diff --git a/figs/detail_control_coupled_plant_bode.pdf b/figs/detail_control_coupled_plant_bode.pdf new file mode 100644 index 0000000..497851b --- /dev/null +++ b/figs/detail_control_coupled_plant_bode.pdf @@ -0,0 +1,3760 @@ +%PDF-1.4 +% +1 0 obj +<< +/Producer (Apache FOP Version 2.4.0-SNAPSHOT: PDFDocumentGraphics2D) +/CreationDate (D:20250403174135+02'00') +>> +endobj +2 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +3 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +4 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +5 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +6 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +7 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +8 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +9 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +10 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +11 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +12 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +13 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +14 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +15 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +16 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +17 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +18 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +19 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +20 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +21 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +22 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +23 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +24 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +25 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +26 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +27 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +28 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +29 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +30 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +31 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +32 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +33 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +34 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +35 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +36 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +37 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +38 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +39 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +40 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +41 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +42 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +43 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +44 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +45 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +46 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +47 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +48 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +49 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +50 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +51 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +52 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +53 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +54 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +55 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +56 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +57 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +58 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +59 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +60 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +61 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +62 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +63 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +64 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +65 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +66 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +67 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +68 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +69 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +70 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +71 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +72 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +73 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +74 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +75 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +76 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +77 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +78 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +79 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +80 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +81 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +82 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +83 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +84 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +85 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +86 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +87 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +88 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +89 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +90 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +91 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +92 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +93 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +94 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +95 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +96 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +97 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +98 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +99 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +100 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +101 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +102 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +103 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +104 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +105 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +106 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +107 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +108 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +109 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +110 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +111 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +112 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +113 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +114 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +115 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +116 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +117 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +118 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +119 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +120 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +121 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +122 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +123 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +124 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +125 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +126 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +127 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +128 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +129 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +130 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +131 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +132 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +133 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +134 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +135 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +136 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +137 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +138 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +139 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +140 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +141 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +142 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +143 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +144 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +145 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +146 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +147 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +148 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +149 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +150 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +151 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +152 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +153 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +154 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +155 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +156 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +157 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +158 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +159 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +160 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +161 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +162 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +163 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +164 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +165 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +166 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +167 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +168 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +169 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +170 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +171 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +172 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +173 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +174 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +175 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +176 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +177 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +178 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +179 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +180 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +181 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +182 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +183 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +184 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +185 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +186 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +187 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +188 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +189 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +190 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +191 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +192 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +193 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +194 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +195 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +196 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +197 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +198 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +199 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +200 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +201 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +202 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +203 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +204 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +205 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +206 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +207 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +208 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +209 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +210 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +211 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +212 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +213 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +214 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +215 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +216 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +217 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +218 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +219 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +220 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +221 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +222 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +223 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +224 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +225 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +226 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +227 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +228 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +229 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +230 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +231 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +232 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +233 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +234 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +235 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +236 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +237 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +238 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +239 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +240 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +241 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +242 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +243 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +244 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +245 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +246 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +247 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +248 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +249 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +250 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +251 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +252 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +253 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +254 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +255 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +256 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +257 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +258 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +259 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +260 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +261 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +262 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +263 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +264 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +265 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +266 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +267 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +268 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +269 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +270 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +271 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +272 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +273 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +274 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +275 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +276 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +277 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +278 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +279 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +280 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +281 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +282 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +283 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +284 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +285 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +286 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +287 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +288 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +289 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +290 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +291 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +292 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +293 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +294 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +295 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +296 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +297 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +298 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +299 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +300 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +301 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +302 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +303 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +304 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +305 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +306 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +307 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +308 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +309 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +310 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +311 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +312 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +313 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +314 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +315 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +316 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +317 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +318 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +319 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +320 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +321 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +322 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +323 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +324 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +325 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +326 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +327 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +328 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +329 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +330 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +331 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +332 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +333 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +334 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +335 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +336 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +337 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +338 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +339 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +340 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +341 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +342 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +343 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +344 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +345 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +346 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +347 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +348 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +349 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +350 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +351 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +352 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +353 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +354 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +355 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +356 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +357 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +358 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +359 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +360 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +361 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +362 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +363 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +364 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +365 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +366 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +367 0 obj +<< +/Type /ExtGState +/CA 0.2509804 +>> +endobj +368 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +369 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +370 0 obj +<< +/Type /ExtGState +/CA 0.14901961 +>> +endobj +371 0 obj +<< /Length 372 0 R /Filter /FlateDecode >> +stream +xˎSSTUn3-Oj.uq_%IuU{)zߒ=qoI~Re˷$?J{M_es$[Yy[ROYkc|-iiĴ#v%9{5[RVoYڰ3[rUs逿Wth%9M5{ߒ}{eqo9(i1K +ozN/˽÷>PE+%9 S]֓lso}NC>˽÷>Б.pSw-iRek?|Ks1!ߒ-5Yqo=4wcG`#bEzBSKH:|CFz|lOE l{ c*Z#QY :~ZM@[ *nߌ~njq@9|@ը7XM73-oL@)Ο^ώt|oO/S^ЕLȅuJ}I"! Btǽ+y+d<.<8E^u\xy%qEcRAG6AW4C^֕|ŽK+""d0.|XK"1U JS^dɉWWD>f%D^IO\di7rJv˺SNt>7]s\׸w%}ƝK 34.|La SN$G^rV܉SN|w/%*.|LL >d$ S$9?B2|x/d!DlלC6GQ/F|Q %U'?\(1//O2_Q+_] 2EI b'q?\e(/ +,e"BEmI b*e JEEI _S> +}E:ʓ*(< }A1r/S,#1!GiY|.|ŧ/[|.|Z]|.| +G/_|.|}声a|.|(jc|.|HG/e|*|t#>Q *OG4>S뒰2oRk4sJ*뽤>qukvhZCXM@z7QJ5w4V%5wL~ER0994b65BleJ؈e|ꫠ9x, ~5Fʱ,S פS-̣CxbpqMbjdkJ/[j|]5 f>ft_DuxM2z4-Ш5ױFrl˓ňWa1KKBW_QK,iر 2BЮ[V`wӖfgYp:d[,嫇ٻ`h<ٮ =T,EN?+YF;!S.gcqES} p *pH-ˌHY[muY$eigVYzߖVcfV* E2ioʨ3i7ԛ'K?[m̬Ҋ?1TWECg`[?[՞tX䚯 )^-}5 >, =Ӱ=F9J l݆>kvM1n:WF`#x^׹kԛhL4Z=Z%hZ;>@z^Ɩ̤{Ɛ<649c9?ڮ՟xO,:!,mJ鈉gj lg.oMHY>wQ1z%0HmL1ρZSqhdZeˤȦ~ڑĔz##uƌ6f`X;;MmI7Hmך0ll+ZؐE;&-s'棢Ѷriږ|TI(;?AE\|Ɗl9Utmݜw0}nbg:&Iiq??-Iva}[n>,2tv?iے`HH6-1ֶ?SR2zַ/V9K;Ba:&uM>bܨbG>!Q8ݷo&WLj:J`2dxʻcdW[}oV{[EQȆ`gDHX̹@kJڍ +13hzLAN3?,G&&V;, ä*KɯcRYIFHDo.)yOQ؜IIlVp8E`QL3_Rxchr0-z` r-OYi9%Ymui.Ҧ?S&Lyp0iz͆Iɵ!@gB۲R4AZc qf69se6 2l̕7duyByZ;/=AWd5,2.k7ru`ʺ$lb|a. 'oR [K +uNYv&ӘK ٰqIV  `-CIisLLn8~&GFxei:.SNJJA)̀P2_)!j$m]ݫR:5*z hP$-A©픦Meax~p43;SiKH\Xpr!JƑ^t#}}skqp%Q܈OMIF=N"׀"J9)ؔ 1IIM#oO|L; VIa-IAy\- օEBc^mcU֠/ {ah.E) om+-\ɕ2BYm#MGXm񫸤 9P="[ D1['n[ȼ(I& <9F)NV&Y l>])nTP5 Ut-/3KKG+"aRrMSwŷdZ,~oҿMjV+1H6e 6 M\"Ha/e4'kT&ӂµ +m(tdjAH'M7MiJtqhe-Įt NBCigS^n/p)+-Pf8 ˇĤN8 ^u+c~K +f8iij&Wȟmj cuv7sg +MfjL*Ka L|jInd~܆Ig[>xRƤE)ɫajLJJ0͋u u77Lnֈ.kw&0օrm(,9*,$rLKFm +8MYLf`#@ z03+$*i&O6?lS5^ `T(aZ$/d Ӧ`dJ˜n}J]D:ɣ`8'a) ŮYҗW[21̄5&|0XFC`s [5^}BnaZ6Fv,]%dL+bXwj0Kv#qa?EZZ1Ry Ly`}Nv,њ䡼'Y2FX8]Լ@e9?3Yvli߉B&0!$̜ñ'u) +֓!JnSc䒻,}9Our`=c"EuJX |w}T a?ځI_f0 g)!;qqs(PjuH=ב.~B5[1^5HHTڒ˜RXmsii'DSaaR$7jcZ)R&NJLks$B֘y-Ҥ-5`)HkjJb:&7+Bo`eW걥o8݊5l&:VHV5ӡ31}5;ʭe;-wP"׾#$N@mJ50"ںdVKձIF_d-"zG "߯$0K~vLOMZM=$5&L 8u}16*ہjV{/c89&,U5#N̘elc i@\;SHZ;I1r+odؒM0E2нOa^8ۖ\H5i=*saT?3Rq9 ;pfGV?rO 1H3尻`R"z2b*2g@`dtXp[ΣKVAywӨAJ 4$R 5@ģ3%,g`Yϔ"[+uݛVfҽ' z2fcNB`זa:zƥ ;3,^z$naG`rxjIy= +Lp+n2}bHum?%hs1ı4_ֻbQ6I`3]8֘0,L=&T)yq,a L*ӇEܖ&lUOV6.c6,),QL;%Z]Z"qx/͟#Gn1RK}#د U.}+| E:œ1qOm`1L^~MHypl)+HPQ4#ߤ5[`R@DA”TL'}vҪ2q#I!hE|NlAQV6$&ܖ8rXGt |"J :XNعE,Y\SQGY&­Zh|0it\Qk~ +"TӠp2IY4$iR-Bard e22K|JuC GJ_oeyD Z`+dU 9Oċd-j~J :G@n@SM4x.uK^#a:TZ\۵$mr$˥yخvl0<2kZaӶE9u軥pJ;0KOkX>XoLn=y+}a- "YIiOQQJF +=ҿY2`,)^YkzWs6i=9׸iHʏnh|c=؅u,CU>[wrdٝr>ŧK/Qr`T%_"!+F] i [/6,/\ mX QmtMs lcXFF +|P"hwMt:+/])1ΑN`2m %`a'Qd=HeIqc{SuD0cGdi}m"ڇ \PjxuA77ϴS[K H_nɜ.MA>X WmIߑ?2UZLO,)CxoT2r->ks_#6\r:R1ǥ*Lo*g@3&thD'y9 nQU<}&u-"/F^pZܮCvk- = Dp~ hT:Dj޵0]Q= `0tnq$#B ֻ~ԥ 1)IQjjf&̣8P&cH@$?Nv9k[U=p6 "um'Uyݎȶ} +R2_$It<Z"{PiRuxZI'4Rtje&OR-$G(.[Cu {-uPurc4 +?G-(I˜56?kuMVz7o%b_f6ajpǃRP7=hQXJ,/(7o57S +RdX*[c~ۤEIe N?ye#M$ +43rX9R}A~ ${qr&ЧJtXܢYKH5xbE@p߄9ܷ{{Z.qEְ9@dhg f +ܬlÊ 1*lƙ"b߅i8j$[dᶘcG&ήhE̪9NCŢ4)oo_3#g6W<܈^ +b̕۵c5PY:0j'[:7_dڸzR=M&$϶ +*&(uK.ytBfOH?0}R^A@i֦ϾW.yl>0Z 2Asvy+QYCVn0n)Pdg1G%&aaI|È5CckJi4˶Ӵ#LQƀĴ +?jj`((=LOPq˃G^('BV@OW93ƮŸ?80d]3 +# v}*il5ܟ?r&d׀ce1Nhhܭ0.XF +yjL3um'!gd`3oji +[2d2Q 1 +ipMsf)VVa<xL!\0eP60 +@2qs&O V%[,WsH Vl=N?ubea+?(FpzI¼Tvc(%">KY4#mլ`\J^-[ՂrGWOU؊ZavO!;"V:!QXej jYOђZl+5\?}3) +`R.@Cx4 .^m&5`sR doI/Г FYFo瀸CR-d+jP21nRa #슩HfCRv4J7(iq`\la]r+7r-2%π|y5,J#p(?MZ 7d0F W^%d_dɇeGf2 -{G>ZHޑ +!YoAi!^|!4-C$: +bxvgHA!e\h-u\`83D )<^-bޡF:]Ć̆M"a [G ET"1։FzBQƯq575IAk/VYb'|D#kN B>d0L[bvm iC$|J9} +oo~ȩLjZeJn!YG r+2W(<|fXdn/+"z>)g$_WDzN#","x?)s$_Z螞}b^D%ED'E?/+\# B:E\&{kω{dd4}i3/#/1"Iubg4WHzhDjF?NL& +A#^'FD_i:6+d~R{MFD?jEd~QaO"2/*"9uYK~Nw=-JE>NȽ´։xQ/-"9u_DE?N$½(9ubK ~N_=F=Nyi9_dDsD(:5" +?#VtxX:6" +W#U'Fs/06"I܆ ]ݠG猙Uu$_~ƷP>_ zP?-߸Z9?9T惐a(5*[DAOs^ԕ4ʕvΛɼ@$1c BS^䕤%,Ƀ++B{%2#BH. =D^I\zˆ<^Z̃K"y)rI) JS^%|ǃ++Bϙ{RrB$;. =e7^Is|ITsIG5>W>|ATϓD5|'/j|QyCI܏F5>Ww>J{AT㋺Gj|QyZG/j|QyB_r$Q/j6OB_xK|HcTQ+ Ad"A ?% A+ >E Q <D"q_(G ;"A+9D"Q  +8ȟj|.|͓Q'wenD[T( [LZOXGjY# +g +Y*;53`[^ewi”LeGFoAWgEGe,7ka<6;Bh6WgeT9sۆ)`h \,xi͍A -Gʣ7'ȭ|B ѰI׽V0iz7ǀS}T`=XP}cuEz‍` L3^lH + y~ΣPp#V1ނ,th ;Z[`F 5Ϸ91#5yc7j՛@C-zP{EљAhBB*\ a۠ѯza4>卩z`=:Lf43yKm0H =K4)=GxX]n-R^xxcʄc{ka F|zmNkUK'&GX_F?^[A[mMlޣ _`0T k8GO#R+47p5_49Y4'I?>ZphC|@ovCbh Q +h8,Pռ 4Р < tZ\[z:#K;t^%0Ͳ%A.,Pa1ct 45aeΎXtz9.k{ލ8.q+u +&ü] )oZLk3n%rUa.i_ [st ljƋ+Chc4UvbHPoDF6hډ} u+XG[jU ٿM*/>:?"0d94Y00=J>p:u^mʝL#!3 +iOswF_u:StBzhu=w`n_EwX.ֈCr(XM#jzFYskGgϞgds״G ۟ D+BMNi a8Gl0`֬-RTmB v#sA E4ЁO!v-L+%3hҽBz1`m4u£CGpB@OT60,䔰`AQXeu/֯z +oxLKvSB׌?Xwρѣ}OaBݺat*ln^;0$|aOU#aZZ*(ޮcWUyEc5/",nb8lM52N0af#SUv&9r7J 8 r^?\{{`8Ú35YGp:x~6J:437^NkFIuZSazMm 1}?(4,lX]iIfi^3;ף3Եu8d7ZB=CcpLg6-I(ݶ]p&JMFC;\3toKgэ.{~8sֆ[7i; L mx yhnR=ݭxIZ>A|d뻛ukfF/fmk=p*`j0Qb`.4cѦ=C#,,Wä1#9CϴvBeWӜl,}zqXvxr ->ijSlt:iqܛrg L[z-ԭa8*w8i¥rz;2nkT1q9;€bo N 1I s`mJήt<fSłS'0xƍZ1UNo$7rԝчI N-Rg'/ϣ7oB M HGV6ͮQP = ؐaGB.a>&Pjπ^3`+wÂIB'"KtC[NRLV`~ɍޠHvd {NBJ#Iw3#AB0n95,̐1H ]gHuiLz>p_]b갰rCso"a lL.(h̪h98_?HG,,FV kZ~H8PM8!LOVAV5k ~aFk9?qwNڅi9o+O&MRցEU3`ᮗ0rKT39䌊Axh@8ͭsa) liGd#Ą},f(1^Sh8b&QYGx; Mzp%dj#!S 'lp:vuIxV! ji08 Rn;0(x_|Ahu X6Ew7箣tn `iW=gDгA?buFwzBqj;l ty -tcf;yabm 4T2D!c;B ',3aLw#j mo6Bu0 Iј4p"_n`ӜkǦ{\JrF%?/"%. [;aLrM@ ڿ6&FS+Nvϛw46`riA'$F_GCr'j˲4&X:wDIn#Tdw ==~!f ?[m0J49H0&_b' ᩗTK0΁y6g$ z|aF?0؊dԠۤN) 01o'Ql!Ndâ1gA`RN Xx>F1B"1t9#L`:R1 kc0x\t`rc/Zr@>I%^'0x!TGރvPdfieihFz+ K~sԥ! ?,L\1  ^ܑ$!p5v@s@8O +K?PȜpR oIrhGD1[w CL +UKSVwR:غv Zt%F0Jl\ +Rͭ}V/5<" SO؄XSކtf2[ָHړlR%Qai$O[(?rTGD)^{f߃Qaǃ$vh;a77΋m(}}fo њ%`8VX=uvC+4X#Sb ,wgv0O ~nXɂwVN`zdCK˪ ÁӪ@3ɂI]7<yK۷u"M%m o#%&xKP&5[(,=ܶ;LD Cڬ-vAs)\HN +&gph1by4d9J;(T8U;`quik`“l30}u^A 0V.MpM yò%D^Iڤ4~<*-5d"<;,gk]#ȆaxIKBӍ2^֣1s0]PeX(G1P<َet@yv08gaYa7~DrsD6K\`'HUl$a =vߦea5$SEv]1V+mz>!td%d7PJF`r23DLΤG;"gD#KoR7˃NܭDs7ƇN-8'YyeVbMb:8Oc?,DL<}-rf0) <[YDDLZYtCk͛)d!t|r۱2t\']YaYb4U/[=##p;`,iWRtd!-o j='ɇm-n?E‹[t@SVF۳ \:ޖ] += \-W +&M܉7P)D߈шQ.c#0\?}k30 `VL&iN΃9wx|1>jVLH\fC$p\9rb{,$֨b* 4hZce]ǍC6ĬUyϩQ\!僓DbN֎KAǥCԒ,}z.T7u6J= E> +>6H$XXCcmЂ F|+V*b4-:[y-Acwks#qNWj#}9 Hd$+XnR4ǝC+)[0 ǥCf7ŹfZk m8Z=|'K=*3S-'+čC7aqhr++/(ҫ'I]lơ%%FRQdbt> p84W^w:ed2up ]8|>֏TAXq?|,74uA/!!5Ix$[Huh+rB +bcezFYr`oHi8ŵ-؈!,٬zea:)$p7]KhsCWߔSP`;^;DžC l|n|Q}C +[6&,*9n4_[6o xn8rAU(\; E +62aqQ n8<۷* -dB1nTKآ|b@5nN&MƀFiyzq$pmH7i(\ia?&d\vr\΁mCa#>spI{fm;;`vpRu (N ۆj B$|3ڌ}E$.<# l|\6\AkLr 2.͏쎫c㮡lbdm Vl ovЪ +-кi(+Ņ1iFeɆibMa|(ikQ 1=i+\^\؁/?nKC?[9Qi+Z# Աs;.޳Qo}4dn`!"x4V Wr+cLi-p4o.ؾ4㬛3ԭWdxUhݮb9걋IvPv9(.@ܰ7Vdn7 7Z±O c0EUÍ,ޒt#kEVsNfոEh(ڑQIvѐܽ[EC(qLaN `vPXc"pgq%'=mBn 7]_/gH48[Ү,a<}k>Z2P?8A-a{{@:vZ@gv qϐZ!H}`h.^CiH *x!QI&!6BJaG ӊP!RG's$0 +h 49yRnb F!+<.E$^.!kx7-˷ćt4>!p4#Kg=}4#$p4~zg/<ZECAo p\4jU僺%!!L9$ҩ&ĉy@xqLT`ZC dX?8̓!dnlh*1 )9  Cp3/y6B fD6[V6ۆŊ0)sK|j_Qy]\ۆ`H9ۆJLF|C6TUx$Fp6[\~Y*~V~[qmF$+9QQ 6A֏ۆŊ7kfۆ`qlcx+}6;1Cq@Y~ۍ`m0mH/TaEq6qQ-)ql/-4#^.aʭ.ibmChvw0CF1E*r=~`e=\#s8.+)&.Vj7K\NrV=QxlШkMuX]\_ڡ1l~Ęd{`֎{jY!/H;ĽCɽI/\"XeibiOTnE÷o ך^Y? o<)s?4;6̎2]/[o:_ WMۿO!~R27Hr?)&Ad~GW:\W4(n9 KjbߞSbb-Xon3XA'mh.wNm_pU?Ae NيɄ]"7}#ɏ>,f^ @u{_A'2 fs؇N }JI]#0jHNJ~d0W5}"@%~ dge?m|fuW~0W6>s&@^R# 'uؙck~V(9Fāg#39;t+cI'qÄ?N#_0Ϫq:L`@5LܳİK&I]vbڐK&Ieȸ!W6Lļ15 ";1pH% &;1q +zȁ+D&I-vbK&Ivc@9LܓZA +A~R;$Q~R;$a~R<}D?NГ׬r +k뜐 +Zs$5槄'/5?eZ"_Ak~ΰ| +Zsj,%'5?'S> }G.哸5?O^Ak~Λe0$TY+h)O2_Ak~N$T'50)7sNK{ )rZǜI+hOWКR('/5?N"_Ak~JE*9| -QrIKhO)ȗКR!'/5?@"_Ak8/5?<_Ak~Ju|_@k~Jq|^@kz_~D7η=6N^QKb_ԗ|tғ7*=K}A㫂ғW8%=}A2ҳ9+H4EI b_Ս"UY _T UY b_ľ"UqY _ž q{A^o&1qզR_\g(1/*LO2_Q+ _T E=I b!_T> +}E4䡆$G!_T>{ED䋺G|Q1(Q/jEOB_\%zrC>2E}I b#_Tퟏ|Qz~>>P3\޶Ez4|zUBjPeutaB:$ћzta-YVaͣ +-1V*"qêq8XVFG9lmXV&x +wy@ф%<s &`m9@ф#Vmф 3JF[LkZnA={ 4g'$'){6 +df+Am&4kфZk2GV-{;9{;0x}a4,h'hJM/k4@]?[g6IGVR?6&tYZ:VS3/0Qr-#~a˃ΆfQhJ.m6` e +)]I:ڰ)m}{`h +f9N`eSj̒֏6WҩlxOGV ++vaՓM>ڰ)|z;E$c$F[GV:RE7xO:1yVN,Y]+X +|a9JA%X?#ۺY4r<%|Z#Gx7ytr{~ڭw'vlARHхuʩm+0BC9˭ p26n]X7d kGKE[Msߺnҡف帵[Vw[ikg7oi٫Wta [CօuÎ:grE[MLYxta%mA# fb#J-(XGVo^Gv} +Ym.:i[. ]twхUƜr [֍vx 0,kL=n,;6[ Nw` 1`7=ݾuaD#/#$ºhTڣ ºoc]J3 ul~av mX'}KW`I*txv +e%0 &5U'gX!37 XutİE >:6gnXI֍2щZg13_{J|xJL Q70DӷNZY2kX TҁA 'vZ5щ5Ca)XrYvĚ +['V(PzޝamtbPUM̥X?:S$ G'VaZ'Xubm[9щu_Df֞lu6oX'$?&L0ttAMظubS:NF%UMy!@ֈMՔm,)[VP̬֣4]넃F2gъVU$֊UXj8G+V٬kh?^y1(dIS[+VCcLX1eg`֋U'VG/a$P1y:oVR!z][6 h/ߞ'Xyr$+]CKы6M-7^q9ڜk8ZM@J~%4FN`cG'Vf¦щ.?֎N 4z  +дo; ÏV`iʴuJub +A8o(VATرybu&nwi׳ xQ щ щոaJiNFBĆh +Es::ZAN h 8d +6^Fޣ#ьըn4@=zB)q/E/V?AuИYRsVPav ;T3Ųp5]Xa;:iCR{ +K +Rp#qta%E*?^ԗWEIFVKÃx5aS.ku6ŷGVK[х5[BFaE.ƒ}dK۱\>gb6х+Y}`'5Èg?`k8BwntEGVr|j`*''NDta֦Iq ]Na OC-vta5r*6.Silͣ k&!)х5'# aB5x&#v(%A" Ė_g D4F7<[˱=XO:Zvq˼Mȣk5~1h X8:D Z5}GU9KzCp4_5>6}tu*!}i{*řN64 GU3UcZ[{0ia}Qw4 x鼕f#;h%ClBd`:>_5y8p&T]Hjh$3!3OgNoDgCAIAF.4~$`%>YĨc4%?+PSf//֞dJ7 += 6aHQ6oݖ`X$ ֆcSyN7 D ݁9[E;"7lPWT~?6>`ii#iwDGux{wW\ F<&!GP=-]=6D˾ȿ'!3WG7X +1 Qg)MjIV}8@Aw:fC:-`)Ytjධ 0_Jd 4dmvdY+y=yDSլ#$]7#*RV=Ͷuz΍mǓ ;t'q䈯<`G`z%1ڌAGNġ;ɥZ6#< L66KLn`-x0,xRSse֋8P^^\sa)#1` +K"Et>'1γ66~ͅ%8`0A*Cq\I,,L4NP7E6P,{+b нr]R ˅%e]@~B+{msm'O+R̕{ZfB[Dob; z%X iVr'deR(PNIy|DZm} ƳպfJۊ+F 1j] 5M|a{tTh-HV}0ս@XϾpIM/ uHX%e-q,9{Dx0@x$k\Liu"[JJ6К* Ԟ *b-%CBz 'ʂu'@:F*N\E\H/Pz kS't l\ P@՘{MV )s₅P2l3> $=TiyHf p4fAAЦړ%0!1,>mpi='\'+ +?@TZ[d8fHg,-4u@DQIYn7P0Qj"Ss[㓴Ip8Zb@"k[/-cWsIh9Y"r$\f<+ D _A{ghQe=aPE'AJu[Sd=S- JfslAlǴ* !҉R{TqBE%]"3hODr3\o]Y{_FC|% {mF>~RϥIv4]OlLվRipTxL35`6ԟDײ:ˠLhrQu5 deOP ѽ^ Z`tTz[&%97+y,NLn0.=NzV>'4(d{c/ybx+ Ka4Y1N{iK3g%>(ZG396Afs\B+UԀR, *? Kga^wNKT9b~FRFt:ݖN%ԏJKU"+e&{~Y;DH)7֩йKMYܮT|s\K8$xwV:1K^`O2tSPJr-qFG.O,ވ⊳x <[i!HX'=9q}EJDW˧qYLr"y[ngWBRDB{(_+ݣtA+\ׇ%PGVV}ҒA?;á%A!y'7RLrNg8@O.R\#,\S6y"K\ bֵx+.yٝQJLfi8zn\Pm/n]UsԤ!A2fzwZF> ;)}t7~L1F2MFPB$:'WCۤ1BgȘHW'8zK&uڄ..jyJ6;UiKXbKemT\o g:K,Tq)i$i砸.Z" b`)/K\Sdž-D)H띜0؞[Fkpv^p1 +Bⶠ&]BFF}9ײSqʅ`t7m!>ѝK]'5Z1rށ|Bԩ.Plg^ؖwטe#tAR'ixZRR)4INDQ~a?$u"u;59R:+vrHl3"TWP^ R#=otY>sl+@tEA{ r1YѺXm*-.nE+6L. mv+5]SAJg̃*t<פDwh7Ƞvݍbma wjn&Ǥsq|Lw DiOVbvF|;^-h(?]Dm6FA2( +؈\ZHry5J)vfDՏ;?jä# =!x +lt{{'{[R>YݓvtqΒܮg Aŵ3[LBջۏ`jR&B(r88vܰ j04\](09\7ED%eB”BpkCG@&eR$xEF!B6غr8$S$=UC~J_t`] EQOW +C{Y`6hY-6;NҕRE){syN-$ù7(XN>euUPuqTu"=fkX +ŵd]66`ͶJ}!^%ع*!JH.0HZi$'{;P(-6j/Pv=3)=AO]B^\+Ĝ-j(koxKԏ̜QXV%) 5c;@zv:9|x˒ʌz.lJ.Ə<>*IŝZعxN+;H/CY}2[(e㎐ XSJ=nAR\zs飦n;N +_+gOsNb]5l ݘ:Wq|tcd.n] AnJ\G;&{ ~LꙪs\ z\ms<ȦDc[1{aۆLyQPoPё]ǔ 3ta~$ɔL.$j"?2"`%-KtI\ Y|1h^yh։s+G72@]Qcs|RVƫcsh]6}lN. 7(oNd3{:ZE#~#yLZmOkJ._1xӖ-:O?z;C͝'M9= +g)QQ.j|_Nse>$jiTtF{3ed1(e/k峬Oqh 8~QI5HVW'$^Z}"IrVQ1S3S{T9rڷ ՓdKUAR:~UMQK3 ⎭nOg(`_힀T +N6OgjdwLJ,s2aAjT5Wm}t,FKS_X*ZȪtTdUV'`gVڙ?Yy+yp.(M1gZkA(@F +\`T@q+Djȫ 8czQq1đ({>Q ~/=q5q [;n'5Uܨ|Ok0qި?|Okzv{ܨ?|Kp}Mo[q~MsqҪ̇|Ok %|?|Okz̛/*[2*|Q״Vavѝq~QoyC2=/jo:[k\q ~Mo{>=Ks}7bK[)/yQG_}~(U=kK7Ȍ'OF~3fϙ-BAEF"tyAg7Qd~Ч#zbJ+{Uݺd|Bxvx;ɕ1oeJ}\2޲\R[AϤTxAL* [ϤPx1L;ϤLy!L [ϤHxLj+r'{)'g@ne= +yz|H|.Ȼǝ'ROt +|& ǝgRϘ [O8yѸDj;Ϥ4eaO܊z&Oȭħ#OOJ|&/4ȝ'!O|HJ|*ǝgψKwI|"4ǝgO¾xB}ZV3'ԇtƍOOcJ|&ŝ'O|H[J|*tŝgψKSI|"_LD>=q+<ӑ;IHOqAK;e!B^b_s>|CBoS|.἗Hś2+|ъTN["4d|sy7D-(|%B\ c_a>|C>r'-ƽ70({oc||/*9e#E 7D3>Wo>xu2Ѹؼ1ϵJN[3e!2A6ɼ՘B\ #_T`|GN]g}@E2Ι0}?AΉQ8$en~giO{<3WxL''xl !eA{ßςFw7|--kQ̘;^W_wwѾxPr . М7S=JuqR?=`8̌~ A!1O4BxܣYmb.WwIPOw t 绤¾]R;f{WRFP <ަ9(p6)\Haq  e;w_;Ѐd:,[fda {dc CQ-ivhdǞCyhscR" ZOCPkʸ5B-Ȟ\s ~ϋڳɥT"áڄ9,vy(HC`ك2Dٺ +gGA_m2f]12Ns֠]XƠ5c3=|7a[@zrWJ7ČxԐȜݤtѤP0(j풇'9XqGb0&i czgaL̫0U:h&EX9\L6Q:F-I-EEN(3)3*3 +#cf!L^fd4^}\.Ljdr΍5 7ISWu@_'`9?LרdLdkb n&K%8 y0itKuj1+d9#Lu]T +;9o<3Lr0j$b"{naM +-v2eOYqyj1hPcG7b6[ ƉnImpISl<#zxv8=-J1fCaXՂ^s c[hĠf0.xµC2iLijtZ2Y~`GCn VNd9Ϟ$Z\)c59>Ukp&ǵHQAUͲ ͢`<0-4)GbiNTt~g` Ӥ&Y g0WFFƋ0 f@ 'hk0Ap7bMc8mLru1̽Y`8YYEͨ[h1O +c[!Q+]t\ q:MWJtival1 ņc3}<,w6SlҬ. L*ցi Kh:e*6xq^#f-IP 1єuC"kQ 3K60]ehz6]+FލAq |b<#}gh~|%=#w%{\ ]tժ~9fj`$+E^ZHZG\ .iջbR96MgtStҒQ!EhGyM:blDC֥ b9s7ք)qX2]dr6&ARݘ:$Gb 'wn2OfN .P9$񛣠#]o>3 +)j. ]cw6f2^˲d[f;cϸ\nhYW3j7k\=ȓs׎A`i곭OM.mr`G Rڭ&+XMʫc|).m-Ed~6y_Y4O}o^W_9PL0X77wbC3 m$si7]CL &m(];.pJn&)$;1z0H%6W@=V?3-ZυLTN58Sv-FÞ5hA=cUg[H|`µRd.IrmAPv3Y's1p媗!>Ȗp] h1\0(ZR@: r0SʃROh,9jx raCxƸdzӽ_MLpuXYv΄;7zbk&s)c_w 4M;LVY1C4p)Jt,!ݶ1D + +XgN0:ڱ>ubZWn= I\xJ)w )MB~iq˖Ӫ Yts`נ%~J7ǧAe!˳9 Fm[b-6T:]YLs&]P#ƒgw T i,C1b#㜵Yt3TP6$$- !i]QCyujZ + K/UNM*(ж잘vq0&ar 4ri=NjIm*L/|y-_.H\L'(_yb/>T΅gc 5'0|4gsn#&ß\ȵzEvl1\fʃ&;SC"Nw8Zek;)Dr '|^'>%4+954 \ȐDўFټS'j&ݧj>%#!=t?}R*51iAu^Nn#"ZE ` ћ0mRT R&6ƨDkƋ-I mj)ˆ ®m9.ɵ=lԕ.gZX-8ɡ1+h'R?$ښz[A¡ƩR%XPi{Jﮝ v]:-KqàX16AӷhaeGD̗JLM0x.e.)C@pIX!H~[!i nz0ӎ1 [~X I +m@KnCNW(LwɡC*'EHɸ#'v +[4Xߒ!a+əZZ#3"®D |LLgfKXs*0N>N B%G\t#un{@qE'(6_m$zd:iz)W%-LyZAɅ|w R"T`ZYkDT'3CnIl@tU9j8mN_ C%1yml)||U]u6=:c}6fm%]V|'iNM26W'\ȸ 5X12GcL!dpJMfQEM:Ƚ)]!iI͐t ɔ_>`~[8@;16EMa'FF;16vJyC!!o|2aNƝbhBo'2ڡU7 F?ޙBGǘH(f5coCOXt<rircR:W?ˆ%G=7{0lyDD9[36*"1f L 8&# kr`r{+V,t8@Rq_j_Egr(W\چ ^;C \3k‚0[| HAc4;7Բn]{ےCqO8Ii'lN%ƪ̶(ed7w8dԞ=7Qm C#7`8TLܤ>/9 {SNpؤy"usoLFZ? 4ʓi2K|%R`9+[> +U/\b0-4#~`XMy;X LX1\U ǚdAí+[xL8+/AFvl[)*ӗ&  +YtbĐ0dk*I]iaܩ0Uuö0$T܂Α,ld;GO:f`rTVt I#tFu_kowL{w>nMl(-ǀI>h a Ģ9;!|[|';ۇS|?T*8:NPq){0#y͏iٴ+L7 J \~ 3U4UFW +>),t6{m`_cIF[@8ҽߤR68CuPG瞏Icq +;u!]ޒ``2t= }tZ?  8מDsNLIO ; 4;tN>t"&_wR^ +VI҇~ xHaоd]>t$)f2h44͆`o:?‘ҥ0F:0L^` hCDQvۘTO=u 1Kp`[/hɖ]qҎվ:c2V>wxxu0$Ύ?^0_X|5PHxU(WE{b&+ 78l)kcYߗ-,3A&ݶ\݌9mbJfLuqN״˓Wʝ^<_5:i\(Pbu WFD[lLH}b#\<8t%~eZp!'4tJI&tă-]ڭR6WQxd5\ib麟K#lЋ@k \}lbdkkP'}%:-QtqZ}K_:'%s)Gxxv>I3~mu㌟Md/ʋ;fFLxU;d#x91\8_%`OEN`RoQ,ƸD2DӖ/]|}pJi#2"Ga +ǙUl_D±˞ᡕl ʈ"[RNJ?d bL2!l2 C; EW@-d=Hlp%)Pd4<\ z҂O-p* N]+Q}f Uͯԙ#{;j*Ɍ-tmhw4 E2 'J~'>Nf(r=@ v-#;+Ct1KFzq#aWQKF 2303LCIiBĶEoY_)Z]x{c+_6WJ`bjl^0I9tGQv[`1ɉjY&$֪MU"pQUazyɐւhب!d&=RRt3HPzNK#~9)qu4Q]#/ck(%NSb:+Cȿ2Nbws +HC͚k64mtNL<~+cR!$)"5`˻$Y{<0Zs:O7F=pRs; zGԖOO!0̳y8SŊP#R51!-0$#+s L "Δ$C6lbj_3kdb*cFZ=^ۺ\] eqnu "J jY1ݝ 4DXgb&B:+U +y?&ʽX4oD3!MoR7;dg$0j2 +f?Ą7$fK@Sc^zlY/[jFAga]1h.Gwt"bDنJh`d]pxtӜT. +A5Tܖt Rr:0VgvdGbC׆nijR-(X71;1ԗta`̶2*F*q;-9&I< +I%O.fc|v*+vE9 Wyb|=Zu}q(A<n;2N@ d}gwPjxwsde*4KqyB*b:W0rtVE߈ݹls-0o +(t̤skrxfQTzߺ~iXuZy [!X&c}&jÂECoкx] fQ0y3nX%i-Ӕ)$D$m܅X%zAmZm8ڨGZV\m^>!̮9&3H6{Ң#ji*9f@EJFp`}NȔ &t_0mїR3sL\9/Yᗧ@?3C=ػ Gbިw߳L hz#u_s ^NY;+ !dYy Zн^%Vj9鄰D~J?e&~`Ka0Gjl + lR_\SW +m#;wرkB=P'q]KՕ-tTqvؤD?KC(̎jFШG";Ӳ`xS2;{[e`ј$'5?pH#rr`giMh%&MJ9sܵ;ьX!d#urgxmw-: D%r%]LT<̓nc*$*;;{>(6@JCGxINTq> -G¹A03F|v3/=go[RX1(wk?l8Lm1!ݒӒ*Y+y)ίwK;_ݟ/|WІY|Q=E?챽&M ϐY{R1$?%fNj,J1./ʾg,&i Y+$Y3kr'3"%"ɛ<%!Or'SVCVSgFd>"yJCJN3L;i?mYbr-žI<#1r+l3B+2I<%>r'3")2J<%!r'SB3(w2H<%!ur'3B?r&⾙|C*or|.(u2+}QϕDN[kCd|sQ7D9}(eB\ _~>|C>ws's7(ǽ7D9(%({or|.}Q/Fe#E7D9>׉>(2師 Q%N[@e!AG9((B\ _Tx|G㶖NSʊ1c*]֣2$ɵъ' fC0`6 t#{p1uh3ҷaI9˝j +6!21Ag<gbY*cdRlc&=d1$z2i%;;D=:*tOhDYCƠ +n2ZL| +lk0kp wʞ w2vMHkB۞^yi Le@2t[IhrΘ:#Oe2CObCE*Z n + k0h;> iOA3<)98|!1FiCBz[gڀSG.%5ho im/4& #{B0``FccSSEr1w&*'k\̍5&gHen<r1̹Z`^r1c"Ax%æ{T3-Ez1Ƽi͜iLB+'G#-BsL]ةC$c \K&q%uH}c^dj|*+Y*(LТZЏ5F31ŔRzX[t0V214xJ-޵0+쐌b#9-.n B?ccfƴm;fbґ[|w^As#L<5\x֌`Zn2crK컵 u -0m$4\F)Mg IhL`PlLḱ:cp>c{ /5A/*7qSM m&M+FearCশޒYexp&fCO5R۱y yځtax +d@C^hw&K!iZ2nǼeb2U{$CQ;(XsZfy3朂1`1S +lR`1(?jE vI^7v{0|-rJ}ؔ?ciVb|u; +[NT\kLOȶ+|wX~㬱 ++'SvcRۋ[lk, dOe Klҋ Y0 5i .D#R<3&C{(xZe*zwԃa44k>Pؼ,ox6K9tR͜ G.WXR|tָ*=xOp.06$!}Oc ],x`X:m mm0ًlF,痡W`?; ψ-1S-؆n&yM{tsIn^{&FGF?Z@,RLwnfN01EZ0{hLؓ`i`͟GP4?|$`w-0-ؙcԷ~"Hvb!lG9H`npSFY`-Q^VYcpM2\QV%%vr̀O2Fz$zYg5 ѓ#Dv+IX0=l79ء׊ G(J$-^: ejppaW^c'),G| k> inoL*eZ}&w^4N'֞\a`m e3x"T=FHr3%63$H"1#0c'['A(=H罢`Le>81ztT E TIv@ҡDHlכ2>EZˉ"X1u$S"gbo0ž h6.S;%tG]#aYȷvAdU݅sn;;}]@3=A#w 1ZNl#$Tߏ 2%4d4#ڙDA޻Ey]ց !s|؜z SoUFp#oIXur;UıHpHkۛ,(~9.t8kWVulQ)FI/rdJRom$%G#rv۾]\:|?-v +#c;ƈfܦl".uyf3>"S,hFJSF8]7CV"@@d`b"O1L~)wMd̂ZPu檨FIF!vfzF9ؐAyL:_7h$/xJvu85/<8r[p$MǑXM:INUtHʺ(#?>e$AW DdpBmיly-#Gbc8V[3q:m,'1ljcB@JldC9'aXYpzbꑘޖVCexd8tzO>j%+} +VI8Sk y0--)1!Ieo*1m`6_y>ŋ.4␫ $4}ZNXX xd873KO@`2ejt2:mpK +=Lr%/,acBzE\ezK=!J=\ ç;I,챺[>y 5Kҡs5:'Վs'@@rij ,:B¿Tʘ,G{wf_s43Ѩ$9ٳEWICu\ҝ$Ny5yNKb6vO"1Dsq&#S_*c 0< '\6Ҥ#wS6upe3 %k'DZYE~]>Pqf(9qE'[BWȀD3_+cjL< +}#$Rٚ8r*V2Vp Lsl)~F귓 RJW;mzzrO{i8PW @ zdt:[JMaTJ#RK&pH~]̯yF'7P? +3A_YFW'lN(jc4|j[d"XM{g5" -a-w(#魶-^%m;pw=y֘wM(\=$$PmU2;q_F^^l2Z/jL/gu} EAwR5 +;a-]ɺT{ ފ~l0$@1-HMk ε$Qc.l-k4D>?2Yd"F. >= [l6P_@0{eD1F[F׏es^rlg{BAilc*PX +RHVqF Dƈ*`@km+'sjQ]L-jI,8QgxM^Ն3q:J6n+ YBm:O>bnC)"i)ruL}uT!@}+3"rrp'>! ^=-2 +,'`@-#g9+c REKghd`|Ćv у[06R@Yhe Rm]Xn5̇3d X6s[ y {# J9ew7T? +1뢉,L="dcYpA6W j\Q0J٩0])svi=!i`$A´U1}p  + =}*aBJ8E< ,A(2j)>kjhudH%1-%uv#w7p,jR[f][Zpxĸ$1o]Wlj2Ja:̲p=9A9@oW|IGkC%HӋ1it]ΞX]|*IC~4DȂ42!qԛ n}NU|(_wm/:Rze :)Y"lѪ-+)9 Fl3lC-n%6WdƧ}hY[yj+t}4HaItA3Fbcr 14FbZ֏NUU#DbX@\-`5#m3NǁKBrܥ!Z J1V>Zca*`>l~mY5H`H0l,Fܠ=3S: X[`Wf`쯾dI8T:`H3jbRfZeA G !k%ed^%2?q ՋJ٢k Rpx1u+/"&cԣL"XLk?]:Yw%vH0JeUo9q+cnu{X)l;Ҷ :bpڕn1DmQ;;w-:ZnlP#C AbGb%FbGVǜ}DB_hc(/V$nWҺX`zF!(=#4lNGj;rJbsuGg6#+" 88=hQ l;#h{$&G$9 =LqD}X_`Y-<;=c ߎjzeX~-4_H0d_H7`#2@tߝ{(=lD4v&V{$U4ȏ%Q&]ޑX]N1Olhdd0Vw$pʚع#tQ#CYxrq vS1uî0Qj?&6V$ؤV4F g6p +.fO M:"O_q˿ ߨ:<_]P/!;=57iD_%O?׿M/mׯ_S@裴;ꄓU\rڣ_q#F|{0쫫# eu b]b g޿]v>{:3w(c3&ρq#ï'uGr}_$1qG6}_,nXgH?OY$? E?OY  EWE߳X3^_~R`ϐXx{Q=[!)Xg-g +,{A߿MZ`Y hyE $e?Af`/v?Gj`/G~_fl}X)~Q=hX'oX܋끦d`'5#]b)Wu=ma+@tyUX&{1@S.{3gX ,U]vOk`OXa5WuEsoXϰX) Q= ~Q= X/G:d?ł`/jGZ  _f+Eiy—6v0evE'"E3W%w#a%*s_}5㘙3*ۜyml-;:3r w}؏5>c̭֟oB?C}qlZ~7B~fCy׋gP?\w꽘]^̻q~z=fonE;1EI;r32yT'~L|ˣwpG?\>|wG哸~ȱ}Coz|U|( qG?Ab_K}K"G?A" _>J}C 䫒|QL( _>J}C$1s's<pȃ7CN}uR"QGEE}WUbQF<}}|Qm L量%FE7DI-}qJ#RU=7J$}ђjH#^r_r''p3g6a[ I2=J`&zi^$a!`}<]1F0< +8fԘ֨$kGTr _5N2T $gI*/W + +Iw5][~&Cwʍ݋Y0I a?j^@05LRkے: x1Lؼ }Aa&q& v6n$7=D`!bMF0$Q4IGYfߦIn&>0X`! {2=}͓IzקX$b~+5y'1XȟE5O҄6%3`A +WLdIn5k N'Y#r5k ik$䵚y9ND;gpL'^780(xA>巕#~QD,&Nk73wV5cyg[X_%t +n0BeH (S?l,aj^"\66YtsoA+ѶX 1y1u +{ɾBYi"Ax&ڀ3_x.d۟d;UFNADFGs$"8;jtlzl/if߽7%A5=e^R2M[dy11,~  9a9߂pO΄}Y(ppF3BeYKoe`:5*˖u B-"&6hN$D: +Bf3䍟gB>;$GsMo lG*T}"_V6:7[p۷X\:f~*Rx;Od0 A`c]e"7yhx9pnh|M$D8zC*{RL#N3UF]К i׳ aqj> !lń8(9T 3Q5Ӈ=cpg Cu!kp- FXHnJe9`zтL@{n`쮑bT!"~[Y`pt'a09A,~t0r{wjA};WPVCo!6L։*DBIm+T*=EazTC=sI B1^J|{S8jƴ"atsS{)IU(B{-M,`JC2^ +UXYAHrz親 +*9Q͚>nL*2iBb C;BmV B#f}kfl4vg ɒenRαá 1h ؂3?HX3s85Q̚=ƴ#eXm0pC.)k>k:ohɐ$:XvZ|W&਻eLbEG m@7kgszQrhgbbv-x&NR+x4pq}쐺ۏ 䔕yjv(33QMC?m~LyHj89tsT=EK3%ܑhR|煎xD{1_`lc_` s%m0 + +ּitUvb')STy$zќyE5gVȣ[ҭNj3O{bC"oVjR]6gYz3644qcAhiނnRhGwoub0BvjsՁ)9a +uL> T"k BM7뱚CMODR#BdI㖩{rIԉ)ѓK#J -Qs"sydӦ2YPOA[A6g|X`:q|HD'Dʗ?‡>1# +Aޏ( ^Zx4~MA`Fs|LQ 9퓮/~1MD$b{x{%hG/pAچsDTM$K$l t8uoyKQPpO_E\NK \*9@)O*3eJO,t?_!"_cs97Kp wꈔy(RȖp $UrFM ;>`;t7|{>#wĸ:ay]Ftz#Gmq(Thaq5#|dF@)gQuIOFrʍa+"ssr(Ɯ_R? `Ӡa4N(ޤ%Fnc^o9c0us;T` +a}km5iǜ+@pQpJu=q(0ks@DW3r*)ٜ!2uQpc 뤽8vzow̙0?It3yrs–;ceҙDun/&@ cpRN~5F QQoy+`o<>]0#u3h Hyܘi3hZV|"?TX+C2 %QT¹ԡB_/iaڱ@"IYyo"COpi`n0|KB9{50EXZ4>}s' Z_gT N]{fQ=\q.CZHXrI̳%O2J^ƈKmɔ-7CvGCf)0n'ӛ? jKz_&G8Qi,-F1+DmH,rRY7sA&~+N +HV9/k0w"};~ڼÐ^A-8 f:#z< +Εo˄#<oyK¼F5 JZ![E2V8VVr՝qVqH5fGv:p܏J +qYOfҘ *K5Q"X7ͮBqaW6#9k`n>EPH=BǎRϹ`M, m[vصPZMCC||Bt *U#L :9ZNٸSNS&wԌ!(~0a)J9)=JuɻpfR1qSK( (A(,vG  +QøP5׀7 %Varu0ihׁdQiNL^fM0z d v 3DSiU "XXCr'ֵ%5j!׎ }#>ŐLɄ^$vlqc;!x]++oŝUOoݭY)ZESB95*Xumn]?=#*"IqEMMݭ^@sFPVyMMa =:l7mZ-a'+GU\2z8ʵ!^-m2Cgͅ#kAiљdQމXPO ߻-1kNmu"J"):ECTKt4_P1脵#SKI($G8{kP_*Q2i:{x!=a1߄,^+d]\ *{+E&nz;T-,=iH5OciovMN,ZTDq:݋oIR[58p~e{Boz\Tߓ-"?F`#@ q֭|>VR Rh~Kݩ +A*'9>Iʹ@mN[liJ):+ɣByaU0w6G#ta_*p70?[C} du8D-r[<{Ze2FR\t@sO߷qWy#Exfo-~  xܢٻǡ ZAlRocyUஒ>_~ 'iۃIvё惌#sDJ:RF@9nW$}rcUCjQw2AY9 &mbu]2ؼQXz*j*1goq3_VXv->-*7h +$XIbKʎ%t` v\Q9[Idݭ[[7όXeGis5y_y q=(ˣؕKP_t#7/f$`Y,N%[Ǡ*~(P*tvٸ zlA!#?#|%-j#knL N\*vJ;mK%`]T00Udv:nl])Sdr ۍK}s[ X B[qbi?Iև;;}ҥ/uI&/p=qqTǺuej-M=:3lu2nyW3r_-oK_?|I*avQ[֗>vEe"x̢s-%Im?8n70Sg&v,n뾛@+^H#h^1bNUͱ['W^夝LIJac ƹsP?>şq"&27sF2&IFKx^X.VZ>-J t*|`vSTHU~ 3*Rv2=V +lyQWKA$~ Ssx 3S#[|"EV󿤯/d) _om7L#g+? 4Awp/?rhJWїrNnfQÓ;-Pn|}v7x@r#EKG9Nx~>ld ohħ?}_&UECӟ-]gC+?|Ou&R鐒=y}a|т@ =7UN}K_':k~:_=y]-?W*+ U߆HZ,Dy]q8hu>[ϟ-9䞧zWOi>\8tu>{g>ǿ|O54|u{CuĜ:b>\qF|LkP/x:=?Zmǿ|O5Wy:-z8wn3P[umΔoߗйN߽K8|; ǯH_%_P(7H;\T* _9z|tσއ7o`Z.Iwh lL+*`]>(/K7ûnbimyEO2W\d|TTJ=^2~w1ףI_R/GAW*W>$^_86*>^_\px~EsIK_/Tگ|.?IRa"rԟ*gRHu~AKQJO'S:^_\(xb~y.?T)"0$yI_߯TƯ{vϲ~ٱy?RnாT$^+_\Ux~ES5Is_$^*_\=ї"}JR6 V%r1GYWT%^*_\ x,~ESIֺ_$^*_\~>$D_k///$}&sqyNN<@v=O|!$wE~ GVd)x<כ2?xsErO/~5[Yo:e~"cE,v?@M-t? DkO]sIo[]bR>xsEIG_/<@뵀xs!Y'ro@6%x"gq,Y72?, /"?Y'o_~ Eg84?DI]zx(deuȎ% f?oq~#e?9 + (4ncA{ч +*o:cF:F7x+OB߽7{yx+|䝼wo]7hχ?LS[uBZ6h+p M/BoswbtR!7$KS!wn綠i`i::x۟~J(TݧyH>%?0SRa>Iaate6v|aTcJQbƞ ALP—iT-()9\=@S#ba|(J ^NRBlv9\=gl + '1X߱WC[ ĺvmj EqH`85W2)Lo=50xT&7_`ϑ"ot`|ζ* k<,I;!6Ƹ3VQ[)fwܙ 5^Ƃ)9aad׎f\Iӿ!5bc80ml5^O=bjzgn6 Fl9IV\\ G om4}o}lgR12PI`>3ƒf<`席!ߴ^'],1Aj ]й xNcOl`B^0ӧ kAux&/Vs1|Z`H߿AYtv V]^;Xcbq=xf{ ]Mh&Yp'cPU`0F-4vJC1]㖇@dÙv&y8t l#<;z; ʁ{ 21Mlz!A f3z}чɍesu|?m.tʌ FfB7fb#Fm=Q1ya#Ľ`D|T8<D%qIdL8)ݥd$QobINtyaX%;\z}=1M;Ҡ3ǬnR0\*[`P2ݞ>w(rY4#r2Yw?}IV\:O-im7V! >RY}JW?%cgR^[0X3,;؍e:+ӍmHQua4P#! -iY-3Unc=_5#D@b H\86{0}7졊˝R\ tr4(Lԡ7cd( x`6LLEl +'O)m槃j-dpꦋǩA$ A'a]OQ /f3|B?=1Y8*,l*/3L~&7H`oR9n!}gDw`PHhF= Ll83-3309N0t:)͎ 븁i LNkg<0 |ND)K`rure^0]} ؄Bbzxrpu0|'4}bl]fiŤ~!~ Rc Ae FKRP5zX 8ጘ'}l8d n-(k:P>,ԛa7VL/XvܭK2z>{hөR%k .A?I"g7نq|dK}QmH6`VUM(x`ylL(B ~ jf\ؒH%IxLpF]?AaU0'p0Y$`J'Q':ؓG BՁ"e&HŜБ%$hC+I5ht "'qc1$KDđ&/[hc2.Ӳffz + y}qO߉h֢cfɍgzVVZ]`H70S+0>-I@ͮ([.I9WlΉlL^ c8:CM%1'|̀e]4NgmsE,2kI U +kTg9kN'fJZƜ;0~d3$w:a: ,9%KaJ/XePombm7JK8Q +raM=!>%#!&V=XjH&FCuitְY%d$Xy0^Sz f8UfZ;ɾHk +Qsza!~xwlќow^bq8 6QAd ^8lF*]qI3D?VMzb' +c +YvO)< [}tK 5+l IPgCrw-obpɖHaH4mI Ffmn%1wcz9f3+3sRi+ +3[@` l'e.)C{}ISLBΟ}ô'ا遂rLpPI+Ƥ Kb 679}u9tJkj&R1<'\%6͌LD/dCذRpp8AxgȱFy3 +{b98w|$E 蠌L͐ 0N]X1z fI"[N_'?1 Vu ֬ù4&%AXla*Ԛ=! FvjB*g^J0-d Ypq y7M8sXV:rpa UvxIxcNV Z`^==X퍀)T_G|'A/F ޘ$E3c`mQq!;&Yr>Ő%՛~I %r@&w 1l0&V!?=G|.vM.AZ4c`"0"TXT,@p$W2;wHT`6ݢZL#H0,N^eP$OӘN'?31)pɉ|@՘+SFġzTas:+ g:)c"c3G]kR?`2!en6Nc"7oa}CMlBM d2tg}Ny[',"Bu`UfF, +-c~|b@nyCt}]/Uܲ KxOs =ank)8 r)}Ē&h΄5MN:$ϯRCqc3&vvpnHd@z'K*Dl"K +'K;ɜ$Il 5YxyF;~iZ^a:]ky/hj׶N2#2}Y +Iu!u="ڙmv1+Sm`8 X )M֑x#ډ)֋¡1 m +K ߏ0 V-ybsj^Eי%7(@ }cS&8MEhbC":cL }#r-΄o)/:yJE;<dC ,!|=($C*Н6'!~z'7Wd֫ኖcB h~TeY+pIMC\1X +Hr(?rYD8sۣ^ Q|Еёւ<0U`6"F|LR>q\ڳ˘sl=!Hr+آ@/[U$.Θ6LA8o֮K@V+H/_sQͰsB#GqU#Xu_aG=oAx[lK2H熻FEĕthm٠wu) DR4b#z;p~j}r)_nB)ҶRjTVғE1i/Xb!u* 4j8jľeظ牾}i!(:k%1(tDzv?rw`TTxO܍XFÓv\]inX`eQB(B -3.²32 a;RnZȧp=z8F8G%ziE&mZeЪFS(Գ$C#~-o8?.46h){@փTC("izbwNӔ+54&MRW^FKnj:+OВԓO$?,vFdPbi3Ԉ\8lOϾ2Jp2#epoB3{Mɮuw>sg0r$"cO{#$֙n93ҿzv+2x{B8)fck8#q͆l1ώ&TWBhAb"}n +͹2rw{F`a"vctA.ߤųfL 5!^0\v{:nwi7E+r5枃;)Q:XlGbR +˛.$e^QIՆT$LQ!폒f@;qDH2"WFEAll_lvNԛ hu= +qjqwJBfhpݏ@47,oRI+8DZe@~Bzf; kFsu;tmjCr=+: ʠ`U +F'{w֤=&m%3'Fr =t4Ep-'jTAuĤZ>rp($"ڙ9<}Ajmt&ء-oG7 |[ܝ=1No?/֜U ۩nŅ-~; 5jkh]+#x̓ <&`bFU)\g%L33߃KWPˌj"9B>߭嫥,sD?]Pc^tMLj2D^:{l/u#Rh:M'O;ckevojiƩ}pS_f`ˤwmBr(]qqK\íXs\?yD GFRӉm@7gX1Ѻ"=޺'[S_#1J(nދ}F޲~ SŒ-=]Gz.P_#Y*OI͕ϓEΟUR +\zۭʱڲSbZB<a5u rdɝĸ5+BǦU&i mޖ}BK'+n]1Rpt02#NaIPДx$mz ס)٥]{v`Q.ȐgJUB 2Ձ:+VuFr$zF#r!v2Be p/iݙu8ca 5u`:=x 4Rd,E+g\3vpO(+ҫqp1 S$K;GNc_4]?;1t{OGKأC x\iucH(u-Iq^ꞈ)RjZhߦ&KֽX3Zl #zԯ&=;uUFIsl'&ŝP$5 ådhɸ%]'M`]T;Szcqir_g0 wrhbL6VA1:(},.1j͏8[z]r9t+s,~ Wchr֡m6wId42?4M8ǤY\(a*Ќ[ܨ@T[EC+sGEfF_T`ODAoo&DLKpdN!G(Iq`A30 *+J7Y(zf`q~|m;-7gtq8v U৅3N +ul_.(`;;VC'uCXe).`f ln1Ԙp:NZ\R^2H1t%Ok&kmLOǞ$~ msct#mоF7ьҕ9|qp$oImG`z3o䕓i9sЖ懔.YS ֞&ZBnMM…{mꌡ2שJO&AN`sU>K, )c =0E* `#7o!9:kP!DC-ΫL˟T㖼ؘ}x@CK-l̀1R=$/RGҗeN)4q +U`LV;}]<ےݣۖY?51Qʨ:X !|ACV"QJbo;%[/Ȁ^marEpCUԂjSz(u1ܺ+>NP0%n_Ɠ0)6$(/i)m+غ$=ǖH U,{b#qXЧ:;9"`}QcqS^^ mLk4M1(iQFi+1ꋢgXl =Iu)oq`Ԃ sEוL=wkJzL_GTL _Twdp1Zs +^daZw]7_F:&؃JAD\uNƬ&aq#^++`K:oNv-iGT޳olo~ÞY}̒,'%Pp!5ePPY2{f, DeC B\2^:y[V{r9d%#w[z{ogg)Q//7&o[ ۉ1nk1? zߐ/]X]B䟿{R}s?_5 J?(槻" S'WvJT_]H=Dt,NFt_=Ǽ zLal")qf/75}_[W$4׭i~*61 +PE#hA;VD~C;Coxw 7Dpc7g வxp"^]?_a?. ێoxp~K>>s;}<߃!ߌ2~=khw71{už|jgwwk)Qԕ%/5'WWNKA*/UGWDd^_Rz`EKQJ%/'WJJOW"(JQ"KKBO2/ᯈ|)?R$$JRhz~IsIR%/'Wj?r RvxŹ}-?ȼV"J(J u+"_2// })? R$$BIȗ++BGq,_Rtv~EkQ楲/eGWD>ןD^(_ZXy~IKEI%ϥ'jꗲ3/5G?H =LJ|zr<@Mr|$YwE~ R‹d9Fx,k2?xsEO^j덃girj,Yw ^d~grU"Y7 ~"r@"Y͓߮xsY'_/<@-xs}Y'o @녁xsSY'O/<e8Pr2F^718\Rbht81.145tN $15R?3,hcR +H/4g EH$L qӁ]*]<ç9+,y5ua]Hj2؎^M*PG~ +rǺǀ㌡ VSvtHj˯dbj3C>7v螝`~(CD;caØ{7)ichSf'a27fr!XwX3%@mR}=0yC=3F}?`n=ۼ3^6'vtd|O^(c&,V`΅.lhT;6-ըd7$`9{o6{97gO,(ཛྷ;&[7]m 0c ЫcXwa3gMʁSR[lUSW 3Oe ,y>gc9O+t`Xw>A?;$OX@<; Hbq,L>eJeL,&A+~ fCR-m* 9~pݷe ԉrPؤVL +r|K)퉙B֤&y!<[ŜlGBq1D$.;VIqb XnA$& ˠ^}9{_}c=7.1Blu+GOg:0bЩ' 1_"<4*חddG:-1FX3=~G +kb7p1`־$O4pKLߞڝ*̈́E1'ؐSbFu0m +1eZd AysKڒIҩGY%tlPӞ9"*|U՜2W%\g6M Cb?OR?~yIM js:kAa( F)|c! +U*09zuP*zN+4G#ĚHKoV'3JkyL~sa&E9uF!TUL[XJL> ? +0F8]!5#8XvHU LG2mR=t~ͤ1њju_G!FK +8t; "D5MmQ6n?=hSp3| O + s?B:K?)ᘶn9 +fngJ' ͉nX2]y+%z;:=o_)tNX&C~pn*T [dvvS@2QFN(Zl@BY)- ->)Dtm}Þz09Gt8\2! sxҐݘ b~T"*V XKVIݰ8 q?HXS5k賕?'(wcE():d8 ݽe 5+-b'n:ŭ"ghYͺW0ŒmӘv V`&]v X]{ cH̤Gb=\`r:]bs8ڏdPJ=sD75so ջbs5o,`83,gD)[|8| e:%zww# -Q5lVV9Y.%Fy2؍qwoWDޚ0&F9ֵ|ϸԩB{bЏ;am};E#^'f#[ffFj,^$0eƫE-p7XWʮcYg0b!_)l%C5!}^L#%ڲjw_\ f6cE)#d .$#K Of;{Fs{TG 6bY8&u{dDM{DaW]wZ8j`CRm6 gY Sw3mOwRDK:=uny9]DЯ}^g}OI$40Нg_x;z:ږ+O u#2trNh2 +Yz|NRu'0u,ZN <.H~Mm(T!d-R?g4|[M#+iQ W]I+ +^!jͫY]Mh" +O}ᝇЇ{Kz4a7@̸nzpOG[Oj1wh G_`B?!$OJhQRX*G$X<%)LA&&~E'pͼ-1E +'w@'3 tbtYV''FpZHjsP2FA gHIDT=K9{2̱- "@W03 x{̀=*(ZȊASx=fQ8MSMZmϰL7]«VYؚi[{PrN)JhuJ40i59InH d;0`whjm}N$cP5t*e:ʹI^DC%FA9Ӫ&.Q"MIEɏ|( ?h +@'6eRU4b L JrvotQK`0Jr?qr }E + Fh@Ǒ5*0ˆp|d.6v(Ç=&>xhO;yu'^Td#ќO igB[K?$G(NUpЛhiŷؐ|wEbijo;ݳ@Id#gt0ae(E#."AܙlhwۡVc C>Ĺ Tȵ$V,+ +l\X΂5)'PX]2l5qž4Nf+fHb-wTζ_3DgQIA-,=Ohc}Ɉ$"ʤ'Ʒ{vE7$GK ?B9RbfFlk<`DѱJlkYf}.#T~[Lj^d_a1BLL&7] lt?]j8v`YزghOL;DDa#`#2m3'UdL@:n6sjf[@ pFceFu Ո&d9+muubcS9}2`؀%#V?.3->{(_: ExZfl覎9 +&^'Ln.+맗S[S,"41f{*P.E(K=B#[=ٺ;3s.}D7݊r<Ӳj7_}ԉ~:1yWTRO\2 +Vc0yv:`YG˝sjU]`zwsM8#1ٓJ1T$৕Gfe ?&m?4~ i:{pNj)%ZiP`H44=`l눃r8$2,3Zw}L>[u `-s6Rp<uDC<\G:9-DnQDrojуK\ۉ(O+o#y] D36mGD X[unXV쫯c_FP;uuh Hb%g!mƶ`)aH? Р́6g0s]F@ HϠzK`m]F+ksԚH98x!eD776bƺۻʊCJh5iuBLމRY3ɖ"%{FWm~q3WD7&^R?^@(ԆH9plE'J=Ba8Ԏ?lE[_rO_ص ijN?^gxӝ9_C Qd4|Y3/ H}=gR7]xQΜCL#PM׆gKPYA_qJ\'Gd.K^i}E} Goߗ}5OʘON~Zq~_-|eE_'x s@}eE_N@P NRŸZq~:?=kcA-KsBxPhZƄZu<7WƅZuP_;26^ZS]^"|Q 6{8+sF-yE_7j?e/H}iT "+G-y e_Cj?e/I2—6v2e=A?ta9ts}~WsΌ*čh3bmɠſ}sA?!{ߙ~gkwnO"6 +) +\˻BJ٨-2[l?)P+ww}I?(n|_4S᫄Mu/(+ۿ2=o.ڢb2;vz?T3cIܷ[oKcm'o_ӷ%Ј:J8~E]m)|P~E 7H8h \*q7o`:}o3砏⍀*crgW tKwhA*`Q"rD*t~c>>uKߣ!=ԋywsg1`ٳOzx R`|KmU'X?_K_d~E'X?_j2?Z"qR ̏~KMU'X?_K_d~*#//2?Zr"Ov]b^>ZϗO~쿈kUGX?_+_~4EX?_+_d~^ˬ/%Wi`|KU'X?_J_D~*#/B?RR"Wa|H =TbyCωat*7W~"rË;]kxǻ b?xsE.1J@«_|"wW^~"«"w^~ j‹OdA\Jxyw^~ Zy5tȋCrxț /R?ysUgEixȻ b?ysUF`x݅yskE2$+HDMȒ*$n'HDݽWȕ*%"HD/IeȪ\RjMcYNlFd`7r 2m4{C!Ǟ=\FkYddD}ìB6f\Fk$;lk41יX]Ɍ@5̘`>LDsLddF[H&3K%s&3vLw@dX[AXMf`A“A6h2clg6w&c: +X_Ɍm$)؀v&3&8<LKCF?)&:NvF[`=3Xc)Z=v,~iP1.1fQI#<ƒ^ +Š|`&{lr7/<䛎Txt5`~&snAY Jv.FT{9ؑo:-Ցl頗r%6)ThKd31PL-zuƢ$ai$&ԦLS7t`0{"13C2QL?/s7.*q=t4Vo`Z7s hǙ`N::lG./ .0`փ S Nz ;wj`,F{Y:=6[v808G16LF09.ecLy`0z0\&[I,] 7\|GW`G<%vSbpET.7d7EGytƚ};1m2أs5cڿ5klmdrKP؊Py жZ\͘w\uOMy䩇/ Piv%1&{ܢmOQ wR#>֋*ܙY`R23xia+c(# )eiWsi{½#a'XK[ =hz83۸cd5( > HfNJ#'qV_1sIPpqFh?SL7%m&vnc + 1GME1Gb)3;>\3vs;/l#)`iCzGsa˼ꟻT #cRm|d|6p`1 ;s5x0fy'ͽ紭Lsۈ(($iX]Ng{jYN v[S;/< +YtA'u icO"sb l#f=ZfQigc&FF2t0f!K /;M,1VEM1^,crĠT4yL,GB=y v4v.IHr*r)8hrz<"KJQ{_8`?5Fh?y8Re-d+ZHc Q gVI/E%1670GVR[+29=Ju A_h-\R{ +Lv_GPxCAazǖf3WL߅R`d(V )yJ3&g c\~K<>Bk2nuJ5 پmzP uh0#OX4aYJ{ O_ _x-_nAYA0{)Ӏ)o +-q_";  `)}-[b:PC!A' F.;EjC>*n3<)w=k=,tW/2V?Žϴв<e3jEޒkzQ, +26H2LFHD= h&{mMB +LBbYubr@_0"Y&ܚ"h'}t\`T&FLJJ%6Fk8M@z`Et{Kmt^@&b쐁# +r_KzKMmA0V^n_Wm `+ ^sF"8)!кF y!vMt+B^ orbH]>°rNm$eĭv\M$?vBw i;Ʒdn~NrnåsemaǍqO(A*u//ɕc#O + Az9euOUFh9k ڻϫXn#Ǜ1}ObzE} ;Raj"QM0CnP;E3@yߐ֖{ R>Eٮg*,Vmv3t4Hr^I [ʄɹ5kٜS7>iA$v aN'Tc44Jܐx,V0rHDGYal(##Yym nG ά%91LnzCS>V4̟$aAPu19e]#tRu-mQ`-K@T/rH7AQV4V1It6҈ ~+nWn;5';!@vhT̉>a .:ϚtF Z-dAO-VEL'O+$zr"v3Nc")AK,†+SBw⨔qLQBEGV.d@e%rgTC6Rx&…$B~kNpӇ 8c$S>Dr=u"Dmo@1u:3_ dGI+Y4}&ОO EP-Yg0_*12!oUǖ8ylH+ 5H2 z~s$RáE-hSQt#zJܘMo`P=xfòx6u)ZITZt]0=hޗ0W +b 22E6<9umAF)a|sڄ F|)0T&')|av ;Ȗezz.]?"ufwv`Qg%aqs- z9u6kTtd+FūTpnʆ?Pp +ͨ *@e3WX#e +m7[r\g0Iz ȆI':Jt~(wH NoC.vή&;:2-3FvrW*~2t=A^-2lhN(.%GpFVjT ǒ +Tx_7]KU( ~' \()k*}o , [찤NSIY_Gqw_˯uE]gp"%hh&224XE20=ΰR*v,E{,TD w;wP+`Pi׳))R0 +3M +cj2HJ؂;ؤ_mNi{ 9nvӾ^S_,ffW!,xeJI>rsAO2FcP>r,D1*@.= +TqKԎyM.\<ŋ T nmrY4Ko M +Lbg:#GsO&pŕli0Օ0砄Aԅʸ^lƏ7H $7j~994L(A $[oT^B@"7b,&WyIwk%5t~}zZ&UjP4\#g ⏟+nݑ]\$$7i3{e6UQw<]xM ^2 duz7Y3HSwѿ<p}#xcn6HG3fD=j~CxczAИ!jEL5 ʐA|)/fE/q=o:$DcʽM^(bJ Sd ݳ#ܠ=oԽcxl&F8k9 T@ [(.FR'VKqchs2dDA C3h#Tj{d`!*N\78N!O JM^wh˶Yohcn^KO)sz ! BHIle^'[ oGf|Oș %M!d+0ܣ gjaљm+WMƜI mгqA#\5pIAR]}Jr!hv4`j<P6n &̰)זщ;9viP:%aB+d47Q/L( MwMg折)ty0tj,BΜ$O{JQyƃR@R2?T=NMFK5lZ&jD xkPqWf}r^R3:t)_گ{@VʴZ YKNҪT{AD լF[C2ў' >Ly i\pLA7cpդ)klt0߷sbk049j +4SبYSS[R=U@;\eR_KP6?kgdW=ՓksȷLLMn3H5r٤ @OqRUB&xjt;58_ ;0x14E{oKJGJQ#L82P{38kg,S@C;6ذVȗV1R:#'+O*lE +`rHY8l UJ>E`76;Rt!T0HP*PG1b)ՠb#7L _bU VW?W*o/˹_XfXO]?Sv!]]V/A`^N_&|oI5o7oxWc[ˠs)Ngkywnk糱?/Ox> +endstream +endobj +372 0 obj +91552 +endobj +373 0 obj +[371 0 R] +endobj +374 0 obj +<< + /Resources 375 0 R + /Type /Page + /MediaBox [0 0 450 300] + /CropBox [0 0 450 300] + /BleedBox [0 0 450 300] + /TrimBox [0 0 450 300] + /Parent 376 0 R + /Contents 373 0 R +>> +endobj +377 0 obj +<< + /Type /FontDescriptor + /FontName /EAAAAA+mwa_cmr10 + /FontBBox [-43 -250 1008 750] + /Flags 33 + /CapHeight 683 + /Ascent 750 + /Descent -250 + /ItalicAngle 0 + /StemV 0 + /MissingWidth 500 + /FontFile2 378 0 R + /CIDSet 379 0 R +>> +endobj +378 0 obj +<< + /Length1 6348 + /Length 380 0 R + /Filter /FlateDecode +>> +stream +xX tוߤ_eKbY^Xm-%K»̀1+6d44d뒦)p2PIg29RH9$9$30Ӟ,6mw}}wy ,6ln.]lecj3~0 gg:_< Oh~dvn7_2>4rǧgwI{923cߴ^^K5'ͷ'F?E|)-ZR$y=/->w! 98O30 B7tC 4@D! !"%)O'C|7>lZko`gf~|{p]KZcZZ_U> /y8+k,o(< 6wAat!}$]H;:hrYJT*cy:V۱cΖ[=KIk^$ɐ祿$Sp$ ΖsȺZl$ޖZösر^;=^зW"8czժk%u }}MICO/ɯ5)h@ + ̩O)@,PS9zg|-ڟd?Fvh#٣x!TԟWp3<'??2D9V +az!]m-UO-x{A42JIP:N@DYYzMP p0 +:xa٫*\(?V\lKa`e,8cy2"(nA Tw0j}$,bF#p5v:~7_| +/s)?~ cGd'Fnޓ>[IӤ4[e1%JJ#AwJ걜7}W-oض&p#u@C1 -z4Oyf0!@[FUШ F)d$L0 KV~a)8T (77̻ cmCbu<6+s,M)EAÕh0X`7"ojI-puٴaEDBdhl:H4 9lm;^͵3]/_,Q^]-LcUEsv}/ws|ߦ=%јnUEY(5 r]yjgu[sO88GڃIzi"FBvJqXJl|y[x/(-xxyyrJ)ZŔv9q9|q̫L_a?cAoXENf(uX B!䗉.u+ +Z DWܲ}t $! 4~/bVzh'T[ZV{SrSE6o=7o ]j꩛l֖MOtMJ[<6W vmoz~ԤOؓ6uە̦uu7UFe9ו,VX"*bU +Pp\9vՓS2t]tSJ`vՃN`nB\Y:2|/Y%^*$Lk&WyGG7V-n:w6 vFNS?}j~DG_=]g׌)Xwrx{x\_䳸wjTxJM#px}jjo?z᩶J#Ti /cU +(ˡ6շ3mHQK߶/R)r>Ki3W,Ō\褘)Jݟd4PN}}jFaTZ%rbRX84DW&T!Ɓ:(i#`vq[> pGoS⁆~{c3͎ONl'6Оvx#M-~=n2*uzŭR)N=w_Hope8n)`&eCnL%RI[*sH(Ag9C޼JcF,S5ӿ~bwx-ؖ>k:k7łVLb +Qar W( q _)4]6rVUTHV T 6-/s5uڊo'WY#:(PNk}}C(,Z |@V~#UHw&`_;!sѨalZr<=w=xytɺ} +r%a2vQආa;lvC\ш;j^:)tf7MTC1oQmn%%RG6tE%oG-D[pڍmDpoO/řKKWз6hBo,Jwt=\zjF_:\btݖȆVOW|:JNc[Iɝ@aED(n)"礳z%ʶqˤ7!9!UR:jqdvwW>qK$}ͷ:߾KjRyx(ֵzwHKW:LbG[scW"WucETjk܅rLhR)Th$drT (׍M's:CMog|X.@M:ym &6h//X{NsU/yW&B8UmhLefRL Y6/0/O%WoB[P+--1h9Sh*ZTu&:%_?Z.NYdF b;\ѝK֔,U5|ԒcT/{/Suu%awcbqFOja硂8RMQWUVAz-Y*| {z f+F:Tbj*Q[]xv׊=M;S' +Nv痙}d3̯xJɭZ\x3-VͥV{m +GV1E*_IԒ+NN7 oM)n&B?2is23 .3?3+H@oNi3OwtzakY4](`vչM\mFŚ"n0I-rg]:pB>~ +[!vY`_޶o̜K=:9G)JSvRiߛ=GS D<R{v3z +cj;͟JSH!ORFnUj;?sTJTx;G2zǕo<̧Vj5v+z N}3Q8C3yh ~Vi"/!>BEI>C6=\靼r>]C4u3hMvś{:C3I] }4C746DN$D#іbcfi|k^<ZV9H~=0 r&m2h5P >[`i4k!@idZ8yF7c$;(\KKlAV1E#IuJcO_Zg'/J[lU55>[Ĵmm~x:1?>v `kuKmcc*-kg:fҋ] {}ucƦ- ,v;Hҿ4fW)lA [s/꯿  +B~袽^: +TUT]5_&!_E +P+9ϐ6K1Rl79CCެ0<2[@B) +endstream +endobj +380 0 obj +4631 +endobj +379 0 obj +<< /Length 381 0 R /Filter /FlateDecode >> +stream +xk`UqY, +endstream +endobj +381 0 obj +20 +endobj +382 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAA+mwa_cmr10 + /Encoding /Identity-H + /ToUnicode 383 0 R + /DescendantFonts [384 0 R] +>> +endobj +384 0 obj +<< /Type /Font +/BaseFont /EAAAAA+mwa_cmr10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 377 0 R +/DW 0 +/W [ 0 [365 500 500 500 500 500 916 500 500 276 276 833 500 750 276 500 651 391 443 526 555 555 443 526 750 443 ] ] +>> +endobj +383 0 obj +<< /Length 385 0 R /Filter /FlateDecode >> +stream +x]j0)rX4., eKPɸ ^9BdV?FO,ywlhb68Nk͎gLi9E +o K|pCf%cjh)7isg[6?ԓXȨ0'a_EO, y"=-\,,0G rP4Z! s%.~\am'@SRP*AA T(P9O +tH:ʘEBT8!⢲C-y B9U_y_:9UqJᯌ'_u_q_%B3__۲^rvη;ܮvM`ר~3 +endstream +endobj +385 0 obj +346 +endobj +386 0 obj +<< + /Type /FontDescriptor + /FontName /EAAAAB+mwa_cmsy10 + /FontBBox [-28 -959 1123 778] + /Flags 33 + /CapHeight 683 + /Ascent 778 + /Descent -959 + /ItalicAngle 0 + /StemV 0 + /MissingWidth 500 + /FontFile2 387 0 R + /CIDSet 388 0 R +>> +endobj +387 0 obj +<< + /Length1 2196 + /Length 389 0 R + /Filter /FlateDecode +>> +stream +xUoLe޻] + +Qh\'tAIK+el&sƠ33lF`r7&l~11%Lbӽ{~罾y?Sr| 'f>R$eF 1z'Bzc + 4c|S K|"ibcD{mc"5i6=UIMi983WZL2'4zFIF5J`c:E,p~xYx^S0H8<! A+x*.Õϱl5kan2טb 2N_WRN.#AL~>e9BastoNn-nɷMy9Fe 4EG_Xs 0rLboX|քUJtWjDPAn>>ځ3G +KPQՀwT%00ȨkD'+]-:œ7 tٍ0 DηYb|4hf4zc_VX֊N_"oǘw?4|jhXeڙwa~oegY)SαmMp6h +:H9iiڋ+2O/llF6imT+񔓢Bt556*,4g!\棊==[Q=gjIrf.gn(o|+ ScG6rhW\:T"{^c2{ΎC5R_ z^t,Zy%+?{P0p'OCvTa,;tr1a 0ΒtBU +pc?!?WXOa|`qmzrnݸv_qsPM']PpOcoc&x1k~~ .ϑK g1|* d1fq_HbAK} >),gY6r.YW )HcO8D!ndqvcWB8K cߌCq?D&w(0shjRpV0#Y]kJ> +stream +xk`& +endstream +endobj +390 0 obj +12 +endobj +391 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAB+mwa_cmsy10 + /Encoding /Identity-H + /ToUnicode 392 0 R + /DescendantFonts [393 0 R] +>> +endobj +393 0 obj +<< /Type /Font +/BaseFont /EAAAAB+mwa_cmsy10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 386 0 R +/DW 0 +/W [ 0 [365 688 ] ] +>> +endobj +392 0 obj +<< /Length 394 0 R /Filter /FlateDecode >> +stream +x]Pj0 +t'iK,[N (!RfA:g#/:M8€uEU*o5P$99yc%LqK9 +W|&?I#Y7np ]{4}CN}ΝN$s1׀P3 kTHҍX\T \o^o_IۤjU b.yGDt YVY}B +endstream +endobj +394 0 obj +235 +endobj +395 0 obj +<< + /Type /FontDescriptor + /FontName /EAAAAC+mwb_cmsy10 + /FontBBox [11 -215 942 727] + /Flags 33 + /CapHeight 0 + /Ascent 727 + /Descent -215 + /ItalicAngle 0 + /StemV 0 + /MissingWidth 500 + /FontFile2 396 0 R + /CIDSet 397 0 R +>> +endobj +396 0 obj +<< + /Length1 1968 + /Length 398 0 R + /Filter /FlateDecode +>> +stream +xU]hWdj~VlTdc.JI5%[ddv3l\@%VRP|"E&yhb +Eh+BK>(g&Z[sιw=  w#ʡOfH#9iodp?*M7ߚ.,L|+?Js9NFHޞ#EVɛrŹvd䪂5I\8Yێ~di([fwHpgJVyn-4c/͚%KF= =+6q*>yx'2Qa'؆HU_um8"oBYGa1>2.RO]Fq#1M ֆ낵5U~(LB'emꈪ,wȼhs"LJUNUY} vMJI9#k4Jˆ]J&GF#Ԗiu.r}аqp4bK#94*w[;lv#̙bw)*9*_Ӳh$m^7㚪 J6/kˌ.2lAvVb !y-hZݙ-Q0YۜفΰHU!+W4Jb9$%i5f KOUȤtJ7UUU:}πs.H.?ڒ-2GGTIsaL >nM# EB3z)$|TXnnt1_ ;β\;r70ŭF$$KS&;=վvn~;uIo{Q9 FG\ ѽ( ]|?+ObTSa0OzQ˾i&֐tr0Ca}aBՋY1ho8Uz`PMɣ@x1zVLT\]?i'leW2i4)FYM=.w$Pf<'+$ib$J1PVia6?R> +stream +xk +endstream +endobj +399 0 obj +9 +endobj +400 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAC+mwb_cmsy10 + /Encoding /Identity-H + /ToUnicode 401 0 R + /DescendantFonts [402 0 R] +>> +endobj +402 0 obj +<< /Type /Font +/BaseFont /EAAAAC+mwb_cmsy10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 395 0 R +/DW 0 +/W [ 0 [750 776 ] ] +>> +endobj +401 0 obj +<< /Length 403 0 R /Filter /FlateDecode >> +stream +x]Pj0+l CԒX}q z0h[lE^X gBpjV& +:G:g} +endstream +endobj +403 0 obj +234 +endobj +404 0 obj +<< + /Type /FontDescriptor + /FontName /EAAAAD+mwb_cmmi10 + /FontBBox [16 -215 882 715] + /Flags 33 + /CapHeight 0 + /Ascent 715 + /Descent -215 + /ItalicAngle 0 + /StemV 0 + /MissingWidth 500 + /FontFile2 405 0 R + /CIDSet 406 0 R +>> +endobj +405 0 obj +<< + /Length1 2144 + /Length 407 0 R + /Filter /FlateDecode +>> +stream +xU}lenlecllݎ[{c\e:@BdnkִhIA Y D9HD Q 1`B1D#;E{="<'46xt &̐=|+Op 7?>wV|pGIJ(9α_^AhbhW#lgxlyHD~X/dzh9QjLE%4Hp…yа=וKO^%18"b%L 8cxG2a? >х؀'˱K`qQ)].K'?_kWW-E0&t93%?+[&MR꼌OHE\y8ûMɼl/ʃY(N[y7XG۱Էׯe3J%]E + Ix;N= g{޷MLxZBv%pi^M^NX U?Z]nFkM!rߟTRP+GMGmabSP2Pm F&y8~HVo@rm.բy?h,6ݺmM^'25U)` +^aNj%7d[*#2EU' +1SuBmѵ'/$b-e gudN 4!k>K;@r}м m55Lut} Ȣx8Pp$88!S(`bŭ @E o'O^.dL.-LSPsf1)%Ugqmj,sjV< +ޘ;lǎ@k^EWJ4qRFώp0~:o%Hvh߁K(d򘃃mc<c\KN#P@քea2&1[F2 x\l K˛#H* 7,5Fgr!'(HޡXr+d"qM A=^B R#HM$b>Vqt|ǩḑz}hJOYJ_פmHfGzW1ˆvEZ pL. +Vx +endstream +endobj +407 0 obj +1452 +endobj +406 0 obj +<< /Length 408 0 R /Filter /FlateDecode >> +stream +xk```p +endstream +endobj +408 0 obj +13 +endobj +409 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAD+mwb_cmmi10 + /Encoding /Identity-H + /ToUnicode 410 0 R + /DescendantFonts [411 0 R] +>> +endobj +411 0 obj +<< /Type /Font +/BaseFont /EAAAAD+mwb_cmmi10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 404 0 R +/DW 0 +/W [ 0 [750 437 ] ] +>> +endobj +410 0 obj +<< /Length 412 0 R /Filter /FlateDecode >> +stream +x]Pj0 +t'()i?FqJH?F{꜍ٛ"!W6MU hMK .z1g_C\RzP^վg%>-Ԃ=HKІX{s&׻jͷ=jU E{KѬ),Cb@ѹCV}B +endstream +endobj +412 0 obj +234 +endobj +413 0 obj +<< + /Type /FontDescriptor + /FontName /EAAAAE+mwa_cmmi10 + /FontBBox [-34 -250 1047 750] + /Flags 33 + /CapHeight 683 + /Ascent 750 + /Descent -250 + /ItalicAngle 0 + /StemV 0 + /MissingWidth 500 + /FontFile2 414 0 R + /CIDSet 415 0 R +>> +endobj +414 0 obj +<< + /Length1 2100 + /Length 416 0 R + /Filter /FlateDecode +>> +stream +xU}lSUmǾ1Wːm}ݺ 6m|5Zֱ1Pl!b0J1`4!@.(YD$&jĐ̿vuKQns߽dl^USVgɻodXZg+ Dt}3* i&)KɑsMdFYfpj3>xTpR|}>@x%D`55ɱ!=+ɿd CdW2>{|eL)8x'2G ،6BSXXZxFuer3k/?;IؗL -AZ֬泗ܻ_}**Z#y\#Z6^9l^-ԣ*fj ;ux0$Zbdk%n R7C% +PCP)7eg$"a0{Yqa0Mm 9⤐%n(NV +sj;Ilk!aR3i5$D &EMwjGfm&AN`A038aPʱeR=2[XU]Xm`58XRQN?eJz!;0^ے1";N4$z5 ,h̃l TBowzݷ7t5F@$2z-&̠d6G|3z ̠IUGjA1+Ts-y>WdkXmKc4Hcv1-F2iYS,3194Oc4X^Oc E1:SU-ލzIXFk!L.o"O2㔥c$k$9s-tucYM5)vdb0a2ta2#L:Evѩ *o쮯sʪvI ŃKn NsX\ЈpUkT=I[Fao8tVT QRM:" nEFH$&l.n0 "Sֆ!PU*>OQZz pUestD{*10RPˬ +n_&rs>SrV%J/| +endstream +endobj +416 0 obj +1416 +endobj +415 0 obj +<< /Length 417 0 R /Filter /FlateDecode >> +stream +xk```d +endstream +endobj +417 0 obj +13 +endobj +418 0 obj +<< + /Type /Font + /Subtype /Type0 + /BaseFont /EAAAAE+mwa_cmmi10 + /Encoding /Identity-H + /ToUnicode 419 0 R + /DescendantFonts [420 0 R] +>> +endobj +420 0 obj +<< /Type /Font +/BaseFont /EAAAAE+mwa_cmmi10 +/CIDToGIDMap /Identity +/Subtype /CIDFontType2 +/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> +/FontDescriptor 413 0 R +/DW 0 +/W [ 0 [365 500 ] ] +>> +endobj +419 0 obj +<< /Length 421 0 R /Filter /FlateDecode >> +stream +x]Pj0 +t'()i?FqJH?F{꜍ٛ"!W6MU hMK .z1g_C\RzP^վg%>-Ԃ=HKІX{s&׻jͷ=jU E{KѬ),Cb@ѹCV}B +endstream +endobj +421 0 obj +234 +endobj +376 0 obj +<< /Type /Pages +/Count 1 +/Kids [374 0 R ] >> +endobj +422 0 obj +<< + /Type /Catalog + /Pages 376 0 R + /Lang (x-unknown) +>> +endobj +375 0 obj +<< + /Font << + /F405 382 0 R + /F406 391 0 R + /F407 400 0 R + /F408 409 0 R + /F409 418 0 R +>> + /ProcSet [/PDF /ImageB /ImageC /Text] + /ExtGState << + /GS1 2 0 R + /GS2 3 0 R + /GS3 4 0 R + /GS4 5 0 R + /GS5 6 0 R + /GS6 7 0 R + /GS7 8 0 R + /GS8 9 0 R + /GS9 10 0 R + /GS10 11 0 R + /GS11 12 0 R + /GS12 13 0 R + /GS13 14 0 R + /GS14 15 0 R + /GS15 16 0 R + /GS16 17 0 R + /GS17 18 0 R + /GS18 19 0 R + /GS19 20 0 R + /GS20 21 0 R + /GS21 22 0 R + /GS22 23 0 R + /GS23 24 0 R + /GS24 25 0 R + /GS25 26 0 R + /GS26 27 0 R + /GS27 28 0 R + /GS28 29 0 R + /GS29 30 0 R + /GS30 31 0 R + /GS31 32 0 R + /GS32 33 0 R + /GS33 34 0 R + /GS34 35 0 R + /GS35 36 0 R + /GS36 37 0 R + /GS37 38 0 R + /GS38 39 0 R + /GS39 40 0 R + /GS40 41 0 R + /GS41 42 0 R + /GS42 43 0 R + /GS43 44 0 R + /GS44 45 0 R + /GS45 46 0 R + /GS46 47 0 R + /GS47 48 0 R + /GS48 49 0 R + /GS49 50 0 R + /GS50 51 0 R + /GS51 52 0 R + /GS52 53 0 R + /GS53 54 0 R + /GS54 55 0 R + /GS55 56 0 R + /GS56 57 0 R + /GS57 58 0 R + /GS58 59 0 R + /GS59 60 0 R + /GS60 61 0 R + /GS61 62 0 R + /GS62 63 0 R + /GS63 64 0 R + /GS64 65 0 R + /GS65 66 0 R + /GS66 67 0 R + /GS67 68 0 R + /GS68 69 0 R + /GS69 70 0 R + /GS70 71 0 R + /GS71 72 0 R + /GS72 73 0 R + /GS73 74 0 R + /GS74 75 0 R + /GS75 76 0 R + /GS76 77 0 R + /GS77 78 0 R + /GS78 79 0 R + /GS79 80 0 R + /GS80 81 0 R + /GS81 82 0 R + /GS82 83 0 R + /GS83 84 0 R + /GS84 85 0 R + /GS85 86 0 R + /GS86 87 0 R + /GS87 88 0 R + /GS88 89 0 R + /GS89 90 0 R + /GS90 91 0 R + /GS91 92 0 R + /GS92 93 0 R + /GS93 94 0 R + /GS94 95 0 R + /GS95 96 0 R + /GS96 97 0 R + /GS97 98 0 R + /GS98 99 0 R + /GS99 100 0 R + /GS100 101 0 R + /GS101 102 0 R + /GS102 103 0 R + /GS103 104 0 R + /GS104 105 0 R + /GS105 106 0 R + /GS106 107 0 R + /GS107 108 0 R + /GS108 109 0 R + /GS109 110 0 R + /GS110 111 0 R + /GS111 112 0 R + /GS112 113 0 R + /GS113 114 0 R + /GS114 115 0 R + /GS115 116 0 R + /GS116 117 0 R + /GS117 118 0 R + /GS118 119 0 R + /GS119 120 0 R + /GS120 121 0 R + /GS121 122 0 R + /GS122 123 0 R + /GS123 124 0 R + /GS124 125 0 R + /GS125 126 0 R + /GS126 127 0 R + /GS127 128 0 R + /GS128 129 0 R + /GS129 130 0 R + /GS130 131 0 R + /GS131 132 0 R + /GS132 133 0 R + /GS133 134 0 R + /GS134 135 0 R + /GS135 136 0 R + /GS136 137 0 R + /GS137 138 0 R + /GS138 139 0 R + /GS139 140 0 R + /GS140 141 0 R + /GS141 142 0 R + /GS142 143 0 R + /GS143 144 0 R + /GS144 145 0 R + /GS145 146 0 R + /GS146 147 0 R + /GS147 148 0 R + /GS148 149 0 R + /GS149 150 0 R + /GS150 151 0 R + /GS151 152 0 R + /GS152 153 0 R + /GS153 154 0 R + /GS154 155 0 R + /GS155 156 0 R + /GS156 157 0 R + /GS157 158 0 R + /GS158 159 0 R + /GS159 160 0 R + /GS160 161 0 R + /GS161 162 0 R + /GS162 163 0 R + /GS163 164 0 R + /GS164 165 0 R + /GS165 166 0 R + /GS166 167 0 R + /GS167 168 0 R + /GS168 169 0 R + /GS169 170 0 R + /GS170 171 0 R + /GS171 172 0 R + /GS172 173 0 R + /GS173 174 0 R + /GS174 175 0 R + /GS175 176 0 R + /GS176 177 0 R + /GS177 178 0 R + /GS178 179 0 R + /GS179 180 0 R + /GS180 181 0 R + /GS181 182 0 R + /GS182 183 0 R + /GS183 184 0 R + /GS184 185 0 R + /GS185 186 0 R + /GS186 187 0 R + /GS187 188 0 R + /GS188 189 0 R + /GS189 190 0 R + /GS190 191 0 R + /GS191 192 0 R + /GS192 193 0 R + /GS193 194 0 R + /GS194 195 0 R + /GS195 196 0 R + /GS196 197 0 R + /GS197 198 0 R + /GS198 199 0 R + /GS199 200 0 R + /GS200 201 0 R + /GS201 202 0 R + /GS202 203 0 R + /GS203 204 0 R + /GS204 205 0 R + /GS205 206 0 R + /GS206 207 0 R + /GS207 208 0 R + /GS208 209 0 R + /GS209 210 0 R + /GS210 211 0 R + /GS211 212 0 R + /GS212 213 0 R + /GS213 214 0 R + /GS214 215 0 R + /GS215 216 0 R + /GS216 217 0 R + /GS217 218 0 R + /GS218 219 0 R + /GS219 220 0 R + /GS220 221 0 R + /GS221 222 0 R + /GS222 223 0 R + /GS223 224 0 R + /GS224 225 0 R + /GS225 226 0 R + /GS226 227 0 R + /GS227 228 0 R + /GS228 229 0 R + /GS229 230 0 R + /GS230 231 0 R + /GS231 232 0 R + /GS232 233 0 R + /GS233 234 0 R + /GS234 235 0 R + /GS235 236 0 R + /GS236 237 0 R + /GS237 238 0 R + /GS238 239 0 R + /GS239 240 0 R + /GS240 241 0 R + /GS241 242 0 R + /GS242 243 0 R + /GS243 244 0 R + /GS244 245 0 R + /GS245 246 0 R + /GS246 247 0 R + /GS247 248 0 R + /GS248 249 0 R + /GS249 250 0 R + /GS250 251 0 R + /GS251 252 0 R + /GS252 253 0 R + /GS253 254 0 R + /GS254 255 0 R + /GS255 256 0 R + /GS256 257 0 R + /GS257 258 0 R + /GS258 259 0 R + /GS259 260 0 R + /GS260 261 0 R + /GS261 262 0 R + /GS262 263 0 R + /GS263 264 0 R + /GS264 265 0 R + /GS265 266 0 R + /GS266 267 0 R + /GS267 268 0 R + /GS268 269 0 R + /GS269 270 0 R + /GS270 271 0 R + /GS271 272 0 R + /GS272 273 0 R + /GS273 274 0 R + /GS274 275 0 R + /GS275 276 0 R + /GS276 277 0 R + /GS277 278 0 R + /GS278 279 0 R + /GS279 280 0 R + /GS280 281 0 R + /GS281 282 0 R + /GS282 283 0 R + /GS283 284 0 R + /GS284 285 0 R + /GS285 286 0 R + /GS286 287 0 R + /GS287 288 0 R + /GS288 289 0 R + /GS289 290 0 R + /GS290 291 0 R + /GS291 292 0 R + /GS292 293 0 R + /GS293 294 0 R + /GS294 295 0 R + /GS295 296 0 R + /GS296 297 0 R + /GS297 298 0 R + /GS298 299 0 R + /GS299 300 0 R + /GS300 301 0 R + /GS301 302 0 R + /GS302 303 0 R + /GS303 304 0 R + /GS304 305 0 R + /GS305 306 0 R + /GS306 307 0 R + /GS307 308 0 R + /GS308 309 0 R + /GS309 310 0 R + /GS310 311 0 R + /GS311 312 0 R + /GS312 313 0 R + /GS313 314 0 R + /GS314 315 0 R + /GS315 316 0 R + /GS316 317 0 R + /GS317 318 0 R + /GS318 319 0 R + /GS319 320 0 R + /GS320 321 0 R + /GS321 322 0 R + /GS322 323 0 R + /GS323 324 0 R + /GS324 325 0 R + /GS325 326 0 R + /GS326 327 0 R + /GS327 328 0 R + /GS328 329 0 R + /GS329 330 0 R + /GS330 331 0 R + /GS331 332 0 R + /GS332 333 0 R + /GS333 334 0 R + /GS334 335 0 R + /GS335 336 0 R + /GS336 337 0 R + /GS337 338 0 R + /GS338 339 0 R + /GS339 340 0 R + /GS340 341 0 R + /GS341 342 0 R + /GS342 343 0 R + /GS343 344 0 R + /GS344 345 0 R + /GS345 346 0 R + /GS346 347 0 R + /GS347 348 0 R + /GS348 349 0 R + /GS349 350 0 R + /GS350 351 0 R + /GS351 352 0 R + /GS352 353 0 R + /GS353 354 0 R + /GS354 355 0 R + /GS355 356 0 R + /GS356 357 0 R + /GS357 358 0 R + /GS358 359 0 R + /GS359 360 0 R + /GS360 361 0 R + /GS361 362 0 R + /GS362 363 0 R + /GS363 364 0 R + /GS364 365 0 R + /GS365 366 0 R + /GS366 367 0 R + /GS367 368 0 R + /GS368 369 0 R + /GS369 370 0 R +>> +>> +endobj +xref +0 423 +0000000000 65535 f +0000000015 00000 n +0000000145 00000 n +0000000197 00000 n +0000000249 00000 n +0000000302 00000 n +0000000354 00000 n +0000000406 00000 n +0000000458 00000 n +0000000510 00000 n +0000000562 00000 n +0000000615 00000 n +0000000668 00000 n +0000000721 00000 n +0000000774 00000 n +0000000827 00000 n +0000000880 00000 n +0000000933 00000 n +0000000986 00000 n +0000001039 00000 n +0000001092 00000 n +0000001145 00000 n +0000001198 00000 n +0000001251 00000 n +0000001304 00000 n +0000001357 00000 n +0000001410 00000 n +0000001463 00000 n +0000001516 00000 n +0000001569 00000 n +0000001622 00000 n +0000001675 00000 n +0000001728 00000 n +0000001781 00000 n +0000001834 00000 n +0000001887 00000 n +0000001940 00000 n +0000001993 00000 n +0000002046 00000 n +0000002099 00000 n +0000002152 00000 n +0000002206 00000 n +0000002260 00000 n +0000002314 00000 n +0000002367 00000 n +0000002420 00000 n +0000002474 00000 n +0000002527 00000 n +0000002580 00000 n +0000002633 00000 n +0000002686 00000 n +0000002739 00000 n +0000002792 00000 n +0000002845 00000 n +0000002898 00000 n +0000002951 00000 n +0000003004 00000 n +0000003057 00000 n +0000003110 00000 n +0000003163 00000 n +0000003216 00000 n +0000003269 00000 n +0000003322 00000 n +0000003375 00000 n +0000003428 00000 n +0000003481 00000 n +0000003534 00000 n +0000003587 00000 n +0000003640 00000 n +0000003693 00000 n +0000003746 00000 n +0000003799 00000 n +0000003852 00000 n +0000003905 00000 n +0000003958 00000 n +0000004011 00000 n +0000004064 00000 n +0000004117 00000 n +0000004170 00000 n +0000004223 00000 n +0000004276 00000 n +0000004329 00000 n +0000004383 00000 n +0000004437 00000 n +0000004491 00000 n +0000004544 00000 n +0000004597 00000 n +0000004651 00000 n +0000004704 00000 n +0000004757 00000 n +0000004810 00000 n +0000004863 00000 n +0000004916 00000 n +0000004969 00000 n +0000005022 00000 n +0000005075 00000 n +0000005128 00000 n +0000005181 00000 n +0000005234 00000 n +0000005287 00000 n +0000005340 00000 n +0000005394 00000 n +0000005448 00000 n +0000005502 00000 n +0000005556 00000 n +0000005610 00000 n +0000005664 00000 n +0000005718 00000 n +0000005772 00000 n +0000005826 00000 n +0000005880 00000 n +0000005934 00000 n +0000005988 00000 n +0000006042 00000 n +0000006096 00000 n +0000006150 00000 n +0000006204 00000 n +0000006258 00000 n +0000006312 00000 n +0000006366 00000 n +0000006420 00000 n +0000006474 00000 n +0000006528 00000 n +0000006583 00000 n +0000006638 00000 n +0000006693 00000 n +0000006747 00000 n +0000006801 00000 n +0000006856 00000 n +0000006910 00000 n +0000006964 00000 n +0000007018 00000 n +0000007072 00000 n +0000007126 00000 n +0000007180 00000 n +0000007234 00000 n +0000007288 00000 n +0000007342 00000 n +0000007396 00000 n +0000007450 00000 n +0000007504 00000 n +0000007558 00000 n +0000007612 00000 n +0000007666 00000 n +0000007720 00000 n +0000007774 00000 n +0000007828 00000 n +0000007882 00000 n +0000007936 00000 n +0000007990 00000 n +0000008044 00000 n +0000008098 00000 n +0000008152 00000 n +0000008206 00000 n +0000008260 00000 n +0000008314 00000 n +0000008368 00000 n +0000008422 00000 n +0000008476 00000 n +0000008530 00000 n +0000008584 00000 n +0000008638 00000 n +0000008692 00000 n +0000008746 00000 n +0000008801 00000 n +0000008856 00000 n +0000008911 00000 n +0000008965 00000 n +0000009019 00000 n +0000009074 00000 n +0000009128 00000 n +0000009182 00000 n +0000009236 00000 n +0000009290 00000 n +0000009344 00000 n +0000009398 00000 n +0000009452 00000 n +0000009506 00000 n +0000009560 00000 n +0000009614 00000 n +0000009668 00000 n +0000009722 00000 n +0000009776 00000 n +0000009830 00000 n +0000009884 00000 n +0000009938 00000 n +0000009992 00000 n +0000010046 00000 n +0000010100 00000 n +0000010154 00000 n +0000010208 00000 n +0000010262 00000 n +0000010316 00000 n +0000010370 00000 n +0000010424 00000 n +0000010478 00000 n +0000010532 00000 n +0000010586 00000 n +0000010640 00000 n +0000010694 00000 n +0000010748 00000 n +0000010802 00000 n +0000010856 00000 n +0000010910 00000 n +0000010964 00000 n +0000011019 00000 n +0000011074 00000 n +0000011129 00000 n +0000011183 00000 n +0000011237 00000 n +0000011292 00000 n +0000011346 00000 n +0000011400 00000 n +0000011454 00000 n +0000011508 00000 n +0000011562 00000 n +0000011616 00000 n +0000011670 00000 n +0000011724 00000 n +0000011778 00000 n +0000011832 00000 n +0000011886 00000 n +0000011940 00000 n +0000011994 00000 n +0000012048 00000 n +0000012102 00000 n +0000012156 00000 n +0000012210 00000 n +0000012264 00000 n +0000012318 00000 n +0000012372 00000 n +0000012426 00000 n +0000012480 00000 n +0000012534 00000 n +0000012588 00000 n +0000012642 00000 n +0000012696 00000 n +0000012750 00000 n +0000012804 00000 n +0000012858 00000 n +0000012912 00000 n +0000012966 00000 n +0000013020 00000 n +0000013074 00000 n +0000013128 00000 n +0000013182 00000 n +0000013237 00000 n +0000013292 00000 n +0000013347 00000 n +0000013401 00000 n +0000013455 00000 n +0000013510 00000 n +0000013564 00000 n +0000013618 00000 n +0000013672 00000 n +0000013726 00000 n +0000013780 00000 n +0000013834 00000 n +0000013888 00000 n +0000013942 00000 n +0000013996 00000 n +0000014050 00000 n +0000014104 00000 n +0000014158 00000 n +0000014212 00000 n +0000014266 00000 n +0000014320 00000 n +0000014374 00000 n +0000014428 00000 n +0000014482 00000 n +0000014536 00000 n +0000014590 00000 n +0000014644 00000 n +0000014698 00000 n +0000014752 00000 n +0000014806 00000 n +0000014860 00000 n +0000014914 00000 n +0000014968 00000 n +0000015022 00000 n +0000015076 00000 n +0000015130 00000 n +0000015184 00000 n +0000015238 00000 n +0000015292 00000 n +0000015346 00000 n +0000015400 00000 n +0000015455 00000 n +0000015510 00000 n +0000015565 00000 n +0000015619 00000 n +0000015673 00000 n +0000015728 00000 n +0000015782 00000 n +0000015836 00000 n +0000015890 00000 n +0000015944 00000 n +0000015998 00000 n +0000016052 00000 n +0000016106 00000 n +0000016160 00000 n +0000016214 00000 n +0000016268 00000 n +0000016322 00000 n +0000016376 00000 n +0000016430 00000 n +0000016484 00000 n +0000016538 00000 n +0000016592 00000 n +0000016646 00000 n +0000016700 00000 n +0000016754 00000 n +0000016808 00000 n +0000016862 00000 n +0000016916 00000 n +0000016970 00000 n +0000017024 00000 n +0000017078 00000 n +0000017132 00000 n +0000017186 00000 n +0000017240 00000 n +0000017294 00000 n +0000017348 00000 n +0000017402 00000 n +0000017456 00000 n +0000017510 00000 n +0000017564 00000 n +0000017618 00000 n +0000017673 00000 n +0000017728 00000 n +0000017783 00000 n +0000017837 00000 n +0000017891 00000 n +0000017946 00000 n +0000018000 00000 n +0000018054 00000 n +0000018108 00000 n +0000018162 00000 n +0000018216 00000 n +0000018270 00000 n +0000018324 00000 n +0000018378 00000 n +0000018432 00000 n +0000018486 00000 n +0000018540 00000 n +0000018594 00000 n +0000018648 00000 n +0000018702 00000 n +0000018756 00000 n +0000018810 00000 n +0000018864 00000 n +0000018918 00000 n +0000018972 00000 n +0000019026 00000 n +0000019080 00000 n +0000019134 00000 n +0000019188 00000 n +0000019242 00000 n +0000019296 00000 n +0000019350 00000 n +0000019404 00000 n +0000019458 00000 n +0000019512 00000 n +0000019566 00000 n +0000019620 00000 n +0000019674 00000 n +0000019728 00000 n +0000019782 00000 n +0000019836 00000 n +0000019891 00000 n +0000019946 00000 n +0000020001 00000 n +0000111631 00000 n +0000111654 00000 n +0000111681 00000 n +0000128586 00000 n +0000128447 00000 n +0000111879 00000 n +0000112134 00000 n +0000116885 00000 n +0000116863 00000 n +0000116983 00000 n +0000117003 00000 n +0000117488 00000 n +0000117162 00000 n +0000117912 00000 n +0000117933 00000 n +0000118189 00000 n +0000119832 00000 n +0000119810 00000 n +0000119922 00000 n +0000119942 00000 n +0000120333 00000 n +0000120102 00000 n +0000120646 00000 n +0000120667 00000 n +0000120919 00000 n +0000122331 00000 n +0000122309 00000 n +0000122418 00000 n +0000122437 00000 n +0000122828 00000 n +0000122597 00000 n +0000123140 00000 n +0000123161 00000 n +0000123413 00000 n +0000124985 00000 n +0000124963 00000 n +0000125076 00000 n +0000125096 00000 n +0000125487 00000 n +0000125256 00000 n +0000125799 00000 n +0000125820 00000 n +0000126076 00000 n +0000127612 00000 n +0000127590 00000 n +0000127703 00000 n +0000127723 00000 n +0000128114 00000 n +0000127883 00000 n +0000128426 00000 n +0000128509 00000 n +trailer +<< + /Root 422 0 R + /Info 1 0 R + /ID [<4F90C2DD460B3170959D9418B225DA78> <4F90C2DD460B3170959D9418B225DA78>] + /Size 423 +>> +startxref +134821 +%%EOF diff --git a/figs/detail_control_coupled_plant_bode.png b/figs/detail_control_coupled_plant_bode.png new file mode 100644 index 0000000..82c27ce Binary files /dev/null and b/figs/detail_control_coupled_plant_bode.png differ diff --git a/figs/detail_control_decoupling_modal.pdf b/figs/detail_control_decoupling_modal.pdf new file mode 100644 index 0000000..96da22e Binary files /dev/null and b/figs/detail_control_decoupling_modal.pdf differ diff --git a/figs/detail_control_decoupling_modal.png b/figs/detail_control_decoupling_modal.png new file mode 100644 index 0000000..4cdf800 Binary files /dev/null and b/figs/detail_control_decoupling_modal.png differ diff --git a/figs/detail_control_decoupling_modal.svg b/figs/detail_control_decoupling_modal.svg new file mode 100644 index 0000000..a891633 --- /dev/null +++ b/figs/detail_control_decoupling_modal.svg @@ -0,0 +1,114 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/figs/detail_control_decoupling_svd.pdf b/figs/detail_control_decoupling_svd.pdf new file mode 100644 index 0000000..7ca6987 Binary files /dev/null and b/figs/detail_control_decoupling_svd.pdf differ diff --git a/figs/detail_control_decoupling_svd.png b/figs/detail_control_decoupling_svd.png new file mode 100644 index 0000000..edf0270 Binary files /dev/null and b/figs/detail_control_decoupling_svd.png differ diff --git a/figs/detail_control_decoupling_svd.svg b/figs/detail_control_decoupling_svd.svg new file mode 100644 index 0000000..eecfdb5 --- /dev/null +++ b/figs/detail_control_decoupling_svd.svg @@ -0,0 +1,120 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/figs/detail_control_jacobian_decoupling_arch.pdf b/figs/detail_control_jacobian_decoupling_arch.pdf new file mode 100644 index 0000000..a5db299 Binary files /dev/null and b/figs/detail_control_jacobian_decoupling_arch.pdf differ diff --git a/figs/detail_control_jacobian_decoupling_arch.png b/figs/detail_control_jacobian_decoupling_arch.png new file mode 100644 index 0000000..8ad245a Binary files /dev/null and b/figs/detail_control_jacobian_decoupling_arch.png differ diff --git a/figs/detail_control_jacobian_decoupling_arch.svg b/figs/detail_control_jacobian_decoupling_arch.svg new file mode 100644 index 0000000..104e1ef --- /dev/null +++ b/figs/detail_control_jacobian_decoupling_arch.svg @@ -0,0 +1,148 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/figs/detail_control_jacobian_plant.pdf b/figs/detail_control_jacobian_plant.pdf new file mode 100644 index 0000000..a846747 Binary files /dev/null and b/figs/detail_control_jacobian_plant.pdf differ diff --git a/figs/detail_control_jacobian_plant.png b/figs/detail_control_jacobian_plant.png new file mode 100644 index 0000000..366e6f4 Binary files /dev/null and b/figs/detail_control_jacobian_plant.png differ diff --git a/figs/detail_control_modal_plant.pdf b/figs/detail_control_modal_plant.pdf new file mode 100644 index 0000000..3b87b84 Binary files /dev/null and b/figs/detail_control_modal_plant.pdf differ diff --git a/figs/detail_control_modal_plant.png b/figs/detail_control_modal_plant.png new file mode 100644 index 0000000..1a155b3 Binary files /dev/null and b/figs/detail_control_modal_plant.png differ diff --git a/figs/detail_control_model_test_decoupling.pdf b/figs/detail_control_model_test_decoupling.pdf new file mode 100644 index 0000000..7d9035e Binary files /dev/null and b/figs/detail_control_model_test_decoupling.pdf differ diff --git a/figs/detail_control_model_test_decoupling.png b/figs/detail_control_model_test_decoupling.png new file mode 100644 index 0000000..a6a18d8 Binary files /dev/null and b/figs/detail_control_model_test_decoupling.png differ diff --git a/figs/detail_control_model_test_decoupling.svg b/figs/detail_control_model_test_decoupling.svg new file mode 100644 index 0000000..0143485 --- /dev/null +++ b/figs/detail_control_model_test_decoupling.svg @@ -0,0 +1,2906 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/figs/detail_control_svd_plant.pdf b/figs/detail_control_svd_plant.pdf new file mode 100644 index 0000000..c1d6cd7 Binary files /dev/null and b/figs/detail_control_svd_plant.pdf differ diff --git a/figs/detail_control_svd_plant.png b/figs/detail_control_svd_plant.png new file mode 100644 index 0000000..f9906f3 Binary files /dev/null and b/figs/detail_control_svd_plant.png differ diff --git a/figs/detail_control_weights_W1_W2.pdf b/figs/detail_control_weights_W1_W2.pdf index 0bf8529..0317631 100644 Binary files a/figs/detail_control_weights_W1_W2.pdf and b/figs/detail_control_weights_W1_W2.pdf differ diff --git a/figs/detail_control_weights_W1_W2.png b/figs/detail_control_weights_W1_W2.png index ef8835a..5a2a1e7 100644 Binary files a/figs/detail_control_weights_W1_W2.png and b/figs/detail_control_weights_W1_W2.png differ diff --git a/nass-control.org b/nass-control.org index 69f0797..eed7f12 100644 --- a/nass-control.org +++ b/nass-control.org @@ -153,6 +153,7 @@ file:~/Cloud/research/papers/dehaeze20_virtu_senso_fusio/index.org SCHEDULED: <2025-04-03 Thu> file:~/Cloud/research/matlab/decoupling-strategies/svd-control.org +Especially [[file:~/Cloud/research/matlab/decoupling-strategies/svd-control.org::*SVD / Jacobian / Model decoupling comparison][SVD / Jacobian / Model decoupling comparison]] - [ ] Copy Content - [ ] Copy Tikz figures @@ -1128,8 +1129,6 @@ W2 = generateWF('n', 2, 'w0', 2*pi*10, 'G0', 1/10, 'Ginf', 1000, 'Gc', 0.45); #+begin_src matlab :exports none :results none %% description figure; -tiledlayout(1, 1, 'TileSpacing', 'None', 'Padding', 'None'); -ax1 = nexttile(); hold on; set(gca,'ColorOrderIndex',1) plot(freqs, 1./abs(squeeze(freqresp(W1, freqs, 'Hz'))), '--', 'DisplayName', '$|W_1|^{-1}$'); @@ -1893,7 +1892,7 @@ Several examples were used to emphasize the simplicity and the effectiveness of However, the shaping of the complementary filters' magnitude does not allow to directly optimize the super sensor noise and dynamical characteristics. Future work will aim at developing a complementary filter synthesis method that minimizes the super sensor noise while ensuring the robustness of the fusion. -* Decoupling Strategies +* Decoupling :PROPERTIES: :HEADER-ARGS:matlab+: :tangle matlab/detail_control_2_decoupling.m :END: @@ -1901,6 +1900,8 @@ Future work will aim at developing a complementary filter synthesis method that ** Introduction :ignore: +- [ ] Add some citations about different methods + # *This report is based on*: # - file:~/Cloud/research/matlab/decoupling-strategies/svd-control.org # - [X] Maybe not relevant, as it is experimental results based on the Stewart platform file:/home/thomas/Cloud/meetings/group-meetings-me/2021-08-16-Nano-Hexapod-Control/2021-08-16-Nano-Hexapod-Control.org @@ -1915,10 +1916,15 @@ Assumptions: Review of decoupling strategies for Stewart platforms: - [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org::*Decoupling Strategies][Decoupling Strategies]] +The goal of this section is to compare the use of several methods for the decoupling of parallel manipulators. -- [ ] What example should be taken? - *3dof system*? stewart platform? - Maybe simpler. +It is structured as follow: +- Section ref:ssec:detail_control_decoupling_comp_model: the model used to compare/test decoupling strategies is presented +- Section ref:ssec:detail_control_comp_jacobian: decoupling using Jacobian matrices is presented +- Section ref:ssec:detail_control_comp_modal: modal decoupling is presented +- Section ref:ssec:detail_control_comp_svd: SVD decoupling is presented +- Section ref:ssec:detail_control_decoupling_comp: the three decoupling methods are applied on the test model and compared +- Conclusions are drawn on the three decoupling methods ** Matlab Init :noexport:ignore: #+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name) @@ -1941,28 +1947,839 @@ Review of decoupling strategies for Stewart platforms: <> #+end_src -** Interaction Analysis +** Test Model +<> -** Decentralized Control (actuator frame) +Let's consider a parallel manipulator with several collocated actuator/sensors pairs. -** Center of Stiffness and center of Mass +System in Figure ref:fig:detail_control_model_test_decoupling will serve as an example. -- Example -- Show +We will note: +- $b_i$: location of the joints on the top platform +- $\hat{s}_i$: unit vector corresponding to the struts direction +- $k_i$: stiffness of the struts +- $\tau_i$: actuator forces +- $O_M$: center of mass of the solid body +- $\mathcal{L}_i$: relative displacement of the struts + +#+name: fig:detail_control_model_test_decoupling +#+caption: Model use to compare decoupling techniques +[[file:figs/detail_control_model_test_decoupling.png]] + +#+begin_src matlab +%% System parameters +l = 1.0; % Length of the mass [m] +h = 2*1.7; % Height of the mass [m] + +la = l/2; % Position of Act. [m] +ha = h/2; % Position of Act. [m] + +m = 400; % Mass [kg] +I = 115; % Inertia [kg m^2] + +%% Actuator Damping [N/(m/s)] +c1 = 2e1; +c2 = 2e1; +c3 = 2e1; + +%% Actuator Stiffness [N/m] +k1 = 15e3; +k2 = 15e3; +k3 = 15e3; + +%% Unit vectors of the actuators +s1 = [1;0]; +s2 = [0;1]; +s3 = [0;1]; + +%% Location of the joints +Mb1 = [-l/2;-ha]; +Mb2 = [-la; -h/2]; +Mb3 = [ la; -h/2]; + +%% Jacobian matrix +J = [s1', Mb1(1)*s1(2)-Mb1(2)*s1(1); + s2', Mb2(1)*s2(2)-Mb2(2)*s2(1); + s3', Mb3(1)*s3(2)-Mb3(2)*s3(1)]; + +%% Stiffnesss and Damping matrices of the struts +Kr = diag([k1,k2,k3]); +Cr = diag([c1,c2,c3]); + +%% Mass Matrix in frame {M} +M = diag([m,m,I]); + +%% Stiffness Matrix in frame {M} +K = J'*Kr*J; + +%% Damping Matrix in frame {M} +C = J'*Cr*J; + +%% Plant in frame {M} +G = J*inv(M*s^2 + C*s + K)*J'; +#+end_src + +The magnitude of the coupled plant $G$ is shown in Figure ref:fig:detail_control_coupled_plant_bode. + +#+begin_src matlab :exports none +figure; +tiledlayout(3, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); + +for out_i = 1:3 + for in_i = 1:3 + nexttile; + plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), 'k-', ... + 'DisplayName', sprintf('$\\mathcal{L}_%i/\\tau_%i$', out_i, in_i)); + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlim([1e-1, 2e1]); ylim([1e-6, 1e-2]); + legend('location', 'northeast', 'FontSize', 8); + + if in_i == 1 + ylabel('Mag. [m/N]') + else + set(gca, 'YTickLabel',[]); + end + + if out_i == 3 + xlabel('Frequency [Hz]') + else + set(gca, 'XTickLabel',[]); + end + end +end +#+end_src + +#+begin_src matlab :tangle no :exports results :results file replace +exportFig('figs/detail_control_coupled_plant_bode.pdf', 'width', 'full', 'height', 'tall'); +#+end_src + +#+name: fig:detail_control_coupled_plant_bode +#+caption: Magnitude of the coupled plant. +#+RESULTS: +[[file:figs/detail_control_coupled_plant_bode.png]] + +** Decentralized Plant / Control in the frame of the struts +** Jacobian Decoupling +<> + +The Jacobian matrix can be used to: +- Convert joints velocity $\dot{\mathcal{L}}$ to payload velocity and angular velocity $\dot{\bm{\mathcal{X}}}_{\{O\}}$: + \[ \dot{\bm{\mathcal{X}}}_{\{O\}} = J_{\{O\}} \dot{\bm{\mathcal{L}}} \] +- Convert actuators forces $\bm{\tau}$ to forces/torque applied on the payload $\bm{\mathcal{F}}_{\{O\}}$: + \[ \bm{\mathcal{F}}_{\{O\}} = J_{\{O\}}^T \bm{\tau} \] +with $\{O\}$ any chosen frame. + +By wisely choosing frame $\{O\}$, we can obtain nice decoupling for plant: +\begin{equation} + \bm{G}_{\{O\}} = J_{\{O\}}^{-1} \bm{G} J_{\{O\}}^{-T} +\end{equation} + +The obtained plan corresponds to forces/torques applied on origin of frame $\{O\}$ to the translation/rotation of the payload expressed in frame $\{O\}$. + +#+begin_src latex :file detail_control_jacobian_decoupling_arch.pdf +\begin{tikzpicture} + \node[block] (G) {$\bm{G}$}; + \node[block, left=0.6 of G] (Jt) {$J_{\{O\}}^{-T}$}; + \node[block, right=0.6 of G] (Ja) {$J_{\{O\}}^{-1}$}; + + % Connections and labels + \draw[<-] (Jt.west) -- ++(-1.2, 0) node[above right]{$\bm{\mathcal{F}}_{\{O\}}$}; + \draw[->] (Jt.east) -- (G.west) node[above left]{$\bm{\tau}$}; + \draw[->] (G.east) -- (Ja.west) node[above left]{$\bm{\mathcal{L}}$}; + \draw[->] (Ja.east) -- ++( 1.2, 0) node[above left]{$\bm{\mathcal{X}}_{\{O\}}$}; + + \begin{scope}[on background layer] + \node[fit={(Jt.south west) (Ja.north east)}, fill=black!10!white, draw, dashed, inner sep=4pt] (Gx) {}; + \node[above] at (Gx.north) {$\bm{G}_{\{O\}}$}; + \end{scope} +\end{tikzpicture} +#+end_src + +#+name: fig:detail_control_jacobian_decoupling_arch +#+caption: Block diagram of the transfer function from $\bm{\mathcal{F}}_{\{O\}}$ to $\bm{\mathcal{X}}_{\{O\}}$ +#+RESULTS: +[[file:figs/detail_control_jacobian_decoupling_arch.png]] + +The Jacobian matrix is only based on the geometry of the system and does not depend on the physical properties such as mass and stiffness. + +The inputs and outputs of the decoupled plant $\bm{G}_{\{O\}}$ have physical meaning: +- $\bm{\mathcal{F}}_{\{O\}}$ are forces/torques applied on the payload at the origin of frame $\{O\}$ +- $\bm{\mathcal{X}}_{\{O\}}$ are translations/rotation of the payload expressed in frame $\{O\}$ + +It is then easy to include a reference tracking input that specify the wanted motion of the payload in the frame $\{O\}$. ** Modal Decoupling +<> -** Data Based Decoupling +Let's consider a system with the following equations of motion: +\begin{equation} +M \bm{\ddot{x}} + C \bm{\dot{x}} + K \bm{x} = \bm{\mathcal{F}} +\end{equation} -- Static decoupling -- SVD +And the measurement output is a combination of the motion variable $\bm{x}$: +\begin{equation} +\bm{y} = C_{ox} \bm{x} + C_{ov} \dot{\bm{x}} +\end{equation} + +Let's make a *change of variables*: +\begin{equation} +\boxed{\bm{x} = \Phi \bm{x}_m} +\end{equation} +with: +- $\bm{x}_m$ the modal amplitudes +- $\Phi$ a matrix whose columns are the modes shapes of the system + +And we map the actuator forces: +\begin{equation} +\bm{\mathcal{F}} = J^T \bm{\tau} +\end{equation} + +The equations of motion become: +\begin{equation} +M \Phi \bm{\ddot{x}}_m + C \Phi \bm{\dot{x}}_m + K \Phi \bm{x}_m = J^T \bm{\tau} +\end{equation} +And the measured output is: +\begin{equation} +\bm{y} = C_{ox} \Phi \bm{x}_m + C_{ov} \Phi \dot{\bm{x}}_m +\end{equation} + +By pre-multiplying the EoM by $\Phi^T$: +\begin{equation} +\Phi^T M \Phi \bm{\ddot{x}}_m + \Phi^T C \Phi \bm{\dot{x}}_m + \Phi^T K \Phi \bm{x}_m = \Phi^T J^T \bm{\tau} +\end{equation} + +And we note: +- $M_m = \Phi^T M \Phi = \text{diag}(\mu_i)$ the modal mass matrix +- $C_m = \Phi^T C \Phi = \text{diag}(2 \xi_i \mu_i \omega_i)$ (classical damping) +- $K_m = \Phi^T K \Phi = \text{diag}(\mu_i \omega_i^2)$ the modal stiffness matrix + +And we have: +\begin{equation} + \ddot{\bm{x}}_m + 2 \Xi \Omega \dot{\bm{x}}_m + \Omega^2 \bm{x}_m = \mu^{-1} \Phi^T J^T \bm{\tau} +\end{equation} +with: +- $\mu = \text{diag}(\mu_i)$ +- $\Omega = \text{diag}(\omega_i)$ +- $\Xi = \text{diag}(\xi_i)$ + +And we call the *modal input matrix*: +\begin{equation} + \boxed{B_m = \mu^{-1} \Phi^T J^T} +\end{equation} +And the *modal output matrices*: +\begin{equation} + \boxed{C_m = C_{ox} \Phi + C_{ov} \Phi s} +\end{equation} + + +Let's note the "modal input": +\begin{equation} +\bm{\tau}_m = B_m \bm{\tau} +\end{equation} + +The transfer function from $\bm{\tau}_m$ to $\bm{x}_m$ is: +\begin{equation} \label{eq:modal_eq} +\boxed{\frac{\bm{x}_m}{\bm{\tau}_m} = \left( I_n s^2 + 2 \Xi \Omega s + \Omega^2 \right)^{-1}} +\end{equation} +which is a *diagonal* transfer function matrix. +We therefore have decoupling of the dynamics from $\bm{\tau}_m$ to $\bm{x}_m$. + + +We now expressed the transfer function from input $\bm{\tau}$ to output $\bm{y}$ as a function of the "modal variables": +\begin{equation} + \boxed{\frac{\bm{y}}{\bm{\tau}} = \underbrace{\left( C_{ox} + s C_{ov} \right) \Phi}_{C_m} \underbrace{\left( I_n s^2 + 2 \Xi \Omega s + \Omega^2 \right)^{-1}}_{\text{diagonal}} \underbrace{\left( \mu^{-1} \Phi^T J^T \right)}_{B_m}} +\end{equation} + +By inverting $B_m$ and $C_m$ and using them as shown in Figure ref:fig:modal_decoupling_architecture, we can see that we control the system in the "modal space" in which it is decoupled. + +#+begin_src latex :file detail_control_decoupling_modal.pdf +\begin{tikzpicture} + \node[block] (G) {$\bm{G}$}; + \node[block, left=0.6 of G] (Bm) {$B_m^{-1}$}; + \node[block, right=0.6 of G] (Cm) {$C_m^{-1}$}; + + % Connections and labels + \draw[<-] (Bm.west) -- ++(-1.0, 0) node[above right]{$\bm{\tau}_m$}; + \draw[->] (Bm.east) -- (G.west) node[above left]{$\bm{\tau}$}; + \draw[->] (G.east) -- (Cm.west) node[above left]{$\bm{y}$}; + \draw[->] (Cm.east) -- ++( 1.0, 0) node[above left]{$\bm{x}_m$}; + + \begin{scope}[on background layer] + \node[fit={(Bm.south west) (Cm.north east)}, fill=black!10!white, draw, dashed, inner sep=4pt] (Gm) {}; + \node[above] at (Gm.north) {$\bm{G}_m$}; + \end{scope} +\end{tikzpicture} +#+end_src + +#+name: fig:modal_decoupling_architecture +#+caption: Modal Decoupling Architecture +#+RESULTS: +[[file:figs/detail_control_decoupling_modal.png]] + +The system $\bm{G}_m(s)$ shown in Figure ref:fig:modal_decoupling_architecture is diagonal eqref:eq:modal_eq. + +Modal decoupling requires to have the equations of motion of the system. +From the equations of motion (and more precisely the mass and stiffness matrices), the mode shapes $\Phi$ are computed. + +Then, the system can be decoupled in the modal space. +The obtained system on the diagonal are second order resonant systems which can be easily controlled. + +Using this decoupling strategy, it is possible to control each mode individually. + +** SVD Decoupling +<> + +Procedure: +- Identify the dynamics of the system from inputs to outputs (can be obtained experimentally) +- Choose a frequency where we want to decouple the system (usually, the crossover frequency is a good choice) +#+begin_src matlab :eval no +%% Decoupling frequency [rad/s] +wc = 2*pi*10; + +%% System's response at the decoupling frequency +H1 = evalfr(G, j*wc); +#+end_src +- Compute a real approximation of the system's response at that frequency +#+begin_src matlab :eval no +%% Real approximation of G(j.wc) +D = pinv(real(H1'*H1)); +H1 = pinv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2)))); +#+end_src +- Perform a Singular Value Decomposition of the real approximation +#+begin_src matlab :eval no +[U,S,V] = svd(H1); +#+end_src +- Use the singular input and output matrices to decouple the system as shown in Figure ref:fig:detail_control_decoupling_svd + \[ G_{svd}(s) = U^{-1} G(s) V^{-T} \] +#+begin_src matlab :eval no +Gsvd = inv(U)*G*inv(V'); +#+end_src + +#+begin_src latex :file detail_control_decoupling_svd.pdf +\begin{tikzpicture} + \node[block] (G) {$\bm{G}$}; + + \node[block, left=0.6 of G.west] (V) {$V^{-T}$}; + \node[block, right=0.6 of G.east] (U) {$U^{-1}$}; + + % Connections and labels + \draw[<-] (V.west) -- ++(-0.8, 0) node[above right]{$u$}; + \draw[->] (V.east) -- (G.west) node[above left]{$\tau$}; + \draw[->] (G.east) -- (U.west) node[above left]{$a$}; + \draw[->] (U.east) -- ++( 0.8, 0) node[above left]{$y$}; + + \begin{scope}[on background layer] + \node[fit={(V.south west) (G.north-|U.east)}, fill=black!10!white, draw, dashed, inner sep=4pt] (Gsvd) {}; + \node[above] at (Gsvd.north) {$\bm{G}_{SVD}$}; + \end{scope} +\end{tikzpicture} +#+end_src + +#+name: fig:detail_control_decoupling_svd +#+caption: Decoupled plant $\bm{G}_{SVD}$ using the Singular Value Decomposition +#+RESULTS: +[[file:figs/detail_control_decoupling_svd.png]] + +In order to apply the Singular Value Decomposition, we need to have the Frequency Response Function of the system, at least near the frequency where we wish to decouple the system. +The FRF can be experimentally obtained or based from a model. + +This method ensure good decoupling near the chosen frequency, but no guaranteed decoupling away from this frequency. + +Also, it depends on how good the real approximation of the FRF is, therefore it might be less good for plants with high damping. + +This method is quite general and can be applied to any type of system. +The inputs and outputs are ordered from higher gain to lower gain at the chosen frequency. + +- [ ] Do we loose any physical meaning of the obtained inputs and outputs? +- [ ] Can we take advantage of the fact that U and V are unitary? + +** Comparison +<> +*** Jacobian Decoupling +Decoupling properties depends on the chosen frame $\{O\}$. + +Let's take the CoM as the decoupling frame. + +#+begin_src matlab +Gx = pinv(J)*G*pinv(J'); +Gx.InputName = {'Fx', 'Fy', 'Mz'}; +Gx.OutputName = {'Dx', 'Dy', 'Rz'}; +#+end_src + +#+begin_src matlab :exports none +freqs = logspace(-1, 2, 1000); +figure; + +% Magnitude +hold on; +for i_in = 1:3 + for i_out = [i_in+1:3] + plot(freqs, abs(squeeze(freqresp(Gx(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... + 'HandleVisibility', 'off'); + end +end +plot(freqs, abs(squeeze(freqresp(Gx(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... + 'DisplayName', '$G_{x}(i,j)\ i \neq j$'); +set(gca,'ColorOrderIndex',1) +for i_in_out = 1:3 + plot(freqs, abs(squeeze(freqresp(Gx(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_{x}(%d,%d)$', i_in_out, i_in_out)); +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); ylabel('Magnitude'); +ylim([1e-7, 1e-1]); +legend('location', 'northeast'); +#+end_src + +#+begin_src matlab :tangle no :exports results :results file replace +exportFig('figs/detail_control_jacobian_plant.pdf', 'width', 'wide', 'height', 'normal'); +#+end_src + +#+name: fig:detail_control_jacobian_plant +#+caption: Plant decoupled using the Jacobian matrices $G_x(s)$ +#+RESULTS: +[[file:figs/detail_control_jacobian_plant.png]] + +*** Modal Decoupling +For the system in Figure ref:fig:detail_control_model_test_decoupling, we have: +\begin{align} +\bm{x} &= \begin{bmatrix} x \\ y \\ R_z \end{bmatrix} \\ +\bm{y} &= \mathcal{L} = J \bm{x}; \quad C_{ox} = J; \quad C_{ov} = 0 \\ +M &= \begin{bmatrix} +m & 0 & 0 \\ +0 & m & 0 \\ +0 & 0 & I +\end{bmatrix}; \quad K = J' \begin{bmatrix} +k & 0 & 0 \\ +0 & k & 0 \\ +0 & 0 & k +\end{bmatrix} J; \quad C = J' \begin{bmatrix} +c & 0 & 0 \\ +0 & c & 0 \\ +0 & 0 & c +\end{bmatrix} J +\end{align} + +In order to apply the architecture shown in Figure ref:fig:modal_decoupling_architecture, we need to compute $C_{ox}$, $C_{ov}$, $\Phi$, $\mu$ and $J$. + +#+begin_src matlab +%% Modal Decomposition +[V,D] = eig(M\K); + +%% Modal Mass Matrix +mu = V'*M*V; + +%% Modal output matrix +Cm = J*V; + +%% Modal input matrix +Bm = inv(mu)*V'*J'; +#+end_src + +#+begin_src matlab :exports results :results value table replace :tangle no +data2orgtable(Bm, {}, {}, ' %.4f '); +#+end_src + +#+name: tab:modal_decoupling_Bm +#+caption: $B_m$ matrix +#+attr_latex: :environment tabularx :width 0.3\linewidth :align ccc +#+attr_latex: :center t :booktabs t :float t +#+RESULTS: +| -0.0004 | -0.0007 | 0.0007 | +| -0.0151 | 0.0041 | -0.0041 | +| 0.0 | 0.0025 | 0.0025 | + +#+begin_src matlab :exports results :results value table replace :tangle no +data2orgtable(Cm, {}, {}, ' %.1f '); +#+end_src + +#+name: tab:modal_decoupling_Cm +#+caption: $C_m$ matrix +#+attr_latex: :environment tabularx :width 0.2\linewidth :align ccc +#+attr_latex: :center t :booktabs t :float t +#+RESULTS: +| -0.1 | -1.8 | 0.0 | +| -0.2 | 0.5 | 1.0 | +| 0.2 | -0.5 | 1.0 | + +And the plant in the modal space is defined below and its magnitude is shown in Figure ref:fig:detail_control_modal_plant. +#+begin_src matlab +Gm = inv(Cm)*G*inv(Bm); +#+end_src + +#+begin_src matlab :exports none +freqs = logspace(-1, 2, 1000); +figure; + +% Magnitude +hold on; +for i_in = 1:3 + for i_out = [i_in+1:3] + plot(freqs, abs(squeeze(freqresp(Gm(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... + 'HandleVisibility', 'off'); + end +end +plot(freqs, abs(squeeze(freqresp(Gm(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... + 'DisplayName', '$G_m(i,j)\ i \neq j$'); +set(gca,'ColorOrderIndex',1) +for i_in_out = 1:3 + plot(freqs, abs(squeeze(freqresp(Gm(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_m(%d,%d)$', i_in_out, i_in_out)); +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); ylabel('Magnitude'); +ylim([1e-6, 1e2]); +legend('location', 'northeast'); +#+end_src + +#+begin_src matlab :tangle no :exports results :results file replace +exportFig('figs/detail_control_modal_plant.pdf', 'width', 'wide', 'height', 'normal'); +#+end_src + +#+name: fig:detail_control_modal_plant +#+caption: Modal plant $G_m(s)$ +#+RESULTS: +[[file:figs/detail_control_modal_plant.png]] + +Let's now close one loop at a time and see how the transmissibility changes. + +*** SVD Decoupling +#+begin_src matlab +%% Decoupling frequency [rad/s] +wc = 2*pi*10; + +%% System's response at the decoupling frequency +H1 = evalfr(G, j*wc); + +%% Real approximation of G(j.wc) +D = pinv(real(H1'*H1)); +H1 = pinv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2)))); + +[U,S,V] = svd(H1); + +Gsvd = inv(U)*G*inv(V'); +#+end_src + +#+begin_src matlab :exports results :results value table replace :tangle no +data2orgtable(H1, {}, {}, ' %.2g '); +#+end_src + +#+caption: Real approximate of $G$ at the decoupling frequency $\omega_c$ +#+attr_latex: :environment tabularx :width 0.3\linewidth :align ccc +#+attr_latex: :center t :booktabs t :float t +#+RESULTS: +| -8e-06 | 2.1e-06 | -2.1e-06 | +| 2.1e-06 | -1.3e-06 | -2.5e-08 | +| -2.1e-06 | -2.5e-08 | -1.3e-06 | + +- [ ] Do we have something special when applying SVD to a collocated MIMO system? +- *Verify why such a good decoupling is obtained!* +# - When applying SVD on a non-collocated MIMO system, we obtained a decoupled plant looking like the one in Figure ref:fig:detail_control_gravimeter_svd_plant + +#+begin_src matlab :exports none +freqs = logspace(-1, 2, 1000); +figure; + +% Magnitude +hold on; +for i_in = 1:3 + for i_out = [i_in+1:3] + plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... + 'HandleVisibility', 'off'); + end +end +plot(freqs, abs(squeeze(freqresp(Gsvd(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... + 'DisplayName', '$G_{svd}(i,j)\ i \neq j$'); +set(gca,'ColorOrderIndex',1) +for i_in_out = 1:3 + plot(freqs, abs(squeeze(freqresp(Gsvd(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_{svd}(%d,%d)$', i_in_out, i_in_out)); +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); ylabel('Magnitude'); +% ylim([1e-8, 1e-2]); +legend('location', 'northeast'); +#+end_src + +#+begin_src matlab :tangle no :exports results :results file replace +exportFig('figs/detail_control_svd_plant.pdf', 'width', 'wide', 'height', 'normal'); +#+end_src + +#+name: fig:detail_control_svd_plant +#+caption: Svd plant $G_m(s)$ +#+RESULTS: +[[file:figs/detail_control_svd_plant.png]] + +** TODO Robustness of the decoupling strategies? :noexport: +*** Introduction :ignore: +What happens if we add an additional resonance in the system (Figure ref:fig:model_test_decoupling_spurious_res). + +Having less actuator than DoF (under-actuated system): +- modal decoupling: can still control first $n$ modes? +- SVD decoupling: does not matter +- Jacobian decoupling: could give poor decoupling? + +#+name: fig:model_test_decoupling_spurious_res +#+caption: Plant with spurious resonance (additional DoF) +[[file:figs/model_test_decoupling_spurious_res.png]] + +*** Plant +A multi body model of the system in Figure ref:fig:model_test_decoupling_spurious_res has been made using Simscape. + +Its parameters are defined below: +#+begin_src matlab +leq = 20e-3; % Equilibrium length of struts [m] +mr = 5; % [kg] +kr = (2*pi*10)^2*mr; % Stiffness [N/m] +cr = 1e1; % Damping [N/(m/s)] + +m = 400 - mr; % Mass [kg] +#+end_src + +The plant is then identified and shown in Figure ref:fig:detail_control_coupled_plant_bode_spurious. +The added resonance only slightly modifies the plant around 10Hz. +#+begin_src matlab :exports none +%% Name of the Simulink File +mdl = 'suspended_mass'; + +%% Input/Output definition +clear io; io_i = 1; +io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; +io(io_i) = linio([mdl, '/dL'], 1, 'openoutput'); io_i = io_i + 1; + +Gr = linearize(mdl, io); +Gr.InputName = {'F1', 'F2', 'F3'}; +Gr.OutputName = {'L1', 'L2', 'L3'}; +#+end_src + +#+begin_src matlab :exports none +figure; +tiledlayout(3, 3, 'TileSpacing', 'Compact', 'Padding', 'None'); + +for out_i = 1:3 + for in_i = 1:3 + nexttile; + hold on; + plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), 'k-', ... + 'DisplayName', sprintf('$\\mathcal{L}_%i/\\tau_%i$', out_i, in_i)); + plot(freqs, abs(squeeze(freqresp(Gr(out_i,in_i), freqs, 'Hz'))), 'k--', ... + 'HandleVisibility', 'off'); + hold off; + set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); + xlim([1e-1, 2e1]); ylim([1e-6, 1e-2]); + legend('location', 'northeast', 'FontSize', 8); + + if in_i == 1 + ylabel('Mag. [m/N]') + else + set(gca, 'YTickLabel',[]); + end + + if out_i == 3 + xlabel('Frequency [Hz]') + else + set(gca, 'XTickLabel',[]); + end + end +end +#+end_src + +#+begin_src matlab :tangle no :exports results :results file replace +exportFig('figs/detail_control_coupled_plant_bode_spurious.pdf', 'width', 'full', 'height', 'tall'); +#+end_src + +#+name: fig:detail_control_coupled_plant_bode_spurious +#+caption: Magnitude of the coupled plant without additional mode (solid) and with the additional mode (dashed). +#+RESULTS: +[[file:figs/detail_control_coupled_plant_bode_spurious.png]] + +*** Jacobian Decoupling +The obtained plant is decoupled using the Jacobian matrix. + +#+begin_src matlab +Gxr = pinv(J)*Gr*pinv(J'); +Gxr.InputName = {'Fx', 'Fy', 'Mz'}; +Gxr.OutputName = {'Dx', 'Dy', 'Rz'}; +#+end_src + +The obtained plant is shown in Figure ref:fig:detail_control_jacobian_plant_spurious and is not much different than for the plant without the spurious resonance. +#+begin_src matlab :exports none +freqs = logspace(-1, 2, 1000); +figure; + +% Magnitude +hold on; +for i_in = 1:3 + for i_out = [i_in+1:3] + plot(freqs, abs(squeeze(freqresp(Gxr(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... + 'HandleVisibility', 'off'); + end +end +plot(freqs, abs(squeeze(freqresp(Gxr(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... + 'DisplayName', '$G_{x,r}(i,j)\ i \neq j$'); +set(gca,'ColorOrderIndex',1) +for i_in_out = 1:3 + plot(freqs, abs(squeeze(freqresp(Gxr(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_{x,r}(%d,%d)$', i_in_out, i_in_out)); +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); ylabel('Magnitude'); +ylim([1e-7, 1e-1]); +legend('location', 'northeast'); +#+end_src + +#+begin_src matlab :tangle no :exports results :results file replace +exportFig('figs/detail_control_jacobian_plant_spurious.pdf', 'width', 'wide', 'height', 'normal'); +#+end_src + +#+name: fig:detail_control_jacobian_plant_spurious +#+caption: Plant with spurious resonance decoupled using the Jacobian matrices $G_{x,r}(s)$ +#+RESULTS: +[[file:figs/detail_control_jacobian_plant_spurious.png]] + +*** Modal Decoupling +The obtained plant is now decoupled using the modal matrices obtained with the plant not including the added resonance. +#+begin_src matlab +Gmr = inv(Cm)*Gr*inv(Bm); +#+end_src + +The obtained decoupled plant is shown in Figure ref:fig:detail_control_modal_plant_spurious. +Compare to the decoupled plant in Figure ref:fig:detail_control_modal_plant, the added resonance induces some coupling, especially around the frequency of the added spurious resonance. +#+begin_src matlab :exports none +freqs = logspace(-1, 2, 1000); +figure; + +% Magnitude +hold on; +for i_in = 1:3 + for i_out = [i_in+1:3] + plot(freqs, abs(squeeze(freqresp(Gmr(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... + 'HandleVisibility', 'off'); + end +end +plot(freqs, abs(squeeze(freqresp(Gmr(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... + 'DisplayName', '$G_{m,r}(i,j)\ i \neq j$'); +set(gca,'ColorOrderIndex',1) +for i_in_out = 1:3 + plot(freqs, abs(squeeze(freqresp(Gmr(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_{m,r}(%d,%d)$', i_in_out, i_in_out)); +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); ylabel('Magnitude'); +ylim([1e-6, 1e2]); +legend('location', 'northeast'); +#+end_src + +#+begin_src matlab :tangle no :exports results :results file replace +exportFig('figs/detail_control_modal_plant_spurious.pdf', 'width', 'wide', 'height', 'normal'); +#+end_src + +#+name: fig:detail_control_modal_plant_spurious +#+caption: Modal plant including spurious resonance $G_{m,r}(s)$ +#+RESULTS: +[[file:figs/detail_control_modal_plant_spurious.png]] + +*** SVD Decoupling +The SVD decoupling is performed on the new obtained plant. +The decoupling frequency is slightly shifted in order not to interfere too much with the spurious resonance. + +#+begin_src matlab +%% Decoupling frequency [rad/s] +wc = 2*pi*7; + +%% System's response at the decoupling frequency +H1 = evalfr(Gr, j*wc); + +%% Real approximation of G(j.wc) +D = pinv(real(H1'*H1)); +H1 = pinv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2)))); + +[U,S,V] = svd(H1); + +Gsvdr = inv(U)*Gr*inv(V'); +#+end_src + +The obtained plant is shown in Figure ref:fig:detail_control_svd_plant_spurious. +#+begin_src matlab :exports none +freqs = logspace(-1, 2, 1000); +figure; + +% Magnitude +hold on; +for i_in = 1:3 + for i_out = [i_in+1:3] + plot(freqs, abs(squeeze(freqresp(Gsvdr(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... + 'HandleVisibility', 'off'); + end +end +plot(freqs, abs(squeeze(freqresp(Gsvdr(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.2], ... + 'DisplayName', '$G_{svd,r}(i,j)\ i \neq j$'); +set(gca,'ColorOrderIndex',1) +for i_in_out = 1:3 + plot(freqs, abs(squeeze(freqresp(Gsvdr(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_{svd,r}(%d,%d)$', i_in_out, i_in_out)); +end +hold off; +set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); +xlabel('Frequency [Hz]'); ylabel('Magnitude'); +ylim([1e-8, 1e-2]); +legend('location', 'northeast'); +#+end_src + +#+begin_src matlab :tangle no :exports results :results file replace +exportFig('figs/detail_control_svd_plant_spurious.pdf', 'width', 'wide', 'height', 'normal'); +#+end_src + +#+name: fig:detail_control_svd_plant_spurious +#+caption: SVD decoupled plant including a spurious resonance $G_{svd,r}(s)$ +#+RESULTS: +[[file:figs/detail_control_svd_plant_spurious.png]] ** Conclusion :PROPERTIES: :UNNUMBERED: t :END: -Table that compares all the strategies. +The three proposed methods clearly have a lot in common as they all tend to make system more decoupled by pre and/or post multiplying by a constant matrix +However, the three methods also differs by a number of points which are summarized in Table ref:tab:detail_control_decoupling_strategies_comp. + +Other decoupling strategies could be included in this study, such as: +- DC decoupling: pre-multiply the plant by $G(0)^{-1}$ +- full decoupling: pre-multiply the plant by $G(s)^{-1}$ + + +#+name: tab:detail_control_decoupling_strategies_comp +#+caption: Comparison of decoupling strategies +#+attr_latex: :environment tabularx :width \linewidth :align lXXX +#+attr_latex: :center t :booktabs t :font \scriptsize +| | *Jacobian* | *Modal* | *SVD* | +|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| +| *Philosophy* | Topology Driven | Physics Driven | Data Driven | +|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| +| *Requirements* | Known geometry | Known equations of motion | Identified FRF | +|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| +| *Decoupling Matrices* | Decoupling using $J$ obtained from geometry | Decoupling using $\Phi$ obtained from modal decomposition | Decoupling using $U$ and $V$ obtained from SVD | +|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| +| *Decoupled Plant* | $\bm{G}_{\{O\}} = J_{\{O\}}^{-1} \bm{G} J_{\{O\}}^{-T}$ | $\bm{G}_m = C_m^{-1} \bm{G} B_m^{-1}$ | $\bm{G}_{svd}(s) = U^{-1} \bm{G}(s) V^{-T}$ | +|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| +| *Implemented Controller* | $\bm{K}_{\{O\}} = J_{\{O\}}^{-T} \bm{K}_{d}(s) J_{\{O\}}^{-1}$ | $\bm{K}_m = B_m^{-1} \bm{K}_{d}(s) C_m^{-1}$ | $\bm{K}_{svd}(s) = V^{-T} \bm{K}_{d}(s) U^{-1}$ | +|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| +| *Physical Interpretation* | Forces/Torques to Displacement/Rotation in chosen frame | Inputs to excite individual modes | Directions of max to min controllability/observability | +| | | Output to sense individual modes | | +|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| +| *Decoupling Properties* | Decoupling at low or high frequency depending on the chosen frame | Good decoupling at all frequencies | Good decoupling near the chosen frequency | +|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| +| *Pros* | Physical inputs / outputs | Target specific modes | Good Decoupling near the crossover | +| | Good decoupling at High frequency (diagonal mass matrix if Jacobian taken at the CoM) | 2nd order diagonal plant | Very General | +| | Good decoupling at Low frequency (if Jacobian taken at specific point) | | | +| | Easy integration of meaningful reference inputs | | | +| | | | | +|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| +| *Cons* | Coupling between force/rotation may be high at low frequency (non diagonal terms in K) | Need analytical equations | Loose the physical meaning of inputs /outputs | +| | Limited to parallel mechanisms (?) | | Decoupling depends on the real approximation validity | +| | If good decoupling at all frequencies => requires specific mechanical architecture | | Diagonal plants may not be easy to control | +|---------------------------+----------------------------------------------------------------------------------------+--------------------------------------------------------------------+--------------------------------------------------------| +| *Applicability* | Parallel Mechanisms | Systems whose dynamics that can be expressed with M and K matrices | Very general | +| | Only small motion for the Jacobian matrix to stay constant | | Need FRF data (either experimentally or analytically) | * Closed-Loop Shaping using Complementary Filters :PROPERTIES: @@ -2618,7 +3435,7 @@ exportFig('figs/detail_control_spec_S_T.pdf', 'width', 'half', 'height', 'normal #+end_src #+name: fig:detail_control_spec_S_T_obtained_filters -#+caption: Caption with reference to sub figure (\subref{fig:detail_control_spec_S_T}) (\subref{detail_control_hinf_filters_result_weights}) +#+caption: Caption with reference to sub figure (\subref{fig:detail_control_spec_S_T}) (\subref{fig:detail_control_hinf_filters_result_weights}) #+attr_latex: :options [htbp] #+begin_figure #+attr_latex: :caption \subcaption{\label{fig:detail_control_spec_S_T}Closed loop specifications} diff --git a/nass-control.pdf b/nass-control.pdf index da171a6..8ec6b2c 100644 Binary files a/nass-control.pdf and b/nass-control.pdf differ diff --git a/nass-control.tex b/nass-control.tex index 2b7a846..67371be 100644 --- a/nass-control.tex +++ b/nass-control.tex @@ -1,4 +1,4 @@ -% Created 2025-04-03 Thu 17:13 +% Created 2025-04-03 Thu 17:40 % Intended LaTeX compiler: pdflatex \documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt} @@ -25,7 +25,7 @@ Several considerations: \item Section \ref{sec:detail_control_optimization}: How to design the controller \end{itemize} \chapter{Multiple Sensor Control} -\label{sec:orgacbb166} +\label{sec:orga9622a3} \label{sec:detail_control_multiple_sensor} \textbf{Look at what was done in the introduction \href{file:///home/thomas/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A0-nass-introduction/nass-introduction.org}{Stewart platforms: Control architecture}} @@ -143,13 +143,13 @@ Although many design methods of complementary filters have been proposed in the Fortunately, both the robustness of the fusion and the super sensor characteristics can be linked to the magnitude of the complementary filters \cite{dehaeze19_compl_filter_shapin_using_synth}. Based on that, this paper introduces a new way to design complementary filters using the \(\mathcal{H}_\infty\) synthesis which allows to shape the complementary filters' magnitude in an easy and intuitive way. \section{Sensor Fusion and Complementary Filters Requirements} -\label{sec:org9733630} +\label{sec:org338cf90} \label{ssec:detail_control_sensor_fusion_requirements} Complementary filtering provides a framework for fusing signals from different sensors. As the effectiveness of the fusion depends on the proper design of the complementary filters, they are expected to fulfill certain requirements. These requirements are discussed in this section. \subsection{Sensor Fusion Architecture} -\label{sec:org45e5dc5} +\label{sec:org1a108b3} A general sensor fusion architecture using complementary filters is shown in Fig. \ref{fig:detail_control_sensor_fusion_overview} where several sensors (here two) are measuring the same physical quantity \(x\). The two sensors output signals \(\hat{x}_1\) and \(\hat{x}_2\) are estimates of \(x\). @@ -174,7 +174,7 @@ Therefore, a pair of complementary filter needs to satisfy the following conditi It will soon become clear why the complementary property is important for the sensor fusion architecture. \subsection{Sensor Models and Sensor Normalization} -\label{sec:org117d609} +\label{sec:orgf7e77fa} In order to study such sensor fusion architecture, a model for the sensors is required. Such model is shown in Fig. \ref{fig:detail_control_sensor_model} and consists of a linear time invariant (LTI) system \(G_i(s)\) representing the sensor dynamics and an input \(n_i\) representing the sensor noise. @@ -218,7 +218,7 @@ The super sensor output is therefore equal to: \caption{\label{fig:detail_control_fusion_super_sensor}Sensor fusion architecture with two normalized sensors.} \end{figure} \subsection{Noise Sensor Filtering} -\label{sec:orgb1cc291} +\label{sec:orgf16500e} In this section, it is supposed that all the sensors are perfectly normalized, such that: @@ -257,7 +257,7 @@ However, the two sensors have usually high noise levels over distinct frequency In such case, to lower the noise of the super sensor, the norm \(|H_1(j\omega)|\) has to be small when \(\Phi_{n_1}(\omega)\) is larger than \(\Phi_{n_2}(\omega)\) and the norm \(|H_2(j\omega)|\) has to be small when \(\Phi_{n_2}(\omega)\) is larger than \(\Phi_{n_1}(\omega)\). Hence, by properly shaping the norm of the complementary filters, it is possible to reduce the noise of the super sensor. \subsection{Sensor Fusion Robustness} -\label{sec:orgc1bccc3} +\label{sec:orgfd6ea33} In practical systems the sensor normalization is not perfect and condition \eqref{eq:detail_control_perfect_dynamics} is not verified. @@ -317,7 +317,7 @@ For instance, the phase \(\Delta\phi(\omega)\) added by the super sensor dynamic As it is generally desired to limit the maximum phase added by the super sensor, \(H_1(s)\) and \(H_2(s)\) should be designed such that \(\Delta \phi\) is bounded to acceptable values. Typically, the norm of the complementary filter \(|H_i(j\omega)|\) should be made small when \(|w_i(j\omega)|\) is large, i.e., at frequencies where the sensor dynamics is uncertain. \section{Complementary Filters Shaping} -\label{sec:org48106a8} +\label{sec:orgd7c419a} \label{ssec:detail_control_hinf_method} As shown in Section \ref{ssec:detail_control_sensor_fusion_requirements}, the noise and robustness of the super sensor are a function of the complementary filters' norm. Therefore, a synthesis method of complementary filters that allows to shape their norm would be of great use. @@ -325,7 +325,7 @@ In this section, such synthesis is proposed by writing the synthesis objective a As weighting functions are used to represent the wanted complementary filters' shape during the synthesis, their proper design is discussed. Finally, the synthesis method is validated on an simple example. \subsection{Synthesis Objective} -\label{sec:org8a4a881} +\label{sec:orgd2e0d7e} The synthesis objective is to shape the norm of two filters \(H_1(s)\) and \(H_2(s)\) while ensuring their complementary property \eqref{eq:detail_control_comp_filter}. This is equivalent as to finding proper and stable transfer functions \(H_1(s)\) and \(H_2(s)\) such that conditions \eqref{eq:detail_control_hinf_cond_complementarity}, \eqref{eq:detail_control_hinf_cond_h1} and \eqref{eq:detail_control_hinf_cond_h2} are satisfied. @@ -340,7 +340,7 @@ This is equivalent as to finding proper and stable transfer functions \(H_1(s)\) \(W_1(s)\) and \(W_2(s)\) are two weighting transfer functions that are carefully chosen to specify the maximum wanted norm of the complementary filters during the synthesis. \subsection{Shaping of Complementary Filters using \(\mathcal{H}_\infty\) synthesis} -\label{sec:org2122803} +\label{sec:orgbfba454} In this section, it is shown that the synthesis objective can be easily expressed as a standard \(\mathcal{H}_\infty\) optimization problem and therefore solved using convenient tools readily available. @@ -388,7 +388,7 @@ Note that there is only an implication between the \(\mathcal{H}_\infty\) norm c Hence, the optimization may be a little bit conservative with respect to the set of filters on which it is performed, see \cite[Chap. 2.8.3]{skogestad07_multiv_feedb_contr}. In practice, this is however not an found to be an issue. \subsection{Weighting Functions Design} -\label{sec:orgaaf1d4a} +\label{sec:orga5537db} Weighting functions are used during the synthesis to specify the maximum allowed complementary filters' norm. The proper design of these weighting functions is of primary importance for the success of the presented \(\mathcal{H}_\infty\) synthesis of complementary filters. @@ -434,7 +434,7 @@ The typical magnitude of a weighting function generated using \eqref{eq:detail_c \caption{\label{fig:detail_control_weight_formula}Magnitude of a weighting function generated using formula \eqref{eq:detail_control_weight_formula}, \(G_0 = 1e^{-3}\), \(G_\infty = 10\), \(\omega_c = \SI{10}{Hz}\), \(G_c = 2\), \(n = 3\).} \end{figure} \subsection{Validation of the proposed synthesis method} -\label{sec:org6a4ff6e} +\label{sec:orgd4c8c3e} The proposed methodology for the design of complementary filters is now applied on a simple example. Let's suppose two complementary filters \(H_1(s)\) and \(H_2(s)\) have to be designed such that: @@ -503,7 +503,7 @@ As expected, the obtained filters are of order \(5\), that is the sum of the wei This simple example illustrates the fact that the proposed methodology for complementary filters shaping is easy to use and effective. A more complex real life example is taken up in the next section. \section{``Closed-Loop'' complementary filters} -\label{sec:org8c07343} +\label{sec:orgc89b4c8} \label{ssec:detail_control_closed_loop_complementary_filters} An alternative way to implement complementary filters is by using a fundamental property of the classical feedback architecture shown in Fig. \ref{fig:detail_control_feedback_sensor_fusion}. @@ -593,7 +593,7 @@ The obtained ``closed-loop'' complementary filters are indeed equal to the ones \caption{\label{fig:detail_control_hinf_filters_results_mixed_sensitivity}Bode plot of the obtained complementary filters after \(\mathcal{H}_\infty\) mixed-sensitivity synthesis} \end{figure} \section{Synthesis of a set of three complementary filters} -\label{sec:org7f588fb} +\label{sec:orgb190cc7} \label{sec:detail_control_hinf_three_comp_filters} Some applications may require to merge more than two sensors \cite{stoten01_fusion_kinet_data_using_compos_filter,fonseca15_compl}. @@ -705,7 +705,7 @@ Figure \ref{fig:detail_control_three_complementary_filters_results} displays the \caption{\label{fig:detail_control_three_complementary_filters_results}Bode plot of the inverse weighting functions and of the three complementary filters obtained using the \(\mathcal{H}_\infty\) synthesis} \end{figure} \section*{Conclusion} -\label{sec:org9b71274} +\label{sec:orgfc547f6} A new method for designing complementary filters using the \(\mathcal{H}_\infty\) synthesis has been proposed. It allows to shape the magnitude of the filters by the use of weighting functions during the synthesis. This is very valuable in practice as the characteristics of the super sensor are linked to the complementary filters' magnitude. @@ -714,10 +714,14 @@ Several examples were used to emphasize the simplicity and the effectiveness of However, the shaping of the complementary filters' magnitude does not allow to directly optimize the super sensor noise and dynamical characteristics. Future work will aim at developing a complementary filter synthesis method that minimizes the super sensor noise while ensuring the robustness of the fusion. -\chapter{Decoupling Strategies} -\label{sec:orgb61bade} +\chapter{Decoupling} +\label{sec:org55fd174} \label{sec:detail_control_decoupling} +\begin{itemize} +\item[{$\square$}] Add some citations about different methods +\end{itemize} + When dealing with MIMO systems, a typical strategy is to: \begin{itemize} \item first decouple the plant dynamics @@ -734,40 +738,367 @@ Review of decoupling strategies for Stewart platforms: \item \href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org}{Decoupling Strategies} \end{itemize} +The goal of this section is to compare the use of several methods for the decoupling of parallel manipulators. +It is structured as follow: \begin{itemize} -\item[{$\square$}] What example should be taken? -\textbf{3dof system}? stewart platform? -Maybe simpler. +\item Section \ref{ssec:detail_control_decoupling_comp_model}: the model used to compare/test decoupling strategies is presented +\item Section \ref{ssec:detail_control_comp_jacobian}: decoupling using Jacobian matrices is presented +\item Section \ref{ssec:detail_control_comp_modal}: modal decoupling is presented +\item Section \ref{ssec:detail_control_comp_svd}: SVD decoupling is presented +\item Section \ref{ssec:detail_control_decoupling_comp}: the three decoupling methods are applied on the test model and compared +\item Conclusions are drawn on the three decoupling methods \end{itemize} -\section{Interaction Analysis} -\label{sec:org4e38e50} +\section{Test Model} +\label{sec:org07c14be} +\label{ssec:detail_control_decoupling_comp_model} +Let's consider a parallel manipulator with several collocated actuator/sensors pairs. -\section{Decentralized Control (actuator frame)} -\label{sec:orgbcd61c7} - -\section{Center of Stiffness and center of Mass} -\label{sec:orgb312846} +System in Figure \ref{fig:detail_control_model_test_decoupling} will serve as an example. +We will note: \begin{itemize} -\item Example -\item Show +\item \(b_i\): location of the joints on the top platform +\item \(\hat{s}_i\): unit vector corresponding to the struts direction +\item \(k_i\): stiffness of the struts +\item \(\tau_i\): actuator forces +\item \(O_M\): center of mass of the solid body +\item \(\mathcal{L}_i\): relative displacement of the struts \end{itemize} + +\begin{figure}[htbp] +\centering +\includegraphics[scale=1]{figs/detail_control_model_test_decoupling.png} +\caption{\label{fig:detail_control_model_test_decoupling}Model use to compare decoupling techniques} +\end{figure} + +The magnitude of the coupled plant \(G\) is shown in Figure \ref{fig:detail_control_coupled_plant_bode}. + +\begin{figure}[htbp] +\centering +\includegraphics[scale=1]{figs/detail_control_coupled_plant_bode.png} +\caption{\label{fig:detail_control_coupled_plant_bode}Magnitude of the coupled plant.} +\end{figure} +\section{Decentralized Plant / Control in the frame of the struts} +\label{sec:orgc8c0b5f} +\section{Jacobian Decoupling} +\label{sec:org3e20680} +\label{ssec:detail_control_comp_jacobian} + +The Jacobian matrix can be used to: +\begin{itemize} +\item Convert joints velocity \(\dot{\mathcal{L}}\) to payload velocity and angular velocity \(\dot{\bm{\mathcal{X}}}_{\{O\}}\): +\[ \dot{\bm{\mathcal{X}}}_{\{O\}} = J_{\{O\}} \dot{\bm{\mathcal{L}}} \] +\item Convert actuators forces \(\bm{\tau}\) to forces/torque applied on the payload \(\bm{\mathcal{F}}_{\{O\}}\): +\[ \bm{\mathcal{F}}_{\{O\}} = J_{\{O\}}^T \bm{\tau} \] +\end{itemize} +with \(\{O\}\) any chosen frame. + +By wisely choosing frame \(\{O\}\), we can obtain nice decoupling for plant: +\begin{equation} + \bm{G}_{\{O\}} = J_{\{O\}}^{-1} \bm{G} J_{\{O\}}^{-T} +\end{equation} + +The obtained plan corresponds to forces/torques applied on origin of frame \(\{O\}\) to the translation/rotation of the payload expressed in frame \(\{O\}\). + +\begin{figure}[htbp] +\centering +\includegraphics[scale=1]{figs/detail_control_jacobian_decoupling_arch.png} +\caption{\label{fig:detail_control_jacobian_decoupling_arch}Block diagram of the transfer function from \(\bm{\mathcal{F}}_{\{O\}}\) to \(\bm{\mathcal{X}}_{\{O\}}\)} +\end{figure} + +The Jacobian matrix is only based on the geometry of the system and does not depend on the physical properties such as mass and stiffness. + +The inputs and outputs of the decoupled plant \(\bm{G}_{\{O\}}\) have physical meaning: +\begin{itemize} +\item \(\bm{\mathcal{F}}_{\{O\}}\) are forces/torques applied on the payload at the origin of frame \(\{O\}\) +\item \(\bm{\mathcal{X}}_{\{O\}}\) are translations/rotation of the payload expressed in frame \(\{O\}\) +\end{itemize} + +It is then easy to include a reference tracking input that specify the wanted motion of the payload in the frame \(\{O\}\). \section{Modal Decoupling} -\label{sec:orgd3c8cf1} +\label{sec:org08a0372} +\label{ssec:detail_control_comp_modal} -\section{Data Based Decoupling} -\label{sec:orgc72c6af} +Let's consider a system with the following equations of motion: +\begin{equation} +M \bm{\ddot{x}} + C \bm{\dot{x}} + K \bm{x} = \bm{\mathcal{F}} +\end{equation} + +And the measurement output is a combination of the motion variable \(\bm{x}\): +\begin{equation} +\bm{y} = C_{ox} \bm{x} + C_{ov} \dot{\bm{x}} +\end{equation} + +Let's make a \textbf{change of variables}: +\begin{equation} +\boxed{\bm{x} = \Phi \bm{x}_m} +\end{equation} +with: +\begin{itemize} +\item \(\bm{x}_m\) the modal amplitudes +\item \(\Phi\) a matrix whose columns are the modes shapes of the system +\end{itemize} + +And we map the actuator forces: +\begin{equation} +\bm{\mathcal{F}} = J^T \bm{\tau} +\end{equation} + +The equations of motion become: +\begin{equation} +M \Phi \bm{\ddot{x}}_m + C \Phi \bm{\dot{x}}_m + K \Phi \bm{x}_m = J^T \bm{\tau} +\end{equation} +And the measured output is: +\begin{equation} +\bm{y} = C_{ox} \Phi \bm{x}_m + C_{ov} \Phi \dot{\bm{x}}_m +\end{equation} + +By pre-multiplying the EoM by \(\Phi^T\): +\begin{equation} +\Phi^T M \Phi \bm{\ddot{x}}_m + \Phi^T C \Phi \bm{\dot{x}}_m + \Phi^T K \Phi \bm{x}_m = \Phi^T J^T \bm{\tau} +\end{equation} + +And we note: +\begin{itemize} +\item \(M_m = \Phi^T M \Phi = \text{diag}(\mu_i)\) the modal mass matrix +\item \(C_m = \Phi^T C \Phi = \text{diag}(2 \xi_i \mu_i \omega_i)\) (classical damping) +\item \(K_m = \Phi^T K \Phi = \text{diag}(\mu_i \omega_i^2)\) the modal stiffness matrix +\end{itemize} + +And we have: +\begin{equation} + \ddot{\bm{x}}_m + 2 \Xi \Omega \dot{\bm{x}}_m + \Omega^2 \bm{x}_m = \mu^{-1} \Phi^T J^T \bm{\tau} +\end{equation} +with: +\begin{itemize} +\item \(\mu = \text{diag}(\mu_i)\) +\item \(\Omega = \text{diag}(\omega_i)\) +\item \(\Xi = \text{diag}(\xi_i)\) +\end{itemize} + +And we call the \textbf{modal input matrix}: +\begin{equation} + \boxed{B_m = \mu^{-1} \Phi^T J^T} +\end{equation} +And the \textbf{modal output matrices}: +\begin{equation} + \boxed{C_m = C_{ox} \Phi + C_{ov} \Phi s} +\end{equation} + + +Let's note the ``modal input'': +\begin{equation} +\bm{\tau}_m = B_m \bm{\tau} +\end{equation} + +The transfer function from \(\bm{\tau}_m\) to \(\bm{x}_m\) is: +\begin{equation} \label{eq:modal_eq} +\boxed{\frac{\bm{x}_m}{\bm{\tau}_m} = \left( I_n s^2 + 2 \Xi \Omega s + \Omega^2 \right)^{-1}} +\end{equation} +which is a \textbf{diagonal} transfer function matrix. +We therefore have decoupling of the dynamics from \(\bm{\tau}_m\) to \(\bm{x}_m\). + + +We now expressed the transfer function from input \(\bm{\tau}\) to output \(\bm{y}\) as a function of the ``modal variables'': +\begin{equation} + \boxed{\frac{\bm{y}}{\bm{\tau}} = \underbrace{\left( C_{ox} + s C_{ov} \right) \Phi}_{C_m} \underbrace{\left( I_n s^2 + 2 \Xi \Omega s + \Omega^2 \right)^{-1}}_{\text{diagonal}} \underbrace{\left( \mu^{-1} \Phi^T J^T \right)}_{B_m}} +\end{equation} + +By inverting \(B_m\) and \(C_m\) and using them as shown in Figure \ref{fig:modal_decoupling_architecture}, we can see that we control the system in the ``modal space'' in which it is decoupled. + +\begin{figure}[htbp] +\centering +\includegraphics[scale=1]{figs/detail_control_decoupling_modal.png} +\caption{\label{fig:modal_decoupling_architecture}Modal Decoupling Architecture} +\end{figure} + +The system \(\bm{G}_m(s)\) shown in Figure \ref{fig:modal_decoupling_architecture} is diagonal \eqref{eq:modal_eq}. + +Modal decoupling requires to have the equations of motion of the system. +From the equations of motion (and more precisely the mass and stiffness matrices), the mode shapes \(\Phi\) are computed. + +Then, the system can be decoupled in the modal space. +The obtained system on the diagonal are second order resonant systems which can be easily controlled. + +Using this decoupling strategy, it is possible to control each mode individually. +\section{SVD Decoupling} +\label{sec:orgd91e1be} +\label{ssec:detail_control_comp_svd} + +Procedure: +\begin{itemize} +\item Identify the dynamics of the system from inputs to outputs (can be obtained experimentally) +\item Choose a frequency where we want to decouple the system (usually, the crossover frequency is a good choice) +\item Compute a real approximation of the system's response at that frequency +\item Perform a Singular Value Decomposition of the real approximation +\item Use the singular input and output matrices to decouple the system as shown in Figure \ref{fig:detail_control_decoupling_svd} +\[ G_{svd}(s) = U^{-1} G(s) V^{-T} \] +\end{itemize} +\begin{figure}[htbp] +\centering +\includegraphics[scale=1]{figs/detail_control_decoupling_svd.png} +\caption{\label{fig:detail_control_decoupling_svd}Decoupled plant \(\bm{G}_{SVD}\) using the Singular Value Decomposition} +\end{figure} + +In order to apply the Singular Value Decomposition, we need to have the Frequency Response Function of the system, at least near the frequency where we wish to decouple the system. +The FRF can be experimentally obtained or based from a model. + +This method ensure good decoupling near the chosen frequency, but no guaranteed decoupling away from this frequency. + +Also, it depends on how good the real approximation of the FRF is, therefore it might be less good for plants with high damping. + +This method is quite general and can be applied to any type of system. +The inputs and outputs are ordered from higher gain to lower gain at the chosen frequency. \begin{itemize} -\item Static decoupling -\item SVD +\item[{$\square$}] Do we loose any physical meaning of the obtained inputs and outputs? +\item[{$\square$}] Can we take advantage of the fact that U and V are unitary? \end{itemize} +\section{Comparison} +\label{sec:org670a0b0} +\label{ssec:detail_control_decoupling_comp} +\subsection{Jacobian Decoupling} +\label{sec:org2a50d56} +Decoupling properties depends on the chosen frame \(\{O\}\). + +Let's take the CoM as the decoupling frame. + +\begin{figure}[htbp] +\centering +\includegraphics[scale=1]{figs/detail_control_jacobian_plant.png} +\caption{\label{fig:detail_control_jacobian_plant}Plant decoupled using the Jacobian matrices \(G_x(s)\)} +\end{figure} +\subsection{Modal Decoupling} +\label{sec:org6cc56e8} +For the system in Figure \ref{fig:detail_control_model_test_decoupling}, we have: +\begin{align} +\bm{x} &= \begin{bmatrix} x \\ y \\ R_z \end{bmatrix} \\ +\bm{y} &= \mathcal{L} = J \bm{x}; \quad C_{ox} = J; \quad C_{ov} = 0 \\ +M &= \begin{bmatrix} +m & 0 & 0 \\ +0 & m & 0 \\ +0 & 0 & I +\end{bmatrix}; \quad K = J' \begin{bmatrix} +k & 0 & 0 \\ +0 & k & 0 \\ +0 & 0 & k +\end{bmatrix} J; \quad C = J' \begin{bmatrix} +c & 0 & 0 \\ +0 & c & 0 \\ +0 & 0 & c +\end{bmatrix} J +\end{align} + +In order to apply the architecture shown in Figure \ref{fig:modal_decoupling_architecture}, we need to compute \(C_{ox}\), \(C_{ov}\), \(\Phi\), \(\mu\) and \(J\). + +\begin{table}[htbp] +\caption{\label{tab:modal_decoupling_Bm}\(B_m\) matrix} +\centering +\begin{tabularx}{0.3\linewidth}{ccc} +\toprule +-0.0004 & -0.0007 & 0.0007\\ +-0.0151 & 0.0041 & -0.0041\\ +0.0 & 0.0025 & 0.0025\\ +\bottomrule +\end{tabularx} +\end{table} + +\begin{table}[htbp] +\caption{\label{tab:modal_decoupling_Cm}\(C_m\) matrix} +\centering +\begin{tabularx}{0.2\linewidth}{ccc} +\toprule +-0.1 & -1.8 & 0.0\\ +-0.2 & 0.5 & 1.0\\ +0.2 & -0.5 & 1.0\\ +\bottomrule +\end{tabularx} +\end{table} + +And the plant in the modal space is defined below and its magnitude is shown in Figure \ref{fig:detail_control_modal_plant}. +\begin{figure}[htbp] +\centering +\includegraphics[scale=1]{figs/detail_control_modal_plant.png} +\caption{\label{fig:detail_control_modal_plant}Modal plant \(G_m(s)\)} +\end{figure} + +Let's now close one loop at a time and see how the transmissibility changes. +\subsection{SVD Decoupling} +\label{sec:org1bd92ef} +\begin{table}[htbp] +\caption{\label{}Real approximate of \(G\) at the decoupling frequency \(\omega_c\)} +\centering +\begin{tabularx}{0.3\linewidth}{ccc} +\toprule +-8e-06 & 2.1e-06 & -2.1e-06\\ +2.1e-06 & -1.3e-06 & -2.5e-08\\ +-2.1e-06 & -2.5e-08 & -1.3e-06\\ +\bottomrule +\end{tabularx} +\end{table} + +\begin{itemize} +\item[{$\square$}] Do we have something special when applying SVD to a collocated MIMO system? +\item \textbf{Verify why such a good decoupling is obtained!} +\end{itemize} +\begin{figure}[htbp] +\centering +\includegraphics[scale=1]{figs/detail_control_svd_plant.png} +\caption{\label{fig:detail_control_svd_plant}Svd plant \(G_m(s)\)} +\end{figure} \section*{Conclusion} -\label{sec:org3802e66} -Table that compares all the strategies. +\label{sec:orge4184ce} +The three proposed methods clearly have a lot in common as they all tend to make system more decoupled by pre and/or post multiplying by a constant matrix +However, the three methods also differs by a number of points which are summarized in Table \ref{tab:detail_control_decoupling_strategies_comp}. + +Other decoupling strategies could be included in this study, such as: +\begin{itemize} +\item DC decoupling: pre-multiply the plant by \(G(0)^{-1}\) +\item full decoupling: pre-multiply the plant by \(G(s)^{-1}\) +\end{itemize} + + +\begin{table}[htbp] +\caption{\label{tab:detail_control_decoupling_strategies_comp}Comparison of decoupling strategies} +\centering +\scriptsize +\begin{tabularx}{\linewidth}{lXXX} +\toprule + & \textbf{Jacobian} & \textbf{Modal} & \textbf{SVD}\\ +\midrule +\textbf{Philosophy} & Topology Driven & Physics Driven & Data Driven\\ +\midrule +\textbf{Requirements} & Known geometry & Known equations of motion & Identified FRF\\ +\midrule +\textbf{Decoupling Matrices} & Decoupling using \(J\) obtained from geometry & Decoupling using \(\Phi\) obtained from modal decomposition & Decoupling using \(U\) and \(V\) obtained from SVD\\ +\midrule +\textbf{Decoupled Plant} & \(\bm{G}_{\{O\}} = J_{\{O\}}^{-1} \bm{G} J_{\{O\}}^{-T}\) & \(\bm{G}_m = C_m^{-1} \bm{G} B_m^{-1}\) & \(\bm{G}_{svd}(s) = U^{-1} \bm{G}(s) V^{-T}\)\\ +\midrule +\textbf{Implemented Controller} & \(\bm{K}_{\{O\}} = J_{\{O\}}^{-T} \bm{K}_{d}(s) J_{\{O\}}^{-1}\) & \(\bm{K}_m = B_m^{-1} \bm{K}_{d}(s) C_m^{-1}\) & \(\bm{K}_{svd}(s) = V^{-T} \bm{K}_{d}(s) U^{-1}\)\\ +\midrule +\textbf{Physical Interpretation} & Forces/Torques to Displacement/Rotation in chosen frame & Inputs to excite individual modes & Directions of max to min controllability/observability\\ + & & Output to sense individual modes & \\ +\midrule +\textbf{Decoupling Properties} & Decoupling at low or high frequency depending on the chosen frame & Good decoupling at all frequencies & Good decoupling near the chosen frequency\\ +\midrule +\textbf{Pros} & Physical inputs / outputs & Target specific modes & Good Decoupling near the crossover\\ + & Good decoupling at High frequency (diagonal mass matrix if Jacobian taken at the CoM) & 2nd order diagonal plant & Very General\\ + & Good decoupling at Low frequency (if Jacobian taken at specific point) & & \\ + & Easy integration of meaningful reference inputs & & \\ + & & & \\ +\midrule +\textbf{Cons} & Coupling between force/rotation may be high at low frequency (non diagonal terms in K) & Need analytical equations & Loose the physical meaning of inputs /outputs\\ + & Limited to parallel mechanisms (?) & & Decoupling depends on the real approximation validity\\ + & If good decoupling at all frequencies => requires specific mechanical architecture & & Diagonal plants may not be easy to control\\ +\midrule +\textbf{Applicability} & Parallel Mechanisms & Systems whose dynamics that can be expressed with M and K matrices & Very general\\ + & Only small motion for the Jacobian matrix to stay constant & & Need FRF data (either experimentally or analytically)\\ +\bottomrule +\end{tabularx} +\end{table} \chapter{Closed-Loop Shaping using Complementary Filters} -\label{sec:orgdd912f0} +\label{sec:orga76ba90} \label{sec:detail_control_optimization} Performance of a feedback control is dictated by closed-loop transfer functions. @@ -828,10 +1159,10 @@ In this paper, we propose a new controller synthesis method \item direct translation of requirements such as disturbance rejection and robustness to plant uncertainty \end{itemize} \section{Control Architecture} -\label{sec:orgbad19e8} +\label{sec:orgaae401b} \label{ssec:detail_control_control_arch} \paragraph{Virtual Sensor Fusion} -\label{sec:org5db8fac} +\label{sec:orgbe4fa57} Let's consider the control architecture represented in Fig. \ref{fig:detail_control_sf_arch} where \(G^\prime\) is the physical plant to control, \(G\) is a model of the plant, \(k\) is a gain, \(H_L\) and \(H_H\) are complementary filters (\(H_L + H_H = 1\) in the complex sense). The signals are the reference signal \(r\), the output perturbation \(d_y\), the measurement noise \(n\) and the control input \(u\). @@ -870,7 +1201,7 @@ u &= \frac{-K H_L}{1+G^{\prime} K H_L} dy &&+ \frac{K}{1+G^{\prime} K H_L} \end{alignat} with \(K = \frac{k}{1 + H_H G k}\) \paragraph{Asymptotic behavior} -\label{sec:orgb964791} +\label{sec:org100d48c} We now want to study the asymptotic system obtained when using very high value of \(k\) \begin{equation} \lim_{k\to\infty} K = \lim_{k\to\infty} \frac{k}{1+H_H G k} = \left( H_H G \right)^{-1} @@ -903,7 +1234,7 @@ We obtain a sensitivity transfer function equals to the high pass filter \(S = \ Assuming that we have a good model of the plant, we have then that the closed-loop behavior of the system converges to the designed complementary filters. \section{Translating the performance requirements into the shapes of the complementary filters} -\label{sec:org1e41339} +\label{sec:org30471b6} \label{ssec:detail_control_trans_perf} The required performance specifications in a feedback system can usually be translated into requirements on the upper bounds of \(\abs{S(j\w)}\) and \(|T(j\omega)|\) \cite{bibel92_guidel_h}. The process of designing a controller \(K(s)\) in order to obtain the desired shapes of \(\abs{S(j\w)}\) and \(\abs{T(j\w)}\) is called loop shaping. @@ -912,7 +1243,7 @@ The equations \eqref{eq:detail_control_cl_system_y} and \eqref{eq:detail_control In this section, we then translate the typical specifications into the desired shapes of the complementary filters \(H_L\) and \(H_H\).\\ \paragraph{Nominal Stability (NS)} -\label{sec:org747119c} +\label{sec:orgb61eb25} The closed-loop system is stable if all its elements are stable (\(K\), \(G^\prime\) and \(H_L\)) and if the sensitivity function (\(S = \frac{1}{1 + G^\prime K H_L}\)) is stable. For the nominal system (\(G^\prime = G\)), we have \(S = H_H\). @@ -921,7 +1252,7 @@ Nominal stability is then guaranteed if \(H_L\), \(H_H\) and \(G\) are stable an Thus we must design stable and minimum phase complementary filters.\\ \paragraph{Nominal Performance (NP)} -\label{sec:org7e3c875} +\label{sec:org4748252} Typical performance specifications can usually be translated into upper bounds on \(|S(j\omega)|\) and \(|T(j\omega)|\). Two performance weights \(w_H\) and \(w_L\) are defined in such a way that performance specifications are satisfied if @@ -945,14 +1276,14 @@ The translation of typical performance requirements on the shapes of the complem We may have other requirements in terms of stability margins, maximum or minimum closed-loop bandwidth.\\ \paragraph{Closed-Loop Bandwidth} -\label{sec:org91bb5c7} +\label{sec:org20cf288} The closed-loop bandwidth \(\w_B\) can be defined as the frequency where \(\abs{S(j\w)}\) first crosses \(\frac{1}{\sqrt{2}}\) from below. If one wants the closed-loop bandwidth to be at least \(\w_B^*\) (e.g. to stabilize an unstable pole), one can required that \(|S(j\omega)| \le \frac{1}{\sqrt{2}}\) below \(\omega_B^*\) by designing \(w_H\) such that \(|w_H(j\omega)| \ge \sqrt{2}\) for \(\omega \le \omega_B^*\). Similarly, if one wants the closed-loop bandwidth to be less than \(\w_B^*\), one can approximately require that the magnitude of \(T\) is less than \(\frac{1}{\sqrt{2}}\) at frequencies above \(\w_B^*\) by designing \(w_L\) such that \(|w_L(j\omega)| \ge \sqrt{2}\) for \(\omega \ge \omega_B^*\).\\ \paragraph{Classical stability margins} -\label{sec:org17bfb04} +\label{sec:orgd6e8f52} Gain margin (GM) and phase margin (PM) are usual specifications on controlled system. Minimum GM and PM can be guaranteed by limiting the maximum magnitude of the sensibility function \(M_S = \max_{\omega} |S(j\omega)|\): \begin{equation} @@ -967,7 +1298,7 @@ For the nominal system \(M_S = \max_\omega |S| = \max_\omega |H_H|\), so one can \end{equation} and thus obtain acceptable stability margins.\\ \paragraph{Response time to change of reference signal} -\label{sec:org555bdc0} +\label{sec:org8095473} For the nominal system, the model is accurate and the transfer function from reference signal \(r\) to output \(y\) is \(1\) \eqref{eq:detail_control_cl_performance_y} and does not depends of the complementary filters. However, one can add a pre-filter as shown in Fig. \ref{fig:detail_control_sf_arch_class_prefilter}. @@ -985,7 +1316,7 @@ Typically, \(K_r\) is a low pass filter of the form \end{equation} with \(\tau\) corresponding to the desired response time.\\ \paragraph{Input usage} -\label{sec:orgaed43be} +\label{sec:org29193ac} Input usage due to disturbances \(d_y\) and measurement noise \(n\) is determined by \(\big|\frac{u}{d_y}\big| = \big|\frac{u}{n}\big| = \big|G^{-1}H_L\big|\). Thus it can be limited by setting an upper bound on \(|H_L|\). @@ -994,7 +1325,7 @@ Input usage due to reference signal \(r\) is determined by \(\big|\frac{u}{r}\bi Proper choice of \(|K_r|\) is then useful to limit input usage due to change of reference signal.\\ \paragraph{Robust Stability (RS)} -\label{sec:org3210a2c} +\label{sec:orgee16ad4} Robustness stability represents the ability of the control system to remain stable even though there are differences between the actual system \(G^\prime\) and the model \(G\) that was used to design the controller. These differences can have various origins such as unmodelled dynamics or non-linearities. @@ -1034,7 +1365,7 @@ Robust stability is then guaranteed by having the low pass filter \(H_L\) satisf To ensure robust stability condition \eqref{eq:detail_control_nominal_perf_hl} can be used if \(w_L\) is designed in such a way that \(|w_L| \ge |w_I| (2 + |w_I|)\).\\ \paragraph{Robust Performance (RP)} -\label{sec:org73ddee1} +\label{sec:org289dea0} Robust performance is a property for a controlled system to have its performance guaranteed even though the dynamics of the plant is changing within specified bounds. For robust performance, we then require to have the performance condition valid for all possible plants in the defined uncertainty set: @@ -1071,13 +1402,13 @@ Robust performance is then guaranteed if \eqref{eq:detail_control_robust_perf_a} One should be aware than when looking for a robust performance condition, only the worst case is evaluated and using the robust stability condition may lead to conservative control. \section{Analytical formulas for complementary filters?} -\label{sec:org23bab6a} +\label{sec:org9e830a6} \label{ssec:detail_control_analytical_complementary_filters} \section{Numerical Example} -\label{sec:org082409f} +\label{sec:orgafeeecf} \label{ssec:detail_control_simulations} \paragraph{Procedure} -\label{sec:orgebbfce4} +\label{sec:org267f5e8} In order to apply this control technique, we propose the following procedure: \begin{enumerate} @@ -1092,7 +1423,7 @@ If one does not want to use the \(\mathcal{H}_\infty\) synthesis, one can use pr \item Control implementation: Filter the measurement with \(H_L\), implement the controller \(K\) and the pre-filter \(K_r\) as shown on Fig. \ref{fig:detail_control_sf_arch_class_prefilter} \end{enumerate} \paragraph{Plant} -\label{sec:orgfc350fc} +\label{sec:org4080126} Let's consider the problem of controlling an active vibration isolation system that consist of a mass \(m\) to be isolated, a piezoelectric actuator and a geophone. We represent this system by a mass-spring-damper system as shown Fig. \ref{fig:detail_control_mech_sys_alone} where \(m\) typically represents the mass of the payload to be isolated, \(k\) and \(c\) represent respectively the stiffness and damping of the mount. @@ -1119,7 +1450,7 @@ Its bode plot is shown on Fig. \ref{fig:detail_control_bode_plot_mech_sys}. \caption{\label{fig:detail_control_bode_plot_mech_sys}Bode plot of the transfer function \(G(s)\) from \(F\) to \(x\)} \end{figure} \paragraph{Requirements} -\label{sec:orgd766e8b} +\label{sec:orgf3c8638} The control objective is to isolate the displacement \(x\) of the mass from the ground motion \(w\). The disturbance rejection should be at least \(10\) at \(\SI{2}{\hertz}\) and with a slope of \(-2\) below \(\SI{2}{\hertz}\) until a rejection of \(10^4\). @@ -1154,10 +1485,10 @@ All the requirements on \(H_L\) and \(H_H\) are represented on Fig. \ref{fig:det \end{center} \subcaption{\label{fig:detail_control_hinf_filters_result_weights}Obtained complementary filters} \end{subfigure} -\caption{\label{fig:detail_control_spec_S_T_obtained_filters}Caption with reference to sub figure (\subref{fig:detail_control_spec_S_T}) (\subref{detail_control_hinf_filters_result_weights})} +\caption{\label{fig:detail_control_spec_S_T_obtained_filters}Caption with reference to sub figure (\subref{fig:detail_control_spec_S_T}) (\subref{fig:detail_control_hinf_filters_result_weights})} \end{figure} \paragraph{Design of the filters} -\label{sec:org11f2da3} +\label{sec:org9e0d6e9} \textbf{Or maybe use analytical formulas as proposed here: \href{file:///home/thomas/Cloud/research/papers/dehaeze20\_virtu\_senso\_fusio/matlab/index.org}{Complementary filters using analytical formula}} @@ -1178,7 +1509,7 @@ After the \(\hinf\text{-synthesis}\), we obtain \(H_L\) and \(H_H\), and we plot \end{align} \end{subequations} \paragraph{Controller analysis} -\label{sec:orgbd9d52a} +\label{sec:org6b1f5a6} The controller is \(K = \left( H_H G \right)^{-1}\). A low pass filter is added to \(K\) so that it is proper and implementable. @@ -1208,7 +1539,7 @@ It is implemented as shown on Fig. \ref{fig:detail_control_mech_sys_alone_ctrl}. \caption{\label{fig:detail_control_bode_Kfb_loop_gain}Caption with reference to sub figure (\subref{fig:detail_control_bode_Kfb}) (\subref{fig:detail_control_bode_plot_loop_gain_robustness})} \end{figure} \paragraph{Robustness analysis} -\label{sec:org85bb3dc} +\label{sec:org6fc1bac} The robust stability can be access on the nyquist plot (Fig. \ref{fig:detail_control_nyquist_robustness}). The robust performance is shown on Fig. \ref{fig:detail_control_robust_perf}. @@ -1229,12 +1560,12 @@ The robust performance is shown on Fig. \ref{fig:detail_control_robust_perf}. \caption{\label{fig:fig_label}Caption with reference to sub figure (\subref{fig:detail_control_nyquist_robustness}) (\subref{fig:detail_control_robust_perf})} \end{figure} \section{Experimental Validation?} -\label{sec:org8a7211e} +\label{sec:org7fb6422} \label{ssec:detail_control_exp_validation} \href{file:///home/thomas/Cloud/research/papers/dehaeze20\_virtu\_senso\_fusio/matlab/index.org}{Experimental Validation} \section*{Conclusion} -\label{sec:org40e7289} +\label{sec:org8770e9e} \begin{itemize} \item[{$\square$}] Discuss how useful it is as the bandwidth can be changed in real time with analytical formulas of second order complementary filters. Maybe make a section about that. @@ -1248,7 +1579,7 @@ Maybe give analytical formulas of second order complementary filters in the digi \end{itemize} \end{itemize} \chapter*{Conclusion} -\label{sec:orgcbb5ce3} +\label{sec:org64023b0} \label{sec:detail_control_conclusion} \printbibliography[heading=bibintoc,title={Bibliography}] \end{document}