%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); addpath('active_damping/src/'); open('active_damping/matlab/sim_nass_active_damping.slx') prepareLinearizeIdentification(); %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'sim_nass_active_damping'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Fnl'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Dnlm'); io_i = io_i + 1; % Relative Motion Outputs io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Fnlm'); io_i = io_i + 1; % Force Sensors io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Vlm'); io_i = io_i + 1; % Absolute Velocity Outputs %% Run the linearization G = linearize(mdl, io, 0.5, options); G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}; G.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6', ... 'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6', ... 'Vnlm1', 'Vnlm2', 'Vnlm3', 'Vnlm4', 'Vnlm5', 'Vnlm6'}; G_iff = minreal(G({'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'})); G_dvf = minreal(G({'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'})); G_ine = minreal(G({'Vnlm1', 'Vnlm2', 'Vnlm3', 'Vnlm4', 'Vnlm5', 'Vnlm6'}, {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'})); save('./active_damping/mat/undamped_plants.mat', 'G_iff', 'G_dvf', 'G_ine'); load('./active_damping/mat/undamped_plants.mat', 'G_iff', 'G_dvf', 'G_ine'); freqs = logspace(0, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(G_iff(['Fnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff(['Fnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); freqs = logspace(0, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(G_dvf(['Dnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf(['Dnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); freqs = logspace(0, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:6 plot(freqs, abs(squeeze(freqresp(G_ine(['Vnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [$\frac{m/s}{N}$]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i = 1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G_ine(['Vnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); prepareLinearizeIdentification(); %% Options for Linearized options = linearizeOptions; options.SampleTime = 0; %% Name of the Simulink File mdl = 'sim_nass_active_damping'; %% Input/Output definition clear io; io_i = 1; io(io_i) = linio([mdl, '/Fnl'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs io(io_i) = linio([mdl, '/Compute Error in NASS base'], 2, 'openoutput'); io_i = io_i + 1; % Metrology Outputs masses = [1, 10, 50]; % [kg] G_cart = {zeros(length(masses))}; load('mat/stages.mat', 'nano_hexapod'); for i = 1:length(masses) initializeSample('mass', masses(i)); %% Run the linearization G = linearize(mdl, io, 0.3, options); G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'}; G.OutputName = {'Dnx', 'Dny', 'Dnz', 'Rnx', 'Rny', 'Rnz'}; G_cart_i = G*inv(nano_hexapod.J'); G_cart_i.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'}; G_cart(i) = {G_cart_i}; end save('./active_damping/mat/cart_plants.mat', 'G_cart', 'masses'); load('./active_damping/mat/cart_plants.mat', 'G_cart', 'masses'); freqs = logspace(0, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:length(masses) set(gca,'ColorOrderIndex',i); p1 = plot(freqs, abs(squeeze(freqresp(G_cart{i}('Dnx', 'Fnx'), freqs, 'Hz')))); set(gca,'ColorOrderIndex',i); p2 = plot(freqs, abs(squeeze(freqresp(G_cart{i}('Dny', 'Fny'), freqs, 'Hz'))), '--'); set(gca,'ColorOrderIndex',i); p3 = plot(freqs, abs(squeeze(freqresp(G_cart{i}('Dnz', 'Fnz'), freqs, 'Hz'))), ':'); end set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]'); legend([p1,p2,p3], {'Fx/Dx', 'Fy/Dx', 'Fz/Dz'}); ax2 = subplot(2, 1, 2); hold on; for i = 1:length(masses) set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_cart{i}('Dnx', 'Fnx'), freqs, 'Hz')))), ... 'DisplayName', sprintf('$M = %.0f$ [kg]', masses(i))); set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_cart{i}('Dny', 'Fny'), freqs, 'Hz')))), '--', 'HandleVisibility', 'off'); set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_cart{i}('Dnz', 'Fnz'), freqs, 'Hz')))), ':', 'HandleVisibility', 'off'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); yticks([-540:180:540]); legend('location', 'northeast'); linkaxes([ax1,ax2],'x'); freqs = logspace(0, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i = 1:length(masses) set(gca,'ColorOrderIndex',i); p1 = plot(freqs, abs(squeeze(freqresp(G_cart{i}('Rnx', 'Mnx'), freqs, 'Hz')))); set(gca,'ColorOrderIndex',i); p2 = plot(freqs, abs(squeeze(freqresp(G_cart{i}('Rny', 'Mny'), freqs, 'Hz'))), '--'); set(gca,'ColorOrderIndex',i); p3 = plot(freqs, abs(squeeze(freqresp(G_cart{i}('Rnz', 'Mnz'), freqs, 'Hz'))), ':'); end set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]'); legend([p1,p2,p3], {'Rx/Mx', 'Ry/Mx', 'Rz/Mz'}); ax2 = subplot(2, 1, 2); hold on; for i = 1:length(masses) set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_cart{i}('Rnx', 'Mnx'), freqs, 'Hz')))), ... 'DisplayName', sprintf('$M = %.0f$ [kg]', masses(i))); set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_cart{i}('Rny', 'Mny'), freqs, 'Hz')))), '--', 'HandleVisibility', 'off'); set(gca,'ColorOrderIndex',i); plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_cart{i}('Rnz', 'Mnz'), freqs, 'Hz')))), ':', 'HandleVisibility', 'off'); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); yticks([-540:180:540]); legend('location', 'northeast'); linkaxes([ax1,ax2],'x'); prepareTomographyExperiment(); load('mat/conf_simulink.mat'); set_param(conf_simulink, 'StopTime', '4.5'); sim('sim_nass_active_damping'); save('./active_damping/mat/tomo_exp.mat', 'En', 'Eg', '-append'); load('./active_damping/mat/tomo_exp.mat', 'En'); Fs = 1e3; % Sampling Frequency of the Data t = (1/Fs)*[0:length(En(:,1))-1]; figure; ax1 = subplot(3, 1, 1); hold on; plot(t, En(:,1), 'DisplayName', '$\epsilon_{x}$') legend('location', 'southwest'); ax2 = subplot(3, 1, 2); hold on; plot(t, En(:,2), 'DisplayName', '$\epsilon_{y}$') legend('location', 'southwest'); ylabel('Position Error [m]'); ax3 = subplot(3, 1, 3); hold on; plot(t, En(:,3), 'DisplayName', '$\epsilon_{z}$') legend('location', 'northwest'); xlabel('Time [s]'); linkaxes([ax1,ax2,ax3],'x'); xlim([0.5,inf]); figure; ax1 = subplot(3, 1, 1); hold on; plot(t, En(:,4), 'DisplayName', '$\epsilon_{\theta_x}$') legend('location', 'northwest'); ax2 = subplot(3, 1, 2); hold on; plot(t, En(:,5), 'DisplayName', '$\epsilon_{\theta_y}$') legend('location', 'southwest'); ylabel('Position Error [rad]'); ax3 = subplot(3, 1, 3); hold on; plot(t, En(:,6), 'DisplayName', '$\epsilon_{\theta_z}$') legend(); xlabel('Time [s]'); linkaxes([ax1,ax2,ax3],'x'); xlim([0.5,inf]);