Nano-Hexapod

Dehaeze Thomas

April 23, 2021

Contents

1	Nan	io-Hexapod	4
	1.1	Nano Hexapod - Configuration	4
		1.1.1 Flexible Joints	5
		1.1.2 Amplified Piezoelectric Actuators	5
		1.1.3 Encoders	6
		1.1.4 Jacobians	8
	1.2	Effect of encoders on the decentralized plant	8
	1.3	Effect of APA flexibility	9
	1.4	Nano Hexapod - Number of DoF	11
	1.5	Direct Velocity Feedback Plant	13
	1.6	Integral Force Feedback Plant	13
	1.7	Decentralized Plant - Cartesian coordinates	16
		1.7.1 Verification of the Sensor Jacobian	16
		1.7.2 Comparison of the decentralized plants	18
	1.8	Decentralized Plant - Decoupling at the Center of Stiffness	20
		1.8.1 Center of Stiffness	20
		1.8.2 Obtained plant	21
	1.9	Stiffness matrix	22
		1.9.1 Compute the theoretical stiffness of the nano-hexapod	23
		1.9.2 Comparison with Simscape Model	24
2	Acti	ive Damping using Integral Force Feedback	26
	2.1	Plant Identification	26
	2.2	Root Locus	27
	2.3	Effect of IFF on the plant	28
	2.4	Effect of IFF on the compliance	31
3	Acti	ive Damping using Direct Velocity Feedback - Encoders on the struts	32
3	3.1	Plant Identification	32
	3.2	Root Locus	32
	3.3	Effect of DVF on the plant	34
	3.4	Effect of DVF on the compliance	37
	0.1		01
4	Acti	ive Damping using Direct Velocity Feedback - Encoders on the plates	38
	4.1	Plant Identification	38
	4.2	Root Locus	39
	4.3	Effect of DVF on the plant	40
	4.4	Effect of DVF on the compliance	42
5	Euro	ction Initialize Nane Hexanod	лл
9	run		44

In this document, a Simscape model of the nano-hexapod is developed and studied.

It is structured as follows:

- Section 1: the simscape model of the nano-hexapod is presented. Few of its elements can be configured as wanted. The effect of the configuration on the obtained dynamics is studied.
- Section 2: Direct Velocity Feedback is applied and the obtained damping is derived.
- Section 3: the encoders are fixed to the struts, and Integral Force Feedback is applied. The obtained damping is computed.
- Section 4: the same is done when the encoders are fixed on the plates

1 Nano-Hexapod

1.1 Nano Hexapod - Configuration

The nano-hexapod can be initialized and configured using the <code>initializeNanoHexapodFinal</code> function (link).

The following code would produce the model shown in Figure 1.1.

Figure 1.1: 3D view of the Sismcape model for the Nano-Hexapod

Several elements on the nano-hexapod can be configured:

- The flexible joints (Section 1.1.1)
- The amplified piezoelectric actuators (Section 1.1.2)
- The encoders (Section 1.1.3)
- The Jacobian matrices (Section 1.1.4)

1.1.1 Flexible Joints

The model of the flexible joint is composed of 3 solid bodies as shown in Figure 1.2 which are connected by joints representing the flexibility of the joint.

We can represent:

- the bending flexibility k_{R_x}, k_{R_y}
- the torsional flexibility k_{R_z}
- the axial flexibility k_z

The configurations and the represented flexibilities are summarized in Table 1.1.

Table 1.1: Flexible joint's configuration and associated represented flexibility

fle	ex_type	Bending	Torsional	Axial
2dc	of	x		
3dc	of	х	х	
4dc	of	х	х	х

Of course, adding more DoF for the flexible joint will induce an addition of many states for the nanohexapod simscape model.

Figure 1.2: 3D view of the Sismcape model for the Flexible joint (4DoF configuration)

1.1.2 Amplified Piezoelectric Actuators

The nano-hexapod's struts are containing one amplified piezoelectric actuator (APA300ML from Cedrat Technologies).

The APA can be modeled in different ways which can be configured with the actuator_type argument.

The simplest model is a 2-DoF system shown in Figure 1.3.

Figure 1.3: Schematic of the 2DoF model for the Amplified Piezoelectric Actuator

Then, a more complex model based on a Finite Element Model can be used.

1.1.3 Encoders

The encoders can be either fixed directly on the struts (Figure 1.4) or on the two plates (Figure 1.5).

This can be configured with the **motion_sensor_type** parameters which can be equal to 'struts' or 'plates'.

Figure 1.4: 3D view of the Encoders fixed on the struts

A complete view of the nano-hexapod with encoders fixed to the struts is shown in Figure 1.1 while it is shown in Figure 1.6 when the encoders are fixed to the plates.

The encoder model is schematically represented in Figure 1.7:

• a frame {B}, fixed to the ruler is positioned on its top surface

Figure 1.5: 3D view of the Encoders fixed on the plates

Figure 1.6: Nano-Hexapod with encoders fixed to the plates

• a frame {F}, rigidly fixed to the encoder is initially positioned such that its origin is aligned with the x axis of frame {B}

The output measurement is then the x displacement of the origin of the frame $\{F\}$ expressed in frame $\{B\}$.

Figure 1.7: Schematic of the encoder model

If the encoder is experiencing some tilt, it is then "converted" into a measured displacement as shown in Figure 1.8.

Figure 1.8: Schematic of the encoder model

1.1.4 Jacobians

While the Jacobian configuration will not change the physical system, it is still quite an important part of the model.

This configuration consists on defining the location of the frame $\{B\}$ in which the Jacobian will be computed. This Jacobian is then used to transform the actuator forces to forces/torques applied on the payload and expressed in frame $\{B\}$. Same thing can be done for the measured encoder displacements.

1.2 Effect of encoders on the decentralized plant

We here wish to compare the plant from actuators to the encoders when the encoders are either fixed on the struts or on the plates.

We initialize the identification parameters.

Matlab .

options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'nano_hexapod';

```
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Relative Motion Outputs
```

Identify the plant when the encoders are on the struts:

```
Matlab
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', 'ddof', ...
'flex_top_type', '3dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof');
Gs = linearize(mdl, io, 0.0, options);
Gs.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gs.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6'};
```

And identify the plant when the encoders are fixed on the plates:

The obtained plants are compared in Figure 1.9.

$\mathbf{Question}$

Why do we have zeros at 400Hz and 800Hz when the encoders are fixed on the struts?

1.3 Effect of APA flexibility

First identify the plant for APA represented by 2DoF system:

First identify the plant for APA represented by a flexible element:

Figure 1.9: Comparison of the plants from actuator to associated encoder when the encoders are either fixed to the struts or to the plates

Figure 1.10: Comparison of the plants from actuator to associated strut encoder when the APA are modelled with a 2DoF system of with a flexible one

$\mathbf{Question}$

The first resonance is strange when using the flexible APA model (Figure 1.10). Moreover the system is unstable. Otherwise, the 2DoF model matches quite well the flexible model considering its simplicity.

1.4 Nano Hexapod - Number of DoF

In this section, we wish to see how the configuration of each element changes the number of the states of the obtained system.

The most minimalist model is the following:

	Matlab
<pre>n_hexapod = initializeNanoHexapodFinal(</pre>	'flex_bot_type', '3dof',
	'flex_top_type', '2dof',
	'motion_sensor_type', 'struts',
	<pre>'actuator_type', '2dof');</pre>
<pre>G = linearize(mdl, io, 0.0, options);</pre>	

There are 24 states.

__ Results _

These states are summarized on table 1.2.

 Table 1.2: Number of states for the minimalist model

Element	States
Struts	2*6
Top Plate	12
Total:	24

If we add axial stiffness on the top joints, we should add 2 states for each struts.

Matlab					
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof',					
'flex_top_type', '2dof',					
<pre>'motion_sensor_type', 'struts',</pre>					
<pre>'actuator_type', '2dof');</pre>					
G = linearize(mdl, io, 0.0, options);					

	Results
There are 36 states.	

If we add torsional stiffness on the bottom joints, we should again add 2 states for each struts.

Matlab	
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof',	
'flex_top_type', '3dof',	
<pre>'motion_sensor_type', 'struts',</pre>	
'actuator_type', '2dof');	
G = linearize(mdl, io, 0.0, options);	

There are 48 states.

Finally, if we add axial stiffness on the bottom joint, we should add 2 states for each struts.

	Matlab
<pre>n_hexapod = initializeNanoHexapodFinal(</pre>	'flex_bot_type', '4dof',
	'flex_top_type', '4dof',
	'motion_sensor_type', 'struts',
	<pre>'actuator_type', '2dof');</pre>
<pre>G = linearize(mdl, io, 0.0, options);</pre>	

There are 60 states.	

 Important

 Obtained number of states is very comprehensible. Depending on the physical effects we want to model, we therefore know how many states are added when configuring the model.

1.5 Direct Velocity Feedback Plant

The transfer function from actuator forces τ_i to the encoder measurements \mathcal{L}_i is now identified both when the encoders are fixed to the struts.

```
Matlab
/// Matlab
// Matl
```

The DC gain from actuator to relative motion sensor should be equal to (for the 2dof APA):

$$\frac{1}{k + k_a + kk_a/k_e}$$

Which is equal to:

______ Results ______
DCgain = 1.87e-08 [m/N]

Let's verify that by looking at the DC gain of the 6×6 DVF plant in Table 1.3.

And the bode plot of the DVF plant is shown in Figure 1.11.

1.6 Integral Force Feedback Plant

The transfer function from actuators to force sensors is identified.

Table 1.3: DC gain of the DVF plant

1.8617e-08	-1.0408e-10	1.3034e-10	3.2559e-11	-1.1188e-10	9.0385e-11
-5.1839e-11	1.8593e-08	-4.4868e-11	8.016e-11	4.3558e-11	-1.1164e-10
5.1963e-12	-6.9001e-12	1.8564 e-08	3.0844 e- 11	4.0097e-11	-3.4387e-11
1.9359e-11	1.7432e-10	-5.0928e-11	1.855e-08	1.6406e-10	4.5757e-12
-2.1185e-11	2.1724e-10	1.5333e-12	-8.802e-11	1.8803e-08	-4.6946e-11
-1.1728e-11	-5.7682e-11	1.6213e-10	2.1934e-12	-1.6237e-10	1.8715e-08

Figure 1.11: Bode plot of the transfer functions from actuator forces τ_i to relative motion sensors attached to the struts \mathcal{L}_i . Diagonal terms are shown in blue, and off-diagonal terms in black.

```
Matlab

/** Options for Linearized

options = linearizeOptions;

options.SampleTime = 0;

/** Name of the Simulink File

mdl = 'nano_hexapod';

/** Input/Output definition

clear io; io_i = 1;

io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs

io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors

n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...

'flex_top_type', 'struts', ...

'actuator_type', '2dof');

Giff = linearize(mdl, io, 0.0, options);
```

This is corresponding to the dynamics for the Integral Force Feedback (IFF) control strategy.

The bode plot is shown in Figure 1.12.

Figure 1.12: Bode plot of the transfer functions from actuator forces τ_i to force sensors $F_{m,i}$. Diagonal terms are shown in blue, and off-diagonal terms in black.

1.7 Decentralized Plant - Cartesian coordinates

Consider the plant shown in Figure 1.13 with:

- τ the 6 input forces (APA)
- $d\mathcal{L}$ the relative motion sensor outputs (encoders)
- \mathcal{X} the motion of the top platform measured with "perfect" 6-dof sensor
- J_a and J_s the Jacobians for the actuators and sensors

Figure 1.13: Plant in the cartesian Frame

1.7.1 Verification of the Sensor Jacobian

The "perfect" sensor output \mathcal{X} is used to verify that the sensor Jacobian is working correctly both when the encoders are fixed to the struts and to the plates.

Let's then identify the plant for both configuration, and compare the transfer functions from \mathcal{F} to $d\mathcal{X}$ and to \mathcal{X} .

```
Matlab

%% Options for Linearized

options = linearizeOptions;

options.SampleTime = 0;

%% Name of the Simulink File

mdl = 'nano_hexapod';

%% Input/Output definition

clear io; io_i = 1;

io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs

io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Relative Motion Outputs

io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1; % Relative Motion Outputs

io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1; % Relative Motion Outputs
```

Start when the encoders are fixed on the struts.

% Cartesian plant	using the	e perfect	sensor					
$Gsp = -Gs({'Dx'},$	'Dy', 'Dz'	, 'Rx',	'Ry', 'Rz'}	, {'F1', 'I	F2', 'F3',	'F4',	'F5',	<pre>'F6'})*inv(n_hexapod.geometry.J)';</pre>

The diagonal elements of the plant are shown in Figure 1.14.

Figure 1.14: Bode plot of the diagonal elements of the decentralized (cartesian) plant when using the sensor Jacobian (solid) and when using "perfect" 6dof sensor (dashed). The encoders are fixed on the struts.

The same if performed when the encoders are fixed to the plates.

Matlab
<pre>n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof',</pre>
'flex_top_type', '3dof',
'motion_sensor_type', 'plates',
'actuator_type', '2dof',
'MO_B', 150e-3);
<pre>Gp = linearize(mdl, io, 0.0, options); Gp.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}; Gp.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6', 'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};</pre>
<pre>% Cartesian plant using the Jacobians Gpc = inv(n_hexapod.geometry.Js)*Gp({'D1', 'D2', 'D3', 'D4', 'D5', 'D6'}, {'F1', 'F2', 'F3', 'F4', 'F5', ↔ 'F6'})*inv(n_hexapod.geometry.J)'; % Cartesian plant using the perfect sensor Gpp = -Gp({'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'})*inv(n_hexapod.geometry.J)';</pre>

The obtained bode plots are shown in Figure 1.15.

Figure 1.15: Bode plot of the diagonal elements of the decentralized (cartesian) plant when using the sensor Jacobian (solid) and when using "perfect" 6dof sensor (dashed). The encoders are fixed on the plates.

Important

The Jacobian for the encoders is working properly both when the encoders are fixed to the plates or to the struts.

However, then the encoders are fixed to the struts, there is a mismatch between the estimated motion and the measured motion above 100Hz due to a complex conjugate zero.

1.7.2 Comparison of the decentralized plants

The decentralized plants are now compared whether the encoders are fixed on the struts or on the plates in Figure 1.16.

Figure 1.16: Bode plot of the "cartesian" plant (transfer function from \mathcal{F} to $d\mathcal{X}$) when the encoders are fixed on the struts (solid) and on the plates (dashed)

1.8 Decentralized Plant - Decoupling at the Center of Stiffness

1.8.1 Center of Stiffness

Let's define some parameters that will be used for the computation of the stiffness matrix:

_	Matlab
si :	= n_hexapod.geometry.si; % Orientation of struts
bi :	<pre>= n_hexapod.geometry.Fb; % Location of bi w.r.t. {F}</pre>
ki :	<pre>= ones(1,6); % Normalized strut stiffness</pre>

In order to find is the Center of Stiffness (CoK) exists, we have to verify is the following is diagonal:

	Matlab
ki.*si*si'	

1.8977	2.4659e-17	5.1838e-19
2.4659e-17	1.8977	-2.3143e-05
5.1838e-19	-2.3143e-05	2.2046

Matlab

And we can find the location of the CoK with respect to $\{F\}$:

```
OkX = (ki.*cross(bi, si)*si')/(ki.*si*si');
Ok = [OkX(3,2);OkX(1,3);OkX(2,1)]
```

```
-1.7444e-18
2.1511e-06
0.052707
```

The "center of stiffness" is therefore 52.7mm above the bottom platform $\{F\}$ frame.

Let's initialize the hexapod with frame $\{A\}$ and $\{B\}$ at the CoK:

```
______Matlab
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', 'ddof', ...
'flex_top_type', '3dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof', ...
'MO_B', 0k(3)-95e-3);
```

And the (normalized) stiffness matrix is computed as follows:

______ Matlab ______ Matlab ______

And we indeed obtain a diagonal stiffness matrix.

1.8977	0	0	0	-2.0817e-17	-1.5311e-06
0	1.8977	-2.3143e-05	4.175e-06	0	0
0	-2.3143e-05	2.2046	4.7422e-06	0	0
0	4.175e-06	4.7422e-06	0.012594	2.1684e-19	-8.6736e-19
-1.8521e-17	0	0	0	0.012594	-9.3183e-08
-1.5311e-06	-6.9389e-18	2.7756e-17	-8.6736e-19	-9.3183e-08	0.043362

Table 1.4: Normalized Stiffness Matrix - Center of Stiffness

1.8.2 Obtained plant

Let's identify the transfer function from τ to $d\mathcal{L}$ and from τ to \mathcal{X} .

```
Matlab

/// Matlab

// Matlab
```

Then use the Jacobian matrices to obtain the "cartesian" centralized plant.

```
Gc = inv(n_hexapod.geometry.J)*...
G({'D1', 'D2', 'D3', 'D4', 'D5', 'D6'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'})*...
inv(n_hexapod.geometry.J');
```

The DC gain of the obtained plant is shown in Table 1.5.

-		0	I I I			
9.8602e-09	7.8692e-11	1.4426e-11	-2.663e-10	2.8e-10	-4.7559e-11	
8.457e-11	9.8788e-09	-2.4002e-11	-2.9502e-11	-1.3262e-10	-8.7346e-11	
-4.3244e-11	2.4075e-13	8.4775e-09	1.1442e-11	-2.5809e-10	2.8796e-11	
-1.8326e-09	-9.318e-10	6.8188e-10	1.4697 e-06	5.5936e-09	8.7632e-10	
4.6906e-10	1.5911e-09	1.6989e-10	-5.223e-09	1.4729e-06	-2.6059e-10	
-6.5754e-11	-3.0408e-12	5.394e-11	-1.0917e-10	6.9479e-10	4.2979e-07	

 Table 1.5: DC gain of the centralized plant at the center of stiffness

__ Matlab ___

As the rotations and translations have very different gains, we normalize each motion to one.

The diagonal and off-diagonal elements are shown in Figure 1.17, and we can see good decoupling at low frequency.

Figure 1.17: Diagonal and off-diagonal elements of the (normalized) decentralized plant with the Jacobians estimated at the "center of stiffness"

Important

The Jacobian matrices can be used to decoupled the plant at low frequency.

1.9 Stiffness matrix

The stiffness matrix of the nano-hexapod describes its induced static displacement/rotation when a force/torque is applied on its top platform. The location of the applied force/torque and the expressed displacement/rotation can be defined as wanted. Such location (or frame) is then used for the computation of the Jacobian which in turns is used to compute the stiffness matrix.

1.9.1 Compute the theoretical stiffness of the nano-hexapod

Neglecting stiffness of the joints, we have:

$$K = J^t \mathcal{K} J$$

where \mathcal{K} is a diagonal 6x6 matrix with axial stiffness of the struts on the diagonal.

Let's note the axial stiffness of the APA:

$$k_{\rm APA} = k + \frac{k_e k_a}{k_e + k_a}$$

Them axial stiffness of the struts k_s :

$$k_s = \frac{k_z k_{\rm APA}}{k_z + 2k_{\rm APA}}$$

with k_z the axial stiffness of the flexible joints.

Let's initialize the nano-hexapod.

Matlab	
<pre>n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof',</pre>	
'flex_top_type', '4dof',	
'motion_sensor_type', 'struts',	
<pre>'actuator_type', '2dof');</pre>	

The axial stiffness of the joints and stiffnesses of the 2-DoF actuators are defined below.

Matlab k = n_hexapod.actuator.k(1);
ke = n_hexapod.actuator.ke(1);
ka = n_hexapod.actuator.ka(1);
kz = n_hexapod.flex_top.kz(1); % Joint's axial stiffness [m/N]

The total axial stiffness of the APA is:

 $\overline{kAPA = k + ke*ka/(ke + ka);}$

kAPA = 1.799e+06 [N/m]

. Results _

_ Matlab _

Matlab -

And the total axial stiffness of the struts is:

ks = kz*kAPA/(kz + 2*kAPA);

_ Results _

Important

We can see that the axial stiffness of the flexible joint as little impact on the total axial stiffness of the struts.

Let's now compute the stiffness matrix corresponding to an hexapod with perfect joints and the above computed axial strut stiffness:

Matlab
Ks = n_hexapod.geometry.J'*(ks*eye(6))*n_hexapod.geometry.J;

And the compliance matrix can be computed as the inverse of the stiffness matrix.

C = inv(Ks);

The obtained compliance matrix is shown in Table 1.6.

		1				
1.9938e-06	-2.3138e-22	3.3403e-23	1.0202e-21	8.7906e-06	2.9603e-11	
-3.1875e-23	1.9938e-06	2.2094e-11	-8.7909e-06	-1.6576e-22	-3.5622e-28	
6.6811e-23	2.2094e-11	2.6115e-07	-9.8337e-11	3.4744e-22	7.4663e-28	
1.4054e-22	-8.7909e-06	-9.8337e-11	4.5715e-05	7.3086e-22	1.5706e-27	
8.7906e-06	-1.0202e-21	1.7371e-22	4.498e-21	4.5714e-05	9.8237e-11	
2.9603e-11	-1.9261e-22	-1.7611e-27	8.4925e-22	9.8237e-11	1.3277e-05	

Table 1.6: Compliance Matrix - Perfect Joints

_ Matlab _

1.9.2 Comparison with Simscape Model

Let's now identify the compliance matrix using Simscape.

```
Matlab

/// Options for Linearized

options = linearizeOptions;

options.SampleTime = 0;

/// Name of the Simulink File

mdl = 'nano_hexapod';

/// Input/Output definition

clear io; io_i = 1;

io(io_i) = linio([mdl, '/Fe'], 1, 'openinput'); io_i = io_i + 1; % External forces [N, Nm/rad]

io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1; % Induced motion [m, rad]

G = linearize(mdl, io, 0.0, options);
```

The DC gain of the identified plant is therefore the compliance matrix of the nano-hexapod. It takes into account the bending and torsional stiffness of the flexible joints.

The obtained compliance matrix is shown in Table 1.7.

	omphanee ma	Elin Estimat	ea nom onnoe	ape	
2.4683e-08	2.2859e-09	-6.4768e-08	8.7307e-06	3.2754e-10	
1.9663e-06	-7.4503e-09	-8.615e-06	-6.7926e-08	-2.0193e-08	
-8.8671e-10	2.6042 e-07	4.7504e-09	-9.9677e-09	1.7242e-10	
-8.6554e-06	3.2841e-08	4.4849e-05	3.0873e-07	8.1525e-08	
9.9165e-08	8.135e-09	-2.5208e-07	4.5331e-05	3.0602e-09	
6.1733e-09	2.6778e-09	-3.3188e-08	3.3887e-08	1.3212e-05	
	2.4683e-08 1.9663e-06 -8.8671e-10 -8.6554e-06 9.9165e-08 6.1733e-09	2.4683e-08 2.2859e-09 1.9663e-06 -7.4503e-09 -8.8671e-10 2.6042e-07 -8.6554e-06 3.2841e-08 9.9165e-08 8.135e-09 6.1733e-09 2.6778e-09	2.4683e-08 2.2859e-09 -6.4768e-08 1.9663e-06 -7.4503e-09 -8.615e-06 -8.8671e-10 2.6042e-07 4.7504e-09 -8.6554e-06 3.2841e-08 4.4849e-05 9.9165e-08 8.135e-09 -2.5208e-07 6.1733e-09 2.6778e-09 -3.3188e-08	2.4683e-08 2.2859e-09 -6.4768e-08 8.7307e-06 1.9663e-06 -7.4503e-09 -8.615e-06 -6.7926e-08 -8.8671e-10 2.6042e-07 4.7504e-09 -9.9677e-09 -8.6554e-06 3.2841e-08 4.4849e-05 3.0873e-07 9.9165e-08 8.135e-09 -2.5208e-07 4.5331e-05 6.1733e-09 2.6778e-09 -3.3188e-08 3.3887e-08	2.4683e-08 2.2859e-09 -6.4768e-08 8.7307e-06 3.2754e-10 1.9663e-06 -7.4503e-09 -8.615e-06 -6.7926e-08 -2.0193e-08 -8.8671e-10 2.6042e-07 4.7504e-09 -9.9677e-09 1.7242e-10 -8.6554e-06 3.2841e-08 4.4849e-05 3.0873e-07 8.1525e-08 9.9165e-08 8.135e-09 -2.5208e-07 4.5331e-05 3.0602e-09 6.1733e-09 2.6778e-09 -3.3188e-08 3.3887e-08 1.3212e-05

 Table 1.7: Compliance Matrix - Estimated from Simscape

Important

The bending and torsional stiffness of the flexible joints induces a lot of coupling between forces/-torques applied to the to platform to its displacement/rotation. It can be seen by comparison the compliance matrices in Tables 1.6 and 1.7.

2 Active Damping using Integral Force Feedback

In this section **Integral Force Feedback** (IFF) strategy is used to damp the nano-hexapod resonances.

It is structured as follows:

- Section 2.1: the IFF plant is identified
- Section 2.2: the optimal control gain is identified using the Root Locus plot
- Section 2.3: the IFF is applied, and the effect on the damped plant is identified and compared with the un-damped one
- Section 2.4: the IFF is applied, and the effect on the compliance is identified

2.1 Plant Identification

The nano-hexapod is initialized as usual.

```
Matlab
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof');
```

The transfer function from actuator inputs to force sensors outputs is identified.

```
Matlab

%% Options for Linearized

options = linearizeOptions;

options.SampleTime = 0;

%% Name of the Simulink File

mdl = 'nano_hexapod';

%% Input/Output definition

clear io; io_i = 1;

io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs

io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors

Giff = linearize(mdl, io, 0.0, options);

Giff.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};

Giff.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
```

Its bode plot is shown in Figure

Figure 2.1: Integral Force Feedback plant

2.2 Root Locus

The controller is a diagonal (i.e. decentralized) controller with simple low pass filters (i.e. pseudo integrators) on the diagonal:

$$K_{\rm IFF} = \frac{g}{s + \omega_c} I_{6 \times 6} \tag{2.1}$$

The value of ω_c has quite a large impact both on the attainable damping and on the compliance degradation at low frequency.

_ Matlab -

It is here chosen to have quite a large ω_c in order to not modify the plant at low frequency.

wc = 2*pi*20;

The obtained Root Locus is shown in Figure 2.2. The control gain chosen for future plots is shown by the red crosses.

The obtained controller is then:

Figure 2.2: Root locus for the decentralized IFF control strategy

```
        Kiff = 1.5e4/(s + 2*pi*20)*eye(6); % IFF Controller
        Matlab
```

The corresponding loop gain of the diagonal terms are shown in Figure 2.3. It is shown that the loop gain is quite large around resonances (which allows to add lots of damping) and less than one at low frequency thanks to the large value of ω_c .

2.3 Effect of IFF on the plant

Let's now see how the IFF control strategy effectively damps the plant and how it affects the transfer functions from the actuator forces to the relative motion sensors (encoders). First identify the plant in open-loop.

```
Matlab
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '3dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof', ...
'controller_type', 'none');
Gol = linearize(mdl, io, 0.0, options);
Gol.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gol.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6'};
```


Figure 2.3: Loop gain of the diagonal terms $G(i,i)\cdot K_{\mathrm{IFF}}(i,i)$

And then with the IFF controller.

The obtained plants are compared in Figure 2.4.

Figure 2.4: Bode plots of the transfer functions from actuator forces τ_i to relative motion sensors \mathcal{L}_i with and without the IFF controller.

Important

The Integral Force Feedback Strategy is very effective to damp the 6 suspension modes of the nano-hexapod.

2.4 Effect of IFF on the compliance

The IFF strategy has the well known drawback of degrading the compliance (transfer function from external forces/torques applied to the top platform to the motion of the top platform), especially at low frequency where the control gain is large. Let's quantify that for the nano-hexapod. The obtained compliances are compared in Figure

Figure 2.5: Comparison of the compliances in Open Loop and with Integral Force Feedback controller

Important

The use of IFF induces a degradation of the compliance. This degradation is limited due to the use of a pseudo integrator (instead of a pure integrator). Also, it should not be a major problem for the NASS, as no direct forces should be applied to the top platform.

3 Active Damping using Direct Velocity Feedback - Encoders on the struts

In this section, the **Direct Velocity Feedback** (DVF) strategy is used to damp the nano-hexapod resonances.

It is structured as follows:

- Section 3.1: the DVF plant is identified
- Section 3.2: the optimal control gain is identified using the Root Locus plot
- Section 3.3: the DVF is applied, and the effect on the damped plant is identified and compared with the un-damped one
- Section 3.4: the DVF is applied, and the effect on the compliance is identified

3.1 Plant Identification

The nano-hexapod is initialized as usual.

```
Matlab
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof');
```

The transfer function from actuator inputs to force sensors outputs is identified.

```
Matlab

%% Options for Linearized

options = linearizeOptions;

options.SampleTime = 0;

%% Name of the Simulink File

mdl = 'nano_hexapod';

%% Input/Output definition

clear io; io_i = 1;

io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs

io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Relative Motion Outputs

Gdvf = linearize(mdl, io, 0.0, options);

Gdvf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};

Gdvf.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6'};
```

Its bode plot is shown in Figure 3.1.

Figure 3.1: Direct Velocity Feedback plant

3.2 Root Locus

The controller is a diagonal (i.e. decentralized) controller with simple high pass filters (i.e. pseudo derivators) on the diagonal:

$$K_{\rm DVF} = g \frac{s}{s + \omega_d} \boldsymbol{I}_{6 \times 6} \tag{3.1}$$

The value of ω_d sets the frequency above high the derivative action is stopped.

	Matlab
wd = 2*pi*150;	

The obtained Root Locus is shown in Figure 3.2. The control gain chosen for future plots is shown by the red crosses.

The obtained controller is then:

Figure 3.2: Root locus for the decentralized DVF control strategy

```
________Matlab ______
```

The corresponding loop gain of the diagonal terms are shown in Figure 3.3. It is shown that the loop gain is quite large around resonances (which allows to add lots of damping) and less than one at low frequency thanks to the large value of ω_c .

3.3 Effect of DVF on the plant

Let's now see how the DVF control strategy effectively damps the plant and how it affects the transfer functions from the actuator forces to the relative motion sensors (encoders). First identify the plant in open-loop.

```
Matlab
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof', ...
'controller_type', 'none');
Gol = linearize(mdl, io, 0.0, options);
Gol.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gol.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6'};
```


Figure 3.3: Loop gain of the diagonal terms $G(i,i) \cdot K_{\text{DVF}}(i,i)$

And then with the DVF controller.

The obtained plants are compared in Figure 3.4.

Figure 3.4: Bode plots of the transfer functions from actuator forces τ_i to relative motion sensors \mathcal{L}_i with and without the DVF controller.

Important

The Direct Velocity Feedback Strategy is very effective to damp the 6 suspension modes of the nano-hexapod.

3.4 Effect of DVF on the compliance

The DVF strategy has the well known drawback of degrading the compliance (transfer function from external forces/torques applied to the top platform to the motion of the top platform), especially at low frequency where the control gain is large. Let's quantify that for the nano-hexapod. The obtained compliances are compared in Figure 3.5.

Figure 3.5: Comparison of the compliances in Open Loop and with Direct Velocity Feedback controller

4 Active Damping using Direct Velocity Feedback - Encoders on the plates

In this section, the **Direct Velocity Feedback** (DVF) strategy is used to damp the nano-hexapod resonances.

It is structured as follows:

- Section 4.1: the DVF plant is identified
- Section 4.2: the optimal control gain is identified using the Root Locus plot
- Section 4.3: the DVF is applied, and the effect on the damped plant is identified and compared with the un-damped one
- Section 4.4: the DVF is applied, and the effect on the compliance is identified

4.1 Plant Identification

The nano-hexapod is initialized as usual.

The transfer function from actuator inputs to force sensors outputs is identified.

```
Matlab

%% Options for Linearized

options = linearizeOptions;

options.SampleTime = 0;

%% Name of the Simulink File

mdl = 'nano_hexapod';

%% Input/Output definition

clear io; io_i = 1;

io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs

io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Relative Motion Outputs

Gdvf = linearize(mdl, io, 0.0, options);

Gdvf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};

Gdvf.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6'};
```

Its bode plot is shown in Figure 4.1.

Figure 4.1: Direct Velocity Feedback plant

4.2 Root Locus

The controller is a diagonal (i.e. decentralized) controller with simple high pass filters (i.e. pseudo derivators) on the diagonal:

$$K_{\rm DVF} = g \frac{s}{s + \omega_d} \boldsymbol{I}_{6 \times 6} \tag{4.1}$$

The value of ω_d sets the frequency above high the derivative action is stopped.

	Matlab
wd = 2*pi*150;	

The obtained Root Locus is shown in Figure 4.2. The control gain chosen for future plots is shown by the red crosses.

The obtained controller is then:

Figure 4.2: Root locus for the decentralized DVF control strategy

```
    Kdvf = 2e8*s/(s + wd)*eye(6); % DVF Controller
```

The corresponding loop gain of the diagonal terms are shown in Figure 4.3. It is shown that the loop gain is quite large around resonances (which allows to add lots of damping).

4.3 Effect of DVF on the plant

Let's now see how the DVF control strategy effectively damps the plant and how it affects the transfer functions from the actuator forces to the relative motion sensors (encoders). First identify the plant in open-loop.

And then with the DVF controller.

Figure 4.3: Loop gain of the diagonal terms $G(i,i) \cdot K_{\mathrm{DVF}}(i,i)$

Matlab
<pre>n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof',</pre>
'flex_top_type', '4dof',
<pre>'motion_sensor_type', 'plates',</pre>
'actuator_type', '2dof',
<pre>'controller_type', 'dvf');</pre>
Gdvf = linearize(mdl, io, 0.0, options);
Gdvf.InputName = { 'F1', 'F2', 'F3', 'F4', 'F5', 'F6' };
Gdvf.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6'};

The obtained plants are compared in Figure 4.4.

Figure 4.4: Bode plots of the transfer functions from actuator forces τ_i to relative motion sensors \mathcal{L}_i with and without the DVF controller.

Important

The Direct Velocity Feedback Strategy is very effective in damping the 6 suspension modes of the nano-hexapod.

4.4 Effect of DVF on the compliance

The DVF strategy has the well known drawback of degrading the compliance (transfer function from external forces/torques applied to the top platform to the motion of the top platform), especially at

low frequency where the control gain is large. Let's quantify that for the nano-hexapod. The obtained compliances are compared in Figure 4.5.

Figure 4.5: Comparison of the compliances in Open Loop and with Direct Velocity Feedback controller

5 Function - Initialize Nano Hexapod

Function description

function [nano_hexapod] = initializeNanoHexapodFinal(args)
Matlab

Optional Parameters

Matlab arguments %% Bottom Flexible Joints args.flex_bot_type char {mustBeMember(args.flex_bot_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof' args.flex_bot_KRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad] args.flex_bot_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad] args.flex_bot_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad] args.flex_bot_kz (6,1) double {mustBeNumeric} = ones(6,1)*1e8 % Axial Stiffness [N/m] args.flex_bot_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % X bending Damping [Nm/(rad/s)] args.flex_bot_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Y bending Damping [Nm/(rad/s)] args.flex_bot_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Y bending Damping [Nm/(rad/s)] args.flex_bot_cz (6,1) double {mustBeNumeric} = ones(6,1)*1e2 % Axial Damping [N/(m/s)] args.flex_top_type char {mustBeMember(args.flex_top_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof' args.flex_top_kRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad] args.flex_top_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad] args.flex_top_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad] args.flex_top_kz (6,1) double {mustBeNumeric} = ones(6,1)*1e8 % Axial Stiffness [N/m] args.flex_top_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % X bending Damping [Nm/(rad/s)] args.flex_top_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Y bending Damping [Nm/(rad/s)] args.flex_top_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Torsionnal Damping [Nm/(rad/s)] args.flex_top_cz (6,1) double {mustBeNumeric} = ones(6,1)*1e2 % Axial Damping [N/(m/s)] %% Jacobian - Location of frame {A} and {B} args.MO_B (1,1) double {mustBeNumeric} = 150e-3 % Height of {B} w.r.t. {M} [m] args.motion_sensor_type char {mustBeMember(args.motion_sensor_type,{'struts', 'plates'})} = 'struts' args.actuator_type char {mustBeMember(args.actuator_type,{'2dof', 'flexible frame', 'flexible'})} = 'flexible' args.actuator_Ga (6,1) double {mustBeNumeric} = ones(6,1)*1 % Actuator gain [N/V] args.actuator_Gs (6,1) double {mustBeNumeric} = ones(6,1)*1 % Sensor gain [V/m] args.actuator_k (6,1) double {mustBeNumeric} = ones(6,1)*0.35e6 % [N/m] args.actuator_ke (6,1) double {mustBeNumeric} = ones(6,1)*1.5e6 % [N/m] args.actuator_ka (6,1) double {mustBeNumeric} = ones(6,1)*43e6 % [N/m] args.actuator_c (6,1) double {mustBeNumeric} = ones(6,1)*3e1 % [N/(m/s)] args.actuator_ca (6,1) double {mustBeNumeric} = ones(6,1)*1e1 % [N/(m/s)] args.actuator_ca (6,1) double {mustBeNumeric} = ones(6,1)*1e1 % [N/(m/s)] args.actuator_Leq (6,1) double {mustBeNumeric} = ones(6,1)*0.056 % [m] % For Flexible Frame args.actuator_ks (6,1) double {mustBeNumeric} = ones(6,1)*235e6 % Stiffness of one stack [N/m] args.actuator_cs (6,1) double {mustBeNumeric} = ones(6,1)*1e1 % Stiffness of one stack [N/m] args.actuator_xi (1,1) double {mustBeNumeric} = 0.01 % Damping Ratio args.controller_type char {mustBeMember(args.controller_type,{'none', 'iff', 'dvf'})} = 'none' end

Nano Hexapod Object

nano_hexapod = struct();

_ Matlab _

Flexible Joints - Bot

Matlab	
ano_hexapod.flex_bot = struct();	
<pre>witch args.flex_bot_type case '2dof' nano_hexapod.flex_bot.type = 1; case '3dof' nano_hexapod.flex_bot.type = 2; case '4dof' nano_hexapod.flex_bot.type = 3; case 'flexible' nano_hexapod.flex_bot.type = 4; nd</pre>	
ano_hexapod.flex_bot.kRx = args.flex_bot_kRx; % X bending stiffness [Nm/rad] ano_hexapod.flex_bot.kRy = args.flex_bot_kRy; % Y bending stiffness [Nm/rad] ano_hexapod.flex_bot.kRz = args.flex_bot_kRz; % Torsionnal stiffness [Nm/rad] ano_hexapod.flex_bot.kz = args.flex_bot_kz; % Axial stiffness [N/m]	
ano_hexapod.flex_bot.cRx = args.flex_bot_cRx; % [Nm/(rad/s)] ano_hexapod.flex_bot.cRy = args.flex_bot_cRy; % [Nm/(rad/s)] ano_hexapod.flex_bot.cRz = args.flex_bot_cRz; % [Nm/(rad/s)] ano_hexapod.flex_bot.cz = args.flex_bot_cz; %[N/(m/s)]	

Flexible Joints - Top

	Matlab
<pre>nano_hexapod.flex_top = struct();</pre>	
<pre>switch args.flex_top_type case '2dof' nano_hexapod.flex_top.type = 1; case '3dof' nano_hexapod.flex_top.type = 2; case '4dof' nano_hexapod.flex_top.type = 3; case 'flexible' nano_hexapod.flex_top.type = 4; end</pre>	
<pre>nano_hexapod.flex_top.kRx = args.flex_top_kRx; nano_hexapod.flex_top.kRy = args.flex_top_kRy; nano_hexapod.flex_top.kRz = args.flex_top_kRz; nano_hexapod.flex_top.kz = args.flex_top_kz;</pre>	% X bending stiffness [Nm/rad] % Y bending stiffness [Nm/rad] % Torsionnal stiffness [Nm/rad] % Axial stiffness [N/m]
<pre>nano_hexapod.flex_top.cRx = args.flex_top_cRx; nano_hexapod.flex_top.cRy = args.flex_top_cRy; nano_hexapod.flex_top.cRz = args.flex_top_cRz; nano_hexapod.flex_top.cz = args.flex_top_cz;</pre>	<pre>% [Nm/(rad/s)] % [Nm/(rad/s)] % [Nm/(rad/s)] %[N/(m/s)]</pre>

Relative Motion Sensor

nano_hexapod.motion_sensor = struct();
switch args.motion_sensor_type
 case 'struts'
 nano_hexapod.motion_sensor.type = 1;
 case 'plates'
 nano_hexapod.motion_sensor.type = 2;
end

Amplified Piezoelectric Actuator

```
Matlab
mano_hexapod.actuator = struct();
switch args.actuator_type
case '2dof'
nano_hexapod.actuator.type = 1;
case 'flexible frame'
nano_hexapod.actuator.type = 2;
case 'flexible'
nano_hexapod.actuator.type = 3;
end
```

Matlab

________Matlab _______ nano_hexapod.actuator.Ga = args.actuator_Ga; % Actuator gain [N/V] nano_hexapod.actuator.Gs = args.actuator_Gs; % Sensor gain [V/m]

2dof

```
      Matlab

      nano_hexapod.actuator.k = args.actuator_k; % [N/m]

      nano_hexapod.actuator.ke = args.actuator_ke; % [N/m]

      nano_hexapod.actuator.ka = args.actuator_ka; % [N/m]

      nano_hexapod.actuator.c = args.actuator_c; % [N/(m/s)]

      nano_hexapod.actuator.ce = args.actuator_ce; % [N/(m/s)]

      nano_hexapod.actuator.ce = args.actuator_ca; % [N/(m/s)]

      nano_hexapod.actuator.ce = args.actuator_ca; % [N/(m/s)]

      nano_hexapod.actuator.leq = args.actuator_leq; % [m]
```

Flexible frame and fully flexible

```
Matlab
switch args.actuator_type
case 'flexible frame'
nano_hexapod.actuator.K = readmatrix('APA300ML_b_mat_K.CSV'); % Stiffness Matrix
nano_hexapod.actuator.M = readmatrix('APA300ML_b_mat_M.CSV'); % Mass Matrix
nano_hexapod.actuator.P = extractNodes('APA300ML_b_out_nodes_3D.txt'); % Node coordinates [m]
case 'flexible'
nano_hexapod.actuator.K = readmatrix('full_APA300ML_K.CSV'); % Stiffness Matrix
nano_hexapod.actuator.M = readmatrix('full_APA300ML_M.CSV'); % Mass Matrix
nano_hexapod.actuator.P = extractNodes('full_APA300ML_M.CSV'); % Mass Matrix
nano_hexapod.actuator.P = extractNodes('full_APA300ML_out_nodes_3D.txt'); % Node coordiantes [m]
end
```

nano_hexapod.actuator.xi = args.actuator_xi; % Damping ratio

nano_hexapod.actuator.ks = args.actuator_ks; % Stiffness of one stack [N/m]
nano_hexapod.actuator.cs = args.actuator_cs; % Damping of one stack [N/m]

Geometry

_____ Matlab _____

Center of joints a_i with respect to $\{F\}$:

```
      Fa = [[-86.05, -74.78, 22.49],
      Matlab

      [ 86.05, -74.78, 22.49],
      [ 107.79, -37.13, 22.49],

      [ 21.74, 111.91, 22.49],
      [ -21.74, 111.91, 22.49],

      [ -107.79, -37.13, 22.49]]*tle-3; % Ai w.r.t. {F} [m]
```

Center of joints b_i with respect to $\{M\}$:

Matlab Mb = [[-28.47, -106.25, -22.50], [28.47, -106.25, -22.50], [106.25, 28.47, -22.50], [77.78, 77.78, -22.50], [-77.78, 77.78, -22.50], [-106.25, 28.47, -22.50]]*1e-3; % Bi w.r.t. {M} [m]

Now compute the positions b_i with respect to $\{F\}$:

 Fb = Mb + [0; 0; 95e-3]; % Bi w.r.t. {F} [m]
 Matlab

The unit vector representing the orientation of the struts can then be computed:

si = Fb - Fa; si = si./vecnorm(si); % Normalize

Location of encoder measurement points when fixed on the plates:

		Matlab
Fc = [[-29.362, -105.765,	52.605]	
[29.362, -105.765,	52.605]	
[106.276, 27.454,	52.605]	
[76.914, 78.31,	52.605]	
[106.276, 27.454, [76.914, 78.31,	52.605] 52.605]	

		[-]	76	5.914	4,	78.31,	52.605]	
	[-106.276,			76,	27.454,	52.605]]'*1e-3; % Meas pos w.r.t. {	F}	
Мс	=	Fc ·	-	[0 ;	0;	95e-3];	% Meas pos w.r.t. {M}	

nano_hexapod.geometry.Fa = Fa; nano_hexapod.geometry.Fb = Fb; nano_hexapod.geometry.Fc = Fc; nano_hexapod.geometry.Mb = Mb; nano_hexapod.geometry.Mc = Mc; nano_hexapod.geometry.si = si; nano_hexapod.geometry.MO_B = args.MO_B;

Jacobian for Actuators

 Matlab

 Bb = Mb - [0; 0; args.MO_B];

 nano_hexapod.geometry.J = [nano_hexapod.geometry.si', cross(Bb, nano_hexapod.geometry.si)'];

_ Matlab _

Jacobian for Sensors

```
Matlab
switch args.motion_sensor_type
case 'struts'
nano_hexapod.geometry.Js = nano_hexapod.geometry.J;
case 'plates'
Bc = Mc - [0; 0; args.MO_B];
nano_hexapod.geometry.Js = [nano_hexapod.geometry.si', cross(Bc, nano_hexapod.geometry.si)'];
end
```

Controller

Save the Structure

if nargout == 0
save('./mat/stages.mat', 'nano_hexapod', '-append');
end