UP | HOME

Subsystems used for the Simscape Models

Table of Contents

The full Simscape Model is represented in Figure 1.

simscape_picture.png

Figure 1: Screenshot of the Multi-Body Model representation

This model is divided into multiple subsystems that are independent. These subsystems are saved in separate files and imported in the main file using a block balled “subsystem reference”.

Each stage is configured (geometry, mass properties, dynamic properties …) using one function.

These functions are defined below.

1 Ground

Simscape Model

The model of the Ground is composed of:

  • A Cartesian joint that is used to simulation the ground motion
  • A solid that represents the ground on which the granite is located

simscape_model_ground.png

Figure 2: Simscape model for the Ground

simscape_picture_ground.png

Figure 3: Simscape picture for the Ground

Function description

function [ground] = initializeGround()

1.1 Function content

First, we initialize the granite structure.

ground = struct();

We set the shape and density of the ground solid element.

ground.shape = [2, 2, 0.5]; % [m]
ground.density = 2800; % [kg/m3]

The ground structure is saved.

save('./mat/stages.mat', 'ground', '-append');

2 Granite

Simscape Model

The Simscape model of the granite is composed of:

  • A cartesian joint such that the granite can vibrations along x, y and z axis
  • A solid

The output sample_pos corresponds to the impact point of the X-ray.

simscape_model_granite.png

Figure 4: Simscape model for the Granite

simscape_picture_granite.png

Figure 5: Simscape picture for the Granite

Function description

function [granite] = initializeGranite(args)

Optional Parameters

arguments
    args.density (1,1) double {mustBeNumeric, mustBeNonnegative} = 2800 % Density [kg/m3]
    args.x0 (1,1) double {mustBeNumeric} = 0 % Rest position of the Joint in the X direction [m]
    args.y0 (1,1) double {mustBeNumeric} = 0 % Rest position of the Joint in the Y direction [m]
    args.z0 (1,1) double {mustBeNumeric} = 0 % Rest position of the Joint in the Z direction [m]
end

Function content

First, we initialize the granite structure.

granite = struct();

Properties of the Material and link to the geometry of the granite.

granite.density = args.density; % [kg/m3]
granite.STEP    = './STEPS/granite/granite.STEP';

Stiffness of the connection with Ground.

granite.k.x = 4e9; % [N/m]
granite.k.y = 3e8; % [N/m]
granite.k.z = 8e8; % [N/m]

Damping of the connection with Ground.

granite.c.x  = 4.0e5; % [N/(m/s)]
granite.c.y  = 1.1e5; % [N/(m/s)]
granite.c.z  = 9.0e5; % [N/(m/s)]

Equilibrium position of the Cartesian joint.

granite.x0 = args.x0;
granite.y0 = args.y0;
granite.z0 = args.z0;

Z-offset for the initial position of the sample with respect to the granite top surface.

granite.sample_pos = 0.8; % [m]

The granite structure is saved.

save('./mat/stages.mat', 'granite', '-append');

3 Translation Stage

Simscape Model

The Simscape model of the Translation stage consist of:

  • One rigid body for the fixed part of the translation stage
  • One rigid body for the moving part of the translation stage
  • Four 6-DOF Joints that only have some rigidity in the X and Z directions. The rigidity in rotation comes from the fact that we use multiple joints that are located at different points
  • One 6-DOF joint that represent the Actuator. It is used to impose the motion in the Y direction
  • One 6-DOF joint to inject force disturbance in the X and Z directions

simscape_model_ty.png

Figure 6: Simscape model for the Translation Stage

simscape_picture_ty.png

Figure 7: Simscape picture for the Translation Stage

Function description

function [ty] = initializeTy(args)

Optional Parameters

arguments
    args.x11 (1,1) double {mustBeNumeric} = 0 % [m]
    args.z11 (1,1) double {mustBeNumeric} = 0 % [m]
    args.x21 (1,1) double {mustBeNumeric} = 0 % [m]
    args.z21 (1,1) double {mustBeNumeric} = 0 % [m]
    args.x12 (1,1) double {mustBeNumeric} = 0 % [m]
    args.z12 (1,1) double {mustBeNumeric} = 0 % [m]
    args.x22 (1,1) double {mustBeNumeric} = 0 % [m]
    args.z22 (1,1) double {mustBeNumeric} = 0 % [m]
end

Function content

First, we initialize the ty structure.

ty = struct();

Define the density of the materials as well as the geometry (STEP files).

% Ty Granite frame
ty.granite_frame.density = 7800; % [kg/m3] => 43kg
ty.granite_frame.STEP    = './STEPS/Ty/Ty_Granite_Frame.STEP';

% Guide Translation Ty
ty.guide.density         = 7800; % [kg/m3] => 76kg
ty.guide.STEP            = './STEPS/ty/Ty_Guide.STEP';

% Ty - Guide_Translation12
ty.guide12.density       = 7800; % [kg/m3]
ty.guide12.STEP          = './STEPS/Ty/Ty_Guide_12.STEP';

% Ty - Guide_Translation11
ty.guide11.density       = 7800; % [kg/m3]
ty.guide11.STEP          = './STEPS/ty/Ty_Guide_11.STEP';

% Ty - Guide_Translation22
ty.guide22.density       = 7800; % [kg/m3]
ty.guide22.STEP          = './STEPS/ty/Ty_Guide_22.STEP';

% Ty - Guide_Translation21
ty.guide21.density       = 7800; % [kg/m3]
ty.guide21.STEP          = './STEPS/Ty/Ty_Guide_21.STEP';

% Ty - Plateau translation
ty.frame.density         = 7800; % [kg/m3]
ty.frame.STEP            = './STEPS/ty/Ty_Stage.STEP';

% Ty Stator Part
ty.stator.density        = 5400; % [kg/m3]
ty.stator.STEP           = './STEPS/ty/Ty_Motor_Stator.STEP';

% Ty Rotor Part
ty.rotor.density         = 5400; % [kg/m3]
ty.rotor.STEP            = './STEPS/ty/Ty_Motor_Rotor.STEP';

Stiffness of the stage.

ty.k.ax  = 5e8; % Axial Stiffness for each of the 4 guidance (y) [N/m]
ty.k.rad = 5e7; % Radial Stiffness for each of the 4 guidance (x-z) [N/m]

Damping of the stage.

ty.c.ax  = 70710; % [N/(m/s)]
ty.c.rad = 22360; % [N/(m/s)]

Equilibrium position of the joints.

ty.x0_11 = args.x11;
ty.z0_11 = args.z11;
ty.x0_12 = args.x12;
ty.z0_12 = args.z12;
ty.x0_21 = args.x21;
ty.z0_21 = args.z21;
ty.x0_22 = args.x22;
ty.z0_22 = args.z22;

The ty structure is saved.

save('./mat/stages.mat', 'ty', '-append');

4 Tilt Stage

Simscape Model

The Simscape model of the Tilt stage is composed of:

  • Two solid bodies for the two part of the stage
  • Four 6-DOF joints to model the flexibility of the stage. These joints are virtually located along the rotation axis and are connecting the two solid bodies. These joints have some translation stiffness in the u-v-w directions aligned with the joint. The stiffness in rotation between the two solids is due to the fact that the 4 joints are connecting the two solids are different locations
  • A Bushing Joint used for the Actuator. The Ry motion is imposed by the input.

simscape_model_ry.png

Figure 8: Simscape model for the Tilt Stage

simscape_picture_ry.png

Figure 9: Simscape picture for the Tilt Stage

Function description

function [ry] = initializeRy(args)

Optional Parameters

arguments
    args.x11 (1,1) double {mustBeNumeric} = 0 % [m]
    args.y11 (1,1) double {mustBeNumeric} = 0 % [m]
    args.z11 (1,1) double {mustBeNumeric} = 0 % [m]
    args.x12 (1,1) double {mustBeNumeric} = 0 % [m]
    args.y12 (1,1) double {mustBeNumeric} = 0 % [m]
    args.z12 (1,1) double {mustBeNumeric} = 0 % [m]
    args.x21 (1,1) double {mustBeNumeric} = 0 % [m]
    args.y21 (1,1) double {mustBeNumeric} = 0 % [m]
    args.z21 (1,1) double {mustBeNumeric} = 0 % [m]
    args.x22 (1,1) double {mustBeNumeric} = 0 % [m]
    args.y22 (1,1) double {mustBeNumeric} = 0 % [m]
    args.z22 (1,1) double {mustBeNumeric} = 0 % [m]
end

Function content

First, we initialize the ry structure.

ry = struct();

Properties of the Material and link to the geometry of the Tilt stage.

% Ry - Guide for the tilt stage
ry.guide.density = 7800; % [kg/m3]
ry.guide.STEP    = './STEPS/ry/Tilt_Guide.STEP';

% Ry - Rotor of the motor
ry.rotor.density = 2400; % [kg/m3]
ry.rotor.STEP    = './STEPS/ry/Tilt_Motor_Axis.STEP';

% Ry - Motor
ry.motor.density = 3200; % [kg/m3]
ry.motor.STEP    = './STEPS/ry/Tilt_Motor.STEP';

% Ry - Plateau Tilt
ry.stage.density = 7800; % [kg/m3]
ry.stage.STEP    = './STEPS/ry/Tilt_Stage.STEP';

Stiffness of the stage.

ry.k.tilt = 1e4; % Rotation stiffness around y [N*m/deg]
ry.k.h    = 1e8; % Stiffness in the direction of the guidance [N/m]
ry.k.rad  = 1e8; % Stiffness in the top direction [N/m]
ry.k.rrad = 1e8; % Stiffness in the side direction [N/m]

Damping of the stage.

ry.c.tilt = 2.8e2;
ry.c.h    = 2.8e4;
ry.c.rad  = 2.8e4;
ry.c.rrad = 2.8e4;

Equilibrium position of the joints.

ry.x0_11 = args.x11;
ry.y0_11 = args.y11;
ry.z0_11 = args.z11;
ry.x0_12 = args.x12;
ry.y0_12 = args.y12;
ry.z0_12 = args.z12;
ry.x0_21 = args.x21;
ry.y0_21 = args.y21;
ry.z0_21 = args.z21;
ry.x0_22 = args.x22;
ry.y0_22 = args.y22;
ry.z0_22 = args.z22;

Z-Offset so that the center of rotation matches the sample center;

ry.z_offset = 0.58178; % [m]

The ty structure is saved.

save('./mat/stages.mat', 'ry', '-append');

5 Spindle

Simscape Model

The Simscape model of the Spindle is composed of:

  • Two rigid bodies: the stator and the rotor
  • A Bushing Joint that is used both as the actuator (the Rz motion is imposed by the input) and as the force perturbation in the Z direction.
  • The Bushing joint has some flexibility in the X-Y-Z directions as well as in Rx and Ry rotations

simscape_model_rz.png

Figure 10: Simscape model for the Spindle

simscape_picture_rz.png

Figure 11: Simscape picture for the Spindle

Function description

function [rz] = initializeRz(args)

Optional Parameters

arguments
    args.rigid logical {mustBeNumericOrLogical} = false
    args.x0  (1,1) double {mustBeNumeric} = 0 % [m]
    args.y0  (1,1) double {mustBeNumeric} = 0 % [m]
    args.z0  (1,1) double {mustBeNumeric} = 0 % [m]
    args.rx0 (1,1) double {mustBeNumeric} = 0 % [rad]
    args.ry0 (1,1) double {mustBeNumeric} = 0 % [rad]
end

Function content

First, we initialize the rz structure.

rz = struct();

Properties of the Material and link to the geometry of the spindle.

% Spindle - Slip Ring
rz.slipring.density = 7800; % [kg/m3]
rz.slipring.STEP    = './STEPS/rz/Spindle_Slip_Ring.STEP';

% Spindle - Rotor
rz.rotor.density    = 7800; % [kg/m3]
rz.rotor.STEP       = './STEPS/rz/Spindle_Rotor.STEP';

% Spindle - Stator
rz.stator.density   = 7800; % [kg/m3]
rz.stator.STEP      = './STEPS/rz/Spindle_Stator.STEP';

Stiffness of the stage.

rz.k.rot  = 1e6; % TODO - Rotational Stiffness (Rz) [N*m/deg]
rz.k.tilt = 1e6; % Rotational Stiffness (Rx, Ry) [N*m/deg]
rz.k.ax   = 2e9; % Axial Stiffness (Z) [N/m]
rz.k.rad  = 7e8; % Radial Stiffness (X, Y) [N/m]

Damping of the stage.

rz.c.rot  = 1.6e3;
rz.c.tilt = 1.6e3;
rz.c.ax   = 7.1e4;
rz.c.rad  = 4.2e4;

Equilibrium position of the joints.

rz.x0 = args.x0;
rz.y0 = args.y0;
rz.z0 = args.z0;
rz.rx0 = args.rx0;
rz.ry0 = args.ry0;

The rz structure is saved.

save('./mat/stages.mat', 'rz', '-append');

6 Micro Hexapod

Simscape Model

simscape_model_micro_hexapod.png

Figure 12: Simscape model for the Micro-Hexapod

simscape_picture_micro_hexapod.png

Figure 13: Simscape picture for the Micro-Hexapod

Function description

function [micro_hexapod] = initializeMicroHexapod(args)

Optional Parameters

arguments
    % initializeFramesPositions
    args.H    (1,1) double {mustBeNumeric, mustBePositive} = 350e-3
    args.MO_B (1,1) double {mustBeNumeric} = 270e-3
    % generateGeneralConfiguration
    args.FH  (1,1) double {mustBeNumeric, mustBePositive} = 50e-3
    args.FR  (1,1) double {mustBeNumeric, mustBePositive} = 175.5e-3
    args.FTh (6,1) double {mustBeNumeric} = [-10, 10, 120-10, 120+10, 240-10, 240+10]*(pi/180)
    args.MH  (1,1) double {mustBeNumeric, mustBePositive} = 45e-3
    args.MR  (1,1) double {mustBeNumeric, mustBePositive} = 118e-3
    args.MTh (6,1) double {mustBeNumeric} = [-60+10, 60-10, 60+10, 180-10, 180+10, -60-10]*(pi/180)
    % initializeStrutDynamics
    args.Ki (6,1) double {mustBeNumeric, mustBeNonnegative} = 2e7*ones(6,1)
    args.Ci (6,1) double {mustBeNumeric, mustBeNonnegative} = 1.4e3*ones(6,1)
    % initializeCylindricalPlatforms
    args.Fpm (1,1) double {mustBeNumeric, mustBePositive} = 10
    args.Fph (1,1) double {mustBeNumeric, mustBePositive} = 26e-3
    args.Fpr (1,1) double {mustBeNumeric, mustBePositive} = 207.5e-3
    args.Mpm (1,1) double {mustBeNumeric, mustBePositive} = 10
    args.Mph (1,1) double {mustBeNumeric, mustBePositive} = 26e-3
    args.Mpr (1,1) double {mustBeNumeric, mustBePositive} = 150e-3
    % initializeCylindricalStruts
    args.Fsm (1,1) double {mustBeNumeric, mustBePositive} = 1
    args.Fsh (1,1) double {mustBeNumeric, mustBePositive} = 100e-3
    args.Fsr (1,1) double {mustBeNumeric, mustBePositive} = 25e-3
    args.Msm (1,1) double {mustBeNumeric, mustBePositive} = 1
    args.Msh (1,1) double {mustBeNumeric, mustBePositive} = 100e-3
    args.Msr (1,1) double {mustBeNumeric, mustBePositive} = 25e-3
    % inverseKinematics
    args.AP  (3,1) double {mustBeNumeric} = zeros(3,1)
    args.ARB (3,3) double {mustBeNumeric} = eye(3)
    % Equilibrium position of each leg
    args.dLeq (6,1) double {mustBeNumeric} = zeros(6,1)
end

Function content

micro_hexapod = initializeFramesPositions('H', args.H, 'MO_B', args.MO_B);
micro_hexapod = generateGeneralConfiguration(micro_hexapod, 'FH', args.FH, 'FR', args.FR, 'FTh', args.FTh, 'MH', args.MH, 'MR', args.MR, 'MTh', args.MTh);
micro_hexapod = computeJointsPose(micro_hexapod);
micro_hexapod = initializeStrutDynamics(micro_hexapod, 'Ki', args.Ki, 'Ci', args.Ci);
micro_hexapod = initializeCylindricalPlatforms(micro_hexapod, 'Fpm', args.Fpm, 'Fph', args.Fph, 'Fpr', args.Fpr, 'Mpm', args.Mpm, 'Mph', args.Mph, 'Mpr', args.Mpr);
micro_hexapod = initializeCylindricalStruts(micro_hexapod, 'Fsm', args.Fsm, 'Fsh', args.Fsh, 'Fsr', args.Fsr, 'Msm', args.Msm, 'Msh', args.Msh, 'Msr', args.Msr);
micro_hexapod = computeJacobian(micro_hexapod);
[Li, dLi] = inverseKinematics(micro_hexapod, 'AP', args.AP, 'ARB', args.ARB);
micro_hexapod.Li = Li;
micro_hexapod.dLi = dLi;

Equilibrium position of the each joint.

micro_hexapod.dLeq = args.dLeq;

The micro_hexapod structure is saved.

save('./mat/stages.mat', 'micro_hexapod', '-append');

7 Center of gravity compensation

Simscape Model

The Simscape model of the Center of gravity compensator is composed of:

  • One main solid that is connected to two other solids (the masses to position of center of mass) through two revolute joints
  • The angle of both revolute joints is set by the input

simscape_model_axisc.png

Figure 14: Simscape model for the Center of Mass compensation system

simscape_picture_axisc.png

Figure 15: Simscape picture for the Center of Mass compensation system

Function description

function [axisc] = initializeAxisc()

Optional Parameters

Function content

First, we initialize the axisc structure.

axisc = struct();

Properties of the Material and link to the geometry files.

% Structure
axisc.structure.density = 3400; % [kg/m3]
axisc.structure.STEP    = './STEPS/axisc/axisc_structure.STEP';

% Wheel
axisc.wheel.density     = 2700; % [kg/m3]
axisc.wheel.STEP        = './STEPS/axisc/axisc_wheel.STEP';

% Mass
axisc.mass.density      = 7800; % [kg/m3]
axisc.mass.STEP         = './STEPS/axisc/axisc_mass.STEP';

% Gear
axisc.gear.density      = 7800; % [kg/m3]
axisc.gear.STEP         = './STEPS/axisc/axisc_gear.STEP';

The axisc structure is saved.

save('./mat/stages.mat', 'axisc', '-append');

8 Mirror

Simscape Model

The Simscape Model of the mirror is just a solid body. The output mirror_center corresponds to the center of the Sphere and is the point of measurement for the metrology

simscape_model_mirror.png

Figure 16: Simscape model for the Mirror

simscape_picture_mirror.png

Figure 17: Simscape picture for the Mirror

Function description

function [] = initializeMirror(args)

Optional Parameters

arguments
    args.shape       char   {mustBeMember(args.shape,{'spherical', 'conical'})} = 'spherical'
    args.angle (1,1) double {mustBeNumeric, mustBePositive} = 45 % [deg]
end

Function content

First, we initialize the mirror structure.

mirror = struct();

We define the geometrical values.

mirror.h = 50; % Height of the mirror [mm]
mirror.thickness = 25; % Thickness of the plate supporting the sample [mm]
mirror.hole_rad = 120; % radius of the hole in the mirror [mm]
mirror.support_rad = 100; % radius of the support plate [mm]
mirror.jacobian = 150; % point of interest offset in z (above the top surfave) [mm]
mirror.rad = 180; % radius of the mirror (at the bottom surface) [mm]
mirror.density = 2400; % Density of the material [kg/m3]
mirror.cone_length = mirror.rad*tand(args.angle)+mirror.h+mirror.jacobian; % Distance from Apex point of the cone to jacobian point

Now we define the Shape of the mirror. We first start with the internal part.

mirror.shape = [...
    0 mirror.h-mirror.thickness
    mirror.hole_rad mirror.h-mirror.thickness; ...
    mirror.hole_rad 0; ...
    mirror.rad 0 ...
];

Then, we define the reflective used part of the mirror.

if strcmp(args.shape, 'spherical')
    mirror.sphere_radius = sqrt((mirror.jacobian+mirror.h)^2+mirror.rad^2); % Radius of the sphere [mm]

    for z = linspace(0, mirror.h, 101)
        mirror.shape = [mirror.shape; sqrt(mirror.sphere_radius^2-(z-mirror.jacobian-mirror.h)^2) z];
    end
elseif strcmp(args.shape, 'conical')
    mirror.shape = [mirror.shape; mirror.rad+mirror.h/tand(args.angle) mirror.h];
else
    error('Shape should be either conical or spherical');
end

Finally, we close the shape.

mirror.shape = [mirror.shape; 0 mirror.h];

The mirror structure is saved.

save('./mat/stages.mat', 'mirror', '-append');

9 Nano Hexapod

Simscape Model

simscape_model_nano_hexapod.png

Figure 18: Simscape model for the Nano Hexapod

simscape_picture_nano_hexapod.png

Figure 19: Simscape picture for the Nano Hexapod

Function description

function [nano_hexapod] = initializeNanoHexapod(args)

Optional Parameters

arguments
    % initializeFramesPositions
    args.H    (1,1) double {mustBeNumeric, mustBePositive} = 90e-3
    args.MO_B (1,1) double {mustBeNumeric} = 175e-3
    % generateGeneralConfiguration
    args.FH  (1,1) double {mustBeNumeric, mustBePositive} = 15e-3
    args.FR  (1,1) double {mustBeNumeric, mustBePositive} = 100e-3
    args.FTh (6,1) double {mustBeNumeric} = [-10, 10, 120-10, 120+10, 240-10, 240+10]*(pi/180)
    args.MH  (1,1) double {mustBeNumeric, mustBePositive} = 15e-3
    args.MR  (1,1) double {mustBeNumeric, mustBePositive} = 90e-3
    args.MTh (6,1) double {mustBeNumeric} = [-60+10, 60-10, 60+10, 180-10, 180+10, -60-10]*(pi/180)
    % initializeStrutDynamics
    args.actuator  char   {mustBeMember(args.actuator,{'piezo', 'lorentz'})} = 'piezo'
    % initializeCylindricalPlatforms
    args.Fpm (1,1) double {mustBeNumeric, mustBePositive} = 1
    args.Fph (1,1) double {mustBeNumeric, mustBePositive} = 10e-3
    args.Fpr (1,1) double {mustBeNumeric, mustBePositive} = 150e-3
    args.Mpm (1,1) double {mustBeNumeric, mustBePositive} = 1
    args.Mph (1,1) double {mustBeNumeric, mustBePositive} = 10e-3
    args.Mpr (1,1) double {mustBeNumeric, mustBePositive} = 100e-3
    % initializeCylindricalStruts
    args.Fsm (1,1) double {mustBeNumeric, mustBePositive} = 0.1
    args.Fsh (1,1) double {mustBeNumeric, mustBePositive} = 50e-3
    args.Fsr (1,1) double {mustBeNumeric, mustBePositive} = 5e-3
    args.Msm (1,1) double {mustBeNumeric, mustBePositive} = 0.1
    args.Msh (1,1) double {mustBeNumeric, mustBePositive} = 50e-3
    args.Msr (1,1) double {mustBeNumeric, mustBePositive} = 5e-3
    % inverseKinematics
    args.AP  (3,1) double {mustBeNumeric} = zeros(3,1)
    args.ARB (3,3) double {mustBeNumeric} = eye(3)
    % Equilibrium position of each leg
    args.dLeq (6,1) double {mustBeNumeric} = zeros(6,1)
end

Function content

nano_hexapod = initializeFramesPositions('H', args.H, 'MO_B', args.MO_B);
nano_hexapod = generateGeneralConfiguration(nano_hexapod, 'FH', args.FH, 'FR', args.FR, 'FTh', args.FTh, 'MH', args.MH, 'MR', args.MR, 'MTh', args.MTh);
nano_hexapod = computeJointsPose(nano_hexapod);
if strcmp(args.actuator, 'piezo')
    nano_hexapod = initializeStrutDynamics(nano_hexapod, 'Ki', 1e7*ones(6,1), 'Ci', 1e2*ones(6,1));
elseif strcmp(args.actuator, 'lorentz')
    nano_hexapod = initializeStrutDynamics(nano_hexapod, 'Ki', 1e4*ones(6,1), 'Ci', 1e2*ones(6,1));
else
    error('args.actuator should be piezo or lorentz');
end
nano_hexapod = initializeCylindricalPlatforms(nano_hexapod, 'Fpm', args.Fpm, 'Fph', args.Fph, 'Fpr', args.Fpr, 'Mpm', args.Mpm, 'Mph', args.Mph, 'Mpr', args.Mpr);
nano_hexapod = initializeCylindricalStruts(nano_hexapod, 'Fsm', args.Fsm, 'Fsh', args.Fsh, 'Fsr', args.Fsr, 'Msm', args.Msm, 'Msh', args.Msh, 'Msr', args.Msr);
nano_hexapod = computeJacobian(nano_hexapod);
[Li, dLi] = inverseKinematics(nano_hexapod, 'AP', args.AP, 'ARB', args.ARB);
nano_hexapod.Li = Li;
nano_hexapod.dLi = dLi;
nano_hexapod.dLeq = args.dLeq;
save('./mat/stages.mat', 'nano_hexapod', '-append');

10 Sample

Simscape Model

The Simscape model of the sample environment is composed of:

  • A rigid transform that can be used to translate the sample (position offset)
  • A cartesian joint to add some flexibility to the sample environment mount
  • A solid that represent the sample
  • An input is added to apply some external forces and torques at the center of the sample environment. This could be the case for cable forces for instance.

simscape_model_sample.png

Figure 20: Simscape model for the Sample

simscape_picture_sample.png

Figure 21: Simscape picture for the Sample

Function description

function [sample] = initializeSample(args)

Optional Parameters

arguments
    args.radius (1,1) double {mustBeNumeric, mustBePositive} = 0.1 % [m]
    args.height (1,1) double {mustBeNumeric, mustBePositive} = 0.3 % [m]
    args.mass   (1,1) double {mustBeNumeric, mustBePositive} = 50 % [kg]
    args.freq   (1,1) double {mustBeNumeric, mustBePositive} = 100 % [Hz]
    args.offset (1,1) double {mustBeNumeric} = 0 % [m]
    args.x0     (1,1) double {mustBeNumeric} = 0 % [m]
    args.y0     (1,1) double {mustBeNumeric} = 0 % [m]
    args.z0     (1,1) double {mustBeNumeric} = 0 % [m]
end

Function content

First, we initialize the sample structure.

sample = struct();

We define the geometrical parameters of the sample as well as its mass and position.

sample.radius = args.radius; % [m]
sample.height = args.height; % [m]
sample.mass = args.mass; % [kg]
sample.offset = args.offset; % [m]

Stiffness of the sample fixation.

sample.k.x = sample.mass * (2*pi * args.freq)^2; % [N/m]
sample.k.y = sample.mass * (2*pi * args.freq)^2; % [N/m]
sample.k.z = sample.mass * (2*pi * args.freq)^2; % [N/m]

Damping of the sample fixation.

sample.c.x = 0.1*sqrt(sample.k.x*sample.mass); % [N/(m/s)]
sample.c.y = 0.1*sqrt(sample.k.y*sample.mass); % [N/(m/s)]
sample.c.z = 0.1*sqrt(sample.k.z*sample.mass); % [N/(m/s)]

Equilibrium position of the Cartesian joint corresponding to the sample fixation.

sample.x0 = args.x0; % [m]
sample.y0 = args.y0; % [m]
sample.z0 = args.z0; % [m]

The sample structure is saved.

save('./mat/stages.mat', 'sample', '-append');

11 Generate Reference Signals

Function Declaration and Documentation

function [ref] = initializeReferences(args)

Optional Parameters

arguments
    % Sampling Frequency [s]
    args.Ts           (1,1) double {mustBeNumeric, mustBePositive} = 1e-3
    % Maximum simulation time [s]
    args.Tmax         (1,1) double {mustBeNumeric, mustBePositive} = 100
    % Either "constant" / "triangular" / "sinusoidal"
    args.Dy_type      char {mustBeMember(args.Dy_type,{'constant', 'triangular', 'sinusoidal'})} = 'constant'
    % Amplitude of the displacement [m]
    args.Dy_amplitude (1,1) double {mustBeNumeric} = 0
    % Period of the displacement [s]
    args.Dy_period    (1,1) double {mustBeNumeric, mustBePositive} = 1
    % Either "constant" / "triangular" / "sinusoidal"
    args.Ry_type      char {mustBeMember(args.Ry_type,{'constant', 'triangular', 'sinusoidal'})} = 'constant'
    % Amplitude [rad]
    args.Ry_amplitude (1,1) double {mustBeNumeric} = 0
    % Period of the displacement [s]
    args.Ry_period    (1,1) double {mustBeNumeric, mustBePositive} = 1
    % Either "constant" / "rotating"
    args.Rz_type      char {mustBeMember(args.Rz_type,{'constant', 'rotating'})} = 'constant'
    % Initial angle [rad]
    args.Rz_amplitude (1,1) double {mustBeNumeric} = 0
    % Period of the rotating [s]
    args.Rz_period    (1,1) double {mustBeNumeric, mustBePositive} = 1
    % For now, only constant is implemented
    args.Dh_type      char {mustBeMember(args.Dh_type,{'constant'})} = 'constant'
    % Initial position [m,m,m,rad,rad,rad] of the top platform (Pitch-Roll-Yaw Euler angles)
    args.Dh_pos       (6,1) double {mustBeNumeric} = zeros(6, 1), ...
    % For now, only constant is implemented
    args.Rm_type      char {mustBeMember(args.Rm_type,{'constant'})} = 'constant'
    % Initial position of the two masses
    args.Rm_pos       (2,1) double {mustBeNumeric} = [0; pi]
    % For now, only constant is implemented
    args.Dn_type      char {mustBeMember(args.Dn_type,{'constant'})} = 'constant'
    % Initial position [m,m,m,rad,rad,rad] of the top platform
    args.Dn_pos       (6,1) double {mustBeNumeric} = zeros(6,1)
end

Initialize Parameters

%% Set Sampling Time
Ts = args.Ts;
Tmax = args.Tmax;

%% Low Pass Filter to filter out the references
s = zpk('s');
w0 = 2*pi*10;
xi = 1;
H_lpf = 1/(1 + 2*xi/w0*s + s^2/w0^2);

Translation Stage

%% Translation stage - Dy
t = 0:Ts:Tmax; % Time Vector [s]
Dy   = zeros(length(t), 1);
Dyd  = zeros(length(t), 1);
Dydd = zeros(length(t), 1);
switch args.Dy_type
  case 'constant'
    Dy(:) = args.Dy_amplitude;
    Dyd(:)   = 0;
    Dydd(:)  = 0;
  case 'triangular'
    % This is done to unsure that we start with no displacement
    Dy_raw = args.Dy_amplitude*sawtooth(2*pi*t/args.Dy_period,1/2);
    i0 = find(t>=args.Dy_period/4,1);
    Dy(1:end-i0+1) = Dy_raw(i0:end);
    Dy(end-i0+2:end) = Dy_raw(end); % we fix the last value

    % The signal is filtered out
    Dy   = lsim(H_lpf,     Dy, t);
    Dyd  = lsim(H_lpf*s,   Dy, t);
    Dydd = lsim(H_lpf*s^2, Dy, t);
  case 'sinusoidal'
    Dy(:) = args.Dy_amplitude*sin(2*pi/args.Dy_period*t);
    Dyd   = args.Dy_amplitude*2*pi/args.Dy_period*cos(2*pi/args.Dy_period*t);
    Dydd  = -args.Dy_amplitude*(2*pi/args.Dy_period)^2*sin(2*pi/args.Dy_period*t);
  otherwise
    warning('Dy_type is not set correctly');
end

Dy = struct('time', t, 'signals', struct('values', Dy), 'deriv', Dyd, 'dderiv', Dydd);

Tilt Stage

%% Tilt Stage - Ry
t = 0:Ts:Tmax; % Time Vector [s]
Ry   = zeros(length(t), 1);
Ryd  = zeros(length(t), 1);
Rydd = zeros(length(t), 1);

switch args.Ry_type
  case 'constant'
    Ry(:) = args.Ry_amplitude;
    Ryd(:)   = 0;
    Rydd(:)  = 0;
  case 'triangular'
    Ry_raw = args.Ry_amplitude*sawtooth(2*pi*t/args.Ry_period,1/2);
    i0 = find(t>=args.Ry_period/4,1);
    Ry(1:end-i0+1) = Ry_raw(i0:end);
    Ry(end-i0+2:end) = Ry_raw(end); % we fix the last value

    % The signal is filtered out
    Ry   = lsim(H_lpf,     Ry, t);
    Ryd  = lsim(H_lpf*s,   Ry, t);
    Rydd = lsim(H_lpf*s^2, Ry, t);
  case 'sinusoidal'
    Ry(:) = args.Ry_amplitude*sin(2*pi/args.Ry_period*t);

    Ryd  = args.Ry_amplitude*2*pi/args.Ry_period*cos(2*pi/args.Ry_period*t);
    Rydd = -args.Ry_amplitude*(2*pi/args.Ry_period)^2*sin(2*pi/args.Ry_period*t);
  otherwise
    warning('Ry_type is not set correctly');
end

Ry = struct('time', t, 'signals', struct('values', Ry), 'deriv', Ryd, 'dderiv', Rydd);

Spindle

%% Spindle - Rz
t = 0:Ts:Tmax; % Time Vector [s]
Rz   = zeros(length(t), 1);
Rzd  = zeros(length(t), 1);
Rzdd = zeros(length(t), 1);

switch args.Rz_type
  case 'constant'
    Rz(:) = args.Rz_amplitude;
    Rzd(:)   = 0;
    Rzdd(:)  = 0;
  case 'rotating'
    Rz(:) = args.Rz_amplitude+2*pi/args.Rz_period*t;

    % The signal is filtered out
    Rz   = lsim(H_lpf,     Rz, t);
    Rzd  = lsim(H_lpf*s,   Rz, t);
    Rzdd = lsim(H_lpf*s^2, Rz, t);
  otherwise
    warning('Rz_type is not set correctly');
end

Rz = struct('time', t, 'signals', struct('values', Rz), 'deriv', Rzd, 'dderiv', Rzdd);

Micro Hexapod

%% Micro-Hexapod
t = [0, Ts];
Dh = zeros(length(t), 6);
Dhl = zeros(length(t), 6);

switch args.Dh_type
  case 'constant'
    Dh = [args.Dh_pos, args.Dh_pos];

    load('mat/stages.mat', 'micro_hexapod');

    AP = [args.Dh_pos(1) ; args.Dh_pos(2) ; args.Dh_pos(3)];

    tx = args.Dh_pos(4);
    ty = args.Dh_pos(5);
    tz = args.Dh_pos(6);

    ARB = [cos(tz) -sin(tz) 0;
           sin(tz)  cos(tz) 0;
           0        0       1]*...
          [ cos(ty) 0 sin(ty);
            0       1 0;
           -sin(ty) 0 cos(ty)]*...
          [1 0        0;
           0 cos(tx) -sin(tx);
           0 sin(tx)  cos(tx)];

    [~, Dhl] = inverseKinematics(micro_hexapod, 'AP', AP, 'ARB', ARB);
    Dhl = [Dhl, Dhl];
  otherwise
    warning('Dh_type is not set correctly');
end

Dh = struct('time', t, 'signals', struct('values', Dh));
Dhl = struct('time', t, 'signals', struct('values', Dhl));

Axis Compensation

%% Axis Compensation - Rm
t = [0, Ts];

Rm = [args.Rm_pos, args.Rm_pos];
Rm = struct('time', t, 'signals', struct('values', Rm));

Nano Hexapod

%% Nano-Hexapod
t = [0, Ts];
Dn = zeros(length(t), 6);

switch args.Dn_type
  case 'constant'
    Dn = [args.Dn_pos, args.Dn_pos];
  otherwise
    warning('Dn_type is not set correctly');
end

Dn = struct('time', t, 'signals', struct('values', Dn));

Save

    %% Save
    save('mat/nass_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Dhl', 'Rm', 'Dn', 'Ts');
end

12 Initialize Disturbances

Function Declaration and Documentation

function [] = initializeDisturbances(args)
% initializeDisturbances - Initialize the disturbances
%
% Syntax: [] = initializeDisturbances(args)
%
% Inputs:
%    - args -

Optional Parameters

arguments
    % Global parameter to enable or disable the disturbances
    args.enable logical {mustBeNumericOrLogical} = true
    % Ground Motion - X direction
    args.Dwx logical {mustBeNumericOrLogical} = true
    % Ground Motion - Y direction
    args.Dwy logical {mustBeNumericOrLogical} = true
    % Ground Motion - Z direction
    args.Dwz logical {mustBeNumericOrLogical} = true
    % Translation Stage - X direction
    args.Fty_x logical {mustBeNumericOrLogical} = true
    % Translation Stage - Z direction
    args.Fty_z logical {mustBeNumericOrLogical} = true
    % Spindle - Z direction
    args.Frz_z logical {mustBeNumericOrLogical} = true
end

Load Data

load('./disturbances/mat/dist_psd.mat', 'dist_f');

We remove the first frequency point that usually is very large.

Parameters

We define some parameters that will be used in the algorithm.

Fs = 2*dist_f.f(end);      % Sampling Frequency of data is twice the maximum frequency of the PSD vector [Hz]
N  = 2*length(dist_f.f);   % Number of Samples match the one of the wanted PSD
T0 = N/Fs;                 % Signal Duration [s]
df = 1/T0;                 % Frequency resolution of the DFT [Hz]
                           % Also equal to (dist_f.f(2)-dist_f.f(1))
t = linspace(0, T0, N+1)'; % Time Vector [s]
Ts = 1/Fs;                 % Sampling Time [s]

Ground Motion

phi = dist_f.psd_gm;
C = zeros(N/2,1);
for i = 1:N/2
  C(i) = sqrt(phi(i)*df);
end
if args.Dwx && args.enable
  theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
  Cx = [0 ; C.*complex(cos(theta),sin(theta))];
  Cx = [Cx; flipud(conj(Cx(2:end)))];;
  Dwx = N/sqrt(2)*ifft(Cx); % Ground Motion - x direction [m]
else
  Dwx = zeros(length(t), 1);
end
if args.Dwy && args.enable
  theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
  Cx = [0 ; C.*complex(cos(theta),sin(theta))];
  Cx = [Cx; flipud(conj(Cx(2:end)))];;
  Dwy = N/sqrt(2)*ifft(Cx); % Ground Motion - y direction [m]
else
  Dwy = zeros(length(t), 1);
end
if args.Dwy && args.enable
  theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
  Cx = [0 ; C.*complex(cos(theta),sin(theta))];
  Cx = [Cx; flipud(conj(Cx(2:end)))];;
  Dwz = N/sqrt(2)*ifft(Cx); % Ground Motion - z direction [m]
else
  Dwz = zeros(length(t), 1);
end

Translation Stage - X direction

if args.Fty_x && args.enable
  phi = dist_f.psd_ty; % TODO - we take here the vertical direction which is wrong but approximate
  C = zeros(N/2,1);
  for i = 1:N/2
    C(i) = sqrt(phi(i)*df);
  end
  theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
  Cx = [0 ; C.*complex(cos(theta),sin(theta))];
  Cx = [Cx; flipud(conj(Cx(2:end)))];;
  u = N/sqrt(2)*ifft(Cx); % Disturbance Force Ty x [N]
  Fty_x = u;
else
  Fty_x = zeros(length(t), 1);
end

Translation Stage - Z direction

if args.Fty_z && args.enable
  phi = dist_f.psd_ty;
  C = zeros(N/2,1);
  for i = 1:N/2
    C(i) = sqrt(phi(i)*df);
  end
  theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
  Cx = [0 ; C.*complex(cos(theta),sin(theta))];
  Cx = [Cx; flipud(conj(Cx(2:end)))];;
  u = N/sqrt(2)*ifft(Cx); % Disturbance Force Ty z [N]
  Fty_z = u;
else
  Fty_z = zeros(length(t), 1);
end

Spindle - Z direction

if args.Frz_z && args.enable
  phi = dist_f.psd_rz;
  C = zeros(N/2,1);
  for i = 1:N/2
    C(i) = sqrt(phi(i)*df);
  end
  theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
  Cx = [0 ; C.*complex(cos(theta),sin(theta))];
  Cx = [Cx; flipud(conj(Cx(2:end)))];;
  u = N/sqrt(2)*ifft(Cx); % Disturbance Force Rz z [N]
  Frz_z = u;
else
  Frz_z = zeros(length(t), 1);
end

Direct Forces

u = zeros(length(t), 6);
Fd = u;

Set initial value to zero

Dwx    = Dwx   - Dwx(1);
Dwy    = Dwy   - Dwy(1);
Dwz    = Dwz   - Dwz(1);
Fty_x  = Fty_x - Fty_x(1);
Fty_z  = Fty_z - Fty_z(1);
Frz_z  = Frz_z - Frz_z(1);

Save

save('mat/nass_disturbances.mat', 'Dwx', 'Dwy', 'Dwz', 'Fty_x', 'Fty_z', 'Frz_z', 'Fd', 'Ts', 't');

13 Z-Axis Geophone

function [geophone] = initializeZAxisGeophone(args)
    arguments
        args.mass (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 % [kg]
        args.freq (1,1) double {mustBeNumeric, mustBePositive} = 1    % [Hz]
    end

    %%
    geophone.m = args.mass;

    %% The Stiffness is set to have the damping resonance frequency
    geophone.k = geophone.m * (2*pi*args.freq)^2;

    %% We set the damping value to have critical damping
    geophone.c = 2*sqrt(geophone.m * geophone.k);

    %% Save
    save('./mat/geophone_z_axis.mat', 'geophone');
end

14 Z-Axis Accelerometer

function [accelerometer] = initializeZAxisAccelerometer(args)
    arguments
        args.mass (1,1) double {mustBeNumeric, mustBePositive} = 1e-3 % [kg]
        args.freq (1,1) double {mustBeNumeric, mustBePositive} = 5e3  % [Hz]
    end

    %%
    accelerometer.m = args.mass;

    %% The Stiffness is set to have the damping resonance frequency
    accelerometer.k = accelerometer.m * (2*pi*args.freq)^2;

    %% We set the damping value to have critical damping
    accelerometer.c = 2*sqrt(accelerometer.m * accelerometer.k);

    %% Gain correction of the accelerometer to have a unity gain until the resonance
    accelerometer.gain = -accelerometer.k/accelerometer.m;

    %% Save
    save('./mat/accelerometer_z_axis.mat', 'accelerometer');
end

Author: Dehaeze Thomas

Created: 2020-02-03 lun. 17:50