%% Clear Workspace and Close figures clear; close all; clc; %% Intialize Laplace variable s = zpk('s'); open 'simscape/sim_nano_station_id.slx' % Control Design % Let's load the undamped plant: load('./active_damping/mat/plants.mat', 'G'); % Let's look at the transfer function from actuator forces in the nano-hexapod to the measured velocity of the nano-hexapod platform in the direction of the corresponding actuator for all 6 pairs of actuator/sensor (figure [[fig:dvf_plant]]). freqs = logspace(0, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i=1:6 plot(freqs, abs(squeeze(freqresp(G.G_geoph(['Vm', num2str(i)], ['F', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i=1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_geoph(['Vm', num2str(i)], ['F', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); % #+NAME: fig:dvf_plant % #+CAPTION: Transfer function from forces applied in the legs to leg velocity sensor ([[./figs/dvf_plant.png][png]], [[./figs/dvf_plant.pdf][pdf]]) % [[file:figs/dvf_plant.png]] % The controller is defined below and the obtained loop gain is shown in figure [[fig:dvf_open_loop_gain]]. K_dvf = tf(3e4); freqs = logspace(0, 3, 1000); figure; ax1 = subplot(2, 1, 1); hold on; for i=1:6 plot(freqs, abs(squeeze(freqresp(K_dvf*G.G_geoph(['Vm', num2str(i)], ['F', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]); ax2 = subplot(2, 1, 2); hold on; for i=1:6 plot(freqs, 180/pi*angle(squeeze(freqresp(K_dvf*G.G_geoph(['Vm', num2str(i)], ['F', num2str(i)]), freqs, 'Hz')))); end hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); linkaxes([ax1,ax2],'x'); % Identification of the damped plant % Let's initialize the system prior to identification. initializeGround(); initializeGranite(); initializeTy(); initializeRy(); initializeRz(); initializeMicroHexapod(); initializeAxisc(); initializeMirror(); initializeNanoHexapod(struct('actuator', 'piezo')); initializeSample(struct('mass', 50)); % And initialize the controllers. K = tf(zeros(6)); save('./mat/controllers.mat', 'K', '-append'); K_iff = tf(zeros(6)); save('./mat/controllers.mat', 'K_iff', '-append'); K_rmc = tf(zeros(6)); save('./mat/controllers.mat', 'K_rmc', '-append'); K_dvf = -K_dvf*eye(6); save('./mat/controllers.mat', 'K_dvf', '-append'); % We identify the system dynamics now that the RMC controller is ON. G_dvf = identifyPlant(); % And we save the damped plant for further analysis. save('./active_damping/mat/plants.mat', 'G_dvf', '-append'); % Sensitivity to disturbances freqs = logspace(0, 3, 1000); figure; subplot(2, 1, 1); title('$D_g$ to $D$'); hold on; plot(freqs, abs(squeeze(freqresp(G.G_gm('Dx', 'Dgx'), freqs, 'Hz'))), 'DisplayName', '$\left|D_x / D_{g,x}\right|$'); plot(freqs, abs(squeeze(freqresp(G.G_gm('Dy', 'Dgy'), freqs, 'Hz'))), 'DisplayName', '$\left|D_y / D_{g,y}\right|$'); plot(freqs, abs(squeeze(freqresp(G.G_gm('Dz', 'Dgz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / D_{g,z}\right|$'); set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(G_dvf.G_gm('Dx', 'Dgx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_dvf.G_gm('Dy', 'Dgy'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_dvf.G_gm('Dz', 'Dgz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/m]'); xlabel('Frequency [Hz]'); legend('location', 'northeast'); subplot(2, 1, 2); title('$F_s$ to $D$'); hold on; plot(freqs, abs(squeeze(freqresp(G.G_fs('Dx', 'Fsx'), freqs, 'Hz'))), 'DisplayName', '$\left|D_x / F_{s,x}\right|$'); plot(freqs, abs(squeeze(freqresp(G.G_fs('Dy', 'Fsy'), freqs, 'Hz'))), 'DisplayName', '$\left|D_y / F_{s,y}\right|$'); plot(freqs, abs(squeeze(freqresp(G.G_fs('Dz', 'Fsz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{s,z}\right|$'); set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(G_dvf.G_fs('Dx', 'Fsx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_dvf.G_fs('Dy', 'Fsy'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_dvf.G_fs('Dz', 'Fsz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]'); legend('location', 'northeast'); % #+NAME: fig:sensitivity_dist_dvf % #+CAPTION: Sensitivity to disturbance once the DVF controller is applied to the system ([[./figs/sensitivity_dist_dvf.png][png]], [[./figs/sensitivity_dist_dvf.pdf][pdf]]) % [[file:figs/sensitivity_dist_dvf.png]] freqs = logspace(0, 3, 1000); figure; hold on; plot(freqs, abs(squeeze(freqresp(G.G_dist('Dz', 'Frzz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{rz, z}\right|$'); plot(freqs, abs(squeeze(freqresp(G.G_dist('Dz', 'Ftyz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{ty, z}\right|$'); plot(freqs, abs(squeeze(freqresp(G.G_dist('Dx', 'Ftyx'), freqs, 'Hz'))), 'DisplayName', '$\left|D_x / F_{ty, x}\right|$'); set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(G_dvf.G_dist('Dz', 'Frzz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_dvf.G_dist('Dz', 'Ftyz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off'); plot(freqs, abs(squeeze(freqresp(G_dvf.G_dist('Dx', 'Ftyx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]'); legend('location', 'northeast'); % Damped Plant freqs = logspace(0, 3, 1000); figure; ax1 = subplot(2, 2, 1); hold on; plot(freqs, abs(squeeze(freqresp(G.G_cart('Dx', 'Fnx'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G.G_cart('Dy', 'Fny'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G.G_cart('Dz', 'Fnz'), freqs, 'Hz')))); set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(G_dvf.G_cart('Dx', 'Fnx'), freqs, 'Hz'))), '--'); plot(freqs, abs(squeeze(freqresp(G_dvf.G_cart('Dy', 'Fny'), freqs, 'Hz'))), '--'); plot(freqs, abs(squeeze(freqresp(G_dvf.G_cart('Dz', 'Fnz'), freqs, 'Hz'))), '--'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]'); ax2 = subplot(2, 2, 2); hold on; plot(freqs, abs(squeeze(freqresp(G.G_cart('Rx', 'Mnx'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G.G_cart('Ry', 'Mny'), freqs, 'Hz')))); plot(freqs, abs(squeeze(freqresp(G.G_cart('Rz', 'Mnz'), freqs, 'Hz')))); set(gca,'ColorOrderIndex',1); plot(freqs, abs(squeeze(freqresp(G_dvf.G_cart('Rx', 'Mnx'), freqs, 'Hz'))), '--'); plot(freqs, abs(squeeze(freqresp(G_dvf.G_cart('Ry', 'Mny'), freqs, 'Hz'))), '--'); plot(freqs, abs(squeeze(freqresp(G_dvf.G_cart('Rz', 'Mnz'), freqs, 'Hz'))), '--'); set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log'); ylabel('Amplitude [rad/(Nm)]'); xlabel('Frequency [Hz]'); ax3 = subplot(2, 2, 3); hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Dx', 'Fnx'), freqs, 'Hz'))), 'DisplayName', '$\left|D_x / F_{n,x}\right|$'); plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Dy', 'Fny'), freqs, 'Hz'))), 'DisplayName', '$\left|D_y / F_{n,y}\right|$'); plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Dz', 'Fnz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{n,z}\right|$'); set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf.G_cart('Dx', 'Fnx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off'); plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf.G_cart('Dy', 'Fny'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off'); plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf.G_cart('Dz', 'Fnz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend('location', 'northwest'); ax4 = subplot(2, 2, 4); hold on; plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Rx', 'Mnx'), freqs, 'Hz'))), 'DisplayName', '$\left|R_x / M_{n,x}\right|$'); plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Ry', 'Mny'), freqs, 'Hz'))), 'DisplayName', '$\left|R_y / M_{n,y}\right|$'); plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Rz', 'Mnz'), freqs, 'Hz'))), 'DisplayName', '$\left|R_z / M_{n,z}\right|$'); set(gca,'ColorOrderIndex',1); plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf.G_cart('Rx', 'Mnx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off'); plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf.G_cart('Ry', 'Mny'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off'); plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf.G_cart('Rz', 'Mnz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off'); hold off; set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin'); ylabel('Phase [deg]'); xlabel('Frequency [Hz]'); ylim([-180, 180]); yticks([-180, -90, 0, 90, 180]); legend('location', 'northwest'); linkaxes([ax1,ax2,ax3,ax4],'x');