<?xml version="1.0" encoding="utf-8"?> <?xml version="1.0" encoding="utf-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <head> <!-- 2020-05-05 mar. 10:34 --> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <title>Decentralize control to add virtual mass</title> <meta name="generator" content="Org mode" /> <meta name="author" content="Dehaeze Thomas" /> <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/> <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/> <script src="./js/jquery.min.js"></script> <script src="./js/bootstrap.min.js"></script> <script src="./js/jquery.stickytableheaders.min.js"></script> <script src="./js/readtheorg.js"></script> <script>MathJax = { tex: { tags: 'ams', macros: {bm: ["\\boldsymbol{#1}",1],} } }; </script> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> </head> <body> <div id="org-div-home-and-up"> <a accesskey="h" href="./index.html"> UP </a> | <a accesskey="H" href="./index.html"> HOME </a> </div><div id="content"> <h1 class="title">Decentralize control to add virtual mass</h1> <div id="table-of-contents"> <h2>Table of Contents</h2> <div id="text-table-of-contents"> <ul> <li><a href="#org982b263">1. Initialization</a></li> <li><a href="#org35a3822">2. Identification</a></li> <li><a href="#orgd6fc719">3. Adding Virtual Mass in the Leg’s Space</a> <ul> <li><a href="#orga27c9a0">3.1. Plant</a></li> <li><a href="#orgcbce41a">3.2. Controller Design</a></li> <li><a href="#orgca1f525">3.3. Identification of the Primary Plant</a></li> </ul> </li> <li><a href="#orgc9131d0">4. Adding Virtual Mass in the Task Space</a> <ul> <li><a href="#orgdbe6a25">4.1. Plant</a></li> <li><a href="#org571922f">4.2. Controller Design</a></li> <li><a href="#org4960701">4.3. Identification of the Primary Plant</a></li> </ul> </li> </ul> </div> </div> <div id="outline-container-org982b263" class="outline-2"> <h2 id="org982b263"><span class="section-number-2">1</span> Initialization</h2> <div class="outline-text-2" id="text-1"> <div class="org-src-container"> <pre class="src src-matlab">initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(); initializeAxisc(); initializeMirror(); initializeSimscapeConfiguration(); initializeDisturbances('enable', false); initializeLoggingConfiguration('log', 'none'); initializeController('type', 'hac-dvf'); </pre> </div> <p> The nano-hexapod has the following leg’s stiffness and damping. </p> <div class="org-src-container"> <pre class="src src-matlab">initializeNanoHexapod('k', 1e5, 'c', 2e2); </pre> </div> <p> We set the stiffness of the payload fixation: </p> <div class="org-src-container"> <pre class="src src-matlab">Kp = 1e8; % [N/m] </pre> </div> </div> </div> <div id="outline-container-org35a3822" class="outline-2"> <h2 id="org35a3822"><span class="section-number-2">2</span> Identification</h2> <div class="outline-text-2" id="text-2"> <p> We identify the system for the following payload masses: </p> <div class="org-src-container"> <pre class="src src-matlab">Ms = [1, 10, 50]; </pre> </div> <p> Identification of the transfer function from \(\tau\) to \(d\mathcal{L}\). Identification of the Primary plant without virtual add of mass </p> </div> </div> <div id="outline-container-orgd6fc719" class="outline-2"> <h2 id="orgd6fc719"><span class="section-number-2">3</span> Adding Virtual Mass in the Leg’s Space</h2> <div class="outline-text-2" id="text-3"> </div> <div id="outline-container-orga27c9a0" class="outline-3"> <h3 id="orga27c9a0"><span class="section-number-3">3.1</span> Plant</h3> <div class="outline-text-3" id="text-3-1"> <div id="org98e7ba8" class="figure"> <p><img src="figs/virtual_mass_plant_L.png" alt="virtual_mass_plant_L.png" /> </p> <p><span class="figure-number">Figure 1: </span>Transfer function from \(\tau_i\) to \(d\mathcal{L}_i\) for three payload masses</p> </div> </div> </div> <div id="outline-container-orgcbce41a" class="outline-3"> <h3 id="orgcbce41a"><span class="section-number-3">3.2</span> Controller Design</h3> <div class="outline-text-3" id="text-3-2"> <div class="org-src-container"> <pre class="src src-matlab">Kdvf = 10*s^2/(1+s/2/pi/500)^2*eye(6); </pre> </div> <div id="orgccb3b9e" class="figure"> <p><img src="figs/virtual_mass_loop_gain_L.png" alt="virtual_mass_loop_gain_L.png" /> </p> <p><span class="figure-number">Figure 2: </span>Loop Gain for the addition of virtual mass in the leg’s space</p> </div> </div> </div> <div id="outline-container-orgca1f525" class="outline-3"> <h3 id="orgca1f525"><span class="section-number-3">3.3</span> Identification of the Primary Plant</h3> <div class="outline-text-3" id="text-3-3"> <div id="orgd49505e" class="figure"> <p><img src="figs/virtual_mass_L_primary_plant_X.png" alt="virtual_mass_L_primary_plant_X.png" /> </p> <p><span class="figure-number">Figure 3: </span>Comparison of the transfer function from \(\mathcal{F}_{x,y,z}\) to \(\mathcal{X}_{x,y,z}\) with and without the virtual addition of mass in the leg’s space</p> </div> <div id="org2281744" class="figure"> <p><img src="figs/virtual_mass_L_primary_plant_L.png" alt="virtual_mass_L_primary_plant_L.png" /> </p> <p><span class="figure-number">Figure 4: </span>Comparison of the transfer function from \(\tau_i\) to \(\mathcal{L}_{i}\) with and without the virtual addition of mass in the leg’s space</p> </div> </div> </div> </div> <div id="outline-container-orgc9131d0" class="outline-2"> <h2 id="orgc9131d0"><span class="section-number-2">4</span> Adding Virtual Mass in the Task Space</h2> <div class="outline-text-2" id="text-4"> </div> <div id="outline-container-orgdbe6a25" class="outline-3"> <h3 id="orgdbe6a25"><span class="section-number-3">4.1</span> Plant</h3> <div class="outline-text-3" id="text-4-1"> <p> Let’s look at the transfer function from \(\bm{\mathcal{F}}\) to \(d\bm{\mathcal{X}}\): \[ \frac{d\bm{\mathcal{L}}}{\bm{\mathcal{F}}} = \bm{J}^{-1} \frac{d\bm{\mathcal{L}}}{\bm{\tau}} \bm{J}^{-T} \] </p> <div id="org6488b4c" class="figure"> <p><img src="figs/virtual_mass_plant_X.png" alt="virtual_mass_plant_X.png" /> </p> <p><span class="figure-number">Figure 5: </span>Dynamics from \(\mathcal{F}_{x,y,z}\) to \(\mathcal{X}_{x,y,z}\) used for virtual mass addition in the task space</p> </div> </div> </div> <div id="outline-container-org571922f" class="outline-3"> <h3 id="org571922f"><span class="section-number-3">4.2</span> Controller Design</h3> <div class="outline-text-3" id="text-4-2"> <div class="org-src-container"> <pre class="src src-matlab">KmX = (s^2*1/(1+s/2/pi/500)^2*diag([1 1 50 0 0 0])); </pre> </div> <div id="orgf411330" class="figure"> <p><img src="figs/virtual_mass_loop_gain_X.png" alt="virtual_mass_loop_gain_X.png" /> </p> <p><span class="figure-number">Figure 6: </span>Loop gain for virtual mass addition in the task space</p> </div> <div class="org-src-container"> <pre class="src src-matlab">Kdvf = inv(nano_hexapod.kinematics.J')*KmX*inv(nano_hexapod.kinematics.J); </pre> </div> </div> </div> <div id="outline-container-org4960701" class="outline-3"> <h3 id="org4960701"><span class="section-number-3">4.3</span> Identification of the Primary Plant</h3> <div class="outline-text-3" id="text-4-3"> <div id="orge1df87b" class="figure"> <p><img src="figs/virtual_mass_X_primary_plant_X.png" alt="virtual_mass_X_primary_plant_X.png" /> </p> <p><span class="figure-number">Figure 7: </span>Comparison of the transfer function from \(\mathcal{F}_{x,y,z}\) to \(\mathcal{X}_{x,y,z}\) with and without the virtual addition of mass in the task space</p> </div> <div id="org647b748" class="figure"> <p><img src="figs/virtual_mass_X_primary_plant_L.png" alt="virtual_mass_X_primary_plant_L.png" /> </p> <p><span class="figure-number">Figure 8: </span>Comparison of the transfer function from \(\tau_i\) to \(\mathcal{L}_{i}\) with and without the virtual addition of mass in the task space</p> </div> </div> </div> </div> </div> <div id="postamble" class="status"> <p class="author">Author: Dehaeze Thomas</p> <p class="date">Created: 2020-05-05 mar. 10:34</p> </div> </body> </html>