ8yF7c$;(\KKlAV1E#IuJcO_Zg'/J[lU55>[Ĵmm~x:1?>v `kuKmcc*-kg:fҋ] {}ucƦ- ,v;Hҿ4fW)lA [s/꯿  -B~袽^: -TUT]5_&!_E -P+9ϐ6K1Rl79CCެ0<2[@B) +xY tוߤ_eKbY^XͶ w`aW@ + ٺ$iaRN& +Nt:$@Ӥ͙n&i==3fvI,dmO޷w߽߽"wrw ֞%Slig (kqr{f_v#&cM48jr!_29:3k/ ?;;?k/Ǒ_.aO7ύxm+ Kmƛ/!_ +HA TjHeWs-ށ$<Oc4LtBC- ~($%5{Mgl2?gtAԿR/RsT?堊 *y<@ ~;|w'WU߆p.R<g$<Q~H"̣L#( K-aVi5jUN2K!R 24E}tr䤵ih^MW_'Vub99珚gG?ؤR=W@P '[ts|jen5%ikeBVH2֦\8+:MF#l3&}}IڄKkT6%<:qT~ bAMK}ɚ$6TX7󸱫YՌV{׋e(z-wCf >m@R -3Xp@~@2ay@ +t6o QPЂ{%D2M! h/KPHUfͬ2PT y&5ZPzv S)X$# * zxb3eRxۿ9LnHs|ivfWGY8%}G%y`bjx*F+5PwpT8TrwҚRy^Tbiya\72s"d$'mܷY]SVZcV Ο>{f˱=?]I.F%н8Kց# Q+`Pe6"^g+ +u9¨myrc=F`, :C>'/ +Xf'U~ւ'TԿltm3HrEj /!O)ע L0꣍7Eo=Yͳ(*v!yAGgxޮTEJpb^砕6 M,)hn9DDK U% H16ETP?+vdž`s'h5WHV"0R{)-b*?Mqpw|{}lvxo_8v̻r(1i:~aS/nRk!*2IJs QH"M0t֡RkVQ}%vKiFQu;8G`"o>'w4H601aw Z!>I2WjPܹd7 l/\*l:#ϬŅ3mg}| +bellK{[W" 1W26{fLpR_Ux%\oxZgž.3Nʹo\1Jy-C0!LTѐ(3 +Z<UEM^OoSQUE\P2LC1Y H)FBSX>^ʬ~Hfń5? al9RP!bwhdJ)a"^&< +"΀ drtcڎBJM8}UЀ|rC}[z 2Кr/?ߖVo\TyR}wᕞC)Kv}G$RCNb +SlȍȳM2A*^/ƩMa_1,~}¨Kq[,]-𤀴ݱ N "K}IEЯ=U_'$EM?-ZoY9TŤ`&.pB)#$ +/Y#qtTKh +qj6*8NRuG >.0-$`HCpxwBht}o.wRןjB,G;O>]TCeycѩML=BY6+L}+숴ۈA`s㹂D-'mZE,j 1\A6[-k6brӑ9"Pxq$aH8ݠ/IWnzՊVƴj^Nc ^OdoN.w|jG7_=7*ϴ|\u?ŶuD,Vxjgk\};Uh\RZlsÑm{ݣ#o\t浓 A29Ė#ODb~JSo0ĻEJ0V y5^' +-s@E<Q4s^VŤ_ۯoRHȦ޶=5gv_̦*_?GEJ!qɉ2'FP=B [ %ٌ|rx?O|n('hث*"%%+u%_hrݕ/D+4dOYDh6jSG\Zee^K#F' 9NVw=g$(<ʞѿO +.q:pzK(U"Ie|\f4h,V6t{,L{ A +%SHćrɮ5cbmr;Կ]Fޛ:Su6@_wW/PcFRf\MTR|f{@_j4 P)d>yrը/"]:%ŚHBT۝Hr 15j|\~/cr i1$ +uCI ^Eʢ$z^K$D 0wGisY +嫋hJ{5,\F"^?–ޡ稺wlS,f굾PZkH9ZCbY2'{q2Xz2Z QcME% a<0m T3!\Â| a'na` +<k0G ȸ^s24ԙil '24 Ydc# #wE%Ĕ)P Mc{Of^,䓧24߁fHA}0 Kb4m2+7ME3Vo̊< ,5b0"vgEzX1Yk5J&hCjf 8b˔#HMi{<8 <88orT\fMMũYV#>X_ggM1aآ)68~py|[QkocG~i 7n/1W0;:wId>'wl_{!\Ԑ:X Js~Sk:,'8jA[l1̒L+$.vhȕ^)t1 endstream endobj -380 0 obj -4631 +596 0 obj +4836 endobj -379 0 obj -<< /Length 381 0 R /Filter /FlateDecode >> +595 0 obj +<< /Length 597 0 R /Filter /FlateDecode >> stream -xk`UqY, +xk`aaL yL endstream endobj -381 0 obj +597 0 obj 20 endobj -382 0 obj +598 0 obj << /Type /Font /Subtype /Type0 /BaseFont /EAAAAA+mwa_cmr10 /Encoding /Identity-H - /ToUnicode 383 0 R - /DescendantFonts [384 0 R] + /ToUnicode 599 0 R + /DescendantFonts [600 0 R] >> endobj -384 0 obj +600 0 obj << /Type /Font /BaseFont /EAAAAA+mwa_cmr10 /CIDToGIDMap /Identity /Subtype /CIDFontType2 /CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> -/FontDescriptor 377 0 R +/FontDescriptor 593 0 R /DW 0 -/W [ 0 [365 500 500 500 500 500 916 500 500 276 276 833 500 750 276 500 651 391 443 526 555 555 443 526 750 443 ] ] +/W [ 0 [365 500 500 500 500 500 916 500 500 276 276 833 500 750 276 500 500 651 391 443 526 555 555 443 526 750 443 ] ] >> endobj -383 0 obj -<< /Length 385 0 R /Filter /FlateDecode >> +599 0 obj +<< /Length 601 0 R /Filter /FlateDecode >> stream -x]j0)rX4., eKPɸ ^9BdV?FO,ywlhb68Nk͎gLi9E -o K|pCf%cjh)7isg[6?ԓXȨ0'a_EO, y"=-\,,0G rP4Z! s%.~\am'@SRP*AA T(P9O -tH:ʘEBT8!⢲C-y B9U_y_:9UqJᯌ'_u_q_%B3__۲^rvη;ܮvM`ר~3 +x]j0E +-Eg!PR +^A~,SC- ^+TǑtG]Jw kXieif+5t'Lur +߲fz'+,J&(>8مSԮoV6[POzb#7*zbsurpwb%9 E7ڝc7.eo=ִ[M޺qqA (#( +O*A'O 5P,pNB!JNL@P x(q2eX;!CyCpx(/3Z/15{[ok +9[o:M[Q" endstream endobj -385 0 obj -346 +601 0 obj +356 endobj -386 0 obj +602 0 obj << /Type /FontDescriptor /FontName /EAAAAB+mwa_cmsy10 @@ -2647,14 +4030,14 @@ endobj /ItalicAngle 0 /StemV 0 /MissingWidth 500 - /FontFile2 387 0 R - /CIDSet 388 0 R + /FontFile2 603 0 R + /CIDSet 604 0 R >> endobj -387 0 obj +603 0 obj << /Length1 2196 - /Length 389 0 R + /Length 605 0 R /Filter /FlateDecode >> stream @@ -2668,50 +4051,50 @@ p L"=Zz&="vaNg,;Pͻ'/əxwA91)s.#CZX)efNIOe;5@*P&gi'?) QI8ՍaIlG<6̻k,I BHI3ܸA7JĿn]pun/5'zAΞgyJJRLMf&`yNBNm ~ endstream endobj -389 0 obj +605 0 obj 1523 endobj -388 0 obj -<< /Length 390 0 R /Filter /FlateDecode >> +604 0 obj +<< /Length 606 0 R /Filter /FlateDecode >> stream xk`& endstream endobj -390 0 obj +606 0 obj 12 endobj -391 0 obj +607 0 obj << /Type /Font /Subtype /Type0 /BaseFont /EAAAAB+mwa_cmsy10 /Encoding /Identity-H - /ToUnicode 392 0 R - /DescendantFonts [393 0 R] + /ToUnicode 608 0 R + /DescendantFonts [609 0 R] >> endobj -393 0 obj +609 0 obj << /Type /Font /BaseFont /EAAAAB+mwa_cmsy10 /CIDToGIDMap /Identity /Subtype /CIDFontType2 /CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> -/FontDescriptor 386 0 R +/FontDescriptor 602 0 R /DW 0 /W [ 0 [365 688 ] ] >> endobj -392 0 obj -<< /Length 394 0 R /Filter /FlateDecode >> +608 0 obj +<< /Length 610 0 R /Filter /FlateDecode >> stream x]Pj0 +t'iK,[N (!RfA:g#/:M8€uEU*o5P$99yc%LqK9 W|&?I#Y7np ]{4}CN}ΝN$s1׀P3 kTHҍX\T \o^o_IۤjU b.yGDt YVY}B endstream endobj -394 0 obj +610 0 obj 235 endobj -395 0 obj +611 0 obj << /Type /FontDescriptor /FontName /EAAAAC+mwb_cmsy10 @@ -2723,14 +4106,14 @@ endobj /ItalicAngle 0 /StemV 0 /MissingWidth 500 - /FontFile2 396 0 R - /CIDSet 397 0 R + /FontFile2 612 0 R + /CIDSet 613 0 R >> endobj -396 0 obj +612 0 obj << /Length1 1968 - /Length 398 0 R + /Length 614 0 R /Filter /FlateDecode >> stream @@ -2740,51 +4123,51 @@ E mbkoԊ$?< N]w~p endstream endobj -398 0 obj +614 0 obj 1292 endobj -397 0 obj -<< /Length 399 0 R /Filter /FlateDecode >> +613 0 obj +<< /Length 615 0 R /Filter /FlateDecode >> stream xk endstream endobj -399 0 obj +615 0 obj 9 endobj -400 0 obj +616 0 obj << /Type /Font /Subtype /Type0 /BaseFont /EAAAAC+mwb_cmsy10 /Encoding /Identity-H - /ToUnicode 401 0 R - /DescendantFonts [402 0 R] + /ToUnicode 617 0 R + /DescendantFonts [618 0 R] >> endobj -402 0 obj +618 0 obj << /Type /Font /BaseFont /EAAAAC+mwb_cmsy10 /CIDToGIDMap /Identity /Subtype /CIDFontType2 /CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> -/FontDescriptor 395 0 R +/FontDescriptor 611 0 R /DW 0 /W [ 0 [750 776 ] ] >> endobj -401 0 obj -<< /Length 403 0 R /Filter /FlateDecode >> +617 0 obj +<< /Length 619 0 R /Filter /FlateDecode >> stream x]Pj0+l CԒX}q z0h[lE^X gBpjV& :G:g} endstream endobj -403 0 obj +619 0 obj 234 endobj -404 0 obj +620 0 obj << /Type /FontDescriptor /FontName /EAAAAD+mwb_cmmi10 @@ -2796,14 +4179,14 @@ endobj /ItalicAngle 0 /StemV 0 /MissingWidth 500 - /FontFile2 405 0 R - /CIDSet 406 0 R + /FontFile2 621 0 R + /CIDSet 622 0 R >> endobj -405 0 obj +621 0 obj << /Length1 2144 - /Length 407 0 R + /Length 623 0 R /Filter /FlateDecode >> stream @@ -2815,49 +4198,49 @@ x Vx endstream endobj -407 0 obj +623 0 obj 1452 endobj -406 0 obj -<< /Length 408 0 R /Filter /FlateDecode >> +622 0 obj +<< /Length 624 0 R /Filter /FlateDecode >> stream xk```p endstream endobj -408 0 obj +624 0 obj 13 endobj -409 0 obj +625 0 obj << /Type /Font /Subtype /Type0 /BaseFont /EAAAAD+mwb_cmmi10 /Encoding /Identity-H - /ToUnicode 410 0 R - /DescendantFonts [411 0 R] + /ToUnicode 626 0 R + /DescendantFonts [627 0 R] >> endobj -411 0 obj +627 0 obj << /Type /Font /BaseFont /EAAAAD+mwb_cmmi10 /CIDToGIDMap /Identity /Subtype /CIDFontType2 /CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> -/FontDescriptor 404 0 R +/FontDescriptor 620 0 R /DW 0 /W [ 0 [750 437 ] ] >> endobj -410 0 obj -<< /Length 412 0 R /Filter /FlateDecode >> +626 0 obj +<< /Length 628 0 R /Filter /FlateDecode >> stream x]Pj0 +t'()i?FqJH?F{꜍ٛ"!W6MU hMK .z1g_C\RzP^վg%>-Ԃ=HKІX{s&׻jͷ=jU E{KѬ),Cb@ѹCV}B endstream endobj -412 0 obj +628 0 obj 234 endobj -413 0 obj +629 0 obj << /Type /FontDescriptor /FontName /EAAAAE+mwa_cmmi10 @@ -2869,14 +4252,14 @@ endobj /ItalicAngle 0 /StemV 0 /MissingWidth 500 - /FontFile2 414 0 R - /CIDSet 415 0 R + /FontFile2 630 0 R + /CIDSet 631 0 R >> endobj -414 0 obj +630 0 obj << /Length1 2100 - /Length 416 0 R + /Length 632 0 R /Filter /FlateDecode >> stream @@ -2886,68 +4269,68 @@ x n_&rs>SrV%J/| endstream endobj -416 0 obj +632 0 obj 1416 endobj -415 0 obj -<< /Length 417 0 R /Filter /FlateDecode >> +631 0 obj +<< /Length 633 0 R /Filter /FlateDecode >> stream xk```d endstream endobj -417 0 obj +633 0 obj 13 endobj -418 0 obj +634 0 obj << /Type /Font /Subtype /Type0 /BaseFont /EAAAAE+mwa_cmmi10 /Encoding /Identity-H - /ToUnicode 419 0 R - /DescendantFonts [420 0 R] + /ToUnicode 635 0 R + /DescendantFonts [636 0 R] >> endobj -420 0 obj +636 0 obj << /Type /Font /BaseFont /EAAAAE+mwa_cmmi10 /CIDToGIDMap /Identity /Subtype /CIDFontType2 /CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> -/FontDescriptor 413 0 R +/FontDescriptor 629 0 R /DW 0 /W [ 0 [365 500 ] ] >> endobj -419 0 obj -<< /Length 421 0 R /Filter /FlateDecode >> +635 0 obj +<< /Length 637 0 R /Filter /FlateDecode >> stream x]Pj0 +t'()i?FqJH?F{꜍ٛ"!W6MU hMK .z1g_C\RzP^վg%>-Ԃ=HKІX{s&׻jͷ=jU E{KѬ),Cb@ѹCV}B endstream endobj -421 0 obj +637 0 obj 234 endobj -376 0 obj +592 0 obj << /Type /Pages /Count 1 -/Kids [374 0 R ] >> +/Kids [590 0 R ] >> endobj -422 0 obj +638 0 obj << /Type /Catalog - /Pages 376 0 R + /Pages 592 0 R /Lang (x-unknown) >> endobj -375 0 obj +591 0 obj << /Font << - /F405 382 0 R - /F406 391 0 R - /F407 400 0 R - /F408 409 0 R - /F409 418 0 R + /F405 598 0 R + /F406 607 0 R + /F407 616 0 R + /F408 625 0 R + /F409 634 0 R >> /ProcSet [/PDF /ImageB /ImageC /Text] /ExtGState << @@ -3320,78 +4703,294 @@ endobj /GS367 368 0 R /GS368 369 0 R /GS369 370 0 R + /GS370 371 0 R + /GS371 372 0 R + /GS372 373 0 R + /GS373 374 0 R + /GS374 375 0 R + /GS375 376 0 R + /GS376 377 0 R + /GS377 378 0 R + /GS378 379 0 R + /GS379 380 0 R + /GS380 381 0 R + /GS381 382 0 R + /GS382 383 0 R + /GS383 384 0 R + /GS384 385 0 R + /GS385 386 0 R + /GS386 387 0 R + /GS387 388 0 R + /GS388 389 0 R + /GS389 390 0 R + /GS390 391 0 R + /GS391 392 0 R + /GS392 393 0 R + /GS393 394 0 R + /GS394 395 0 R + /GS395 396 0 R + /GS396 397 0 R + /GS397 398 0 R + /GS398 399 0 R + /GS399 400 0 R + /GS400 401 0 R + /GS401 402 0 R + /GS402 403 0 R + /GS403 404 0 R + /GS404 405 0 R + /GS405 406 0 R + /GS406 407 0 R + /GS407 408 0 R + /GS408 409 0 R + /GS409 410 0 R + /GS410 411 0 R + /GS411 412 0 R + /GS412 413 0 R + /GS413 414 0 R + /GS414 415 0 R + /GS415 416 0 R + /GS416 417 0 R + /GS417 418 0 R + /GS418 419 0 R + /GS419 420 0 R + /GS420 421 0 R + /GS421 422 0 R + /GS422 423 0 R + /GS423 424 0 R + /GS424 425 0 R + /GS425 426 0 R + /GS426 427 0 R + /GS427 428 0 R + /GS428 429 0 R + /GS429 430 0 R + /GS430 431 0 R + /GS431 432 0 R + /GS432 433 0 R + /GS433 434 0 R + /GS434 435 0 R + /GS435 436 0 R + /GS436 437 0 R + /GS437 438 0 R + /GS438 439 0 R + /GS439 440 0 R + /GS440 441 0 R + /GS441 442 0 R + /GS442 443 0 R + /GS443 444 0 R + /GS444 445 0 R + /GS445 446 0 R + /GS446 447 0 R + /GS447 448 0 R + /GS448 449 0 R + /GS449 450 0 R + /GS450 451 0 R + /GS451 452 0 R + /GS452 453 0 R + /GS453 454 0 R + /GS454 455 0 R + /GS455 456 0 R + /GS456 457 0 R + /GS457 458 0 R + /GS458 459 0 R + /GS459 460 0 R + /GS460 461 0 R + /GS461 462 0 R + /GS462 463 0 R + /GS463 464 0 R + /GS464 465 0 R + /GS465 466 0 R + /GS466 467 0 R + /GS467 468 0 R + /GS468 469 0 R + /GS469 470 0 R + /GS470 471 0 R + /GS471 472 0 R + /GS472 473 0 R + /GS473 474 0 R + /GS474 475 0 R + /GS475 476 0 R + /GS476 477 0 R + /GS477 478 0 R + /GS478 479 0 R + /GS479 480 0 R + /GS480 481 0 R + /GS481 482 0 R + /GS482 483 0 R + /GS483 484 0 R + /GS484 485 0 R + /GS485 486 0 R + /GS486 487 0 R + /GS487 488 0 R + /GS488 489 0 R + /GS489 490 0 R + /GS490 491 0 R + /GS491 492 0 R + /GS492 493 0 R + /GS493 494 0 R + /GS494 495 0 R + /GS495 496 0 R + /GS496 497 0 R + /GS497 498 0 R + /GS498 499 0 R + /GS499 500 0 R + /GS500 501 0 R + /GS501 502 0 R + /GS502 503 0 R + /GS503 504 0 R + /GS504 505 0 R + /GS505 506 0 R + /GS506 507 0 R + /GS507 508 0 R + /GS508 509 0 R + /GS509 510 0 R + /GS510 511 0 R + /GS511 512 0 R + /GS512 513 0 R + /GS513 514 0 R + /GS514 515 0 R + /GS515 516 0 R + /GS516 517 0 R + /GS517 518 0 R + /GS518 519 0 R + /GS519 520 0 R + /GS520 521 0 R + /GS521 522 0 R + /GS522 523 0 R + /GS523 524 0 R + /GS524 525 0 R + /GS525 526 0 R + /GS526 527 0 R + /GS527 528 0 R + /GS528 529 0 R + /GS529 530 0 R + /GS530 531 0 R + /GS531 532 0 R + /GS532 533 0 R + /GS533 534 0 R + /GS534 535 0 R + /GS535 536 0 R + /GS536 537 0 R + /GS537 538 0 R + /GS538 539 0 R + /GS539 540 0 R + /GS540 541 0 R + /GS541 542 0 R + /GS542 543 0 R + /GS543 544 0 R + /GS544 545 0 R + /GS545 546 0 R + /GS546 547 0 R + /GS547 548 0 R + /GS548 549 0 R + /GS549 550 0 R + /GS550 551 0 R + /GS551 552 0 R + /GS552 553 0 R + /GS553 554 0 R + /GS554 555 0 R + /GS555 556 0 R + /GS556 557 0 R + /GS557 558 0 R + /GS558 559 0 R + /GS559 560 0 R + /GS560 561 0 R + /GS561 562 0 R + /GS562 563 0 R + /GS563 564 0 R + /GS564 565 0 R + /GS565 566 0 R + /GS566 567 0 R + /GS567 568 0 R + /GS568 569 0 R + /GS569 570 0 R + /GS570 571 0 R + /GS571 572 0 R + /GS572 573 0 R + /GS573 574 0 R + /GS574 575 0 R + /GS575 576 0 R + /GS576 577 0 R + /GS577 578 0 R + /GS578 579 0 R + /GS579 580 0 R + /GS580 581 0 R + /GS581 582 0 R + /GS582 583 0 R + /GS583 584 0 R + /GS584 585 0 R + /GS585 586 0 R >> >> endobj xref -0 423 +0 639 0000000000 65535 f 0000000015 00000 n 0000000145 00000 n 0000000197 00000 n 0000000249 00000 n -0000000302 00000 n -0000000354 00000 n -0000000406 00000 n -0000000458 00000 n -0000000510 00000 n -0000000562 00000 n -0000000615 00000 n -0000000668 00000 n -0000000721 00000 n -0000000774 00000 n -0000000827 00000 n -0000000880 00000 n -0000000933 00000 n -0000000986 00000 n -0000001039 00000 n -0000001092 00000 n -0000001145 00000 n -0000001198 00000 n -0000001251 00000 n -0000001304 00000 n -0000001357 00000 n -0000001410 00000 n -0000001463 00000 n -0000001516 00000 n +0000000301 00000 n +0000000353 00000 n +0000000405 00000 n +0000000457 00000 n +0000000509 00000 n +0000000561 00000 n +0000000614 00000 n +0000000667 00000 n +0000000720 00000 n +0000000773 00000 n +0000000826 00000 n +0000000879 00000 n +0000000932 00000 n +0000000985 00000 n +0000001038 00000 n +0000001091 00000 n +0000001144 00000 n +0000001197 00000 n +0000001250 00000 n +0000001303 00000 n +0000001356 00000 n +0000001409 00000 n +0000001462 00000 n +0000001515 00000 n 0000001569 00000 n -0000001622 00000 n -0000001675 00000 n -0000001728 00000 n -0000001781 00000 n -0000001834 00000 n -0000001887 00000 n -0000001940 00000 n -0000001993 00000 n -0000002046 00000 n -0000002099 00000 n -0000002152 00000 n +0000001623 00000 n +0000001676 00000 n +0000001729 00000 n +0000001782 00000 n +0000001835 00000 n +0000001888 00000 n +0000001941 00000 n +0000001994 00000 n +0000002047 00000 n +0000002100 00000 n +0000002153 00000 n 0000002206 00000 n -0000002260 00000 n -0000002314 00000 n -0000002367 00000 n -0000002420 00000 n -0000002474 00000 n -0000002527 00000 n -0000002580 00000 n -0000002633 00000 n -0000002686 00000 n -0000002739 00000 n -0000002792 00000 n -0000002845 00000 n -0000002898 00000 n -0000002951 00000 n -0000003004 00000 n -0000003057 00000 n -0000003110 00000 n -0000003163 00000 n -0000003216 00000 n -0000003269 00000 n -0000003322 00000 n -0000003375 00000 n -0000003428 00000 n -0000003481 00000 n -0000003534 00000 n +0000002259 00000 n +0000002312 00000 n +0000002365 00000 n +0000002418 00000 n +0000002471 00000 n +0000002524 00000 n +0000002577 00000 n +0000002630 00000 n +0000002683 00000 n +0000002736 00000 n +0000002789 00000 n +0000002842 00000 n +0000002895 00000 n +0000002948 00000 n +0000003001 00000 n +0000003054 00000 n +0000003107 00000 n +0000003160 00000 n +0000003213 00000 n +0000003266 00000 n +0000003319 00000 n +0000003372 00000 n +0000003425 00000 n +0000003479 00000 n +0000003533 00000 n 0000003587 00000 n 0000003640 00000 n 0000003693 00000 n @@ -3407,354 +5006,570 @@ xref 0000004223 00000 n 0000004276 00000 n 0000004329 00000 n -0000004383 00000 n -0000004437 00000 n -0000004491 00000 n -0000004544 00000 n -0000004597 00000 n -0000004651 00000 n -0000004704 00000 n -0000004757 00000 n -0000004810 00000 n -0000004863 00000 n -0000004916 00000 n -0000004969 00000 n -0000005022 00000 n -0000005075 00000 n -0000005128 00000 n -0000005181 00000 n -0000005234 00000 n -0000005287 00000 n -0000005340 00000 n -0000005394 00000 n -0000005448 00000 n -0000005502 00000 n -0000005556 00000 n -0000005610 00000 n -0000005664 00000 n -0000005718 00000 n -0000005772 00000 n -0000005826 00000 n -0000005880 00000 n -0000005934 00000 n -0000005988 00000 n -0000006042 00000 n -0000006096 00000 n -0000006150 00000 n -0000006204 00000 n -0000006258 00000 n -0000006312 00000 n -0000006366 00000 n -0000006420 00000 n -0000006474 00000 n -0000006528 00000 n -0000006583 00000 n -0000006638 00000 n -0000006693 00000 n -0000006747 00000 n -0000006801 00000 n -0000006856 00000 n -0000006910 00000 n -0000006964 00000 n -0000007018 00000 n -0000007072 00000 n -0000007126 00000 n -0000007180 00000 n -0000007234 00000 n -0000007288 00000 n -0000007342 00000 n -0000007396 00000 n -0000007450 00000 n -0000007504 00000 n -0000007558 00000 n -0000007612 00000 n -0000007666 00000 n -0000007720 00000 n -0000007774 00000 n -0000007828 00000 n -0000007882 00000 n -0000007936 00000 n -0000007990 00000 n -0000008044 00000 n -0000008098 00000 n -0000008152 00000 n -0000008206 00000 n -0000008260 00000 n -0000008314 00000 n -0000008368 00000 n -0000008422 00000 n -0000008476 00000 n -0000008530 00000 n -0000008584 00000 n -0000008638 00000 n -0000008692 00000 n -0000008746 00000 n -0000008801 00000 n -0000008856 00000 n -0000008911 00000 n -0000008965 00000 n -0000009019 00000 n -0000009074 00000 n -0000009128 00000 n -0000009182 00000 n -0000009236 00000 n -0000009290 00000 n -0000009344 00000 n -0000009398 00000 n -0000009452 00000 n -0000009506 00000 n -0000009560 00000 n -0000009614 00000 n -0000009668 00000 n -0000009722 00000 n -0000009776 00000 n -0000009830 00000 n -0000009884 00000 n -0000009938 00000 n -0000009992 00000 n -0000010046 00000 n -0000010100 00000 n -0000010154 00000 n -0000010208 00000 n -0000010262 00000 n -0000010316 00000 n -0000010370 00000 n -0000010424 00000 n -0000010478 00000 n -0000010532 00000 n -0000010586 00000 n -0000010640 00000 n -0000010694 00000 n -0000010748 00000 n -0000010802 00000 n -0000010856 00000 n -0000010910 00000 n -0000010964 00000 n -0000011019 00000 n -0000011074 00000 n -0000011129 00000 n -0000011183 00000 n -0000011237 00000 n -0000011292 00000 n -0000011346 00000 n -0000011400 00000 n -0000011454 00000 n -0000011508 00000 n -0000011562 00000 n -0000011616 00000 n -0000011670 00000 n -0000011724 00000 n -0000011778 00000 n -0000011832 00000 n -0000011886 00000 n -0000011940 00000 n -0000011994 00000 n -0000012048 00000 n -0000012102 00000 n -0000012156 00000 n -0000012210 00000 n -0000012264 00000 n -0000012318 00000 n -0000012372 00000 n -0000012426 00000 n -0000012480 00000 n -0000012534 00000 n -0000012588 00000 n -0000012642 00000 n -0000012696 00000 n -0000012750 00000 n -0000012804 00000 n -0000012858 00000 n -0000012912 00000 n -0000012966 00000 n -0000013020 00000 n -0000013074 00000 n -0000013128 00000 n -0000013182 00000 n -0000013237 00000 n -0000013292 00000 n -0000013347 00000 n -0000013401 00000 n -0000013455 00000 n -0000013510 00000 n -0000013564 00000 n -0000013618 00000 n -0000013672 00000 n -0000013726 00000 n -0000013780 00000 n -0000013834 00000 n -0000013888 00000 n -0000013942 00000 n -0000013996 00000 n -0000014050 00000 n -0000014104 00000 n -0000014158 00000 n -0000014212 00000 n -0000014266 00000 n -0000014320 00000 n -0000014374 00000 n -0000014428 00000 n -0000014482 00000 n -0000014536 00000 n -0000014590 00000 n -0000014644 00000 n -0000014698 00000 n -0000014752 00000 n -0000014806 00000 n -0000014860 00000 n -0000014914 00000 n -0000014968 00000 n -0000015022 00000 n -0000015076 00000 n -0000015130 00000 n -0000015184 00000 n -0000015238 00000 n -0000015292 00000 n -0000015346 00000 n -0000015400 00000 n -0000015455 00000 n -0000015510 00000 n -0000015565 00000 n -0000015619 00000 n -0000015673 00000 n -0000015728 00000 n -0000015782 00000 n -0000015836 00000 n -0000015890 00000 n -0000015944 00000 n -0000015998 00000 n -0000016052 00000 n -0000016106 00000 n -0000016160 00000 n -0000016214 00000 n -0000016268 00000 n -0000016322 00000 n -0000016376 00000 n -0000016430 00000 n -0000016484 00000 n -0000016538 00000 n -0000016592 00000 n -0000016646 00000 n -0000016700 00000 n -0000016754 00000 n -0000016808 00000 n -0000016862 00000 n -0000016916 00000 n -0000016970 00000 n -0000017024 00000 n -0000017078 00000 n -0000017132 00000 n -0000017186 00000 n -0000017240 00000 n -0000017294 00000 n -0000017348 00000 n -0000017402 00000 n -0000017456 00000 n -0000017510 00000 n -0000017564 00000 n -0000017618 00000 n -0000017673 00000 n -0000017728 00000 n -0000017783 00000 n -0000017837 00000 n -0000017891 00000 n -0000017946 00000 n -0000018000 00000 n -0000018054 00000 n -0000018108 00000 n -0000018162 00000 n -0000018216 00000 n -0000018270 00000 n -0000018324 00000 n -0000018378 00000 n -0000018432 00000 n -0000018486 00000 n -0000018540 00000 n -0000018594 00000 n -0000018648 00000 n -0000018702 00000 n -0000018756 00000 n -0000018810 00000 n -0000018864 00000 n -0000018918 00000 n -0000018972 00000 n -0000019026 00000 n -0000019080 00000 n -0000019134 00000 n -0000019188 00000 n -0000019242 00000 n -0000019296 00000 n -0000019350 00000 n -0000019404 00000 n -0000019458 00000 n -0000019512 00000 n -0000019566 00000 n -0000019620 00000 n -0000019674 00000 n -0000019728 00000 n -0000019782 00000 n -0000019836 00000 n -0000019891 00000 n -0000019946 00000 n -0000020001 00000 n -0000111631 00000 n -0000111654 00000 n -0000111681 00000 n -0000128586 00000 n -0000128447 00000 n -0000111879 00000 n -0000112134 00000 n -0000116885 00000 n -0000116863 00000 n -0000116983 00000 n -0000117003 00000 n -0000117488 00000 n -0000117162 00000 n -0000117912 00000 n -0000117933 00000 n -0000118189 00000 n -0000119832 00000 n -0000119810 00000 n -0000119922 00000 n -0000119942 00000 n -0000120333 00000 n -0000120102 00000 n -0000120646 00000 n -0000120667 00000 n -0000120919 00000 n -0000122331 00000 n -0000122309 00000 n -0000122418 00000 n -0000122437 00000 n -0000122828 00000 n -0000122597 00000 n -0000123140 00000 n -0000123161 00000 n -0000123413 00000 n -0000124985 00000 n -0000124963 00000 n -0000125076 00000 n -0000125096 00000 n -0000125487 00000 n -0000125256 00000 n -0000125799 00000 n -0000125820 00000 n -0000126076 00000 n -0000127612 00000 n -0000127590 00000 n -0000127703 00000 n -0000127723 00000 n -0000128114 00000 n -0000127883 00000 n -0000128426 00000 n -0000128509 00000 n +0000004382 00000 n +0000004435 00000 n +0000004488 00000 n +0000004541 00000 n +0000004594 00000 n +0000004647 00000 n +0000004700 00000 n +0000004753 00000 n +0000004806 00000 n +0000004859 00000 n +0000004912 00000 n +0000004965 00000 n +0000005019 00000 n +0000005073 00000 n +0000005126 00000 n +0000005179 00000 n +0000005232 00000 n +0000005285 00000 n +0000005338 00000 n +0000005392 00000 n +0000005446 00000 n +0000005500 00000 n +0000005554 00000 n +0000005608 00000 n +0000005662 00000 n +0000005716 00000 n +0000005770 00000 n +0000005824 00000 n +0000005878 00000 n +0000005932 00000 n +0000005986 00000 n +0000006040 00000 n +0000006094 00000 n +0000006148 00000 n +0000006202 00000 n +0000006256 00000 n +0000006310 00000 n +0000006364 00000 n +0000006418 00000 n +0000006472 00000 n +0000006526 00000 n +0000006580 00000 n +0000006634 00000 n +0000006688 00000 n +0000006742 00000 n +0000006796 00000 n +0000006850 00000 n +0000006904 00000 n +0000006959 00000 n +0000007014 00000 n +0000007069 00000 n +0000007123 00000 n +0000007177 00000 n +0000007231 00000 n +0000007285 00000 n +0000007339 00000 n +0000007393 00000 n +0000007447 00000 n +0000007501 00000 n +0000007555 00000 n +0000007609 00000 n +0000007663 00000 n +0000007717 00000 n +0000007771 00000 n +0000007825 00000 n +0000007879 00000 n +0000007933 00000 n +0000007987 00000 n +0000008041 00000 n +0000008095 00000 n +0000008149 00000 n +0000008203 00000 n +0000008257 00000 n +0000008311 00000 n +0000008365 00000 n +0000008419 00000 n +0000008473 00000 n +0000008528 00000 n +0000008583 00000 n +0000008637 00000 n +0000008691 00000 n +0000008745 00000 n +0000008799 00000 n +0000008853 00000 n +0000008907 00000 n +0000008961 00000 n +0000009015 00000 n +0000009069 00000 n +0000009123 00000 n +0000009177 00000 n +0000009231 00000 n +0000009285 00000 n +0000009339 00000 n +0000009393 00000 n +0000009447 00000 n +0000009501 00000 n +0000009555 00000 n +0000009609 00000 n +0000009663 00000 n +0000009717 00000 n +0000009771 00000 n +0000009825 00000 n +0000009879 00000 n +0000009933 00000 n +0000009987 00000 n +0000010041 00000 n +0000010095 00000 n +0000010149 00000 n +0000010203 00000 n +0000010257 00000 n +0000010311 00000 n +0000010365 00000 n +0000010419 00000 n +0000010474 00000 n +0000010529 00000 n +0000010584 00000 n +0000010638 00000 n +0000010692 00000 n +0000010746 00000 n +0000010800 00000 n +0000010854 00000 n +0000010908 00000 n +0000010962 00000 n +0000011016 00000 n +0000011070 00000 n +0000011124 00000 n +0000011178 00000 n +0000011232 00000 n +0000011286 00000 n +0000011340 00000 n +0000011394 00000 n +0000011448 00000 n +0000011502 00000 n +0000011556 00000 n +0000011610 00000 n +0000011664 00000 n +0000011718 00000 n +0000011772 00000 n +0000011826 00000 n +0000011880 00000 n +0000011934 00000 n +0000011988 00000 n +0000012043 00000 n +0000012098 00000 n +0000012152 00000 n +0000012206 00000 n +0000012260 00000 n +0000012314 00000 n +0000012368 00000 n +0000012422 00000 n +0000012476 00000 n +0000012530 00000 n +0000012584 00000 n +0000012638 00000 n +0000012692 00000 n +0000012746 00000 n +0000012800 00000 n +0000012854 00000 n +0000012908 00000 n +0000012962 00000 n +0000013016 00000 n +0000013070 00000 n +0000013124 00000 n +0000013178 00000 n +0000013232 00000 n +0000013286 00000 n +0000013340 00000 n +0000013394 00000 n +0000013448 00000 n +0000013502 00000 n +0000013556 00000 n +0000013610 00000 n +0000013664 00000 n +0000013718 00000 n +0000013772 00000 n +0000013826 00000 n +0000013880 00000 n +0000013934 00000 n +0000013989 00000 n +0000014044 00000 n +0000014099 00000 n +0000014153 00000 n +0000014207 00000 n +0000014261 00000 n +0000014315 00000 n +0000014369 00000 n +0000014423 00000 n +0000014477 00000 n +0000014531 00000 n +0000014585 00000 n +0000014639 00000 n +0000014693 00000 n +0000014747 00000 n +0000014801 00000 n +0000014855 00000 n +0000014909 00000 n +0000014963 00000 n +0000015017 00000 n +0000015071 00000 n +0000015125 00000 n +0000015179 00000 n +0000015233 00000 n +0000015287 00000 n +0000015341 00000 n +0000015395 00000 n +0000015449 00000 n +0000015503 00000 n +0000015558 00000 n +0000015613 00000 n +0000015667 00000 n +0000015721 00000 n +0000015775 00000 n +0000015829 00000 n +0000015883 00000 n +0000015937 00000 n +0000015991 00000 n +0000016045 00000 n +0000016099 00000 n +0000016153 00000 n +0000016207 00000 n +0000016261 00000 n +0000016315 00000 n +0000016369 00000 n +0000016423 00000 n +0000016477 00000 n +0000016531 00000 n +0000016585 00000 n +0000016639 00000 n +0000016693 00000 n +0000016747 00000 n +0000016801 00000 n +0000016855 00000 n +0000016909 00000 n +0000016963 00000 n +0000017017 00000 n +0000017071 00000 n +0000017125 00000 n +0000017179 00000 n +0000017233 00000 n +0000017287 00000 n +0000017341 00000 n +0000017395 00000 n +0000017449 00000 n +0000017504 00000 n +0000017559 00000 n +0000017614 00000 n +0000017668 00000 n +0000017722 00000 n +0000017776 00000 n +0000017830 00000 n +0000017884 00000 n +0000017938 00000 n +0000017992 00000 n +0000018046 00000 n +0000018100 00000 n +0000018154 00000 n +0000018208 00000 n +0000018262 00000 n +0000018316 00000 n +0000018370 00000 n +0000018424 00000 n +0000018478 00000 n +0000018532 00000 n +0000018586 00000 n +0000018640 00000 n +0000018694 00000 n +0000018748 00000 n +0000018802 00000 n +0000018856 00000 n +0000018910 00000 n +0000018964 00000 n +0000019018 00000 n +0000019073 00000 n +0000019128 00000 n +0000019182 00000 n +0000019236 00000 n +0000019290 00000 n +0000019344 00000 n +0000019398 00000 n +0000019452 00000 n +0000019506 00000 n +0000019560 00000 n +0000019614 00000 n +0000019668 00000 n +0000019722 00000 n +0000019776 00000 n +0000019830 00000 n +0000019884 00000 n +0000019938 00000 n +0000019992 00000 n +0000020046 00000 n +0000020100 00000 n +0000020154 00000 n +0000020208 00000 n +0000020262 00000 n +0000020316 00000 n +0000020370 00000 n +0000020424 00000 n +0000020478 00000 n +0000020532 00000 n +0000020586 00000 n +0000020640 00000 n +0000020694 00000 n +0000020748 00000 n +0000020802 00000 n +0000020856 00000 n +0000020910 00000 n +0000020964 00000 n +0000021019 00000 n +0000021074 00000 n +0000021129 00000 n +0000021183 00000 n +0000021237 00000 n +0000021291 00000 n +0000021345 00000 n +0000021399 00000 n +0000021453 00000 n +0000021507 00000 n +0000021561 00000 n +0000021615 00000 n +0000021669 00000 n +0000021723 00000 n +0000021777 00000 n +0000021831 00000 n +0000021885 00000 n +0000021939 00000 n +0000021993 00000 n +0000022047 00000 n +0000022101 00000 n +0000022155 00000 n +0000022209 00000 n +0000022263 00000 n +0000022317 00000 n +0000022371 00000 n +0000022425 00000 n +0000022479 00000 n +0000022533 00000 n +0000022588 00000 n +0000022643 00000 n +0000022697 00000 n +0000022751 00000 n +0000022805 00000 n +0000022859 00000 n +0000022913 00000 n +0000022967 00000 n +0000023021 00000 n +0000023075 00000 n +0000023129 00000 n +0000023183 00000 n +0000023237 00000 n +0000023291 00000 n +0000023345 00000 n +0000023399 00000 n +0000023453 00000 n +0000023507 00000 n +0000023561 00000 n +0000023615 00000 n +0000023669 00000 n +0000023723 00000 n +0000023777 00000 n +0000023831 00000 n +0000023885 00000 n +0000023939 00000 n +0000023993 00000 n +0000024047 00000 n +0000024101 00000 n +0000024155 00000 n +0000024209 00000 n +0000024263 00000 n +0000024317 00000 n +0000024371 00000 n +0000024425 00000 n +0000024479 00000 n +0000024534 00000 n +0000024589 00000 n +0000024644 00000 n +0000024698 00000 n +0000024752 00000 n +0000024806 00000 n +0000024860 00000 n +0000024914 00000 n +0000024968 00000 n +0000025022 00000 n +0000025076 00000 n +0000025130 00000 n +0000025184 00000 n +0000025238 00000 n +0000025292 00000 n +0000025346 00000 n +0000025400 00000 n +0000025454 00000 n +0000025508 00000 n +0000025562 00000 n +0000025616 00000 n +0000025670 00000 n +0000025724 00000 n +0000025778 00000 n +0000025832 00000 n +0000025886 00000 n +0000025940 00000 n +0000025994 00000 n +0000026048 00000 n +0000026103 00000 n +0000026158 00000 n +0000026212 00000 n +0000026266 00000 n +0000026320 00000 n +0000026374 00000 n +0000026428 00000 n +0000026482 00000 n +0000026536 00000 n +0000026590 00000 n +0000026644 00000 n +0000026698 00000 n +0000026752 00000 n +0000026806 00000 n +0000026860 00000 n +0000026914 00000 n +0000026968 00000 n +0000027022 00000 n +0000027076 00000 n +0000027130 00000 n +0000027184 00000 n +0000027238 00000 n +0000027292 00000 n +0000027346 00000 n +0000027400 00000 n +0000027454 00000 n +0000027508 00000 n +0000027562 00000 n +0000027616 00000 n +0000027670 00000 n +0000027724 00000 n +0000027778 00000 n +0000027832 00000 n +0000027886 00000 n +0000027940 00000 n +0000027994 00000 n +0000028049 00000 n +0000028104 00000 n +0000028159 00000 n +0000028213 00000 n +0000028267 00000 n +0000028321 00000 n +0000028375 00000 n +0000028429 00000 n +0000028483 00000 n +0000028537 00000 n +0000028591 00000 n +0000028645 00000 n +0000028699 00000 n +0000028753 00000 n +0000028807 00000 n +0000028861 00000 n +0000028915 00000 n +0000028969 00000 n +0000029023 00000 n +0000029077 00000 n +0000029131 00000 n +0000029185 00000 n +0000029239 00000 n +0000029293 00000 n +0000029347 00000 n +0000029401 00000 n +0000029455 00000 n +0000029509 00000 n +0000029563 00000 n +0000029618 00000 n +0000029673 00000 n +0000029727 00000 n +0000029781 00000 n +0000029835 00000 n +0000029889 00000 n +0000029943 00000 n +0000029997 00000 n +0000030051 00000 n +0000030105 00000 n +0000030159 00000 n +0000030213 00000 n +0000030267 00000 n +0000030321 00000 n +0000030375 00000 n +0000030429 00000 n +0000030483 00000 n +0000030537 00000 n +0000030591 00000 n +0000030645 00000 n +0000030699 00000 n +0000030753 00000 n +0000030807 00000 n +0000030861 00000 n +0000030915 00000 n +0000030969 00000 n +0000031023 00000 n +0000031077 00000 n +0000031131 00000 n +0000031185 00000 n +0000031239 00000 n +0000031293 00000 n +0000031347 00000 n +0000031401 00000 n +0000031455 00000 n +0000031509 00000 n +0000031564 00000 n +0000031619 00000 n +0000031674 00000 n +0000145296 00000 n +0000145320 00000 n +0000145347 00000 n +0000162471 00000 n +0000162332 00000 n +0000145545 00000 n +0000145800 00000 n +0000150756 00000 n +0000150734 00000 n +0000150854 00000 n +0000150874 00000 n +0000151363 00000 n +0000151033 00000 n +0000151797 00000 n +0000151818 00000 n +0000152074 00000 n +0000153717 00000 n +0000153695 00000 n +0000153807 00000 n +0000153827 00000 n +0000154218 00000 n +0000153987 00000 n +0000154531 00000 n +0000154552 00000 n +0000154804 00000 n +0000156216 00000 n +0000156194 00000 n +0000156303 00000 n +0000156322 00000 n +0000156713 00000 n +0000156482 00000 n +0000157025 00000 n +0000157046 00000 n +0000157298 00000 n +0000158870 00000 n +0000158848 00000 n +0000158961 00000 n +0000158981 00000 n +0000159372 00000 n +0000159141 00000 n +0000159684 00000 n +0000159705 00000 n +0000159961 00000 n +0000161497 00000 n +0000161475 00000 n +0000161588 00000 n +0000161608 00000 n +0000161999 00000 n +0000161768 00000 n +0000162311 00000 n +0000162394 00000 n trailer << - /Root 422 0 R + /Root 638 0 R /Info 1 0 R - /ID [<4F90C2DD460B3170959D9418B225DA78> <4F90C2DD460B3170959D9418B225DA78>] - /Size 423 + /ID [<4DCD09444DF4276AF17FC2E3862728E5> <4DCD09444DF4276AF17FC2E3862728E5>] + /Size 639 >> startxref -134821 +172378 %%EOF diff --git a/figs/detail_control_coupled_plant_bode.png b/figs/detail_control_coupled_plant_bode.png index 82c27ce..1ca87f2 100644 Binary files a/figs/detail_control_coupled_plant_bode.png and b/figs/detail_control_coupled_plant_bode.png differ diff --git a/figs/detail_control_jacobian_decoupling_arch.pdf b/figs/detail_control_jacobian_decoupling_arch.pdf index a5db299..16ff5e3 100644 Binary files a/figs/detail_control_jacobian_decoupling_arch.pdf and b/figs/detail_control_jacobian_decoupling_arch.pdf differ diff --git a/figs/detail_control_jacobian_decoupling_arch.png b/figs/detail_control_jacobian_decoupling_arch.png index 8ad245a..1ad9723 100644 Binary files a/figs/detail_control_jacobian_decoupling_arch.png and b/figs/detail_control_jacobian_decoupling_arch.png differ diff --git a/figs/detail_control_jacobian_decoupling_arch.svg b/figs/detail_control_jacobian_decoupling_arch.svg index 104e1ef..167dc15 100644 --- a/figs/detail_control_jacobian_decoupling_arch.svg +++ b/figs/detail_control_jacobian_decoupling_arch.svg @@ -1,148 +1,62 @@ - + - + - + - + - + - + - - - - - - - - - - - - - - - - - - - + - + - + + + + - + - + - + - + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + - + - + + + + + + - - - - - - - + diff --git a/figs/detail_control_jacobian_plant_CoK.pdf b/figs/detail_control_jacobian_plant_CoK.pdf new file mode 100644 index 0000000..7532ad0 Binary files /dev/null and b/figs/detail_control_jacobian_plant_CoK.pdf differ diff --git a/figs/detail_control_jacobian_plant_CoK.png b/figs/detail_control_jacobian_plant_CoK.png new file mode 100644 index 0000000..442a42d Binary files /dev/null and b/figs/detail_control_jacobian_plant_CoK.png differ diff --git a/figs/detail_control_jacobian_plant_CoM.pdf b/figs/detail_control_jacobian_plant_CoM.pdf new file mode 100644 index 0000000..a82f039 --- /dev/null +++ b/figs/detail_control_jacobian_plant_CoM.pdf @@ -0,0 +1,1302 @@ +%PDF-1.4 +% +1 0 obj +<< +/Producer (Apache FOP Version 2.4.0-SNAPSHOT: PDFDocumentGraphics2D) +/CreationDate (D:20250404210530+02'00') +>> +endobj +2 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +3 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +4 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +5 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +6 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +7 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +8 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +9 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +10 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +11 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +12 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +13 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +14 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +15 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +16 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +17 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +18 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +19 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +20 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +21 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +22 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +23 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +24 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +25 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +26 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +27 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +28 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +29 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +30 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +31 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +32 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +33 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +34 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +35 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +36 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +37 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +38 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +39 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +40 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +41 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +42 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +43 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +44 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +45 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +46 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +47 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +48 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +49 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +50 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +51 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +52 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +53 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +54 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +55 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +56 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +57 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +58 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +59 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +60 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +61 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +62 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +63 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +64 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +65 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +66 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +67 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +68 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +69 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +70 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +71 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +72 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +73 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +74 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +75 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +76 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +77 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +78 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +79 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +80 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +81 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +82 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +83 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +84 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +85 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +86 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +87 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +88 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +89 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +90 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +91 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +92 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +93 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +94 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +95 0 obj +<< +/Type /ExtGState +/CA 0.2 +>> +endobj +96 0 obj +<< +/Type /ExtGState +/CA 0.2 +>> +endobj +97 0 obj +<< /Length 98 0 R /Filter /FlateDecode >> +stream +xĽϮ?OQ/D6` _pˁki3~cRU>U{kl(c-ֺ?T|']l|}-IY{km=rkc-ӗUoO!.IX޶{O?n}nlmIbD%?6(R:r(Kb{}E/^[:~~;ȯu?G1^zgQ4MnVzb(G^\?_d(HG+U?G1^zg]AK b(ˣЃuٵsNź>}u?zc0^Ы?1^zkϲ{jX.5gٖ^Tϵ1]zk ВwzG9[x]syxa.BK]KM/5e^}8?ta.Dݷ}?9[x]֔Yc)˧Koi]Kњ\ӥݷc[QO]c0^WJ5=?xa.EmsIRc6Ko u)z,jA>L[8hn0cX/cXNٻX_|䖥k?OD}qHRrjӥq8!we]ҽԴ:.n +.vMvWkK=xq.=cWu~c8^1.%Y<1\z}KXle=xq!=t?XJNq ^ZDZK\+Βrc8^W3c%cx]όq{NG)x]8q_28K=ym}k&1N7Jo~/>7i5xږw/>7iZuDpq)Oۺl</>7Zt{~xSRJ^.>i]S+KNx8ޓ$c4MJt_˹JK=i*XG&I.םIӴW$љ1^z}I$SnGK!ŦK=iEGINڥ1xO2f9Ne8ޓi._K=yjXc6^Û4{G:1\y}oJR\|wyصӥ$]NյX9xSX=rԺ7%y8K=I(-ӥ$]kZMxq'I %8ej;1^z}Iucy~xO o,)?K=y|/m_\e8ޓkYuȨ_vz{t}p!7]z}5$“tq'Oׄ3T~xS&n5]ׇ/>7D*c(ޔKcu^ǛTG^%8X4]xO}G$m$ˆ=bz{rxOV\p[m~ޓ{y +=)ݢd>VxQ'= >@sÕG̲}_J9xQ';s粥m=m(ޓ9Jq<>7M"Su(ތ5=#or3Sgo_^~S/kkG{9ϏWM=?voDzY| j?!O?dx7EGb0_jH7Z~~QF0_J~~Q FBϏW5`a( #Eo/~~QFK#Uo/>?_7ea) #E9GJ0qm{nzZɟ@/:᧟q5?K1_s\M?җj~׎W3Ͽ ?ǟiq5>KǏ_[}\ ?j}WϿt|}Dǟi r5>k琫_Z\ͼ?+j}&!WϿtx~-ռx߷ä?7=nʳ%w{ǣ$cNEaFh?t/rJ?JEz egp]tִ>2<'0UFAY|,',n}SG=dmM)많y?o]z֖IѶ#˟<]G#zסޢ=(^{_ּj}D{C`|jڽ'v)'E6F-O$O_'Ȅ:X6?ҿ[P3OXf-O8e~s>9g{]R-۶8^=>ȳ~aq@ #Ux~^xm=sͧN?{*4ߘSOMh>>6z~W$ͥ8+#4wF~ǗF0uGvǗbsCiwv|is+yot|e&ƍ.-߻\5N#xkK#4#x_+#4hF~ƗF0fGvWFMowg|iS;y�e|s#y�owdGq4Gt|e.-\=N#xK#<#xK#<#x+#vF~ǗF07uGvwWF0sn_W>7rvGǗ?pv/WFpi8./`n8/y憍V&HA8S+#F~WFpi +9/`n9r!_r۽ _q] _4?4<;?2Ki||isyow{|es{i�oy|Ǝ�斎f�Jrn8>~<n8=N@v|~4r|#_x]FKw|so|%;7ºow|s[o|sCow|)=|y~>j}Vu4S咵0?Y ?SN#|>eZrdz~ Y ?PO#x|:k>EeZfrdz~ Y ?PK^F鬅|*K4g-@h9Y ?PY#x$|:kyZ2Og-@Yy~ Gh*/#t>5eZNJ9Y ?QxD|:k;e�ZN>9=Y i':k󧬅ZNr9=Y -=N﯆?i[ +TXI߷q.NmvO|?|?}'ן>Ͼػ{kb$tiE_O_O//SOK76 sRZ2'Ӟ[vͤuBs'<>)"c1;=ONX$x~xm-zOzl?=NSWC qoyޫkM#JZaZJmGSK؎~_LѲ7vq>0*8ӫ7˾`PI~_YeK]]5,)gZ 4}Y_?lGu)a mKm%{>Fd-oז5uLgԱ'Md[j1XmZFK)g/m/Zz-ÞVͥyƲdi_;_9 >eI%i:rsYXQkNU/S4ۚV|؁W%~돐{)t߇}ݕ3$ߧG"3ǩQ% 5+ߧ\3 VoZJޗ&+oXb_\֢i5iZZij{mmR$"-%,[[`b 5:%)kE"NXO3h޿ZӺl˦UU뮯K/2NQR-ށZW}¨[l]֝V#$u$W%h{gl$HTԯEGJj{-q RBԾߧ)Wo> +>NJtq0325%ek&q%%a $ &q%h[NMwtLgq_AYc Le)X<k+m4+u;rJB[c(rĬH_I UsZKO;J Ճ$XR.RJ\UJM_\tHʌ}$o;$WVI$t{c?YtlzH|l->Dߧ\G8$PIƘU-ڌ)ۛa$HU"BҔ:$XVtcVzF H/B<&lLJL=خ@$ZjFS\R Dʥ$K,_ZK|&Y%1K>RXH8aI->vBTs4_KsimfCT6ŽťRiLǘEgo?X|MJrqB +Vk-T,>{qQCkSm x K^$vQ;VNk ꂾo0:~602Ӥy/['{۴ (uy_M_{IT'uu: uIoPc}f8M)#,"}SE>}j.MJiX[N}Q-Ux;X/.J>ְc$fOJv`M/{t~qZ18BFiҡ/J &X?Њ6|`(pͺ9t=a>qd&Y-.|خi8Y$3ȘjZBW7&M^L^d)'%}ZY<# X1ֱ`ۤl[IjO\VI'X`Z܇Kq♭37ƮZcXS01қ>/8<$oml_ ~S*uL[_Wڞ߈J=)¶ii ^3=KJ$ә;&5$FedcjvɊ9Lq 1dl*ϋ@k]71Vcճk@XdK<ԚkqY 0 Df8 8,)R( �&-x98wɊXcpmIi͖pXj~{ F۶h +,] 2/-C:nDFVnn29٤]`Gw-CK$ ]ndKjXҿ(?ąN-*ZV&I!F! r3I_5{^25:-:W^0 %J0iGܧD!@AGָOqq [Xf1$̨"iRI2Ɣ !}OgB L{&lCF5&%`DzMc;خyיqJl[[ǤW>K`w+2g\ &5)": Rs-9PeqHr='𢭄nH <!j.kh:cƶ)h3$I ֧ Ʋ $㼐MdcyùcKh  +-I9z[ܔRCfJ~c6}hْzZb$G܇uͧ`^:t{2 i?@ +aA-\F%mk>}"Ho86O.; +ga<[M r@Nl#wlݞg/&5k8{Hܺc!=3%ʅ M⾺๊ lf#"I(~5~|[X8a[9R#LҾo#´=rBUZӱyV!4hq`fC>%>a4-nmW=:CX,pMW9K) <;VQem%҉~dgYx4bv$6<.cD74 =)"1cD7Rs?R,эoYmj#v^ꘙI{^  D2zh8%kFz^&=}! 膃 X ݈nl>d_э =tjfI${#јdLcFF}iKZtc'>y93FtCZ>^:FxC R$_aHX1㾌R}Utҵ}PYgOh/HucZU<"ե'ɐ;=ݟV{~p?ȶӶg} }`bPI!m|]!*:ýg5nKd6%IxCaRЕI`7tYOj�9*ۍ$a2Y+Y0빿vmtf;v#5q4<Ag%Z ^8d`I)h.r\3oDk9f;ohjQй7ް?OS eXէԼ7cD+.ʵ Af_`7ckE BLzu6O˂^PS8Kím/l3cF+&MzB\IH[cc^2f`i65ģ55>e} ]h&´O1Fx{ /`d~tnHƴ`Kѵ FpNak6;k%*v(,aF{ܐUn0:GٰõdWe1i+ IK3y͡+S>1cb: {Cn ɂ@;@a}nIq>ovGTreA=EI|2FpC2@\5QCˋS7FoаmM;rlQC@:/_#Jp|qǶy7 !$YD$g!mzhZ�4R#!a* /`cD7t#.v}a%C?Xc$ܼRPu:؎UnHy[0v8Yr+cR2 4 7!2 =M'@Dt{hB2:Јnl*7w>kS .VrL*Ϋ:xwt ~)C}wAe'2/hjҸK4Paz 'q\40Y?:Ld3z +i8:>T\m4ӓ/e%OB-0C&nǻF x%DK$hX獑%St"(-Fjo88WeuH#frwҍsIjB5yk u;s[9cz3jĩ J4Rw JZ}D5LrH ^{3ُ˱u +vdVvE;lfoC_{Snɤiw5BD>%t~8Pah?y|N@j48p }vxH7 Iq,Hlj/پ7R +^XB"WhnyѹP.T +eI+J n uIdZy8[i[I 08h>7tCEr 0qL: +פ0$w١ lZU9%!-.+ / %L"~zL @f FŸ݃#)&f7mGQHko=^yіߜ׀\gzt>=$r t':ַӢzV}FDCsi< ȅVY`d=9D.LhSTVYۡb#D47-~kMjMrJV&joHwU N%5^(hIΙ"ô,vLKc OjFENAЂTAoh4,&8n$H[wVz8I WBvQql,o<#K.2dtk j23DvxHNSxAd +[cG4 Qkg޵6µai,`/vG#}x\~u g$'2x֐]3`( +L_LURܘCϻ1|5Eb ޞF +S7L{%лC DI] 1`_; j%P/>]kIO6[.$1)jT$7+"(slhN櫹$!~T% +$c( ; ءc7:p;V´W +oOnd+~Z^ϑ2c}T=ӠN>^I5-#A Da>04"% U!r :%#yVZLuAqV/^mcD2t*IțZQK;:pjEl9"&Ex\τ7=)y= +p =!{R +5:Bq,_o⢑$k@FCwO6]K݈b8v*#FቌIG*0m2!k@Fհ=)8|*=/=D3 ұ>iV#[13ߌ" PQW CFQE^dsJ y٘>3tgcWoݭ(m9v`1Ta%A7;hsĔOZq*:FUX&U@FxaiE>cϝ[Rd4;;&FV kq$GƮ)>IBW:ֈ3VJ~P{{st aƩ m1}$D1*}6-HC--a4w[m +O}vҺJ]Qث{Xߧ#>DN[4/'vP|zV0xq@5#q8b&g 3gC6< wc&2kܦp&Df IJ7w +o%"k鑣*֔.6'9;ƈb46M +z7GAMVLv:Ĵa4'[ܶg\YbMq5rG$~ب YHzXG< [#֘4^NrzQiwQíiQ=VFԎ I1�1sn+skTdɌ|jCz!r7lK9 '=5Ǝ>S[c=rZ2qb W2r +a=ܵ$G.txF?QuGͶta'm;:o^V G#Ke&JdFX!8y}^7v3ٳ\ѕ8c!!MyZ}=GLCFz G$j@%Ƥ _XTfǂV4e)l rGV)}Dڱ)G+}OߩLtR_r~H ݓQR5AwXF(2nܶE QךiYvH@CզXy%vuzJ0cVC߉n}T]N쀉�>O8Ime"]s|C@/Ld}G:&k[ŁrU0쭍�9ɍQ>}IvIŭ>z pFSIl4Z鄑2& c=v>d?bT\#8r1 )|l#-MDm YwdTWC"#Da-&ƈi|ѱ ֜ۇBLCsVy)%S7j +&ꆊXN/+#rܧA]q + q3,^gVhr |DS"̹ I&b-؍غLzUyX)JN]>ٝZe!0@*宐bLӮ�a1J5 +8zsa#a=qwCȑWvNʉH*'l~c3 Z/65"⟉dtpVj>:lhJ%9IԊl|E`3r LAb΋'wN̝>w`2! e%,bqA6%Ps,ݡ#Vu> /h.mlzc$iH'eߘ^6bqNharB | +KLS5$.5]>VeJ`-T0ɦìn v @1 JI=P}m==e}:k 7PgЎ{}h|wPp9ּ}Kt&\D4lV5J$ߟGAHi^X<%Z$#bQ.8W/2Y +\b륉?r>iH,w2u^>nt .I +ŶOD? Y=ްBv!Q*d�N߰y$.OBS#(G\~V"a ֎Te$$z& 5.LqTogt),UUc.Q =*<  a?#qMXm].ΑLJ!Bb[f,e0[Q'i Ӛ|K&w>i⩥G$=;56H5-BN&/q=-JNXJ$pq2HK7^ONGE+"պ}`6zѯu%ڧQТHf*Z[]�C% A|U`55sM\^\}'E3I=!7 DbC[tm-2sR#X7s͑8huQ3ܬebP�󇠿#aYTi2u ,oa%0` jS2AI_ɘd6cc:\l}kR3F`hpZ ct.}L&v[iIFEΥDxO64YFY;; K>ҍ*:RS*Һ}hCD$"E8.H +YD)<2"a}u~d~%b)ѻoփQYXfI%mqk;`\qV]R%!kىb(laMB2 Ԃ[w#AG2{o!\X[qS)4$7}eF˜qBX@Ic�C UuWT i}T Aד5'w%voT հ<|jܶp\%md( ҜEZ:F9BFY)K;Nx +f1+xݹ�dRs`x@,G7^O;c;LLʄѶ:5=G ؂wm7ld;g)am7<>wNabe\],6feroXD0dYDpC>dZ 6GThJjF {q<]x+"6ZiGS4 IXRm8}Z)FBl>!#5N^] G h̓|0yht\4sD))ѢGe:] O] Rsv;T$jأ�e鍐͕1DĢL_QkEC nlRa>KLڃ}yEw,#/HZ\sn=/qKNK8/IIS0.]ĉK@?%xoO mhFY04MK"�xzF%;F:fݪ`/N�Tdn +y@6.Zt.P%uD&f)U}D+ #!œc">up4Q!R[G 7jYhT];SjBvdKr +Xd! آɗ՝6jYd;O)7"Mr5|�(f۟|H'�BQj"ivl1M:m)Y!E B9o +m#G ß/D(GK`@$;9|$'mNV3(YI4.0FXc(.аidI[i3 a.x.f(BJLr2u44\\T<>(Y'pa evWAg_1HqAN_n璕!^A%]HcC1V{/"g`%+8k|ms+.tDmsg]D5FUVZtb{x`4tQA3ݩxm4$oXhxЋƎ!:ft($zU pbo+'"pDKu,;WDOJnG5))z66AFG/M#"UT}+v3Iy 3=l$Qc/` +jpmP%*x#Q (:9zW^N(ZUh +̤\=f%y-nƨ}`Plr"n DT#nD Y8YW<]5rQKQE:,-˰DΥ/G΍9ir.~$rny}vJ".vgp3?o j` +`vh 2,03-c00zSK3-{>'D-a,R(oWj 0Zove0$ +#n%eQnWf c4V1PK2u%.]% {X;G-al#G!^a�KVzG<%Mwn H-a,ed#1zu|� G/Z% +Wj PȎW%-W:/[TQ+Ğ`Y˜5`%sD-aN^,{(f[)]%&8i Fn 0DFݶ}p)ktJZ~0lݮ` !D-ыwL$k4%z J-aL b5QKe]%e31:F [LDe�g`'n c޼3X;-a0ځO`K9-alD/ݮBN-Qz+i�r{N<%:sK0?%Ϸwҕ[aş%\{vVI%;!roWn c˺v[[-Q=ϡZ("ߩ%hλZ=!+X!!ĉZ":&%+`t9(-Q\Lj7rK>:-QlqĕZi�zC{س6WGFb |4@%+P,Q\zEW,A (N'`:NY 1;H-FOq� ;Q?sK( fn '(:!;[r<ƼL`=a�˴dn[ޮ`H&%0Gn f6sKTw=-Q"~%'3]OH`f%JCDq^%$ݜva�8vh3)*ed(eK3v!pcXB?K�߷ DKc ]h.sQ2K=j&b B'h:KQ@:'b z[u�Iy%KB5Rf^ 0ɽ+rؓWq"r"(N[s+tׅW©FN+A,+&%v JW8-Z}O`i=g^ni%ϩcOZ 0[,Vh#;JRyJwK#DOꝊ'R Q3JDO?L*aI%;[d mѳ3uI)ڏgRlDϔ`ГQ"Ȝ6cld�#= %\^l %SX`$͇%6J a$(޻k %RׅPBGzfB p(8GB *wh{UI$�+= %e\3DqkD; %T6І獄^P3Jٹ|3ęPL{>ΑQ><((y(Aє|p&cz2JЗvwq%s{s$D Ns0I� 5J` Һ9j&> th`6IocO> ܓ~f> yc#SLt(EoQ•3T%y(A)]u{2Jua(L{*ﮉQ |ŽhA4JqPl5aڱ'9X?n$Z(FpόFeZ֦%8'F wMgx2JPrΌ86H #DqijM`+XIqR(ZbΌdA=QC3DqyO-2&B =g[ Kq5 %ܗs!E; K54J8nK=`"( %2uo�cB \wK΄ى�y #-gqu>P8+'@ &>sI>u9G%"| +o:1%AЍJž'D%m7QIu=c.g*} MLvr7t$A{g?ΙI=e"=3Il&& {2IѮХ&& B-,g& \!61I6}F& R +D$!س$C5Q< #)-4SI_* Jn< }b ^RC$y>N%k'16RIg}[fYE#| ⃖A'& F& 2Rk +`摠J3FىG­w" Za$ �Ivx?xIbs?)�{b KIed1{2I} I0uҋL.gX:YL$'" { 8HЕ0r#OIu' Lv'VF=3mwzG܉Fc`upз{H@Nנi$91,#A>V}[3֨$ V.3A3=IBPs?'M@яx" u +^`$Gq3}L܏"H.>Yf*ՅTc=$hju⊑J+u 'ׅJ‹IupkX܏'*v4PI $I1RI,h&uXP%vl􌞸$R;tRIqb֕B$ӥq{ bZd ^Z8]z݈ ' KyHG Z` H&Wl$kp=$<T$&~ph֛̦C qDa"A]]hf%yD"AkԽzH=jD"A'kD^Iy9dL$.DMI$!zt38$(:=g m%l3el}#tvB@OOL!AןDF;e:D!A"}7Z|Blҩ'F 4=~ +I߱'N;$w싁BLC*}c*' rӓ& oK,u H An $f3sd_ׅAm d>s_ }gt  NF5GPC/#snA`#e Mׅ=;C"?F[W2b#ve$c#{niu3{vB#Li3{ 1G w#(#-==|0G e3{ zv(Hwׅ="V;3O ]%gjmh<'{Djj=-ya$paaយ#e[י;ErwD-co掀v c#wD52Ʉ$:GQ*Oʑs#GX:HAJ x'Q#HI#UGLq"rǍIO4FE *L%N $iJjE? {Y$%26"Ep0Nu#VI#Gܜ:�kJ)nzGb4Gՠ{<߆\@{X9s_#{Dd:՞7Gy1h;GEȺ;G;ƭf$c)I:G!%߉'gOHNd ysy2=s:ă=U֎<#ȫڨC &ٵN1GT XQy=HL?>HWkL`.{ Y e͝a �-~ $L8#W $8Cz?|F 3PIwS(#Q¿ //^o �+4P{r&e?9Hpb&-/>H&B_jĞ `ld,%։& o01H~NQ} |]($ML)$|sǞ4fHRf + DG>L!>VcO + *hfl0_8BO~]($#Mi"F +Fy;^gL!aω9$ד;aD"I*=O'O0vI"Aoah$ +)"A߯B!f.-Emh -F 8JEzBIL#A_y^<^nl 3r>gj*Y3IM`i$.y P/њkpW66H@ji4xvZi$`aE +L#Awqz"&ĺ[D#AFb(_ml̉EH||gXAua_ M,++'sN#jv[_իJDs1H$PI2$kl.Dh>DGf"3!;$ֻ]$ )~m{2I$wk-L\[LO2IId)$v$AFʍuHDJ"XlI9SI$QVW7G* nF2.w2 þLl6I$'28lyGM"Ec[N'DԀv2ޙL"t% VLНܾI&EׅMQ)NlxyPM#A:Ily 35>IУJKE{UujMzٸA0I;'UN{`h`p-hW;IВO/3 {duI'ATmD'Ade4t 3d&a^ua7IЇޚ=$]w6 (d,eb:l4=$J@c,Mi0 +l.,D'w65&ѩJf: $ON'GUL'RB'=F=wB3K㾁NSk̄pp('F ;|]%(&igF ,<612JPhLBq̌&/ g3C(mN%X;ODp٩o&B`4;X@)-Oa#汋Dth\{VL(뮳]%ȻlU %H&W$p ladwggF R]PAL %a#@%p[PئxJ+d V +P}f;؅Qa#(ޟBM_ÁyX9pOn K G%!rB(ኗ8JzJPY3J;Og)ׅPu;&F ?Hz4i%\x{E|](%Ud&G͌khJ>1JwN(q?;JKV{J:a]%ȳ'3vө0J/lm_dhQX3N1 \.#39RI�J9Ic#yu +u%8al pQ+e⒀$|v?$7lwG$LBrГKbQ"o%`!'.X%AFQ0?sI}| !x-F2 :H3ճ&Aמ&&`?ׅMBr[Plhud0?IPn'ЙO:`$Yx|nIlV'Aq'A:SԿ.|◺wOT˳ׅOb]<ʈtXN'ׅ֗NET_:uucL'A‚Ü$HfN(Fܓ!FB 9zdKτh-.3E:il$@NT#ĜMD 9J{{+Loֱ00J տ.>!FFդ%e,OSPwZ>~ ӡKp0/.7'N Rd ~ `VדhXWK'J Bi[x txrrbN (ZtJQteld?JPz@gD+y c#uR46J >fBϴ4M'Z robrەV˺D-fZ r HBV@!!`ޜi%ȁHd(~g <'GV wv¢U"LaϬtxU< 竽*eoE*A.GgBX%Oz|g7s9 P~" (m䔀4` )aVnWN3Dr?vo[2QJ;|H[g% pbͱ|~{<$FD ])%0#5_g"N7]I% >txgR zGTb < rnWR riu, q͜#tW;'Ć.A 8%|&)%o*n##k7n3&R 0)R }zY=a5B*A 6:TӑTGZ/A3CWH*Ct̼pJ#8%\=*H&R sIqnA&CɬTa6ԧ 3B8G9JXe>,X4v7.h$B  Z+BmO4pk`2~1 @]9| ٕ@6_�R:Et'x5Z,MrV6*s{ Qc[bG`FQ%%|F0A҂ mrc1{NH_x,a 2| Kglx}s` "΅ݖQ)YtKX׏; ~)#Ax'm\}id:1{JIq&u,}^qnGI'$Iީ9AӦMG` ,mݲtO +ڮDrQ +οẹz_ z-دZykѮb]R`}vlQT Ia4"1dKһ{ҥޓ;"y{e`ŬafJ%/wF 5D ƜwUӜ>۟9zCb*KSdd"{%;4gy.C\ [Hى\nl/u˴n5VIwGcHR"n X۝(NB31>(5|uq|`hOH7nHG^#Kl; 3|/0XfL5`c4vgކA munnvu6NY8cݗ:+oF 4GA1g:_,ᵢ#{/QHD +kY`C\.e˩Se[{`eb- zIM`-ؙ3іulB[1Jq0ҖQv-Xem-Ѓ`g-3'b(mYd.'كcg,0Qa-X/e;'ڲv-u[ֱ_x{oYIoYRNeq[1?6uJv- ,G oYǶxZTuLb'Q:m['Ce cZ32N둹cT60v{hd. 6u(,0zG +:ED\!@\ֱ%&޲z[za|,5r.eKlc- Gh-3v[12$l- 62#qY`ԗĂ0uL wY`u.,0Qvpk6pul , S0^0R&߉,#Ʌ,ۅ,0;=@]ֱۅ,r&x uY`^p e%7s. 36P2PƟr]m".2Yμ6FX#sY`ɘ,l51[O~, *72c:Rv. Rn3uY@J䉻,0Y)x. JvҚ=Ke. h!8ps-PjwY@J{ e.0'검6G=J~2 ej޶=ˌZ}]X=&07r|e7"H0`"/3FbNeGyY`fm ʰ,0;8GhN{1̝ad/ ꯙ,B˙A_f-62c4_؎*DdY`!&J`[؃G@n>&3zb0 @ =rbY`8A22 Yc fI W`p fP`fگ,%F +T'Kك,0vco`03 ?bfE,0HCfƈP;Efz@`F3cD!>,0)<%z$0 66ANf\ fiZ fqP +g=`X>Nf?0 ?r]Z fѨ aflyPgLfx3#Y`305sVDY` a03FO%Fzaړ*' +3C50cY`m;0 l{߉̘oqaFڱGn1HH9+@06pƢi0 L'[#F3cX:ۃ,\NF6r.X +3#$t:,0e8fVX~#Y`*Ra`Ho53IJ :RTF +3cDa'Hafj  +0ttAaflwaza8'k0 ,m=o03`B9[#5q:둾f q 13@bfliVs3c2Jh[81Z؃U*x^v1nyvf]ygسcfj4Mx[#,ۑІ #^vcxӉT1ί9!cf$zcfRz$23t]KZc"23v[#53"<:MLf\,{0[%df cd2wA=̌҂td23Vi/߉&3c;]bC[sJpLfʣvb23w̌i-Qt21#jW3ӊal`23F+ ̀ K/jd23̌3 ƉX'MHdfJh`5s(F"3c0D`b23FG4̌>GF.30vB*3C;Q#STfp1R#1MTfHH DefLvlVTN6P0P+v{pQ)cl23l?g9 <#=ܛ̌85*q'`33.i{7#?a7Ӗ=T lfzlf| lfr^̌d +ffl;67Hj@#63cB=lfdokf33vVlf`V/\v"33V\̌ U#Yҥn|3ǧdffI=љ{6s յf +zofɵ=I 7V<i mf^3cZ=͌LA821MYt63{!Fn3c>Fr30d&z3c'eDyw}Gv3 +r`1JVXNv3Ct<"nd7sk Z MfR426Л9)Βke3Qixrg\Qg`Bȏ(Όs2P9C7)Ό5=2ƾf3c4"Ct8#SdX8Όjl8suy0EK#6f30F!'ř!N;oHq'-5)Ό8R[سx8Wl`83eUɑ sggS&3D#MgxEYqK-&3WF8Ό.u؃:3) ǙD0"Б15rbg@{$l83\ .vd83Aߐo#YEad8çtcd8c kF30Uthb83?X gBnx:kpF2h(pFaQ=Ό$pf7Z3030 0 gTPvʱٕ^I3<7`ɿb˰xfgpkYݻHGjW'$Q#2T"Qk{GrΨI8+q&±P +5FV"8eBi}c8F+q~Q3jkJ;ʥgVQגp&OM=dJp Qhyf^:;75議7 +Dė<ȼށUdތ>C2o&-Xn_5 oFF&O`f݌~:9-tfXtksI7"<s#ڭ7|no&io^j?oF&fxoFO?ŏQN*fhcB.ߌR::Q}3!yϟ5Q#dQ[cs}nLFP)l-m9}3uR1C QgxJY̚6?-ffCfo5H7Iu77coƆ}o&im戲<|3mCym2nƞf#f{vn:2wV܌-?/EHRp3^t3^QYٰ̺4X͚2Wy33}ʛ <+nƯQxhMk 97c‹EKc6܏m?%LqY8rVL=*m3 VYl3ds¯̶WND-)2%ی+`Lym] H66*]Ԟ~x6ڿ# +m&ZuQ?J͸`?!fܝh3 !Yf Y +Dp9߂g˴+՗t]i3t#fDxf}(4Gf<MwWDi!UڌMu]r[x`˴Ϻ-ρ6ӳf<ai3&hwa͘_1mQl3ԹI.eL :{طU6Q E6SԦkղl֐#d3B!6-dh͈M#%g,fĦMU6bd,вlFWqgɲk藏G6spt?|hٌybg64Wl%!l?f7ٌujoC]ٌrA6ckG΁5&G5#YP]3߯[>{g髖\3Wg婔]3ƴvZ[5Szfckdƈꚑvp;1cU\E5kS9 ⚑.]6[; `3tldqu\Qf 066Vxv+lF._uhyrW`E Yn< _- /ػ+lƛulfLkۍZͦJ׿ +5Fԭ6X\j6#&z#l69mj3Őf|+f <%Rm3L̶$RLKluls$X |یPmQ6j6}: lrsjf6|lсħ7{o&v!Xm6㱐WZp3Tmz-#VLY9GL12n%7Wn+C7#4i}U-fJ,uBی?*}h3v3Y΁6Bl,f:w?WL2lSL-L?eJmZ&*mFcu<ڌ>tfJ?{5"mY`3!mYe3pi +{clfj\p3^!knonq3.뜯*n&IgonG_j7S({Ȍmq9ftԲn\{nJr̍e݌p[1ΧnFvnqO'nFP{>u3tޡՎهn`Hl~[|>uU%A7#iԇnd?t3 Ŋn(iA7[͘FX4٪蘈2f뢼ҫVxzg)٦$Uxe-nh c`.l ,?t?tmrjnO=OݬIݣڨPmf`nYȁ>t3J=u%snFw0nFK;{lR no,Ffot3-Q7c4I3f;| G EPS77gYC"t|f(v|f,OmޠyPxfLm 2pY}66lV>}mD6k;'mƗ:/EJq؏ڬߎ~G?55fG6fܢdCYq3jGSl7k\ERQKD)ܬ}36mʹj|f1U6Vtno?o}7[Ԧ)Et݀p p&in'sʹz|f|F܌ w +S7]k<7#t e܌Mq3zw"p3v Rp3FH_l FdfOo%n"ljj|c>`wim m3=SqJl[lއlʹC!d;#|fgE6c+AFl-" ״tj^|C6zHgd3Qu_1 7Glx+Wxl6ĘxsTzaUl<Ď !`*alح")+.)E6k\Io`.ɽ7٤i1VT{!)ܩb,]ٌnta9r`5<8aw4f}g7k[Z͈zZͼSNJ¨ +N}fjnv$ Y&]އnF`rDj?x3N7ܻ'u3myX|ލClj}*?t3~1f}1ֻؠnִt3{_H}ff~Q7wɉݬWhC7ߍ77m77cSyYIo7~Z*Xͼ=jvguQf?u7EրoIwR8cx6 +g|/cbØ3DS8cr˞YrFLۄolIl&4Ahqq46h8#8qs?H{ʕ$f|Or$'qFNl٭fg-#q֮o8(m~>Gu}zg4z܃8E78[c2oxUm$6b}ލYd|gq<~C'lGjrl ]Z8o-8'qv7\=%_8FlR$p w!sOlS#A8#U&=9Yia|gN@ Q7٦wٝd3b4A>|30|zf=;Lyn4}f!Vi-j7eM7|lsmc>x3coƲq{5GL7Ol,3sw;>1<|fvYô:GuF?u FW7#F7c,Yow=p3=-{Vq3]B0p~,nvD_R}6cqwf2')A7s]KI7s>[t3>]n%L_n~5`̵~wI7S#̵;?f.itLji_,f{)n9˶Znڵ0f+o_nƎ7;5x=(/k)5f`I̵y\p3\7L5:xɄ6s,jfa\=ZmplH/6Sm!$wq-f5!ZJj}C6s fkw6SҒmڽ[fk&̵یNy-j̵x&2nf̵Y׀YI,klyɸjOUq3VF} kۙ +6Svb(_YTcnƳ6Sl3H5ߓm3զl3j} 6ssWlև_mZԝ]l3ۯ6sϙl3ն{zT"a͚{`*ڍvCLkmTi?5f!_ZͨQM3׀/&7S7S~e9q6SMn`zkTc5ܜATeLv̥f׍X6f޻ f +DTǷfL=BL5ӓm9Om'bX~6S9vkTEkݶ.kT:(Bbt^|M 8L5V=LUTq LF\ +mﺯA |D$,ޚ5fqXx_pf0h϶jo5_mڼ1Wl36o͚x6f*ܶ}sζji3UdFB܌$"XKj0͟Qi)j #f*& *g6mTw]3Jk'f[6SؖRTUWTc)hyfBaJ)b>fiELvT[ݣ5SmcgqTX +kFK!-QY3^7\X3bӎj5S)}ҭ\QdVͨ¢d\T3VaIdLcNG_I5u_"fjrVL^jI5S-ΊQ.`-fm6߫5S_z jFoeL5:6-L55QQ39dL5CVʨj #OؙHr2T3j3 ~<*j/U38tVՌG1jPTc7DՌZΧwT3$f9ݬYG5S펈-J EɪYcT36Mu̪jͨE5"s_RT#isiE5֏~LU~Q*~%L5LwI5S=F/jִtW_I5S 3E5>[+k[̚)>Y̚6@r\k<׌Gڦ0kFՒkG%lf_K.5MDT(YƳ-5buͨ;#d3a'fHī-鉎}O1ٌZNߪG6!."6+I,Q?ᅮ")v eK6DeٌKsL$ˈYE6 ;JfJǡLfԸou[d󷟎*M74d3jBeLOt/c-#Qډz|͚E'L~d[5lEQRXZ4пzrTfPp*kbͨ>BQ#JDQwvͨǛMQKj6Sg_2mdmt(X3Tͨ~/msLnڌZ^}6Fv#6oh30MNMQ~ ڬi_*QZ5`[B/K&8LfLY|r ٌ #ݲ5cf֕3zY66ߍ64Ѭ:f>fkWodq(1yBj5FT[ iZ2lt$ˋ 6l,yfƴ*LYS@Fl(Re&_f=J(5/2ٌ(Rd3fp|y/fwD,cSj6cЌوLQK&_ͨ5^Xh3&ZDQ[#6j7mF]J8+mr:7hI6C6cKȲ5ݯX`3JԹi%$5F)5cu' lU Uz֠fe66Ͳupfج)nw +lƚ˱[$LyoyXkmʹâ=`3j$F\Xo"8B +l\ԝrg7lXRlƚ1QtQ˰(fM1Z͚bUKK}tm,K}LFcX\nX/BݲrmYrCXmWYe39ldoo/".,D6cѝ. ׬)n,чOW';kFtu MݗBXլ1XR͚F ? eՌFbt*7jU}zL3{{ʷfډ`[4kdjvD U%ь̋ IE4kr7ь拃KLѬift'{-w&͚fChPiLi}èO&r4W2ii*f\ggҌPb&t-4D&͸>w'Ȣn_fFvM͸ݬ/]I4fÝrE4z7Ѭ)4>j?Yy{`I4H,E 4h uJ7hg4fgb֙4*-Y?4щ6v@3=bsfzg%s4󤋟e,ܓzVS +if#bjhFzա^D3-ԻgIK]υ4ctXX6PJknьZ-hhuSZ^>hƺJݱ_j-8:x΢׾@-fԎGfҌѝ=qeLV[wKi2(}^,VH?XE4 +}($D{f6ɾvf%ьU_imU4eDhaR=QI3VlLI3]I3x-$1&OnL3M34ܫTM3I"|MIKj`Yoz?MI{j}LIw gl +LkaqЇiF̾ߘf޻j-Gs4ʹ0VL3u-@ 4ud9f/b-"iUZר%ԌwW? ٛ+~5sfm*j](e ꊯ=lg5cѓTkWlV+L;nE6#ٸտCf Ѫeٌ'潆eٌb֚R>RtLxcf0TnI6yJlƮ^OeL eVٌIƶ&**-::yU6[UfDdPi3R-flå5mVϣx{5ٟ6e}}eیƒm^Uޞ^6c.(2DxxaMf,ϑ Jǵ=~BFП+m)s|JuA긔e3d=|VlxȢJY6vFUXiB8RԴyo-Siܾf ,f/m}ԼDiU?-Ef،D}ﭰwJ8`3˓9bRfs،.„'A6c>ب[`3>0f[jXaE}V3 +j!Cy`3ӆZb5,V@F +PC~b&۹l)6gX#CBwfMbeڌշxN(Rix^h3-X^g8YϹDiaّ ÒlZ4gFٌS*U6cݘG෗lӕ->fʹ=;\!j7m`cm3fv/ηL5Yi3-+fj7m\7%ڌf4)νLqϙޤ1Q4fnpVl~^zvfXhX׃6b[366;yl6S0=9m@c[vkیNp` UmFmւ/e6^!K5.5f& }fی;XV-fԸFdfm{ǗϰlQ7{DC@;j6`ǯl3ubYm3%LFol3jXo/ZLhdQGZͨQ^u{l3lsͨ4ou3waDsfLgf`R-f68 ތ_X›Q?ձP|3Y!Bj75wzf?a|Y0׊qr=eތ5>ϼ4y3j ތ3)lVfά8Ko6+v[oF=ftϙ/fc"K5_+~ڏoFmL꛱my35fQ%5Vތ5.JFd܌2 ی>Ϩf \gxlijD#1:ڌ]Z@Z~*mFJcMlѮ~6>Ph3v,Ymh'mS%}=$E6#Z{<ڌ-6ck~٢lѬ;mQ~&sHªe܌^8! +nƃthW܌kHjq3]q3H+eAbRd1fvX?gj tmFl- +W^j6RnmD.f,FYmۉ?KeoWތG^2x›AG#oѬ›q51Rě? ;OϞE/NˤX4Vl<TKl>rG͘@x+M)oQu3」fB@]!pT9fC@7#ϞLC#E7#b_kXP-fJgc2n<5jlV}J)٬7qe܌߷\n6{\͘b's8Ly"h>2mF(w%7#h2n6koܿ1qp-\"˸l_f3K_T˸E&jLi:7jaf3+́xe܌4~VDJw07G[>t+n6k'~Y*ג9fz>H&gی ھ/ی+,2 |H֮rfObf2WU Dc8B{ ٌI!lq +ӫfq E6y3uelV?0}vƨ$+ Id I{fdoA67m2ZXQxJ)u_6c~_{\6S3ImFsS^(}l3]U˶Y?R]m:[9ʹ_6S`YPB"?g9tUfMw1T܌]'U˸^#/3U܌9[8k79ʸYS{}O/YSOߌNsߌ=)w}r9fmV7ct==z8cԓ[>O1UK>rNػ:%i- gPͦTؼg**"W&=PU pF5S+Z߬ ޞm,etov8CqQ8TiraTlR,!s>8KBglf7, +|pF NpF[Fl|4ו(;*!aY8Ӯ|z-pf~hNKR35W_pOtrhYx'8VZmh𡧊ިZ4DJ-+ٰv$dLǦ[ +wMetFΔ 8S re-~980}8H 8cH}Cl 8㠅oK땋/7S¾]7)\T 7U臍7ɒF0#_7#aUqt꛱/S8#7&[o֊>\@Gc*pF'pFAŷV#< ќ1š8#/3s eSETYS+ +pȐ>F(p~HŠ*݇ӶE1}(O0aW{zf<7ςwoc;z~ρ7cvu=7cvtS4ھ݌Bn&^AwY7#)_f4/7[8|E-ZyE'ͭE7 =8^ꬺ?+LۋynF̪qXdI7c68u3\[y +nFƲ_7(|p_p3R6=俢siN_6=p30q>ɸzxz`p3mۭ%eLkGBʸVtdn~ n4,7 qqϸV${A +nFoX] j^T+Ty5K +!2Xʹ0(Xl}$܌qxj 7s~܌A2n:;6c3m-0JzK=i3jL`5Nd1 &BIoZfr6mnfy]-fMlwbh,kbQb[L i5cph$nFͨ!3Wl3m渿bl۳f$oh+6BIl'E\Zѿyw>f͌*:=h32;gMQۿ_͞%ڌYz:+mFw.ڌRU^c6fRYfDDk6Sz$6~>mdOȶPObh$)jmXmW-f^uK$ +ݴ9+mFNH*KՒm$+$Þ7m3ͻΊgW)+ 6nF,U7s<[wn݌ۙN6Y0Ku-Adlv$Lkdq{ܻ +n&{b7S;u?gz?\̳%L}hfLz?N$77K]O~nFA7~]ٍQ{7ʌ]߶zͨVZm 7ݸ5fg2nF9nFv?tn܌[H'o*z_EC܌Ș%܌Z{쬸5"/문Q3f5r/l,ftϴfhm&W=AKeLg䪿"Ol3|;fL}ʶ٬em3f^l3j^51m3aA.fj%ی/Kh=_#bM9f6Vs@&gQ-f˶D>' nFSdnF/ݎSo7漕f$ftS΁[nN9$yuXv[床Mc"fE7cTʰMI7#X8 +oƀuӕIz&;ތ,/7#}3 +7c!=o6ǿ]y3 =(7c  *owa7cR]&4bgNyhȓ7cX`7ch?b{J-DÛ[}ִy Hf[lwYsV?}3Z-uS}3ubULF㛁OL_]Tar,g1|Vg*pִzm8c?1x*wY.g4iDC9ęZBDk1X~?y&Κ}<@fgU*wQgX;Lх+qKy8/}7M LP&*q&BvxV⌍x\S}tՑ8ڟ5<]\N+3T^3z=~٬fI*Fl։[Y]1kSFYt}g,^#qFo]8ce;gtV.ZYM߅G}rk^?ohuן"~,`z(zGqrVݿ#aS㛅?_ߦ6YCDn૳>ȳ՗_$|s=_} L/x_?~;\5q!:\Ymx(lmmQ"i_~d>E|?_o|Կqkt YrrAe񿨏2m̥TVQ6ë\xo~׼4a|s!_;.~Ǫɘ/7Y VC-d:1U3\rkl> +endobj +103 0 obj +<< + /Type /FontDescriptor + /FontName /EAAAAA+mwa_cmr10 + /FontBBox [-43 -250 1008 750] + /Flags 33 + /CapHeight 683 + /Ascent 750 + /Descent -250 + /ItalicAngle 0 + /StemV 0 + /MissingWidth 500 + /FontFile2 104 0 R + /CIDSet 105 0 R +>> +endobj +104 0 obj +<< + /Length1 6924 + /Length 106 0 R + /Filter /FlateDecode +>> +stream +xY Tוߤ_BZ@bт$@ !d򆍌1jyK%vi.NxRǓx:&mN4i4r2s8s_qiӻw}P@CxæR_&M=3oo8ltv4y˛ۧCמ:@yld`x7a>_9۸blv✇ =?534${ + D +7sm10=͵خ=ZMa|v;Ob.ޣz┓* ɋ(yL;w|| w>܂"\o5xeQ<|$Cm@`uD}]B" i4jU2C!R 24E}|bqZԱW[j*)+N&՟uy.KR%w &xFsyl`8I۱6'&ۀyJ8|˂+`%2؛e1%٦UݦM]R۟L۸/>0d?1ObZc_cA+JhNMFٜmW 6i5@5f'Yqdx,l0,S2ݝdm5')[cRQq"7@ QjlB'mI2؂ wt%~75Pr->-@Ӆ*OW`)3 -HP DZ`͏p, G(pPvdPbVV籼j݌藀 +Қf+Ӛ4"\nV*v|XDٯ%BSljUT@d!V ZBh O aIV&rջs@ߧשuOy8OA rɝֆ`) +6]/`[87)QT$Yvs. e UZ)u˧tZs*5 +arΧ(/{.ni]F#YlCLyW7=a~Z~j+o;= y QQV):ʼBgMDEQ9Bj+أ"H@J*Zfu*(<iT&*A?=ʐh_oK<-kݯi{=׷eTYMx|cǓ҆&c㫆>b,kJ m| ϴ6[$GJNS|A.cwP#'mEӌFM*i+3\n&kEk6Ǭ_9_IY0_GT:CRG<-I_Hҕ+6l7ʞ[hvF{*a8[W'lG7vl"~K\K仏TdiT[j {᰻PyQ=޾?R신]?gD8="U2b[U ~ yd"ȱ6ҮcU$:Wb_@]a Xl^$:__mkwKKxUHY‘B'i\|n_#v/,Q@ mS`o!':erfRd5Fd>3c]MD#ލZ]D=~]%nk v-ҩ4~)wQryTht WSIA' +ަcEsL-pHe -f-ї2HoUZHAa,X{^azh:">K2$u൅ƽ}\彐J%pC?ٻٳ=&3ȍlύ3BSTj%6Ȓ\W!Ab"uZGEw<*Aa%m)-V\oը zՂJ!j%^vzc %|ֽ2޼|qHoˎՅՋ/ܶг]{88{\Iv+y.K?fg±Ż{Y'޽/\O,D5zDKt=zA&?rjm6ul@8߅ۯ48dm l^s{˓vt+W|1$WKNļټCz4yZ(=h/ .*ԒI6񖔫%^_x2vtJGr=#+ZeᢢBB_ ٦}MV ޼z>A]<^w/ު*.Z[\, 8d HɢP0 zaп$r :L2*z97\H9m.Ver)G`Y bIy^, 1TO`LΪLRL=B%~%>,}$֒z5\IU2mԹܵS;+b;,.-2? 﫲rh/5δvTL +P2 9n(`%  Mmg%J*R[t6_.Sc_A:.1.۠:\j(F^*B[hl&5(|>i+)LBPbűa 瞤]+=(aTF%j?\t06]Er-Ux7bˠ$^G$LHbOГ,WȎ,\/`:Rز,h% a UsmՖg07nv/8!A%hvr+e?KGR g<) -Ήv'YBm@݅=/DrR53>¶edWCq>"G4髣>:AI=Wx.$JmU#z>?U5}=rȦrQϱ7I\&OCp'3܃ވNَj5uQ*dq̙=v1\ +4u_~8#[ wXN \^^OF:#,iXRj3?#lu|CQ`QxH54RTQ_ 8mnTq~[f@^DʪQɽy"^{)>y;A]Ų(N6cPq|' +l; ; ({9+JQcL s#Xe œEi*znB^J|_mbE-mEbEfP>"AaIغ.db^)PAy~EfHN`f!`̋B4A1j}P^ gJe~ F`׀=͉Gp==O>q͵ZPڱ2CJXig\X'4#hM>6o.j*6WUU͍sS^aj3FFvά0n=#SF`Pm4_]( +'QS֬>Kh!`-{K}=}KU^ d} ɄOma\x]s4?m +endstream +endobj +106 0 obj +5140 +endobj +105 0 obj +<< /Length 107 0 R /Filter /FlateDecode >> +stream +xk0[ȰU<`KP +endstream +endobj +107 0 obj +20 +endobj +108 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAA+mwa_cmr10 + /Encoding /Identity-H + /ToUnicode 109 0 R + /DescendantFonts [110 0 R] +>> +endobj +110 0 obj +<< /Type /Font +/BaseFont /EAAAAA+mwa_cmr10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 103 0 R +/DW 0 +/W [ 0 [365 500 500 500 500 651 391 443 526 555 555 443 526 276 750 443 276 500 500 500 916 500 500 276 388 555 388 388 776 ] ] +>> +endobj +109 0 obj +<< /Length 111 0 R /Filter /FlateDecode >> +stream +x]n0E +/E6$RJUE*{H ,_Hw$4Ȓw׫FִF;)b5ZV]un\H]iePF%cɇF7kz`eir׵ZwȌ, {dtx&i_eG, yvvw>-1kT䤹uag.K"GXݨoVy% P + P @@E:,f9♄@5()(O (AA 2OԠJ=j=r8+P5Pb+"CCc_ C9zq)e(IQs~HLX5_ +endstream +endobj +111 0 obj +361 +endobj +112 0 obj +<< + /Type /FontDescriptor + /FontName /EAAAAB+mwa_cmsy10 + /FontBBox [-28 -959 1123 778] + /Flags 33 + /CapHeight 683 + /Ascent 778 + /Descent -959 + /ItalicAngle 0 + /StemV 0 + /MissingWidth 500 + /FontFile2 113 0 R + /CIDSet 114 0 R +>> +endobj +113 0 obj +<< + /Length1 1996 + /Length 115 0 R + /Filter /FlateDecode +>> +stream +xU]lUҟ[*],NWiwf-mhvm,Ĥ&[!GB!}PBAMË41 } 7L +iZ [E޹=9Ν`&D +]9H!bN#LsB`Qy:;?F _J[fj.i3MD rhޚ͝0\=jI?f3OY7k$4g̜^]@0oNVvoB+V/5 `b p̣&؏=б =؁技{k~_<JdMEn jR {F{)z `|Sꂵ5U*>.Za }ꨦcXCOzlO:̨wvM}`("ú<$͔#iPL9/5S[D1Hay(ÃCc͍7^H61CءܦؑǫǮa#}<*XУ_Ӷ$03ʎ%&ph(ƂBGRSB'n^N#a:CΞdNL3Nu{HS^F|NI(ˋ+3!:H4LFРtcԨ.ijS߮=u M#]d-t-/%Q EѥKWzi` VOK͚Vx#ZlW|#1Dym;g>Y$y}e0$jVJ +B[c<'p(\ÔPGc8rr躯>6O./zwTxy/h#֥ZOH/TqHu OTő֚C8{I=ˌ +endstream +endobj +115 0 obj +1326 +endobj +114 0 obj +<< /Length 116 0 R /Filter /FlateDecode >> +stream +xk``h +endstream +endobj +116 0 obj +12 +endobj +117 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAB+mwa_cmsy10 + /Encoding /Identity-H + /ToUnicode 118 0 R + /DescendantFonts [119 0 R] +>> +endobj +119 0 obj +<< /Type /Font +/BaseFont /EAAAAB+mwa_cmsy10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 112 0 R +/DW 0 +/W [ 0 [365 0 ] ] +>> +endobj +118 0 obj +<< /Length 120 0 R /Filter /FlateDecode >> +stream +x]Pj0 +t=,N(Y +9t[[N m琿*cah{lN^X gBpjV& +:G:g<\7^3GZghr4u#K?8PrW2< Dq$s 5jˠ9H$݈ŭL%UM5-`T *>vge#ZR:^ʁc } +endstream +endobj +120 0 obj +236 +endobj +121 0 obj +<< + /Type /FontDescriptor + /FontName /EAAAAC+mwb_cmsy10 + /FontBBox [11 -215 942 727] + /Flags 33 + /CapHeight 0 + /Ascent 727 + /Descent -215 + /ItalicAngle 0 + /StemV 0 + /MissingWidth 500 + /FontFile2 122 0 R + /CIDSet 123 0 R +>> +endobj +122 0 obj +<< + /Length1 1968 + /Length 124 0 R + /Filter /FlateDecode +>> +stream +xU]hWdj~VlTdc.JI5%[ddv3l\@%VRP|"E&yhb +Eh+BK>(g&Z[sιw=  w#ʡOfH#9iodp?*M7ߚ.,L|+?Js9NFHޞ#EVɛrŹvd䪂5I\8Yێ~di([fwHpgJVyn-4c/͚%KF= =+6q*>yx'2Qa'؆HU_um8"oBYGa1>2.RO]Fq#1M ֆ낵5U~(LB'emꈪ,wȼhs"LJUNUY} vMJI9#k4Jˆ]J&GF#Ԗiu.r}аqp4bK#94*w[;lv#̙bw)*9*_Ӳh$m^7㚪 J6/kˌ.2lAvVb !y-hZݙ-Q0YۜفΰHU!+W4Jb9$%i5f KOUȤtJ7UUU:}πs.H.?ڒ-2GGTIsaL >nM# EB3z)$|TXnnt1_ ;β\;r70ŭF$$KS&;=վvn~;uIo{Q9 FG\ ѽ( ]|?+ObTSa0OzQ˾i&֐tr0Ca}aBՋY1ho8Uz`PMɣ@x1zVLT\]?i'leW2i4)FYM=.w$Pf<'+$ib$J1PVia6?R> +stream +xk +endstream +endobj +125 0 obj +9 +endobj +126 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAC+mwb_cmsy10 + /Encoding /Identity-H + /ToUnicode 127 0 R + /DescendantFonts [128 0 R] +>> +endobj +128 0 obj +<< /Type /Font +/BaseFont /EAAAAC+mwb_cmsy10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 121 0 R +/DW 0 +/W [ 0 [750 776 ] ] +>> +endobj +127 0 obj +<< /Length 129 0 R /Filter /FlateDecode >> +stream +x]Pj0+l CԒX}q z0h[lE^X gBpjV& +:G:g} +endstream +endobj +129 0 obj +234 +endobj +130 0 obj +<< + /Type /FontDescriptor + /FontName /EAAAAD+mwa_cmmi10 + /FontBBox [-34 -250 1047 750] + /Flags 33 + /CapHeight 683 + /Ascent 750 + /Descent -250 + /ItalicAngle 0 + /StemV 0 + /MissingWidth 500 + /FontFile2 131 0 R + /CIDSet 132 0 R +>> +endobj +131 0 obj +<< + /Length1 3572 + /Length 133 0 R + /Filter /FlateDecode +>> +stream +xWkp[sz[eKlreOJ,[1-Ey9$&QlccH)b7%-<3̵K!%m3 30S&IGiܽ׊)=g|g# ;^QW(Ɖؒ}א# SHCٽ]o +ҩ@42?i;{*^q,dGіn?'ˇ{F}x]?Vy @k?fY>:<1*@X +"l_EGiv7{ <<?8 ?{p aaAtBZa9KU#{ͰWؗgا~650o3o2GtB_-t)R<,'pQ8^%xYx9x + G4c_Ayp 쇽pí +wD1DZogMbsQX`XpߣԎ)Gdp螫4'E$M]B"QD %Nt/ YBWF!J:l8<c{Y;.LБvF%lɁƸu\ŵ]_o=93HWC(,SYt_@`dSMfǶGDw юdr@b}EkN + +ni i:lRg"! HFIWgB{:&ς "bĂ ,EOEIF:0`޸ޞ(#/daű'>y15aM. +vV8Yޖ9Y}eYZf2{?oAn0Mv=F 9'?f7}dHϿYӘupS$Lu}t:u:8 (0]:i\au +\|i7Hi TW9*H_lZqTTU@!87K0KiT465<(g4R{L$ᤙQbi4N.0+?8c?&YDΊ5:J*v<{/ɅJ) RK; rWV 苫lR%]-ErdDVg;Zdʠ~6cV4XO߳XXgFV1 8v) ¾ըgru/_[Y^ݤSBVKYKDS̒rb" n"ab6(JcE&E*W)#6qC[MӫRGʼ;KRlzsJ!r{ȯV׷>:/=. >ٯoc..Ù89'#JM0 Jx-PGMÒ%JV\E`i:<^Acy#襁-UƜGZyvև]aP5nb,]xֶ25]Uz+]?&⬠~7˖5s`fJ/b(5Ӱ|)v]U:7ݱ䂡#uj<1i{x]n%ܛUFM-l'u[z?Ʃ\a%ǁE$ ׷3'`@PZG {:'G~>.YГg4L¨qt^ђif"i + dE 4 KyC%p 20ios rka7C\oI5f j{-r9Z)Tx+#Y6RاpI|zWleK?G`W^CF%[Ja'Ж,QQVJDDm̵ޱPzB +[$3YaGXO&=ŠlV葧 =djSGG&](d.&5ʊ\`v#mc23>eJic8L ݖM};*^뢲!>ndRl|St&˿K񵴓˘ڸA_pĴKn3oc-w\&ئ +endstream +endobj +133 0 obj +2592 +endobj +132 0 obj +<< /Length 134 0 R /Filter /FlateDecode >> +stream +xk```aqd``p" +endstream +endobj +134 0 obj +19 +endobj +135 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAD+mwa_cmmi10 + /Encoding /Identity-H + /ToUnicode 136 0 R + /DescendantFonts [137 0 R] +>> +endobj +137 0 obj +<< /Type /Font +/BaseFont /EAAAAD+mwa_cmmi10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 130 0 R +/DW 0 +/W [ 0 [365 786 713 483 970 344 276 411 ] ] +>> +endobj +136 0 obj +<< /Length 138 0 R /Filter /FlateDecode >> +stream +x]j sXaۅ%PR +聦}ThTWB<|3茲}jޝzg8tV YLf,$wqj`"\`a3{Q@oNSzWn'C-ʚn_9V1)>WP&.a$Ζ t\`5ܞݮՉ@y~DQ)ODU=хb<ճ+/-BSIq)klJx +endstream +endobj +138 0 obj +267 +endobj +102 0 obj +<< /Type /Pages +/Count 1 +/Kids [100 0 R ] >> +endobj +139 0 obj +<< + /Type /Catalog + /Pages 102 0 R + /Lang (x-unknown) +>> +endobj +101 0 obj +<< + /Font << + /F405 108 0 R + /F406 117 0 R + /F407 126 0 R + /F408 135 0 R +>> + /ProcSet [/PDF /ImageB /ImageC /Text] + /ExtGState << + /GS1 2 0 R + /GS2 3 0 R + /GS3 4 0 R + /GS4 5 0 R + /GS5 6 0 R + /GS6 7 0 R + /GS7 8 0 R + /GS8 9 0 R + /GS9 10 0 R + /GS10 11 0 R + /GS11 12 0 R + /GS12 13 0 R + /GS13 14 0 R + /GS14 15 0 R + /GS15 16 0 R + /GS16 17 0 R + /GS17 18 0 R + /GS18 19 0 R + /GS19 20 0 R + /GS20 21 0 R + /GS21 22 0 R + /GS22 23 0 R + /GS23 24 0 R + /GS24 25 0 R + /GS25 26 0 R + /GS26 27 0 R + /GS27 28 0 R + /GS28 29 0 R + /GS29 30 0 R + /GS30 31 0 R + /GS31 32 0 R + /GS32 33 0 R + /GS33 34 0 R + /GS34 35 0 R + /GS35 36 0 R + /GS36 37 0 R + /GS37 38 0 R + /GS38 39 0 R + /GS39 40 0 R + /GS40 41 0 R + /GS41 42 0 R + /GS42 43 0 R + /GS43 44 0 R + /GS44 45 0 R + /GS45 46 0 R + /GS46 47 0 R + /GS47 48 0 R + /GS48 49 0 R + /GS49 50 0 R + /GS50 51 0 R + /GS51 52 0 R + /GS52 53 0 R + /GS53 54 0 R + /GS54 55 0 R + /GS55 56 0 R + /GS56 57 0 R + /GS57 58 0 R + /GS58 59 0 R + /GS59 60 0 R + /GS60 61 0 R + /GS61 62 0 R + /GS62 63 0 R + /GS63 64 0 R + /GS64 65 0 R + /GS65 66 0 R + /GS66 67 0 R + /GS67 68 0 R + /GS68 69 0 R + /GS69 70 0 R + /GS70 71 0 R + /GS71 72 0 R + /GS72 73 0 R + /GS73 74 0 R + /GS74 75 0 R + /GS75 76 0 R + /GS76 77 0 R + /GS77 78 0 R + /GS78 79 0 R + /GS79 80 0 R + /GS80 81 0 R + /GS81 82 0 R + /GS82 83 0 R + /GS83 84 0 R + /GS84 85 0 R + /GS85 86 0 R + /GS86 87 0 R + /GS87 88 0 R + /GS88 89 0 R + /GS89 90 0 R + /GS90 91 0 R + /GS91 92 0 R + /GS92 93 0 R + /GS93 94 0 R + /GS94 95 0 R + /GS95 96 0 R +>> +>> +endobj +xref +0 140 +0000000000 65535 f +0000000015 00000 n +0000000145 00000 n +0000000197 00000 n +0000000249 00000 n +0000000301 00000 n +0000000353 00000 n +0000000405 00000 n +0000000457 00000 n +0000000509 00000 n +0000000561 00000 n +0000000614 00000 n +0000000667 00000 n +0000000720 00000 n +0000000773 00000 n +0000000826 00000 n +0000000879 00000 n +0000000932 00000 n +0000000985 00000 n +0000001038 00000 n +0000001091 00000 n +0000001144 00000 n +0000001197 00000 n +0000001250 00000 n +0000001303 00000 n +0000001356 00000 n +0000001409 00000 n +0000001463 00000 n +0000001517 00000 n +0000001571 00000 n +0000001625 00000 n +0000001678 00000 n +0000001731 00000 n +0000001784 00000 n +0000001837 00000 n +0000001890 00000 n +0000001943 00000 n +0000001996 00000 n +0000002049 00000 n +0000002102 00000 n +0000002155 00000 n +0000002208 00000 n +0000002261 00000 n +0000002314 00000 n +0000002367 00000 n +0000002420 00000 n +0000002473 00000 n +0000002526 00000 n +0000002579 00000 n +0000002632 00000 n +0000002685 00000 n +0000002738 00000 n +0000002791 00000 n +0000002844 00000 n +0000002897 00000 n +0000002950 00000 n +0000003003 00000 n +0000003056 00000 n +0000003109 00000 n +0000003162 00000 n +0000003215 00000 n +0000003268 00000 n +0000003321 00000 n +0000003374 00000 n +0000003427 00000 n +0000003480 00000 n +0000003533 00000 n +0000003586 00000 n +0000003639 00000 n +0000003692 00000 n +0000003745 00000 n +0000003798 00000 n +0000003851 00000 n +0000003904 00000 n +0000003957 00000 n +0000004010 00000 n +0000004063 00000 n +0000004116 00000 n +0000004169 00000 n +0000004222 00000 n +0000004275 00000 n +0000004328 00000 n +0000004381 00000 n +0000004434 00000 n +0000004487 00000 n +0000004540 00000 n +0000004593 00000 n +0000004646 00000 n +0000004699 00000 n +0000004752 00000 n +0000004805 00000 n +0000004858 00000 n +0000004912 00000 n +0000004966 00000 n +0000005020 00000 n +0000005074 00000 n +0000005121 00000 n +0000005168 00000 n +0000049013 00000 n +0000049035 00000 n +0000049060 00000 n +0000064882 00000 n +0000064743 00000 n +0000049257 00000 n +0000049512 00000 n +0000054772 00000 n +0000054750 00000 n +0000054870 00000 n +0000054890 00000 n +0000055387 00000 n +0000055049 00000 n +0000055826 00000 n +0000055847 00000 n +0000056103 00000 n +0000057549 00000 n +0000057527 00000 n +0000057639 00000 n +0000057659 00000 n +0000058048 00000 n +0000057819 00000 n +0000058362 00000 n +0000058383 00000 n +0000058635 00000 n +0000060047 00000 n +0000060025 00000 n +0000060134 00000 n +0000060153 00000 n +0000060544 00000 n +0000060313 00000 n +0000060856 00000 n +0000060877 00000 n +0000061133 00000 n +0000063845 00000 n +0000063823 00000 n +0000063942 00000 n +0000063962 00000 n +0000064377 00000 n +0000064122 00000 n +0000064722 00000 n +0000064805 00000 n +trailer +<< + /Root 139 0 R + /Info 1 0 R + /ID [ ] + /Size 140 +>> +startxref +66450 +%%EOF diff --git a/figs/detail_control_jacobian_plant_CoM.png b/figs/detail_control_jacobian_plant_CoM.png new file mode 100644 index 0000000..18b947b Binary files /dev/null and b/figs/detail_control_jacobian_plant_CoM.png differ diff --git a/figs/detail_control_modal_plant.pdf b/figs/detail_control_modal_plant.pdf index 3b87b84..eb4c682 100644 Binary files a/figs/detail_control_modal_plant.pdf and b/figs/detail_control_modal_plant.pdf differ diff --git a/figs/detail_control_modal_plant.png b/figs/detail_control_modal_plant.png index 1a155b3..74e4587 100644 Binary files a/figs/detail_control_modal_plant.png and b/figs/detail_control_modal_plant.png differ diff --git a/figs/detail_control_model_test_decoupling.pdf b/figs/detail_control_model_test_decoupling.pdf index 7d9035e..90838fc 100644 Binary files a/figs/detail_control_model_test_decoupling.pdf and b/figs/detail_control_model_test_decoupling.pdf differ diff --git a/figs/detail_control_model_test_decoupling.png b/figs/detail_control_model_test_decoupling.png index a6a18d8..7c8ecfb 100644 Binary files a/figs/detail_control_model_test_decoupling.png and b/figs/detail_control_model_test_decoupling.png differ diff --git a/figs/detail_control_model_test_decoupling.svg b/figs/detail_control_model_test_decoupling.svg index 0143485..c58418d 100644 --- a/figs/detail_control_model_test_decoupling.svg +++ b/figs/detail_control_model_test_decoupling.svg @@ -1,25 +1,63 @@ + inkscape:export-ydpi="252" + xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" + xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" + xmlns:xlink="http://www.w3.org/1999/xlink" + xmlns="http://www.w3.org/2000/svg" + xmlns:svg="http://www.w3.org/2000/svg" + xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" + xmlns:cc="http://creativecommons.org/ns#" + xmlns:dc="http://purl.org/dc/elements/1.1/"> + + + + + + - - - @@ -1567,15 +1590,15 @@ overflow="visible" id="symbol4835"> @@ -1583,8 +1606,8 @@ overflow="visible" id="symbol9469"> @@ -1594,7 +1617,7 @@ overflow="visible" id="symbol6657"> @@ -1602,15 +1625,15 @@ overflow="visible" id="symbol5156"> @@ -1618,8 +1641,8 @@ overflow="visible" id="symbol2188"> @@ -1629,7 +1652,7 @@ overflow="visible" id="symbol2233"> @@ -1637,15 +1660,15 @@ overflow="visible" id="symbol2659"> @@ -1653,8 +1676,8 @@ overflow="visible" id="symbol3055"> @@ -1664,7 +1687,7 @@ overflow="visible" id="symbol6744"> @@ -1672,15 +1695,15 @@ overflow="visible" id="symbol4369"> @@ -1688,15 +1711,15 @@ overflow="visible" id="symbol761"> @@ -1704,8 +1727,8 @@ overflow="visible" id="symbol6001"> @@ -1715,7 +1738,7 @@ overflow="visible" id="symbol8909"> @@ -1723,15 +1746,15 @@ overflow="visible" id="symbol851"> @@ -1739,15 +1762,15 @@ overflow="visible" id="symbol3434"> @@ -1755,8 +1778,8 @@ overflow="visible" id="symbol1176"> @@ -1766,7 +1789,7 @@ overflow="visible" id="symbol3904"> @@ -1774,15 +1797,15 @@ overflow="visible" id="symbol4362"> @@ -1790,15 +1813,15 @@ overflow="visible" id="symbol2119"> @@ -1806,8 +1829,8 @@ overflow="visible" id="symbol132"> @@ -1845,7 +1868,7 @@ overflow="visible" id="symbol1416"> @@ -1853,15 +1876,15 @@ overflow="visible" id="symbol9566"> @@ -1869,8 +1892,8 @@ overflow="visible" id="symbol6277"> @@ -1880,7 +1903,7 @@ overflow="visible" id="symbol1729"> @@ -1888,15 +1911,15 @@ overflow="visible" id="symbol7072"> @@ -1904,11 +1927,45 @@ overflow="visible" id="symbol6789"> + + + + + + + + + + inkscape:snap-midpoints="true" + inkscape:showpageshadow="2" + inkscape:pagecheckerboard="0" + inkscape:deskcolor="#d1d1d1" /> @@ -1938,7 +1998,7 @@ image/svg+xml - + @@ -1946,7 +2006,7 @@ inkscape:label="Layer 1" inkscape:groupmode="layer" id="layer1" - transform="translate(-41.388697,-20.296063)"> + transform="translate(-39.198222,-20.274061)"> + + + - - - - - + transform="translate(-3.1198187,1.4920663)" + style="fill:#77ac30"> + transform="translate(2.836523,1.5000055)" + style="fill:#77ac30"> + transform="translate(0.162105,-2.7382997)" + style="fill:#77ac30"> + id="g13245"> + + + + + + + + + + + + + style="fill:#0072bd;stroke-width:3.05179"> + style="fill:#0072bd;stroke-width:3.05179"> @@ -2610,7 +2691,7 @@ id="use6395" width="100%" height="100%" - style="stroke-width:3.05179;fill:#0072bd" /> + style="fill:#0072bd;stroke-width:3.05179" /> + style="fill:#0072bd;stroke-width:3.05179" /> @@ -2630,10 +2711,10 @@ inkscape:label="" transform="matrix(0.32767626,0,0,0.32767626,-47.854498,24.177182)" id="g2446" - style="stroke-width:3.05179;fill:#0072bd"> + style="fill:#0072bd;stroke-width:3.05179"> + style="fill:#0072bd;stroke-width:3.05179"> @@ -2644,7 +2725,7 @@ id="use100" width="100%" height="100%" - style="stroke-width:3.05179;fill:#0072bd" /> + style="fill:#0072bd;stroke-width:3.05179" /> + style="fill:#0072bd;stroke-width:3.05179" /> @@ -2664,10 +2745,10 @@ inkscape:label="" transform="matrix(0.32767626,0,0,0.32767626,-28.361646,24.198575)" id="g2970" - style="stroke-width:3.05179;fill:#0072bd"> + style="fill:#0072bd;stroke-width:3.05179"> + style="fill:#0072bd;stroke-width:3.05179"> @@ -2678,7 +2759,7 @@ id="use7449" width="100%" height="100%" - style="stroke-width:3.05179;fill:#0072bd" /> + style="fill:#0072bd;stroke-width:3.05179" /> + style="fill:#0072bd;stroke-width:3.05179" /> @@ -2698,10 +2779,10 @@ inkscape:label="" transform="matrix(0.32767626,0,0,0.32767626,-28.157364,21.192817)" id="g3515" - style="stroke-width:3.05179;fill:#d95218"> + style="fill:#d95218;stroke-width:3.05179"> + style="fill:#d95218;stroke-width:3.05179"> @@ -2712,7 +2793,7 @@ id="use5183" width="100%" height="100%" - style="stroke-width:3.05179;fill:#d95218" /> + style="fill:#d95218;stroke-width:3.05179" /> + style="fill:#d95218;stroke-width:3.05179" /> + style="fill:#d95218;stroke-width:3.05179" /> @@ -2744,10 +2825,10 @@ inkscape:label="" transform="matrix(0.32767626,0,0,0.32767626,-44.351964,21.645285)" id="g4087" - style="stroke-width:3.05179;fill:#d95218"> + style="fill:#d95218;stroke-width:3.05179"> + style="fill:#d95218;stroke-width:3.05179"> @@ -2758,7 +2839,7 @@ id="use4414" width="100%" height="100%" - style="stroke-width:3.05179;fill:#d95218" /> + style="fill:#d95218;stroke-width:3.05179" /> + style="fill:#d95218;stroke-width:3.05179" /> + style="fill:#d95218;stroke-width:3.05179" /> @@ -2790,10 +2871,10 @@ inkscape:label="" transform="matrix(0.32767626,0,0,0.32767626,-46.047232,15.297904)" id="g4680" - style="stroke-width:3.05179;fill:#d95218"> + style="fill:#d95218;stroke-width:3.05179"> + style="fill:#d95218;stroke-width:3.05179"> @@ -2804,7 +2885,7 @@ id="use9418" width="100%" height="100%" - style="stroke-width:3.05179;fill:#d95218" /> + style="fill:#d95218;stroke-width:3.05179" /> + style="fill:#d95218;stroke-width:3.05179" /> + style="fill:#d95218;stroke-width:3.05179" /> + + + + + + + + + + diff --git a/figs/detail_control_strut_model.pdf b/figs/detail_control_strut_model.pdf new file mode 100644 index 0000000..6ac9a3f Binary files /dev/null and b/figs/detail_control_strut_model.pdf differ diff --git a/figs/detail_control_strut_model.png b/figs/detail_control_strut_model.png new file mode 100644 index 0000000..e4207ee Binary files /dev/null and b/figs/detail_control_strut_model.png differ diff --git a/figs/detail_control_strut_model.svg b/figs/detail_control_strut_model.svg new file mode 100644 index 0000000..0061f90 --- /dev/null +++ b/figs/detail_control_strut_model.svg @@ -0,0 +1,356 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/figs/detail_control_svd_plant.pdf b/figs/detail_control_svd_plant.pdf index c1d6cd7..1567356 100644 Binary files a/figs/detail_control_svd_plant.pdf and b/figs/detail_control_svd_plant.pdf differ diff --git a/figs/detail_control_svd_plant.png b/figs/detail_control_svd_plant.png index f9906f3..d0b5df5 100644 Binary files a/figs/detail_control_svd_plant.png and b/figs/detail_control_svd_plant.png differ diff --git a/nass-control.org b/nass-control.org index ab2eef6..51fbf1a 100644 --- a/nass-control.org +++ b/nass-control.org @@ -712,6 +712,9 @@ Based on that, this work introduces a new way to design complementary filters us #+begin_src matlab :noweb yes <> + +%% Initialize Frequency Vector +freqs = logspace(-1, 3, 1000); #+end_src ** Sensor Fusion and Complementary Filters Requirements @@ -1804,7 +1807,7 @@ Future work will aim at developing a complementary filter synthesis method that - For the NASS, it was shown that the HAC-IFF strategy works fine and is easy to understand and tune - It would be very interesting to see how sensor fusion (probably between the force sensor and the external metrology) compares in term of performance and robustness -* Decoupling +* TODO [#A] Decoupling :PROPERTIES: :HEADER-ARGS:matlab+: :tangle matlab/detail_control_2_decoupling.m :END: @@ -1814,7 +1817,18 @@ Future work will aim at developing a complementary filter synthesis method that ** Introduction :ignore: -- [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org::*Decoupling Strategies][Decoupling Strategies]] +When dealing with MIMO systems, a typical strategy is to: +- First decouple the plant dynamics (discussed in this section) +- Apply SISO control for the decoupled plant (discussed in section ref:sec:detail_control_optimization) + +Another strategy would be to apply a multivariable control synthesis to the coupled system. +Strangely, while H-infinity synthesis is a mature technology, it use for the control of Stewart platform is not yet demonstrated. +From [[cite:&thayer02_six_axis_vibrat_isolat_system]]: +#+begin_quote +Experimental closed-loop control results using the hexapod have shown that controllers designed using a decentralized single-strut design work well when compared to full multivariable methodologies. +#+end_quote + +- [ ] Review of [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org::*Decoupling Strategies][Decoupling Strategies]] for stewart platforms - [ ] Add some citations about different methods #+name: tab:detail_control_decoupling_review @@ -1836,25 +1850,12 @@ Future work will aim at developing a complementary filter synthesis method that | Piezoelectric | Force, Position | Vibration isolation, Model-Based, *Modal control*: 6x PI controllers | [[cite:&yang19_dynam_model_decoup_contr_flexib]] | |---------------+---------------------------------------------------+---------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------| | PZT | Geophone (struts) | *H-Infinity* and mu-synthesis | [[cite:&lei08_multi_objec_robus_activ_vibrat]] | -| Voice Coil | Force sensors (strus) + accelerometer (cartesian) | Decentralized Force Feedback + Centralized H2 control based on accelerometers | [[cite:&xie17_model_contr_hybrid_passiv_activ]] | +| Voice Coil | Force sensors (struts) + accelerometer (cartesian) | Decentralized Force Feedback + Centralized H2 control based on accelerometers | [[cite:&xie17_model_contr_hybrid_passiv_activ]] | | Voice Coil | Accelerometers | MIMO H-Infinity, active damping | [[cite:&jiao18_dynam_model_exper_analy_stewar]] | -When dealing with MIMO systems, a typical strategy is to: -- first decouple the plant dynamics -- apply SISO control for the decoupled plant - -Another strategy would be to apply a multivariable control synthesis to the coupled system. -From [[cite:&thayer02_six_axis_vibrat_isolat_system]]: -#+begin_quote -Experimental closed-loopcontrol results using the hexapod have shown that controllers designed using a decentralized single-strut design work well when compared to full multivariable methodologies. -#+end_quote - Assumptions: - parallel manipulators -Review of decoupling strategies for Stewart platforms: -- [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org::*Decoupling Strategies][Decoupling Strategies]] - The goal of this section is to compare the use of several methods for the decoupling of parallel manipulators. It is structured as follow: @@ -1884,81 +1885,335 @@ It is structured as follow: #+begin_src matlab :noweb yes <> + +%% Initialize Frequency Vector +freqs = logspace(0, 3, 1000); #+end_src ** Test Model <> -Let's consider a parallel manipulator with several collocated actuator/sensors pairs. +- a test model will be used to compare all the decoupling strategies +- to render the analysis simpler, the system of Figure ref:fig:detail_control_model_test_decoupling_detail is used +- It has 3DoF, and has 3 parallels struts whose model is shown in Figure ref:fig:detail_control_strut_model +- It is quite similar to the Stewart platform (parallel architecture, as many struts as DoF) -System in Figure ref:fig:detail_control_model_test_decoupling will serve as an example. +- [ ] Write the equation of motion + - Write the equation of motion at the center of mass + - mass + Inertia, stiffness, damping, actuator forces (mapped using Jacobian) + - Write it in matrix form +- [X] Show the used parameters (table ?) -We will note: -- $b_i$: location of the joints on the top platform -- $\hat{s}_i$: unit vector corresponding to the struts direction -- $k_i$: stiffness of the struts -- $\tau_i$: actuator forces -- $O_M$: center of mass of the solid body -- $\mathcal{L}_i$: relative displacement of the struts +\begin{equation} + \bm{M}_{\{M\}} = \begin{bmatrix} + m & 0 & 0 \\ + 0 & m & 0 \\ + 0 & 0 & I + \end{bmatrix} +\end{equation} -#+name: fig:detail_control_model_test_decoupling -#+caption: Model use to compare decoupling techniques +\begin{equation} + \bm{\mathcal{K}} = \begin{bmatrix} + k & 0 & 0 \\ + 0 & k & 0 \\ + 0 & 0 & k + \end{bmatrix}, \quad \bm{\mathcal{C}} = \begin{bmatrix} + c & 0 & 0 \\ + 0 & c & 0 \\ + 0 & 0 & c + \end{bmatrix} +\end{equation} + +\begin{equation} + \bm{J}_{\{M\}} = \begin{bmatrix} + 1 & 0 & h_a \\ + 0 & 1 & -l_a \\ + 0 & 1 & l_a \\ + \end{bmatrix} +\end{equation} + +Recall the Jacobian relationships: +Let's link forces and torques applied at the CoM + +\begin{equation} +M_{\{M\}} \ddot{\bm{\mathcal{X}}}_{\{M\}} + \bm{J}_{\{M\}}^t \bm{\mathcal{C}} \bm{J}_{\{M\}} \dot{\bm{\mathcal{X}}}_{\{M\}} + \bm{J}_{\{M\}}^t \bm{\mathcal{K}} \bm{J}_{\{M\}} \bm{\mathcal{X}}_{\{M\}} = \bm{\mathcal{F}}_{\{M\}} +\end{equation} + +with $\bm{\mathcal{X}}_{\{M\}}$ the two translation and one rotation expressed with respect to the center of mass. +$\bm{\mathcal{F}}_{\{M\}}$ forces and torque applied at the center of mass. + +\begin{equation} + \bm{\mathcal{X}}_{\{M\}} = \begin{bmatrix} + x \\ + y \\ + R_z + \end{bmatrix}, \quad \bm{\mathcal{F}}_{\{M\}} = \begin{bmatrix} + F_x \\ + F_y \\ + M_z + \end{bmatrix} +\end{equation} + + +#+name: fig:detail_control_model_test_decoupling_detail +#+caption: 3DoF model used to study decoupling strategies +#+attr_latex: :options [htbp] +#+begin_figure +#+attr_latex: :caption \subcaption{\label{fig:detail_control_model_test_decoupling}Geometrical parameters} +#+attr_latex: :options {0.58\textwidth} +#+begin_subfigure +#+attr_latex: :scale 1 [[file:figs/detail_control_model_test_decoupling.png]] +#+end_subfigure +#+attr_latex: :caption \subcaption{\label{fig:detail_control_strut_model}Strut model} +#+attr_latex: :options {0.38\textwidth} +#+begin_subfigure +#+attr_latex: :scale 1 +[[file:figs/detail_control_strut_model.png]] +#+end_subfigure +#+end_figure + +$\tau_i$ are the actuator forces +$\mathcal{L}_i$ are the relative displacement of the struts + +Two frames are defined: +- $\{M\}$ with origin $O_M$ at the Center of mass of the solid body +- $\{K\}$ with origin $O_K$ at the Center of mass of the parallel manipulator + +#+name: tab:detail_control_decoupling_test_model_params +#+caption: Model parameters +#+attr_latex: :environment tabularx :width 0.9\linewidth :align cXc +#+attr_latex: :center t :booktabs t :font \scriptsize +| *Parameter* | *Description* | *Value* | +|-------------+---------------------------------------------------+-------------------| +| $b_i$ | Location of the joints on the top platform | $b_1 = $ | +| $\hat{s}_i$ | Unit vector corresponding to the struts direction | | +| $l_a$ | | $0.5\,m$ | +| $h_a$ | | $0.2\,m$ | +| $k$ | Actuator stiffness | $10\,N/\mu m$ | +| $c$ | Actuator damping | $200\,Ns/m$ | +| $m$ | Payload mass | $40\,\text{kg}$ | +| $I$ | Payload rotational inertia | $5\,\text{kg}m^2$ | #+begin_src matlab -%% System parameters -l = 1.0; % Length of the mass [m] -h = 2*1.7; % Height of the mass [m] +%% Analytical Formula for the Jacobian Matrix +% Create symbolic variables for all parameters +syms l h la ha m I real +syms c1 c2 c3 real +syms k1 k2 k3 real -la = l/2; % Position of Act. [m] -ha = h/2; % Position of Act. [m] +% Unit vectors of the actuators (symbolic) +s1 = [1; 0]; % Actuator 1 direction (horizontal) +s2 = [0; 1]; % Actuator 2 direction (vertical) +s3 = [0; 1]; % Actuator 3 direction (vertical) -m = 400; % Mass [kg] -I = 115; % Inertia [kg m^2] +% Location of the joints with respect to the center of mass (symbolic) +Mb1 = [-l/2; -ha]; % Joint 1 position vector +Mb2 = [-la; -h/2]; % Joint 2 position vector +Mb3 = [ la; -h/2]; % Joint 3 position vector -%% Actuator Damping [N/(m/s)] -c1 = 2e1; -c2 = 2e1; -c3 = 2e1; +% Jacobian matrix (Center of Mass) +J_CoM = [s1', Mb1(1)*s1(2) - Mb1(2)*s1(1); + s2', Mb2(1)*s2(2) - Mb2(2)*s2(1); + s3', Mb3(1)*s3(2) - Mb3(2)*s3(1)]; -%% Actuator Stiffness [N/m] -k1 = 15e3; -k2 = 15e3; -k3 = 15e3; +% Display the symbolic Jacobian matrix +disp('Symbolic Jacobian Matrix (J_CoM):'); +disp(J_CoM); -%% Unit vectors of the actuators +% Jacobian at the Center of stiffness {K} +Mb1 = [-l/2; 0]; +Mb2 = [-la; -h/2+ha]; +Mb3 = [ la; -h/2+ha]; + +J_CoK = [s1', Mb1(1)*s1(2) - Mb1(2)*s1(1); + s2', Mb2(1)*s2(2) - Mb2(2)*s2(1); + s3', Mb3(1)*s3(2) - Mb3(2)*s3(1)]; + +% Display the symbolic Jacobian matrix +disp('Symbolic Jacobian Matrix (J_CoK):'); +disp(J_CoK); +#+end_src + +#+begin_src matlab +%% Analytical Formula for the Modal Decoupling +syms l h la ha m I k c s real +syms omega1 omega2 omega3 real % Natural frequencies + +% Unit vectors of the actuators +s1 = [1; 0]; % Actuator 1 direction (horizontal) +s2 = [0; 1]; % Actuator 2 direction (vertical) +s3 = [0; 1]; % Actuator 3 direction (vertical) + +% Location of the joints with respect to the center of mass (symbolic) +Mb1 = [-l/2; -ha]; % Joint 1 position vector +Mb2 = [-la; -h/2]; % Joint 2 position vector +Mb3 = [la; -h/2]; % Joint 3 position vector + +% Calculate the Jacobian matrix (Center of Mass) symbolically +J_CoM = [s1', Mb1(1)*s1(2) - Mb1(2)*s1(1); + s2', Mb2(1)*s2(2) - Mb2(2)*s2(1); + s3', Mb3(1)*s3(2) - Mb3(2)*s3(1)]; + +disp('Symbolic Jacobian Matrix (J_CoM):'); +disp(J_CoM); + +% Define system matrices +M = diag([m, m, I]); +K_struts = diag([k, k, k]); +C_struts = diag([c, c, c]); + +% Transform stiffness and damping to Cartesian space +K = J_CoM' * K_struts * J_CoM; +C = J_CoM' * C_struts * J_CoM; + +disp('Mass Matrix (M):'); +disp(M); + +disp('Stiffness Matrix (K):'); +disp(K); + +disp('Damping Matrix (C):'); +disp(C); + +% Define the plant in the frame of the struts +% G_L = J_CoM * inv(M*s^2 + C*s + K) * J_CoM' +D_cart = M*s^2 + C*s + K; % Denominator in Cartesian space +disp('Dynamic Matrix in Cartesian Space (M*s^2 + C*s + K):'); +disp(D_cart); + +% Modal Decomposition +% Calculate the eigenvalues and eigenvectors of M\K +% For a symbolic approach, we'll use the general form of eigenvectors +% [V,D] = eig(M\K) + +% Instead of direct symbolic eigendecomposition (which is complex), +% we'll use known properties of modal analysis for analytical expressions + +% First, calculate M\K (inverse mass matrix times stiffness matrix) +MK = simplify(M\K); +disp('M\K Matrix:'); +disp(MK); + +% For a mechanical system with 3 DOF, we expect 3 eigenmodes +% Let's define symbolic eigenvectors in a general form +% According to vibration theory, the eigenvectors should be orthogonal with respect to M + +% Define symbolic eigenvectors +V = sym('v', [3, 3]); + +% Define the symbolic eigenvalues (squared natural frequencies) +D = diag([omega1^2, omega2^2, omega3^2]); + +% The eigenvectors should satisfy the equation (M\K)*V = V*D +% This is equivalent to K*V = M*V*D +% We can derive this symbolically, but it's complex for 3D systems + +% For an analytical approach, we can use physics to guide us +% For this system, we expect modes corresponding to: +% 1. Horizontal translation +% 2. Vertical translation +% 3. Rotation + +% Calculate modal mass matrix (mu = V'*M*V) +mu = simplify(V' * M * V); +disp('Modal Mass Matrix (mu):'); +disp(mu); + +% Modal output matrix +Cm = simplify(J_CoM * V); +disp('Modal Output Matrix (Cm):'); +disp(Cm); + +% Modal input matrix +Bm = simplify(inv(mu) * V' * J_CoM'); +disp('Modal Input Matrix (Bm):'); +disp(Bm); + +% Plant in the modal space +% For a fully decoupled system, Gm should be diagonal +Gm = simplify(inv(Cm) * J_CoM * inv(D_cart) * J_CoM' * inv(Bm')); +disp('Plant in Modal Space (Gm):'); +disp(Gm); +#+end_src + +** Decentralized Plant / Control in the frame of the struts + +#+begin_src latex :file detail_control_decoupling_control_struts.pdf +\begin{tikzpicture} + \node[block] (Gl) {$\bm{G}_{\{\mathcal{L}\}}$}; + + % Connections and labels + \draw[<-] (Gl.west) -- ++(-0.8, 0) node[above right]{$\bm{\tau}$}; + \draw[->] (Gl.east) -- ++( 0.8, 0) node[above left]{$\bm{\mathcal{L}}$}; +\end{tikzpicture} +#+end_src + +#+RESULTS: +[[file:figs/detail_control_jacobian_decoupling_arch.png]] + +\begin{equation} + \frac{\bm{\mathcal{L}}}{\bm{\mathcal{\tau}}}(s) = \bm{G}_{\mathcal{L}}(s) = \left( \bm{J}_{\{M\}}^{-t} M_{\{M\}} \bm{J}_{\{M\}}^{-1} s^2 + \bm{\mathcal{C}} s + \bm{\mathcal{K}} \right)^{-1} +\end{equation} + +At low frequency the plant converges to a diagonal constant matrix whose diagonal elements are linked to the actuator stiffnesses. + +\begin{equation} + \bm{G}_{\mathcal{L}}(j\omega) \xrightarrow[\omega \to 0]{} \bm{\mathcal{K}^{-1}} +\end{equation} + +#+begin_src matlab +%% Compute Equation of motion +l = 1; h=2; +la = 0.5; % Horizontal position of actuators [m] +ha = 0.2; % Vertical of actuators [m] + +m = 40; % Payload mass [kg] +I = 5; % Payload rotational inertia [kg m^2] + +% Actuator Damping [N/(m/s)] +c1 = 2e2; +c2 = 2e2; +c3 = 2e2; + +% Actuator Stiffness [N/m] +k1 = 1e6; +k2 = 1e6; +k3 = 1e6; + +% Unit vectors of the actuators s1 = [1;0]; s2 = [0;1]; s3 = [0;1]; -%% Location of the joints +% Stiffnesss and Damping matrices of the struts +Kr = diag([k1,k2,k3]); +Cr = diag([c1,c2,c3]); + +% Location of the joints with respect to the center of mass Mb1 = [-l/2;-ha]; Mb2 = [-la; -h/2]; Mb3 = [ la; -h/2]; -%% Jacobian matrix -J = [s1', Mb1(1)*s1(2)-Mb1(2)*s1(1); - s2', Mb2(1)*s2(2)-Mb2(2)*s2(1); - s3', Mb3(1)*s3(2)-Mb3(2)*s3(1)]; +% Jacobian matrix (Center of Mass) +J_CoM = [s1', Mb1(1)*s1(2)-Mb1(2)*s1(1); + s2', Mb2(1)*s2(2)-Mb2(2)*s2(1); + s3', Mb3(1)*s3(2)-Mb3(2)*s3(1)]; -%% Stiffnesss and Damping matrices of the struts -Kr = diag([k1,k2,k3]); -Cr = diag([c1,c2,c3]); - -%% Mass Matrix in frame {M} +% Mass Matrix in frame {M} M = diag([m,m,I]); -%% Stiffness Matrix in frame {M} -K = J'*Kr*J; +% Stiffness Matrix in frame {M} +K = J_CoM'*Kr*J_CoM; -%% Damping Matrix in frame {M} -C = J'*Cr*J; +% Damping Matrix in frame {M} +C = J_CoM'*Cr*J_CoM; -%% Plant in frame {M} -G = J*inv(M*s^2 + C*s + K)*J'; +% Plant in the frame of the struts +G_L = J_CoM*inv(M*s^2 + C*s + K)*J_CoM'; #+end_src -The magnitude of the coupled plant $G$ is shown in Figure ref:fig:detail_control_coupled_plant_bode. +The magnitude of the coupled plant $\bm{G}_{\mathcal{L}}$ is shown in Figure ref:fig:detail_control_coupled_plant_bode. #+begin_src matlab :exports none figure; @@ -1967,11 +2222,12 @@ tiledlayout(3, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); for out_i = 1:3 for in_i = 1:3 nexttile; - plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), 'k-', ... + plot(freqs, abs(squeeze(freqresp(G_L(out_i,in_i), freqs, 'Hz'))), 'k-', ... 'DisplayName', sprintf('$\\mathcal{L}_%i/\\tau_%i$', out_i, in_i)); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); - xlim([1e-1, 2e1]); ylim([1e-6, 1e-2]); - legend('location', 'northeast', 'FontSize', 8); + xlim([freqs(1), freqs(end)]); ylim([1e-8, 1e-4]); + leg = legend('location', 'northeast', 'FontSize', 8); + leg.ItemTokenSize(1) = 18; if in_i == 1 ylabel('Mag. [m/N]') @@ -1997,9 +2253,9 @@ exportFig('figs/detail_control_coupled_plant_bode.pdf', 'width', 'full', 'height #+RESULTS: [[file:figs/detail_control_coupled_plant_bode.png]] -** Decentralized Plant / Control in the frame of the struts ** Jacobian Decoupling <> +**** Jacobian Matrix The Jacobian matrix can be used to: - Convert joints velocity $\dot{\mathcal{L}}$ to payload velocity and angular velocity $\dot{\bm{\mathcal{X}}}_{\{O\}}$: @@ -2015,7 +2271,7 @@ By wisely choosing frame $\{O\}$, we can obtain nice decoupling for plant: The obtained plan corresponds to forces/torques applied on origin of frame $\{O\}$ to the translation/rotation of the payload expressed in frame $\{O\}$. -#+begin_src latex :file detail_control_jacobian_decoupling_arch.pdf +#+begin_src latex :file detail_control_decoupling_control_jacobian.pdf \begin{tikzpicture} \node[block] (G) {$\bm{G}$}; \node[block, left=0.6 of G] (Jt) {$J_{\{O\}}^{-T}$}; @@ -2047,8 +2303,202 @@ The inputs and outputs of the decoupled plant $\bm{G}_{\{O\}}$ have physical mea It is then easy to include a reference tracking input that specify the wanted motion of the payload in the frame $\{O\}$. +Decoupling properties depends on the chosen frame $\{O\}$. + +**** Center Of Mass + +#+begin_src latex :file detail_control_decoupling_control_jacobian_CoM.pdf +\begin{tikzpicture} + \node[block] (G) {$\bm{G}$}; + \node[block, left=0.6 of G] (Jt) {$J_{\{M\}}^{-T}$}; + \node[block, right=0.6 of G] (Ja) {$J_{\{M\}}^{-1}$}; + + % Connections and labels + \draw[<-] (Jt.west) -- ++(-1.8, 0) node[above right]{$\bm{\mathcal{F}}_{\{M\}}$}; + \draw[->] (Jt.east) -- (G.west) node[above left]{$\bm{\tau}$}; + \draw[->] (G.east) -- (Ja.west) node[above left]{$\bm{\mathcal{L}}$}; + \draw[->] (Ja.east) -- ++( 1.8, 0) node[above left]{$\bm{\mathcal{X}}_{\{M\}}$}; + + \begin{scope}[on background layer] + \node[fit={(Jt.south west) (Ja.north east)}, fill=black!10!white, draw, dashed, inner sep=16pt] (Gx) {}; + \node[below right] at (Gx.north west) {$\bm{G}_{\{M\}}$}; + \end{scope} +\end{tikzpicture} +#+end_src + +\begin{equation} + J_{\{M\}} = \begin{bmatrix} + 1 & 0 & h_a \\ + 0 & 1 & -l_a \\ + 0 & 1 & l_a \\ + \end{bmatrix}, \quad J_{\{M\}}^{-1} = \begin{bmatrix} + 1 & \frac{h_a}{2 l_a} & \frac{-h_a}{2 l_a} \\ + 0 & \frac{1}{2} & \frac{1}{2} \\ + 0 & \frac{-1}{2 l_a} & \frac{1}{2 l_a} \\ + \end{bmatrix} +\end{equation} + +Analytical formula of the plant: + +\begin{equation} + \frac{\bm{\mathcal{X}}_{\{M\}}}{\bm{\mathcal{F}}_{\{M\}}}(s) = \bm{G}_{\{M\}}(s) = \left( \bm{M}_{\{M\}} s^2 + \bm{J}_{\{M\}}^t \bm{\mathcal{C}} \bm{J}_{\{M\}} s + \bm{J}_{\{M\}}^t \bm{\mathcal{K}} \bm{J}_{\{M\}} \right)^{-1} +\end{equation} + +At high frequency, converges towards the inverse of the mass matrix: + +\begin{equation} + \bm{G}_{\{M\}}(j\omega) \xrightarrow[\omega \to \infty]{} -\omega^2 \bm{M}_{\{M\}}^{-1} = -\omega^2 \begin{bmatrix} +1/m & 0 & 0 \\ +0 & 1/m & 0 \\ +0 & 0 & 1/I +\end{bmatrix} +\end{equation} + + + +Plant is well decoupled above the suspension mode with the highest frequency. +Such strategy is usually applied on systems with low frequency suspension modes, such that the plant corresponds to decoupled mass lines. + +- [ ] Reference to some papers about vibration isolation or ASML? + +#+begin_src matlab +%% Jacobian Decoupling - Center of Mass +G_CoM = pinv(J_CoM)*G_L*pinv(J_CoM'); +G_CoM.InputName = {'Fx', 'Fy', 'Mz'}; +G_CoM.OutputName = {'Dx', 'Dy', 'Rz'}; +#+end_src + +#+begin_src matlab :exports none +figure; +hold on; +for i_in = 1:3 + for i_out = [i_in+1:3] + plot(freqs, abs(squeeze(freqresp(G_CoM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... + 'HandleVisibility', 'off'); + end +end +plot(freqs, abs(squeeze(freqresp(G_CoM(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... + 'DisplayName', '$G_{CoM}(i,j)\ i \neq j$'); +set(gca,'ColorOrderIndex',1) +for i_in_out = 1:3 + plot(freqs, abs(squeeze(freqresp(G_CoM(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_{CoM}(%d,%d)$', i_in_out, i_in_out)); +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); ylabel('Magnitude'); +ylim([1e-10, 1e-3]); +leg = legend('location', 'northeast', 'FontSize', 8); +leg.ItemTokenSize(1) = 18; +#+end_src + +#+begin_src matlab :tangle no :exports results :results file replace +exportFig('figs/detail_control_jacobian_plant_CoM.pdf', 'width', 'wide', 'height', 'normal'); +#+end_src + +#+name: fig:detail_control_jacobian_plant_CoM +#+caption: Plant decoupled using the Jacobian matrices $G_x(s)$ +#+RESULTS: +[[file:figs/detail_control_jacobian_plant_CoM.png]] + +**** Center Of Stiffness + +#+begin_src latex :file detail_control_decoupling_control_jacobian_CoK.pdf +\begin{tikzpicture} + \node[block] (G) {$\bm{G}$}; + \node[block, left=0.6 of G] (Jt) {$J_{\{K\}}^{-T}$}; + \node[block, right=0.6 of G] (Ja) {$J_{\{K\}}^{-1}$}; + + % Connections and labels + \draw[<-] (Jt.west) -- ++(-1.8, 0) node[above right]{$\bm{\mathcal{F}}_{\{K\}}$}; + \draw[->] (Jt.east) -- (G.west) node[above left]{$\bm{\tau}$}; + \draw[->] (G.east) -- (Ja.west) node[above left]{$\bm{\mathcal{L}}$}; + \draw[->] (Ja.east) -- ++( 1.8, 0) node[above left]{$\bm{\mathcal{X}}_{\{K\}}$}; + + \begin{scope}[on background layer] + \node[fit={(Jt.south west) (Ja.north east)}, fill=black!10!white, draw, dashed, inner sep=16pt] (Gx) {}; + \node[below right] at (Gx.north west) {$\bm{G}_{\{K\}}$}; + \end{scope} +\end{tikzpicture} +#+end_src + +\begin{equation} + J_{\{K\}} = \begin{bmatrix} + 1 & 0 & 0 \\ + 0 & 1 & -l_a \\ + 0 & 1 & l_a + \end{bmatrix}, \quad J_{\{K\}}^{-1} = \begin{bmatrix} + 1 & 0 & 0 \\ + 0 & \frac{1}{2} & \frac{1}{2} \\ + 0 & \frac{-1}{2 l_a} & \frac{1}{2 l_a} + \end{bmatrix} +\end{equation} + +Frame $\{K\}$ is chosen such that $\bm{J}_{\{K\}}^t \bm{\mathcal{K}} \bm{J}_{\{K\}}$ is diagonal. +Typically, it can me made based on physical reasoning as is the case here. + +\begin{equation} + \frac{\bm{\mathcal{X}}_{\{F\}}}{\bm{\mathcal{F}}_{\{F\}}}(s) = \bm{G}_{\{K\}}(s) = \left( \bm{J}_{\{K\}}^t \bm{J}_{\{M\}}^{-T} \bm{M}_{\{M\}} \bm{J}_{\{M\}}^{-1} \bm{J}_{\{K\}} s^2 + \bm{J}_{\{K\}}^t \bm{\mathcal{C}} \bm{J}_{\{K\}} s + \bm{J}_{\{K\}}^t \bm{\mathcal{K}} \bm{J}_{\{K\}} \right)^{-1} +\end{equation} + +Plant is well decoupled below the suspension mode with the lowest frequency. +This is usually suited for systems which high stiffness. + +\begin{equation} + \bm{G}_{\{K\}}(j\omega) \xrightarrow[\omega \to 0]{} \bm{J}_{\{K\}}^{-1} \bm{\mathcal{K}}^{-1} \bm{J}_{\{K\}}^{-t} +\end{equation} + +#+begin_src matlab +%% Jacobian Decoupling - Center of Mass +% Location of the joints with respect to the center of stiffness +Mb1 = [-l/2; 0]; +Mb2 = [-la; -h/2+ha]; +Mb3 = [ la; -h/2+ha]; + +% Jacobian matrix (Center of Stiffness) +J_CoK = [s1', Mb1(1)*s1(2)-Mb1(2)*s1(1); + s2', Mb2(1)*s2(2)-Mb2(2)*s2(1); + s3', Mb3(1)*s3(2)-Mb3(2)*s3(1)]; + +G_CoK = pinv(J_CoK)*G_L*pinv(J_CoK'); +G_CoK.InputName = {'Fx', 'Fy', 'Mz'}; +G_CoK.OutputName = {'Dx', 'Dy', 'Rz'}; +#+end_src + +#+begin_src matlab :exports none +figure; +hold on; +for i_in = 1:3 + for i_out = [i_in+1:3] + plot(freqs, abs(squeeze(freqresp(G_CoK(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... + 'HandleVisibility', 'off'); + end +end +plot(freqs, abs(squeeze(freqresp(G_CoK(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... + 'DisplayName', '$G_{CoK}(i,j)\ i \neq j$'); +set(gca,'ColorOrderIndex',1) +for i_in_out = 1:3 + plot(freqs, abs(squeeze(freqresp(G_CoK(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_{CoK}(%d,%d)$', i_in_out, i_in_out)); +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); ylabel('Magnitude'); +ylim([1e-10, 1e-3]); +leg = legend('location', 'northeast', 'FontSize', 8); +leg.ItemTokenSize(1) = 18; +#+end_src + +#+begin_src matlab :tangle no :exports results :results file replace +exportFig('figs/detail_control_jacobian_plant_CoK.pdf', 'width', 'wide', 'height', 'normal'); +#+end_src + +#+name: fig:detail_control_jacobian_plant_CoK +#+caption: Plant decoupled using the Jacobian matrices $G_x(s)$ +#+RESULTS: +[[file:figs/detail_control_jacobian_plant_CoK.png]] + ** Modal Decoupling <> +**** Theory :ignore: Let's consider a system with the following equations of motion: \begin{equation} @@ -2165,34 +2615,133 @@ The obtained system on the diagonal are second order resonant systems which can Using this decoupling strategy, it is possible to control each mode individually. +**** Example + +For the system in Figure ref:fig:detail_control_model_test_decoupling, we have: +\begin{align} +\bm{x} &= \begin{bmatrix} x \\ y \\ R_z \end{bmatrix} \\ +\bm{y} &= \mathcal{L} = J \bm{x}; \quad C_{ox} = J; \quad C_{ov} = 0 \\ +M &= \begin{bmatrix} +m & 0 & 0 \\ +0 & m & 0 \\ +0 & 0 & I +\end{bmatrix}; \quad K = J' \begin{bmatrix} +k & 0 & 0 \\ +0 & k & 0 \\ +0 & 0 & k +\end{bmatrix} J; \quad C = J' \begin{bmatrix} +c & 0 & 0 \\ +0 & c & 0 \\ +0 & 0 & c +\end{bmatrix} J +\end{align} + +In order to apply the architecture shown in Figure ref:fig:modal_decoupling_architecture, we need to compute $C_{ox}$, $C_{ov}$, $\Phi$, $\mu$ and $J$. + +- [ ] Is it possible to obtained the analytical formulas for decoupling matrices? + +#+begin_src matlab +%% Modal Decoupling +% Modal Decomposition +[V,D] = eig(M\K); + +% Modal Mass Matrix +mu = V'*M*V; + +% Modal output matrix +Cm = J_CoM*V; + +% Modal input matrix +Bm = inv(mu)*V'*J_CoM'; + +% Plant in the modal space +Gm = inv(Cm)*G_L*inv(Bm); +#+end_src + +#+begin_src matlab :exports results :results value table replace :tangle no +data2orgtable(Bm, {}, {}, ' %.4f '); +#+end_src + +#+name: tab:modal_decoupling_Bm +#+caption: $B_m$ matrix +#+attr_latex: :environment tabularx :width 0.3\linewidth :align ccc +#+attr_latex: :center t :booktabs t :float t +#+RESULTS: +| -0.0004 | -0.0007 | 0.0007 | +| -0.0151 | 0.0041 | -0.0041 | +| 0.0 | 0.0025 | 0.0025 | + +#+begin_src matlab :exports results :results value table replace :tangle no +data2orgtable(Cm, {}, {}, ' %.1f '); +#+end_src + +#+name: tab:modal_decoupling_Cm +#+caption: $C_m$ matrix +#+attr_latex: :environment tabularx :width 0.2\linewidth :align ccc +#+attr_latex: :center t :booktabs t :float t +#+RESULTS: +| -0.1 | -1.8 | 0.0 | +| -0.2 | 0.5 | 1.0 | +| 0.2 | -0.5 | 1.0 | + +#+begin_src matlab :exports none +figure; +hold on; +for i_in = 1:3 + for i_out = [i_in+1:3] + plot(freqs, abs(squeeze(freqresp(Gm(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... + 'HandleVisibility', 'off'); + end +end +plot(freqs, abs(squeeze(freqresp(Gm(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... + 'DisplayName', '$G_m(i,j)\ i \neq j$'); +set(gca,'ColorOrderIndex',1) +for i_in_out = 1:3 + plot(freqs, abs(squeeze(freqresp(Gm(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_m(%d,%d)$', i_in_out, i_in_out)); +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); ylabel('Magnitude'); +ylim([1e-7, 1e0]); +leg = legend('location', 'northeast', 'FontSize', 8); +leg.ItemTokenSize(1) = 18; +#+end_src + +#+begin_src matlab :tangle no :exports results :results file replace +exportFig('figs/detail_control_modal_plant.pdf', 'width', 'wide', 'height', 'normal'); +#+end_src + +#+name: fig:detail_control_modal_plant +#+caption: Modal plant $G_m(s)$ +#+RESULTS: +[[file:figs/detail_control_modal_plant.png]] + ** SVD Decoupling <> +**** Singular Value Decomposition + +- Introduction to SVD [[cite:&brunton22_data]] +- Applied to parallel manipulator? + +**** Control Architecture + +- [ ] Have notation for the measured FRF +- [ ] And for the real approximation + Procedure: - Identify the dynamics of the system from inputs to outputs (can be obtained experimentally) + Frequency Response Function, which is a complex matrix obtained for several frequency points. - Choose a frequency where we want to decouple the system (usually, the crossover frequency is a good choice) -#+begin_src matlab :eval no -%% Decoupling frequency [rad/s] -wc = 2*pi*10; - -%% System's response at the decoupling frequency -H1 = evalfr(G, j*wc); -#+end_src - Compute a real approximation of the system's response at that frequency -#+begin_src matlab :eval no -%% Real approximation of G(j.wc) -D = pinv(real(H1'*H1)); -H1 = pinv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2)))); -#+end_src -- Perform a Singular Value Decomposition of the real approximation -#+begin_src matlab :eval no -[U,S,V] = svd(H1); -#+end_src + As /real/ V and U matrices need to be obtained, a real approximation of the complex measured response needs to be computed. + - [ ] Find reference to do so. +- Perform a Singular Value Decomposition of the real approximation. + Unitary U and V matrices are then obtained such that: + V-t Greal U-1 is a diagonal matrix + - Use the singular input and output matrices to decouple the system as shown in Figure ref:fig:detail_control_decoupling_svd \[ G_{svd}(s) = U^{-1} G(s) V^{-T} \] -#+begin_src matlab :eval no -Gsvd = inv(U)*G*inv(V'); -#+end_src #+begin_src latex :file detail_control_decoupling_svd.pdf \begin{tikzpicture} @@ -2232,194 +2781,31 @@ The inputs and outputs are ordered from higher gain to lower gain at the chosen - [ ] Do we loose any physical meaning of the obtained inputs and outputs? - [ ] Can we take advantage of the fact that U and V are unitary? -** Comparison -<> -**** Jacobian Decoupling -Decoupling properties depends on the chosen frame $\{O\}$. +**** Example -Let's take the CoM as the decoupling frame. +- [ ] Analytical formulas in this case? +- [ ] Do we have something special when applying SVD to a collocated MIMO system? +- *Verify why such a good decoupling is obtained!* +# - When applying SVD on a non-collocated MIMO system, we obtained a decoupled plant looking like the one in Figure ref:fig:detail_control_gravimeter_svd_plant #+begin_src matlab -Gx = pinv(J)*G*pinv(J'); -Gx.InputName = {'Fx', 'Fy', 'Mz'}; -Gx.OutputName = {'Dx', 'Dy', 'Rz'}; -#+end_src +%% SVD Decoupling -#+begin_src matlab :exports none -freqs = logspace(-1, 2, 1000); -figure; +wc = 2*pi*200; % Decoupling frequency [rad/s] +% System's response at the decoupling frequency +H1 = evalfr(G_L, j*wc); -% Magnitude -hold on; -for i_in = 1:3 - for i_out = [i_in+1:3] - plot(freqs, abs(squeeze(freqresp(Gx(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... - 'HandleVisibility', 'off'); - end -end -plot(freqs, abs(squeeze(freqresp(Gx(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... - 'DisplayName', '$G_{x}(i,j)\ i \neq j$'); -set(gca,'ColorOrderIndex',1) -for i_in_out = 1:3 - plot(freqs, abs(squeeze(freqresp(Gx(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_{x}(%d,%d)$', i_in_out, i_in_out)); -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('Magnitude'); -ylim([1e-7, 1e-1]); -legend('location', 'northeast'); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/detail_control_jacobian_plant.pdf', 'width', 'wide', 'height', 'normal'); -#+end_src - -#+name: fig:detail_control_jacobian_plant -#+caption: Plant decoupled using the Jacobian matrices $G_x(s)$ -#+RESULTS: -[[file:figs/detail_control_jacobian_plant.png]] - -**** Modal Decoupling -For the system in Figure ref:fig:detail_control_model_test_decoupling, we have: -\begin{align} -\bm{x} &= \begin{bmatrix} x \\ y \\ R_z \end{bmatrix} \\ -\bm{y} &= \mathcal{L} = J \bm{x}; \quad C_{ox} = J; \quad C_{ov} = 0 \\ -M &= \begin{bmatrix} -m & 0 & 0 \\ -0 & m & 0 \\ -0 & 0 & I -\end{bmatrix}; \quad K = J' \begin{bmatrix} -k & 0 & 0 \\ -0 & k & 0 \\ -0 & 0 & k -\end{bmatrix} J; \quad C = J' \begin{bmatrix} -c & 0 & 0 \\ -0 & c & 0 \\ -0 & 0 & c -\end{bmatrix} J -\end{align} - -In order to apply the architecture shown in Figure ref:fig:modal_decoupling_architecture, we need to compute $C_{ox}$, $C_{ov}$, $\Phi$, $\mu$ and $J$. - -#+begin_src matlab -%% Modal Decomposition -[V,D] = eig(M\K); - -%% Modal Mass Matrix -mu = V'*M*V; - -%% Modal output matrix -Cm = J*V; - -%% Modal input matrix -Bm = inv(mu)*V'*J'; -#+end_src - -#+begin_src matlab :exports results :results value table replace :tangle no -data2orgtable(Bm, {}, {}, ' %.4f '); -#+end_src - -#+name: tab:modal_decoupling_Bm -#+caption: $B_m$ matrix -#+attr_latex: :environment tabularx :width 0.3\linewidth :align ccc -#+attr_latex: :center t :booktabs t :float t -#+RESULTS: -| -0.0004 | -0.0007 | 0.0007 | -| -0.0151 | 0.0041 | -0.0041 | -| 0.0 | 0.0025 | 0.0025 | - -#+begin_src matlab :exports results :results value table replace :tangle no -data2orgtable(Cm, {}, {}, ' %.1f '); -#+end_src - -#+name: tab:modal_decoupling_Cm -#+caption: $C_m$ matrix -#+attr_latex: :environment tabularx :width 0.2\linewidth :align ccc -#+attr_latex: :center t :booktabs t :float t -#+RESULTS: -| -0.1 | -1.8 | 0.0 | -| -0.2 | 0.5 | 1.0 | -| 0.2 | -0.5 | 1.0 | - -And the plant in the modal space is defined below and its magnitude is shown in Figure ref:fig:detail_control_modal_plant. -#+begin_src matlab -Gm = inv(Cm)*G*inv(Bm); -#+end_src - -#+begin_src matlab :exports none -freqs = logspace(-1, 2, 1000); -figure; - -% Magnitude -hold on; -for i_in = 1:3 - for i_out = [i_in+1:3] - plot(freqs, abs(squeeze(freqresp(Gm(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... - 'HandleVisibility', 'off'); - end -end -plot(freqs, abs(squeeze(freqresp(Gm(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... - 'DisplayName', '$G_m(i,j)\ i \neq j$'); -set(gca,'ColorOrderIndex',1) -for i_in_out = 1:3 - plot(freqs, abs(squeeze(freqresp(Gm(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_m(%d,%d)$', i_in_out, i_in_out)); -end -hold off; -set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); -xlabel('Frequency [Hz]'); ylabel('Magnitude'); -ylim([1e-6, 1e2]); -legend('location', 'northeast'); -#+end_src - -#+begin_src matlab :tangle no :exports results :results file replace -exportFig('figs/detail_control_modal_plant.pdf', 'width', 'wide', 'height', 'normal'); -#+end_src - -#+name: fig:detail_control_modal_plant -#+caption: Modal plant $G_m(s)$ -#+RESULTS: -[[file:figs/detail_control_modal_plant.png]] - -Let's now close one loop at a time and see how the transmissibility changes. - -**** SVD Decoupling -#+begin_src matlab -%% Decoupling frequency [rad/s] -wc = 2*pi*10; - -%% System's response at the decoupling frequency -H1 = evalfr(G, j*wc); - -%% Real approximation of G(j.wc) +% Real approximation of G(j.wc) D = pinv(real(H1'*H1)); H1 = pinv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2)))); [U,S,V] = svd(H1); -Gsvd = inv(U)*G*inv(V'); +Gsvd = inv(U)*G_L*inv(V'); #+end_src -#+begin_src matlab :exports results :results value table replace :tangle no -data2orgtable(H1, {}, {}, ' %.2g '); -#+end_src - -#+caption: Real approximate of $G$ at the decoupling frequency $\omega_c$ -#+attr_latex: :environment tabularx :width 0.3\linewidth :align ccc -#+attr_latex: :center t :booktabs t :float t -#+RESULTS: -| -8e-06 | 2.1e-06 | -2.1e-06 | -| 2.1e-06 | -1.3e-06 | -2.5e-08 | -| -2.1e-06 | -2.5e-08 | -1.3e-06 | - -- [ ] Do we have something special when applying SVD to a collocated MIMO system? -- *Verify why such a good decoupling is obtained!* -# - When applying SVD on a non-collocated MIMO system, we obtained a decoupled plant looking like the one in Figure ref:fig:detail_control_gravimeter_svd_plant - #+begin_src matlab :exports none -freqs = logspace(-1, 2, 1000); figure; - -% Magnitude hold on; for i_in = 1:3 for i_out = [i_in+1:3] @@ -2436,8 +2822,9 @@ end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); xlabel('Frequency [Hz]'); ylabel('Magnitude'); -% ylim([1e-8, 1e-2]); -legend('location', 'northeast'); +ylim([1e-10, 2e-4]); +leg = legend('location', 'northeast', 'FontSize', 8); +leg.ItemTokenSize(1) = 18; #+end_src #+begin_src matlab :tangle no :exports results :results file replace @@ -2449,6 +2836,55 @@ exportFig('figs/detail_control_svd_plant.pdf', 'width', 'wide', 'height', 'norma #+RESULTS: [[file:figs/detail_control_svd_plant.png]] +#+begin_src matlab :exports results :results value table replace :tangle no +data2orgtable(H1, {}, {}, ' %.2g '); +#+end_src + +#+caption: Real approximate of $G$ at the decoupling frequency $\omega_c$ +#+attr_latex: :environment tabularx :width 0.3\linewidth :align ccc +#+attr_latex: :center t :booktabs t :float t +#+RESULTS: +| -8e-06 | 2.1e-06 | -2.1e-06 | +| 2.1e-06 | -1.3e-06 | -2.5e-08 | +| -2.1e-06 | -2.5e-08 | -1.3e-06 | + +** Comparison +<> + +#+name: tab:detail_control_decoupling_strategies_comp +#+caption: Comparison of decoupling strategies +#+attr_latex: :environment tabularx :width \linewidth :align lXXX +#+attr_latex: :center t :booktabs t :font \scriptsize +| | *Jacobian* | *Modal* | *SVD* | +|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| +| *Philosophy* | Topology Driven | Physics Driven | Data Driven | +|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| +| *Requirements* | Known geometry | Known equations of motion | Identified FRF | +|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| +| *Decoupling Matrices* | Decoupling using $J$ obtained from geometry | Decoupling using $\Phi$ obtained from modal decomposition | Decoupling using $U$ and $V$ obtained from SVD | +|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| +| *Decoupled Plant* | $\bm{G}_{\{O\}} = J_{\{O\}}^{-1} \bm{G} J_{\{O\}}^{-T}$ | $\bm{G}_m = C_m^{-1} \bm{G} B_m^{-1}$ | $\bm{G}_{svd}(s) = U^{-1} \bm{G}(s) V^{-T}$ | +|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| +| *Implemented Controller* | $\bm{K}_{\{O\}} = J_{\{O\}}^{-T} \bm{K}_{d}(s) J_{\{O\}}^{-1}$ | $\bm{K}_m = B_m^{-1} \bm{K}_{d}(s) C_m^{-1}$ | $\bm{K}_{svd}(s) = V^{-T} \bm{K}_{d}(s) U^{-1}$ | +|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| +| *Physical Interpretation* | Forces/Torques to Displacement/Rotation in chosen frame | Inputs to excite individual modes | Directions of max to min controllability/observability | +| | | Output to sense individual modes | | +|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| +| *Decoupling Properties* | Decoupling at low or high frequency depending on the chosen frame | Good decoupling at all frequencies | Good decoupling near the chosen frequency | +|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| +| *Pros* | Physical inputs / outputs | Target specific modes | Good Decoupling near the crossover | +| | Good decoupling at High frequency (diagonal mass matrix if Jacobian taken at the CoM) | 2nd order diagonal plant | Very General | +| | Good decoupling at Low frequency (if Jacobian taken at specific point) | | | +| | Easy integration of meaningful reference inputs | | | +| | | | | +|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| +| *Cons* | Coupling between force/rotation may be high at low frequency (non diagonal terms in K) | Need analytical equations | Loose the physical meaning of inputs /outputs | +| | Limited to parallel mechanisms (?) | | Decoupling depends on the real approximation validity | +| | If good decoupling at all frequencies => requires specific mechanical architecture | | Diagonal plants may not be easy to control | +|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| +| *Applicability* | Parallel Mechanisms | Systems whose dynamics that can be expressed with M and K matrices | Very general | +| | Only small motion for the Jacobian matrix to stay constant | | Need FRF data (either experimentally or analytically) | + ** TODO Robustness of the decoupling strategies? :noexport: *** Introduction :ignore: What happens if we add an additional resonance in the system (Figure ref:fig:model_test_decoupling_spurious_res). @@ -2543,7 +2979,6 @@ Gxr.OutputName = {'Dx', 'Dy', 'Rz'}; The obtained plant is shown in Figure ref:fig:detail_control_jacobian_plant_spurious and is not much different than for the plant without the spurious resonance. #+begin_src matlab :exports none -freqs = logspace(-1, 2, 1000); figure; % Magnitude @@ -2585,7 +3020,6 @@ Gmr = inv(Cm)*Gr*inv(Bm); The obtained decoupled plant is shown in Figure ref:fig:detail_control_modal_plant_spurious. Compare to the decoupled plant in Figure ref:fig:detail_control_modal_plant, the added resonance induces some coupling, especially around the frequency of the added spurious resonance. #+begin_src matlab :exports none -freqs = logspace(-1, 2, 1000); figure; % Magnitude @@ -2640,7 +3074,6 @@ Gsvdr = inv(U)*Gr*inv(V'); The obtained plant is shown in Figure ref:fig:detail_control_svd_plant_spurious. #+begin_src matlab :exports none -freqs = logspace(-1, 2, 1000); figure; % Magnitude @@ -2689,39 +3122,6 @@ Conclusion about NASS: - Prefer to use Jacobian decoupling as we get more physical interpretation - Also, it is possible to take into account different specifications in the different DoF -#+name: tab:detail_control_decoupling_strategies_comp -#+caption: Comparison of decoupling strategies -#+attr_latex: :environment tabularx :width \linewidth :align lXXX -#+attr_latex: :center t :booktabs t :font \scriptsize -| | *Jacobian* | *Modal* | *SVD* | -|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| -| *Philosophy* | Topology Driven | Physics Driven | Data Driven | -|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| -| *Requirements* | Known geometry | Known equations of motion | Identified FRF | -|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| -| *Decoupling Matrices* | Decoupling using $J$ obtained from geometry | Decoupling using $\Phi$ obtained from modal decomposition | Decoupling using $U$ and $V$ obtained from SVD | -|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| -| *Decoupled Plant* | $\bm{G}_{\{O\}} = J_{\{O\}}^{-1} \bm{G} J_{\{O\}}^{-T}$ | $\bm{G}_m = C_m^{-1} \bm{G} B_m^{-1}$ | $\bm{G}_{svd}(s) = U^{-1} \bm{G}(s) V^{-T}$ | -|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| -| *Implemented Controller* | $\bm{K}_{\{O\}} = J_{\{O\}}^{-T} \bm{K}_{d}(s) J_{\{O\}}^{-1}$ | $\bm{K}_m = B_m^{-1} \bm{K}_{d}(s) C_m^{-1}$ | $\bm{K}_{svd}(s) = V^{-T} \bm{K}_{d}(s) U^{-1}$ | -|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| -| *Physical Interpretation* | Forces/Torques to Displacement/Rotation in chosen frame | Inputs to excite individual modes | Directions of max to min controllability/observability | -| | | Output to sense individual modes | | -|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| -| *Decoupling Properties* | Decoupling at low or high frequency depending on the chosen frame | Good decoupling at all frequencies | Good decoupling near the chosen frequency | -|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| -| *Pros* | Physical inputs / outputs | Target specific modes | Good Decoupling near the crossover | -| | Good decoupling at High frequency (diagonal mass matrix if Jacobian taken at the CoM) | 2nd order diagonal plant | Very General | -| | Good decoupling at Low frequency (if Jacobian taken at specific point) | | | -| | Easy integration of meaningful reference inputs | | | -| | | | | -|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| -| *Cons* | Coupling between force/rotation may be high at low frequency (non diagonal terms in K) | Need analytical equations | Loose the physical meaning of inputs /outputs | -| | Limited to parallel mechanisms (?) | | Decoupling depends on the real approximation validity | -| | If good decoupling at all frequencies => requires specific mechanical architecture | | Diagonal plants may not be easy to control | -|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| -| *Applicability* | Parallel Mechanisms | Systems whose dynamics that can be expressed with M and K matrices | Very general | -| | Only small motion for the Jacobian matrix to stay constant | | Need FRF data (either experimentally or analytically) | * Closed-Loop Shaping using Complementary Filters :PROPERTIES: @@ -2762,7 +3162,8 @@ It will be experimentally demonstrated with the NASS. *SISO control design methods* - frequency domain techniques - manual loop-shaping - key idea: modification of the controller such that the open-loop is made according to specifications [[cite:&oomen18_advan_motion_contr_precis_mechat]]. -This works well because the open loop transfer function is linearly dependent of the controller. + This works well because the open loop transfer function is linearly dependent of the controller. + Different techniques for open loop shaping [[cite:&lurie02_system_archit_trades_using_bode]] However, the specifications are given in terms of the final system performance, i.e. as closed-loop specifications. @@ -3935,7 +4336,4 @@ addpath('./src/'); % Path for functions #+BEGIN_SRC matlab %% Colors for the figures colors = colororder; - -%% Initialize Frequency Vector -freqs = logspace(-1, 3, 1000); #+END_SRC diff --git a/nass-control.pdf b/nass-control.pdf index 3018bed..8d6c1de 100644 Binary files a/nass-control.pdf and b/nass-control.pdf differ diff --git a/nass-control.tex b/nass-control.tex index 41224be..a13875d 100644 --- a/nass-control.tex +++ b/nass-control.tex @@ -1,4 +1,4 @@ -% Created 2025-04-04 Fri 11:38 +% Created 2025-04-04 Fri 19:20 % Intended LaTeX compiler: pdflatex \documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt} @@ -32,7 +32,6 @@ Several considerations: \item Section \ref{sec:detail_control_optimization}: How to design the controller \end{itemize} \chapter{Multiple Sensor Control} -\label{sec:orgf67d083} \label{sec:detail_control_multiple_sensor} \textbf{Look at what was done in the introduction \href{file:///home/thomas/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A0-nass-introduction/nass-introduction.org}{Stewart platforms: Control architecture}} @@ -135,7 +134,6 @@ In this section, we wish to study if sensor fusion can be an option for multi-se \item optimize the dynamical uncertainty \end{itemize} \section{Sensor fusion - Introduction} -\label{sec:org119298d} Measuring a physical quantity using sensors is always subject to several limitations. First, the accuracy of the measurement is affected by several noise sources, such as electrical noise of the conditioning electronics being used. @@ -183,13 +181,11 @@ Although many design methods of complementary filters have been proposed in the Fortunately, both the robustness of the fusion and the super sensor characteristics can be linked to the magnitude of the complementary filters \cite{dehaeze19_compl_filter_shapin_using_synth}. Based on that, this work introduces a new way to design complementary filters using the \(\mathcal{H}_\infty\) synthesis which allows to shape the complementary filters' magnitude in an easy and intuitive way. \section{Sensor Fusion and Complementary Filters Requirements} -\label{sec:org8c6ec99} \label{ssec:detail_control_sensor_fusion_requirements} Complementary filtering provides a framework for fusing signals from different sensors. As the effectiveness of the fusion depends on the proper design of the complementary filters, they are expected to fulfill certain requirements. These requirements are discussed in this section. -\paragraph{Sensor Fusion Architecture} -\label{sec:org1e5ae2a} +\subsubsection{Sensor Fusion Architecture} A general sensor fusion architecture using complementary filters is shown in Figure \ref{fig:detail_control_sensor_fusion_overview} where several sensors (here two) are measuring the same physical quantity \(x\). The two sensors output signals \(\hat{x}_1\) and \(\hat{x}_2\) are estimates of \(x\). @@ -210,8 +206,7 @@ That is, unity magnitude and zero phase at all frequencies. \begin{equation}\label{eq:detail_control_comp_filter} H_1(s) + H_2(s) = 1 \end{equation} -\paragraph{Sensor Models and Sensor Normalization} -\label{sec:org429b48b} +\subsubsection{Sensor Models and Sensor Normalization} In order to study such sensor fusion architecture, a model for the sensors is required. Such model is shown in Figure \ref{fig:detail_control_sensor_model} and consists of a linear time invariant (LTI) system \(G_i(s)\) representing the sensor dynamics and an input \(n_i\) representing the sensor noise. @@ -253,8 +248,7 @@ The super sensor output \(\hat{x}\) is therefore described by \eqref{eq:detail_c \includegraphics[scale=1]{figs/detail_control_fusion_super_sensor.png} \caption{\label{fig:detail_control_fusion_super_sensor}Sensor fusion architecture with two normalized sensors.} \end{figure} -\paragraph{Noise Sensor Filtering} -\label{sec:org8410a77} +\subsubsection{Noise Sensor Filtering} First, suppose that all the sensors are perfectly normalized \eqref{eq:detail_control_perfect_dynamics}. The effect of a non-perfect normalization will be discussed afterwards. @@ -290,8 +284,7 @@ This is the simplest form of sensor fusion with complementary filters. However, the two sensors have usually high noise levels over distinct frequency regions. In such case, to lower the noise of the super sensor, the norm \(|H_1(j\omega)|\) has to be small when \(\Phi_{n_1}(\omega)\) is larger than \(\Phi_{n_2}(\omega)\) and the norm \(|H_2(j\omega)|\) has to be small when \(\Phi_{n_2}(\omega)\) is larger than \(\Phi_{n_1}(\omega)\). Hence, by properly shaping the norm of the complementary filters, it is possible to minimize the noise of the super sensor. -\paragraph{Sensor Fusion Robustness} -\label{sec:orgda97814} +\subsubsection{Sensor Fusion Robustness} In practical systems the sensor normalization is not perfect and condition \eqref{eq:detail_control_perfect_dynamics} is not verified. @@ -351,15 +344,13 @@ For instance, the phase \(\Delta\phi(\omega)\) added by the super sensor dynamic As it is generally desired to limit the maximum phase added by the super sensor, \(H_1(s)\) and \(H_2(s)\) should be designed such that \(\Delta \phi\) is bounded to acceptable values. Typically, the norm of the complementary filter \(|H_i(j\omega)|\) should be made small when \(|w_i(j\omega)|\) is large, i.e., at frequencies where the sensor dynamics is uncertain. \section{Complementary Filters Shaping} -\label{sec:orgc4a4ceb} \label{ssec:detail_control_hinf_method} As shown in Section \ref{ssec:detail_control_sensor_fusion_requirements}, the noise and robustness of the super sensor are a function of the complementary filters' norm. Therefore, a synthesis method of complementary filters that allows to shape their norm would be of great use. In this section, such synthesis is proposed by writing the synthesis objective as a standard \(\mathcal{H}_\infty\) optimization problem. As weighting functions are used to represent the wanted complementary filters' shape during the synthesis, their proper design is discussed. Finally, the synthesis method is validated on an simple example. -\paragraph{Synthesis Objective} -\label{sec:orgec6a952} +\subsubsection{Synthesis Objective} The synthesis objective is to shape the norm of two filters \(H_1(s)\) and \(H_2(s)\) while ensuring their complementary property \eqref{eq:detail_control_comp_filter}. This is equivalent as to finding proper and stable transfer functions \(H_1(s)\) and \(H_2(s)\) such that conditions \eqref{eq:detail_control_hinf_cond_complementarity}, \eqref{eq:detail_control_hinf_cond_h1} and \eqref{eq:detail_control_hinf_cond_h2} are satisfied. @@ -372,8 +363,7 @@ This is equivalent as to finding proper and stable transfer functions \(H_1(s)\) & |H_2(j\omega)| \le \frac{1}{|W_2(j\omega)|} \quad \forall\omega \label{eq:detail_control_hinf_cond_h2} \end{align} \end{subequations} -\paragraph{Shaping of Complementary Filters using \(\mathcal{H}_\infty\) synthesis} -\label{sec:orgc16ac7f} +\subsubsection{Shaping of Complementary Filters using \(\mathcal{H}_\infty\) synthesis} The synthesis objective can be easily expressed as a standard \(\mathcal{H}_\infty\) optimization problem and therefore solved using convenient tools readily available. Consider the generalized plant \(P(s)\) shown in Figure \ref{fig:detail_control_h_infinity_robust_fusion_plant} and mathematically described by \eqref{eq:detail_control_generalized_plant}. @@ -418,8 +408,7 @@ Therefore, applying the \(\mathcal{H}_\infty\) synthesis to the standard plant \ Note that there is only an implication between the \(\mathcal{H}_\infty\) norm condition \eqref{eq:detail_control_hinf_problem} and the initial synthesis objectives \eqref{eq:detail_control_hinf_cond_h1} and \eqref{eq:detail_control_hinf_cond_h2} and not an equivalence. Hence, the optimization may be a little bit conservative with respect to the set of filters on which it is performed, see \cite[,Chap. 2.8.3]{skogestad07_multiv_feedb_contr}. -\paragraph{Weighting Functions Design} -\label{sec:org81bbe63} +\subsubsection{Weighting Functions Design} Weighting functions are used during the synthesis to specify the maximum allowed complementary filters' norm. The proper design of these weighting functions is of primary importance for the success of the presented \(\mathcal{H}_\infty\) synthesis of complementary filters. @@ -450,8 +439,7 @@ The typical magnitude of a weighting function generated using \eqref{eq:detail_c }\right)^n \end{equation} \end{minipage} -\paragraph{Validation of the proposed synthesis method} -\label{sec:org4c438a2} +\subsubsection{Validation of the proposed synthesis method} The proposed methodology for the design of complementary filters is now applied on a simple example. Let's suppose two complementary filters \(H_1(s)\) and \(H_2(s)\) have to be designed such that: @@ -498,7 +486,6 @@ The \(\mathcal{H}_\infty\) norm is here found to be close to one which indicates This is confirmed by the bode plots of the obtained complementary filters in Figure \ref{fig:detail_control_hinf_filters_results}. This simple example illustrates the fact that the proposed methodology for complementary filters shaping is easy to use and effective. \section{Synthesis of a set of three complementary filters} -\label{sec:org6c33bf8} \label{sec:detail_control_hinf_three_comp_filters} Some applications may require to merge more than two sensors \cite{stoten01_fusion_kinet_data_using_compos_filter,fonseca15_compl}. @@ -602,7 +589,6 @@ Filter \(H_1(s)\) is defined using \eqref{eq:detail_control_h1_compl_h2_h3} thus Figure \ref{fig:detail_control_three_complementary_filters_results} displays the three synthesized complementary filters (solid lines) which confirms that the synthesis is successful. \section*{Conclusion} -\label{sec:org0d8cdf5} A new method for designing complementary filters using the \(\mathcal{H}_\infty\) synthesis has been proposed. It allows to shape the magnitude of the filters by the use of weighting functions during the synthesis. This is very valuable in practice as the characteristics of the super sensor are linked to the complementary filters' magnitude. @@ -614,15 +600,28 @@ Future work will aim at developing a complementary filter synthesis method that \begin{itemize} \item Talk about the possibility to use H2 to minimize the RMS value of the super sensor noise? (or maybe make a section about that?) +There is a draft paper about that. \item For the NASS, it was shown that the HAC-IFF strategy works fine and is easy to understand and tune \item It would be very interesting to see how sensor fusion (probably between the force sensor and the external metrology) compares in term of performance and robustness \end{itemize} \chapter{Decoupling} -\label{sec:orgbbaf347} \label{sec:detail_control_decoupling} +When dealing with MIMO systems, a typical strategy is to: \begin{itemize} -\item[{$\square$}] \href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org}{Decoupling Strategies} +\item First decouple the plant dynamics (discussed in this section) +\item Apply SISO control for the decoupled plant (discussed in section \ref{sec:detail_control_optimization}) +\end{itemize} + +Another strategy would be to apply a multivariable control synthesis to the coupled system. +Strangely, while H-infinity synthesis is a mature technology, it use for the control of Stewart platform is not yet demonstrated. +From \cite{thayer02_six_axis_vibrat_isolat_system}: +\begin{quote} +Experimental closed-loop control results using the hexapod have shown that controllers designed using a decentralized single-strut design work well when compared to full multivariable methodologies. +\end{quote} + +\begin{itemize} +\item[{$\square$}] Review of \href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org}{Decoupling Strategies} for stewart platforms \item[{$\square$}] Add some citations about different methods \end{itemize} @@ -647,34 +646,17 @@ Voice Coil & Geophone + Eddy Current (Struts, collocated) & Decentralized (Sky H Piezoelectric & Force, Position & Vibration isolation, Model-Based, \textbf{Modal control}: 6x PI controllers & \cite{yang19_dynam_model_decoup_contr_flexib}\\ \midrule PZT & Geophone (struts) & \textbf{H-Infinity} and mu-synthesis & \cite{lei08_multi_objec_robus_activ_vibrat}\\ -Voice Coil & Force sensors (strus) + accelerometer (cartesian) & Decentralized Force Feedback + Centralized H2 control based on accelerometers & \cite{xie17_model_contr_hybrid_passiv_activ}\\ +Voice Coil & Force sensors (struts) + accelerometer (cartesian) & Decentralized Force Feedback + Centralized H2 control based on accelerometers & \cite{xie17_model_contr_hybrid_passiv_activ}\\ Voice Coil & Accelerometers & MIMO H-Infinity, active damping & \cite{jiao18_dynam_model_exper_analy_stewar}\\ \bottomrule \end{tabularx} \end{table} -When dealing with MIMO systems, a typical strategy is to: -\begin{itemize} -\item first decouple the plant dynamics -\item apply SISO control for the decoupled plant -\end{itemize} - -Another strategy would be to apply a multivariable control synthesis to the coupled system. -From \cite{thayer02_six_axis_vibrat_isolat_system}: -\begin{quote} -Experimental closed-loopcontrol results using the hexapod have shown that controllers designed using a decentralized single-strut design work well when compared to full multivariable methodologies. -\end{quote} - Assumptions: \begin{itemize} \item parallel manipulators \end{itemize} -Review of decoupling strategies for Stewart platforms: -\begin{itemize} -\item \href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org}{Decoupling Strategies} -\end{itemize} - The goal of this section is to compare the use of several methods for the decoupling of parallel manipulators. It is structured as follow: @@ -687,7 +669,6 @@ It is structured as follow: \item Conclusions are drawn on the three decoupling methods \end{itemize} \section{Test Model} -\label{sec:orgf9db9a6} \label{ssec:detail_control_decoupling_comp_model} Let's consider a parallel manipulator with several collocated actuator/sensors pairs. @@ -705,9 +686,19 @@ We will note: \end{itemize} \begin{figure}[htbp] -\centering -\includegraphics[scale=1]{figs/detail_control_model_test_decoupling.png} -\caption{\label{fig:detail_control_model_test_decoupling}Model use to compare decoupling techniques} +\begin{subfigure}{0.58\textwidth} +\begin{center} +\includegraphics[scale=1,scale=1]{figs/detail_control_model_test_decoupling.png} +\end{center} +\subcaption{\label{fig:detail_control_model_test_decoupling}Geometrical parameters} +\end{subfigure} +\begin{subfigure}{0.38\textwidth} +\begin{center} +\includegraphics[scale=1,scale=1]{figs/detail_control_strut_model.png} +\end{center} +\subcaption{\label{fig:detail_control_strut_model}Strut model} +\end{subfigure} +\caption{\label{fig:detail_control_model_test_decoupling_detail}3DoF model used to study decoupling strategies} \end{figure} The magnitude of the coupled plant \(G\) is shown in Figure \ref{fig:detail_control_coupled_plant_bode}. @@ -718,9 +709,7 @@ The magnitude of the coupled plant \(G\) is shown in Figure \ref{fig:detail_cont \caption{\label{fig:detail_control_coupled_plant_bode}Magnitude of the coupled plant.} \end{figure} \section{Decentralized Plant / Control in the frame of the struts} -\label{sec:orgf446497} \section{Jacobian Decoupling} -\label{sec:orgfcc4afb} \label{ssec:detail_control_comp_jacobian} The Jacobian matrix can be used to: @@ -754,8 +743,10 @@ The inputs and outputs of the decoupled plant \(\bm{G}_{\{O\}}\) have physical m \end{itemize} It is then easy to include a reference tracking input that specify the wanted motion of the payload in the frame \(\{O\}\). +\subsubsection{Center Of Mass} + +\subsubsection{Center Of Stiffness} \section{Modal Decoupling} -\label{sec:org896946d} \label{ssec:detail_control_comp_modal} Let's consider a system with the following equations of motion: @@ -861,7 +852,6 @@ The obtained system on the diagonal are second order resonant systems which can Using this decoupling strategy, it is possible to control each mode individually. \section{SVD Decoupling} -\label{sec:org40b06bc} \label{ssec:detail_control_comp_svd} Procedure: @@ -894,10 +884,8 @@ The inputs and outputs are ordered from higher gain to lower gain at the chosen \item[{$\square$}] Can we take advantage of the fact that U and V are unitary? \end{itemize} \section{Comparison} -\label{sec:org766237f} \label{ssec:detail_control_decoupling_comp} -\paragraph{Jacobian Decoupling} -\label{sec:orgfc21963} +\subsubsection{Jacobian Decoupling} Decoupling properties depends on the chosen frame \(\{O\}\). Let's take the CoM as the decoupling frame. @@ -907,8 +895,7 @@ Let's take the CoM as the decoupling frame. \includegraphics[scale=1]{figs/detail_control_jacobian_plant.png} \caption{\label{fig:detail_control_jacobian_plant}Plant decoupled using the Jacobian matrices \(G_x(s)\)} \end{figure} -\paragraph{Modal Decoupling} -\label{sec:org124e143} +\subsubsection{Modal Decoupling} For the system in Figure \ref{fig:detail_control_model_test_decoupling}, we have: \begin{align} \bm{x} &= \begin{bmatrix} x \\ y \\ R_z \end{bmatrix} \\ @@ -962,8 +949,7 @@ And the plant in the modal space is defined below and its magnitude is shown in \end{figure} Let's now close one loop at a time and see how the transmissibility changes. -\paragraph{SVD Decoupling} -\label{sec:org3f3f14e} +\subsubsection{SVD Decoupling} \begin{table}[htbp] \caption{\label{}Real approximate of \(G\) at the decoupling frequency \(\omega_c\)} \centering @@ -986,7 +972,6 @@ Let's now close one loop at a time and see how the transmissibility changes. \caption{\label{fig:detail_control_svd_plant}Svd plant \(G_m(s)\)} \end{figure} \section*{Conclusion} -\label{sec:org79124be} The three proposed methods clearly have a lot in common as they all tend to make system more decoupled by pre and/or post multiplying by a constant matrix However, the three methods also differs by a number of points which are summarized in Table \ref{tab:detail_control_decoupling_strategies_comp}. @@ -1041,7 +1026,6 @@ Conclusion about NASS: \end{tabularx} \end{table} \chapter{Closed-Loop Shaping using Complementary Filters} -\label{sec:org5dd9a93} \label{sec:detail_control_optimization} Performance of a feedback control is dictated by closed-loop transfer functions. @@ -1077,8 +1061,9 @@ It will be experimentally demonstrated with the NASS. \begin{itemize} \item frequency domain techniques \item manual loop-shaping - key idea: modification of the controller such that the open-loop is made according to specifications \cite{oomen18_advan_motion_contr_precis_mechat}. -\end{itemize} This works well because the open loop transfer function is linearly dependent of the controller. +Different techniques for open loop shaping \cite{lurie02_system_archit_trades_using_bode} +\end{itemize} However, the specifications are given in terms of the final system performance, i.e. as closed-loop specifications. @@ -1102,10 +1087,8 @@ In this paper, we propose a new controller synthesis method \item direct translation of requirements such as disturbance rejection and robustness to plant uncertainty \end{itemize} \section{Control Architecture} -\label{sec:org34a8e50} \label{ssec:detail_control_control_arch} -\paragraph{Virtual Sensor Fusion} -\label{sec:org95786c4} +\subsubsection{Virtual Sensor Fusion} Let's consider the control architecture represented in Figure \ref{fig:detail_control_sf_arch} where \(G^\prime\) is the physical plant to control, \(G\) is a model of the plant, \(k\) is a gain, \(H_L\) and \(H_H\) are complementary filters (\(H_L + H_H = 1\) in the complex sense). The signals are the reference signal \(r\), the output perturbation \(d_y\), the measurement noise \(n\) and the control input \(u\). @@ -1143,8 +1126,7 @@ y &= \frac{1}{1+G^{\prime} K H_L} dy &&+ \frac{G^{\prime} K}{1+G^{\prime} K u &= \frac{-K H_L}{1+G^{\prime} K H_L} dy &&+ \frac{K}{1+G^{\prime} K H_L} r &&- \frac{K H_L}{1+G^{\prime} K H_L} n \end{alignat} with \(K = \frac{k}{1 + H_H G k}\) -\paragraph{Asymptotic behavior} -\label{sec:org96ac3b2} +\subsubsection{Asymptotic behavior} We now want to study the asymptotic system obtained when using very high value of \(k\) \begin{equation} \lim_{k\to\infty} K = \lim_{k\to\infty} \frac{k}{1+H_H G k} = \left( H_H G \right)^{-1} @@ -1177,7 +1159,6 @@ We obtain a sensitivity transfer function equals to the high pass filter \(S = \ Assuming that we have a good model of the plant, we have then that the closed-loop behavior of the system converges to the designed complementary filters. \section{Translating the performance requirements into the shapes of the complementary filters} -\label{sec:org5196a79} \label{ssec:detail_control_trans_perf} The required performance specifications in a feedback system can usually be translated into requirements on the upper bounds of \(\abs{S(j\w)}\) and \(|T(j\omega)|\) \cite{bibel92_guidel_h}. The process of designing a controller \(K(s)\) in order to obtain the desired shapes of \(\abs{S(j\w)}\) and \(\abs{T(j\w)}\) is called loop shaping. @@ -1185,8 +1166,7 @@ The process of designing a controller \(K(s)\) in order to obtain the desired sh The equations \eqref{eq:detail_control_cl_system_y} and \eqref{eq:detail_control_cl_system_u} describing the dynamics of the studied feedback architecture are not written in terms of \(K\) but in terms of the complementary filters \(H_L\) and \(H_H\). In this section, we then translate the typical specifications into the desired shapes of the complementary filters \(H_L\) and \(H_H\).\\ -\paragraph{Nominal Stability (NS)} -\label{sec:org6c13475} +\subsubsection{Nominal Stability (NS)} The closed-loop system is stable if all its elements are stable (\(K\), \(G^\prime\) and \(H_L\)) and if the sensitivity function (\(S = \frac{1}{1 + G^\prime K H_L}\)) is stable. For the nominal system (\(G^\prime = G\)), we have \(S = H_H\). @@ -1194,8 +1174,7 @@ For the nominal system (\(G^\prime = G\)), we have \(S = H_H\). Nominal stability is then guaranteed if \(H_L\), \(H_H\) and \(G\) are stable and if \(G\) and \(H_H\) are minimum phase (to have \(K\) stable). Thus we must design stable and minimum phase complementary filters.\\ -\paragraph{Nominal Performance (NP)} -\label{sec:org4d66e50} +\subsubsection{Nominal Performance (NP)} Typical performance specifications can usually be translated into upper bounds on \(|S(j\omega)|\) and \(|T(j\omega)|\). Two performance weights \(w_H\) and \(w_L\) are defined in such a way that performance specifications are satisfied if @@ -1218,15 +1197,13 @@ The translation of typical performance requirements on the shapes of the complem \end{itemize} We may have other requirements in terms of stability margins, maximum or minimum closed-loop bandwidth.\\ -\paragraph{Closed-Loop Bandwidth} -\label{sec:org3d13ca8} +\subsubsection{Closed-Loop Bandwidth} The closed-loop bandwidth \(\w_B\) can be defined as the frequency where \(\abs{S(j\w)}\) first crosses \(\frac{1}{\sqrt{2}}\) from below. If one wants the closed-loop bandwidth to be at least \(\w_B^*\) (e.g. to stabilize an unstable pole), one can required that \(|S(j\omega)| \le \frac{1}{\sqrt{2}}\) below \(\omega_B^*\) by designing \(w_H\) such that \(|w_H(j\omega)| \ge \sqrt{2}\) for \(\omega \le \omega_B^*\). Similarly, if one wants the closed-loop bandwidth to be less than \(\w_B^*\), one can approximately require that the magnitude of \(T\) is less than \(\frac{1}{\sqrt{2}}\) at frequencies above \(\w_B^*\) by designing \(w_L\) such that \(|w_L(j\omega)| \ge \sqrt{2}\) for \(\omega \ge \omega_B^*\).\\ -\paragraph{Classical stability margins} -\label{sec:org7217eab} +\subsubsection{Classical stability margins} Gain margin (GM) and phase margin (PM) are usual specifications on controlled system. Minimum GM and PM can be guaranteed by limiting the maximum magnitude of the sensibility function \(M_S = \max_{\omega} |S(j\omega)|\): \begin{equation} @@ -1240,8 +1217,7 @@ For the nominal system \(M_S = \max_\omega |S| = \max_\omega |H_H|\), so one can |H_H(j\omega)| \le 2 \quad \forall\omega \end{equation} and thus obtain acceptable stability margins.\\ -\paragraph{Response time to change of reference signal} -\label{sec:orge54cf0a} +\subsubsection{Response time to change of reference signal} For the nominal system, the model is accurate and the transfer function from reference signal \(r\) to output \(y\) is \(1\) \eqref{eq:detail_control_cl_performance_y} and does not depends of the complementary filters. However, one can add a pre-filter as shown in Figure \ref{fig:detail_control_sf_arch_class_prefilter}. @@ -1258,8 +1234,7 @@ Typically, \(K_r\) is a low pass filter of the form K_r(s) = \frac{1}{1 + \tau s} \end{equation} with \(\tau\) corresponding to the desired response time.\\ -\paragraph{Input usage} -\label{sec:org2711dd4} +\subsubsection{Input usage} Input usage due to disturbances \(d_y\) and measurement noise \(n\) is determined by \(\big|\frac{u}{d_y}\big| = \big|\frac{u}{n}\big| = \big|G^{-1}H_L\big|\). Thus it can be limited by setting an upper bound on \(|H_L|\). @@ -1267,8 +1242,7 @@ Thus it can be limited by setting an upper bound on \(|H_L|\). Input usage due to reference signal \(r\) is determined by \(\big|\frac{u}{r}\big| = \big|G^{-1} K_r\big|\) when using a pre-filter (Figure \ref{fig:detail_control_sf_arch_class_prefilter}) and \(\big|\frac{u}{r}\big| = \big|G^{-1}\big|\) otherwise. Proper choice of \(|K_r|\) is then useful to limit input usage due to change of reference signal.\\ -\paragraph{Robust Stability (RS)} -\label{sec:orge7938b5} +\subsubsection{Robust Stability (RS)} Robustness stability represents the ability of the control system to remain stable even though there are differences between the actual system \(G^\prime\) and the model \(G\) that was used to design the controller. These differences can have various origins such as unmodelled dynamics or non-linearities. @@ -1307,8 +1281,7 @@ Robust stability is then guaranteed by having the low pass filter \(H_L\) satisf \end{equation} To ensure robust stability condition \eqref{eq:detail_control_nominal_perf_hl} can be used if \(w_L\) is designed in such a way that \(|w_L| \ge |w_I| (2 + |w_I|)\).\\ -\paragraph{Robust Performance (RP)} -\label{sec:orge9f7a36} +\subsubsection{Robust Performance (RP)} Robust performance is a property for a controlled system to have its performance guaranteed even though the dynamics of the plant is changing within specified bounds. For robust performance, we then require to have the performance condition valid for all possible plants in the defined uncertainty set: @@ -1345,13 +1318,10 @@ Robust performance is then guaranteed if \eqref{eq:detail_control_robust_perf_a} One should be aware than when looking for a robust performance condition, only the worst case is evaluated and using the robust stability condition may lead to conservative control. \section{Analytical formulas for complementary filters?} -\label{sec:org6512345} \label{ssec:detail_control_analytical_complementary_filters} \section{Numerical Example} -\label{sec:org16118e8} \label{ssec:detail_control_simulations} -\paragraph{Procedure} -\label{sec:org56ef466} +\subsubsection{Procedure} In order to apply this control technique, we propose the following procedure: \begin{enumerate} @@ -1365,8 +1335,7 @@ If one does not want to use the \(\mathcal{H}_\infty\) synthesis, one can use pr \item Design a pre-filter \(K_r\) if requirements on input usage or response to reference change are not met \item Control implementation: Filter the measurement with \(H_L\), implement the controller \(K\) and the pre-filter \(K_r\) as shown on Figure \ref{fig:detail_control_sf_arch_class_prefilter} \end{enumerate} -\paragraph{Plant} -\label{sec:orgdce9917} +\subsubsection{Plant} Let's consider the problem of controlling an active vibration isolation system that consist of a mass \(m\) to be isolated, a piezoelectric actuator and a geophone. We represent this system by a mass-spring-damper system as shown Figure \ref{fig:detail_control_mech_sys_alone} where \(m\) typically represents the mass of the payload to be isolated, \(k\) and \(c\) represent respectively the stiffness and damping of the mount. @@ -1392,8 +1361,7 @@ Its bode plot is shown on Figure \ref{fig:detail_control_bode_plot_mech_sys}. \includegraphics[scale=1]{figs/detail_control_bode_plot_mech_sys.png} \caption{\label{fig:detail_control_bode_plot_mech_sys}Bode plot of the transfer function \(G(s)\) from \(F\) to \(x\)} \end{figure} -\paragraph{Requirements} -\label{sec:org450d439} +\subsubsection{Requirements} The control objective is to isolate the displacement \(x\) of the mass from the ground motion \(w\). The disturbance rejection should be at least \(10\) at \(\SI{2}{\hertz}\) and with a slope of \(-2\) below \(\SI{2}{\hertz}\) until a rejection of \(10^4\). @@ -1430,8 +1398,7 @@ All the requirements on \(H_L\) and \(H_H\) are represented on Figure \ref{fig:d \end{subfigure} \caption{\label{fig:detail_control_spec_S_T_obtained_filters}Caption with reference to sub figure (\subref{fig:detail_control_spec_S_T}) (\subref{fig:detail_control_hinf_filters_result_weights})} \end{figure} -\paragraph{Design of the filters} -\label{sec:org571449a} +\subsubsection{Design of the filters} \textbf{Or maybe use analytical formulas as proposed here: \href{file:///home/thomas/Cloud/research/papers/dehaeze20\_virtu\_senso\_fusio/matlab/index.org}{Complementary filters using analytical formula}} @@ -1451,8 +1418,7 @@ After the \(\hinf\text{-synthesis}\), we obtain \(H_L\) and \(H_H\), and we plot H_H &= \frac{0.9936 (s+111.1) (s^2 + 0.3988s + 0.08464)}{(s+57.99) (s^2 + 65.77s + 2981)} \end{align} \end{subequations} -\paragraph{Controller analysis} -\label{sec:org418c661} +\subsubsection{Controller analysis} The controller is \(K = \left( H_H G \right)^{-1}\). A low pass filter is added to \(K\) so that it is proper and implementable. @@ -1481,8 +1447,7 @@ It is implemented as shown on Figure \ref{fig:detail_control_mech_sys_alone_ctrl \end{subfigure} \caption{\label{fig:detail_control_bode_Kfb_loop_gain}Caption with reference to sub figure (\subref{fig:detail_control_bode_Kfb}) (\subref{fig:detail_control_bode_plot_loop_gain_robustness})} \end{figure} -\paragraph{Robustness analysis} -\label{sec:orge5d85d1} +\subsubsection{Robustness analysis} The robust stability can be access on the nyquist plot (Figure \ref{fig:detail_control_nyquist_robustness}). The robust performance is shown on Figure \ref{fig:detail_control_robust_perf}. @@ -1503,12 +1468,10 @@ The robust performance is shown on Figure \ref{fig:detail_control_robust_perf}. \caption{\label{fig:fig_label}Caption with reference to sub figure (\subref{fig:detail_control_nyquist_robustness}) (\subref{fig:detail_control_robust_perf})} \end{figure} \section{Experimental Validation?} -\label{sec:org23a68bd} \label{ssec:detail_control_exp_validation} \href{file:///home/thomas/Cloud/research/papers/dehaeze20\_virtu\_senso\_fusio/matlab/index.org}{Experimental Validation} \section*{Conclusion} -\label{sec:orge845c83} \begin{itemize} \item[{$\square$}] Discuss how useful it is as the bandwidth can be changed in real time with analytical formulas of second order complementary filters. Maybe make a section about that. @@ -1522,7 +1485,6 @@ Maybe give analytical formulas of second order complementary filters in the digi \end{itemize} \end{itemize} \chapter*{Conclusion} -\label{sec:org08e0307} \label{sec:detail_control_conclusion} \printbibliography[heading=bibintoc,title={Bibliography}] \end{document}